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Urban noise distributions and the influence
of geometric spreading on skewness

ABSTRACT:
Statistical distributions of urban noise levels are influenced by many complex phenomena, including spatial and
temporal variations in the source level, multisource mixtures, propagation losses, and random fading from multipath

reflections. This article provides a broad perspective on the varying impacts of these phenomena. Distributions
incorporating random fading and averaging (e.g., gamma and noncentral Erlang) tend to be negatively skewed on
logarithmic (decibel) axes but can be positively skewed if the fading process is strongly modulated by source power
variations (e.g., compound gamma). In contrast, distributions incorporating randomly positioned sources and explicit
geometric spreading [e.g., exponentially modified Gaussian (EMG)] tend to be positively skewed with exponential
tails on logarithmic axes. To evaluate the suitability of the various distributions, one-third octave band sound-level
data were measured at 37 locations in the North End of Boston, MA. Based on the Kullback-Leibler divergence as
calculated across all of the locations and frequencies, the EMG provides the most consistently good agreement with
the data, which were generally positively skewed. The compound gamma also fits the data well and even outper-forms

the EMG for the small minority of cases exhibiting negative skew. The lognormal provides a suitable fit in cases in
which particular non-traffic noise sources dominate.

I. INTRODUCTION

Probability distributions can capture more information

on the variability of noise in space and time than is possible

with conventional integrated or averaged sound levels (e.g.,

Leq) or a small set of exceedance levels (e.g., L10, L50, and
L90). Knowledge of the full distribution is potentially useful

for applications such as modeling noise disturbance (Garc�ıa
and Faus, 1991; Zuo et al., 2014; De Coensel et al., 2016)
and signal detection probabilities (Wilson et al., 2017a).

Furthermore, with a suitable understanding of the environ-

mental phenomena responsible for the distribution, observa-

tions of the distribution’s statistical properties, such as its

moments, asymmetry, and asymptotic tails, can possibly be

used to infer properties of the environment (Stanton et al.,
2018).

This article examines the probability distributions for

acoustic ambient noise with a focus on urban environments.

In such environments, noise distributions can be impacted

by many phenomena, including

• Geometric spreading, which leads to noise variations

when the distance between the dominant source(s) and

receiver is varied. This may occur, for example, when

traffic on a roadway moves past a receiver.
• Wave scattering from small-scale details of building

facades (diffusion), vegetation, and turbulence in the air

and multipath due to reflections off buildings and diffrac-

tions around buildings. We group these phenomena

together under the description of random fading.
• Absorption losses occurring during transmission through

air and surface interactions.
• Spatial and temporal variations in strength and density of
noise sources. The spatial variations may occur at the

street or neighborhood levels or due to land usage; tempo-

ral variations occur due to traffic movement, the daily

work schedule, and other changes in activity.
• Mixtures of source types, such as motor vehicles of differ-

ent classes, aircraft, machinery, and human speech.

It is unclear a priori (and, likely, very situationally

dependent) which of the preceding phenomena are typically

most important in urban environments and should, therefore,

be emphasized when devising suitable distribution models.

The shape of the distributions is also influenced by tempo-

ral, spatial, and frequency-band averaging. Data can be

averaged over time scales ranging from a fraction of a

Portions of this work were presented in “Evaluating parametric probability
density functions for urban acoustic noise,” Internoise 2019, Madrid,

16–19 Jun. 2019 and “Selecting a parametric probability density function
for urban sound,” 178th Acoustical Society of America Meeting, San
Diego, CA, 2–7 Dec. 2019.
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second to days or even years. They can be averaged over

neighborhoods and cities and analyzed as one-third octave

band levels, A-weighted sound levels, or with other types of

band filtering.

Most of the previous literature on urban noise distribu-

tions has involved the analysis of sound-level (decibel) data,

that is, logarithms of sound pressure. Wesler (1973; see also

Transportation Systems Center, 1971, Appendix B) per-

formed an extensive noise survey of Medford, MA, includ-

ing a tabulation of histograms of A-weighted levels. Various

distribution shapes are apparent, including normal

(Gaussian), multi-modal, and positively skewed (asymmet-

ric with a longer tail for relatively large sound levels). Don

and Rees (1985), who examined distributions arising from

traffic noise, concluded that sound-level distributions exhibit

significant departures from a normal distribution due to

traffic flow and mixtures of the vehicle type. Garc�ıa and

Faus (1991) collected data at a number of locations in

Spain, finding that levels were often approximately normal

in very noisy locations but positively skewed in quiet loca-

tions. Zuo et al. (2014) collected data at 554 locations

around Toronto, Canada; their distributions of the daily

average data (as evident from their box plots in Fig. 2)

appear to span a wide variety of characteristics. De Coensel

et al. (2016) presented simulations of road traffic noise;

although their input distribution for the vehicle sound pow-

ers was negatively skewed, the simulated levels at a distance

of 15m from the roadway appear to have a strong positive

skew (their Fig. 5). Song and Lenchine (2017), analyzing

noise levels from Adelaide, Australia, found a negative

skewness in their daytime data and a relatively smaller posi-

tive skewness in their nighttime data. The negative skewness

may result from the changing traffic flow volume throughout

the day. Albert and Decato (2017) examined noise levels in

urban and rural locations; although their analysis focused on

the frequency dependence of the noise (as opposed to the

distributions), their reported standard deviation values nota-

bly exhibited very strong dependence on the frequency

range and measurement site.

Whereas it is natural to focus on sound-level (logarith-

mic) distributions from a noise-control perspective, from a

broader scientific perspective, it is just as reasonable to ana-

lyze distributions of the sound pressure amplitude or power

(amplitude squared). If the sound level is normally distrib-

uted, the amplitude and power have lognormal distributions.

In contrast to the previously mentioned, largely empiri-

cal, noise-control studies, there is a body of research exam-

ining the suitability of distributions that are theoretically

justified for various situations involving multiple sources,

multipath, and various scattering phenomena. Such studies

can be found in the acoustical as well as the radio frequency

(RF) literature, and the latter is due to their importance in

communication. One important special case is a signal that

has been completely randomized by the propagation

medium (due, for example, to multipath reflections from

buildings or scattering from facades), which results in an

exponential distribution for a single source and a chi-square

distribution for multiple equal sources (Burdic, 1991). The

lognormal distribution arises theoretically for signals that

are weakly scattered (Turin et al., 1972; Strohbehn et al.,
1975). A steady signal embedded in random Gaussian noise

has a Rice distribution for the amplitude (Strohbehn et al.,
1975; Suzuki, 1977). Some other distributions in use include

the gamma (Suzuki, 1977), generalized gamma (Ewart and

Percival, 1989), and Weibull (Tzeremes and Christodoulou,

2002). Based on realistic simulations of the sound propaga-

tion in urban environments by the finite-difference time-

domain (FDTD) method, Wilson et al. (2006) and Ketcham

et al. (2008) showed that a single source in a dense urban

environment produces a distribution close to Rician near to

the source and exponential at greater distances when the

field becomes diffuse and many propagation paths are

present.

This article addresses the problem of modeling urban

noise distributions from a broad perspective. First, in Sec. II,

the phenomena leading to different functional forms of dis-

tributions are described. The discussion begins with distri-

butions appropriate for random fading (scattering and

multipath effects) in the presence of one or more sources of

approximately equal strength (Sec. II A). The motivations

for and interrelationships between a number of conventional

distributions appearing in the literature (such as exponential,

gamma, and Rice) are described, along with an approach for

extending these distributions to account for the source

strength modulations (variations in space and time). Next,

we consider (Sec. II B) the complementary situation of a

random transmission geometry but without random fading.

