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PREFACE 
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Grace, Jr., Chief of the Hydraulic Structures Division, directed the 
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RWQB, and Dr. D. R. Smith, former Chief, RWQB. Mr. MarkS. Dortch, 

formerly of the RWQB, and Dr. Billy H. Johnson of the Mathematical 

Modeling Group, HL, monitored the contract. 
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This report should be cited as follows: 

Thompson, J. F., and Bernard, R. S. 1985. ''Numerical 
Modeling of Two-Dimensional Width-Averaged Flows Using 
Boundary-Fitted Coordinate Systems,'' Technical Report 
E-85-9, US Army Engineer Waterways Experiment Station, 
Vicksburg, Miss. 
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CONVERSION FACTORS, NON-S! TO SI (METRIC) 
UNITS OF MEASUREMENT 

NON-S! units of measurement used in this report can be converted to SI 

(metric) units as follows: 

Multiply By To Obtain 

cubic feet per second 0.02831685 cubic metres per second 

Fahrenheit degrees 5/9 Celsius degrees* 

feet 0.3048 metres 

feE't per second 0.3048 metres per second 

slugs per cubic foot 515.50336 kilograms per cubic 

' 

* To obtain Celsius (C) temperature readings from Fahrenheit (F) 
readings, use the following formula: C = (5/9)(F- 32). 
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NUMERICAL MODELING OF TWO-DIMENSIONAL WIDTH-AVERAGED FLOWS 

USING BOUNDARY-FITTED COORDINATE SYSTEMS 

PART I: INTRODUCTION 

1. The use of numerically generated boundary-fitted curvilinear 

coordinate systems as the basis for numerical solution of partial dif

ferential equations on arbitrary regions is now well established. A 

comprehensive survey of the generation and use of these coordinate sys

tems has recently appeared (Thompson, Warsi, and Mastin 1983), and the 

proceedings of a recent symposium devoted to this area (Thompson 1982a) 

cover the basic techniques involved. 

2. Such coordinate systems have the property that some coordinate 

line is coincident with each segment of the boundary in the physical 

region, so that the complication of boundary shape is effectively 

removed from the problem. In the past decade, the numerical generation 

of curvilinear coordinate systems has provided the key to the develop

ment of finite-difference solutions of partial differential equations on 

regions with arbitrarily shaped boundaries. Although much of the 

impetus for these developments has come from fluid dynamics, the tech

niques are equally applicable to heat transfer, electromagnetics, struc

tures, and all other areas involving field solutions. 

3. With coordinate systems that make coordinate lines (surfaces 

in three dimensions) coincident with the boundaries, finite-difference 

codes can be written which are applicable to general configurations 

without the need of special procedures at the boundaries. Even when the 

boundaries are in motion, the use of such coordinate systems allows all 

computation to be done on a fixed grid with a uniform rectangular mesh 

in the transformed (computational) plane. This greatly simplifies the 

coding with regard to boundary conditions, which can now be represented 

without need of interpolation. It is also possible to distribute the 

curvilinear grid lines in the physical plane with concentration of lines 
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in regions of high gradients while maintaining the square grid in the 

transformed plane. 

4. With such systems, the grid points may be thought of as a 

finite set of observers of the physic81 solution, stationed so as to be 

most effective in covering all of the action on the field. The struc

ture of an intersecting net of families of coordinate lines allows the 

observers to be readily identified in relation to each other. This 

results in more simplified coding than would the use of a triangular 

structure or a random distribution of points. The grid generation 

system provides some influence of each observer on the others so that 

when one moves to get into a better position, its neighbors will follow 

in order to maintain smooth coverage of the field. The curvilinear 

coordinate system thus should cover the field, with coordinate lines 

coincident with all boundaries. The distribution of lines should be 

smooth, with concentration in regions of high gradient. 

5. Numerical solutions of partial differential equations are done 

on the curvilinear coordinate system by first transforming all partial 

derivatives (or integrals) analytically from cartesian to curvilinear 

coordinates, so that the latter become the independent variables.* 

Normal and tangential derivatives at boundaries are similarly trans

formed. (These transformation relations are given in Thompson 1982b). 

The result is a set of partial differential equations and boundary con

ditions in which all derivatives (or integrals) are taken with respect 

to the curvilinear coordinates. These equations may then be expressed 

as difference equations on a rectangular grid in the transformed plane. 

Thus, there is no need for interpolation, regardless of the shape of the 

boundaries or the distribution of the curvilinear coordinate lines in 

the field. 

6. A finite-difference solution is given for the two-dimensional 

(2D), time-dependent, width-averaged Navier-Stokes equations, including 

an algebraic turbulence model, based on such a numerically generated 

* A simple example would be a conversion from cartesian to polar 
coordinates. 
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boundary-fitted coordinate system. This solution is applicable to 2D 

regions of arbitrary shape, with multiple inlets and outlets, and with 

obstacles in the interior. The density is taken to be a function of the 

temperature, and the system of equations to be satisfied consists of the 

continuity equation, the two momentum equations, and the energy 

equation. 

7. The solution provides for a choice of central, upwind, or ZIP 

differencing of the convective terms. Viscous terms and heat-conduction 

terms are represented by second-order central difference expressions. 

The time derivatives may be represented as either first- or second-order 

backward difference expressions. The finite volume formulation is used 

so that the equations are fully conservative. The solution is implicit 

in time, with all the difference equations being solved iteratively by 

successive overrelaxation in each time step. 

8. The input allows any portions of the boundary (external or 

obstacles) to be designated as inlets, outlets, no-slip surfaces, or 

slip surfaces. Arbitrary specification of velocity and temperature (or 

density) on inlets and/or outlets is allowed. The output is in the form 

of field arrays of the velocity components, pressure, and temperature. 

All computation is done in metric units, but the input and output units 

may be specified otherwise. The code for this solution (WESSEL) and the 

code that generates the boundary-fitted coordinate system (WESCOR) are 

described in detail in Thompson and Bernard (1985) and Thompson (1983), 

respectively. The coordinate system is generated from the numerical 

solution of a system of elliptic partial differential equations with 

provision for controlling the spacing of the coordinate lines in the 

field (Thompson 1982c). The transformed region is rectangular, with the 

obstacles and intrusions transformed to slits and/or slabs. A complete 

discussion of the relation between the physical and transformed planes 

is gjven in Thompson (1983). 

9. The mathematical development of this solution and the finite 

volume formulation thereof on a general boundary-fitted coordinate sys

tem are discussed in the following sections. This solution is designed 
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specifically to include the modeling of the water quality in selective 

withdrawal from reservoirs, and results for one configuration related to 

that application are given. 
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PART II: EQUATIONS OF MOTION 

10. Since numerical solutions are inherently descriptions of 

physical properties interpreted either as values at a finite collection 

of points or as average values over finite regions, it is natural to 

write the governing equations of motion in the form of integral conser

vation equations. In this form, the equations express time rates of 

change in a finite volume in terms of the resultant fluxes through the 

boundary of the volume. Such equations make no assumptions regarding 

behavior inside the volume, and naturally provide only average values of 

the solution over the volume. 

11. It is, in fact, in this integral form that the physical laws 

of dynamics and thermodynamics must be originally postulated for a 

fluid, since the concept of density is strictly definable only through 

an integral expression. Only if the fluid medium is assumed to be con

tinuous can such integral relations as the Divergence Theorem be used to 

obtain partial differential equations by applying the integral conserva

tion equations to an arbitrarily small volume. In this case, the inte

gral form that represents the difference in fluxes on opposite sides of 

the volume becomes a partial derivative at a point. 

12. While the integral and differential forms are analytically 

equivalent for a continuu~, the two forms can have different implica

tions in a numerical solution, which is necessarily carried out on a 

finit~ set of points or volumes. This is particularly true when the 

solution uses points on a non-cartesian grid or, equivalently, volumes 

that are not cubes. It is also true when physical "discontinuities" 

such as fronts and shocks occur in the field. In each of these cases, 

the numerical representation of derivatives may not always be accurate, 

while it may be possible to represent fluxes through the volume sides 

with sufficient accuracy. 

13. For these reasons, the equations of motion are given below, 

first, in the integral conservation form. The analytically equivalent 

differential form is then given for reference and some later use, but 
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the developments of numerical procedures that follow are based primarily 

on the integral form. Throughout the presentation of the equations, 

subscripts indicate cartesian coordinate directions in tensor notation, 

with repeated indices indicating summation as usual. The Kronecker 

delta appears with its usual meaning, as well. The common symbols for 

the physical variables are used.* 

Integral Form of the Equations 

Continuity equation 

14. The continuity equation, expressing conservation of mass for 

an arbitrary moving volume, is 

d 
dt V(t) 

PdV + P(u. - U.)n.dS - 0 
S(t) J J J 

(1) 

Here, the first term measures the rate of change of mass in the volume, 

while the second term, being a surface integral over the entire closed 

boundary of the volume, is the resultant flux of mass out of the volume 

through its boundary. In the second term, u. is the fluid 
J 

local surface velocity, so that while U. is the 
J 

u. - u. 
J J 

velocity, 

is the fluid 

Note that (u. - U.)n. is simply the 
J J J 

velocity relative to the surface. 

dot product (u - U)•n 
..... .... - and hence the relative velocity normal to the 

local increment of bounding surface, so that the product P(u. - U.)njdS 
J J 

is the flux of mass through -this surface increment. If the surface is 

moving with the fluid, then the relative velocity, 

and the equation states simply that the mass in the 

constant. 

