
ER
DC

/I
TL

M
P-

22
-

In Situ Visualization with Temporal Caching

In
fo

rm
at

io
n

Te
ch

no
lo

gy
La

bo
ra

to
ry

David E. DeMarle and Andrew C. Bauer January 2022

Approved for public release; distribution is unlimited.

The U.S. Army Engineer Research and Development Center (ERDC) solves
the nation’s toughest engineering and environmental challenges. ERDC develops
innovative solutions in civil and military engineering, geospatial sciences, water
resources, and environmental sciences for the Army, the Department of Defense,
civilian agencies, and our nation’s public good. Find out more at
www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library
at https://erdclibrary.on.worldcat.org/discovery.

http://www.erdc.usace.army.mil/
https://erdclibrary.on.worldcat.org/discovery

ERDC/ITL MP-22-
January 2022

In Situ Visualization with Temporal Caching

Andrew C. Bauer
Information Technology Laboratory
US Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180

David E. DeMarle
Intel Corporation
2200 Mission College Blvd
Santa Clara, CA, 95054

Final report

Approved for public release; distribution is unlimited.

Prepared for US Army Corps of Engineers
Washington, DC 20314

Under Program Element 633465, Project Number AL2, Task SAL301

ERDC/ITL MP-22-1 ii

Preface

This study was conducted for the US Army Corps of Engineers (USACE)
under the High Performance Computing Modernization Program
(HPCMP), Program Element Number 633465, Project Number AL2, Task
SAL302.

The work was performed by the US Army Engineer Research and Develop-
ment Center, Information Technology Laboratory (ERDC-ITL). At the
time of publication of this paper, the deputy director of ERDC-ITL was Dr.
Jackie Pettway and the director was Dr. David Horner.

This article was originally published in Computing in Science & Engi-
neering on 29 March 2021 (Revised 15 June 2021).

COL Teresa A. Schlosser was the commander of ERDC and the director
was Dr. David W. Pittman.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

In Situ Visualization With
 Temporal Caching

Abstract: In situ visualization is a technique in which plots and other visual
analyses are performed in tandem with numerical simulation processes in order to
better utilize HPC machine resources. Especially with unattended exploratory
engineering simulation analyses, events may occur during the run, which justify
supplemental processing. Sometimes though, when the events do occur, the
phenomena of interest includes the physics that precipitated the events and this
may be the key insight into understanding the phenomena that is being simulated.
In situ temporal caching is the temporary storing of produced data in memory for
possible later analysis including time varying visualization. The later analysis and
visualization still occurs during the simulation run but not until after the significant
events have been detected. In this article, we demonstrate how temporal caching
can be used with in-line in situ visualization to reduce simulation run-time while still
capturing essential simulation results.

With the ever increasing compute power
available to today’s simulation scientists,
the amount of data potentially produced is

overwhelming. Data management is listed as one of the
top ten exascale challenges.1 One method for reducing
the data deluge in scientific workflows is through the
use of in situ analysis and visualization, which is the pro-
cess of computing-derived quantities of interest from a
simulation during the computation. The earliest known
example of in situ processing was done by Zajac2 in
1964 in generating a video directly from a simulation run.
Since then a variety of work has been done in the field.3,4

One of the concerns with in situ processing is that
by saving reduced data products, e.g., images, data
extracts, statistical quantities, etc., information may
be lost and a full understanding of the simulation
results may not be obtainable as when saving full data
dumps. This can be alleviated with automatic feature
detection methods combined with increased resolu-
tion data extraction and tracking following the event
detection. A wide variety of work has been done in
domain specific feature detection and extraction

methods, and a proper literature review is beyond the
scope of this discussion. Instead, a notable recent
domain-agnostic work was done by Larsen et al.5 One
the issue with performing feature detection in situ is
that all current work has used forward stepping algo-
rithms. Thus, anything “interesting” that occurred
before the feature was detected is no longer available
and cannot be recovered for posthoc use.