The single-source case is found to lead to a Pareto distribu-

tion on a linear axis and an offset exponential distribution

on a logarithmic axis. The multiple-source case is found to

result in distributions with statistical characteristics falling

between those of the offset exponential and normal distribu-

tions, which is well approximated by an exponentially modi-

fied Gaussian (EMG) distribution. In Sec. III, we compare

various theoretical models from Sec. II to measurements

made in the city of Boston, MA. Section IV provides con-

cluding remarks.

II. THEORY

This section examines the physical bases underlying a

number of distributions when environmental noise is

impacted by various phenomena. The distributions are for-

mulated for the signal power, where power refers generi-

cally to a quantity proportional to the squared amplitude of

a signal (as is common practice in signal processing). The

signal, in this case, is the sound pressure.

Because environmental noise is typically analyzed in

decibels (dB), which is a logarithmic scale, the appearance

of the distributions on both the linear and logarithmic scales

will be considered. For mathematical simplicity, in this sec-

tion, we employ the natural logarithm of the power.

Designating the complex pressure as p ¼ xþ iy (where x
and y are the real and imaginary parts, respectively) and the
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root mean square (rms) sound pressure as prms, the power

is s ¼ pj j2 ¼ 2p2rms, and its natural logarithm, termed the

log-power, is f ¼ ln pj j2. The familiar sound pressure level

(SPL) in dB is Lp ¼ 20 log prms=prefð Þ ¼ 20 log pj j=
ffiffiffi
2

p
pref

� �
,

where log is the base-10 logarithm and pref ¼ 20mPa is the

standard reference pressure in air. From these relationships, it

can be shown that the SPL is a linear transformation of

the log-power, namely, Lp ¼ 10 logeð Þf� 20 log
ffiffiffi
2

p
pref

� �
¼ 4:34fþ 90:97: Hence, the distribution for Lp is a shifted

and rescaled version of the distribution for f, although it has

the same shape.

A. Fixed transmission geometry, random fading

We first consider conventional distributions for random

fading effects, which may be used to describe multipath

propagation and scattering in urban environments. The

random fading may be conceptualized as predominantly a

spatial process, caused by complex interferences between

signals reflecting from objects such as buildings, and dif-

fractions around such objects. However, the spatial fading

process can also create variations in time when the sources

are in motion. Following the discussion of conventional fad-

ing distributions, we describe their extension to account for

variations in source levels in space and time.

1. Full saturation: Exponential, Erlang, and gamma
distributions

Let us start with the relatively simple case in which the

signal is fully saturated, meaning that the signal reaching

the receiver consists entirely of a large number of incoher-

ently scattered or multipath contributions. This situation is

also known as deep or Rayleigh fading. The scattering and

multipath may result from interactions with buildings, rough

surfaces, turbulence (inhomogeneities in the air), vegetation,

and other objects. The assumption of full saturation means

that the complex pressure p has zero mean, which implies

xh i ¼ yh i ¼ 0. Because the signal consists of a large number

of independent, randomized contributions, by the central

limit theorem, the real and imaginary parts are normally dis-

tributed with equal variance; that is, x ¼ enx and y ¼ eny,
where nx and ny are independent, zero-mean, unit variance

random variables (rvs), and e2 is the variance.
One can then show that the received power s ¼ pj j2

¼ x2 þ y2 has an exponential probability density function

(pdf) (Burdic, 1991; Flatt�e et al., 1979), which is given by

p sjkð Þ ¼ ke�ks; (1)

Suppose, next, that the received signal consists of k
independent contributions, each of which is drawn from

Exp(k) and combined at the receiver [that is, we have k
independent and identically distributed (iid) samples of S].
This may occur if we sum (or average) k signal power sam-

ples in space or time or if there are k independent sources.

Increasing the averaging time will also effectively increase

k, although the rate of increase depends on the correlation

time of the process and can be challenging to quantify.

[With multiple sources, the signals arriving at the receiver

may actually have different mean powers and, thus, different

values of k. But it may be the case that a few independent

contributions dominate, which can be approximated as hav-

ing equal mean power, as hypothesized, for example, by

Dyer (1970).] Because a single sample drawn from Exp(k)
corresponds to the sum of the squares of two independent,

zero-mean normal variables with variance e2, the sum of k
samples corresponds to the sum of d ¼ 2k independent,

zero-mean normal variables with variance e2. Considering,
first, the case of e2 ¼ 1, the sum n can be shown to have a

chi-squared distribution with d degrees of freedom, namely,

pn nð Þ ¼ nd=2�1= 2d=2C d=2ð Þ
� �

e�n=2 (e.g., Burdic, 1991),

where C �ð Þ is the gamma function.

The pdf for non-unit variance can then be calculated

by making the transformation s ¼ e2n and setting p sð Þ
¼ dn=dsj jpn nð Þ, resulting in

p sjk; kð Þ ¼ sk�1kk

C kð Þ e�ks: (2)

Here, k ¼ 1=2e2, as with the exponential pdf. Equation (2)

is called an Erlang pdf. The gamma pdf is given by the

same equation as the Erlang, except that k may be non-

integer. A rv with this distribution is indicated with the nota-

tion S � Gamma(k; k). For the Erlang and gamma pdfs,

m ¼ k=k ¼ 2ke2 and r2 ¼ k=k2 ¼ 4ke4. The variance, nor-

malized by the square of the mean, is r2=m2 ¼ 1=k. Dyer
(1970) derives the means and variances of the log-power

when the power is given by a gamma pdf. In particular,

r2f ¼ p2=6� S2 kð Þ, where the function S2 kð Þ equals one for

k ¼ 1 and
Pk�1

w¼1 w
�2 for k > 1. Hence, rLp ¼ 4:34rf is

5.57 dB for k ¼ 1 (the exponential pdf) and decreases to

2.31 dB for k ¼ 4 and 1.10 dB for k ¼ 16.

The previous results for the exponential and gamma

pdfs can be readily transformed to pdfs for log-power by

setting pf fð Þ ¼ ds=dfj jp sð Þ
� �

f
¼ sp sð Þ½ �f. Furthermore, they

can be transformed to pdfs for the amplitude a ¼ ffiffi
s

p
by

setting pa að Þ ¼ ds=daj jp sð Þ
� �

a
¼ 2

ffiffi
s

p
p sð Þ

� �
a
. For the expo-

nential pdf, the result for pa að Þ is a Rayleigh pdf, whereas

for the gamma pdf, the result is a Nakagami pdf. The

Rayleigh and Nakagami pdfs are frequently employed for

electromagnetic noise and propagation modeling, respec-

tively (Strohbehn et al., 1975; Suzuki, 1977).
Figure 1 shows the gamma pdf on both the linear and

log axes. (Also, shown in Fig. 1 is the noncentral Erlang

pdf, which will be discussed in Sec. II A 2.) Each curve

where k ¼ 1=2e2 is the rate parameter. In this article, verti-
cal lines are used to separate the arguments of the pdf for 
the rv and the parameters on which it depends. We indicate 
rvs with uppercase letters; a rv S drawn from an exponential 
distribution is indicated with the notation S � Exp(k). For 
the exponential pdf, the mean, m ¼ Sh i, is equal to 1=k 
¼ 2e2, and the variance, r2 ¼ h  S � Sh ið Þ2i, is equal to 1=k2.
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shows a different value of the variance, namely, r2 ¼ 0:04,
0:1, 0:2, 0:4, and 1. For all of the curves, m ¼ 1. Because

