
ER
D

C 
TR

-2
1-

21
 

  

  
  

Phase-Field Modeling of Nonequilibrium 
Solidification Processes in Additive 
Manufacturing 

En
gi

ne
er

 R
es

ea
rc

h 
an

d 
D

ev
el

op
m

en
t 

Ce
nt

er
 

  

Jeffrey B. Allen, Robert D. Moser, Zackery B. McClelland, 
Md Mohaiminul Islam, and Ling Liu 

November 2021 

  

 
 
 

 

 

  

Approved for public release; distribution is unlimited. 



  

The U.S. Army Engineer Research and Development Center (ERDC) solves 
the nation’s toughest engineering and environmental challenges. ERDC develops 
innovative solutions in civil and military engineering, geospatial sciences, water 
resources, and environmental sciences for the Army, the Department of Defense, 
civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil. 

To search for other technical reports published by ERDC, visit the ERDC online library 
at https://erdclibrary.on.worldcat.org/discovery. 

http://www.erdc.usace.army.mil/
https://erdclibrary.on.worldcat.org/discovery


 ERDC TR-21-21 
November 2021 

Phase-Field Modeling of Nonequilibrium 
Solidification Processes in Additive 
Manufacturing 
 

Jeffrey B. Allen 
Information Technology Laboratory  
U.S. Army Engineer Research and Development Center  
3909 Halls Ferry Road  
Vicksburg, MS 39180-6199 

Robert D. Moser and Zackery B. McClelland 
Geotechnical and Structures Laboratory  
U.S. Army Engineer Research and Development Center  
3909 Halls Ferry Road  
Vicksburg, MS 39180-6199 

Md Mohaiminul Islam and Ling Liu 
Mechanical Engineering 
Temple University 
1947 N 12th St 
Philadelphia, PA 19122 USA 

 

Final Report 

Approved for public release; distribution is unlimited. 

Prepared for Information Technology Laboratory 
U.S. Army Engineer Research and Development Center 
3909 Halls Ferry Road, Vicksburg, MS 39180-6199 

 Under PE 9C2284/Project 490803/Task A1020 



ERDC TR-21-21  ii 

  

Abstract 

This project models dendrite growth during nonequilibrium solidification 
of binary alloys using the phase-field method (PFM). Understanding the 
dendrite formation processes is important because the microstructural 
features directly influence mechanical properties of the produced parts. An 
improved understanding of dendrite formation may inform design 
protocols to achieve optimized process parameters for controlled 
microstructures and enhanced properties of materials. To this end, this 
work implements a phase-field model to simulate directional solidification 
of binary alloys. For applications involving strong nonequilibrium effects, 
a modified antitrapping current model is incorporated to help eject solute 
into the liquid phase based on an experimentally calibrated, velocity-
dependent partitioning coefficient. Investigated allow systems include 
SCN, Si-As, and Ni-Nb. The SCN alloy is chosen to verify the 
computational method, and the other two are selected for a parametric 
study due to their different diffusion properties. The modified antitrapping 
current model is compared with the classical model in terms of predicted 
dendrite profiles, tip undercooling, and tip velocity. Solidification 
parameters—the cooling rate and the strength of anisotropy—are studied 
to reveal their influences on dendrite growth. Computational results 
demonstrate the effectiveness of the PFM and the modified antitrapping 
current model in simulating rapid solidification with strong 
nonequilibrium at the interface. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 
1.1 Background 

A dendrite is a treelike pattern spontaneously formed in nature and a 
ubiquitous feature of solidification. The mechanical properties of alloys 
depend on the complexity of dendritic microstructures formed during 
welding, soldering, and casting of components. As a result, researchers 
have sought to understand the formation of dendrite microstructures for 
many years. Importantly, dendritic microstructural growth exhibits 
different characteristics under slow and rapid solidification conditions. In 
recent years, rapid solidification has become increasingly important as it is 
common in several advanced manufacturing processes including metal 
additive manufacturing, laser welding, thermal spraying, and spin coating. 
These advanced manufacturing processes are of great interest because 
they are capable of fabricating complex geometries with optimum 
materials usage and low tooling costs in reduced time. 

Several computational methods have been developed to study the physics 
underlying dendritic growth during solidification. Among them, the 
cellular automaton (CA) method and the phase-field method PFM are the 
two that have been used the most extensively. The CA method features 
relatively low computational costs, and it can be used to simulate 
microstructural evolution in large systems (Natsume and Ohsasa 2014). By 
comparison, PFM is computationally more expensive. However, it can 
uniquely capture more physical phenomena occurring during the 
solidification processes (Boettinger et al. 2002; Loginova, Amberg, and 
Ågren 2001; Ramirez et al. 2004; Echebarría et al. 2004). This advantage 
of PFM is caused by its natural connection with nonequilibrium 
thermodynamics and its use of order parameters, which enables the 
diffusion of phase boundaries and eliminates tedious front tracking. As a 
result, PFM has become a popular tool to simulate microstructural 
evolution in many material systems. 

A key to the success of PFM is interface modeling. Numerically, when 
applying PFM, arbitrarily large interface thickness, 𝑊𝑊, can be chosen 
relative to the physical interface thickness and the characteristic capillary 
length. Physically, dendrite formation is controlled by nonequilibrium 
effects at the interface. For a microscopic 𝑊𝑊 and low solidification 
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velocities, the solid-liquid interface rapidly reaches local thermodynamic 
equilibrium. However, the use of smaller 𝑊𝑊 requires much more time for 
the simulation to complete. Alternatively, mesoscopic 𝑊𝑊 can be used for 
faster computation. However, when a mesoscopic 𝑊𝑊 is used, the 
nonequilibrium effects are artificially magnified, driving more solute to 
concentrate at the interface. The artifacts dramatically alter 
microstructural evolution. To rectify the artifacts, Karma (2001) proposed 
an antitrapping current to counterbalance the artificially large solute 
trapping that results when a mesoscopic 𝑊𝑊 is chosen in simulating slow 
solidification of dilute binary alloys. 

The interface modeling with PFM is even more complicated in the rapid 
solidification regime, where the solid-liquid interface advances at very fast 
rates. Due to the rapidly evolving interfaces, there is substantial aberration 
from the equilibrium concentrations at the interface for both the solid and 
liquid phases. As diffusion in practice is not as fast to allow readjustment 
of concentrations to maintain equilibrium, the assumption of local 
equilibrium usually breaks down in rapid solidification. 

Solidification under such nonequilibrium conditions may result in unique 
microstructural features and kinetic effects. In nonequilibrium 
solidification, since the diffusion rate of solute is much faster in the liquid 
phase than in the solid phase, it is easier for the liquid phase to reach 
equilibrium than the solid phase. Hence, in the phase diagram, it is safe to 
assume that the liquidus line stays fixed but the solidus line changes. As a 
result, at the interface, the ratio of the solid concentration, 𝑐𝑐𝑠𝑠, to the liquid 
concentration, 𝑐𝑐𝑙𝑙, may vary the solidification rate. This variation can be 
characterized by a partitioning coefficient, which is defined by 𝐾𝐾 = 𝑐𝑐𝑠𝑠/𝑐𝑐𝑙𝑙. 
The partitioning coefficient determines the extent to which solute is 
ejected into the liquid during solidification. 