Our focus in this article is on the concept of in-line
in situ temporal caching, where simulation outputs
are temporarily copied to fast storage for possible
later use, in combination with ex postfacto triggers.
These triggers are conditional tests that induce the
production of analysis results that utilize the cached
data. Together they extend the ability of in situ feature
detection to reduce the likelihood of information loss.
The technique is particularly useful in compute bound
cases where the simulation alone does not stress sys-
tem memory capacity. When memory use is near the
limit, software reduction strategies like downsampling
and compression can help, as can intermediate
storage hardware technologies such as on-node
NVDIMMs and off-node burst buffers. These software
and hardware technologies support temporal caching
with differing impacts on the run-time cost. High-per-
formance computing systems with dedicated large
memory nodes, for example, the Intel Optane Memory
enabled nodes in the Texas Advanced Computing

1

https://orcid.org/0000-0002-1040-0417
https://orcid.org/0000-0002-1040-0417
https://orcid.org/0000-0002-1040-0417
https://orcid.org/0000-0001-9812-843X
https://orcid.org/0000-0001-9812-843X
https://orcid.org/0000-0001-9812-843X

Center’s Frontera supercomputer with terabytes of
space per node, are ideal platforms for exploring the
technique. We demonstrate the effectiveness of in-
line in situ temporal caching to reduce simulation
run-time while also outputting the results of interest
by instrumenting temporal caching inside of the Para-
View Catalyst in situ library and manually implement-
ing triggers inside of the in situ run-time control
routines. This is showcased with example problems
from two separate simulation codes.

DESIGNS
Two main structural patterns exist for designing in situ
frameworks. In in transit systems, data are moved to
separate processing units for concurrent processing
while the simulation is running. For in-line systems,
the simulation and analysis routines are more tightly
coupled, using the same processing elements and
usually living within the same process and memory
space. A popular example of in transit processing is
the ADIOS6 framework. ParaView Catalyst7 is a popu-
lar choice more aligned to in-line processing, where
the simulation drives visualization algorithms in a
direct, tightly coupled data sharing arrangement. In
both patterns nontrivial examples, that is beyond sim-
ply generating animations, of temporal in situ process-
ing exist but temporal processing is more established
with in transit, so we begin there.

In Transit SolutionsWith Temporal
Caching
In transit systems have made good use of burst buf-
fers and HPC file IO for some time now. For example,
Hamilton et al.8 demonstrated ways in which the burst
buffer helps with both data reduction and compres-
sion for reduced file IO costs.

With in transit systems, since the data are concep-
tually and often physically copied between systems, it
is a straightforward next step to build in temporal buff-
ering. Doing so helps to avoid synchronization
between producing and consuming processes. For
example, in Zan�uz et al.,9 a molecular dynamics mini-
app was connected through Apache Flink to an HBase
database on the disk space of a dedicated set of
nodes. While the mini-app ran, Flink embedded spatial
histogramming and nearest neighbor computations
were run on each timestep, and both the input and
derived data were fed into the data base. The authors
determined the simulation rate at which message buf-
fers began to slow the postprocessing without slowing
the simulation over the run. Once in the database of
course, cross temporal posthoc visualization of the

data across timesteps could be handled naturally, but
this was not a focus.

Another example of loosely coupled in situ visuali-
zation with temporal buffering is PaDaWAn.10 Here,
the simulation’s IO calls are intercepted and substi-
tuted for network calls. The network calls are designed
to funnel the data into a staging area. The staging area
can be indexed by both the producing rank and data
timestep. Client processes can subscribe to the stag-
ing area and retrieve data for analysis concurrently
with the executing simulation code. The examples
given for the system were time stepping animations
and downsampling to reduce disk output. Temporal
information was specifically included with in situ proc-
essing for later posthoc analysis through reduction
techniques such as by Marsaglia et al.,11 but there is
little published literature on temporal processing
entirely within the in situ run.

Temporal Caching In-Line
ParaView is an open-source framework for large-scale
scientific visualization. ParaView is based on The Visu-
alization Toolkit (VTK), which provides the underlying
data processing and rendering capabilities. ParaView,
when packaged as a library that is connected to and
driven by a simulation code, is called Catalyst. Tradi-
tional Catalyst setups consist of a simulation code
extended with an adaptor that periodically feeds data
into one or more in situ processing pipelines that pro-
duce extracts (rendered images or geometry files)
from the newly generated data. The adaptor’s function
is to convert in-memory simulation data structures
into in-memory vtkDataObject data structures, often
making use of efficient zero-copy reference passing.