r2 ¼ 1=k when m ¼ 1, the chosen variance values corre-

spond to k ¼ 25, 10, 5, 2:5, and 1, respectively. For k ¼ 1,

the gamma pdf reduces to the exponential. As k ! 1, the

central limit theorem implies that the gamma pdf takes on

the appearance of a normal pdf as given by

p sjl;/2
� �

¼ 1ffiffiffiffiffiffi
2p

p
/
e� s�lð Þ2=2/2

; (3)

where l and /2 are the mean and variance parameters,

respectively, which are approximated with k=k and k=k2,
respectively. The gamma distribution also has a normal-like

appearance for k ! 1 on the logarithmic axis in Fig. 1; that

is, the gamma pdf is approximately lognormal in this limit

as well as being normal. The lognormal pdf, which is

derived from the assumption that f ¼ ln s is normal [i.e.,

Eq. (3) with f replacing s, and then applying the transforma-

tion p sð Þ ¼ ½pf fð Þ=s�s], is given by

p sjlf;/2
f

� �
¼ 1ffiffiffiffiffiffi

2p
p

/fs
e� ln s�lfð Þ2=2/2

f : (4)

The mean and variance are m¼ elfþ/2
f=2 and r2 ¼ e/

2
f �1

� �
m2,

respectively. Thus, in the limit k ! 1, for which the nor-

malized variance r2=m2 is small, the gamma, normal, and

lognormal pdfs approximately coincide. This explains why a

normal pdf might be observed on a logarithmic axis, as with

many of the observational studies cited in the Introduction,

when sufficient averaging or multiple sources are present

[such that by the previously mentioned calculations of Dyer

(1970), rLp is less than a few dB].

2. Unsaturated signals: Noncentral Erlang and Rice
distributions

Next, let us consider the more complicated case in

which the complex signal does not have zero mean (i.e., is

not fully saturated). Such a situation may occur when a line-

of-sight path has power comparable to the randomly scat-

tered paths. In this case, we will need to calculate the dis-

tribution of the sum of the squares of non-zero mean

normal variables. The noncentral chi-squared distribution

provides the desired generalization of the chi-squared;

specifically, it describes the distribution of n ¼
Pd

i¼1 g
2
i ,

where gi ¼ li þni, li is the mean, and ni is a normal ran-

dom variate with zero mean and unit variance. (As previ-

ously, d ¼ 2k, where k could represent independent spatial

or temporal samples or different sources. Conventionally,

the odd indices for i represent the real parts of the signals

and the even indices are the imaginary parts.) The noncen-

tral chi-squared distribution is given by (Johnson et al.,
1995)

pn njd; kð Þ ¼ 1

2
e� nþkð Þ=2 n

k

	 
d=4�1=2

Id=2�1

ffiffiffiffiffi
kn

p� �
; (5)

where k ¼
Pd

i¼1 l
2
i and I� �ð Þ is the modified Bessel function

of the first kind of order �.
To generalize this distribution to non-unit variances, we

set gi ¼ li þ eni from which s ¼
Pd

i¼1 g
2
i

¼ e2
Pd

i¼1 li=eð Þ þ ni½ �2. Hence, s=e2 ¼
Pd

i¼1 li=eð Þ þ ni½ �2
has a noncentral chi-squared as given by Eq. (5) but with

k0 ¼ 1=e2
� �Pd

i¼1 l
2
i replacing k. The distribution for s can

then be found from the transformation p sð Þ ¼ dn=dsj jpn nð Þ,
where n ¼ s=e2. Making these substitutions and then defin-

ing k ¼
Pd

i¼1 l
2
i as before to eliminate k0, the result is

p sjd; k; e2
� �

¼ 1

2e2
e� sþkð Þ=2e2 s

k

	 
d=4�1=2

Id=2�1

ffiffiffiffiffi
ks

p

e2

	 

: (6)

For consistency with our earlier terminology, we will

call this result the noncentral Erlang distribution. It can be

shown that m ¼ de2 þ k and r2 ¼ 2e2 de2 þ 2kð Þ. Figure 2

shows the noncentral Erlang pdf for various combinations of

FIG. 1. (Color online) Plots of the gamma (solid lines) and noncentral Erlang (dashed lines) pdfs for various values of the variance r2. The mean power m is

set to one for all curves. For the gamma pdf, k is set to 1=r2, whereas for the noncentral Erlang, d ¼ 2 and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
as explained in the text. (a) Linear

axis and (b) logarithmic axis.
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k and k ¼ d=2. For all of the curves, m ¼ 1 and, hence,

e2 ¼ 1� kð Þ=d. (Note that k � 1.) As k and k increase, the

pdf becomes nearly normal and eventually delta-like.

The case of a noncentral Erlang distribution with d ¼ 2

corresponds to a single sample of the power, i.e., x ¼ g1
¼ lx þ enx and y ¼ g2 ¼ ly þ eny. We have

p sjk; e2
� �

¼ 1

2e2
e� sþkð Þ=2e2 I0

ffiffiffiffiffi
ks

p

e2

	 

; (7)

integrating (marginalizing) over the randomized parameter.

Although, in principle, most any distribution can be can be

compounded with another, the modulating distribution

should satisfactorily describe the actual source variability;

for example, different distributions would be appropriate for

relatively continuously varying sources such as traffic noise,

whereas a binary modulating distribution would likely be

appropriate for machinery that turns on and off. It is also

advantageous to pair the conditional and mixing distribu-

tions so as to enable analytical results.

A particularly simple case is the compounding of a nor-

mal pdf with another. Let us suppose that the conditional

pdf for the log-power f is normal (i.e., the power is lognor-

mal) with mean mf ¼ fh i and variance r2f ¼ h f� mfð Þ2i.
As discussed in Sec. II A 1, this might occur with fully satu-

rated scattering when a large number of signal samples

are incoherently averaged. Furthermore, let us take mf to be

random. This might occur, for example, if the strength of

the scattering or the power of the source(s) varies in time or

space. Suppose that the pdf for mf (the mixing distribution)

is normal with mean l and variance /2. The unconditional

pdf for f is then calculated by integrating over all possible

values of mf; that is,

p fjr2f ;l;/2
� �

¼
ð1
�1

p fjmf;r
2
f

� �
p mfjl;/2
� �

dmf: (8)

Performing the integration, the unconditional pdf is found to

be normal where the unconditional mean for f is mf þ l and

the variance is r2f þ /2. Hence, the means and variances are

simply additive.

Another case involving an uncertain source power or

scattering strength that permits analytical results is a gamma

distribution in which the rate parameter is modulated by

another gamma distribution. Specifically, the pdf for k is

given by Eq. (2) but with k replacing s and a and b replacing

k and k, respectively. Here, a and b are the shape and

rate parameters, respectively, of the mixing distribution.

FIG. 2. (Color online) The noncentral Erlang distribution for various combinations of the parameters k and k ¼ d=2. The mean power is set to one. (a)

Distributions on a linear axis and (b) logarithmic axis.

where k ¼ lx2 þ ly2. Equation (7), when transformed from 
power to amplitude, is known as the Rice distribution and 
used widely in electromagnetics (e.g., Suzuki, 1977). Figure 1 
includes the noncentral Erlang pdf for the case k ¼ d=2 ¼ 1. 
In these plots, m is set to one and the same values for the vari-
ance are used as in the gamma pdf. The two distributions 
appear very similar when the means and variances are 
matched. These comparisons demonstrate how pdfs for unsat-
urated signals are very similar to pdfs for fully saturated sig-
nals, after applying averaging over multiple samples or 
sources. Therefore, it is difficult to distinguish experimentally 
between the impacts of saturation and averaging.

