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Environmentally Informed Buried Object Recognition

ABSTRACT

The ability to detect and classify buried objects using thermal infrared imaging is affected by the environmental
conditions at the time of imaging, which leads to an inconsistent probability of detection. For example, periods
of dense overcast or recent precipitation events result in the suppression of the soil temperature difference
between the buried object and soil, thus preventing detection. This work introduces an environmentally informed
framework to reduce the false alarm rate in the classification of regions of interest (ROIs) in thermal IR images
containing buried objects. Using a dataset that consists of thermal images containing buried objects paired
with the corresponding environmental and meteorological conditions, we employ a machine learning approach to
determine which environmental conditions are the most impactful on the visibility of the buried objects. We find
the key environmental conditions include incoming short-wave solar radiation, soil volumetric water content,
and average air temperature. For each image, ROIs are computed using a computer vision approach and these
ROIs are coupled with the most important environmental conditions to form the input for the classification
algorithm. The environmentally informed classification algorithm produces a decision on whether the ROI
contains a buried object by simultaneously learning on the ROIs with a classification neural network and on
the environmental data using a tabular neural network. On a given set of ROIs, we have shown that the
environmentally informed classification approach improves the detection of buried objects within the ROIs.

1. INTRODUCTION

Buried object detection and classification is a nontrivial task that has been widely researched. This paper uses
thermal infra-red (IR) sensors to detect buried objects which is advantageous as this sensor modality can identify
objects composed of both metal and plastic and can operate day and night. The key to successful buried object
detection with thermal IR is to identify surface thermal anomalies induced by the presence of a buried object.
The thermal signature of the surrounding soil is highly heterogeneous which can lead to a low signal-to-noise
ratio (SNR) in a thermal image that contains a buried object. The lower the SNR, the more difficult the task
of detection and classification of buried objects. Furthermore, it has been shown in1–4 that the environmental 
conditions at the time of imaging affect the thermal signature of buried objects. For example, a rain event
will increase the soil’s volumetric water content (VWC) and the increased soil moisture leads to a “wash out”
phenomena making detection of buried objects difficult. The increased soil moisture masks the buried objects
since the moisture seeping into the ground creates a thermal equilibrium between the buried objects and the
soil. Additionally, the incoming shortwave solar radiation is an important factor for the ability to detect a buried
object with thermal IR. Near dawn as the surrounding soil heats at a different rate from the buried object, there
is often a window of increased visibility, but by mid-day a thermal equilibrium is achieved due to the solar-loading
of the soil and buried object. After sundown, there is another window of increased visibility where the buried
objects retain heat at a different rate compared to the surrounding soil, which makes the object detectable after
dark. If one considers the environmental conditions at the time of imaging, this can inform the detection and
subsequent classification of buried objects using thermal IR sensors.
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Figure 1. A schematic flow chart representation of the steps of the proposed two-step environmentally informed ATR.

This paper focuses on utilizing the environmental conditions at the time of imaging to inform the recognition
of buried objects. Automatic target recognition (ATR) algorithms are comprised of two steps: the detection and
the classification of o bjects. The two classes of ATR algorithms are two-step and one-step a lgorithms. In a  two-
step ATR, one algorithm is used to detect a region of interest (ROI) within an image and a second classification
algorithm is used to classify the type of object detected in the ROI. In a one-step ATR, one algorithm tackles both
detection and classification s teps.5 We present a  two-step approach to object detection and c lassification. The 
thermal images are processed using a computer vision approach to identify ROIs and, given the low SNR, the ROIs
produce many false positives. We then process and classify the ROIs for whether they contain a buried object
using an environmentally informed deep learning approach. We augment the ROI with environmental conditions
at the time of imaging and process the coupled data into both a tabular neural network for the environmental data
and a convolutional neural network for the image data. The results of the combined networks are concatenated
and passed through a final c lassification layer wh ich produces th e environmentally in formed pr ediction. Fig. 1
shows a schematic representation of the different steps of the two-step environmentally informed ATR algorithm.