Momentum equation 

u. - U. , vanishes 
J J 

volume must be 

15. Newton's Second Law, that the time rate of change of momentum 

equals the sum of the impressed forces, applies to a particular mass, 

* For convenience, symbols are listed and defined in the Notation 
(Appendix A) • 
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not to an arbitrary volume. Therefore, the volume used in this relation 

must always contain the same particles of the fluid, and its boundary 

surface ru1st move with the local fluid velocity. Since the fluid 

velocity relative to the surface then vanishes, the expression of the 

Second law is as follows: 

d 
dt Ti.n.dS + 

J J 
(2) 

Here the subscript F is attached to the volume and its bounding sur

face to indicate that the volume is being defined to always contain the 

same portion of fluid. The left side then is the time rate of change of 

the component of momentum of the particular mass of fluid within 

the volume. The forces impressed on this mass are of two types, as 

expressed by the two terms on the right side. The first term represents 

the forces acting on the surface of the fluid volume. These forces 

arise from pressure and viscosity and are expressed in terms of the 

stress tensor T .. (force per unit area) in which the subscripts indi-
1J 

cate, respectively, the direction of the force and the direction of the 

normal to the surface on which it acts. The product Tijnj then is the 

surface force in xi direction acting on the local surface increment 

dS(j) • The second term on the right is the body force, such as 

gravity, acting on the mass in the volume, the vector gi being the 

body force per unit mass. This body force could include electromagnetic 

forces as well as gravity, of course. 

16. The momentum equation (Equation 2) may be converted to apply 

to an arbitrary moving volume through the Reynolds Transport Theorem, 

which states that for any moving volume and any function f : 

d 
dt V(t) 

fdV - ~ dV + 
V(t) 3t 

Applied to the fluid volume VF this becomes 

11 

S(t) 
fU.n.dS 

J J 
(3a) 



d 
dt fdV - fu.n.dS 

J J 
(3b) 

Now consider an arbitrary volume V(t) that instantaneously is identi

cal to the fluid volume VF(t) • When the two volumes coincide, the 

first terms on the right sides of Equations 3a and 3b become identical 

so that we have at that instant 

d 
dt fdV d 

=-
dt 

fdV + 
V(t) 

f(u. - U.)n.dS 
S(t) J J J 

(4) 

Since any arbitrary moving volume will coincide with some fluid volume 

at any instant, this last equation may be used to replace the left side 

of Equation 2, with the substitution Pui = f • The momentum equation 

may be written for an arbitrary moving volume as: 

d -dt 

T •• n.dS + 
l.J J 

pg.dV 
V(t) 1 

(5) 

Now the first term on the left is the time rate of change of momentum in 

the volume, and the second term on the left· is the resultant flux of 

momentum through the bounding surface. 

Energy equation 

17. The energy equation expresses conservation of energy for an 

arbitrary moving volume, and can be written directly as 

d -dt 

--

V(t) 

S(t) 
u.T .. n.dS + 

1 1J J 

p{e + -
2

1 
u.u.)(u. - U.)n.dS 

S(t) \ 1 1 J J J 

V(t) 

12 

pu,g.dV 
J J s (t) 

q.n.dS 
J J 

(6) 



Analogous to the other equations, the first term on the left represents 

the time rate of change of total energy (internal, measured by tempera

ture, and kinetic) in the volume, and the second gives the resultant 

flux of total energy through the bounding surface. The first two terms 

on the right are the work done by the surface and body forces, respec

tively, while the last term is the resultant heat transfer through the 

bounding surface. In this equation, the energy release by internal 

reactions has been omitted. The surface heat transfer vector 

include radiation as well as conduction. 

Stress and heat conduction 

could 

18. In these equations, the stress tensor and the conduction heat 

transfer vector are given by, respectively, 

+ 2 -3 
(7) 

(8) 

where oij is the Kronecker delta. Both of these quantities are 

inherently differential, being dependent on gradients in the fluid, so 

the assumption of continuity of the medium is necessary for their defi

nition. However, average values of derivatives can be defined using the 

Divergence Theorem which states, for a general vector 

a A. 
-.ae..J dV = 
ax. 

J 
A.n.dS 

J J 

A ' -

(9) 

If A is taken as - k(i)f where - ' 
is the unit vector in the xi 

direction, then Equation 9 becomes, for any function f , 

af dV = 
v axi 

13 

s 
f [~(i) ·~ dS ( 10) 



which can be used to define an average value of 

terms of an integral over the bounding surface. 

Summary of equations 

over the volume in 

19. Equations 1, 5, and 6, together with 7 and 8 and an equation 

of state and relations for the viscosities and conductivity, constitute 

a closed system of equations of motion in integral form. 

20. With the portion of the stress tensor due to viscous forces 

written as 

a. . - ll 
1J 

au. 
1 

ax. 
J 

au. 
+ J 

ax. 
1 

0 .. 
1J 

these equations are collected here as follows: 

Continuity: 

Momentum: 

d 
dt 

d 
dt 

V(t) 

pdV + p(u. - U.)n.dS - 0 
S(t) J J J V(t) 

Pu.dV + 
1 

Pu . ( u . - U . ) n. dS 
S(t) 1 J J J 

pn.dS + 
S(t) 1 

oj .n.dS + 
S(t) .J J 

14 

pg.dV 
V(t) 

1 

( 11) 

( 12) 

( 13) 



Energy: 

d 
dt 

-- -

+ 

Energy equation in terms of enthalpy 

V(t) 
pu.g.dV -

J J 
(14) 

21. The energy equation can also be written in terms of enthalpy, 

rather than the energy, by substituting 

h = e + E. 
p 

to obtain for the left side of the energy equation 

P lh + -2
1 

u. u .)dv + 
V(t) ~ 1 1 

d -dt 

d --dt. pdV - p ( u . - U • ) n . dS 
S(t) J J J 

Fixed volume 

22. For a fixed volume, U. = 0 and the time derivative passes 
J 

inside the volume integral. For example, the first term of the momentum 

equation becomes 

v 

with similar changes in the other equations. 
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Differential Form of the Equations 

Basic equations 

23. The differential form of these equations is obtained by 

applying the Divergence Tlteorem (Equation 9) to convert all surface 

integrals to volume integrals and then reasoning that, since the result 

must apply for any fixed volume no matter how small, the integrand must 

vanish. This yields the following equations from Equations 12, 13, 

and 14 for the continuity, momentum, and energy equations, respectively, 

Continuity: 

Momentum: 

Energy: 

a 
at 

a (pu.) 
a P + --""'J-at ax. 

J 

- 0 

a (pu.) 
1 __ a_t_ + 

a(pu.u.) 
___ 1__.._]_ =- ap + 

ax. 

a a .. 
1] 

u. u .) 
1 1 

+ a 
ax. 

J 

ax 

- -

+.!. 
2 

1 

u.u.)u. 
1 1 J 

ax. 
J 

a ( pu . ) a ( u . a .. ) 

+ pg. 
1 

J 1 l_J 
---~-- + --~-~ + pu.g. 

aX. aX. J J 
J J 

(15) 

( 16) 

aq. 
J 

ax. (17) 

J 

The differential form of the equations implies the assumption of con

tinuity of the medium, of course, since it was necessary to apply the 

integral equations to an arbitrarily small volume to obtain this form. 

16 



Alternate form of the energy equation 

24. In the differential form, the mechanical energy contribution 

to the energy equation (Equation 17) may be removed by · multiplying the 

momentum equation (Equation 16) by ui and subtracting the result from 

the energy equation, the result being 

a ( p e) + _a_( P_e_u ...... j_) 
at ax. 

J 

or in terms of enthalpy, 

a (Ph) + _a_< P_h_u"""'j_) 
at ax. 

J 

au 
- -p -=-=.1. + ax. 

aui 
0 . . ':1 

1J oX. 
-

J 

ap + 
ax. 

J 

0 •. 
1J 

J 

au. 
1 

ax. 
J 

aq. 
J 

ax. 
J 

(18) 

aq. 
J 

ax. (19) 
J 

Thus, Equations 15, 16, and one of the Equations 17-19, together with 

equations of state, etc., constitute a closed system. 

25. These forms of the energy equation with mechanical energy 

removed can be put in integral form by integrating over the volume and 

reversing the use of the Divergence Theorem (Equation 9) and the 

Reynolds Transport Theorem (Equation 3) with the result 

d 
dt 

V(t) 
pedV + 

or, with the enthalpy, 

s (t) 

V(t) 

p e ( u. - U.) n. dS 
J J J 

au. 
- p ax. 

J 

J 
ax. 

J 

dV -

17 

s (t) 
q.n.dS 

J J 
(20) 



d -dt 
V(t) 

phdV + 

+ 

d 
dt 

V(t) 

V(t) o ij 

pdV + p(u. - U.)n.dS 
S(t) J J J 

au. 
1 

ax. 
J 

dV - (21) 

Therefore, in integral form, the energy equation (Equation 14) can be 

replaced by either Equation 20 or 21. 

Set of equations for present model 

26. The set of equations chosen for the present model is composed 

of the continuity equation (Equation 12), the momentum equation (Equa

tion 13), and the energy equation (Equation 20), together with the 

stress and heat flux relations, Equations 11 and 8, with the bulk 

viscosity ~· set to zero. These equations are applied on a fixed 

curvilinear coordinate system so that the surface velocity u. 
J 

vanishes. The time derivatives then appear as partial derivatives 

inside the integrals. 
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PART III: EQUATIONS OF MOTION IN GENERAL 
CURVILINEAR COORDINATE SYSTEMS 

27. In order to treat completely arbitrary configurations, the 

equations of motion must now be transformed from the cartesian system of 

the preceding section to a general 2D curvilinear coordinate system. 