3. Variable source strength: Compound gamma 
distribution

Next, we consider an approach for extending the previ-
ously described distributions for random fading so as to 
introduce a variable (unsteady or uncertain) source strength. 
This could be important, for example, when modeling traffic 
noise variations caused by changing traffic volume or vehi-
cle types, variations in noise levels between neighborhoods, 
or sources, such as machines and birds, that produce sound 
intermittently. The approach involves compound probability 
distributions, meaning that a parameter in the original pdf 
for the received power is itself considered to be a rv. This rv 
is described by a second pdf, called the mixing (or modulat-
ing) distribution. The original pdf is termed the conditional 
distribution; the unconditional distribution results from

5



A detailed discussion of this case can be found in Wilson

et al. (2017b). The integral to be solved is

p sjk; a; bð Þ ¼
ð1
0

p sjk; kð Þp kja; bð Þdk; (9)

which can be shown to result in the compound gamma pdf

as given by (Dubey, 1970; Wilson et al., 2017b)

p sjk; a; bð Þ ¼ 1

B k; að Þ
ðs=bÞk�1

bð1þ s=bÞkþa ; (10)

for s > 0. Here, k, a, and b are pdf parameters, and Bða; bÞ
¼ CðaÞCðbÞ=Cðaþ bÞ is the beta function. From Jacob

(2013), the mean for the compound gamma is m¼bk=ða�1Þ
and the variance is r2¼b2k kþa�1ð Þ=½ a�1ð Þ2 a�2ð Þ�.
Figure 3 shows the compound gamma pdf for various values

of k and a. The value of b is set to a�1ð Þ=k so that m¼1. A

large value of a corresponds to a delta-like modulating func-

tion; the modulating process is, thus, weak and causes the

compound gamma pdf to be very similar to the original con-

ditional pdf. Smaller values of a lead to a more elevated tail

on the linear axis. On the logarithmic axis, the compounding

creates a negatively skewed pdf when k<a and a positively

skewed pdf when k>a. The former situation occurs if the

variations resulting from the modulating process are rela-

tively weak compared to those of the fading process and

vice versa.

B. Random transmission geometry without fading

This subsection analyzes the situation where one or

more sources are randomly placed relative to the receiver,

resulting in random geometric spreading losses between the

source(s) and receiver. Unlike in Sec. II A, random signal

fading is not considered here. For simplicity, the model

assumes that the sources are randomly placed in a circular

region. Depending on the application, other shapes for the

source distribution region may be more appropriate.

Presumably, qualitatively similar results would be obtained

with other non-pathological two-dimensional (2D) shapes.

However, the results might differ significantly for one-

dimensional (1D) source regions such as a random place-

ment on a line or on a circle. These situations, although not

considered here, merit further investigation.

1. Single source: Pareto and offset exponential
distributions

Consider a single source randomly placed anywhere in

the circle r � rmax with the receiver at the origin. (By the

principle of reciprocity, we could equivalently consider the

problem of a source at the origin and a receiver randomly

placed in the circle r � rmax.) The probability of the radius

taking on a particular value r is proportional to the circum-

ference of the circle, 2pr, which implies that the pdf is

pr rð Þ ¼ Ar; where A is a constant. By integrating the pdf

from 0 to rmax and setting the result to one, it can be deter-

mined that A ¼ 2=r2max. Hence, pr rð Þ ¼ 2r=r2max for r � rmax

and zero, otherwise. Suppose, next, that the signal power

decays according to the power law,

s ¼ s0

r=r0ð Þb
; (11)

where s0 is the source power observed at the reference distance

r ¼ r0, and b is the power-law exponent for the geometric

spreading. For cylindrical spreading, b ¼ 1, whereas for

spherical spreading, b ¼ 2. Because p sð Þ ¼ dr=dsj j pr rð Þ,
we have

p sð Þ ¼
2

bs0

r0
rmax

	 
2 s0
s

	 
1þ2=b

(12)

for r � rmax and zero, otherwise. Compare this result to the

Pareto distribution, for which the pdf is

FIG. 3. (Color online) The compound gamma pdf for various values of the parameters k and a. The value of b is chosen such that the mean power is one. (a)

Linear axis and (b) logarithmic axis.
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p sð Þ ¼
0; s < smin;

asamin=s
aþ1; s � smin;

(
(13)

where smin ¼ s0= rmax=r0ð Þb is the minimum value of s
(namely, its value when the source is at r ¼ rmax). By equat-

ing Eqs. (12) and (13) to the Pareto pdf, we identify

a ¼ 2=b and smin ¼ s0 r0=rmaxð Þ2=a. We indicate a rv drawn

from this pdf as S � Pareto smin; að Þ. For spherical spread-
ing (b ¼ 2), a ¼ 1 and smin ¼ s0 r0=rmaxð Þ2 and, hence,

p sð Þ ¼ s0=s
2

� �
r0=rmaxð Þ2. The mean of the Pareto distribu-

tion is asmin= a� 1ð Þ for a > 1. For a � 1, the mean

diverges. This behavior is important in the present context

because a ¼ 1 corresponds to spherical spreading.

To transform the Pareto distribution to a logarithmic

axis, we set f ¼ ln s in Eq. (13), resulting in

pf fð Þ ¼
0; f < fmin;

ae�a f�fminð Þ; f � fmin;

(
(14)

where fmin ¼ ln smin ¼ ln s0 r0=rmaxð Þ2=a
h i

. Hence, a Pareto

distribution for s implies an exponential distribution for f
with an offset equal to fmin. The decay rate for this distribu-

tion is a, whereas the mean is fmin þ 1=a and the variance is

1=a2. Thus, the logarithm of the power (unlike the power

itself) has a well-behaved mean and variance when a ¼ 1

(spherical spreading), which are equal to fmin þ 1 and 1,

respectively. Figure 4 shows the Pareto pdf for various com-

binations of a and smin. When viewed on a logarithmic axis,

an important qualitative difference between the Pareto pdf

and the gamma and noncentral Erlang pdfs (Figs. 1 and 2) is

that the Pareto has no tail to the left (small values of f) and
an exponential tail to the right (large values of f), whereas
the latter both have higher tails to the left than to the right.

This behavior provides an important indicator as to whether

random fading or random geometric spreading dominates

the received signal.

Consider next the random placement of a source within

the ring rmin � r � rmax. A lower bound on r might be

appropriate, for example, if a sound-level meter is placed at

a fixed distance from a roadway. As before, p rð Þ ¼ Ar;
where A is a constant. Integrating this function from rmin

to rmax and setting the result to one, we have

A ¼ 2= r2max � r2min

� �
for rmin � r � rmax and zero, other-

wise. Substituting with Eq. (11), we find

p sð Þ ¼
0; s < smin;

asamins
�a�1= 1� smin=smaxð Þa

� �
; smin � s � smax;

0; smax < s;

8><
>:

(15)

where smin ¼ s0 r0=rmaxð Þ2=a and smax ¼ s0 r0=rminð Þ2=a are

the minimum and maximum values of s, respectively. This
pdf is called a bounded Pareto distribution. Transforming to

the logarithmic axis results in

pf fð Þ ¼
0; f < fmin;

ae�a f�fminð Þ= 1� ea fmin�fmaxð Þ½ �; fmin � f � fmax;

0; fmax < f;

8><
>:

(16)

where fmin ¼ ln smin and fmax ¼ ln smax. As before, this is

an exponential pdf with offset fmin, although it is truncated

at fmax.

