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Assessing the feasibility of detecting epileptic seizures 
using non-cerebral sensor data 

A B S T R A C T

This paper investigates the feasibility of using non-cerebral, time-series data to detect epileptic seizures. Data were recorded from fifteen patients 
(7 male, 5 female, 3 not noted, mean age 36.17 yrs), five of whom had a total of seven seizures. Patients were monitored in an inpatient setting 
using standard video-electroencephalography (vEEG), while also wearing sensors monitoring electrocardiography, electrodermal activity, 
electromyography, accelerometry, and audio signals (vocalizations). A systematic and detailed study was conducted to identify the sensors and 
the features derived from the non-cerebral sensors that contribute most significantly to separability of data acquired during seizures from non-
seizure data. Post-processing of the data using linear discriminant analysis (LDA) shows that seizure data are strongly separable from non-
seizure data based on features derived from the signals recorded. The mean area under the receiver operator characteristic (ROC) curve for each 
in-dividual patient that experienced a seizure during data collection, calculated using LDA, was 0.9682. The fea-tures that contribute most 
significantly to seizure detection differ for each patient. The results show that a multimodal approach to seizure detection using the specified 
sensor suite is promising in detecting seizures with both sensitivity and specificity. Moreover, the study provides a means to quantify the 
contribution of each sensor and feature to separability. Development of a non-electroencephalography (EEG) based seizure detection device 
would give doctors a more accurate seizure count outside of the clinical setting, improving treatment and the quality of life of epilepsy patients.   

1. Introduction

Around 65 million people worldwide have epilepsy, and about 3.4
million of these people live in the U.S [1,2]. Of people with epilepsy, 
20–40% have refractory epilepsy, which means typical epilepsy medi-
cations do not control their seizures [3]. In order for doctors to prescribe 
the correct medication and gain an understanding of how epilepsy in-
terferes with a patient’s life, they rely on the patient’s self-reported 
accounts of seizures. However, a study by Hoppe et al. [4] revealed 
that patients monitored in an Epilepsy Monitoring Unit (EMU) failed to 
report 55.5% of all seizures. When asked, 36 of the 91 patients (40%) 
believed they were fully aware of their seizures, yet their reporting 
showed that only 11 patients (12%) were able to accurately record all of 
their seizures. Experiments such as this have been reproduced with 
similar conclusions drawn [5,6]. 

Currently, the gold standard for seizure monitoring and detection is 
combined video and electroencephalography (vEEG) recording con-
ducted in an EMU. While vEEG provides the most accurate results for 
seizure detection, it requires patients to wear numerous electrodes on 
their scalp (typically at least 25) and be continuously videotaped, 
making it unrealistic for everyday use. Furthermore, trained pro-
fessionals need to review the EEG data to identify seizures. Conse-
quently, a method is needed to accurately count seizures during day-to- 
day activity outside of a clinical setting. 

Epileptic seizures can present a wide range of observable behaviors 
that relate to the nature of their onset and propagation within the brain. 
Table 1 provides brief descriptions of common seizure types. The 
observable changes in patient motion, vocalization, and physiological 
response during seizures offer non-cerebral signals that could be used to 
detect seizures. This paper presents a study whose aim is to determine 

https://doi.org/10.1016/j.compbiomed.2021.104232
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2021.104232&domain=pdf
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whether seizure activity of many types is separable from daily activities. 
Establishing separability is the first step towards developing a body- 
worn device for seizure detection using non-cerebral signals. Sepa-
rating seizure behavior from long intervals of normal, non-seizure 
behavior is the key task of any detection scheme and is critical to 
avoiding frequent “nuisance” alarms from false detections. Hence 
separability is the central focus of this study. 

To assess separability, we used linear discriminant analysis (LDA) on 
features derived from data recorded from inpatients via electrocardi-
ography, electrodermal activity, electromyography, accelerometry, and 
audio signal monitoring. The results presented in this paper will guide 
the design of a self-contained device comprised of sensors and a real- 
time machine learning algorithm. The goal is a device that accurately 
detects and counts seizures occurring outside of the clinical setting with 
minimal interference on normal life. Establishing separability is the first 
step in the design process. 

2. Prior research

Several research teams have investigated the use of accelerometers
placed on or under mattresses to detect a patient’s nocturnal seizures 
[7–10]. Other researchers have explored monitoring sleep through video 
and audio monitoring [11–14]. These studies have shown mixed results 
and are only useful for detecting convulsive seizures in a specific room. 

Wearable devices have been studied to detect convulsive seizures 
specifically, which are associated with repeated, jerking motions of 
various parts of the body and are dissimilar to motions that occur during 
day-to-day life. The movements of convulsive seizures are observable in 
several signals such as accelerometry and electromyography (EMG). 