General Curvilinear Coordinates 

Unit tangents and normals 

28. To establish the terminology, consider the following general 

element bounded by four curved sides, on each of which one of the curvi

linear coordinates is constant: 

line of 
constant n 
(n-line) 

29. 

-

constant 
(~-line) 

With the position vector 

Note: direction 
of k is out of page -

r = ix + jy , we have the following - - "' 

relations. The unit tangent to a line of constant n is given by 

dr -
t ( n) d~ !x~ + ,j,Y ~ 1 

(!x~ + lY ~) (22) -- - - -- dr Vx! 2 fY - + y~ d~ 
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with y 2 
X~ 

. 2 
+ y~ , and the unit normal to a line of constant 

(n) 
n = k x t(n) - 1 -- - - IY 

Similarly, for a constant-~ line, the unit tangent and normal are 

dr -- ix + jy 
t ( ~) dn - n ,..., n 1 

(ix + jyn) -- - -- dr v2 ra - n ,..., - + 2 
dn Yn xn 

with a The normal is 

(~) 
n - - t(~) X k = _! (-J·x + iy ) - -ra-n -n 

Area and volume 

n is 

(23) 

(24) 

(25) 

30. Then the area of a face on an n-line between two ~-lines is 

given by 

dS(n) -
dr 

~ X di - ~~ X (!x~ + lY~) I 

(26) 

and the area of a face on a ~-line between two n-lines is 

(27) 

Then on an n-line, 
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and on a (-line, 

- -jx + iy 
- n - n 

Also, for any vector ~ = !A1 + JA2 , we have on an n-line, 

- -

while on a (-line, 

- -

31. The volume of a cell is given by 

dV = k• (~X~) 
- d( dn 

- lx y - x y I - J 
t n n t 

where J is the Jacobian of the transformation. 

Divergence 

32. Now by the Divergence Theorem, we have for any vector 

21 

(28) 

(29) 

(30) 

(31) 

(32) 

A ' -



f 

V•AdV - A•ndS ..., ..., - -

Application of the Divergence Theorem to the cell yields 

Here, the following notation is used: 

n n = n 
(n) 

n 
(~) 

-

( ~) 
n - -n - - (n) 

n = -n 
- -

Thus 

Note that, in the limit, this could be written in derivative form 

(V·A)J - (-A
1
y + A2x ) + (A1y - A2x ) 
~ ~ n ~ n ~ 

where the subscripts now indicate partial differentiation. 

33. This then becomes a relation for the divergence: 
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1 
=-

J (33) - -

If the derivatives are expanded, there is a cancellation of cross derivatives 

of x and y so that 

1 V•A -
- - J 

(34) 

34. Both Equations 33 and 34 are valid expressions for diver

gence, and the two are·equivalent analytically. They are not equivalent 

numerically, however, since the latter involves the expansion of deriva

tives. The form of Equation 33 is the geometrically conservative form 

(after multiplication through by the Jacobian). Note that the differ

ence between these two forms is that in the geometrically conservative 

form, Equation 33, the "area" through which the flux of A flows is 

that of the bounding faces through which the flux occurs. In Equation 

34, however, the area is evaluated at the cell center rather than on the 

boundary. For a sharply deformed cell, such as is illustrated below, 

~-

' • 
' ' • 
' t 

the fluxes through ~+ and ~- sides would both be computed using the 

area on the dotted line in Equation 34. With Equation 33, however, the 

actual areas of the ~+ and ~- sides would be used. Thus, the fully 

conservative form should be much more tolerant of deformed coordinate 

systems. 
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Geometrically conservative 
derivatives and surface integral 

35. If A is taken to be if , then by Equation 33, - -
(35) 

which gives the geometrically conservative representation of the partial 

derivative with respect to X • Similarly, with A = jf .... we have 

(36) 

36. Recall also for later use that the right side of Equation 33, 

except for the 
1 
J , is the surface integral, 

.... -

where 

(38a) 

(38b) 

-Here A1 are the fluxes of A through the - ~ and T) faces, 

respectively. In fact, note that by Equations 23 and 25, 
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.... 
Thus A1 is the component of ~ normal to a ~-line multiplie.t by the 

area of the ~-face (~). Similarly, A is the normal component of A -
on an n-line multiplied by the area of the n-face. 

37. Comparing Equations 33 and 37, it is clear that the equations 

of motion can be put in geometrically conservative form either by apply

ing the integral form to the cells of the curvilinear coordinate system, 

i.e., using Equation 37, or by simply representing the derivatives in 

the differential form by the geometrically conservative expression, 

i.e., using Equation 33. 

Geometrically noncon
servative derivatives 

38. In geometrically nonconservative form we have, with the 

derivatives expanded in Equations 35 and 36, 

(39) 

(40) 

39. The second derivatives are, by ~epeated application of these 

relations, 

with 

f 
XX (y2f - 2y y f + y2f ) - - 2

1 
(nDYY f + DDYX f ) 

n ~~ ( n (n ~ nn J Y x 
(41) 
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and 

with 

and 

with 

f yy 

DDYY 

DDYX 

DDXY 

DDXX 

f + DDXX y f~ (42) 

fxy = ~ [xnynf~~ + x~y~fnn - (x~yn + xny~)f~n] 

+ ~ (DDXYY fy + DDXYX fx) (43) 

DDXYY 
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40. Finally, the Laplacian is, from Equations 41 and 42, 

'iJ 
2

f = _! fa f - 2$ f + y f ) - _! (nnY f + DDX fx) (44) 
J2 \ (( (n nn J2 y 

with 

and a and y as defined earlier: 

Continuity equation 

2 
a = x 

n 

Transformed Equations of Motion 

41. Using Equation 37 we have 

where by Equation 38 
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- (4Sa) u = uy - vx n n 

v = vx.; - uy.; (45b) 

- -Here u and v are the velocities normal to the .; and n lines, 

respectively, multiplied by the area of the faces through which the flow 

occurs (fa and /Y, respectively). Then, since 

the continuity equation (Equation 12) becomes 

(46) 

As noted above, this form could also have been obtained by using the 

geometrically conservative expressions for the derivatives, i.e., 

Equations 35 and 36, in the differential form of the conti.nuity equation 

(Equation 15). The same applies for the geometrically conservative 

forms of the momentum and energy equations developed below. 

Momentum equation 

42. In the momentum equation (Equation 13) we have, by Equation 37, 

where, by Equation 38, 
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- (47a) 

-0 i2 = 0 i2x( - 0 ily( (47a) 

The pressure term is a bit different. We have 

- [pn (n) dS (n~ - [pn (n) dS <n>] - J n+ - n-

I 

- iyt)J + [p(jx + iy >]t -., n -n -n., 

by Equations 28 and 29. Then 

Finally, the gravity term becomes 

The entire momentum equation then is 

with 
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(49a) 

(49b) 

- (49c) 

(49d) 

Energy equation 

43. For the energy equation (Equation 20) we have, by Equation 37, 

- -peujnjdS = (peu)~ + (pev)n 

with, by Equation 38 

-

-

The energy equation then becomes, 

~ ~ ~ ~ 

(pe)tJ + (peu + q 1 )~ + (pev + q2)n -

Stress and heat conduction terms 

44. Using Equations 35 and 36 we have 

30 

--- p ax. 
J 

(50a) 

(SOb) 

au. 
J 

ax. J - 0 (51) 

J 



(52a) 

(52b) 

v = .!.. r( vy ) - ( vy ) ] 
x J L n ; ; n (52c) 

(52d) 

(52e) 

(52f) 

With these relations, we then calculate from Equatton 11, with ~· = 0 , 

and from Equation 8, 

- ~(u + v ) 
y X 

KT 
X 

KT 
y 

(53a) 

(53b) 

(53c) 

(54a) 

(54b) 

Also, for the last term in the energy equation (Equation 51) we have 
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au. 
- p -""] -ax. 

J 

Wall heat transfer 

45. When a cell side coincides with a wall, the wall heat 

transfer supplies the value of q on that side as follows: 

For an n-line wall 

normal as given in Equation 23, 

Q - s:[+~(n)]-
vall ~ 

±1 -=- q 
IY 2 

we have, using the 

(55) 

where the + applies to the lower wall and the to the upper. Thus 

(56) 

46. Similarly, for a ~-line wall we have 

(57) 

with the + corresponding to the left wall and the to the right. 
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Wall temperature 

47. For an n-line wall, -q2 = + IY q from Equation 56. - wall Then, 

using Equations SOb, 54a-b, and 52e-f we have 

= -

or, 

(58) 

The wall temperature can be evaluated from this equation using one-sided 

differences for the n derivatives. 

48. For a ~-line wall, 

(59) 

Here one-sided ~ derivatives are used. 

49. With the derivatives expanded, the nonconservative forms of 

these conditions are, from Equations 58 and 59, respectively, 

YT = Bt + :! ly q n ~ K wall 
(60) 

for an n-line, wall and 
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(61) 

for a ~-line wall. 

Slip boundary conditions 

50. On a boundary with free slip, the normal velocity component 

and the vorticity must vanish. These two conditions serve to determine 

the two velocity components on such a boundary as follows. 