2. Variable source strength revisited: EMG
distribution

Let us employ the compound distribution approach

from Sec. II A 3 to again derive a pdf for a source of variable

strength, except this time for a single source randomly

placed in a circle. These variations might result, for exam-

ple, from different types of vehicles or machinery. In this

case, the starting point is the offset exponential, Eq. (14),

for the log-power, f, namely, pf fja; fminð Þ ¼ ae�a f�fminð Þ for
f � fmin and 0, otherwise. Further, suppose that the loga-

rithm of the minimum log-power, fmin, is normally

FIG. 4. (Color online) The Pareto distribution for various combinations of the parameters a and smin. (a) Distributions on a linear axis and (b) logarithmic

axis (where fmin ¼ ln smin).
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distributed; that is, the minimum power smin and by implica-

tion, the source strength s0 are lognormally distributed. We,

thus, employ Eq. (3) as the mixing distribution, although

with fmin replacing s. Substituting the pdfs and keeping in

mind that pf fja; fminð Þ is zero when fmin < f, we have

pf fja;l;/2
� �

¼ affiffiffiffiffiffi
2p

p
/

ðf
�1

e�a f�fminð Þ� fmin�lð Þ2=2/2

dfmin: (17)

After substantial algebra, and introducing the error function,

erf �ð Þ, we find

pf fja; l;/2
� �

¼ a
2
e�a f�lð Þþa2/2=2 1þ erf

f� l� a/2ffiffiffi
2

p
/

!" #
:

(18)

Because 1þ erf zð Þ ¼ 1� erf �zð Þ ¼ erfc �zð Þ, where erfcð�Þ
is the complimentary error function, this result can be rewrit-

ten as

pf fja; l;/2
� �

¼ a
2
e�a f�lð Þþa2/2=2erfc

a/2 � fþ lffiffiffi
2

p
/

!
: (19)

The result is known as the EMG pdf (Grushka, 1972). The

EMG is ordinarily derived as the sum of a normal rv with

mean l and variance /2 to an exponential rv with rate

parameter a. (In Sec. II B 3, we will discuss how the ordi-

nary derivation relates to the present one.) The mean of the

EMG is m ¼ lþ 1=a, whereas the variance is r2 ¼ /2

þ1=a2. Figure 5 shows the EMG pdf for various values of

the variance with l ¼ 0, a ¼ 1, and /2 ¼ r2 � 1=a2. With

these values, m ¼ 1. For r2 ¼ 1, the pdf is exponential; as

r2 is increased, the pdf becomes increasingly normal.

3. Multiple sources: EMG distribution (approximate)

Let us next consider the presence of multiple randomly

distributed sources. Specifically, suppose N sources are

placed within the circle r � rmax. The total field then con-

sists of a sum N iid Pareto rvs given by Eq. (13). Without

loss of generality, we can make a change of variables to the

normalized power s ¼ s=smin for which the pdf of a single

source is ps sð Þ ¼ a=saþ1 for s � 1 and 0, otherwise). For

the logarithm of the normalized power of a single source,

f ¼ ln s ¼ ln s� ln smin ¼ f� fmin, we have pf f
� �

¼ ae�af

for f � 0 (and zero otherwise); that is, Z � Exp að Þ, where
Z is a rv drawn from the exponential pdf pf fja

� �
.

With the problem thus formulated, we seek the distribu-

tion of the sum S ¼
PN

i¼1 Si, where each Si is an iid

Pareto(1, a) rv. Unfortunately, there does not appear to be a

general solution available for the distribution of a sum of iid

Pareto rvs because statistics, such as means, are divergent.

Let us consider, instead, the pdf of the log-power, namely,

Z ¼ ln
PN

i¼1 e
Zi

� �
, where Zi ¼ ln Si and Zi � Exp(a). The

distribution of Z depends on N and a. From here forward, it

will be assumed that a ¼ 1 (spherical spreading). Although

we do not know how to determine the dependence of the pdf

on N analytically, it can be readily simulated numerically by

generating a large number of random samples of Zi from

exponential pdfs, applying the formula Z ¼ ln
PN

i¼1 e
Zi

� �
,

finding the histogram, and normalizing the histogram to

determine the pdf. The results are shown in Fig. 6 for histo-

grams based on 221 random samples. We see that the pdfs

transition gradually from exponential when N ¼ 1 to

FIG. 6. (Color online) Distributions of the log-power f as produced by N
sources randomly distributed in a circle with the receiver at the origin.

Spherical spreading (a ¼ 1) is assumed. All curves are for the power nor-

malized by Nsmin, i.e., s ¼ s= Nsminð Þ. The solid lines are numerical simula-

tions based on drawing random samples from exponential distributions. The

dashed lines (shown for the cases Nh i ¼ 16, 64, and 256) are simulations

that further randomize the number of sources by drawing N from a Poisson

distribution with the specified Nh i.

FIG. 5. (Color online) EMG distributions for various values of the variance

r2. The EMG parameters are set to l ¼ 0, a ¼ 1, and /2 ¼ r2 � 1=a2.
(With these values, the mean is always one.)
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normal-like with an exponential tail for large N. For Fig. 6,
we have normalized the power emitted by each source, s0,
by N, so that the total power emitted by all sources is inde-
pendent of N. Even with this adjustment, the mean power at

the receivers increases with N.
As we do not have analytical results for the distributions

shown in Fig. 6, it is of interest to find distributions provid-

ing suitable empirical fits. Many of the distributions dis-

cussed up to this point are possible candidates; in particular,

distributions that reduce to the exponential will, at least, fit

the simulations well for the case N ¼ 1 when applied on a

logarithmic axis. Figure 7(a) shows fits to the simulated dis-

tributions for pf f
� �

for several such candidates: the gamma

[Eq. (2), but with f replacing s], compound gamma

[Eq. (10), but with f replacing s], and EMG [Eq. (19)]. The

parameters for these distributions were determined by

maximum-likelihood estimation (MLE). The fits were

applied on a logarithmic axis because (as previously dis-

cussed) the statistics for this model are unstable on a linear

axis. In fitting the gamma and compound gamma to the sim-

ulation data for f, the origin is shifted to lnN because that

is the minimum possible value for f. (It should be stressed

that the gamma and compound gamma pdfs are being

employed here simply to examine their suitability for

approximating the multisource simulations with random

transmission geometry; no random fading is involved in this

problem.)

As indicated by Fig. 7(a), because the gamma, com-

pound gamma, and EMG pdfs all reproduce the exponential

when N ¼ 1, they provide exact fits for that case as

expected. For the compound gamma, the fit is essentially

indistinguishable from the simulation when N ¼ 4 and

barely distinguishable when N ¼ 16. However, we do

not show fits for the compound gamma when N ¼ 64 and

N ¼ 256 because the MLE did not converge to a valid solu-

tion in those cases. The MLE did, however, converge for all

values of N with the gamma and EMG and, hence, fits are

shown for these pdfs for all cases. Overall, we see from Fig.

7(a) that the compound gamma provides better fits than the

gamma (when N � 16), which is not surprising as the for-

mer has an additional parameter. Both of these distributions

provide worse fits as N increases. In contrast, the EMG pro-

vides better fits as N increases. The EMG is also quite satis-

factory for small N (e.g., N ¼ 4 or N ¼ 16).