The paper is organized as follows. In Sec. 2, the data used for the two-step algorithm is discussed. In
particular, the data collection and the pre-processing that were performed prior to utilization in the detection
and classification a lgorithms. Sec. 3  i ntroduces the computer v ision a lgorithm used f or i dentifying ROIs i n the
thermal images. In Sec. 4, the environmentally informed classification algorithm is i ntroduced. The architecture
of the algorithm is discussed and we compare the environmentally informed classification o f t he ROIs t o the
classification of the ROIs using only the CNN. Lastly, in Sec. 5, we discuss the findings and future directions of
the work.

2. DATA DESCRIPTION

The data used in this paper is from a multi-year study conducted by the Engineering Research and Development
Center (ERDC) and descriptions of this study can be found in Refs. 1, 2, 6, 7. The data was collected using the
ERDC / Combat Capabilities Development Command (CCDC) Command, Control, Communications, Comput-
ers, Cyber, Intelligence, Surveillance, and Reconnaissance (C5ISR) Test Bed constructed at the Cold Regions
Research and Engineering Laboratory (CRREL) in Hanover, NH. Data used in this study was collected from May
to November 2018 in the Phase II of the multi-year study.2 The test bed is 3.05 m by 3.05 m and is composed of a 
sandy-loam soil, which is kept free of vegetation. The construction of the test bed involved removing the soil and
homogenizing the substrate prior to reapplying it with various buried sensors. The homogenizing process was
used to minimize background noise in the thermal variations observed on the soil surface without the presence of
buried objects. The data collected consists of two stages: pre-emplacement of objects and post-emplacement of
buried objects. A forward looking infra-red (FLIR) A310 camera is used to capture long-wave infra-red (LWIR)
(7.5 - 13 microns) data of the test bed surface. The FLIR camera records on a five-minute interval.

Four equal-sized rectangular buried objects are located within the test bed and each measure 40 by 40 by
20 cm and are filled with nitrogen fertilizer. There are two plastic (HPDE) objects and two metal objects
(aluminum). A shallow plastic (SP) object and shallow metal (SM) object were emplaced in the test bed with
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Figure 2. A sample thermal image of the test bed with the buried objects identified a long with t he c orresponding pixel
locations.

the top buried at a depth of 5 cm below round surface (bgs) and a deep plastic (DP) object and deep metal
(DM) object were buried at a depth of 25 cm bgs. In Fig. 2, a sample thermal image of the test bed is shown
and the pixel locations of each object are labeled. The test bed images have dimension 115 × 105 pixels.

In the test bed, CS655 sensors are used to measure the temperature, electric conductivity, and moisture
(volumetric water content) of the soil. The sensors are buried at various depths throughout the test bed (5,
15, and 35 cm bgs). In addition to below-ground measurements, the surface temperature (measured with heat
plates), heat flux, and incoming and reflected short wave so lar radiation (W/m2) are re corded. To  record local 
meteorological conditions, there is a meteorological station installed at the CRREL/C5ISR test bed and the
measurements include average air temperature (C), average pressure (mbar), average wind speed (m/s), rain
total (mm), snow total (mm), and average wind direction (angle). The sensors and meteorological station at the
test bed record the sensor values every 15 minutes. See Ref. 2 for more details regarding the construction of the
test bed and sensor placement.

