
ER
D

C/
G

RL
 T

R-
21

-7
 

  

  

  

Semi-Automated Land Cover Mapping 
Using an Ensemble of Support Vector 
Machines with Moderate Resolution 
Imagery Integrated into a Custom 
Decision Support Tool 

G
eo

sp
at

ia
l R

es
ea

rc
h 

La
bo

ra
to

ry
 

  Dr. Kristofer Lasko, Dr. Elena Sava November 2021 

  

 

  

Approved for public release; distribution is unlimited. 



  

The U.S. Army Engineer Research and Development Center (ERDC) solves 
the nation’s toughest engineering and environmental challenges. ERDC develops 
innovative solutions in civil and military engineering, geospatial sciences, water 
resources, and environmental sciences for the Army, the Department of Defense, 
civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil. 

To search for other technical reports published by ERDC, visit the ERDC online library 
at https://erdclibrary.on.worldcat.org/discovery. 

http://www.erdc.usace.army.mil/
https://erdclibrary.on.worldcat.org/discovery


Geointelligence—Geospatial Data Analysis 
and Decision Support 

ERDC/GRL TR-21-7 
November 2021 

Semi-Automated Land Cover Mapping 
Using an Ensemble of Support Vector 
Machines with Moderate Resolution 
Imagery Integrated into a Custom 
Decision Support Tool 
Dr. Kristofer Lasko, Dr. Elena Sava 
Geospatial Research Laboratory 
U.S. Army Engineer Research and Development Center 
7701 Telegraph Road 
Alexandria, VA  22315-3864 

Final Report 

Approved for public release; distribution is unlimited. 

Prepared for Geospatial Research Laboratory 
U.S. Army Engineer Research and Development Center 
7701 Telegraph Road, Alexandria, VA  22315-3864 

 Under PE 633463/Project AU1/Tactical Geospatial Information Capabilities, 
Enhanced Terrain Processing—Demonstration 



ERDC/GRL TR-21-7 ii 

Abstract 

Land cover type is a fundamental remote sensing-derived variable for 
terrain analysis and environmental mapping applications. The currently 
available products are produced only for a single season or a specific year. 
Some of these products have a coarse resolution and quickly become 
outdated, as land cover type can undergo significant change over a short 
time period. In order to enable on-demand generation of timely and 
accurate land cover type products, we developed a sensor-agnostic 
framework leveraging pre-trained machine learning models. We also 
generated land cover models for Sentinel-2 (20m) and Landsat 8 imagery 
(30m) using either a single date of imagery or two dates of imagery for 
mapping land cover type. The two-date model includes 11 land cover type 
classes, whereas the single-date model contains 6 classes. The models’ 
overall accuracies were 84% (Sentinel-2 single date), 82% (Sentinel-2 two 
date), and 86% (Landsat 8 two date) across the continental United States. 
The three different models were built into an ArcGIS Pro Python toolbox 
to enable a semi-automated workflow for end users to generate their own 
land cover type maps on demand. The toolboxes were built using parallel 
processing and image-splitting techniques to enable faster computation 
and for use on less-powerful machines. 
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1 Introduction 
1.1 Background 

The spatial patterns of land cover reflect the underlying natural and social 
processes of an area and thus provide essential information for many 
applications and disciplines. Land cover type is a fundamental variable for 
characterizing ecosystems, understanding demographics, performing 
terrain analysis, responding to natural hazards, and much more. With the 
ability to provide precise and recurrent observations, remote sensing 
imagery has long been key to monitoring land cover. Remotely sensed 
imagery from publicly available satellites such as Sentinel-2 and Landsat 8 
offers consistent observations in both near-real time and historical 
imagery. These instruments offer combined repeat land observations 
several times per month, enabling the characterization of land cover and 
associated changes across multiple time periods. Consistently available 
satellite imagery at moderate resolution enables timely monitoring of land 
cover and associated change. Monitoring of land cover is of critical 
importance in both civil and military applications. 

Typically, land cover maps are created using supervised classification 
methods where the user manually labels pixels of representative land 
cover features in imagery and then uses the imagery and associated labels 
to train a classifier in order to produce a thematic map. Land cover type 
maps are not new and have been produced at local, regional, and global 
scales for many years. For example, at the local scale, land cover maps 
often include details about crop-specific land cover types such as wheat 
and corn and in Kyiv, Ukraine (Kussul et al. 2017), triple-, double-, and 
single-cropped rice in the Mekong Delta, Vietnam (Kontgis, Schneider, 
and Ozdogan 2015), or in the Red River Delta, Vietnam (Lasko et al. 2018). 
At the regional and global scales, land cover maps represent multiple land 
cover types as the spectral signatures of each land cover vary significantly 
across environmental conditions. Such maps often provide broad 
stratification of diverse spatial patterns. For example, at the 30m Landsat 
scale, regional cropland extent maps have been produced for Australia, 
China, and continental Africa (Xiong et al. 2017; Teluguntla et al. 2018). 
These maps are binary in nature and indicative of areas that are either 
cropland or not cropland and thus provide more generalized categories. In 
order to provide timely and accurate land cover products at a global scale, 
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hundreds of thousands of satellite images must be analyzed, and High 
Performance Computing (HPC) such as Google Earth Engine must be 
leveraged to effectively process large quantities of data. For example, both 
Hansen et al. (2013) and Pickens et al. (2020) leverage HPC approaches to 
create 30m land cover maps highlighting temporal changes in forest cover 
(Hansen et al.) and surface water seasonality and extent (Pickens et al.) at 
a global scale. Oftentimes, global and regional land cover products have 
significant barriers to overcome in order to provide products that are 
locally relevant or accurate. These particular studies aimed to overcome 
this obstacle through moderate resolution time series of imagery and 
robust machine learning classification methods. 