In accelerometry signals, myoclonic, tonic clonic, and clonic seizures 
appear distinct from each other and from normal movements. A 
myoclonic seizure is characterized by muscle jerks that frequently occur 
in clusters [15]. At the end of a myoclonic seizure the patient goes limp 
and falls to the nearest surface, which manifests as a sudden spike in 
accelerometry data. During a tonic seizure, a person’s body becomes 
rigid [16]. Tonic-clonic seizures are tonic seizures followed by clonic 
seizure, characterized by rapid jerking or shaking [17]. These seizure 
types appear distinct from each other and from normal movements in 
accelerometry data. 

Nijsen et al. [18] monitored 18 patients with severe epilepsy for 36 h 
each and observed a total of 897 seizures through a combination of vEEG 
and accelerometry monitoring. The researchers report that 78% of sei-
zures had a stereotypical tonic pattern, 74% a stereotypical myoclonic 
pattern, 14% a stereotypical clonic pattern, and 57% were preceded by a 
myoclonic seizure. Overall, they found that they were able to detect 48% 
of all seizures that occurred using accelerometry. Other studies have 
shown higher convulsive seizure detection rates using accelerometry 
alone [19–28]. Although accelerometry is useful for detecting convul-
sive seizures, it is not useful for detecting other types of seizures. 

EMG, which measures muscle activation, is also used to detect 
convulsive seizures [21,29,30]. A myoclonic seizure, when a person’s 
body falls limp upon conclusion of the seizure, would also be visible in 

EMG signals as all muscle activation would end suddenly. Like accel-
erometry, EMG is most useful in detecting convulsive seizures, but does 
not detect all seizure types. 

To detect non-convulsive seizures, non-movement-based signals 
must be recorded using other sensors. During seizures, the autonomic 
nervous system is frequently activated, leading to variations in several 
biosignals. One of the most common changes during an epileptic seizure 
is an increase in heart rate due to the activation of the sympathetic 
nervous system [31–39]. Sinus tachycardia, or when the heart rate rises 
above 100 beats per minute, has been reported to occur in as many as 
99% of seizures and frequently precedes the seizure onset by several 
seconds [34]. More importantly, potentially serious changes, such as 
ST-depressions and T-wave inversions in the electrocardiogram, were 
seen in 39% of seizures [37]. Heart rate variability also frequently in-
creases during seizures, allowing researchers to differentiate between an 
increase in heart rate due to seizures and other daily activity such as 
exercise [38]. Still, ECG alone is not adequate for accurate seizure 
detection. 

Activation of the autonomic nervous system during seizures also 
increases sweating, which can be detected through electrodermal (EDA) 
sensors [40]. However, people sweat for various reasons, so EDA is most 
useful when combined with other modalities. Thus, researchers have 
generally tested devices using EDA in conjunction with other sensors. 

While many modalities are clearly useful in detecting seizures, none 
so far have been able to detect all types of seizures because of the wide 
variety of seizure manifestations. Several researchers have begun testing 
devices that use multiple modalities with mixed outcomes [41–46]. 
These studies relate most closely to the work presented in this paper. 

Milošević et al. [41] reports results using accelerometry, but with 
added EMG sensors. They monitored 56 patients overnight, 7 of whom 
had a total of 22 seizures. Using a least-squares support vector machine 
(SVM), they were able to detect 91% of short and non-stereotypical 
seizures. Cogan et al. [42] presents a multimodal seizure detection 
system that uses a three-stage detection algorithm with photo-
plethysmography (PPG) to monitor heart rhythm, oxygen saturation 
measurements to observe breathing, and electrodermal activity (EDA) to 
evaluate sweating. Stage I quantifies signal activities, compares them to 
previous epochs of data, and looks specifically for an increase in heart 
rate followed by a decrease in oxygenation and then an increase in EDA 
consecutively. Stage II personalizes the algorithm by patient using 
pattern recognition and adjusting parameter levels. Stage III in-
corporates a limited suite of EEG channels into the detection. Cogan 
et al. [42] found that 100% of seizures were detected using Stages I and 
II alone from six of the ten patients who had seizures. Interestingly, 
Cogan et al. noted that their algorithm either detected all or none of an 
individual patient’s seizures, so they assessed accuracy by patient rather 
than total seizure detection count. They were able to detect generalized 
tonic-clonic seizures more reliably than other seizure types, as expected, 
due to their more convulsive presentation. Finally, after incorporating 
three-channel EEG data into their analysis, Cogan et al. were able to 
detect 100% of seizures from eight of their ten patients [42]. Nonethe-
less, this would require placing electrodes on a patient’s head during 
daily life, which is intrusive. 

Becq et al. [43] used magnetic sensors and accelerometers on the 
arms and forehead to analyze 226 seizures in nine patients. Their goal 
was not to classify data as seizure or non-seizure, but to identify the type 
of seizure based on its motor manifestation. They artificially grew their 
dataset by duplicating each event 30 times and adding random noise. 
Then, they classified motor manifestation using an artificial neural 
network. This process resulted in 20% error between machine and 
standard vEEG analysis. 