Some additional results shown in Fig. 7(b) help to

explain why the EMG provides a consistently good empiri-

cal fit. In this plot, the full distributions for N ¼ 1, N ¼ 16,

and N ¼ 256 are shown as solid lines. These are the same

curves that are shown as solid lines in Fig. 7(a). Shown as

dashed lines are the distributions for the single strongest

among the N sources; that is, we simulate all N sources, find

the strongest one, and determine the pdf for that source

only. The pdfs for the remaining N � 1 weaker sources are

shown as dashed-dotted lines. Finally, the dotted curves are

exponential curves for ae�a f�logNð Þ. This curve corresponds

to the pdf for a single source distributed within a circle of

area pr2max=N, where rmax is the radius of the circle in which

all N sources are distributed. Hence, this is the circle within

which, on average, the closest source is located. For rela-

tively large values of f, the dotted line coincides with the

pdfs of the strongest source and the overall pdf. We

observe that the exponential tail of the overall pdf is deter-
mined by the single source closest to the receiver (the

strongest one). The remaining part of the pdf (for the more

distant N � 1 sources) becomes increasingly normal as N
increases. This result can be explained as follows. The

more distant sources are distributed within a ring (the cir-

cle pr2max=N having been removed from the larger circle

with area pr2max) and as we showed earlier, this removes

the exponential tail [Eq. (16)]. Because the central limit

theorem should apply for large N, the overall pdf consists

of an exponential pdf corresponding to the closest source

and an approximately normal pdf for the remaining N � 1

more distant sources.

FIG. 7. (Color online) Distributions of the log-power f produced by N sources randomly distributed in a circle. The solid lines are the same simulated pdfs

shown as solid lines in Fig. 6 (but without the normalization by N). The other lines show various other model pdfs. (a) The dashed lines are gamma pdfs, dashed-

dotted lines are compound gamma pdfs (for N ¼ 1, 4, and 16), and dotted lines are EMG pdfs. (b) The dashed lines are pdfs for the single strongest among the

N sources, dashed-dotted lines are pdfs for the sum of the remaining weaker N � 1 sources, and dotted lines are exponential pdfs given by ae�a f�logNð Þ.
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Interestingly, we have arrived at the EMG distribution

by two distinct approaches. In Sec. II B 2, it was derived for

the log-power of a single source randomly placed in a circle

(with the receiver at the origin) under the assumption that

the source power is lognormally distributed. Here, it resulted

from approximating the multisource simulations with the

sum of an exponential rv representing the nearest source and

a normal rv representing the remaining sources. The connec-

tion between these two interpretations can be understood

from the definition of the compound pdf as an integral of the

product of two pdfs. The pdf of the sum of two independent

rvs is given by the convolution of the pdfs of those rvs,

which is also an integral involving a product of pdfs. In fact,

the convolution is a special case of the compound pdf in

which a location parameter (offset), such as fmin, is the vari-

able of integration. Therefore, either of the two interpreta-

tions is mathematically valid. They arise, however, from

differing physical perspectives.

Figure 8 plots the mean, variance, and skewness of f as

a function of N. The mean is one for N ¼ 1 and thereafter

appears to increase linearly with N. The variance is also 1

for N ¼ 1 and but then appears to decrease linearly with N
to a value of about 0:5 when N ¼ 256. The skewness takes

on a value of two (as expected for an exponential pdf) when

N ¼ 1 and gradually increases to about three when

N ¼ 256. The persistent positive skewness is attributable

primarily to the exponential tail, which is a consequence of

geometric spreading.

The logarithm of the unnormalized power is Z
¼ ln ð

PN
i¼1 e

ZiÞ ¼ Z þ fmin ¼ Z þ ln ½s0 r0=rmaxð Þ2=a�. Hence,
assuming s0 and r0 are fixed, the unnormalized power intro-

duces a dependence on rmax. Thus, distributions for Z effec-

tively depend on two adjustable parameters, N and rmax. The

dependence on rmax is relatively straightforward: it simply

offsets the distribution to the left (for larger rmax) or right

(for smaller rmaxÞ. In fact, changing rmax has the same

impact as changing the source strength by 1=rmaxð Þ2=a.
Figure 9 shows distributions of Z for various combina-

tions of rmax and the spatial density of the sources (number

of sources per unit area), g ¼ N= pr2max

� �
. These curves were

calculated from the histograms of 223 random samples. Note

that the pdf for rmax ¼ 2, g ¼ 4=p is a shifted version of the

pdf for rmax ¼ 4, g ¼ 1=p, because both of these cases

correspond to N ¼ 16. Similarly, rmax ¼ 4, g ¼ 4=p is a

shifted version of the pdf for rmax ¼ 8, g ¼ 1=p, because
both of these cases correspond to N ¼ 64. Another notable

property of the distributions is that the tails (for large values

of the log-power) appear to coincide for cases with the same

value of g; that is, the source density controls the tail. This
can be understood in light of the earlier discussion of

Fig. 7(b). The exponential tail is controlled by the average

area of the circle in which the closest source is distributed;

this area equals pr2max

� �
=N ¼ 1=g. An interesting conse-

quence of the model is that the pdf for log-power is always

impacted to some degree by distant sources and the distance

to the boundary even when the source region is very large

(rmax ! 1).

Up to this point, we have considered the number of

sources N to be fixed, whereas their spatial placement is ran-

dom. A better assumption would be that the sources occur

randomly in space at a fixed rate g. Therefore, the actual

number of sources in a particular region is random. The

constant-rate assumption corresponds to a Poisson spatial

process. In particular, gA is the probability that a source will

occur in a subregion with area A provided that A is small

enough that the probability of multiple sources appearing in

the subregion is negligible. Therefore, we can think of the

Poisson multisource model as having two adjustable param-

eters, g and the radius of the circle rmax. From the two

parameters g and rmax, we can calculate the expected values

FIG. 8. (Color online) The mean, variance, and skewness of the log-power

as a function of the number of sources N as deduced from the simulations

shown in shown in Fig. 6.

FIG. 9. (Color online) Distributions for the log-power for various values of

the radius of the source region (rmax) and areal source density (g). The cases
with g ¼ 1=p are shown as dashed lines, g ¼ 2=p are shown as solid lines,

and g ¼ 4=p are shown as dotted lines.
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of the number of sources in the circle, Nh i ¼ pr2maxg. The
number of sources in pr2max follows a Poisson distribution,

which is given by pN Nð Þ ¼ Nh iNe� Nh i=N!. The Poisson pro-

cess can be efficiently simulated by drawing a random sam-

ple N from the Poisson distribution and then randomly

placing this number of sources in the circle pr2max.

Distributions for f can then be calculated by the same simu-

lation approach as before but with N changing with each

realization of the source positions. The resulting pdfs are

shown as dashed curves in Fig. 6 for the cases Nh i ¼ 16,

Nh i ¼ 64, and Nh i ¼ 256. (The cases Nh i ¼ 1 and Nh i ¼ 4

result in a large number of random realizations with zero

sources and, thus, are not considered.) For Nh i ¼ 16 and

Nh i ¼ 64, the pdfs differ somewhat when the Poisson process

is employed. When Nh i is increased to 256, however, there is

very little difference between the Poisson process and setting N
to a constant.