The environmental data (including meteorological) are considered to be independent and identically dis-
tributed (IID) data. The IID interpretation of the environmental data simplifies t he a nalysis s ince w e are
assuming that only the environmental conditions at the time of imaging effect the resulting thermal i mage. This
study focuses on a subset of five environmental c onditions: the volumetric water content (VWC), incoming solar
radiation, average air temperature, average air pressure, and relative humidity. A previous study (Ref. 7 Sec. 6
and Ref. 8) found that these five e nvironmental c onditions h ave t he l argest impact o n buried o bject visibility
when using thermal IR sensors for detection. Note that the FLIR imagery is recorded on five-minute intervals
while the environmental conditions are recorded on 15-minute intervals. To align the full FLIR image data
set with the environmental data, we approximate five-minute resolution environmental data by taking a  simple
average for the considered subset. For example, on 1 July 2018 at 0900 the air temperature was 25.98 (C) and
at 0915 it increased to 26.65 (C). These values are averaged to obtain the five-minute resolution for 0900, 0905,
and 0910 to be given by 26.3 (C). For a more detail description on the preparation of the environmental data
and selection of the most influential variables i n buried object v isibility s ee Sec. 6  o f Ref. 7 . I n Sec. 4 , we will
use this environmental data to inform the recognition of buried objects in the thermal imaging.

3. DETECTION OF BURIED OBJECTS: COMPUTER VISION APPROACH

The detection step of the algorithm is accomplished using a computer vision approach which produces a collection
of ROIs for each image. The ROIs may or may not contain a buried object which is determined by processing
the ROIs using the environmentally informed classification algorithm introduced in Sec. 4.

The computer vision algorithm takes in an U8 image that is converted from the raw I16 thermal radiance
value acquired with the FLIR A310 sensor. The heterogeneous nature of the thermal signature of soil and
the compounding environmental factors mean that the SNR for the object of interest can be less than two,
which makes standard detection techniques difficult to implement. The computer vision (CV) approach utilizes
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Figure 3. The stages of the computer vision baseline edge detection algorithm with each stage enhancing the SNR.

Figure 4. The final step of the CV baseline algorithm produces the ROIs from the Canny edge detection step.

filtering and transformation techniques to enhance the SNR for optical detection which localizes potential objects
for classification. The CV detection algorithm takes in the raw U8 image, which is then smoothed using an
anisotropic diffusion filter to reduce background noise The smoothed data is then processed using a Shearlet
transformation to filter out the high frequency noise. Then to amplify the edges a Sobel operator is convolved
with the anisotropic diffused and shearlet transformed image. Lastly, the processed image is convolved with a
Bitwise-And operator to increase the SNR and Canny edge detection is applied to generate the ROIs. We call
this procedure the CV baseline algorithm. Fig. 3 shows the progression of the CV algorithm from the anisotropic
diffusion filter to the Canny edge detection. The goal of the algorithm is to enhance the SNR at each stage
to improve the detection of buried objects in a thermal image. The contour plots in Fig. 3 are produced using
the Canny edge detection algorithm.9 Note that Canny edge detection is used in two different ways: without 
threshold limits to create the contour plots and with threshold limits to identify edge that may correspond to
ROIs (Fig. 3f). Following the Canny edge detection step (with thresholds), a probabilistic Hough transform10 is 
applied to produce the ROIs which are used to identify buried objects, see Fig. 4. The steps of the CV baseline
algorithm are described in more detail in the following sections.
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3.1 Smoothing and Noise Reduction

Since the thermal images used to detect buried objects can have a very low SNR, we need to filter the images
to smooth and filter the noise levels. Using Canny edge detection, we produce contour plots of the images to
empirically evaluate the noise level in the images. To see why the filtering steps are necessary, the obscuration
of the signal can be observed in Fig. 3 a which shows the unprocessed raw thermal image and the corresponding
contour representation and we can see that the signal of the buried objects is difficult to discern from the
background noise. We mitigate this problem by smoothing the image and filtering out salt and pepper noise.

The image is smoothed by applying an anisotropic diffusion transformation which is inspired from biomedical
imaging techniques that involve minimizing the energy function using gradient descent to reduce noise in an
image.11 The nonlinear and space-variant transformation technique was originally introduced by Perona and
Malik in Ref. 9 as a way to reduce noise while maintaining edge information in the image. This approach is
advantageous for our application since we are relying on using edges in a thermal image as an indicator of a
surface temperature anomaly due to the presence of a buried object. For a greyscale image, I(x, y, t), where
(x, y) represent the image pixel locations and t is the variance, then the anisotropic diffusion is defined as