Poh et al. [44] used a Smartband [40,46] to record over 4000 h of 
data from 80 patients in an EMU. Though the Smartband includes more 
signals, they consider the accelerometry and EDA data in Ref. [44]. They 
analyze 10-s epochs of data using a 19-feature SVM. Their cross vali-
dation analysis considered both leave-one-patient-out and 

Type Manifestation 

Tonic-Clonic Muscle stiffening, jerking, shaking, loss of consciousness 
Clonic Rhythmic muscle spasms or jerking 
Tonic Muscle tensing 
Myoclonic Sudden muscle jerk as if shocked 
Atonic Loss of muscle tone 
Absence (Petit Mal) Blank staring, lack of responsiveness 
Simple Focal Change in smell or taste, extremity twitching, sweating 
Complex Focal Loss of consciousness, repetitive motions, e.g., lip smacking 
Secondary 

Generalized 
Muscle shaking or loss of tone  

Table 1 
Common Seizure Types and their Manifestation.  
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leave-one-seizure-out metrics. Overall, they detected 15 of 16 (94%) 
seizures. With this sensitivity, they also observed about one false posi-
tive per 24-h period, or a total of 28 false alarms. This gives a positive 
predictive value of 0.36. 

Heldberg et al. [45] also studied the Smartband and also only 
considered EDA and accelerometry signals. Eight patients that had a 
total of 55 seizures over the 540 h of data recorded. The data were 
processed using 10 s windows with 50% overlap as well as 5-min win-
dows with 80% overlap, then passed through a 1.5 Hz low-pass filter 
before extracting 26 features. A 10-tree random forest and kNN clus-
tering with k = 5 algorithm were both tested. An overall sensitivity of 
89.1% and a specificity of 93.1% were achieved. The precision was low 
at 7.5%, indicating a high rate of false positives. For predominantly 
non-motor seizures, they achieved a sensitivity of 97.1% with 9.6% 
precision and 92.9% specificity, also using kNN clustering. Overall, re-
sults from this study indicate that there is still a need for a more reliable 
seizure detection device. 

While some methods are able to detect specific types of seizures, 
none are able to detect all types reliably. Generally, modalities that 
monitor movement, such as accelerometry and electromyography, are 
useful in identifying convulsive seizures. Other modalities, such as 
electro-cardiography and electrodermal activity, have proven to be 
useful in detecting non-convulsive seizures. Because some modalities are 
more useful in detecting specific types of seizures, combining many 
modalities should enable a larger range of seizure type detection. Thus, 
we hypothesize that combining several non-cerebral sensing modalities, 
and carefully choosing features that characterize the signals, will allow 
us to detect many seizure types. Moreover, a detailed study of separa-
bility of seizure and non-seizure activity will aid in identifying the most 
important sensors and features for seizure detection. 

3. Methods

3.1. Dataset

The data for this study is recorded from fifteen patients in an epilepsy 
monitoring unit (EMU). Both male and female patients between ages 18 
and 70 years old scheduled for admission to the Dartmouth-Hitchcock 
Medical Center EMU were screened for potential recruitment to the 
study. All patients or their legal guardians gave informed written con-
sent following an Institutional Review Board protocol. Inclusion criteria 
were broad; both patients with poorly controlled seizures of partial (e.g., 
motor) onset that may or may not secondarily generalize, and patients 
experiencing primary generalized seizures (e.g., myoclonic and atypical 
absence with or without automatisms such as stereotypical facial and/or 
limb movements) were included in the study. The study called for pa-
tients who experience seizures on a relatively frequent basis to provide 
sufficient data for analysis. While being monitored, however, the ma-
jority of patients experienced no seizures, some experienced only one or 
two seizures and one patient experienced four seizures. Table 2 sum-
marizes the main categories and manifestations of seizures experienced 
by each patient. 

While in an EMU, patients are monitored using both EEG and video. 
In standard monitoring, doctors examine a patient’s EEG and note when 
seizures occur. These seizures are then verified with the video record. 

In this study, patients were simultaneously monitored with standard 
vEEG recording as well as with electrocardiograph (ECG), electromy-
ography (EMG), electrodermal activity sensors (EDA), photo-
plethysmography (PPG), accelerometer (ACC), and a microphone. The 
vEEG data are used to hand-label the non-cerebral sensor data, i.e., to 
determine what patients were doing at different times, and to define the 
time of seizure onset and conclusion. To synchronize recording times 
with vEEG, a digital clock was placed in view of the EMU’s video 
camera. 

Data were collected over two separate time periods using different 
hardware. The original data set acquired for analysis by Azad et al. [47] 
used two Biopac MP36 data acquisition systems to collect patient data. 
One Biopac MP36 sampled the three accelerometer axes and a micro-
phone at 50,000 Hz, while the other sampled ECG, EMG, and EDA sig-
nals at 5000 Hz. To protect patient privacy, the microphone recorded 
only the high portions of a 100 ms square wave using a 555 Timer cir-
cuit, i.e., these 50 ms snapshots of vocalizations prohibit recording and 
decoding of the patient’s conversations. 