A selection of regional and global land cover maps exist based on moderate 
resolution 30m Landsat imagery. One of the most popular and robust 
products is the National Land Cover Database (NLCD) produced at 
intermittent annual time periods using a full time series of imagery (Jin et 
al. 2019). It is currently available for 2001, 2003, 2006, 2008, 2011, 2013, 
and 2016. The 2016 NLCD provides the following land cover categories for 
the continental United States (CONUS): open water, perennial snow/ice, 
developed open space, developed low intensity, developed medium 
intensity, developed high intensity, barren land, deciduous forest, 
evergreen forest, mixed forest, shrub forest, herbaceous forest, shrub, 
grassland/herbaceous, pasture hay, cultivated crops, woody wetlands, and 
herbaceous wetlands. Another regional general land cover product is the 
Corine Land Cover database at 100m resolution produced across Europe 
with high fidelity and accuracy (Buttner 2014). Ten class global land cover 
(GLC) maps for the years 2000 and 2010 were produced at 30m scale 
based on thousands of Landsat and HuanJing-1 satellite images.  

Land cover products from such robust datasets are used as input in a 
variety of applications and analyses ranging from hydrology and 
watershed management to agricultural studies as well as urban and social 
studies. In order to produce robust products such as NLCD or the Corine 
Land Cover database, a dense time series stack (15-plus dates of imagery) 
and advanced sampling methods are required. This requires significant 
computing capability, storage space, and time. More recently, research has 
leveraged machine learning and existing training datasets to create 
regional land cover maps with high accuracy and minimal time spent 
generating training data (Malinowski et al. 2020). 
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While there have been many studies conducted at high spatial resolution, 
most of the available regional and global land cover products are at 30m 
spatial resolution or coarser. Some are available at higher resolution but 
often have limitations such as the need for dozens of time series images in 
order to create the land cover product (Malinowski et al. 2020). Reliance 
on static maps at time scales that quickly become out of date (e.g., the 
latest NLCD map was produced in 2016 but the current year is 2021) 
means that land surface monitoring applications may be inaccurate in 
areas experiencing land cover change on an annual basis. To resolve this 
issue, decision support tools could be created to enable the user to create 
their own maps during their selected time period and with imagery they 
can independently acquire. This would cut down on dataset size and would 
save analysts significant processing time. 

This technical report describes a methodology using freely accessible 
satellite imagery and pregenerated training labels to create land cover 
classification models using machine learning. The models are then 
wrapped into a Python script and directly integrated into ArcGIS Pro as a 
Python toolbox. These models enable automatic classification by the end 
user without the need to input any manually created training labels. Three 
different land cover mapping models and tools were created: (1) single-
date Sentinel-2 classifier, (2) two-date Sentinel-2 classifier, and (3) two-
date Landsat 8 classifier. These tools are a part of the Enhanced Terrain 
Processing Toolkit (ETPT), which is a custom toolbox within ESRI ArcGIS 
Pro designed for processing high-resolution data and generating timely 
geospatial products to support actionable maneuver and tactical force 
protections. As input, the semiautomatic land cover tools can exploit the 
latest available Sentinel-2 or Landsat 8 multispectral imagery to generate 
timely geospatial products at moderate spatial resolution and improved 
temporal resolutions, enabling the end user to have a timely and accurate 
land cover product. 

1.2 Image classification 

Thematic mapping from remotely sensed imagery is typically based on two 
main classification methods: unsupervised and supervised. Unsupervised 
classification seeks to group together classes by their relative spectral 
similarity, and a user must interpret how the clusters are related. 
Supervised classification aims to classify pixels on the basis of their 
spectral similarity to a set of meaningful training labels provided by a 
human. Supervised classification is more time consuming due to the 
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creation of feature labels, but often results in more meaningful output and 
is the prevalent method today for land cover mapping as it often has 
higher accuracy (Hasmadi, Pakhriazad, and Shahrin 2009). A variety of 
supervised classification algorithms is used in land cover mapping studies. 
These include support vector machines (SVM), ensembles of weak learner 
decision tree methods such as random forest, various types of artificial 
neural networks, probabilistic classifiers such as Naïve Bayes, and much 
more with linear and nonlinear models (Pedregosa et al. 2011). In this 
study, we implemented an ensemble of three linear SVM classifiers.  

1.2.1  Support vector machines 

The SVM classifier is a widely used nonparametric statistical learning 
classifier with no assumptions made regarding the underlying data 
distribution. SVMs generally perform well on sparse data, and they are 
also less likely to overfit the model than a decision tree classifier such as 
random forest. The SVM is versatile in that different kernel functions can 
be used for training the model, such as linear, sigmoid, or polynomial. 
While the SVM was originally designed for binary classification problems, 
the SVM has been shown to be effective in high dimensional spaces. This 
method typically performs effectively in land cover classification studies 
using shallow learning techniques (Foody and Mathur 2004; Pal and 
Mather 2005; Jia et al. 2012; Pal and Foody 2012). The SVM algorithm 
promises to obtain the optimal hyperplane for a training dataset in terms 
of the generalization error. A detailed description of the SVM algorithm 
can be found in Suykens and Vandewalle (1999). Additional description of 
our classification method is in the methodology section. 