When rapid solidification causes large interface velocities, 𝑉𝑉, the 
partitioning coefficient, 𝐾𝐾, increases, and more solute is ejected into the 
interface, leading to solute trapping. A complete understanding of the 
trapping process requires the definition of a velocity-dependent 𝐾𝐾𝑣𝑣, along 
with kinetic and thermodynamic properties of the alloy. The solute 
trapping inevitably affects solidification in terms of the microstructural 
morphology, length scale, microsegregation, and the resulting 
precipitation of secondary phases. Understanding the effects of 
antitrapping on solidification is very important because the resulting 
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microstructural features determine, to a large extent, the behavior of the 
solidified materials. Moreover, these features can be related back to 
controllable manufacturing process parameters for the purpose of process 
optimization via computer modeling. 

There are three main theories of solute trapping. The most widely known 
is the continuous growth model (CGM) developed by Aziz (1994). The 
CGM introduces a so-called diffusive speed, 𝑉𝑉𝑑𝑑, which is the velocity at 
which a solute atom can traverse the solid-liquid boundary. Aziz (1994) 
defined this parameter as 𝑉𝑉𝑑𝑑 = 𝐷𝐷/𝜆𝜆, where 𝐷𝐷 is the diffusion coefficient in 
the interface region and 𝜆𝜆 is the physical width of the interface. According 
to the CGM, significant trapping occurs when 𝑉𝑉 becomes comparable to 𝑉𝑉𝑑𝑑 
and the model predicts 𝐾𝐾𝑣𝑣 in the limit of dilute concentrations as 

 𝐾𝐾𝑣𝑣 =
𝐾𝐾𝑒𝑒+

𝑉𝑉
𝑉𝑉𝑑𝑑

1+ 𝑉𝑉
𝑉𝑉𝑑𝑑

, (1) 

where 𝐾𝐾𝑒𝑒 is the equilibrium partitioning coefficient. The extreme condition 
of complete trapping is given by 𝐾𝐾𝑣𝑣 = 1 as 𝑉𝑉 = ∞. 

The work of Jackson (1984) demonstrates similar asymptotic behavior, 
except that 𝐾𝐾𝑣𝑣 is described by a power law as 

 𝐾𝐾𝑣𝑣 = 𝐾𝐾𝑒𝑒
1

1+𝐴𝐴𝐴𝐴, (2) 

where 𝐴𝐴 is a parameter analogous to the reciprocal of 𝑉𝑉𝑑𝑑. 

By comparison, the work of Sobolev (1997, 1995) predicts that there is an 
abrupt change in the partitioning coefficient at finite velocities, which is 
known as the local nonequilibrium model (LNM). Compared with the 
CGM, the LNM incorporates inertial and diffusive dynamics of solute 
atoms near and through a rapidly advancing interface. The LNM has the 
following formulation: 

 𝐾𝐾𝑣𝑣 =
𝐾𝐾𝑒𝑒�1−�

𝑉𝑉
𝑉𝑉𝑑𝑑
𝐵𝐵�

2
�+ 𝑉𝑉

𝑉𝑉𝑑𝑑

1−� 𝑉𝑉
𝑉𝑉𝑑𝑑
𝐵𝐵�

2
+ 𝑉𝑉
𝑉𝑉𝑑𝑑

, for 𝑉𝑉 < 𝑉𝑉𝑑𝑑, 

 𝐾𝐾𝑣𝑣 = 1, for 𝑉𝑉 ≥ 𝑉𝑉𝑑𝑑, (3) 
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where 𝑉𝑉𝑑𝑑𝐵𝐵 is the bulk liquid diffusive speed, that is, how fast a solute atom 
can travel in the liquid. Complete trapping, that is, 𝐾𝐾𝑣𝑣 = 1, occurs at a 
well-defined velocity, 𝑉𝑉 = 𝑉𝑉𝑑𝑑. Sobolev emphasized that solute atoms have a 
finite velocity in the liquid quantified by 𝑉𝑉𝑑𝑑𝐵𝐵, which differs from Aziz’s 
model where 𝑉𝑉𝑑𝑑𝐵𝐵 in the bulk liquid is assumed infinite. Despite the 
differences, these models give similar results and are consistent with 
experiments. 

Most phase-field models assume a constant 𝐾𝐾 that is independent of 𝑉𝑉, 
which is reasonable for slow solidification but will artificially magnify 
solute trapping in rapid solidification. For example, using the parabolic 
form of dynamic equations, the phase-field model proposed by Echebarría 
Domínguez, Karma, and Gurevich (2010) does not show complete 
trapping in the high velocity limit or rapid solidification. At high pulling 
velocities, the assumption of local equilibrium breaks down because the 
pulling velocity is so high that the physical interface velocity is unable to 
keep up with the pulling velocity. Hence, to use a phase-field model for 
rapid solidification, the antitrapping current needs modifications to 
account for local nonequilibrium at the interface. To this end, Pinomaa 
and Provatas (2019) extended the CGM model to make it applicable for 
PFM, where 𝐾𝐾𝑣𝑣 is defined as 

 𝐾𝐾𝑣𝑣 = 𝐾𝐾𝑒𝑒𝑒𝑒
(√2(1−𝐾𝐾𝑣𝑣) 𝑉𝑉

𝑉𝑉𝑑𝑑
))

. (4) 

Compared with the original CGM, the major differences here are the 
definition of 𝑉𝑉𝑑𝑑 and 𝑉𝑉, which now are both based on the numerical width 
of the interface. 

1.2 Objective 

This work aims to model solidification of dilute binary alloys Ni-Nb, Si-As, 
and SCN (succinonitrile alloy) using PFM. Among the model alloys, SCN is 
adopted for verification against experimental studies. Dendrite evolution 
during directional solidification is simulated based on the model 
developed by Echebarría et al. (2004). This particular formulation was 
chosen for its generality in modeling directional solidification, which, is 
usually the correct physics for rapid solidification. Similar to Echebarría’s 
study, this work assumes dilute solution, frozen temperature 
approximation, constant material properties, and diffusion-driven mass 
transport. 
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Importantly, the Echebarría formulation itself only applies for slow 
solidification. To expand its applicability to rapid solidification, this work 
incorporates the antitrapping current proposed by Pinomaa and Provatas 
(2019), which accounts for the nonequilibrium conditions that dominate 
the solid-liquid interface. Computational results of dendrites are 
quantified by several parameters including the secondary arm spacing 
(SDAS). SDAS is particularly important as it governs the micro-
segregation pattern, which determines the strength of materials made by 
additive manufacturing. 

1.3 Approach 

This work commences with a statement of the free energy functional and 
corresponding free energy density as prescribed by Echebarría et al. 
(2004). The governing evolution equations relevant to phase and composi-
tion are then presented, with anisotropy included as part of the interfacial 
gradient energy. These are supplemented by the antitrapping current pro-
posed by Pinomaa and Provatas (2019), as well as various other interpola-
tion functions and phase-field parameters derived from the thin interface 
limit (Kim, Kim, and Suzuki 1998). The equations are then nondimension-
alized and solved using the Multiphysics Object Oriented Simulation Envi-
ronment (MOOSE) (Tonks et al. 2012). For objective purposes, the 
directional solidification of three dilute, binary alloys are considered (Ni-
Nb, Si-As, and SCN) and used to evaluate the influence of the imposed 
modified antitrapping current as compared with classical implementa-
tions. 
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2 Solidification Modeling with the Phase-
Field Method 

2.1 Governing equations 

The governing equations of the phase-field model include the formulation 
relating to two independent fields: (1) the solute concentration field, 𝑐𝑐, in 
the binary alloy and (2) the phase field, 𝜙𝜙. Here, 𝜙𝜙 is a continuous scalar 
field that is defined such that it distinguishes the solid phase with 𝜙𝜙 = +1 
and the liquid phase with 𝜙𝜙 =  −1. The interface has −1 < 𝜙𝜙 <  1, leading 
to a thin layer of finite width that features continuous transition as 
opposed to the discontinuous transition assumed in some other models. 