The second system used a single Biopac MP160 data acquisition 
system to acquire patient data. The Biopac MP160 connects to Biopac 
amplifiers for EDA, EMG, ECG, and photoplethysmography (PPG), as 
well as a Biopac tri-axial accelerometer. A custom microphone circuit, 
recording only high portions of the microphone signal convolved with a 
100 ms square wave was recorded using an analog channel on the 
MP160. The microphone is sampled at 10 kHz, while the rest of the 
signals are sampled at 2.5 kHz. 

Recording ECG data requires three electrodes placed on the chest. 
EDA uses two electrodes placed on the inner wrist. EMG measurement 
requires three electrodes placed on the inner forearm, and the acceler-
ometer is attached to the wrist as well. The microphone as well as the 
Biopac system were placed on patients’ bedside tables. The MP160 
connects to a computer running Biopac AcqKnowledge 5.0 software to 
record the incoming data. Overall, 382.79 h of data were collected from 
fifteen different patients (5 female, 7 male, 3 not noted) between 
February 2016 and 2018. 

3.2. Sample data 

Different types of seizures appear differently in the signals collected. 
Convulsive seizures are particularly visible in accelerometry and EMG 
signals. Both convulsive and non-convulsive seizures frequently present 
with increased heart rate and heart rate variability as well as an increase 

Patient Gender Age Length 
(h) 

Seizures Seizure Type 

Aa F 42 21.01 0 N/A 
Ba n.n n.n 7.6 0 N/A 
Ca n.n n.n 19.87 0 N/A 
Da n.n n.n 21.77 4 Complex partial, non- 

convulsive 
E M 51 44.88 0 N/A 
F M 21 4.44 0 N/A 
G F 36 19.43 0 N/A 
H F 36 21.03 0 N/A 
I M 41 75.85 2 Complex partial originating 

in the left temporal lobe 
J M n.n 3.72 0 N/A 
K F 47 2.65 0 N/A 
L F 21 12.4 1 Psychogenic non-epileptic 

seizure (PNES) 
A F 42 37.31 2 Complex partial originating 

in the left temporal lobe 
M M 27 16.44 0 N/A 
N M 32 66.72 1 Partial originating in the left 

temporal lobe with secondary 
generalization, showed tonic 
clonic activity 

O M 58 7.67 1 Partial motor originating in 
the right frontal lobe with 
secondary generalization 

TOTAL 7 M 5F 36.2 382.8 11 6 Complex Partial 
2 Partial with Secondary 
Generalization 
2 Partial Motor 
1 Psychogenic Non-Epileptic 

‘n,n,’ indicates that the information was not noted. 
a Recorded with first system. 

Table 2 
Summary of Patients monitored during study and Seizures Recorded.  
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in EDA. Aural automatisms may occur in either type of seizure and can 
be seen in audio signals. Thus, looking at the time-domain signals can 
provide insight into events during a seizure. 

Fig. 1 plots the waveforms capturing patient N’s seizure activity as an 
example of raw data manifestation of a seizure, including the 64 s 
immediately preceding the seizure and the 22 s following it. The seizure 
began at time 36,184 s and continued until time 36,350 s. The following 
account describes occurrences during the seizure, full annotations of 
which are documented in Table 3. Prior to the onset of the seizure, pa-
tient N was asleep. The start of the seizure is seen in the form of small 
blips in the accelerometer and EMG signals, as well as the sudden change 

in the PPG signal. Patient N woke up approximately 4 s into the seizure, 
and then appeared to be asleep again 2 s later. However, small changes 
were observed in the microphone signal during this time, indicating that 
the patient may have been moaning, but the video footage is unclear. At 
time 36,231 s (41 s into the seizure), N began having right hand au-
tomatisms and leg movement, although he appeared to be asleep. At 
time 36,272 s (88 s into the seizure), N woke up, vocalized, picked up his 
right arm, and began rhythmically turning his head. This change in 
behavior, marked by the first significant spike of the microphone signal, 
corresponds with the sudden dramatic change in the ECG signal as well 
as the fluctuations in the accelerometers. Six seconds later, N’s whole 
body was observed to rhythmically shake, and the accelerometry and 
EMG signals both increased in magnitude. Approximately 12 s later the 
rhythmic shaking gradually abated. At time 36,296 s, N’s whole body 
became rigid. Nine seconds later, N’s back began jerking, evolving into a 
whole body rhythmical shake, leading to another increase in the 
magnitude of both the EMG and the accelerometry signals. At time 
36,332 s, N’s twitching lessened significantly and he produced gagging 
sounds, reflected by the microphone signal’s increased magnitude. Four 
seconds later, only N’s left arm was twitching. Finally, patient N gasped 
for 3 s, and at time 36,350 s, the seizure ended electrographically. 