A variation of Catalyst’s design that supports tem-
poral in situ processing is illustrated in Figure 1. This
option was added in Catalyst version 5.9. When
enabled, the adaptor’s vtkDataObjects are managed
by VTK’s temporally aware vtkTemporalDataSetFilter
class. This class implements a ring buffer that retains
data from multiple timesteps, providing them on
demand to the rest of the visualization pipeline. Note
that in Catalyst, the contents of the vtkDataObjects
are typically transient; passed by reference, used for
visualization, and then released after each iteration.
For temporal processing, we must instead make a
copy of the data provided by the simulation on every
iteration, as we presume that the simulation data
itself will either be deleted or updated with new
results in the next iteration. This means that the mini-
mum memory cost to use our system is approximately
two times that of the base simulation.

2

becomes more similar to posthoc processing where a
user may see an interesting feature and step back in
time to see what led up to that feature. For the in situ
case, we rely on preprogrammed triggers to detect
these interesting features rather than on user interac-
tion. The capability is potentially efficient because
only when features are detected do we actually do sig-
nificant processing.

RESULTS AND USE CASES
Some of the expected use cases that drove our com-
bined temporal cache with ex postfacto triggering
work include the following.

› Simulation debugging where we wish to revers-
ibly debug data conditions that infrequently
arise and eventually lead to invalid results.

› Simulation runs of physical phenomena that we
want to rewind and expose the causes of.

FIGURE 1. Temporal processing of in situ produced data. New results are copied into a fixed size in memory result buffer for pos-

sible reuse in response to preprogrammed conditions, should they arise during the simulation run.

FIGURE 2. Pseudocode for an example ex postfacto trigger. In

practice more bookkeeping is required for technicalities like

parallel aggregation of the trigger condition and not overwrit-

ing timesteps. See the full example in the ParaView source

code for details.

Besides this change to buffer the simulation’s data,
changes were also made to give ParaView more con-
trol over where data resides. ParaView now has a rudi-
mentary out of core memory system built at the VTK
level, which allows all VTK-based applications to work
directly with data arrays that are resident on the file
system. This optional component depends on the
memkind library.12 Memkind is a heap manager library
for various types of memory that gives absolute con-
trol to a developer in regards to allocating memory
from an application. The library allocates and manages
memory on different physical medium (high band-
width memory, DRAM, persistent memory, or memory
mapped disk space) per the application’s request.

From a VTK application developer’s perspective,
the key entry points to taking advantage of the
extended memory system are to initialize memkind
and to create objects intended to be out of core by
calling vtkObject::ExtendedNew() instead of vtkOb-
ject::New(). The source of the selected data depends
upon the initialization parameters to memkind.

With the caching system in place, an extended trig-
gering mechanism is needed to detect interesting
events and react to them. ParaView Catalyst preferen-
tially uses Python as the control language. Python pro-
vides plenty of flexibility to detect and react to
arbitrary events and reduces the coding effort
required to do so. Figure 2 demonstrates a simple Cat-
alyst Python trigger, extracted from TemporalCa-
cheExample in ParaView’s source code. In the full
example, a toy simulation moves particles around a
box and resamples them onto a regular grid. The trig-
ger is a detected collision event by two or more
particles.

The advantage of adding a caching system to in-
line in situ is that the analysis code can be more selec-
tive about which time steps to process. In essence, it

3

› Design tradeoff or case study runs where multi-
ple simulations with slight input variations lead
to exceptional events that occur in only a subset
of the simulation runs. A real-world example is of
exhaust gas reingestion for rotorcraft, where hot
exhaust gas recirculates back to the intake of an
engine and causes deleterious effects under cer-
tain design and flight conditions.

In general terms, temporal caching can be thought
of as extending the usual case of in situ processing
with a support of one timestep to a larger support
with many timesteps.