2.1.1 Derivation and mathematical details 

The free energy functional for a two-phase system is usually described by 

 𝐹𝐹(𝜙𝜙, 𝑐𝑐,𝑇𝑇) = ∫ �𝜎𝜎
2

|∇𝜙𝜙|2 + 𝑓𝑓(𝜙𝜙,𝑇𝑇𝑚𝑚) + 𝑓𝑓𝐴𝐴𝐴𝐴(𝜙𝜙, 𝑐𝑐,𝑇𝑇)�𝑑𝑑𝑑𝑑 . (5) 

Here, 𝑇𝑇𝑚𝑚 is the melting temperature of pure metal; 𝑓𝑓(𝜙𝜙,𝑇𝑇𝑚𝑚) = 𝐻𝐻(−𝜙𝜙2

2
+

𝜙𝜙4

4
) is a double-well potential with a barrier height of 𝐻𝐻(𝑇𝑇𝑚𝑚) that has the 

unit of energy per unit volume. Depending on the 𝑇𝑇 − 𝑐𝑐 (i.e., temperature-
solute concentration) phase diagram, 𝑓𝑓𝐴𝐴𝐴𝐴(𝜙𝜙, 𝑐𝑐,𝑇𝑇) changes relative stability 
of the solid-liquid interface. The term 𝜎𝜎 is a penalty term applied to phase 
gradients to ensure a finite interface thickness. 

The rate equations for all fields including 𝑐𝑐 and 𝜙𝜙 can be derived as 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐾𝐾𝜙𝜙𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

, (6) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇��⃗ �𝑀𝑀(𝜙𝜙, 𝑐𝑐) ∇��⃗ 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿
�, (7) 

where 𝐾𝐾𝜙𝜙(𝑇𝑇) is a temperature-dependent kinetic constant, 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿
≡ 𝜇𝜇 is the 

chemical potential, and 𝑀𝑀(𝜙𝜙, 𝑐𝑐) is the mobility of solute atoms or 
molecules, which can be described as follows: 

 𝑀𝑀(𝜙𝜙, 𝑐𝑐) = 𝜈𝜈0
𝑅𝑅𝑇𝑇𝑚𝑚

𝐷𝐷𝑞𝑞�(𝜙𝜙)𝑐𝑐. (8) 
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Here, 𝑣𝑣0 is the molar volume, 𝑅𝑅 is the gas constant, 𝐷𝐷 is diffusivity of 
solute in the liquid, and 𝑞𝑞�(𝜙𝜙) is a dimensionless interpolation function in 
the range of 0 (solid) ~ 1 (liquid), which dictates variation of solute 
diffusivity at the interface. 𝑞𝑞�(𝜙𝜙) usually takes the form of 𝑞𝑞�(𝜙𝜙) = (1 −
𝜙𝜙)/[1 + 𝑘𝑘 − (1 − 𝑘𝑘)𝜙𝜙], where 𝑘𝑘 is the partitioning coefficient that 
describes the amount of solute ejected at the interface from the solid phase 
to the liquid phase. Equation (7) describes mass conservation and can be 
rewritten as 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇��⃗ . 𝐽𝐽𝑐𝑐��⃗ = 0, (9) 

where 𝐽𝐽𝑐𝑐��⃗ = 𝑀𝑀∇��⃗ 𝜇𝜇 is the solute current density. 

Importantly, 𝑓𝑓𝐴𝐴𝐴𝐴(𝜙𝜙, 𝑐𝑐,𝑇𝑇) is an interpolation function for the bulk free 
energy considering the entropy [𝑠𝑠(𝜙𝜙)], the internal energy [𝜖𝜖(𝜙𝜙)], the free 
energy of pure metal in the solid phase [𝑓𝑓𝐴𝐴(𝑇𝑇𝑚𝑚)], and the contribution from 
solute addition in the form of 

 𝑓𝑓𝐴𝐴𝐴𝐴(𝜙𝜙, 𝑐𝑐,𝑇𝑇) = 𝑓𝑓𝐴𝐴(𝑇𝑇𝑚𝑚) − (𝑇𝑇 − 𝑇𝑇𝑚𝑚)𝑠𝑠(𝜙𝜙) + 𝑅𝑅𝑇𝑇𝑚𝑚
𝜈𝜈0

(𝑐𝑐 ln(𝑐𝑐) − 𝑐𝑐) + 𝜖𝜖(𝜙𝜙)𝑐𝑐, (10) 

where 

 𝜖𝜖(𝜙𝜙) = 𝜖𝜖 + 𝑔𝑔�(𝜙𝜙) ∇𝜖𝜖
2

, (11) 

 𝑠𝑠(𝜙𝜙) = (𝑠𝑠𝑠𝑠+𝑠𝑠𝑙𝑙)
2

− 𝑔𝑔�(𝜙𝜙) 𝐿𝐿
2𝑇𝑇𝑚𝑚

. (12) 

Here, the subscripts 𝑙𝑙 and 𝑠𝑠 indicate liquid and solid, respectively, 𝜖𝜖𝑠𝑠 is the 
internal energy per unit volume of the solid phase, and 𝜖𝜖𝑙𝑙 is the internal 
energy per unit volume of the liquid phase. 𝜖𝜖̅ = (𝜖𝜖𝑠𝑠 + 𝜖𝜖𝑙𝑙)/2, and latent heat 
per unit volume 𝐿𝐿 = 𝑇𝑇𝑚𝑚(𝑠𝑠𝑙𝑙 − 𝑠𝑠𝑠𝑠). 𝑔𝑔�(𝜙𝜙) and 𝑔̅𝑔(𝜙𝜙) are interpolation functions 
in the form of 

 𝑔𝑔�(𝜙𝜙) =
1+𝑘𝑘−2exp�ln(𝑘𝑘)

2 [1+𝑔𝑔(𝜙𝜙)]�

1−𝑘𝑘
, (13) 

 𝑔𝑔(𝜙𝜙) = 2
ln(𝑘𝑘)

ln �1+𝑘𝑘−(1−𝑘𝑘)𝑔𝑔�(𝜙𝜙)
2

� − 1. (14) 

Both have the properties of 𝑔̅𝑔(±1) = 𝑔𝑔�(±1) = ±1. 
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The phase diagram is determined by the standard common tangent 
construction. The corresponding equilibrium solute concentrations in the 
solid and liquid, 𝑐𝑐𝑠𝑠 and 𝑐𝑐𝑙𝑙, are given by 

 𝜕𝜕𝑓𝑓𝑠𝑠(𝑐𝑐,𝑇𝑇)
𝜕𝜕𝜕𝜕

|𝑐𝑐=𝑐𝑐𝑠𝑠 = 𝜕𝜕𝑓𝑓𝑙𝑙(𝑐𝑐,𝑇𝑇)
𝜕𝜕𝜕𝜕

|𝑐𝑐=𝑐𝑐𝑙𝑙 = 𝜇𝜇𝐸𝐸(𝑇𝑇), (15) 

where 𝜇𝜇𝐸𝐸 is the chemical potential at equilibrium, and 𝑓𝑓𝑠𝑠 and 𝑓𝑓𝑙𝑙 are free 
energies of the solid and liquid phases, respectively. Hence, the 
equilibrium concentration as a function of the 𝑥𝑥 coordinate, 𝑐𝑐0(𝑥𝑥), is 
expressed as 

 𝑐𝑐0(𝑥𝑥) = 𝑐𝑐𝑙𝑙  exp �ln (𝑘𝑘)
2

[1 + 𝑔𝑔(𝜙𝜙0(𝑥𝑥))]�, (16) 

where 𝜙𝜙0 is the value of 𝜙𝜙 at the interface. Equilibrium of 𝜙𝜙 requires 

 𝜎𝜎 𝑑𝑑2𝜙𝜙0
𝑑𝑑𝑥𝑥2

+ 𝐻𝐻(𝜙𝜙0 − 𝜙𝜙03) = −𝑅𝑅𝑇𝑇𝑚𝑚(𝑇𝑇−𝑇𝑇𝑚𝑚)
2𝜈𝜈0𝑚𝑚

[(1 − 𝑘𝑘)𝑔𝑔�′(𝜙𝜙0) + ln (𝑘𝑘) 𝑐𝑐0(𝑥𝑥)
𝑐𝑐𝑙𝑙

𝑔𝑔′(𝜙𝜙0)], 

  (17) 

where 𝑚𝑚 is the liquidous slope (𝑚𝑚 < 0), and 𝑔𝑔�′ and 𝑔𝑔′ are derivatives of the 
functions of 𝑔𝑔� and 𝑔𝑔 with respect to 𝜙𝜙. 