III. EXPERIMENT

A. Procedure

To assess the suitability of the various noise models dis-

cussed in Sec. II, noise data were collected at 37 locations in

the Boston North End (Boston, MA). The experiment was

conducted on 7 June 2018 and involved measuring the one-

third octave SPL for 5min at each site. These measurements

were conducted consecutively with 10min, usually, between

the start of one measurement and the next. The dominant

noise source was road traffic noise with secondary contribu-

tions from construction sites, pedestrians, air conditioners,

and Boston Logan International Airport, which is located

approximately 4 km from the North End. Although 5min is

rather short for characterizing statistics at a particular site

(Can et al., 2011; Romeu et al., 2011), it should be kept in

mind that our priority was to sample the spatial variations of

the noise and, hence, the experimental protocol emphasized

sampling a large number of sites.

Figure 10 illustrates the North End neighborhood and

indicates the locations of each of the 37 locations with blue

circles (waypoints 104–140). The North Washington Street

Bridge is at the northwest corner of the neighborhood.

Wharves dominate the north and east sides of the North End

along Commercial Street and Atlantic Avenue. Cross Street

runs along the southwest edge of the North End and is the

busiest street in this neighborhood. The interstate (I-93) lies in

a tunnel below Cross Street. Hanover Street, which runs

through the middle of the neighborhood, has numerous restau-

rants and shops and a mixture of pedestrian and road noise.

At each location, a Norsonic Sound Analyzer Nor 140

(Tranby, Norway) measured the SPL for the 6.3Hz–20 kHz

one-third-octave bands using the fast response (decay) time

setting with a 125ms time constant. Data were recorded

FIG. 10. (Color online) The measurement locations are in the North End (Boston, MA, USA). A sound level meter (SLM) recorded data for 5min at each

blue circle. The three numbered locations with red circles correspond to those shown in Fig. 11. The basemap is courtesy of ESRI
VR

(Redlands, CA).
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every 0.5 s during 5-min intervals. The sound-level meter

(SLM) was mounted horizontally on a stationary tripod (Fig.

11), and the microphone was 1.256 0.05m above the

ground. Each site was documented using a picture, the time,

GPS coordinates, and a subjective assessment of the domi-

nant sound sources.

For simplicity, 3 of the 37 locations are primarily dis-

cussed here. These three locations (Fig. 11) give a snapshot

of both typical levels (127) for this neighborhood and the

great variance from loud (114) to quiet (131) within this

neighborhood. Later, we evaluate models using all of the

sites. Table I qualitatively describes each of these three

sites.

Figure 12 illustrates the corresponding SLM data. The

first location (waypoint 114) had very high sound levels,

especially at 63Hz, due to nearby road traffic and construc-

tion noise. A police car with its sirens on (0.8–1.6 kHz)

passed at about 1min into the measurement. At 185–240 s, a

large truck stopped at the stoplight just meters from the

SLM. The second location (waypoint 127) had moderate

sound levels from predominately road traffic and pedes-

trians. The middle row of Fig. 12 demonstrates the intermit-

tent nature of the traffic noise. The third location (waypoint

131) had low overall sound levels, mainly from an air condi-

tioner (likely in the frequency range 250–315Hz) and chirp-

ing birds (3–5 kHz).

B. Results

The SLM data contain about 600 points for each loca-

tion and one-third octave band. Figure 13 presents the data

as probability density versus SPL and frequency by calculat-

ing the pdf for each frequency band. Each column shows a

different approximation of the data: left (histogram), center

(normal distribution), and right (EMG distribution), again

calculated for each frequency. Each row represents a differ-

ent location: top (loud: 114), middle (medium: 127), and

bottom (quiet: 131). Maximizing the log-likelihood yielded

the distribution parameters for each location and frequency

combination. This analysis used Python’s scipy.stats distri-

butions (SciPy Community, 2020) fit functions for the EMG

(exponnorm) and normal (norm) distributions.

The histograms reveal patterns across all three sites.

The sound field is generally broadband and unimodal with a

maximum one-third octave band SPL around 40Hz, which

creates a sideways V-shape. The sound levels decrease for

the lowest and highest frequencies. This result is expected

for the slow-moving road traffic noise (mostly engine noise)

that typically dominates.

There are a few discontinuities for adjacent frequency

bands that can be readily explained by a narrowband sound

source dominating at that location and frequency. For exam-

ple, the quiet area at 315Hz has a discontinuity because an

air conditioner was near the SLM, and the loud area at

63Hz has a discontinuity because an electrical generator

(and perhaps other equipment) was nearby. The quiet loca-

tion at 4 kHz had birds chirping as the primary sound source.

We speculate that the bimodal behavior for the loud location

between about 250Hz and 1 kHz represents two different

vehicle types stopped next to the SLM (i.e., cars and large

trucks). Table I indicates that a truck idled next to the SLM,

FIG. 11. (Color online) Pictures of three measurement sites representing loud, medium, and quiet areas.

TABLE I. Information on three of the measurement sites selected for detailed analysis.

Site Time (EDT) Cross streets GPS coordinates (latitude, longitude) Noise level Description and dominant sources

114 10:30 Cross St. Hanover St. 42.362492�, �71.055568� High Very busy street—sirens (10:31); truck idling;

distant generator at 63Hz

127 13:30 Hanover St. Clark St. 42.365222�, �71.053003� Medium Semi-busy street—road/engine noise; pedestrian noise

131 14:10 Hanover Ave. 42.365734�, �71.052181� Low Quiet side street—birds; air conditioner; distant pedestrians
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which possibly occurred at 185–240 s in Fig. 12. If that is

the case, the 57 and 63 dB peaks in Fig. 13 correspond to a

car or truck stopped near the SLM.

Comparing the normal and EMG models to the histo-

gram (Fig. 13), the EMG model qualitatively better approxi-

mates the histogram data primarily because the EMG model

allows for positive skew, which is present at most frequen-

cies and locations. The theoretical analysis in Sec. II sug-

gests that this positive skew comes from geometric

spreading losses for sources randomly distributed in space.

When a single, immobile, and continuous source is near the

receiver (e.g., the construction generator at the loud location

and 63Hz and the air conditioner at the quiet location and

315Hz), the distribution has smaller variance with less skew

(similar to the normal distribution).

Figure 14 plots frequency slices from Fig. 13 to facilitate

the quantitative model comparisons. Each column shows a dif-

ferent location: left (loud), center (medium), and right (quiet).

Each row shows a different frequency: from top to bottom, 40,

160, 630Hz, and LAeq. These frequencies avoid the construc-

tion generator and police siren at the loud site and the air con-

ditioner and the chirping birds at the quiet site. The idling

truck, a broadband source, could not be avoided at the loud

location. Fits are shown for the normal, EMG, and compound

gamma distributions. The normal and EMG distributions were

fit to the SPL data, whereas the compound gamma was fit to

the linear power data after applying the transformation

y ¼ 0:01	 10Lp=10, which was found by trial and error to

result in good numerical convergence. The normal model for

SPL is, in essence, a lognormal model for the linear power.

FIG. 13. (Color online) PDFs versus both frequency and SPL. The left column shows the measured histogram. The center (normal fit) and right (EMG fit)

columns give two maximum-likelihood estimates of the data. The top (loud), middle (medium), and bottom (quiet) rows show three sites.

FIG. 12. (Color online) The one-third octave SPL versus time at three locations: top row (loud), middle row (medium), and bottom row (quiet).

13



At 40Hz, the EMG and compound gamma distributions

are similar and provide only a marginal benefit over the nor-

mal distribution, which adequately approximates the lowest

frequencies. At the medium and quiet locations for 160Hz,

630Hz, and LAeq, the EMG better approximates the mea-

sured data compared to the normal distribution, with the

compound gamma falling somewhere in between. At the

loud location, especially for 630Hz but also for 160Hz and

LAeq, none of the distributions provide a particularly good fit

because the histograms are multimodal. Despite summing

multiple frequency contributions, the A-weighted levels are

still highly skewed and the EMG provides a better fit.