3.3. Filtering 

While one may be able to visibly identify the difference between 
seizure and non-seizure time-series data, this difference needs to be 
defined by measurable properties to be automatically detected. To 
develop machine learning classifiers, properties of the waveforms are 
defined as features, and these features are extracted (i.e., calculated) 
from the time-series data. Prior to extracting features, the raw data are 
processed to reduce noise. For processing, data are segmented into 5-s 
increments or epochs, with each epoch overlapping the preceding 
epoch by 2.5 s (50%). 

The Biopac ECG amplifier contains a built-in 0.005 Hz high pass filter 
and 150 Hz low pass filter. In Matlab, a forward-backward infinite im-
pulse response (IIR) notch filter removes 60 Hz powerline noise and its 
harmonics which compromise the signal’s integrity. The EMG signal is 

Fig. 1. Non-cerebral data for patient N’s seizure. Signals are labeled below the 
waveforms: the first three signals from left to right show accelerometry, fol-
lowed by ECG, EDA, EMG, MIC, which represents audio, and PPG signals on the 
y-axis and time on the x-axis. The seizure commenced at time 36,184 s and
concluded at time 36,350 s. This figure shows a notable change in all signals
during the patient’s seizure.

Table 3 
Sample seizure data annotations.  

Annotation Time (sec) 

Electrographic seizure onset, no clinical changes on video 36,184 
Patient wakes up 36,188 
Appears asleep again - might be moaning during this seizure 36,190 
Right hand automatism, legs move under blanket. 36,231 
Appears to sleep. Moaning? 36,235 
Left head turning 36,269 
Patient awake, vocalizes, picks up right arm 36,272 
Right head turning 36,273 
Whole body now rhythmically shaking 36,278 
Automated seizure alarm 36,279 
Less whole body shaking, RN at bedside 36,290 
Whole body stiffened, back arched 36,296 
RN: “Heart rate 92′′ 36,300 
“Facial movements” patient rhythmic back jerking 36,305 
Whole body rhythmic jerking slowing down, RN administers O2 

mask 
36,325 

Patient twitching significantly less strong, has gagging sounds, not 
breathing 

36,332 

Now only left arm twitching 36,336 
Minor back jerking x3 36,340 
Gasping 36,342–36344 
RN “Heart rate 101′′ 36,345 
Seizure ends electrographically, per EEG reader 26,350 
Patient takes deep breath 36,353 
RN “69, heart rate 138” (I think that’s what he says) 36,360 
Deep breathing by patient 36,364 
RN “Heart rate 124′′ 36,371 
Deep breathing turns to snoring 36,420  
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filtered using the Biopac EMG amplifier’s built-in bandpass filter with 1 
Hz high pass corner frequency and 500 Hz low pass corner frequency. 
Notch filtering in Matlab removes powerline noise in the same way as 
with ECG data. EDA signals have a bandwidth below 3 Hz. There is al-
ways some DC component to the signal because skin has a baseline 

conductance, so, the Biopac amplifier’s built-in 10 Hz low pass filter 
removes this baseline signal. A 40 Hz corner frequency low pass digital 
filter designed in Matlab removes noise higher than 10 Hz. Accel-
erometry also includes a very low frequency component from gravity 
that shifts its distribution between the three axes as the patient moves. 
Thus, accelerometry and EDA are filtered in the same way. The same 
notch filtering used on ECG and EMG data also removes powerline noise 
in the microphone signal. The device records audio data convolved with 
a 100 ms square wave. We wrote Matlab code to remove the low periods 
of the square wave retaining only the positive 50 ms of the convolved 
signal to protect patient privacy, i.e., to assure that we were not 
recording patient conversations. PPG data are filtered with the Biopac 
built-in 0.05 Hz high pass filter and 10 Hz low pass filter. 

3.4. Feature extraction and determination of separability 

A review of the literature identified possible features to extract from 
filtered data [14,19,29,47,48]. From these studies, a broad range of 
features were selected so that their utility in differentiating between 
seizure and non-seizure data could be evaluated. The 34 features 
extracted are detailed in Table 4. 

To evaluate the use of machine learning for detecting seizures from 
non-cerebral data we must first quantify the separability between 
seizure and non-seizure data, which is the primary purpose of this study. 
To do so, neurologists at the Dartmouth-Hitchcock Medical Center an-
notated vEEG data, labeling time segments of some of the data by what 
the patients were doing. Features were extracted from epochs of seizure 
and non-seizure data, and separability was evaluated using discriminant 
analysis. 