› With a support of one, pure in situ visualization is
relegated to creating animations and saving
extracts for later posthoc processing.

› There are numerous cases where a support of
two, that is computations that involve both the
previous and current timestep, are useful. Some
examples are: interpolating between timesteps,
displaying temporal derivatives to emphasize
locations of rapid change, and recovering con-
stant time spacing from adaptively time stepped
inputs.

› Moving further there are operations that are
enhanced with a fixed buffer size greater than
two, for example, visualizing streaklines and
pathlines, reducing high-frequency noise with
running averages, minimizing disk storage by
omitting expected results, and the aforemen-
tioned ex postfacto use cases.

› In the limit, there is the case when the hardware
has excess memory resources compared to the
simulation’s needs and the buffer size can be said
to be practically unlimited. This simplifies many of
the abovementioned use cases and opens new
ones such as periodicity determination.

To illustrate the effectiveness of triggers and tem-
poral caching at reducing the execution time during
an in situ simulation run, we introduce the concept of
in situ computational load. Computational load helps
to quantify the variation in computation time that
the in situ processing requires over the entire simula-
tion run. We define in situ computational load as the
time to compute all in situ products at one time step
divided by the total time until the next iteration that
in situ processing is started. This is shown in Figure 3.
The principle idea is that when in situ computational
load is low, or at zero for much of the run then we
know that the detection triggers are doing a proper
job. Because we are caching data and executing the

trigger algorithm, we do not expect the in situ
computational load measure to be zero but do expect
it to be efficient relative to other parts of the
simulation.

Performance Evaluation
We ran variations of ParaView’s TemporalCacheEx-
ample to evaluate the performance of its new cache
on different hardware technologies. In the runs, we
sized the problem so that each timestep produces
1 GB of data so as to exceed the test machine’s total
DRAM capacity near the end of the run. We ran tradi-
tional configurations of: the simulation without visu-
alization, the simulation with core adaptor code
executing but no additional processing, and the simu-
lation running and calling the adaptor to write data
files to disk. We compared these with temporal cach-
ing runs that keep either 50 or 450 time steps worth
of data in the cache, where the cache is resident on
DRAM, on Optane RAM, or on memory-mapped files.
Furthermore, we compared two boot modes for the
operating system, a two level memory (2LM) mode
where the operating system configures DRAM to be
a Level 4 cache under Optane, and an App Direct
(AD) mode in which the application is responsible for
managing Optane and DRAM resident data manually.
Our test platform has 384 GB of DDR4 DRAM, 3 TB of
Intel Optane persistent memory, and 15 TB of 3-D
NAND SSD (P4510).

Table 1 describes the results. Here, we recorded
average compute plus cache times over the run. Early
in development, our initial results were somewhat dis-
appointing with caching times that were on par with
the cost of writing data to disk (which neglects the
cost of reading back data, i.e., traditional posthoc visu-
alization). Profiling indicated that almost all of the
overhead came from the deep copy operation that fills
the cache. This overhead is unavoidable for temporal
caching. We found that by threading the deep copy
operation, we could take better advantage of Optane’s
bandwidth characteristics. The thread-optimized

FIGURE 3. Graphic representation of in situ computational

load showing in situ compute time compared to total time.

4

shock speed due to shock energy or superposition
with other shock waves can vary the time when
events of interest occur. These factors provide good
motivation to include ex postfacto in situ capabilities
in SHAMRC.

SHAMRC has been tested with the Catalyst’s ex
postfacto visualization capability on a simple planar
shock wave interacting with a raised block. Our run
was done on the US Department of Defense’s Cray
XC40, Onyx, with 22 MPI processes. The temporal
caching was set to store five time steps worth of data-
sets and the frequency of this was set to every 20th
cycle. The Python script has a trigger that checks for
an increased pressure at the corner of the raised block
and produces graphics at that cycle, the cached
cycles before as well as cycles after the detection that
satisfy the trigger criteria. For our simulation, the first
detection in the in situ script occurred during the
700th time step. During the in situ processing at this
cycle, images were output for the 600th, 620th, 640th,
680th, and 700th cycle, with only the last one not
being from cached data. The images for this along
with the trigger location are shown in Figure 4.