For the loud location, the distribution at 160Hz appears

trimodal with peaks near 65, 69, and 74 dB. Figure 12

reveals that these three peaks could be associated with the

idling truck (65 dB, 185–240 s), cars nearly stopped as the

police car passes (69 dB, 20–100 s), and idling cars (74 dB,

120–150 s). The loud location at 630Hz seems bimodal, and

the idling truck may have caused the 63 dB peak. The truck

idled for 55 s of a 300 s measurement (18%), and the area of

the 63 dB peak above the trend is 14%.

Figure 15 is similar to Fig. 14 except the locations and

frequencies are chosen to highlight non-road noise sources.

The top-left subplot is for the loud area at 63Hz, which is

the construction generator. In this case, there is one continu-

ous, immobile source a medium distance (on the order of

100m) from the SLM so the SPL pdf is similar to a normal

distribution, and all models fit adequately.

The top-center and top-right subplots in Fig. 15 illus-

trate the contrast between the loud and medium locations at

16 kHz. The top-right plot shows data typical of freely flow-

ing traffic, which can be approximated well with the EMG

distribution. However, the EMG does not provide a good fit

when a stationary source (such as a parked truck, in this

FIG. 14. (Color online) PDFs versus the one-third octave band SPL for primarily road noise. The left (loud), middle (medium), and right (quiet) columns

show three different sites. The top three rows give the pdfs for three different frequencies (40, 160, and 630Hz), whereas the bottom row gives the pdf for

LAeq. The solid blue curves are histograms for the SPL data. The other curves show various fitted distributions: dashed orange is the normal, dashed-dotted

green is the EMG, and dotted red is the compound gamma.
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case) is present during significant portions but not for all of

a measurement. The area of this peak above the general

trend is approximately 16%, which is close to the 18% of

the measurement when the idling truck was present. Again,

a longer duration measurement or moving the microphone

further from the road might mitigate this issue.

The bottom left subplot in Fig. 15 demonstrates the

impact of both the idling truck and police sirens. The idling

truck introduces that same narrow peak (area about 16%

above the trend), and the siren increases the mean and vari-

ance of the SPL. The siren likely caused the small peak at

87 dB. Neither model fits this dataset well, but the EMG and

compound gamma distributions perform considerably better

than the normal distribution.

The bottom-center subplot in Fig. 15 is very similar to

the top-left because they both have a single dominant, con-

tinuous, and immobile source. Both models work well for

this case. The peak for the air conditioner is narrower than

that for the construction generator, which might be because

the air conditioner was considerably closer to the SLM

(about only 30m away). The bottom right subplot has a neg-

ative skew that the compound gamma distribution can

model better than either the EMG or normal. In this case,

the noise source is chirping birds, which exemplifies a mix-

ture of two distributions: one for when there are chirping

sounds and the other for when there is no chirping. Thus, a

compound (mixture) distribution, such as the compound

gamma, is more appropriate for this situation.

Figure 16 analyzes the frequency dependence of the sam-

ple mean, variance, skewness, and kurtosis of the one-third

octave band SPL data. The mean is the arithmetic mean,

l ¼ 1

N

XN
n¼1

Lp;n; (20)

where Lp;n is the SPL of the nth sample. The variance is the

unbiased variance,

r2 ¼ 1

N � 1

XN
n¼1

Lp;n � lð Þ2: (21)

Defining the i th central moment as

mi ¼
1

N

XN
n¼1

Lp;n � lð Þi; (22)

the skewness and excess kurtosis are, respectively,

g1 ¼
m3

m
3=2
2

and g2 ¼
m4

m2
2

� 3: (23)

The SPL mean results in Fig. 16 are consistent, predom-

inately, with road noise for city traffic traveling at about

30mph. The engine noise peak is at about 50Hz, and the

tire noise peak is at about 1 kHz. The large max value at

63Hz is the construction generator (not road noise). The

variance is largest for very high and very low frequencies

where the road noise may not be dominant. The skewness is

smaller for frequencies below 40Hz, and the normal distri-

bution works better for these data. The EMG distribution

provides a larger benefit for frequencies above 40Hz

because this distribution can model that positive skew. A

few cases have negative skew, but the EMG distribution

does not provide any benefit in those cases. The kurtosis is

also smallest for frequencies below 40Hz.

Figure 17 presents a quantitative analysis across all loca-

tions and frequencies. These fits were evaluated using the

Kullback-Leibler (KL)-divergence (Kullback and Leibler,

1951) versus the histogram of the one-third octave band SPL

data with 1 dB bin width over the range (–10, 100 dB).

FIG. 15. (Color online) PDFs versus the one-third octave band SPL for primarily non-road noise. The curve colors and styles are the same as those in Fig. 14.
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The KL-divergence provides a metric for comparing two

probability distributions. Figure 17 illustrates the cumula-

tive distribution function (cdf) for the KL-divergence for all

1332 combinations (37 locations and 36 frequency bands)

for the EMG, compound gamma, and normal distributions.

A rapid increase in the cdf near the origin indicates more

small values for the KL-divergence and, hence, a better fit-

ting model.

Figure 17 indicates that the EMG model best approxi-

mates the histogram data, followed by the compound

gamma, and last by the normal distribution. For example,

the median KL-divergences are 0.04 for the EMG, 0.07 for

the compound gamma, and 0.15 for the normal. Although

the absolute values are not very meaningful because they

would all increase if the histogram bin size was smaller, the

relative improvement is substantial. This suitability of the

EMG model apparently stems from including geometric

spreading, which leads to positive skew for many frequen-

cies and locations.

Finally, Fig. 18 considers the EMG KL-divergence ver-

sus the frequency. The KL-divergence is low for frequencies

below 40Hz and then tends to increase with an increase in

the frequency. This may indicate that the EMG model is less

suitable for some of the noise sources occurring at higher

frequencies.

IV. CONCLUSION

The experiment described in this article measured one-

third octave levels during a 5-min interval at each of 37

FIG. 16. (Color online) Box plots for the measured mean (top left), variance (top right), skewness (bottom left), and excess kurtosis (bottom right) versus

the frequency. Each box represents the data for 37 locations for a one-third octave frequency band. The whiskers give the full range of the data.

FIG. 17. (Color online) The cumulative distribution function (cdf) for the KL-

divergence for all location and frequency combinations. Each curve represents

a different parametric model versus the histogram data: solid blue (EMG),

dashed orange (normal), and dashed-dotted green (compound gamma).

FIG. 18. (Color online) Box plot of the KL-divergence for the EMG model

versus the frequency. Each box represents the data for 37 locations for a one-

third octave frequency band. The whiskers give the full range of the data.
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consistent with sources, such as chirping birds, and may also

be useful for describing traffic noise flow that is unsteady in

time (e.g., Don and Rees, 1985; Song and Lenchine, 2017).

This article examined the problem of pdfs for urban

noise from a broad perspective with emphasis on how differ-

ent physical phenomena produce pdfs with differing shapes,

and which of these pdfs are consistent with observed distri-

butions. In future work, it would be desirable to obtain a bet-

ter qualitative understanding of relationships between

measurable characteristics of the environment and parame-

terizations of the noise pdfs such as the EMG. It would also

be necessary to obtain a better understanding of the consis-

tency of the pdf shapes and parameterizations from one

environment to another.
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