∂

∂t
I(x, y, t) = ∇ · (c(x, y, t)∇I) . (1)

Above, c is the diffusion coefficient and if c is taken to be a constant then (1) reduces to the isotropic diffusion
equation. The diffusion coefficient is taken to be a monotonically decreasing function, g(·), of the magnitude of
the gradient of the image. For example, Perona and Malik in Ref. 9 define the diffusion coefficient to be given
by a Gaussian,

c(x, y, t) = g(∥I∥) = e−(∥I∥/K), (2)

or, to be given by the following function,

c(x, y, t) = g(∥I∥) = 1

1 + (∥I∥/K)2
. (3)

If the diffusion coefficient is taken to be (2), then the  application of the  anisotropic diffusion privileges high-
contrast edges over low-contrast ones. On the other hand, if the diffusion c oefficient is given by (3) , the n the
anisotropic diffusion weighs w ide-regions over n arrow. I n t he d iffusion co efficient, the cons tant K cont rols the
sensitivity and we take it to be given by twice the global standard deviation, K = 2σIo .

12 In smoothing a thermal 
image using anisotropic diffusion, the Gaussian diffusion co efficient is appl ied in non-trivial regions while edges
are left un-altered and thus, maintaining their integrity. An edge-estimator, E(x, y, t) is used to approximate
the location of edges to inform the filtering and i t i s given by the gradient of the image, E(x, y, t) = ∇I(x, y, t).
We use a Python implementation of anisotropic diffusion f ound i n Ref. 1 3. Next, i t i s necessary to denoise the
image by using a high-pass filter.

The Shearlet transformation uses the frequency domain to filter the thermal image for high frequency noise.14 

Comparing the contour plots in Fig. 3 b and Fig. 3 c, we see that the Shearlet transformation reduces the noise
that causes speckling in the contour plots which obscure the buried object signal. The implementation of the
Shearlet transformation used in this project is ShearLab3D.15 For our purposes, the 2-dimensional Shearlet trans-
formation is sufficient since the thermal images are naturally represented in grey scale since the raw image values
correspond to radiance counts. The algorithm begins with using a parabolic scaling matrix which is followed
by translation and shearing operations. The Shearlet coefficients are obtained with a point-wise multiplication
of the Shearlets with the image in the frequency domain. We then threshold the Shearlet coefficients such that
coefficients below a specific threshold are set to zero– this denoises the Shearlet transformation. Lastly, we invert
the Shearlet transformation to obtain the filtered image data in the spatial-domain rather than the frequency
domain. Fig. 5 shows a comparison of an unfiltered thermal image with the high frequency noise filtered out via
the Shearlet transformation. The corresponding contour plots produced using Canny edge detection show that
the noise reduction using the Shearlet transformation highlights the signal of the buried objects, particularly the
deep objects, from the background noise. The next section discusses the steps used to produce the ROIs used in
the classification algorithm.
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Figure 5. A comparison of the thermal image with the high frequency noise filtered out using the Shearlet transformation
along with the corresponding contour plots obtained with Canny edge detection.

3.2 Edge Detection and ROIs

In the previous section, we discussed how we denoised the thermal images to enhance the buried object signal
through smoothing and using a high pass filter via the Shearlet transform. Now that the edge-features in the
images have been highlighted through the transform process, we need to separate the remaining background
noise from the buried objects and this is done via convolution. In particular, we use the Sobel transform and the
Bitwise-And operation to combine the filtered images. Bitwise operations are arithmetic operators, i.e. ∨,∧,⊗,¬,
are conducted often throughout the CV baseline algorithm. These operations calculate the per-element bitwise
conjunction or disjunction of two or more images, depending on the logical argument executed. Lastly, we use
the Canny edge detection once again paired with the Hough transform10 to select ROIs to detect the buried
objects.