51. The vorticity is given by 

w - v - u - 0 
X y 

(62) 

or in curvilinear coordinates, using Equations 52a-c, 

(63) 

52. On an n-line boundary, the vanishing of the normal velocity is 

expressed from Equation 45b as 

and in the above expression of vanishing vorticity, we have, in discrete 

form, with the upper sign applying to the lower wall w , etc. 

where (F1, F2 , F3) are (1, -1, 0) and(~. -2, ~)for first and second 

order, respectively. Then 
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Thus 

-y 
( 

Then, with 

we have 

0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

u = (65a) 

(65b) 

53. Similarly on a ~-line boundary, we have, by Equation 45a, 

uy - vx = 0 
n n 

(66) 
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so that with 

we have 

u = (67a) 

v - (67b) 

Model Set 

54. The set of equations in general curvilinear coordinates used 

in the present model are the continuity equation (Equation 46), the 

momentum equation (Equation 48), the energy equation (Equation 51), 

together with the expressions given by Equations 52-55 and the appli

cable boundary conditions given by Equations 56 and 57 for the heat 

transfer, Equations 60 and 61 for the wall temperature, and Equations 65 

and 67 for the wall slip velocity. Additional relations and some modi

fications to these equations are presented in Part IV. 
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PART IV: MODIFICATIONS TO THE EQUATIONS OF MOTION 

Removal of Hydrostatic Pressure 

55. One modification is made by subtracting out the hydrostatic 

pressure PH which satisfies, by Equation 13 with zero velocity, the 

equation 

0 = - P g.dV 
s ~ 

where is the initial density. The momentum equation (Equation 13) 

then can be written, for a fixed volume, as 

a (pui) 
dV + at 

- -

• 

puiu.n.dS 
J J 

cri.n.dS + 
J J 

with the hydrostatic pressure calculated from 

r -
P g•dr 

s..... -

Here is the pressure at some reference point 

(68) 

(69) 

56. This modification is reflected in the momentum equation 

(Equation 48) by the replacement of the pressure with the difference 

between the true pressure and the hydrostatic pressure, and replacement 

of the density in the gravity term by the difference from the initial 

value. This is valid only if the fluid is initially in a condition of 

static equilibrium. 

37 



Mass Residual Correction 

57. As a stabilizing measure, the products of the discrete resid

ual of the continuity equation (Equation 12) and the velocity and energy 

are added to the right sides of the momentum and energy equations, 

Equations 48 and 51, respectively, as corrective source terms. These 

terms are, respectively, u.D and eD , where D is the residual 
1 

evaluated from Equation 46: 

D - 2.2. dV + pu,n.dS at J J 

(70) 

- -- p J + (pu)~ + (pv) n t 

58. It may be noted that the analytical effect of this corrective 

use of the continuity equation in the momentum and energy equations 

would be to reduce the equations in the nonconservative form if the 

equations were coverted to differential form and terms were cancelled 

where possible. However, the effect is not the same in the difference 

expressions since the use of different points in the various expressions 

prevents such cancellations on the discrete grid. The numerical effect 

of these corrective terms is to resist the tendency of large outflow 

from a cell to catastrophically deplete the cell contents, and similarly 

to lessen the effects of large inflow. 

Lateral Averaging 

59. Variable width is accounted for in the present model by the 

procedure of lateral averaging, which has seen much use in hydrodynamic 

problems to introduce some three-dimensional effects into two

dimensional computational models. With this procedure, the equations of 

motion are integrated laterally, and the dependent variables are 
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replaced by lateral averages thereof. Thus, with the z-direction being 

the lateral direction, we have the definition of the lateral average of 

a quantity f given as 

f (x,y) - ~B~(!-,-y~) 

z
2

(x,y) 

f(x,y,z)dz 

z
1

(x,y) 

(71) 

where B is the width, • 1. e., Then, with 

f' a perturbation from this average value, w~ have 

-f(x,y,z)- f(x,y) + f'(x,y,z) (72) 

In all that follows, such perturbations will be assumed to be small in 

comparison with the average value. Thus It' I << 1£1 • 
Continuity equation 

60. Applying this procedure to the continuity equation 

(Equation 15), we have 

Now 

and 

ap 
-+ at 

a(Pu) 
ax 

a(Pv) a(Pw) 
+ ---:.~a-y,;,_ + a z = 0 dz 

ap dz a 
at = at Pdz - B ~ dt 
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and 

and 

But w = 

parallel 

or 

az 
u- + ax 
to the 

a(pu) dz a 
ax = ax 

a(pv) dz a 
ay = ay 

az 
v- on ay and in order for the flow to be 

boundary. Therefore, the brackets cancel and we have 

- - a (p + p')(u + u')dz +-ay (p + p')(v + v')dz- 0 

a 
+ax 

40 
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-

Neglecting the quadratic prime terms, we then have for the laterally 

averaged continuity equation 

-
B ~ + _! (Bpu) + ~Ya (Bpv) - o at ax a 

(73) 

The effect of the lateral averaging on tne continuity equation in geo

metrically conservative form (Equation 46) is thus to multiply the 

density by the width B in all terms. 

Momentum equation 

61. Applying the same procedure to the x-momentum equation from 

Equation 16, we have, with subscripts indicating components, not 

derivatives, 

Now 

and 

a (pu) 
at 

Cl(puv) 
ay 

a(pu) dz a 
at = at 

2 a (pu ) 
ax 

-

a(puw) 
+ ---~---az 

dC1 
XX 

ax 

pudz 
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ap 
+ax 

acr 
xy -

ay 

acr 
xz 

az - Pg = 0 dz 
X 

p'u'dz 



Similar terms occur for the other convective terms. The brackets cancel 

as in the continuity equation. The convective terms then becom~ 

+ prime terms 

Neglecting the p' terms, we obtain for the remaining prime terms: 

a -ax 
-p 

2 
u' dz a -+- p ay 

62. Also, for the pressure terms, 

=-ax 

u'v'dz 

Now consider the pressures impressed on the volume: 

z 

If and are written 
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which cancels the - aB 
p ax from the first term. 

and 

Also 

~d ax z 
-

= B 1E_ ax 

63. For the stress terms we have, 

dz = 2 (Bo ) ay xy 

z2 
a a 
__ x_z dz = 

az 

64. The gravity term becomes simply 

43 

Therefore, 



-pg dz • Bpg 
X X 

65. Then the laterally averaged momentum equations, with the p' 

terms neglected, are for the x-direction, 

a a<P"u> 
at 

--2 
+ o(Bpu ) + 

ax 

- a -- Bpg +- P 
X OX 

- o(Bcr ) 
+B~- XX 

ax ax 

2 u' dz a -+- p ay 

o(Bcr ) 
- --:--_x.._y_ 

ay 

u'v'dz 

and for the y-direction, 

8 a<i)v> 
at 

+ o(Bpuv) 
ax 

o(B-pv2) 0- o(Bo ) o(Bo ) 
+ ......;:......:...__.::;_ + B 2.E. - ___ x""'y- - --"-yy"-

ay ay ax ay 

- a -- Bpg +- P 
y ax u'v'dz 
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a -+- p ay 
2 v' dz 

' 

(74a) 

(74b) 



66. In the present model, the effect of the correlation terms is 

incorporated into the averaged stress terms through turbulence models as 

discussed in a later section. The stresses on the lateral boundaries 

are neglected. The hydrostatic pressure is removed from the above equa

tions by simply defining the pressure in the above equations to be the 

difference between the true pressure and the hydrostatic pressure and 

replacing the density in the gravitational terms with the difference 

from the reference value. 

67. In the geometrically conservative forms of the momentum equa

tion (Equation 48), the effect of the lateral averaging is to multiply 

the first terms, the pressure terms, and the gravity terms by the width 

B , and to insert B in the ( and n derivatives for the convective 

and stress terms. 

Energy equation 

68. In a similar manner, the lateral averaged energy equation is, 

using Equation 18, 

.... 

+ 

... a(Bu) 
ax 

... 
+ p 

... 
+ 0 xy ( a(Bv) + a(Bu)) + 0 ax ay yy 

(75) 

The correlation terms between velocity and energy have been neglected, 

along with the stress work and heat transfer on the lateral boundaries. 

69. The effect of the lateral averaging on the energy equation in 

geometrically conservative form (Equation 51) is to multiply the first 

term by the width B and to insert a B inside the ( and n deriva ... 

tives and inside the derivatives in the last term. 
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Effect on hydrostatic 
pressure a~d mass residual 

70. Since the width B is multiplied by the pressure and gravity 

terms in the laterally averaged momentum equation (Equation 74), the 

lateral averaging has no effect on the hydrostatic pressure in 

Equation 69. 

71 . . The laterally averaged mass residual is obtained by inference 

from Equations 70 and 73. Dropping the bars indicating average, and 

using the transformed derivatives, this quantity becomes 

(76) 

Incompressible Flow 

72. Of particular interest in the present work are situations in 

which the density variations are negligible in all terms except the 

gravity term pg • Attention is further restricted to cases in which 

density may vary with temperature but not with pressure. (That is, the 

temperature gradients are large enough to affect the density, but the 

pressure gradients are not.) Thus, from a practical standpoint, the 

fluid is mechanically incompressible and the laterally averaged con

tinuity equation reduces to 

- -(Bu)x + (Bv)y- (Bu)~ + (Bv)n- 0 

which represents the well-known Boussinesq approximation for variable

density flow. Note that this removes the pressure term from the 

laterally averaged energy equation (Equation 75). 
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Final Equations 

73. The final set of equations to be solved in the present model 

then consists of the momentum equation, the energy equation, and the 

continuity equation (discussed later) together with the relations for 

the stress and heat conduction and the boundary conditions. This set is 

summarized as follows: 

Momentum equation 

74. From Equation 48 with the modifications indicated above we 

have 

+ B(P y - P y ) - B(p - p )g J - uD - 0 
~ n n ~ s 1 

(77a) 

and 

+ B(-P x + P x ) - B(p - p )g J - vD = 0 
~ n n ~ s 2 

(77b) 

• 
where P = p - pH is the difference from the hydrostatic pressure, ps 

is the initial density, p is the present density, and p
0 

is a con

stant reference density. Nonconservative expressions have been used for 

the pressure terms, for reasons that will be explained later. 