1.2.2  Classifier training 

Classifier training starts with the process of collecting satellite imagery 
and labeling pixels with land cover classes of interest. This is typically a 
manually intensive procedure that involves many hours of work by an 
analyst. One of the most accurate methods of training data selection is to 
extract data proportional to the expected occurrence of each respective 
land cover class (Zhu et al. 2016). However, it is also critical that upper 
and lower bounds be set for the amount of training data to select per class 
so that a classification model is not overwhelmed and so that enough 
representative data is extracted from low proportion classes (Olofsson et 
al. 2014; Zhu et al. 2016; Congalton and Green 2019). 
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Training data collection can be done following stratified random sampling 
approaches or it can be collected strategically by expert image 
interpretation. The advantage of the former is that a portion of the training 
data can be withheld from training the classifier. This portion can then be 
used to evaluate the accuracy of the classifier in a robust manner without 
the need to generate additional points for accuracy assessment. Strategic 
generation of training data is also effective if done methodically so as not 
to over fit the model but requires additional work to create a robust 
accuracy assessment. Strategic collection is also useful when the land 
cover proportions are not well known a priori.  

Training data is typically generated through a labor-intensive process 
where an analyst uses multiple sources to make an informed decision 
about the land cover label. It is critical that the analyst generate the 
training points or polygons directly on the imagery to be used for classifier 
training. If labels are created on the supplemental imagery, it can result in 
geolocation errors that affect the labeling and associated pixel values 
(Congalton and Green 2019). Supplemental imagery sources that can 
assist training data collection include higher-resolution imagery, time 
series of imagery with data collected at key phenology dates, Google Earth 
base maps and field- or ground-collected geotagged photos from social 
media or an institution. Imagery can also be supplemented by other 
authoritative sources such as other thematic maps of the regions, peer-
reviewed articles, and other reputable nonimagery sources that can convey 
information about the region of interest. 

Classifier model training occurs after a sufficient amount of training data 
is collected, typically not more than 15,000 to 20,000 pixels for a given 
Landsat-sized scene. During classifier training, the pixel values for each 
spectral band along with the associated land cover class labels (e.g., 
evergreen trees) are combined into a single tabular file, verified, and 
passed into a machine learning classifier such as an SVM. Oftentimes, it is 
necessary to collect additional training data as initial classifier training 
often reveals errors. 

1.2.3  Classification accuracy assessment 

An initial assessment of accuracy can be gleaned through withholding a 
portion of the training data to be used for accuracy assessment. This data 
is used to test the trained classifier and compare the model predicted 
output to our ground-truth labels. From this test data, we can quickly 
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compute preliminary accuracy metrics based on the resulting error matrix, 
which shows the number of correctly classified pixels for each class. The 
most useful metrics at this stage are class-specific omission errors, class-
specific commission errors, and overall accuracy. Additional training data 
can be generated in land cover categories with relatively high omission or 
commission errors. The error matrix can also show which classes are often 
confused, identify which can also be used to create additional training 
data, or revisit old data for verification. While it is often recommended to 
aim for an overall accuracy above 80%, this standard is arbitrary and 
dependent upon the difficulty of the classification task at hand. Higher 
accuracies should be expected for simple classification tasks such as 
vegetation versus nonvegetation, whereas lower accuracies may be 
expected for complex classification schemes with multiple classes or 
difficult-to-differentiate classes across a large area of interest. For 
example, the NLCD 2016 product with Anderson level II classes had an 
estimated overall accuracy of 82% from 4 selected scenes (Jin et al. 2019). 
Whereas for a smaller area with only 7 classes, higher accuracy can be 
achieved, such as in the case of mapping in Ukraine with overall accuracy 
in excess of 90% (Lavreniuk et al. 2015).  

1.3 Objectives 

Creation of image labels and associated training data for generating land 
cover type maps is a time consuming and iterative process. When training 
data is created as a part of disparate projects, it results in data 
inconsistencies that propagate into the final land cover type map. 
Moreover, reliance on coarse resolution (30m or coarser), static date land 
cover maps is costly and delivers a product that quickly becomes outdated 
and obsolete to the present time. Based on this, our objectives are to (1) 
generate land cover type training data across the CONUS, (2) build a 
supervised classification model to enable on-demand land cover 
generation across the United States without a need for the user to generate 
their own data, (3) test and evaluate the accuracy of the model, and (4) 
combine the model and workflow into a Python-based toolbox and 
integrate it into ArcGIS Pro software t0 enable endusers to automatically 
generate their own land cover maps without the need for their own 
training data. The ultimate goal of this project, beyond this specific study, 
is to build a sensor-agnostic land cover classification model and associated 
decision support tool. This report will discuss the overall sensor-agnostic 
methodology that will be implemented as part of a long-term objective, but 
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the focus will be on the aforementioned objectives relating to the work that 
has been completed. 
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2 Data and Training Sites 
2.1 Landsat 8 and Sentinel-2 imagery 

The ability to have continuous satellite data available at a large spatial 
extent requires a constellation of satellites that have long-term data 
records as well as new satellite constellations that collect data at frequent 
intervals. For these reasons, as well as global coverage and free data 
access, Landsat 8 and Sentinel-2 were selected for this study. 