The Sobel operator for edge detection uses two 3×3 kernels convolved with the image intensity to approximate
the first derivatives. In particular, we approximate the horizontal and vertical changes where sharp changes in
the image (i.e. edges) corresponding to large jumps in the values of these derivative approximations. Again, we
let I represent the image intensity and we approximate the horizontal and vertical first derivatives as follows:

Gx =

−1 0 1
−2 0 2
−1 0 1

 ∗ I, Gy =

 1 2 1
0 0 0
−1 −2 −1

 ∗ I, (4)

where ∗ is denoting the two-dimensional convolution. The gradient approximations at each point of the image
can then be combined using the magnitude to obtain

G =
√

G2
x +G2

y (5)

which can be computed at each point of the image. Places where an abrupt change occurs due to an edge in the
image will correspond to a larger gradient magnitude compared to background noise. We will use the convention
that an edge feature corresponds to a local maximum of the gradient magnitude. After using the Sobel operator
to create a gradient magnitude mapping of the image intensity, we use the Bitwise-And operator to combine the
result of the Sobel transformation with the Shearlet image. See Fig. 3d for the result of the Sobel operation and
Fig. 3e for the combined image obtained from the Bitwise-And operation. The Canny edge detection algorithm
is applied to the filtered image obtained in the Bitwise-And operation step of the CV baseline algorithm to
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identify the potential locations of buried objects in the image. Finally, the probabilistic Hough transform is used
to detect areas containing straight lines after the Canny edge detection to produce the ROIs, see Fig. 4. ROIs
deemed to possibly contain a buried object must satisfy the following condition

mean(I)−mean(ROI) > α(σ(I)), (6)

where α ∈ (0, 1] is a sensitivity threshold constant that can be tuned for sensitivity and σ(I) is the standard
deviation of the image. If α = 1, then the algorithm will produce fewer ROIs which will ultimately reduce
false positives, but at the cost of greatly increasing false negatives. Since we can mitigate the false positives,
it is better to use a sensitivity threshold that produces more false positives while reducing false negatives. For
formulating the training data set in the next section we use α = 0.5 to produce sufficient ROIs that balances the
false positives with the false negatives. For more information about the CV baseline algorithm see Ref. 7 Sec. 5.

Note that the detection of buried objects using the CV baseline algorithm can produce both false positives
and false negatives. The reduction of false negatives requires tuning the parameters of the algorithm, while the
false positives can be filtered out u sing t he e nvironmentally i nformed c lassification of  RO Is. The classification
step improves the false alarm rate, but does not improve the false negative rate and improving the false negative
rate of the CV baseline algorithm for detection is a topic for future research.

4. ENVIRONMENTALLY INFORMED CLASSIFIER

In this section, we will classify the ROIs produced using the CV approach to determine whether a buried object
is present in a given ROI. The ROIs produced by the CV algorithm will include both true positives and false
positives and it is important to filter out the false positives to ensure the detection of buried objects i s reliable.
Note that the CV algorithm will also have false negatives, meaning, some buried objects may not be detected
in an ROI. The classification step of the a lgorithm does not mitigate the presence of false n egatives. Since i t is
known that the environmental conditions at the time of imaging can affect the visibility and detection of buried
objects,1, 2, 6, 7 we couple the environmental conditions with the ROIs to better inform the classification o f the 
ROI. The approach used here follows the work by Gessert et al. in Ref. 16, where the authors used tabular data
to help inform the classification of images in a  medical imaging application.

4.1 Training and Testing Data

Given the ROIs produced with the CV baseline algorithm described in Sec. 3, we need to create labels for the
ROI data set and formulate a test set. The ROIs are selected to be rectangular bounding boxes that surround
the circular regions identified by the Hough t ransform s tep o f the CV baseline a lgorithm and the output i s the
top left pixel location (xTL, yTL) with the corresponding width and height of the bounding box. Given the top
left pixel locations,

xTL ∈ [0, 115) ⊂ Z, yTL ∈ [0, 105) ⊂ Z,

and the height h and the width w of the bounding box, we take wsq = max(h, w) to produce a square ROI for a
more uniform training and testing data set. Then, the ROI is defined to be a  2-D pixel array subset given by

ROI = [xTL, xTL + wsq] × [yTL, yTL + wsq] ⊂ Z2.