We chose to look at four normal activities to compare individually 
and collectively to seizures – eating, sleeping, talking, and using tech-
nology (such as a typing on a phone or computer) using a binary clas-
sifier. We hypothesized that activities form clusters of data points as 
each has their own distinct signature in the various signals being 
recorded. Furthermore, we hypothesized that seizure activity is distinct 
from other daily activities allowing it to be detected. We explore the 
separability of seizure and non-seizure data using linear discriminant 
analysis (LDA) – a batch processing approach – before progressing to 
other approaches. LDA identifies a linear combination of features that 
separates two classes of data [49], in this case, seizure activity from the 
four normal activities. While LDA can be formulated as a non-binary 
classifier, in the result presented in Section 4, we only consider binary 
classification. 

We implemented LDA on data for each individual patient as well as 
for multiple patients combined. LDA applied to data for an individual 
patient assesses the degree to which a linear decision boundary in multi- 
dimensional feature space (34 dimensions) separates seizure from non- 
seizure data for that individual, while applying LDA to data from mul-
tiple patients is a measure of whether a linear decision boundary can 
generalize. We use the area under the receiver operator characteristic 
(ROC) curve to quantify separability, where the ROC curve shows 1 – 
specificity or FP/(FP + TN) on the x-axis and sensitivity or TP/(TP + FN) 
on the y-axis. This study informs methods for training subsequent, 
recursive machine learning classifiers. 

4. Results

Because the patients we monitored had seizures relatively infre-
quently, we recorded significantly more non-seizure data than seizure 
data. Thus, we selected varying set amounts of non-seizure data for 
analysis. If N represents the number of epochs we recorded from a pa-
tient during a seizure, we carried out analyses with N, Nx2, Nx5, Nx10 
non-seizure epochs, as well as with all non-seizure data for that patient. 
N varies patient-to-patient as the number and length of seizures varies. 
Each analysis that does not include the full set of non-seizure data was 
executed 10,000 times, selecting a new random set of epochs within the 

Sensor Feature Name Feature Description 

ECG Avg. R-R Length The average interval between R-waves 
Standard Deviation 
of the R-R Length 

The standard deviation of the interval 
between R-waves 

EMG Mean Absolute Value The average of the absolute value of the 
signal, MeanAbs = mean (|x|) 

Variance The variance of the signal 
RMS Root mean square value of the signal 
Waveform Length Sum of the absolute value of the 

difference between N adjacent data 
points, n = 1..N,WL =

∑
|xn+1- xn| 

Maximum The maximum value of the signal 
Time High Percent of data points above 75% of the 

signal’s maximum 
Mean Fourier 
Transform 

Average Fourier transform, AvgFT = mean 
(fft(x)) 

Spectral Centroid Center of mass of the EMG frequency 
spectrum 

EDA Maximum The maximum of the signal 
Minimum The minimum of the signal 
Average The average of the signal 
Standard Deviation The standard deviation of the signal 
Maximum Derivative The maximum derivative of the signal, 

MaxDeriv = max (|diff(x)|) 
Waveform Length Sum of the absolute value of the 

difference between N adjacent data 
points, n = 1..N, WL =

∑
|xn+1- xn| 

Spectral Centroid Center of mass of the EDA frequency 
spectrum 

Accelerometry Average Magnitude Average of the square root of the sum of 
squares of each axis, AvgMag = mean 
((x2+ y2+ y2)1/2) 

Standard Deviation Standard deviation of the magnitude, 
STDV = std ((x2+ y2+ y2)1/2 

Maximum 
Magnitude 

MaxMag = max ((x2+ y2+ y2)1/2 

Average Fourier 
Transform 

The average of the Fourier transform of 
the magnitude. AvgFT = mean (fft ((x2+

y2+ y2)1/2 

Average XY 
Correlation 

The average of the correlation between 
the x and y axes, AvgXYCorr = mean (corr 
(x,y)) 

Average XZ 
Correlation 

The average of the correlation between 
the x and z axes, AvgXZCorr = mean (corr 
(x,z)) 

Average YZ 
Correlation 

The average of the correlation between 
the y and z axes, AvgYZCorr = mean (corr 
(y,z)) 

Std. Dev. of XY 
Correlation 

The standard deviation of the correlation 
between the x & y axes, StdvXYCorr = std 
(corr (x,y)) 

Std. Dev. of XZ 
Correlation 

The standard deviation of the correlation 
between the x & z axes, StdvXZCorr = std 
(corr (x,z)) 

Std. Dev. of YZ 
Correlation 

The standard deviation of the correlation 
between the y & z axes StdvYZCorr = std 
(corr (y,z)) 

Spectral Centroid Center of mass of the acceleration 
magnitude frequency spectrum 

Microphone Avg. Magnitude The average magnitude of the signal 
Standard Deviation The standard deviation of the signal 
Average Pitch The average Fourier transform of the 

signal, Pitch = mean (fft(x)) 
Spectral Centroid Center of mass of the microphone 

frequency spectrum 
Bronchial Secretion 
Index 

The sum of the Fourier transform 
between 2.2 and 2.6 Hz 

Linear Prediction 
Coefficient 

The linear prediction coefficient of the 
signal using N = 2, LPC = lpc (x,2)  

Table 4 
Features extracted from time series data.  
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non-seizure data for each iteration. This selection was conducted in 
order to ensure a representative sample set. For creating figures shown 
in this section, all 34 features described in Section 3 are used in LDA 
analysis. 