The equations established under the equilibrium conditions can now be 
used to obtain particularly simple forms of the phase-field equation: 

 𝜏𝜏 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 𝑊𝑊2∇2𝜙𝜙 + 𝜙𝜙 − 𝜙𝜙3 + 𝑅𝑅𝑇𝑇𝑚𝑚(𝑇𝑇−𝑇𝑇𝑚𝑚)
2𝜈𝜈0𝐻𝐻𝐻𝐻

𝑔𝑔′(𝜙𝜙) ln(𝑘𝑘) �𝑐𝑐−𝑐𝑐0(𝜙𝜙,𝑇𝑇)
𝑐𝑐𝑙𝑙(𝑇𝑇)

 �, (18) 

where 𝜏𝜏 = 1/𝐾𝐾𝜙𝜙(𝑇𝑇)𝐻𝐻 is the relaxation time and 𝑊𝑊 is the width of the 
diffuse interface. 

Define 𝑢𝑢 as a dimensionless number in the form of 

 𝑢𝑢 = 𝜈𝜈0
𝑅𝑅𝑇𝑇𝑚𝑚

(𝜇𝜇 − 𝜇𝜇𝐸𝐸) = ln � 2𝑐𝑐
𝑐𝑐𝑙𝑙
0[1+𝑘𝑘−(1−𝑘𝑘)𝑔𝑔�(𝜙𝜙)]�, (19) 

where 𝑐𝑐𝑙𝑙0 is the equilibrium concentration of solute in the liquid phase. 
Rewrite the phase-field equation in terms of the dimensionless variable: 
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 𝜏𝜏 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑊𝑊2∇2𝜙𝜙 + 𝜙𝜙 − 𝜙𝜙3 − 𝜆𝜆�

1−𝑘𝑘
𝑔𝑔�′(𝜙𝜙) �𝑒𝑒𝑢𝑢 − 1 − 𝑇𝑇−𝑇𝑇0

𝑚𝑚𝑐𝑐𝑙𝑙
0 �, (20) 

where 𝑇𝑇0 is a reference temperature of isothermal solidification (or 
equilibrium liquidus temperature), 𝜆̃𝜆 is a dimensionless ratio defined by 
𝜆̃𝜆 = 𝐼𝐼Δ𝑇𝑇0𝑊𝑊/(2𝛤𝛤) where 𝐼𝐼 = 2√2/3, and 𝛤𝛤 is the Gibbs-Thomson constant. 

To eliminate artifacts induced by the finite interface thickness, an 
antitrapping current, 𝚥𝚥𝑎𝑎𝑎𝑎, is introduced to maintain equilibrium at the 
interface (Karma 2001). Its purpose is to transport solute atoms from the 
solid to the liquid: 

 𝚥𝚥𝑎𝑎𝑎𝑎 = −𝑎𝑎(𝜙𝜙)𝑊𝑊(1 − 𝑘𝑘)𝑐𝑐𝑙𝑙0𝑒𝑒𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

∇��⃗ 𝜙𝜙
|∇��⃗ 𝜙𝜙 |

. (21) 

With the antitrapping current, the equation of solute concentration is 
modified as 

 𝜕𝜕𝑐𝑐
𝜕𝜕𝜕𝜕

= ∇��⃗ ⋅ �𝐷𝐷𝑞𝑞�(𝜙𝜙)𝑐𝑐∇��⃗ 𝑢𝑢 − 𝚥𝚥𝑎𝑎𝑎𝑎�. (22) 

To make the equations nondimensional, a dimensionless supersaturation, 
𝑈𝑈, is introduced as 

 𝑈𝑈 = 𝑒𝑒𝑢𝑢−1
1−𝑘𝑘

. (23) 

Now consider a simplified temperature field described by the frozen 
temperature approximation, that is, 𝑇𝑇(𝑦𝑦) = 𝑇𝑇0 + 𝐺𝐺(𝑧𝑧 − 𝑉𝑉𝑝𝑝𝑡𝑡), where 𝐺𝐺 is the 
thermal gradient, 𝑉𝑉𝑝𝑝 is the pulling velocity, and 𝑧𝑧 is the coordinate of any 
point of interest along the dendrite growth direction. The temperature-

dependent relaxation time becomes 𝜏𝜏 = 𝜏𝜏0 �1 −
(1−𝑘𝑘)�𝑦𝑦−𝑉𝑉𝑝𝑝𝑡𝑡�

𝑙𝑙𝑡𝑡
 �, where 𝑙𝑙𝑡𝑡 =

|𝑚𝑚|(1−𝑘𝑘)𝑐𝑐𝑙𝑙
0

𝐺𝐺
 is the thermal length and 𝑚𝑚 is the liquidous slope. 

With the frozen temperature approximation, the field equations take the 
form of 

 𝜏𝜏0 �1 −
(1−𝑘𝑘)�𝑧𝑧−𝑉𝑉𝑝𝑝𝑡𝑡�

𝑙𝑙𝑡𝑡
 � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑊𝑊2∇2𝜙𝜙 + 𝜙𝜙 − 𝜙𝜙3 − 𝜆𝜆𝑔𝑔′(𝜙𝜙) �𝑈𝑈 + 𝑧𝑧−𝑉𝑉𝑝𝑝𝑡𝑡
𝑙𝑙𝑡𝑡

�, (24) 
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 �1−𝑘𝑘
2
− 1−𝑘𝑘

2
ℎ(𝜙𝜙)� 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= ∇��⃗ ⋅ �𝐷𝐷𝐷𝐷(𝜙𝜙)∇��⃗ 𝑈𝑈 + 𝑎𝑎(𝜙𝜙)𝑊𝑊[1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∇��⃗ 𝜙𝜙
�∇��⃗ 𝜙𝜙�

 � + 

 [1 + (1 − 𝑘𝑘)𝑈𝑈] 1
2
𝜕𝜕ℎ(𝜙𝜙)
𝜕𝜕𝜕𝜕

, (25) 

where 𝜆𝜆 = 15
8
𝜆̃𝜆, ℎ(𝜙𝜙) = 𝜙𝜙, and 𝑎𝑎(𝜙𝜙) = 1/(2√2). The capillary length, 𝑑𝑑0, a 

material property, is taken as the unit length. The ratio of 𝑑𝑑𝑜𝑜2/𝐷𝐷 is taken as 
the unit time. 