Landsat is NASA's longest-enduring Earth-observing mission and contains 
historical imagery dating back to the early 1970s from several different 
missions. The latest operational Landsat 8 satellite launched in 2013 has a 
16-day temporal resolution and consists of two instruments on board, 
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). 
The two active sensors together provide seasonal coverage of the global 
landmass at various spatial resolutions ranging from 30m (visible, near-
infrared [NIR], shortwave infrared [SWIR]), to 100m in the TIRS1 and 
TIRS2 and 15m (panchromatic). The OLI instrument monitors the Earth's 
surface in the visible, NIR, and SWIR sections of the electromagnetic 
spectrum and is commonly used for land cover or vegetation change 
mapping. A series of Landsat 8 Analysis Ready Data (ARD) surface 
reflectance scenes were used based on data availability for our analysis and 
cloud presence in each image.  

The European Space Agency and the European Commission started a 
constellation initiative with the launch of the first Sentinel-2 mission in 
April 2014. Together with other satellite platforms that have a wider 
spatial coverage such as Landsat 8, the number of observations for an area 
increased. Currently, two operational Sentinel-2 satellites are available 
with multispectral instruments to acquire data at a moderate temporal and 
moderate spatial resolution. Sentinel-2 collects data at a 10m, 20m, and 
60m spatial resolution depending on the spectral band. It has a temporal 
resolution of approximately 5 days with two satellites in constellation. 
Sentinel-2 imagery can be acquired from a variety of US sources or directly 
from the European Space Agency’s public-facing servers available at the 
open access hub website. Each scene file contains 13 multispectral spectral 
bands ranging from the visible, NIR, and SWIR electromagnetic frequency 
domain. Sentinel-2 land surface reflectance scenes at Level 2A (L2A) were 
downloaded and used for the land cover training data collection and model 
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development. Table 1 summarizes the spatial and spectral characteristics 
of Landsat 8 ARD and Sentinel-2 L2A datasets used to develop the land 
cover classification tool in this study.  

Table 1. Multispectral characteristics of Landsat 8 (ARD surface reflectance) and Sentinel-2 
(L2A surface reflectance) satellite spectral bands used in this study. 

Landsat 8 OLI Sentinel-2 MSI 

Bands 
Spectral Region 

Resolution (m) 
Bands 
Spectral Region 

Resolution(m) 

Band 2—Blue 30 Band 2—Blue 20 

Band 3—Green 30 Band 3—Green 20 

Band 4—Red 30 Band 4—Red 20 

Band 5—NIR 30 Band 5—Red Edge 20 

Band 6—SWIR1 30 Band 6—Red Edge 20 

Band 7—SWIR2 30 Band 7—Red Edge 20 

- - Band 8A—NIR Narrow 20 

- - Band 11—SWIR 20 

- - Band 12—SWIR 20 

2.2 Description of training sites 

Landsat 8 and Sentinel-2 multispectral imagery were collected throughout 
different sites within the CONUS to represent the diverse land cover types 
and ecosystems as guided by the 2016 NLCD product with training 
locations shown in Figure 1. The reasons for selecting these sites follows in 
the proceeding sentences. The northern California site is representative of 
lush evergreen forests found throughout the west coast and secondarily 
includes a mosaic of low vegetation, water, and small suburban areas. The 
southern California site includes the dry urban area of Los Angeles as well 
as arid landscape with less dense forests, bare areas, and croplands. The 
Utah site is characteristic of arid, rocky, salt-laden landscape but also 
includes significant areas of cropland and built-up areas. The Mississippi 
and Louisiana site is characteristic of humid subtropical forest, wetlands, 
irrigated croplands, lush mixed forest, and the Mississippi Valley 
landscape. The New York site is representative of temperate continental 
climate landscape with a mosaic of low vegetation, deciduous and 
evergreen forest, lakes, and more. The New Jersey site is representative of 
warm continental climate with wetlands, built-up areas, forests, and more. 
The Virginia, Maryland, DC scene is representative of warm oceanic 
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climate with a mosaic of densely built-up areas, suburbs, wetlands, rivers, 
croplands, deciduous forest, and more. The Kentucky and South Carolina 
scenes are representative of mosaic landscapes in cool continental and 
humid subtropical environments, respectively. The Kansas scene is 
representative of large-scale commercial cropland such as soybean and 
corn. The Western Montana site is a mosaic of plains, forest, wetlands, and 
croplands. Lastly, the Arizona site is characteristic of semi-arid higher 
elevation areas. Figure 1 shows sites where Landsat 8 and Sentinel-2 
images were collected. 

Figure 1. Map showing the locations of Sentinel-2 and Landsat 8 training data sites used for 
building the semi-automated land cover classification models. 

 

2.3 Land cover datasets 
Several existing land cover products were acquired for comparison and 
evaluation purposes with respect to the maps produced in this study. 
These products have been ground-truthed and have been used in many 
different studies. 

The Geocover land cover product was produced using Landsat imagery 
from the 1990s and early 2000s based on the expert assignment of clusters 
resulting from unsupervised classification (Cunningham et al. 2002). The 
NLCD product was produced for year 2016 using supervised machine 
learning classification from a dense time series of Landsat satellite 
observations. This product is freely available from the United States 

Training Data Locations 
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Geological Survey (USGS) Earth Explorer website 
(https://earthexplorer.usgs.gov/). For this study, we acquired both the NLCD and 
Geocover datasets over our test sites for comparison with our results. 
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3 Methodology 
3.1 Methodology 

The goal of this project is to create a suite of decision support tools for 
automated land cover type mapping. The underlying framework of the 
tools rely on pretrained machine learning models that enable the tools to 
be used without the need for additional training data or tedious user input 
or training data collection. Such tools allow the end user to generate up-to-
date land cover type maps at higher temporal and spatial resolutions in 
comparison to outdated and coarser land cover products. Figure 2 
highlights the methodology used to achieve this goal. Sentinel-2 and 
Landsat 8 imagery are used to create training data for selected land cover 
types across different ecological regions within CONUS. This data is then 
used as input to train several machine learning classifiers, specific for 
Sentinel-2 and another for Landsat 8. After each classifier is built, the 
decision from three SVMs is combined to improve overall performance, 
forming an ensemble of SVM machine learning classifiers. These 
classification models are wrapped into a Python toolbox and enable the 
end user to leverage them for automated image classification in their area 
of interest. In this technical report, the focus is on generating rapid land 
cover type mapping models and decision support tools for Landsat 8 and 
Sentinel-2 satellite imagery, as well as the potential development for a 
sensor-agnostic model.  
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Figure 2. Depiction of underlying methodology for each land cover classification. 