OpenFOAM
OpenFOAM is a widely used open-source simulation
library for a variety of continuum mechanics solvers
that is managed and supported by ESI-OpenCFD Ltd.
OpenFOAM is a popular choice for computational fluid
dynamics problems. OpenFOAM has included a Cata-
lyst adaptor framework since version v1806.

We used OpenFOAM’s rotating propeller tutorial in
three sets of runs to test out temporal caching on
Frontera’s Intel Optane Memory enabled nvdimm
nodes. This tutorial was chosen because it is represen-
tative of the type of actual work that OpenFOAM is
used for, is easily recognizable, and can be scaled up
to be more computationally challenging. We ran the
simulation on Frontera in various configurations from
one rank on one node to 512 ranks spread across eight
nodes. For the runs we cached both the internal (vec-
tor field) and boundary (propeller and boundaries).

First, a comparison of two visualization algorithms
helps to illustrate how visualizing results across time
steps rather than as a simple series can illuminate
aspects of the data in different ways. The first are
streamlines, in which velocity fields (the simulated
fluid) are rendered by advecting traces throughout the
field at each time step. The next are pathlines, which
are paths that particles take as they move within the
field as it changes over time. It should be noted that in
situ solutions to pathline generation are not novel but

TABLE 1. Measurements of a temporal caching system’s

performance.

Run configuration Seconds per time step

m=500
n=0

m=500
n=50

m=500
n=450

Simulation only 0.46 NA
With Adaptor 0.46 NA
Write to NAND 1.17 NA
Threaded Cache to
Optane 2LM

NA 0.55 0.60

Threaded Cache to
DRAM

NA 0.52 out of
space

Threaded Cache to
Optane AD

NA 0.59 0.66

Threaded Cache to
NAND

NA 0.95 1.21

Shown is the average compute plus caching only time over an “m”
timestep run With an “n” timestep wide cache on a toy simulation.

results of 0.55 and 0.60 s per time step adds only 0.09
and 0.14 s of overhead, respectively, to the core code
cost, which is in practice negligible to the compute
time of many simulations that are run on HPC systems
today.

In comparing the AD and 2LM modes, we expected
to find that explicitly managed AD mode was more
performant but the results showed otherwise. The
slight benefits observed with the 2LM mode may be
an artifact of routing data through the faster DRAM
layer.

Second-Order Hydrodynamic
Automatic Mesh Refinement Code
(SHAMRC)
The SHAMRC code is a second-order accurate, multi-
physics code used to study nuclear and conventional
blast effect phenomenology. This code was a good
candidate for Catalyst integration, as many SHAMRC
calculations typically run with billions of computa-
tional cells, where generating animations that have a
high temporal fidelity can be prohibitive. SHAMRC has
been used to study a wide range of effects on blast
phenomenology such as dust sweep up in nuclear
environments and the response of highly energetic
materials to the blast environment. Frequently, many
phenomena of interest to the modeler happen after a
well-defined event has occurred. For example, in
SHAMRC’s energetics material model, a shock reflec-
tion might cause increased material mixing leading to
a rise in aerobic burning of detonation products, or it
could reheat dispersed metallic particles in a measur-
able fashion. Additionally, variability in factors such as

5

that the general framework we have provided facili-
tates the implementation of this and many other visu-
alization operations. The images in Figure 5 were
created midway through the run. The fluid flow is gen-
erally toward the camera and slightly downward. The
pathline image conveys the turbulent region more
strongly and conveys the fact that flow has pro-
gressed only partially through the volume more
clearly.

A second set of OpenFOAM propeller runs helps to
characterize expected performance of a full featured
simulation code on production hardware. For these
runs, we vary the in situ configuration and benchmark
the cycle time throughout each run. In all runs, we

execute for 1,000 cycles evenly spaced over 0.1 s of
simulated data time. The first configuration is the
baseline and is without any visualization or IO. A sec-
ond configuration renders the propeller, streamlines,
and an isosurface of the turbulence on every tenth
cycle without caching. A third configuration exercises
temporal caching throughout the run and has the trig-
ger condition satisfied at cycle 500. When the trigger
condition is satisfied, the in situ processing is gener-
ated for the 10 preceding timesteps and then subse-
quently at every 10th timestep. The rendering for the
third case is identical to the second case.