Anisotropy of surface energy is accounted for by the introduction of 
direction-dependent interface thickness and relaxation time, that is, 
𝑊𝑊(𝜃𝜃) = 𝑊𝑊𝑎𝑎𝑠𝑠(𝜃𝜃) and 𝜏𝜏(𝜃𝜃) = 𝜏𝜏0𝑎𝑎𝑠𝑠2(𝜃𝜃), where 𝜃𝜃 is the angle that measures 
the direction and 𝑎𝑎𝑠𝑠(𝜃𝜃) is a direction-dependent function. This study 
assumes the four-fold anisotropy in the form of 𝑎𝑎𝑠𝑠 = 1 + 𝜖𝜖4(1 − cos (4𝜃𝜃)), 
where 𝜖𝜖4 is the strength of anisotropy. 

2.1.2 Final nondimensional equations and modified antitrapping model 

Following the classical perturbation scheme developed by Langer (1986) 
and Caginalp and Xie (1993), a ratio is defined between the interface 
thickness and the capillary length, that is, 𝑒̅𝑒 = 𝑊𝑊/𝑑𝑑0. Both 𝑊𝑊 and 𝑒̅𝑒 are 
prescribed parameters and are arbitrary to some extent. Define three 
dimensionless parameters based on the choices of 𝑒̅𝑒 and 𝑊𝑊: 𝑉𝑉�𝑝𝑝 = 𝑉𝑉𝑝𝑝𝜏𝜏0

𝑊𝑊
, 𝑙𝑙𝑡𝑡 =

𝑙𝑙𝑡𝑡
𝑊𝑊

, and 𝐷𝐷� = 𝑎𝑎1𝑎𝑎2𝑒̅𝑒, where 𝑎𝑎1 and 𝑎𝑎2 are parameters that come from a thin 

interface analysis that maps a numerically diffuse interface to a physical 
interface (Karma 2001). 

Writing out explicitly all interpolation functions and taking into account 
the contributions made by the anisotropic 𝑊𝑊(𝑛𝑛) to the functional 
derivatives, the field equations are rewritten as 

 �1 −
(1−𝑘𝑘)�𝑧𝑧−𝑉𝑉�𝑝𝑝𝑡𝑡�

𝑙𝑙𝑡𝑡
 �  𝑎𝑎s(𝜃𝜃)2 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= ∇��⃗ . �𝑎𝑎𝑠𝑠(𝜃𝜃)2∇��⃗ 𝜙𝜙� + 𝜕𝜕𝑥𝑥 ��∇��⃗ 𝜙𝜙�

2
𝑎𝑎𝑠𝑠(𝜃𝜃) 𝜕𝜕𝑎𝑎𝑠𝑠(𝜃𝜃)

𝜕𝜕(𝜕𝜕𝑥𝑥𝜙𝜙)
 � + 

 𝜕𝜕𝑧𝑧 ��∇��⃗ 𝜙𝜙�
2
𝑎𝑎𝑠𝑠(𝜃𝜃) 𝜕𝜕𝑎𝑎𝑠𝑠(𝜃𝜃)

𝜕𝜕�𝜕𝜕𝑦𝑦𝜙𝜙�
 � + 𝜙𝜙 − 𝜙𝜙3 − 𝜆𝜆(1 − 𝜙𝜙2)2 �𝑈𝑈 + 𝑧𝑧−𝑉𝑉�𝑝𝑝𝑡𝑡

𝑙𝑙𝑡𝑡
�, (26) 

 �1−𝑘𝑘
2
− 1−𝑘𝑘

2
 𝜙𝜙� 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= ∇��⃗ . �𝐷𝐷� 1−𝜙𝜙

2
 ∇��⃗ 𝑈𝑈 + 1

2√2
[1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∇��⃗ 𝜙𝜙
�∇��⃗ 𝜙𝜙�

 � + 

 [1 + (1 − 𝑘𝑘)𝑈𝑈] 1
2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, (27) 
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where 𝑥𝑥 and 𝑧𝑧 are in the unit of 𝑊𝑊, and 𝑡𝑡 is in the unit of 𝜏𝜏0. To determine 
an appropriate value of 𝑒̅𝑒, multiple simulations have to be performed, and 
the value of 𝑒̅𝑒 that leads to stable numerical results may be selected. 

To extend the model to the rapid solidification regime, a modified 
antitrapping current model (Pinomaa and Provatas 2019) is incorporated 
into the phase-field model described by equations (26) and (27). 
Compared with the classical antitrapping model, the most important 
change is that an additional trapping parameter, 𝐴𝐴, is introduced to the 
antitrapping model as 

 𝑗𝑗𝑎𝑎𝑎𝑎 = 1
2√2

(1 − 𝐴𝐴(1 − 𝜙𝜙2))[1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

∇��⃗ 𝜙𝜙
�∇��⃗ 𝜙𝜙�

. (28) 

Here, 𝐴𝐴 = 𝐷𝐷𝐿𝐿/𝑉𝑉𝐷𝐷𝑃𝑃𝑃𝑃𝑊𝑊 depends on the solute diffusion coefficient in the 
liquid, 𝐷𝐷𝐿𝐿, and the diffusion velocity of the alloy, 𝑉𝑉𝐷𝐷𝑃𝑃𝑃𝑃. The parameter of 
𝑉𝑉𝐷𝐷𝑃𝑃𝑃𝑃can be determined by fitting the equation with experimentally 
determined, velocity-dependent partitioning coefficient 𝐾𝐾𝑣𝑣 (Tian, Muñiz-
Lerma, and Brochu 2017). By setting 𝐴𝐴 = 0, equation (28) becomes the 
original antitrapping current model. 

2.2 Numerical solution 

Equations (26) and (27) are numerically solved with the finite element 
method (FEM) by using the weak forms of the equations. Equations (29) 
and (30) correspond to the 𝜙𝜙 and 𝑈𝑈 equations, respectively. 

 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,𝜓𝜓� = −𝐿𝐿([𝑊𝑊(𝜃𝜃)2∇𝜙𝜙],∇𝜓𝜓) + 𝐿𝐿 �𝜙𝜙 − 𝜙𝜙3 − 𝜆𝜆𝜆𝜆(𝜙𝜙) �𝑈𝑈 + 𝑧𝑧−𝑉𝑉�𝑝𝑝𝑡𝑡
𝑙𝑙𝑡𝑡

� ,𝜓𝜓�, 

 where 𝐿𝐿 = 1

1−(1−𝑘𝑘)
𝑧𝑧−𝑉𝑉�𝑝𝑝𝑡𝑡
𝑙̃𝑙𝑡𝑡

. (29) 

 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,𝜓𝜓� = 𝑀𝑀�𝐷𝐷
�(1−𝜙𝜙)

2
∇𝑈𝑈,∇𝜓𝜓� −𝑀𝑀 � 1

2√2
[1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∇𝜙𝜙

|∇𝜙𝜙|
,∇𝜓𝜓� + 

 𝑀𝑀�1
2

[1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,𝜓𝜓�, where 𝑀𝑀 = 1
(1+𝑘𝑘)
2 −(1−𝑘𝑘)

2 𝜙𝜙
. (30) 

Here, (𝐴𝐴,𝐵𝐵) = ∫ (𝐴𝐴 ⋅ 𝐵𝐵)𝑑𝑑𝑑𝑑𝑉𝑉 , 𝜓𝜓 is the test function, ∇𝜓𝜓 is the gradient of the 
test function, and 𝑊𝑊(𝜃𝜃) = 𝑊𝑊𝑎𝑎𝑠𝑠(𝜃𝜃) is the direction-dependent interface 
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thickness. There are no surface integrals in the weak forms due to the 
assumption of no-flux boundary conditions. 