 

Figure 3 highlights the overview of the methodology. As mentioned in the 
data section, we acquired Sentinel-2 and Landsat 8 images across twelve 
diverse sites of the CONUS representative of the varying terrain, climates, 
and resulting variation in land cover. 
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Figure 3. Overview of the methodology developed for this project which leverages Sentinel-2 
and Landsat 8 imagery to create land cover type maps. 

 

Training polygons for both Landsat 8 and Sentinel-2 were carefully and 
strategically created across the land cover types of interest. This data was 
used by the classification algorithm to recognize and understand patterns 
and create information that it will use for predicting land cover type. 
Separate training polygons were created for each of the machine learning 
models used to build the semiautomatic land cover tools, single-date 
Sentinel-2 classifier, two-date Sentinel-2 classifier, and two-date Landsat 
8 classifier. The single-date classifier uses imagery from the 
spring/summer season, whereas the two-date classifiers use an image 
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from Spring/Summer (leaf-on) and one from Fall/Winter (leaf-off). The 
additional imagery enables more land cover classes. 

With regard to the training data creation for the two-date classifiers, both 
dates of imagery along with high-resolution basemaps and Google Earth 
Pro historical imagery were together used to make an expert assessment of 
the land cover type for each polygon. Hundreds of small polygons were 
created across each land cover type as opposed to several large 
homogenous polygons, which often results in poor results due to lack of 
spectral variability. Within each satellite data scene, the training data was 
generated approximately proportional to the expected land cover types for 
that scene. This method of training selection has been found to increase 
accuracy of resulting classifications (Zhu et al. 2016). 

The training data were refined through an iterative process of collection, 
test classification, and accuracy assessment. This process is used to ensure 
each land cover type in a satellite image is accurately represented and the 
classification models do not overfit. In total, more than 30,000 pixels of 
training data were extracted for each classifier. However, the final training 
datasets were randomly and proportionally reduced to about 8,000 pixels 
in order to maintain operational capability of the Python-based tool for 
end-users.  

A Python 3 script was written to read in the training data for further 
processing and to train the classifiers. The data were processed primarily 
using NumPy (version 1.16.5) and Scikit-learn (version 0.22.1), assisted by 
Geospatial Data Abstraction Library (GDAL) (version 2.3.3) for image 
processing and joblib (version 0.15.1) for parallelization of code for 
increased speed. 

For each of the semiautomatic land cover classification models, the 
training data are split into training and testing samples: 80% of the data 
are used for training, and the remaining 20% are withheld and used for 
model evaluation and initial accuracy assessment. The proportions of the 
training data are maintained in the split. 

For each of the three models, two-date Sentinel-2 classifier, single-date 
Sentinel-2 classifier, and two-date Landsat 8 classifier separate classifiers 
were created with the corresponding training data. An ensemble of three 
SVMs were built using Scikit-learn version 0.22.1 using the C-based SVM 
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built on Libsvm with a linear kernel, regularization parameter of 1.0, 
balanced class weights, cache size of 750mb, and all other parameters as 
default. The ensemble was created through the 
“sklearn.ensemble.baggingclassifier” function, which is a meta-estimator 
that fits random subsets of the training data to create three separate SVM 
classifiers. The algorithm then aggregates the individual classifier 
predictions to determine the final prediction based on majority vote. This 
method reduces classifier variance and can lead to a more robust model 
than a single classifier (Breiman 2001).  

The trained models are then exported from the Python environment by 
Python pickle serialization and thus persist for later use in the custom 
ArcGIS Pro Python toolbox. 

This custom ArcGIS Pro toolbox would be a part of a larger suite of tools 
that support terrain analysis applications. While current capabilities rely 
on outdated land cover products or require manual creation of training 
data, this method with an easy-to-use interface will enable on-demand 
mapping from the desired time period with minimal user input. As a 
result, the tool will provide up-to-date land cover maps at multiple spatial 
resolutions in order to enable timely, up-to-date, and accurate decision-
making cababilities. 

3.2 Python toolbox design 

3.2.1  ArcGIS Pro Python toolbox background 

ArcGIS Pro contains a suite of commercial, closed-source geospatial 
processing tools. These tools can be accessed within the ArcGIS Pro 
Graphical User Interface (GUI) through the ArcToolBox functionality. If 
custom functionality integrating third-party Python libraries is desired, 
then custom Python toolboxes must be built. 