Energy equation 

75. From Equation 51 with the modifications we have 
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a(Bui) 
- J aij ax. - eD = 0 (78) 

J 

Continuity equa-
tion and mass residual 

76. Subject to the Boussinesq approximation, the continuity equa

tion is 

(79) 

and the mass residual is now given by 

(80) 

Boundary conditions 

77. The boundary conditions are as follows: 

a. 

b. -
c. -

78. The 

a. -

b. -

Wall heat transfer: Equations 56-57. 

Wall temperature: Equations 60-61. 

Slip wall velocity: Equations 65 and 67. 

following choices of boundary conditions are incorporated: 

Thermal. 

(1) Specified boundary temperature, with the boundary 
heat transfer calculated from Equations 56 or 57. 

(2) Specified heat transfer, with boundary temperature 
calculated from Equations 60 or 61. 

(3) Extrapolated boundary temperature from interior, 
i.e., equal to the interior value adjacent to the 
boundary. 

Velocity. 

(1) Specified boundary velocity. 
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(2) Slip, with the boundary velocity calculated from 
Equations 65 and 66. 

(3) Extrapolated boundary velocity from interior. 

Solid walls are treated with thermal and velocity boundary condition (1) 

or (2). Inlets have thermal and velocity boundary condition (1) or (3). 

Outlets have thermal and velocity boundary condition (1) or (3). Free 

surfaces are approximately simulated with thermal and velocity boundary 

condition (3). 

79. The normal velocities on all inlets and outlets must be such 

that the total outflow exactly balances the total inflow. The mass flow 

rate through an n-line boundary is, by Equation 45 with cognizance of 
-the width B , simply p Bv while that through a ~-line boundary is 

0 -p Bu • Outflow through a lower (upper) n-line boundary is then -(+) 
0 - -p Bv , and inflow is +(-) p Bv • Similarly, outflow through a left 
0 0 

(right) ~-line boundary is -(+) p B~ , while inflow is +(-) p B~ • The 
0 0 

total flow rates are calculated by summing over all points on the appro-

priate boundary segments. 

Auxiliary relations 

used: 

80. In the above equations, the following auxiliary relations are 

- -a. u and v from Equation 45. 

b. 

c. 

d. -
e. 

-oi. from Equation 49. 
- J qi from Equation 50. 

oij from Equation 53. 

qi from Equation 54. 

f. Velocity and temperature derivatives for stress and heat 
conduction from Equation 52. 

A• The relation Equation 55, with u and v multiplied by 
B • 

h. -
• 1. -

pH from Equation 69. 

D from Equation 81 • 

In addition, the conservative derivative expressions are used for the 

X -j 
derivatives in the energy equation. The metric components are 

repeated here for completeness: 
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2 2 
a = xn + Yn 

2 2 
y = X~ + y~ 

a = J = 
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PART V: DISCRETE REPRESENTATION 

81. The present model is a finite-difference solution based on 

the integral form of the equations of motion, i.e., with the equations 

in geometrically conservative form. The solution is implemented on a 

boundary-fitted coordinate system which allows boundaries of arbitrary 

shape to be treated. 

82. The boundary-fitted coordinate system is generated numer

ically by solving a system of elliptic p~rtial differential equations as 

discussed in general in Thompson (1982c), and in detail for this present 

application in Thompson (1983). The latter reference also discusses the 

operation and input of the coordinate code used. The essential feature 

of this curvilinear coordinate system is that some coordinate line seg

ment is coincident with each segment of the physical boundary, including 

interior obstacles. This allows all difference expressions to be taken 

along coordinate lines regardless of the boundary shape. 

83. With such a coordinate system, all computation can be done on 

a square grid on the rPctangular transformed region regardless of the 

shape of the physical region. This allows the physical configuration to 

be changed via the input without modification to the code. 

Solution Grid 

84. The coordinate system is generated with twice as many points 

in each direction as is intended for use in the flow solution. Thus, 

the grid system for the flow solution is formed by taking every other 

coordinate line. The physical variables are all defined at the grid 

points on this grid. Values needed between grid points are determined 

by simple linear averages. However, since the coordinate values are 

available at points between these grid points, coordinate derivatives at 

points between the grid points, as well as at the grid points, may be 

calculated without averaging the coordinate values. This is important 

in achieving a conservative difference form, since averaging the 
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coordinate values can cause different sets of coordinate values to be 

used in equivalent representations of certain derivatives with a conse

quent introduction of spurious effective gradients in uniform functions. 

Difference Representation 

85. The points surrounding a point of calculation, i.e., point C 

in Figure 1, are identified in relation to the compass directions. As 

noted above, the coordinate derivatives at any of the 25 points on this 

figure can be calculated directly from the coordinate values at adjacent 

points, e.g., 

since the coordinate system is generated using twice as many points in 

each direction as will be used in the flow solution. 

86. The flow solution, however, is represented only at grid 

points, so that averages must be used at other points. Thus 
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Figure 1. Coordinate scheme for finite-difference representation 

With these values one can calculate the derivatives of the flow variable 

at all points, as illustrated for the coordinates above. 

87. The flow variables are stored in 2D arrays, so that the fol

lowing correspondencies apply: 
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fC = F(I, J) 

fEE = F(I + 1, J) 

fNN = F(I, J + l) 

fNENE- F(I + 1, J + 1), etc. 

88. The volume of integration used is that indicated by dotted 

lines in the figurP, and the Jacobian J thus represents the area of 

the four-sided area in physical space corresponding to this square in 

the transformed plane. The fluxes must therefore be represented on the 

sides of this square in the transformed plane, meaning that the ~ and 

n derivatives in the momentum, energy, and mass residual equations 

(Equations 77, 78, and 80) are represented as 

Difference Equations 

89. The finite-difference representations for the various terms 

in the equations are discussed below. All types of terms are covered, 

but the full equations are not given here because the code (Thompson and 

Bernard 1985) is written with all terms identified therein. 

Time derivatives 

90. All time derivatives are represented by first- or second

order backward difference expressions: 

(f )n 
' t 
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where the superscript indicates the time level and the coefficients 

(c1, c 2 , c3) are (1, -1, 0) for the first order and (t, -2, -!)for second 

order. Second order is used for all but the first step, where the first 

order must be used to start the solution. 

Convective terms 

91. -The convective terms are of the form (Bp0fu)~ or 

where f is 1 for continuity, u and v for momentum, and 

(Bp fv) , 
o n 

e for 

energy. These terms can be represented by central or upwind differ

encing, the choice being designated in the input. Central differences 

are second order while upwind is first order. Although the conservative 

form Bp ftJ + (Bp f~)~ + (Bp f~) is standard, it is also possible to 
o o ~ o n - -choose the nonconservative form Bp Jf + Bp uf) + (Bp vf) obtained 

o t o ~ o n 
by using th~ continuity equation in the momentum and energy equations, 

or the ZIP form (Zalesak 1981), via an input parameter. 

92. The conservative central difference expressions are of the 

form 

(82a) 

(82b) 

while the nonconservative central forms are 

(83a) 

(83b) 

The conservative upwind forms are 
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(84a) 

(84b) 

where 

-UE < 0 -c uw < 0 

R = L -
c -UE > 0 ww -uw > 0 

NN c 
T - B -

c ss 

The nonconservative upwind forms are 

(85a) 

(85b) 

with the definitions of the subscripts R , L , T , and B as above, 

except that all the decisions are based on the values 

93. The ZIP form is 
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where here the term {Bp0~f)R represents the sum of four terms, in each 

of which one of the four variables is evaluated at point E and the 

other three are evaluated at point C • The other terms in Equation 86 

have analogous meanings, the subscripts L , T , and B being asso

ciated with points W , N , and S , respectively, in the same manner. 

94. Regardless of the mode selected for the convective terms, the 

central form is always used for the evaluation of mass residual 

(Equation 80) in the momentum and energy equations. 

Stress and heat conduction terms 

95. The stress terms are evaluated using second-order central 

differences as follows. The term (Bo 11 )~ in Equation 77a is given by 

(87) 

Now, by Equation 49a, 

and, by Equation 53, 

- 1_lJV ) 3 y E 

- (lJU + lJV )E y X 

Finally, by Equation 52a, 

with 
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~uyn)~]E = (uyn)EE- (uyn)C 

~uy~)JE = (uy~)NE- (uy~)SE 

and analogous expressions for the other terms involved. This pattern is 

followed for all the stress terms in th~ momentum equation. 

96. In the energy equation (Equation 78), the dissipation term 

a(Bui) 

ax. 
J 

which only 

with 

and 

is evaluated in a similar fashion. Thus, for this term, 

occurs at point C , we have 

[<uyn)~]c = (uyn)E- (uyn)W 

[<uy~)~c - (uy~)N - (uy~)s 

Also, for this term, the derivatives are evaluated as is 

done above. c 

heat conduction terms in the energy equation (Equa-

tion 78) are evaluated analogously to the stress terms in the momentum 

equations, using second-order central differences. Thus 
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with, by Equation 50a, 

and, by Equation 54a, 

with 

and 

etc. 