The equations are solved in a rectangle computational domain with two 
dimensions: (1) cell height (𝐿𝐿𝑧𝑧) along the solidification direction, 𝑧𝑧, and (2) 
cell spacing (𝐿𝐿𝑥𝑥) along the 𝑥𝑥 direction. The parameter of 𝑒̅𝑒 is chosen such 
that 𝑊𝑊 is smaller than a characteristic length 𝑙𝑙𝑐𝑐 ≫ 𝑑𝑑𝑜𝑜 that depends 
generally on growth conditions. The computational domain is initially all 
fluid with 𝜙𝜙 = −1 except that a small, semi-elliptical seed with 𝜙𝜙 = 1 is 
placed in the center of the bottom edge to initiate solidification. The 
dimensionless supersaturation is initially assumed to be constant in the 
entire domain, that is, 𝑈𝑈 = −1. No-flux boundary conditions are applied 
on all boundaries, that is, 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0. The temperature field is 

defined by the frozen temperature approximation, that is, 𝑇𝑇 = 𝑇𝑇0 + 𝐺𝐺(𝑧𝑧 −
𝑉𝑉𝑝𝑝𝑡𝑡). For all examples in this study, the misorientation angle between the 
thermal gradient and the pulling velocity is fixed at 0° so that the dendrite 
will grow along the 𝑧𝑧 direction. 

The FEM solution is performed by using MOOSE. The computational 
domain is meshed with an element spacing of ∆𝑥𝑥 = Δ𝑧𝑧 = 0.8𝑊𝑊 along both 
directions. Time evolution is based on an explicit Euler scheme with a time 
step chosen below the threshold of numerical instability for the diffusion 
equation in both dimensions, ∆𝑡𝑡 < min(∆𝑥𝑥2,∆𝑧𝑧2) /4𝐷𝐷, where 𝐷𝐷 is the 
diffusion coefficient. The solution procedure takes advantage of MOOSE’s 
adaptive meshing capability. 

To illustrate the results of a typical solidification simulation, Figure 1 plots 
the computational domain at the end of an example simulation. 
Apparently, a dendrite is formed from the bottom edge. On the two sides 
of the dendrite, there are several secondary arms that can be characterized 
by the separation parameter, 𝜆𝜆2. This report will analyze the formation of 
such dendrite structures as influenced by several process and material 
parameters. 
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Figure 1. Demonstration of a directional solidification example. 
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3 Material Properties 

Material properties of three binary alloy systems studied in this work, 
SCN, Ni-Nb, and Si-As, are given in Table 1. The thermo-physical 
properties of these alloys are assumed to be constant throughout the 
simulation. The capillary length is 𝑑𝑑0 = 𝛤𝛤/(1 − 𝑘𝑘)|𝑚𝑚𝑙𝑙

𝑒𝑒|𝑐𝑐𝑙𝑙0, where 𝑚𝑚𝑙𝑙
𝑒𝑒 is the 

liquidous slope at equilibrium and 𝑐𝑐𝑙𝑙0 is the alloy concentration. The 
thermal length is defined as 𝑙𝑙𝑡𝑡 = |𝑚𝑚𝑙𝑙

𝑒𝑒|(1 − 𝑘𝑘)𝑐𝑐𝑙𝑙0/𝐺𝐺, where 𝐺𝐺 is the thermal 
gradient. 

Table 1. Material properties of three binary alloys (SCN, Si-As, and Ni-Nb). 

Properties 

SCN 
(Echebarría 
et al. 2004) 

Si-As 
(Pinomaa and 
Provatas 
2019) 

Ni-Nb 
(Ghosh et 
al. 2017) 

Equilibrium partitioning coefficient, 𝑲𝑲𝒆𝒆 0.03 0.03 0.48 

Equilibrium liquidus slope, |𝒎𝒎𝒍𝒍
𝒆𝒆| [ 𝑲𝑲

𝒂𝒂𝒂𝒂%
] 2.00 4.00 10.50 

Alloy concentration, 𝒄𝒄𝒍𝒍𝟎𝟎 - 9.00 5.00 

Liquid diffusion coefficient, 
𝑫𝑫𝒍𝒍 [𝟏𝟏𝒆𝒆 − 𝟗𝟗 𝒎𝒎𝟐𝟐𝒔𝒔−𝟏𝟏] 

1.00 15.00 3.00 

Capillary anisotropy strength, 𝝐𝝐 0.007 0.03 0.03 

Diffusive velocity (CGM), 𝑽𝑽𝒅𝒅𝑪𝑪𝑪𝑪𝑪𝑪 [𝒎𝒎𝒔𝒔−𝟏𝟏] - 0.68 9.00 

Diffusive velocity (PFM) 𝑽𝑽𝒅𝒅𝑷𝑷𝑷𝑷𝑷𝑷 [𝒎𝒎𝒔𝒔−𝟏𝟏] - 0.385 4.00 
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4 Results and Discussion 
4.1 SCN alloy 

Directional solidification of impure succinonitrile (SCN) is first studied 
under slow solidification conditions to verify the computational approach 
used in this project. The thermal gradient is fixed at a relatively low value 
of 𝐺𝐺 = 140 K/cm, which is typical for slow solidification. The pulling 
velocity, 𝑉𝑉𝑝𝑝, is varied to study its effects on dendrite growth. 

Figure 2 shows the resulting dendrite profiles for three different 𝑉𝑉𝑝𝑝. 
Apparently, as the pulling velocity and the cooling rate increase, dendrite 
growth is faster with sharper dendrite tip and SDAS. 

Figure 2. Dendrite profiles for three different pulling velocities: (a) Vp = 29 µm 
s-1; (b) Vp = 32 µm s-1; and (c) Vp = 128 µm s-1. From left to right, as Vp 

increases, the SDAS decreases and the tip radius decreases. 

(a) (b) (c)  

All dendrite profiles shown in Figure 2 were generated after the simulation 
reached the steady state, that is, when the tip velocity becomes almost a 
constant. As shown in Figure 3, given a constant 𝑉𝑉𝑝𝑝, the resulting tip 
velocity is not a constant. The tip velocity starts higher than 𝑉𝑉𝑝𝑝 at 𝑡𝑡 = 0, 
mainly due to the small size of the dendrite seed. Over the time, the tip 
velocity gradually drops to a level that is comparable to 𝑉𝑉𝑝𝑝 because the 
surface area of the interface increases so the growth is more stabilized. 
Similar evolution of tip velocity has been shown in several previous studies 
(Echebarría, Karma, and Gurevich 2010). 
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Figure 3. Evolution of the tip velocity in the case of Vp = 32 µm s-1. 
Inset shows the curve in the range of 300~310 s. 
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To further verify the computational approach, our simulation results are 
compared with experimental and computational results from the 
literature, in terms of the steady-state dendrite profile. On one hand, 
Figure 4a–b compares our results with the experimental results (Pocheau 
and Georgelin 2001; Georgelin and Pocheau 2004) under comparable 
conditions in terms of the cell spacing, pulling velocity, and thermal 
gradient for the same alloy. On the other hand, using the same cell 
spacing, 𝐿𝐿𝑥𝑥 = 180 μm, this work generates dendrite profiles that are 
comparable to those presented in Echebarría , Karma, and Gurevich 
(2010) (Figure 4c–d). The differences are mainly caused by the different 
simulation times. The FEM computation in this study is expensive because 
of the local mesh refinement at growing interfaces as well as the decrease 
of time step over time to ensure computational stability. 

Figure 4. Comparison of dendrite profiles under two different solidification 
conditions. For problem 1, (a) experimental (Pocheau and Georgelin 2001; 
Georgelin and Pocheau 2004) and (b) our simulation results are compared. 

For problem 2, (c) simulation from the literature (Echebarría, Karma, and 
Gurevich 2010) and (d) our simulation are compared. 