A Python toolbox can be directly integrated into the collection of existing 
geoprocessing tools found in ArcToolBox. The difference is that the Python 
toolbox must be created entirely in Python based on object-oriented 
programming structure and a toolbox template. With some effort, Python 
toolboxes can leverage third-party scientific Python libraries directly 
within ArcGIS Pro and thereby provide advanced functionality for custom 
applications visualized through the ArcGIS Pro GUI. 
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Python toolboxes in ArcGIS have some limitations that make them 
difficult to work with. The Python toolboxes are finicky and prone to 
various errors. Multithreading capabilities are severely limited. For 
example, in order to use parallel processing the toolbox must be 
meticulously structured with (1) a single Python toolbox and (2) separate 
Python scripts that serve as importable modules. Further, the inherent 
parallel processing of joblib and Scikit-learn libraries is incompatible. The 
Python toolbox designer must rewrite their code structure and function 
using the more cumbersome multiprocessing Python library.  

3.2.2  ETP Land Cover mapping Python toolboxes 

A set of image preprocessing tools and cloud masking tools are included in 
the custom Python toolbox as shown in Figure 4. The main functionality of 
the custom ETP Land Cover toolbox is the three land cover type 
classification tools created based on single-date Sentinel-2, two-date 
Sentinel-2, and two-date Landsat 8 classification models. The single-date 
Sentinel-2 classification tool produces a 6-class land cover type map, 
whereas both of the two-date classification tools produce 11-class land 
cover type maps. The classes represented in each classification tool are 
shown in Table 2.  
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Figure 4. View of the land cover tools as shown integrated into ArcGIS Pro as a Python 
toolbox. The tools are integrated as a subset of the Enhanced Terrain Processing Toolkit. 

 

Table 2. Land cover types generated by the single date and two date classification tools. 

Single-Date Classification Tool 
Land Cover Types 

Two-Date Classification Tool Land 
Cover Types 

Water Water 
Barren Barren 

Scrub, Shrub, Grasses Scrub, Shrub, Grasses 
Built-up Area Deciduous Trees 
Wetlands Evergreen Trees 
Trees Herbaceous Wetlands 

- Woody Wetlands 
- Perennial Water 
- Built-up (Low Density) 
- Built-up (High Density) 
- Cropland 
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In order to enable the land cover classification workflow in ArcGIS Pro, we 
develop an ArcGIS Pro Python toolbox. The Python toolbox works in the 
same manner as a standard ArcGIS tool but is entirely written in Python 
and can accommodate custom capabilities unavailable in ArcGIS and third 
party Python libraries. 

The Python toolbox is designed to include image chunking and parallel 
processing in order to enable faster data processing and processing on 
computers with reduced computing capability. The general process works 
the same for each of the three tools, just with different input imagery and 
models. First, Sentinel-2 or Landsat 8 imagery is input into the tool, and 
the imagery is split into equally sized fractions (chunks) equal to the 
number of central processing units (CPUs) on the user’s machine. Each 
fraction of an image, or image chunk, is then run in parallel on the user’s 
machine to predict the land cover type as shown in Figure 5. The image 
chunks on each CPU are read only partially into memory at once using a 
block-by-block reading and writing method. In this case, each image 
chunk is read and written in 400 × 400 pixel blocks. This procedure saves 
computer memory usage by reading smaller portions of the image instead 
of all at once, which can be memory intensive. Once parallel processing of 
all image chunks is completed, the image chunks are mosaicked together 
at the end to combine the output back into a single file. Overall, this 
process saves time by running multiple processing tasks at once through 
parallelization. 
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Figure 5. Parallel processing and image chunking process that enables faster computation 
and compatibility on systems with limited memory within ArcGIS Pro tools. 

 

3.3 Training data 

Training data in machine learning is the backbone of a successful 
algorithm and accurate classification. This data is used by the algorithm to 
recognize and understand patterns and create information that it will use 
for predictions. Figure 6 represents an example of three land cover types 
used to create training data. It can be seen that the pixel distribution 
within each of the training samples is uniform as to equally represent the 
signal within each class. This training data is extracted from the 
multispectral Sentinel-2 and Landsat 8 image stacks shown in Figure 6. 
Since both satellite sensors have different spatial and spectral resolutions, 
a unique training dataset is built for each land cover classification tool. 
This training data is a critical part of the classification tool, thus each class 
is equally represented by the training samples and all pixels were 
uniformly selected and representative of the entire landscapes. 
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Imagery from both sensors was used for each site so as to avoid bias when 
generating training data and training the classification models. For each 
dataset and site, corresponding winter (leaf-off) and summer (leaf-on) 
images were downloaded and used to build the training data for the two 
date classifiers, whereas summer (leaf-on) imagery was used for the 
Sentinel-2, single-date classifier. 

Figure 6. Example of three land cover types used as training data for the land cover 
classification tools. 

 

3.4 Model training 

Once training data is created, an ensemble of three linear SVM models is 
built and 80% of the training data is applied. The remaining 20% is 
withheld for accuracy assessment. The SVM is fit in order to enable the 
model to classify land cover type. The model is trained using Python and 
the SVM function with Scikit-learn. Separate models were created for the 
Landsat 8 two-date classifier, Sentinel-2 two-date classifier, and Sentinel-
2 single-date classifier. The trained models are then transferred and 
written into ArcGIS Pro Python toolboxes to enable the prediction of land 
cover type across different regions based on user input. These trained 
models can later be updated based on improvements to the model, such as 
expansion to outside CONUS areas. 
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4 Example Output and Model Evaluation  
4.1 Example output 

The user can create an output land cover type map by acquiring Sentinel-2 
or Landsat 8 imagery in the surface reflectance format (ARD for Landsat 
8, L2A for Sentinel-2) and by using the ETP toolbox preprocessing tools to 
composite the imagery. The land cover map can be produced by running 
the respective tool of Landsat 8 two date, Sentinel-2 two date, or Sentinel-
2 single date. The total time to produce a land cover map depends on the 
user’s machine, but for a laptop with an 8 core CPU and 16GB memory, 
the process took about 20 minutes total, including preprocessing.  