Pressure terms 

-
(ql)E - (qlyn - q2xn)E 

~Tyn);]E - (Tyn)EE- (Tyn)C 

~Ty;)n]E - (Ty;)NE - (Ty;)SE 

98. The pressure terms in the momentum equations are of the fol

lowing forms, which are evaluated using first-order backward 

differences: 

(88a) 

(88b) 

The reason for the one-sided differencing is explained below. 
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Chorin's method for 
calculating pressure 

99. For incompressible flow, the pressure gradient serves one 

purpose: it prevents loss or gain of mass within a fluid volume. Thus, 

the pressure and the continuity equation are directly related. In curvi

linear coordinates, the desired condition for conservation of mass is 

given by Equation 79, which is the same thing as saying 

D - 0 

with the mass residual D given by Equation 80. The question, of 

course, is how to find a pressure distribution that maintains this 

condition. 

100. Consider the divergence of the width-averaged momentum equa

tion, obtained by summing the x-derivative of Equation 48a 8nd the 

y-derivative of Equation 48b: 

(89a) 

Note that all terms not involving the pressure or the mass residaal have 

been placed anonymously in the right-hand side (RHS). The expressions 

for P 
X 

and 40. 

and P 
y 

are the nonconservative forms given by Equations 39 

Employing a backward time-differencing scheme for D , Equa
t 

tion 89a can be rewritten as 

+ _! (By P - Bx P ) + _l (Bx~Py - By~Px) - RHS 
a~ n x n y an ~ ~ 

(89b) 

with D representing the current mass residual, RHS containing the 

values of D from previous time steps, and c
1 

being the leading 

coefficient in Equation 81. 

101. Now suppose that the left-hand side (LHS) of Equation 89b is 

calculated by a convergent iteration scheme such that 
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LHS(m) ~ LHS(m-l) 
(89c) 

where the sup~rscript (m) indicates the iteration count. If the 

scheme is truly convergent, the condition D = 0 can be achieved by 

setting 

D(m) - 0 

in each successive calculation of the left side of Equation 89c. This 

in itself defines an iteration scheme, namely 

a -
a~ 

By p(m) -
n x 

Bx P(m) 
n Y 

a 
+an 

Bx P(m) -
~ y 

By p(m) 
~ X 

c 
= __!_ 0 (m-1) 

6t 
+ ~ B p(m-1) _ Bx p(m-1) 

os Yn x n y 

a 
+an 

Bx P(m-1)_ B P(m-1) 
~ y y~ X (89d) 

Equation 89d is a Poisson equation for pressure that must be solved at 

each iteration for the entire flow field. What remains is to select the 

difference expressions that will represent the quantities 

and D • 
p ' X p ' y 

102. In the numerical solution of the momentum equations (Equa-

tions 77a and 77b), one can choose upwind, central, or ZIP differencing 

for the advective terms, with central differencing for the viscous 

terms. Experience has shown, however, that central differencing for the 

pressure terms in the momentum equation, and for the mass residual in 

the continuity equation, promotes numerical oscillation on regular 

grids. The way to avoid the latter problem is to use a staggered grid 

(pressure and velocity calculated at alternate grid points) or, for the 

present work, to use one-sided differencing for the pressure gradient 

and for the continuity equation. While this does not reduce the 
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accuracy of the momentum calculation, it does reduce the conservation of 

mass to a first-order approximation. 

103. Assuming the coordinate derivatives constant to first order, 

but retaining B as a variable, the pressure terms in Equation 89b 

reduce to 

_l (Bx P -By P) - y_l (BP)- ~ _l (BP~) 
~n c Y c x - J ~ J ~ a ~ ~ aT) T) aT) 

The one-sided difference approximations for the mass residual in Equa

tion 89d, and for the pressure derivatives in Equations 82a, 82b, and 

89d, are as follows 

Pn = Pc - Pss 

a - -
~ (Bu) - (Bu) EE -

(Bu)c 
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These approximations reduce Equation 89d to 

(OT)(m) 

+ (OT)(m-1) (89e) 

where OT represents pressure terms other than the central pressure 

PC • 
104. The final step in defining the iteration scheme for pressure 

is to equate the OT terms on each side of Equation 89e, such that 

r; - - - - ] (m-1) ~Bu)EE - (Bu)C+ (Bv)NN - (Bv)C 

Numerical experimentation has shown that, for nonsquare grids, this 

scheme converges only with underrelaxation, i.e., 
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where 

0 < w < 1 (89g) 

Equations 89f and 89g constitute a variation of Chorin's (1967) method 

for calculating pressure. The scheme is applied on boundary points and 

field points alike. 

Boundary conditions 

105. In all expressions for temperature and velocity boundary 

conditions, second-order central differences are used for derivatives 

along the boundary, and first-order one-sid~d differences are used for 

derivatives off the boundary. Thus, for example, on an n-line boundary 

with the field to the north, we have 

(90a) 

(90b) 

Corners 

106. Convex corners in the transformed plane are treated by 

averaging the results of separate applications of the temperature and 

velocity boundary conditions on the two faces of the corner. 

107. Concave corners are treated simply by averaging the extra

polated values along the two faces of the corner, using first- or 

second-order extrapolation as selected on the input. 

Calculation Procedure 

108. The momentum and energy equations are solved simultaneously 

at each time step by successive overrelaxation (SOR) iteration. In the 

difference representation, all coefficients of values at the central 

point C are factored (i.e. grouped) together to speed up the iterative 

convergence. In the energy equation, this requires a short inner 
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iteration since the energy and temperature at the central point both 

appear in the equation. The SOR iteration involves first calculating 

new values from the difference equations and then taking the new itera

tive values of velocity and temperature as weighted averages of these 

values and the values from the previous iteration, the weight assigned 

to the newly calculated value being the acceleration parameter w • The 

field is swept repetitively, calculating new velocities, t~mperature, 

and pressure at each point in succession. Before each field sweep, the 

boundary values are updated. These iterative sweeps are continued until 

convergence occurs or until a prescribed number of iterations has been 
. 

completed. In the latter case, the solution may be directed to stop and 

store the partially converged results or to continue to the next time 

step. Output is provided in the form of plotted velocity vectors and 

contours of density, temperature, or pressure, as well as printed field 

values. 

Acceleration Parameters 

109. The acceleration parameters for the SOR iteration are calcu

lated locally for the momentum and energy equations (see Thompson, 

Thames, and Mastin 1977). With these equations represented by the 

general form 

(91) 

where D (not to be confused with the mass residual here) contains all 

cross-derivative terms and all other terms not represented explicitly. 

In the case where convection dominates diffusion, or vice versa, in both 

directions, the optimum acceleration parameters are given by 

/ 

(92a) 

1 + 
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w = ------2----- if 4A2 
< B2 and 4A2 

< B2 

~ 1 + p~ 1 - 1 2 - 2 
(92b) 

1 + 

where 

(93) 

In all other cases, the underrelaxation represented by the second of 

these situations is used. Here I and J are the field di~nsions. 

110. In the momentum equations (Equations 77a and 77b) we have, 

neglecting derivatives of the width B and defining F : 4/3 , 

ll =- Fl.! --J J n 

u • • • n n 
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Then the stress terms in x-momentum are 

- !.J r~uH + (y~k( - (y (y n) (uJ + 3 [x2u + n ~~ (x~xn) ~un - (x~)(u(J 

-~ t~unn + (x~}nun - (x(x
0

) 
0
u(J + !'.J ty2u + (y ~Y n) n°~ - H)nuJ · • • J ~ nn 

=~ - (Fy
2 

+ x
2
)u - (Fy~ + x~)unn - hy~)( + (x~)( - (x(xn)n- F(y(yn)Ju( J n n ~~ 

Then, for the x-momentum equation, 

C J G 
- p llt 

(xn2 2) 
+ Fyn ~ + Fy y) 

~ n n 

( X 
2 

+ Fy 
2

) - (x x + Fy Y ) 
~ ~ n ~ n ~ n ~ 

8nd for the y-momentum equation, 
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A2 - - .1!.3 (Fx
2 

+ v
2

) ( . ~ 

G c- Jp
L\t 

(Fxn2 2) + Yn ~ -

where G is 1 for first-order time deriv~tives 

By similar developments, we have for the en~rgy 

c - G 
Jp £\t 

Turbulence Model 

3 and 2 for second-order. 

equation (Equation 78), 

111. The cumulative effect of turbulence and the correlation 

terms from the lateral averaging is mod~led by using horizontal and 

vertical eddy viscosity and diffusivity coefficients. This is done be 

replacing the viscosity ~ by ~ + pDjj (no summation) in the stress 
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elements aij , and the conductivity K by K + p ~ Cj in the heat 

flux q • Thus, n11 and n12 are the horizontal and vertical eddy 

viscosities, respectively. Three variations of n
11 

and D
22 

are pro

vided for input selection: (a) uniform values; (b) the model of Edinger 

and Buchak (1979), as given in Johnson (1981); and (c) the model of Kent 

and Pritchard (1959), as given in Brandsma and Divoky (1976). 

112. The model of Edinger and Buchak is implemented in the pre

sent model as 

R. > 0 
1 

R. < 0 
1-

The model of Kent and Pritchard is implemented as 

- 0.0086 d2 I u I -
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(94a) 

(94b) 

(95a) 

(95b) 

R < 0 -

(96a) 



0
11 R. > 0 

(1 0.276 Riy 
1 

+ 

0
22 

-- (96b) 

0
11 Ri < 0 -

113. In both of these, the Richardson number R
1 

is given by 

R. -· - gpy-
(97) 

l 
a lui 2 

-p 
ay 

and d is the local depth, is tlte total depth, and h is the 
a lui -height above the bottom, i.e., h = d0 - d • Also if 

ay 
is less 

th.:m 0. 7 

114. 