Recall, the top left corner of the test bed image corresponds to pixel location (0, 0) and the bottom right corner
of the test bed corresponds to pixel location (115, 105). Note that if xTL + wsq > 115, then truncate the width
such that xT L +w = 115, and similarly, we truncate the height if yTL +wsq exceeds 105. Using the pixel locations
for each ROI we then obtain sub-images by cropping the associated full 115 × 105 pixel image to the appropriate
ROI size. The cropped ROI images are square with varying dimensions, except in the few cases the height or
width of the ROI is truncated to not exceed the boundaries of the image. To create a uniform training and
testing set, we transform the ROIs to have the size 50 × 50 pixels.
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Figure 6. An example thermal image processed with the CV algorithm and the resulting ROIs. Each ROI is labeled “yes”
of ℓ(ROI) = 1 and labeled “no” if ℓ(ROI) = 0. This image was captured 19 September 2018 at 21:45.

To create labels for the training and testing data, we utilize the fact that we know the pixel locations of the
buried objects in the thermal images. For each ROI, we create a label, ℓ, as follows:

ℓ(ROI) =

{
1 if ROI ∩ ω ̸= ∅, for all ω ∈ Ω
0 if ROI ∩ ω = ∅, for ω ∈ Ω

(7)

where ROI is the two-dimensional array of pixel locations (prior to transformation), as described above, and Ω
is a two-dimensional array of pixels that correspond to a particular object. Recall, for the data set used in this
study, there are four buried objects, and we take ω to be an element of the set of four objects Ω:

ω ∈ {SP, SM, DM, DP} = Ω,

where SP = [90, 110] × [85, 105], SM = [10, 30] × [85, 105], DM = [90, 110] × [5, 25], and DP = [10, 30] × [5, 25].
Fig. 6 shows an example thermal image processed using the CV algorithm to produce a collection of ROIs with
the corresponding computed labels. In this example, all four buried objects were identified b y ROIs v ia the
CV algorithm, however, there are two ROIs identified that correspond to f alse p ositives. Note that f or a  given
thermal image, the CV algorithm does not necessarily identify all buried objects. There are cases when the
identified ROIs neglect to identify an object which would correspond to a  false negative.

Lastly, to prepare the dataset for the environmentally informed classification a lgorithm, we n eed t o collect
the environmental metadata for each ROI. Each image is associated with a timestamp, thus each ROI inherits
a timestamp from the original thermal image which can be matched with the timestamp for the environmental
data. As noted in Sec. 2, previous studies have identified that the environmental conditions that have the greatest
impact on object visibility are the soil moisture content (%), average air temperature (◦C), incoming shortwave 
solar radiation (W/m2), average relative humidity (%), and average atmospheric pressure (mbar). For the ROIs 
in the sample image shown in Fig. 6, the corresponding environmental metadata is shown in Tab. 1.

To create a more balanced training and testing data set, we processed the full 2018 data set which includes
images collected prior to object emplacement from 11 May to 11 July 2018 and the after emplacement data
from 11 July to 15 November 2018. The combined data consists of 51,240 thermal images processed in the CV
algorithm which produced 271,673 ROIs. To create a testing data set sufficiently distinct from the training data,
we group the ROIs from a single day to all be included in either the training or testing data set. Meaning, for
the 186 days of imaging, 131 days are randomly selected to formulate the training data set and the remaining
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Table 1. Environmental metadata corresponding to the example thermal image in Fig. 6.

Environmental Variable Value for 19 Sept. 2018 at 21:45.
Soil Moisture Content (%) 0.164462

Average Air Temperature (◦C) 11.99
Incoming Solar Radiation (W/m2) 0
Average Relative Humidity (%) 92.55

Average Atmospheric Pressure (mbar) 1002.5

Figure 7. The architecture for the environmentally informed classification algorithm used to process and classify the ROIs
produced by the CV algorithm. The architecture is directly inspired by the work in Ref. 16.