The trigger setup here is somewhat arbitrary but
meant to be a median representation of what users

FIGURE 4. Computed pressure level at a location in space during Cycle 700 triggered visualization of the simulation at the cur-

rent iteration along with previous iterations leading up to the event.

FIGURE 5. Instantaneous streamlines (left) and time-integrated pathlines (right) emphasize different aspects of the vector field.

6

(0.11 and 0.22 s). At those trigger points, we play back the
entire contents of the cache to generate new views of
the data. At the end of the run, the cache contains all
7,667 timesteps. In both replays, we change the isosur-
face extracted from the turbulence field, the camera
viewpoint, and various color controls. These are all
options that a user might use in a posthoc analysis while
investigating time varying data. Images produced during
the run are shown in Figure 7. Note also that we turned
ON Intel OSPRay path traced rendering to stress the com-
pute capability of the nodes and create more visually
interesting images.

CONCLUSION
In situ visualization is an area of active research within
the scientific visualization community. In this field, non-
trivial time varying analyses that cut across the time
dimension seem to be underutilized. We have presented
several cases in which a simple sliding buffer of cached
results could make this type of temporal analysis more
commonplace, even in in-line in situ runs.

Temporal buffers, combined with ex postfacto trig-
gers and reactions can also serve as the foundation for
unattended exploratory visualization. In this case, the
visualization solution is programmed to adapt to handle
unexpected situations more intelligently. The benefit of
temporal buffering in this situation is that the trigger
handling routines have access to potentially important
computed data that would otherwise have been lost.

Looking forward, we expect that for multirun use, for
example, in ensemble runs, uncertainty quantification
analysis, etc., in situ analysis and visualization will
become a key tool in reducing time to engineering solu-
tions. When running hundreds, thousands, or more runs,

TABLE 2. Measured run times in seconds for the openfoam

propeller simulation.

Run configuration Full
run time

In situ
compute time

Simulation only 109 NA
Simulation with in situ
output every 10th step

148 39

Simulation with temporal
caching and in situ output

134 25

FIGURE 6. In situ computational load for runs with and with-

out temporal caching. The timestep grouping is the set of

timesteps that include only a single in situ output. For our

sample problems the timestep grouping size is 10, which is

the timestep frequency of the in situ output.

The simulation ran for 1,000 timesteps. The temporal caching setup
cached every time step until the trigger was activated at timestep
500.

may experience from multiple sample problems. It
would be trivial to set up a sample problem that would
show temporal caching in the most favorable condi-
tions but this would be of little instructional use.

Table 2 describes the total time for each run and
the in situ processing time for each run (for temporal
caching this includes copying data to cache and com-
puting the trigger). While this showcases the savings
that can be obtained by using in situ temporal caching
compared to outputting in situ results throughout the
entire simulation, it does not make it clear where the
savings come from. Figure 6 shows how the in situ
computational load varies during the simulation run
for both in situ examples. Both have start up costs but
then the temporal caching technique reduces costs
significantly by evaluating the trigger and caching
data instead of computing the full in situ output. There
is a spike in the cost for the temporal cache case
when the trigger evaluation criteria is satisfied and
the visualization pipeline is executed on the cached
timesteps. This spike is minimal though when com-
pared to the overall savings.

In general, we find that caching on cycles without
visualization is competitive with raw simulation time
and that analysis of some number of cycles after the
fact is competitive with analyzing the same number of
cycles without caching. In practice, the expected run-
time will vary most with the frequency of detected
events, the amount of disk space conserved will vary
inversely, and the most important run-time concern is
the increased need for memory space.