The means and standard deviations over 10,000 trials for each set of 
analyses for individual patients are reported in Table 5. N is used in the 
title of each column as a variable representing the number of seizure 

epochs recorded, which varies by patient and is provided in Table 6. No 
standard deviation is reported when all non-seizure data are used as 
there is no variation when this analysis is repeated. Generally, values 
greater than 0.95 are considered good. 

Fig. 2 shows a plot of the means in Table 6 for the five patients who 
experienced at least one seizure. The datapoint “All” denotes that all 
available non-seizure epochs were used to calculate the ROC for each 
patient. While values vary slightly based on how much non-seizure data 
are included, all values are greater than 0.9. It is interesting to note that 
while the curves for other patients either increase or remain relatively 
constant, the area under the ROC curve for patient I decreases as more 
non-seizure data are included. One possible explanation for this is that 
during his seizures, patient I simply stared ahead and was unresponsive; 
these behaviors are less distinct from non-seizure behaviors. As more 
non-seizure data are added, the presence of false positives and true 
negatives increases. By the same logic, the presence of true positives 
remains constant as no more seizure data are being added. Still, when all 
seizure and non-seizure data are included, the area under the ROC curve 
is 0.938 for patient I. In addition, patient D’s seizures were also non- 
movement based and achieved an area under the ROC curve of 
0.9549, demonstrating that non-movement seizures are separable from 
normal behavior. 

Fig. 3 shows the histograms for visualization of separability derived 
from LDA analysis and provides the area under the ROC curves in the 
title for each patient that had at least one epileptic seizure, as well as for 
all five patients who had seizures combined. Each subfigure provides a 
normalized distance from the axis of maximal separation (AMS) on the 
horizontal axis vs. the frequency of occurrence of epochs within the 
seizure and non-seizure data. Plots 1 through 5 in Fig. 3 use the same 
number of seizure and non-seizure epochs for each individual patient, 
and plot 6 uses all seizure and non-seizure data from the five patients 
who experienced seizures. 

All observations from the data support the same conclusion: while 
there is some overlap, seizure and non-seizure data are separable using 
the sensor suite and features described in section 3. We calculated the 
separation between the seizure data of all patients combined and all of 
the non-seizure data of all of the patients to explore how data from 
various patients generalize to others. The analysis presented uses all of 
the seizure data and all epochs of non-seizure data, and the area under 
the ROC curve is 0.9144. The area under this ROC curve is lower than for 
each individual patient. We hypothesize that one reason for this lower 
value is because we are including different types of seizures in the 
analysis. When more seizure data are available, classifiers can be tested 
on multiple occurrences of the same type of seizure to determine if they 
need to be patient-specific or not. 

When using LDA, the separation between datasets is quantified by 
the magnitude of features along the AMS. Ranking features in order of 
their contribution to the AMS gives a metric of how useful they are in 
classifying activities. Thus, we can assess which features provide the 
most information by patient. Table 7 lists the first 10 features by 
importance for each patient. Table 7 also shows a combined feature set 
that was created by normalizing the means of each feature for each 
patient individually, taking the average for each feature across patients, 
and then re-sorting by magnitude to determine which features were 
overall the most important. To differentiate which features come from 
which sensors, the features are color-coded. Green represents a micro-
phone feature, orange an EMG feature, blue an EDA feature, red an ECG 
feature, and purple represents an accelerometry feature. This shows that 
the most valuable sensors do vary by patient, even when patients 
experience similar seizure types. For example, the ten most important 
features for detecting the non-convulsive seizures of patients D and I 
share two common features, while convulsive patients N and O share 
three of the 10 most important features. EMG, microphone, EDA, and 
accelerometry features generally appear higher on the list than ECG 
features. Collecting more data and evaluating feature rank for additional 
patients and seizure types will provide further insight into which, if any, 

Patient N Seizure 
Epochs, N 
Non- 
Seizure 
Epochs 

N Seizure 
Epochs, 
Nx2 Non- 
Seizure 
Epochs 

N Seizure 
Epochs, 
Nx5 Non- 
Seizure 
Epochs 

N Seizure 
Epochs, 
Nx10 Non- 
Seizure 
Epochs 

N Seizure 
Epochs, All 
Non- 
Seizure 
Epochs 

A 0.957 ±
0.0112 

0.95806 ±
0.00821 

0.96140 ±
0.00508 

0.96480 ±
0.00354 

0.9695 

D 0.9381 ±
0.0292 

0.93475 ±
0.02096 

0.94022 ±
0.01268 

0.94588 ±
0.00856 

0.9549 

I 0.9615 ±
0.0251 

0.95125 ±
0.01924 

0.94322 ±
0.01365 

0.94063 ±
0.00975 

0.938 

N 0.9793 ±
0.0095 

0.97825 ±
0.00661 

0.97922 ±
0.00379 

0.98072 ±
0.00251 

0.9785 

O 0.9998 ±
8.59E-04 

0.99962 ±
0.00115 

0.99973 ±
0.00059 

0.99991 ±
0.00016 

1  

Table 6 
Number of seizure epochs collected for each patient.  