55 days formulate the testing data set. Any ROI corresponding to a day that is assigned to the training set will
be assigned to the ROI training set and similarly for the testing set. We randomly select the days rather than
timestamps or ROIs for the training versus testing sets to ensure the classifier is being trained on distinct data
from the testing set. Otherwise, if the timestamps are randomly selected, it would be possible, for example, for
ROIs imaged on 19 Sept. 2018 at 21:45 to be in the training data set while the ROIs imaged five minutes later
on 19 Sept. 2018 at 21:50 be in the testing data set. In this case, the classifier would be trained on data very
similar to the testing set thus resulting in an effective performance evaluation of the classifier on unseen data.
Finally, a small portion of the training data set is set aside for a validation set to evaluate the classifier network
during training.

4.2 Classification of ROIs

To classify the ROIs, we utilize an environmentally informed neural network which concurrently learns from the
ROI image data and corresponding environmental tabular data. The architecture of the classification network
is directly inspired by the work of Gessert et. al in Ref. 16. Fig. 7 shows a schematic representation of the
environmentally informed classification network. By processing the ROIs produced by the CV algorithm discussed
in Sec. 3, we are able to increase the accuracy of the two-step detection algorithm by filtering out false positives.
Recall, the false negative rate can only be reduced through further tuning of parameters in the CV algorithm
used to produce the ROIs or by investigating alternative approaches to generating the ROIs.

The network takes in an ROI, which has been transformed to a uniform size of 50 × 50 pixels, and the

corresponding environmental conditions represented by a vector x ∈ R5. The i mage data i s f irst processed with an 
image classification algorithm and f or this work we use ResNet3417 pre-trained on the ImageNet18 data set. The 
environmentally informed classification algorithm is implemented using the Fastai (version 1) deep learning 
library19, 20 and PyTorch.21 The network is trained using a cross-entropy loss function and we use the accuracy and 
area under the receiver operator characteristic (ROC) curve (AUC) metrics to assess the performance. The fastai 
framework enables simple implementation of transfer learning to take advantage of pre-trained networks, such as 
ResNet, to customize the optimized weights learned through back propagation and minimization of the loss 
function to the specific application and, in this case, which is to classify the ROIs. Note that the ROIs in our 
training and testing data set can contain one of the four buried objects in the test bed, however, to simplify the 
model we simply identify the ROI as containing an object or not and we do not specify the type of object. For 
our purposes, the last two layers of the ResNet model are left off to allow for classification using the combined
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Table 2. A comparison of the training and testing errors for image-only and the environmentally informed ROI classifica-
tion.

Classification Model Training Testing
AUC Accuracy AUC Accuracy

ROI Only 0.901 0.841 0.510 0.448
ROI and Environmental 0.934 0.836 0.922 0.828

ROI and environmental data. The output of the image network is a 100-dimensional vector. The tabular data
is processed through a neural network given by the fastai TabularModel. This model is a sequential model that
consists of five l ayers: 1 ) a  l inear a ctivation l ayer which t akes i n t he fi ve-dimensional ve ctor of  environmental
variables and outputs an eight-dimensional vector, followed by 2) a layer that passes through a rectified linear
unit (ReLu) activation, 3) batch normalization, 4) a dropout layer, and 5) finally another linear activation layer.
The final output of the tabular network i s an eight-dimensional v ector. After the ROIs and environmental data
are processed through the image network and the tabular network, respectively, the outputs are concatenated
to produce a vector of size 108 combining the results of the image and tabular networks. The concatenated
results are passed through five fully connected layers which decrease the output s ize in each layer to ultimately
produce the classification. The fi nal cl assification out put has  dim ension two  and  the  firs t valu e indi cates the
probability that the ROI contains a buried object and the second value indicates the probability that the ROI
was a false positive. To produce the final c lassification pr ediction, we  se lect th e gr eater pr obability fr om the
two-dimensional output from the final classification layer.