(a)                           (b)                             (c)                           (d)  
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4.2 Si-As alloy 

After the general verification, the computational framework is further 
applied to study the Si-As binary alloy. Material properties are given in 
Table 1. The Si-As system features a very fast diffusion coefficient (𝐷𝐷𝑙𝑙) and 
slow diffusion velocity (𝑉𝑉𝑑𝑑), which are the major differences compared 
with the Ni-Nb alloy which will be studied in section 4.3. The differences 
in diffusion parameters will dramatically influence the interfacial local 
nonequilibrium in rapid solidification leading to different dendrite 
profiles. 

Directional solidification of the Si-As alloy is studied under slow, quasi-
rapid, and rapid solidification conditions, respectively. The simulation of 
slow and quasi-rapid solidification assumes a thermal gradient of 𝐺𝐺 =
400 K ⋅ mm−1 and in the case of rapid solidification, thermal gradient is 
fixed at 𝐺𝐺 = 4,000 K ⋅ mm−1. The pulling velocity is prescribed as 𝑉𝑉𝑝𝑝 =
10 μm ⋅ s−1, 5,000 μm ⋅ s−1, and 150,000 μm ⋅ s−1 for the slow, quasi-rapid, 
and rapid solidification cases, respectively. 

As this study is particularly focused on rapid solidification where the 
interface deviates from the equilibrium, we implemented the modified 
antitrapping current model proposed by Pinomaa and Provatas (2019). 
The classical antitrapping current model is also implemented as a baseline 
to understand the influence and applicability of the new antitrapping 
current model. The modified antitrapping current model has a trapping 
parameter of 𝐴𝐴 in the definition of 𝑗𝑗𝑎𝑎𝑎𝑎 as described in equation (28). The 
value of 𝐴𝐴 depends on material properties including 𝐷𝐷𝑙𝑙 and 𝑉𝑉𝑑𝑑, which are 
distinct between the Si-As and Ni-Nb systems. 

4.2.1 Effects of solidification rates 

Dendrite profiles for the slow, quasi-rapid, and rapid solidification cases 
are shown in Figure 5, respectively. The first row uses the modified 
antitrapping current model, and the second row uses the classical model. 
Apparently, the speed of solidification significantly influences dendrite 
formation. Comparing dendrite profiles in any of the two rows in Figure 5, 
it is found that the dendrite grows much faster and wider in rapid 
solidification. Similar to Figure 2, Figure 5 also shows that faster 
solidification facilitates dendrite growth. 
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4.2.2 Effects of antitrapping models 

Moreover, by comparing Figure 5a and Figure 5d, it is readily seen that 
modifying the antitrapping current has almost negligible influence in the 
case of slow solidification. However, as the solidification occurs at higher 
cooling rates, the modification of the antitrapping current model becomes 
more important. Comparing Figure 5b and Figure 5e for quasi-rapid 
solidification as well as Figure 5c and Figure 5f for rapid solidification, the 
modified antitrapping current model is found to boost dendrite growth 
and form longer dendrites. 

Figure 5. Dendrite profiles under different solidification conditions. The first row (a–c) 
shows dendrite profiles for slow, quasi-rapid, and rapid solidification, respectively, 

with the modified antitrapping current. The second row (d–f) is for slow, quasi-rapid, 
and rapid solidification, respectively, with the classical antitrapping current. 

(a) (b) (c)

(d) (e) (f)

“Sharp”

“Blunt”

 

Theoretically, the “classical” antitrapping current attempts to maintain 
equilibrium at the interface. As a result, it predicts slower dendrite growth 
and more diffuse (or blunter) dendrite tip with larger tip radius as shown 
in the inset of Figure 5f. By comparison, the modified antitrapping current 
uses the trapping parameter to make the partitioning coefficient 
dependent on the diffusion velocity. As such, it ends up using a fraction of 
the classical antitrapping current. Therefore, the interface is further away 
from the equilibrium in rapid solidification, which agrees better with the 
physical condition. The dendrite formed with the modified antitrapping 
current features a sharper tip, as shown in the inset of Figure 5c. 
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To more quantitatively understand the difference between the two 
antitrapping current models, Figure 6 plots the difference in tip 
undercooling and a tip velocity ratio. On the one hand, tip undercooling is 
defined by Ω = 1 − 𝑧𝑧tip/𝑙𝑙𝑡𝑡, where 𝑙𝑙𝑡𝑡 is the thermal length and 𝑧𝑧tip is the 𝑧𝑧 
coordinate of the dendrite tip. Figure 6a plots ΔΩ = Ωmodified − Ωclassical, 
difference between the Ω predicted with the classical and the modified 
antitrapping current models, respectively. ΔΩ quantifies the influence of 
antitrapping on the prediction of tip location. On the other hand, the tip 
velocity ratio is defined by 𝑅𝑅𝑉𝑉𝑡𝑡 = 𝑉𝑉𝑡𝑡modified/𝑉𝑉𝑡𝑡classical, where 𝑉𝑉𝑡𝑡 denotes the 
tip velocity. 𝑅𝑅𝑉𝑉𝑡𝑡 quantifies the influence of antitrapping on the prediction 
of tip velocity. 

Figure 6. (a) Difference in tip undercooling and (b) velocity ratio predicted by 
using the classical and modified antitrapping current models for different 

solidification regimes. The time scale is in τ0. 
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As shown in Figure 6, it is apparent that the choice of antitrapping models 
does not significantly influence the predictions of tip location and tip 
velocity in slow and quasi-rapid solidification. Both solification conditions 
give ΔΩ ≈ 0 and 𝑅𝑅𝑉𝑉𝑡𝑡 ≈ 1, meaning that the two antitrapping models lead to 
almost the same simulation results. 

By comparison, the choice of antitrapping models makes fundamental 
differences in the case of rapid solidification. Figure 6 shows that in rapid 
solidification, ΔΩ stays at about 0 and 𝑅𝑅𝑉𝑉𝑡𝑡 stays at about 1 only at the early 
stage of solidification. After about 20𝜏𝜏0 for the present problem, both ΔΩ 
and 𝑅𝑅𝑉𝑉𝑡𝑡 rise rapidly until they reach the steady state at approximately 
50𝜏𝜏0~60𝜏𝜏0. Based on the results, using the modified antitrapping current 
model significantly changes the simulation results of tip advancing 
including its location and velocity. In terms of undercooling, the difference 
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made by using the modified antitrapping model is about 18% after 50𝜏𝜏0. In 
terms of tip velocity, the difference is around 25% after 60𝜏𝜏0. 

Theoretically, in slow and quasi-slow solidification, the interface is mostly 
at the equilibrium so both antitrapping models give the same results. In 
rapid solidification, however, the interface is no longer in equilibrium, and 
as a result, the classical antitrapping current, which assumes equilibrium 
interface, fails to predict dendrite growth accurately. At the early stage 
before 20𝜏𝜏0, the dendrite growth is slow so the discrepancy between the 
two models is negligible. As the dendrite growth rate increases, the 
interface becomes increasingly nonequilibrium. Hence, the classical 
antitrapping model’s assumption of local equilibrium fails, and its 
prediction deviates from that made by the modified antitrapping current 
model. 

4.2.3 Dendrite evolution 

Figure 7 shows dendrite development snapshots for rapid and quasi-rapid 
solidification. Only the interface with −1 < 𝜙𝜙 < 1 is plotted to show the 
dendrite morphology. In both cases, secondary arms grow from the base of 
the tip at the early stage of solidification. Once the shape is formed, it 
grows in size with time. As the dendrite grows longer, more secondary 
arms form, as illustrated in the inset of Figure 7. At step 1 in the inset, the 
tip surface of the arm is relatively flat. At step 2, the tip surface concaves 
approximately in the middle, which divides the arm into two. At step 3, the 
dividing point lags in solidification, making the two “children” arms more 
apparent. Overall, rapid solidification features smaller SDAS. 