I~ I 
--- , the former is reset to the latt~r value. 

do 

The model also includes an optional artificial eddy 

viscosity and conductivity in the for.m 

- n/.2 
_ill 

pB 

wher.P D is the mass rrsidual (Equation 80) calculated with central 

differences. 
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PART VI: RESULTS 

115. The discrete representation for the equations of motion, 

with the solution thereof, has been implemented in the computer code 

t-.TESSEL (Thompson and Bernard 1985). Boundary-fitted curvilinear coordi

n8te systems are generated numerically by a separate code, WESCOR 

(Thompson J983), allowing boundaries of arbitrary shape to be used. 

116. The WESSEL code was run for three comparison cases with 

distinct geometries: 

a. Selective withdrawal from a rectangular channel with 
linear stratification. 

b. Cold inflow into a flume with nonuniform width and d~pth. 

c. Flow over a crested weir, with and without stratification. 

~tile this range of geometries and flow conditions is not exhaustive, it 

does afford R sampling of typical applications for the present model. 

lt7. In the calculations discussed below, conservative upwind 

differencing was used for the convective terms, with second-order back

ward differencing for the time derivatives. Variable acceleration 

p8rameters were used for the momentum and energy equations, with the 

boundary-temperature acceleration parameter set at unity. The accelera

tion parameter for the Chorin pressure calculation was fixed at 

w - 0.88 

A value closer to unity might have improved convergence in some cases, 

but the ch0SPn value proved satisfactory for all cases and geometries 

considered. Calculations were made without using artificial viscosity 

and conductivity, and the turbulence models were inactive unless other

wise noted. As previously stated, the coordinate systems are generated 

with twic~ as many points as the flow fields. The initial velocity 

field was always specified such that the initial flow was horizontal, 

with uniform flow rate. 

118. Results are presented priMarily in the form of velocity 

vectors and temperature (or density) contours at selected time steps. 
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All runs were made on the CRAY-1 computer at the Boeing Company, 

Bellevue, Wash. 

Selective Withdrawal from a Rectangular 
Channel with Linear Stratification 

119. A pair of classic papers by Pao and Kao (1974) and by Kao, 

Pao, and Wei (1974) quantified the mechanisms associated with the estab

lishment of selective withdrawal from reservoirs. The first comparison 

calculation in the present work duplicates the physical conditions for 

one of the experiments reported in Kao, Pao, and Wei (1974). 

120. Consider a rectangular channel of uniform width and depth, 

with linear density stratification, such that 

F - 0.014 

where F is the de.nsimetric Fourde number given by 

with 

Q = flow rate* 

N - the Vaisala frequency 

d - channel depth 

F = 

N _ (- _A ~)1/2 
p dy 

0 

The specified value of F was achieved herein by setting 

* In this case (linear stratification), the flow is vertically sym
metric. The values of Q and d specified here represent half of 
the total flow rate and vertical depth. 
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d = 1 ftt 

2 g - 32.2 ft/sec 

P - 1 gm/cm3 - 1.94 slug/ft3 
0 

~ = 0.0071 gm -
y ft-cm3 

4 0.0138 slug/ft 

w - width - 1 ft 

3 Q = 0.00684 ft /sec 

The experimental channel length was 30.5 ft, but for the calculation 

this was reduced to 23 ft, which was long enough for the comparison of 

results near the outlet. The coordinate grid used was 101 x 41 mesh, 

with a 51 x 21 flow field mesh (Figure 2), representing the top half of 

a vertically symmetric flow field. Figure 2 shows only the last 4 ft or 

so of the channel. The longitudinal grid spacing is uniform (0.1 ft) 

for the last 3 ft, and the vertical spacing is uniform (0.05 ft) every

where in the flow field. Detailed results were desired only for the 

last 3 ft, so exponential spacing was used for the 20 ft upstream. 

121. The reference or characteristic time is the inverse Vaisala 

frequency, 

-1 
N = 2.09 sec 

and the associated nondimensional time is 

t* = Nt 

t A table of factors for converting non-S! units of measurement to 
metric (SI) units is presented on page 4. 
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Field System 

Flow System 

• 

3 

Station 
2 1 

Figure 2. Coordinate system for rectangular channel 

The reference velocity is 

U = ~ = 0.00684 ft/sec 

so the nondimensional velocity is 

u* a u/U 

122. WESSEL calculations were executed for times up to 

t = 125 sec (t* • 60) with time steps of 2.09 sec (~t* = 1.0) and 
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0.209 sec (6t* = 0.1). Further reduction of the time step produced no 

significant change in the results. The number of iterations was fixed 

at 15 per time step. 

123. The inflow boundary condition (i = 1) was extrapolated 

velocity and density with flow balance employed. The upper boundary 

(j = 21) was idealized as a no-slip wall with fixed density. The sym

metry boundary (j = 1) was treated as a slip wall with fixed density. 

The downstream boundary (i - 51) was modeled as a no-slip wall with 

extrapolated density, except for the outlet (i = 51, j = 1 to 4) where 

the density was extrapolated and the velocity was held fixed. The ini

tial condition was a uniform horizontal flow field (u = 0.00684 ft/sec). 

124. Figure 3 shows comparisons of calculated and measured veloc

ities versus time along the symmetry line (j = 1). Stations 1, 2, and 3 

are, respectively, 1, 2, and 3 ft upstream from the outlet. Certain 

facts are readily obvious: 

a. The velocities at early times are correctly predicted. 

b. The steady-state velocities are underpredicted. 

c. Accuracy improves with distance from the outlet. 

d. The smaller time step (6t* = 0.1) provides better 
resolution of the transient behavior, but the larger 
(6t* = 1.0) achieves essentially the same accelerations 
(somewhat delayed) and steady-state velocities. 

The deterioration of the symmetry-line velocity predictions with time, 

near the outlet, can be understood in part after an examination of the 

predicted and observed steady-state velocity profiles. Figure 4 shows 

the calculated and observed profiles at stations 1-3. The sharpest pro

file occurs nearest the outlet, where the highest acceleration occurs on 

the symmetry line. The numerical calculation underpredicts the maximum 

velocity primarily because the symmetry line (j = 1) is idealized as a 

slip wall, which means the horizontal velocity is extrapolated from the 

next line up (j = 2), so the code does not resolve the large velocity 

gradient between j = 1 and j = 2 • Hence, as the slope of the ob

served profile becomes gentler upstream of the outlet, the agreement 

between calculation and experiment improves. 
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Figure 3. Nondimensional velocity versus time 
along line of symmetry for rectangular channel 
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Figure 4. Nondimensional steady-state velocity 
profiles (t* = 60) for selective withdrawal 

from rectangular channel 
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125. Figure 5 presents vector plots of the developing flow field 

between station 3 and the outlet. This shows clearly the growing region 

of circulation at t* = 10 and t* = 20 , and the plot for t* = 60 

represents the steady state. The results in Figure 5 were obtained with 

6t* = 0.1 

Cold Inflow into a Flume·-with Nonuniform Width and Depth 

126. The experimental facility represented in this comparison is 

the Generalized Reservoir Hydrodynamics (GRH) flume at WES, described in 

Johnson (1981). The flume is 80ft long with a 3- by 3-ft cross section 

at the downstream end. The cross section of the upstream end is 1 by 

1 ft, and the width expands uniformly with length over the first 20 ft, 

to a cross section 1 ft deep and 3 ft wide. Thereafter, the width 

remains constant while the depth grows uniformly with length, to 3 ft at 

the downstream end. Plan and side views of the GRH flume appear in 

Figure 6. 

127. The water in the flume was at rest and homogeneous at the 

beginning of the test, with the temperature bei.ng 70.6° F. Cold water 

was input 1.5 ft from the upstream end at a temperature of 62.0° F. A 

baffle restricted the cold water to entP.r through the lower 0.5 ft of 

the cross section. The inflow rate as 0.022 cfs, with the outflow rate 

at the downstream end being the same. The outflow was removed from a 

1-in.-diam port located 0.5 ft above the bottom of the flume and 1.5 ft 

from either side. The flow was observed to be relatively smooth and was 

probably laminar, or at least only in the transition range to turbulent 

flow. Numerical results from several codes are compared with experi

mental results in Johnson (1981). 

128. For simulation with the WESSEL code, a 33 x 25 coordinate 

grid was used, with a 17 x 13 flow field grid (Figure 7). The inlet was 

specified as the lower 0.5 ft (i = 1, j = 1 to 7) at the upstream end, 
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PLAN VIEW 

.... 
I.&. 
f'o) 

SIDE VIEW 

Figure 6. Plan and side views of GRH flume 

and the outlet was idealized as a single grid space (i = 17, j = 3) 

0.5 ft from the bottom at the downstream end. Velocities were held 

fixed at the inlet and outlet, with the initial (horizontal) velocity 

field specified such that the flow rate was 0.022 cfs everywhere in the 

flume. The temperature was fixed at the inlet and extrapolated at all 

other boundaries. The free surface was modeled as a slip boundary, and 

the no-slip condition was employed on the walls. 

129. Calculations were made for (a) laminar flow, (b) the Kent 

turbulence model, and (c) the Edinger turbulence model. In each case, 

the time step was set at 5 sec with a limit of 50 iterations per time 

step, and the code was run for 500 time steps. 

130. Figure 8 shows a comparison of the WESSEL results with 

experimental data and with predictions of the LARM code of Edinger and 

Buchak (1979). The underflow front position is correctly predicted by 

the laminar calculation and by the calculation using the Kent turbulence 

model. The total drop in outlet temperature is underpredicted, possibly 

80 



Field System 

Flow System 

Figure 7. Boundary-fitted coordinate system for GRH flume 

due to the coarse grid and rather crude treatment of the outlet itself. 