We compare the performance of the environmentally informed classification of the ROIs to the classification
using only the ROI image data and ResNet34. In the image-only classification, we use the s ame f ramework as
in the environmentally informed classification except we use transfer learning on the full ResNet model and use
the classification l ayer in ResNet to produce our p redictions. For the comparison, we use the same t raining set
with the same validation subset and testing set for both classification a lgorithms. On t he t esting data s et the
image-only classification achieved an AUC of 0.51 while the environmentally informed classification achieved an
AUC of 0.92, see Tab. 2. Notably, the environmentally informed classification decreases the over-fitting that is
observed with the image-only classification which can be seen in Tab. 2  when comparing the AUC and accuracy
metrics on the training data set versus the testing data set. Fig. 8 shows a comparison of the ROC curve
computed on the testing data set where the false positive rate is plotted against the true positive rate. Overall,
the environmentally informed classification of the ROIs outperforms the image-only ROI classification.

Lastly, we compare the distribution of the environmental conditions when the environmentally informed
classification predicts the correct label versus the incorrect label. Note that the incorrect label distributions
combine the two possible situations: the correct ROI label is ℓ(ROI) = 1 but the classification predicted a label of 0
and, for the opposite when the correct ROI label is ℓ(ROI) = 0 while the classification predicted a label of 1. The
distribution of the VWC varied the most between the correct and incorrect predicted labels, see Fig 9. The lower
the value of the VWC the more likely the environmentally informed classification algorithm predicts the correct
label for the ROI. On the other hand, at higher values of VWC there is an increased probability of the classification
algorithm selecting the incorrect label for the test data set. This is consistent with findings in previous studies1, 2, 6, 
7 conducted at CRREL to understand the impact of environmental conditions on the visibility of buried objects 
using thermal IR. In particular, as the VWC increases after a rain event the increased soil moisture acts as a
thermal mask for the buried objects, which makes detection with thermal IR difficult. The other four
environmental condition distributions were also analyzed. For air temperature, the closer the average air
temperature was to freezing the more likely the classification algorithm predicts the incorrect label. The
distribution comparison for incoming short wave solar radiation, average pressure, and relative humidity did not
illuminate any strong patterns for environmental conditions corresponding to an incorrect label prediction using
the environmentally informed classification algorithm.
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Figure 8. A comparison of the ROC curves for the classification of ROIs using only images versus the coupling of the
ROIs with environmental data.

Figure 9. A comparison of the distribution of the VWC associated with the test ROIs where the green distribution
corresponds to test ROIs assigned the correct label and the blue distribution corresponds to test ROIs assigned the
incorrect label using the environmentally informed classification algorithm.

5. CONCLUSION

This paper introduced a two-step algorithm to detect and classify buried objects using thermal IR sensors. The
detection step of the two-step algorithm was implemented using a CV approach to increase the SNR and used
edge detection to identify regions of interest within the thermal imagery. The CV approach to produce ROIs
results in true positives, false positives, false negatives, and true negatives, which correspond to the detection of
a buried object, detection of background noise as an object, object signal is identified as background noise, and
background noise that is identified correctly, respectively. Both the true positives and false positives result in
the identification of a ROI within the thermal image. The true negatives and false negatives both correspond to
the situation where a ROI is not selected by the algorithm. The reduction of the false negative rate in the CV
approach for detection of potential buried objects is a topic of future research. However, the false positive rate
can be mitigated by the second-step of the algorithm, which classifies the ROIs as containing a buried object
or not. We introduced an environmentally informed classification algorithm, which simultaneously learns on the
environmental data and the ROIs improve the performance of the classification algorithm. We compared the
environmentally informed approach to the image-only approach in which the ROIs are classified using transfer
learning on a pre-trained ResNet34 algorithm. The inclusion of environmental conditions greatly improved the
performance of the ROI classification algorithm. Future research for the classification algorithm involves training
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the algorithm on a diverse data set that includes buried objects of varying shape and dimension and a wider
variety of weather conditions.
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