In all cases, the shape of the dendrite tip is parabolic, as shown in Figure 7. 
Depending on the growth velocity, the tip radius is sharper for rapid 
solidification and blunter for slow solidification. Additionally, Figure 7 
also reveals that the interface is wider in between the secondary arms, 
suggesting higher solute concentration since solute concentration at the 
interface is always higher than the equilibrium concentration. Hence, the 
solute is enriched between neighboring secondary arms. 
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Figure 7. Dendrite arm development with time for (a) rapid solidification and (b) 
quasi-rapid solidification. Note that the time scale, τ0, is different in the two 

problems. Inset shows the formation process of a new secondary arm. 

(A) (B)

125𝜏𝜏0

150𝜏𝜏0

175𝜏𝜏0

200𝜏𝜏0

50𝜏𝜏0

75𝜏𝜏0

100𝜏𝜏0

1

2 3

 

4.2.4 Effects of surface energy anisotropy 

This study further investigates the effects of surface energy anisotropy by 
varying the strength of anisotropy (𝜖𝜖4) between the two values of 0.03 and 
0.01. Figure 8 shows dendrite profiles for the two cases. When the strength 
of anisotropy is reduced from 𝜖𝜖4 = 0.03 to 0.01, the number of secondary 
arms increases drastically. According to previous studies, the growth of 
secondary arms may also be boosted by artificial noises introduced at the 
interface to better simulate practical solidification conditions. However, 
since the present work does not introduce any artificial noises, the changes 
seen in the secondary arms are solely caused by the strength of anisotropy. 
Hence, based on the results shown in Figure 8, anisotropy is found to 
suppress the formation of secondary arms in the dendrite. Similar results 
have been found in other works (Xing et al. 2017). 

The higher anisotropy also leads to a sharper dendrite tip. Additionally, 
the lower anisotropy is found to slow down tip velocity. As more secondary 
arms are present, the interface surface area is enlarged, leading to lower 
tip velocity. 
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Figure 8. Dendrite profiles with different strengths of anisotropy: 
(a) ε4 = 0.03, and (b) ε4 = 0.01. 

(A)   (B)

 

4.3 Ni-Nb alloy 

This section studies directional solidification of the Ni-Nb binary alloy. 
Material properties are given in Table 1. The Ni-Nb system has a relatively 
low diffusion coefficient (𝐷𝐷𝑙𝑙) and a fast diffusion velocity (𝑉𝑉𝑑𝑑) compared to 
the Si-As system. With the high diffusion velocity, solute atoms have 
higher mobility at the interface so that they can readjust local 
concentration as needed to maintain local equilibrium. Hence, the Ni-Nb 
system has weaker nonequilibrium effects compared with the Si-As system 
in rapid solidification. 

Two solidification conditions were assumed in this study: (1) 𝐺𝐺 =
400 K mm−1 and 𝑉𝑉𝑝𝑝 = 10 μm s−1 representing slow solidification and (2) 
𝐺𝐺 = 4,000 K mm−1 and 𝑉𝑉𝑝𝑝 = 150,000 μm s−1 representing rapid 
solidification. 

Figure 9 compares the dendrite profiles in the case of slow solidification 
predicted by the classical and modified antitrapping current models, and 
no significant difference is identified. The results are verified using the 
difference in tip undercooling and velocity ratio as shown in Figure 10. 
Both parameters remain a constant with time in the case of slow 
solidification, indicating that local equilibrium holds and the classical 
antitrapping model is sufficient for accurate prediction. 
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Figure 9. Dendrite profiles of Ni-Nb in slow solidification predicted with the (a) 
modified and (b) classical antitrapping current models. 

(A) (B)

 

In the case of rapid solidification, Figure 10 shows that both parameters of 
the difference in tip undercooling and velocity ratio have much lower 
magnitudes (3%–10%) than their values in Figure 6 for Si-As (18%–25%). 
Indeed, as pointed out above, the Ni-Nb alloy features fast solute diffusion 
at the interface, which alleviates interfacial nonequilibrlium in rapid 
solidification. The modified antitrapping model is still more accurate, but 
its advantage over the classical model is not as significant as that in the Si-
As system. 

Figure 10. (a) Difference in tip undercooling and (b) velocity ratio 
predicted by using the classical and modified antitrapping 

current models for different solidification regimes. 
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5 Conclusion 

To summarize, this project implements the phase-field model for 
directional solidification of binary alloys developed by Echebarría et al. 
(2004) with two antitrapping models. The computational tool is verified 
and tested by considering the two-dimensional, one-sided directional 
solidification of three binary systems: SCN, Si-As, and Ni-Nb. Dendrite 
growth under different process parameters (i.e., cooling rate and strength 
of anisotropy) is studied to understand those parameters’ effects. Major 
findings from the numerical work include: 

1. Studies of the three systems (i.e., SCN, Si-As, and Ni-Nb) all reveal 
parabolic dendrite tip evolving along the directions of maximum 
interface energy. Solute enrichment between neighboring secondary 
arms is observed. 

2. The classical antitrapping current model fails in rapid solidification, 
especially for alloys that have low diffusion velocities at the interface. 
The classical antitrapping current model builds upon the assumption of 
local equilibrium, which breaks down in the case of rapid solidification. 
Using the modified antitrapping current model is suggested for alloys 
with low to moderate diffusion velocities. The modified antitrapping 
current uses a fraction of the classical antitrapping current through a 
trapping parameter, effectively making the partitioning coefficient 
velocity dependent, which can be experimentally calibrated. 

3. This study uses two parameters to quantify the differences between the 
two antitrapping models: the difference in tip undercooling and 
velocity ratio. Since the modified antitrapping model was designed to 
capture nonequilibrium conditions at the interface, the two parameters 
also indicate quantitatively the effects of interfacial nonequilibrium on 
dendrite growth. This study reveals that in Si-As, local equilibrium 
holds at the very early stage of solidification for up to 20𝜏𝜏0; after that, 
significant deviation from local equilibrium occurs that influences 
dendrite growth, and this influence is stabilized at approximately 
50~60𝜏𝜏0. The Si-As is therefore an excellent example where the 
modified antitrapping current model is required for accurate 
prediction. 
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4. In Ni-Nb, the influence of interfacial nonequilibrium is much less 
significant, and the modified antitrapping model does not generate 
significantly different results. With high diffusion velocities at the 
interface, the solute atoms in Ni-Nb are able to quickly readjust 
themselves to maintain local equilibrium, resulting in similar 
predictions with the two antitrapping current models. 

5. As the cooling rate increases, the secondary arm spacing decreases, and 
the dendrite tip becomes sharper. 

6. The lower anisotropic strength of surface energy results in more 
secondary arms in the dendrite structure. It also slows down dendrite 
tip growth as the interface surface area is increased with more 
secondary arms. 

In future studies, the directional solidification model may be extended to 
include multicomponent systems to study interesting phenomenon 
pertaining to additive manufacturing. For example, the Inconel 718 
(IN718) alloy, composed of 50%–55% nickel, 17%–21% chromium, 4.75%–
5.5% niobium and tantalum, and trace amounts of other elements, is very 
common in 3D printing. Another example of multicomponent alloys is the 
high-entropy alloys. These systems have shown interesting phenomena 
under additive manufacturing, which may be a topic of future 
investigation. 
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