Figure 7 shows example output for the Sentinel-2 two-date classification 
tool over three different locations. Visually comparing the tool output with 
respect to the original Sentinel-2 images, we can see that across all three 
test sites, the water class, wetlands, and built-up areas (both high and low 
intensity) are well classified by the tool. For example, open water bodies as 
seen in the Savannah, Georgia site as well as smaller rivers and lakes as 
shown in Minneapolis and Washington, DC are well defined by the 
classification tool. Specifically, the distinction between wetland and water 
features can be seen in the Savannah, Georgia site. Wetland classification 
is a challenging problem as the spectral information can easily be confused 
with other land cover classes due to the lack of a single, unifying land 
cover feature as well as wetlands’ highly dynamic nature (e.g., variation in 
water levels) causing confusion between the mixed pixels and surrounding 
areas. Nevertheless, by using two images from different dates, the 
algorithm can utilize the changes in spectral differences between the 
scenes and aid in the identification of wetlands in comparison to less 
dynamic land cover types that may be more uniform (e.g., water, bare 
areas). Similarly, this is also captured when mapping high-intensity versus 
low-intensity built-up areas. As seen by the Washington, DC, example, the 
classification tool is able to distinguish between the densely downtown 
areas of Washington, DC, in comparison to the suburban regions 
surrounding the city. 
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Figure 7. Example output for the Sentinel-2 two-date classifier over three different sites. 

 

Figure 8 focuses on the Minneapolis test site and shows a comparison 
between the Sentinel-2 single-date and two-date classification land cover 
output with respect to one another as well as to the 30m GeoCover and 
2016 NLCD. Comparing the two-date classification output with the single-
date classification, a clear distinction occurs in the bare areas (single date) 
versus shrub/scrub/grass land cover type (two-date). The single-date 
classifier identifies the land cover makeup for the area to be mostly bare, 
whereas the two-date classifier identifies the region as mostly low 
vegetation with deciduous and evergreen trees. Additionally, both tools 
show similar spatial patterns of urban areas; however, many of the mixed 
pixels in the urban areas are classified as bare area in the single-date 
classifier. 
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Figure 8. Comparison of Sentinel-2 two-date and single-date classification with reclassified 
GeoCover and 2016 NLCD maps over Minneapolis, MN. 

 

Comparing the two-date and single-date classification output to the 30m 
GeoCover and NLCD 2016, we can see that the water and wetland classes 
are most consistent across all comparisons, followed by the urban land 
cover class. Both GeoCover and NLCD 2016 show a highly dense land 
cover type for Minneapolis, whereas the Sentinel-2 classification product 
shows a built-up land cover type with a mix of shrub/scrub/grass and 
evergreen trees. This is due to the way the way the different models are 
trained, and it appears that the NLCD and GeoCover product tend to label 
mixed pixels as built-up area. This is not to say that either the Sentinel-2 
product or the NLCD/GeoCover is technically wrong, only that inherently 
they are favoring a more dominant class. For example, the Sentinel-2 tool 
incorporates the dynamic changes in vegetation/tree cover over the two 
scenes. It is important to note that the spectral and spatial resolution of 
Sentinel-2, GeoCover, and NLCD 2016 are all different, which can also 
impact the result. NLCD and GeoCover derive the land cover product from 
a dense time series of image composites, whereas both the Sentinel-2 land 
cover tools are based on either a single image (summer/single-date 
classifier) or on leaf-on and leaf-off images (Sentinel-2 two-date classifier).  

Figure 9 represents an example of an instance where the Sentinel-2 land 
cover product is showing an agreement of land cover type with the 
GeoCover product but a different land cover type than the NLDC product. 
The example shows a golf course marked as a shrub/scrub/grass land 
cover type both within the two-date Sentinel-2 and GeoCover, whereas the 
NLCD identifies that same golf course as a low-intensity built-up area. It 
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appears the NLCD product is classifying land use whereas the other two 
products are classifying land cover. This land use versus land cover 
distinction also likely holds true for other land cover classes in addition to 
built-up. For comparison reasons, we have also provided an ESRI imagery 
basemap layer shown in red, green, blue (RGB) as a reference.  

Figure 9. Comparison of Sentinel-2 two-date classifier with GeoCover and NLCD products over 
a golf course, highlighting the differences between land use and land cover reflected among 

the classifiers. 

 

The Sentinel-2 two-date tool is preferred over the others due to higher 
spatial resolution than Landsat 8, additional land cover classes than the 
single date, as well as more spatially consistent performance than the 
single date. Example output for the Landsat 8 two-date tool and Sentinel-2 
single-date tool are shown in Figure 10.  
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Figure 10. Landsat 8 (two date) and Sentinel-2 (single date) imagery and resulting land cover 
map over South Florida and Southern California respectively. 

 

4.2 Accuracy assessment 

The accuracy assessment is a critical part of any image classification 
project, and a project should not be considered complete without it. To 
determine an initial assessment of accuracy, we withheld 20% of the 
samples from the training data at random and proportional to each class. 
This withheld data was not used to train each classifier but was used only 
for model evaluation. This evaluation provides insight into the accuracy of 
the models. Note that accuracy across different landscapes and terrain are 
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likely to vary based on the values shown in Table 3 and Table 4 because 
these do not include additional points from a test dataset, which will be 
conducted in an updated version of our algorithm in a subsequent report. 
These variations could be better quantified through a more time-
consuming accuracy assessment that is beyond the scope of this report, as 
the models are undergoing improvements annually. The accuracy metrics 
for the Sentinel-2 single-date classifier, Sentinel-2 two-date classifier, and 
Landsat 8 two-date classifier are shown in Table 3 and Table 4.  