Furthermore, while the rate of temperature drop is initially correct, 

the onset is probably delayed by the diffusive effects of upwind dif

ferencing. Evidence for this can be seen in the calculation with the 

Edinger turbulence model, which is far more diffusive than the Kent 
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60 LEGEND 

0 DATA (JOHNSON 1981) 

40 
6 LARM (JOHNSON 1981) 

WESSEL RESULTS : 

LAMINAR 

20 
----KENT TURBULENCE MODEL 

--EDINGER TURBULENCE MODEL 

0 
0 5 10 15 20 25 30 35 40 

71 
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TIME, MIN 
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Figure 8. Comparison of results for cold 
underflow in GRH flume 

40 

model. Here the large eddy viscosity of the Edinger model severely 

retards the motion of the underflow front as well as the onset of 

temperature drop at the outlet. 

131. Flow field development with time (velocity vectors and 

temperature contours) for the three flume calculations can be seen in 

82 



Figures 9-14.* The laminar case (Figures 9 and 10) is almost indis

tinguishable from that with the Kent turbulence model (Figures 11 

and 12). The cold water flows along the bottom to the outlet, causing 
• 

recirculation in the warm water, with a cooling effect that eventually 

works its way upstream. The Edinger turbulence model (Figures 13 

and 14) produces results that are quite different from the first two 

cases. Instead of flowing just along the bottom, the cold water dif

fuses, forming a thicker and slower-moving underflow front. This delays 

the temperature drop at the outlet but causes more cooling in the flume 

as a whole. 

Flow over a Crested Weir 

132. As a final example, consider a rectangular channel of uni

form width (1 ft) with a crested weir (Figure 15). Flow tests were con

ducted for this configuration to verify a finite-element model.** In 

one test, the flow (0.074 cfs) was initially stratified upstream of the 

weir, but unstratified downstream. In another test, the flow (0.7 cfs) 

was unstratified throughout the channel. Figure 16 shows the density 

profile for the stratified case, 4 ft upstream of the weir crest. 

133. WESSEL calculations were made for (a) constant density with 

total discharge Q = 0.7 cfs 

both sides of the weir with 

, and (b) 

Q - 0.074 

initial density stratification on 

cfs • In the latter case, the 

initial density profile was that given in Figure 16. The boundary

fitted coordinate system (Figure 17) consisted of a 101 x 35 grid, with 

a 51 x 18 flow field grid. The no-slip condition was employed on the 

channel walls, and the free surface was idealized as a slip boundary. 

Density was extrapolated at all boundaries. The outlet was 0.6 ft high 

* The velocity vectors along the bottom are actually parallel to the 
bottom. They do not appear so in the vector plots because the flume 
is not drawn to scale. This also steepens the apparent horizontal 
temperature gradients in the contour plots. 

** Personal Communication, 1983, J. L. Grace, Jr., Hydraulics Labora
tory, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. 
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Figure 10. Temperature contours for laminar flow calculation in GRH 
flume (contour interval = 0.5° F) (Sheet 1 of 3) 

87 



1000 

1250 

1500 

Figure 10. (Sheet 2 of 3) 
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Figure 10. (Sheet 3 of 3) 
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Figure 12. 
turbulence 

Temperature contours for calculation with Kent 
model in GRH flume (contour interval = 0.5° F) 

(Sheet 1 of 3) 

93 



1000 

1250 

1500 

Figure 12. (Sheet 2 of 3) 
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Figure 12. (Sheet 3 of 3) 
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Figure 14. Temperature contours for calculation with Edinger 
turbulence model in GRH flume (contour interval = 0.5° F) 

(Sheet 1 of 3) 
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Figure 14. (Sheet 3 of 3) 
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Figure 15. Side view of channel with crested weir 
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Figure 16. Initial density profile for stratified channel 
with crested weir 
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Figure 17. Boundary-fitted coordinate system for 
channel with crested weir 

(j = 1 to 7) at the downstream boundary (i =51), and the outflow veloc

ities were held fixed and uniform in both cases. The inlet was taken to 

be the entire upstream vertical boundary (1.7 ft high, i = 1, j = 1 

to 18). The inflow velocities were held fixed and uniform for the 

unstratified calculation. In the stratified case, however, t~e inflow 
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velocities were extrapolated, using the flow balance option, to accommo

date possible inflow variations caused by density changes upstream of 

the weir. 

the number . 

The time step for both cases was set at 6t = 0.1 sec , and 

of iterations was limited to 25 per time step for the first 

50 steps, and 15 per time step thereafter. 

134. Figures 18 and 19 present comparisons of the measured* and 

calculated velocity profiles, at the upstream toe of the weir, for the 

unstratified and stratified cases, respectively. The calculated 

unstratified profile shows a stronger velocity gradient than the data 

near the bottom, because the inlet condition (uniform velocity) was 

specified too close to the weir (4.125 ft from weir crest) for a 

parabolic profile to develop. The stratified calculation (Figure 19) 

exhibits better agreement, but the backflow in the dense layer near the 

bottom was not observed experimentally. Again, this is probably due to 

(a) the proximity of the computational inflow boundary to the weir, and 

(b) the extrapolated inflow-velocity boundary condition. Improved 

results might be obtained by adding a longer upstream section to the 

grid, with fixed inlet velocity and density. 

135. Figure 20 shows a comparison of calculated and observed 

velocity profiles 3.5 ft downstream of the weir crest, for unstratified 

flow. The data are taken from the measurements for Q = 0.074 cfs , 

since no downstream results are available for Q = 0.7 cfs • The 

calculated results represent a unit discharge of 0.074 cfs, but they 

exhibit the same general behavior as the data for 0.7 cfs. 

136. Direct comparisons of velocity vector plots are shown for 

the stratified and unstratified calculations in Figures 21-23. These 

illustrations show clearly the dramatic contrast between the flow pat

terns for the two cases. Figure 24 shows time-lapse pictures of the 

developing circulation downstream of the weir crest for the unstratified 

* Personal Communication, J. L. Grace, Jr., op. cit. 
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Figure 23. Comparison of velocity vectors for stratified 
and unstratified flow at weir crest 
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flow. Figures 25 and 26 present the same sequence of events, on both 

sides of the weir for the stratified case. As pointed out above, the 

backflow in Figure 25 is apparently caused by the specified inflow-

velocity boundary condition. 

appear in Figure 27. 

Density contours for the stratified flow 
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Figure 27. Density contours for stratified flow in channel with 
crested weir (contour interval = 0.0005 gm/cm3 ) (Continued) 
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PART VII: CONCLUSION 

137. The WESSEL code is applicable to two-dimensional, time

dependent, width-averaged, variable-density flow in arbitrary regions 

with multiple inlets, internal obstacles, and boundary intrusions. 

Changes in the physical configuration can be made easily via input. At 

present, however, the code is not capable of simulating true free sur

face behavior. 

138. WESSEL solves the Navier-Stokes equations without assuming 

the pressure to be purely hydrostatic, and this feature sets it apart 

from most hydraulic codes now in use. Thus, WESSEL provides a needed 

addition to the mathematical modeling capability of the Corps of Engi

neers, offering a means of simulating fully convective flow easily and 

economically. Potential applications include selective withdrawal, 

spillway approach flow, outlet works design, and pump station analysis. 

139. The accuracy of the time-dependent predictions can be 

expected to improve with further experience in the use of the code. 

Since WESSEL is written to be very general in application, its operation 

is slowed somewhat by this generality. As it now stands, about 1 sec of 

CRAY computer time (scalar mode) is required to execute 15 iterative 

sweeps on a 50 x 20 grid. A faster code of more limited scope could be 

obtained by deleting a number of contingency checks in the present ver

sion. Further development and evaluation is planned along these lines. 

A new version of the code, using stream function and vorticity, has 

already been developed and will be documented in the future. 

140. The one-sided differencing scheme for the continuity equa

tion arose from a discussion at WES.* This scheme allows the use of a 

regular grid,** while retaining the point-to-point velocity and pressure 

coupling of a staggered grid.t A more extensive investigation of the 

method is anticipated in future work. 

* Personal Communication, 1983, R. S. Bernard, J. F. Thompson, and 
P. J. Roache, US Army Engineer Waterways Experiment Station, 
Vicksburg, Miss. 

** Pressure and velocity calculated at the same grid points. 
t Pressure and velocity calculated at alternate grid points. 
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APPENDIX A: NOTATION 

Lateral width 

Mass residual 

Internal (thermal) energy per unit mass 

Densimetric Froude number 

Arbitrary function 

Gravitational acceleration 

Components of gravity vector 

Enthalpy per unit mass 

Unit vectors in x- and y-directions, respectively 

x~yn - xny~ 

Vaisala frequency 

Components of surface-normal vector 

Surface-normal vector 

Superscript indicating time-step number 

Pressure 

Hydrostatic pressure 

Reference pressure 

Flow rate 

Components of heat flux vector 

Position vector 

S(t) Surface of moving volume V(t) 

T Temperature 

t Time 

t* Nondimensional time 

Al 



Ui Components of surface velocity 

ui Components of fluid velocity 

u Fluid velocity vector -
u* Nondimensional velocity 

u,v x- and y-components of u , respectively -
u,v Fluxes of u through surfaces of constant - and constant n , - -

respectively 

xi Components of cartesian position vector 

x,y Cartesian coordinates 

2 2 
a x + y 

n n 

y 

Kroniker delta 

Gradient operator 

Laplacian operator 

Incremental operator 

Dynamic viscosity 

~· Bulk viscosity 

K Thermal conductivity 

p Density 

Ps Initial density 

p
0 

Reference density 

oij Components of stress tensor 

Tij Components of shear stress tensor 

A2 



~,n Curvilinear coordinates 

w Acceleration parameter 

A3 