Patient Number of Seizure Epochs by Patient, N 

A 82 
D 24 
I 30 
N 32 
O 26  

Fig. 2. Area under the ROC curve for individual patients as a function of N, or 
the number of non-seizure epochs that were included in analysis. This shows 
that the area under the ROC curve does not depend strongly on the amount of 
non-seizure data used. 

Table 5 
Area under ROC mean and standard deviations by patient and non-seizure 
epochs used.  
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sensors and features can be eliminated. 
Likewise, the analysis of separability using LDA sheds insight on and 

can be compared to the results previously reported for detection of 
seizures using a subset of the body-worn sensors considered here. For 

example, both Poh et al. [44] and Heldberg et al. [45] uses solely ac-
celerometers and EDA to detect seizures. Poh et al. [44] reports detec-
tion of 15 out of 16 generalized tonic-clonic (motion) seizures from 
seven patients and a false alarm rate of 0.74 every 24 h. Heldberg et al. 

Fig. 3. Histograms showing separation of seizure and non-seizure epochs for each patient (a–e) and for all patients (f). Each count is an epoch, and separation values 
are the normalized value of the distance from the axis of maximal separation in 34-dimensional feature space. 

Table 7 
Ranking of most significant features for each patient and for all patients combined. 

Color code: Pink – accelerometer; Green: EMG; Blue: EDA; Grey: Microphone; Orange: ECG. 
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[45] includes results from both motion and non-motion seizures
reporting a lower overall sensitivity of 89.1% relative to Poh et al. and
overall specificity of 93.1% for eight patients and 21 separate motion
seizures. The sensitivity and specificity for seizures with no motor ac-
tivity were 97.1% and 92.9%, respectively over 34 seizures. Table 8
shows a heat-map coded ROC values for the five patients who experi-
enced seizures from our study, with motion classified in Table 2, and
both single sensors and combinations of two sensors. These results are
presented alongside the ROC for the full suite of sensors. These results
show that no single sensor is adequate for seizure detection. Addition-
ally, while for some patients (patients N and O) accelerometry combined
with EDA provides ROC values over 0.95, for others, ROC value for these
two sensors is unacceptably low. If only two sensors could be chosen for
a device, Table 7 shows that accelerometry and microphone provide a
ROC value above 0.86 for all but one patient. The full sensor suite retains
ROC values above 0.93 for all patients individually, with an overall
value on 0.9144.

5. Conclusion

Epilepsy is one of the most common neurological disorders, and
accurate seizure tracking is crucial for effective epilepsy treatment. 
Currently, patients are expected to keep accurate records of their sei-
zures. However, the majority of patients do not remember their seizures. 
Thus, a device to detect and track seizures is necessary. While some 
devices have shown positive results for specific types of seizures, none 
have been able to accurately detect all types. This work serves to 
improve seizure detection by combining modalities and systematically 
investigating separability of seizures from normal activity as a first step 
in developing a device that can detect all types of seizures. 

We use electrocardiography, electrodermal activity, electromyog-
raphy, accelerometry, and audio signals. Using linear discriminant 
analysis, we establish that seizure and non-seizure data from this sensor 
set are separable. When using all seizure and non-seizure data, the areas 
under the ROC curves for most patients are greater than 0.95, indicating 
strong separability. The area under the ROC curve for one patient is 
0.938 Although the latter’s seizures did not involve movement, another 
patient’s seizures also did not include movement, but had an area under 
the ROC curve of 0.9549, suggesting that non-movement seizures are 
still separable from normal activity. Audio signal features, which are 
absent in other studies, prove to be among the top ten features estab-
lishing separability in four of five patients. 

Strong separability of seizure and non-seizure data suggests that it 
should be possible to detect seizures in real time during normal routine. 
We moved towards real-time classification by implementing a support 
vector machine in Ref. [50]; preliminary results suggest that, with more 
data, a discriminative approach, such as a Support Vector Machine, may 
enable real-time classification, although additional data are needed 
[50]. 

Moving forward, we need to collect more patient data to develop 
multi-modal classifiers and to determine which features generalize 
across patients or across patients with similar seizure types and which 
features are specific to facilitating seizure detection in individual pa-
tients. With new data, various real-time machine learning classifiers can 
be explored. Overall, this research strongly suggests that non-cerebral 

sensing modalities provide data that can be accurately classified as 
seizure or non-seizure data using a discriminative machine learning 
method. 
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