A final set of runs with the propeller case served to
exercise more of the capacity of Frontera’s large memory
nodes. Each nodes has 2.1 TB of Optane memory. To
approach the capacity of four nodes, we increased the
mesh refinement and decreased the simulation timestep
significantly and ran until we reached a data time of 0.25
s instead of 0.1 as above. For this run, the trigger condi-
tion was simply set to fire at two particular data times,

7

the userwill not be able tomanually analyze every output
in-depth. Instead, the analysis will need to be automated
and the analysis will need to be prepared before themul-
tirun starts. In this situation, the aspect of reducing disk
space use by bypassing the export of unimportant time
stepswill be especially beneficial.

ACKNOWLEDGMENTS
This work was made possible by the Department of
Defense High Performance Computing Modernization
Program’s allocation of compute time on the Engineer
Research and Development Center’s Department of
Defense Supercomputing Resource Center’s Cray
XC40 Onyx, and with compute time on the Texas

Advanced Computing Center’s Frontera supercom-
puter. The authors would like to thank Joseph. Hen-
nessey of SAIC and David. Ortley of ARA, Inc. with
help in running SHAMRC, Michal. Biesek for advice
with memkind, and Paul. Navr�atil of TACC for assis-
tance on Frontera.

REFERENCES
1. R. Lucas et al., “DOE Advanced Scientific Computing

Advisory Subcommittee (ASCAC) Report: Top Ten

Exascale Research Challenges,” ASCAC Subcommittee

for the Top Ten Exascale Research Challenges, Tech.

Rep., Jul. 2013, [Online]. Available: https://science.osti.

gov/ascr/ascac/Reports, doi: 10.2172/1222713.

FIGURE 7. Snapshots from a temporal cached in situ run. The top was visualized with new data obtained while the cache was

being filled, the bottom was visualized from data in the cache.

8

https://science.osti.gov/ascr/ascac/Reports
https://science.osti.gov/ascr/ascac/Reports
http://dx.doi.org/10.2172/1222713

2. E. E. Zajac, “Computer-made perspectivemovies as a

scientific and communication tool,”ACMCommun., vol. 7,

no. 3, pp. 169–170,Mar. 1964, doi: 10.1145/363958.363993.

3. R. Heiland and P. M. Baker, “A survey of co-processing

systems,” CEWES, Rep. no. 99–02, 1999. [Online]. Available:

https://rheiland.github.io/coproc/CoprocSurvey.pdf

4. A. C. Bauer et al., “In situ methods, infrastructures, and

applications on high performance computing

platforms,” Comput. Graph. Forum, vol. 35, no. 3,

pp. 577–597, Jun. 2016, doi: 10.1111/cgf.12930.

5. M. Larsen et al., “A flexible system for in situ triggers,”

in Proc. Workshop In Situ Infrastructures Enabling

Extreme-Scale Anal. Vis., 2018, p. 1–6, doi: 10.1145/

3281464.3281468.

6. H. Abbasi, J. Lofstead, F. Zheng, K. Schwan, M. Wolf,

and S. Klasky, “Extending I/O through high performance

data services,” in Proc. IEEE Int. Conf. Cluster Comput.

Workshops, Sep. 2009, pp. 1–10, doi: 10.1109/

CLUSTR.2009.5289167.

7. U. Ayachit et al., “Paraview catalyst: Enabling in situ

data analysis and visualization,” in Proc. 1st Workshop

In Situ Infrastructures Enabling Extreme-Scale Anal.

Vis., Nov. 2015, pp. 25–29, doi: 10.1145/2828612.2828624.

8. S. Hamilton et al., “Extreme event analysis in next

generation simulation architectures,” in Proc. High

Perform. Comput.: 32nd Int. Conf., ISC High Perform.,

Jun. 18-22, 2017, pp. 277–293, doi: 10.1007/978-3-319-

58667-0_15.

9. H. C. Zan�uz, B. Raffin, O. A. Mures, and E. J. Padr�on,

“In-transit molecular dynamics analysis with apache

flink,” in Proc. Workshop In Situ Infrastructures

Enabling Extreme-Scale Anal. Vis., 2018, pp. 25–32,

doi: 10.1145/3281464.3281469.

10. J. Capul, S. Morais, and J.-B. Lekien, “Padawan: A

python infrastructure for loosely coupled in situ

workflows,” in Proc. Workshop In Situ Infrastructures

Enabling Extreme-Scale Anal. Vis., 2018, pp. 7–12,

doi: 10.1145/3281464.3281470.

11. N. Marsaglia, S. Li, and H. Childs, “Enabling explorative

visualization with full temporal resolution via in situ

calculation of temporal intervals,” in High Performance,

R. Yokota, W. Weiland, J. Shalf, and S. Alam, Eds. Cham,

Switzerland: Springer, 2018, pp. 273–293, doi: 10.1007/

978-3-030-02465-9_19.

12. C. Cantalupo, V. Venkatesan, J. R. Hammond,

K. Czurylo, and S. Hammond, “Memkind: An extensible

heap memory manager for heterogeneous memory

platforms and mixed memory policies,” Sandia Nat.

Lab. (SNL-NM), Albuquerque, NM (United States), 2015.

9

http://dx.doi.org/10.1145/363958.363993
https://rheiland.github.io/coproc/CoprocSurvey.pdf
http://dx.doi.org/10.1111/cgf.12930
http://dx.doi.org/10.1145/3281464.3281468
http://dx.doi.org/10.1145/3281464.3281468
http://dx.doi.org/10.1109/CLUSTR.2009.5289167
http://dx.doi.org/10.1109/CLUSTR.2009.5289167
http://dx.doi.org/10.1145/2828612.2828624
http://dx.doi.org/10.1007/978-3-319-58667-0_15
http://dx.doi.org/10.1007/978-3-319-58667-0_15
http://dx.doi.org/10.1145/3281464.3281469
http://dx.doi.org/10.1145/3281464.3281470
http://dx.doi.org/10.1007/978-3-030-02465-9_19
http://dx.doi.org/10.1007/978-3-030-02465-9_19

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE

January 2022
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

In Situ Visualization with Temporal Caching

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
633465

6. AUTHOR(S)
David E. DeMarle and Andrew C. Bauer

5d. PROJECT NUMBER
AL2

5e. TASK NUMBER
SAL301

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Engineer Research and Development Center
Information Technology Laboratory Intel Corporation
3909 Halls Ferry Road 2200 Mission College Blvd
Vicksburg, MS 39180 Santa Clara, CA 95054

8. PERFORMING ORGANIZATION REPORT
NUMBER

ERDC/ITL MP-22-1

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Corps of Engineers
Washington, DC 20314

10. SPONSOR/MONITOR’S ACRONYM(S)
USACE

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This article was originally published in Computing in Science & Engineering on 29 March 2021 (Revised 15 June 2021).
Funding by USACE ERDC under Army Direct funds.

14. ABSTRACT
In situ visualization is a technique in which plots and other visual analyses are performed in tandem with numerical simulation
processes in order to better utilize HPC machine resources. Especially with unattended exploratory engineering simulation
analyses, events may occur during the run, which justify supplemental processing. Sometimes though, when the events do occur,
the phenomena of interest includes the physics that precipitated the events and this may be the key insight into understanding the
phenomena that is being simulated. In situ temporal caching is the temporary storing of produced data in memory for possible
later analysis including time varying visualization. The later analysis and visualization still occurs during the simulation run but
not until after the significant events have been detected. In this article, we demonstrate how temporal caching can be used with
in-line in situ visualization to reduce simulation run-time while still capturing essential simulation results.

15. SUBJECT TERMS
Computational modeling; data visualization; data models; catalysis; feature extraction; numerical analysis; analytical models;
cache storage

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified UU 14
19b. TELEPHONE NUMBER (include
area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

	Word Bookmarks
	OLE_LINK1
	OLE_LINK2
	Disclaimer

	298 blank.pdf
	Word Bookmarks
	Block1
	Block2
	Block3
	Block4a
	Block5a
	Block5b
	Block5c
	Block6a
	Block6c
	Block6e
	Block5d
	Block5e
	Block5f
	Block5fa
	Block12
	Block13
	Block14
	Block15
	Block16
	Block19a
	Block16a
	Block16b
	Block16c
	Block17
	Block18
	Block19b