The overall average accuracy for Sentinel-2 single-date classifier is about 
85% as compared with about 82% for the Sentinel-2 two-date classifier. 
These metrics exceed the overall goal of 80% or greater accuracy as 
dictated by the mission requirements. There are several reasons why the 
Sentinel-2 single-date classifier accuracy was slightly higher. One reason is 
attributed to lower class precision; it is much easier to map 6 classes than 
it is to map 11 classes. The single-date classifier only needs to determine if 
a pixel is tree, whereas for the two date classier it needs more precision 
and must specify if this pixel is evergreen tree or deciduous tree. Thus, a 
lower accuracy is expected. It is also likely that some errors can be 
attributed to misclassifications like this example.  

Of the different classes for the two-date Sentinel-2 classifier, we found 
relatively lower accuracies for both built-up categories, woody wetlands, 
bare areas, and low vegetation. Through development and testing we 
found that woody wetlands were sometimes confused with other tree 
categories, while bare areas and built-up areas were often confused with 
each other due to relatively similar spectral signatures, especially across 
semi-arid landscapes. Through testing, we also observed confusion 
between evergreen and deciduous trees in some testing locations. Figure 11 
shows a large patch of mostly deciduous trees that were classified as 
evergreen trees. After looking at the input training data, we noticed that 
evergreen trees in some regions (e.g., from southern US and western US) 
can resemble the spectral signal of deciduous trees in other locations 
which can make class separability difficult. Figure 11 also shows an area 
that is clearly a cropland land use type, but in both dates of imagery the 
land cover type was bare. Thus, this is not an error in the classifier as it is 
merely a difference of land use and land cover. It is worth pointing out as 
this classifier captures land cover, not land use.  
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Figure 11. Example of Sentinel-2 image and associated land cover type output showing 
misclassification of evergreen and deciduous trees. 

 

We found the highest accuracies for the water, deciduous trees, evergreen 
trees, and herbaceous wetland categories with F1-scores of 99%, 90%, 
89%, and 93% respectively. However, we caution that F1-scores will vary 
across different locations and likely be lower in reality, especially once 
compared against a separate validation dataset. 

Some of the error is attributed to heterogeneous pixels containing more 
than one land cover type or not containing a clear majority land cover 
type, thereby making accurate prediction difficult. For example, tree cover 
that partially obstructs a built-up surface such as a road. This could be 
classified as either tree cover or built-up. Neither classification would be 
wrong, but neither would be fully accurate either. These types of issues 
also likely explain some of the reported lower precision and recall for 
built-up classes and scrub/shrub/grass. 

The Landsat 8 two-date classifier results are shown in Table 3. The 
accuracy, as expected, is relatively similar to the other classifiers with 86% 
overall accuracy. Compared with the Sentinel-2 two-date classifier, the 
Landsat 8 two-date classifier appeared to perform better in several 
categories such as low vegetation and woody wetlands. The Landsat 8 
classifier performed worse on dynamic vegetation (cropland)–likely due to 
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fewer near-infrared bands, which can be helpful discrimination of 
different vegetation types. Further, we note the accuracies are somewhat 
different because different training data were collected for each of the 
classifiers, and we note that slightly more training data used was in the 
Landsat 8 classifier. 

Table 3. Accuracy metrics for the Sentinel-2 and Landsat 8 two-date classifier for each of the 
11 land cover classes. Precision, recall, and F1-scores are shown with pixel count analyzed 

for each class. 

 Sentinel-2 Landsat-8 

Class Precision Recall F1-
Score 

Pixel 
Count Precision Recall F1-

Score 
Pixel 

Count 

Water 0.98 0.99 0.99 203 0.98 0.99 0.99 448 

Bare Areas 0.65 0.90 0.75 142 0.71 0.92 0.82 169 

Low Vegetation 0.78 0.76 0.77 339 0.84 0.91 0.88 369 

Deciduous Trees 0.89 0.92 0.90 237 0.90 0.94 0.92 346 

Evergreen Trees 0.91 0.86 0.89 236 0.92 0.90 0.91 450 

Herbaceous Wetlands 0.97 0.90 0.93 125 0.94 0.89 0.92 149 

Woody Wetlands 0.66 0.77 0.72 35 0.81 0.80 0.81 192 

Temporary Water 0.94 0.79 0.86 28 0.80 0.91 0.86 89 

Built-Up 0.71 0.77 0.74 143 0.75 0.87 0.81 217 

Build-Up (Low 
Intensity) 0.73 0.69 0.71 192 0.81 0.77 0.79 203 

Dynamic Vegetation 0.83 0.80 0.81 288 0.77 0.74 0.76 312 

Overall Accuracy 0.82 0.86 
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Table 4. Accuracy metrics for the Sentinel-2 single-date classifier for each of the 6 land cover 
classes. Precision, recall, and F1-scores are shown with pixel count analyzed for each class. 

Class Precision Recall F1-Score Pixel Count 

Water 0.97 0.97 0.97 715 

Bare Areas 0.86 0.79 0.82 219 

Low Vegetation 0.80 0.91 0.85 497 

Trees 0.92 0.88 0.90 618 

Wetlands 0.81 0.84 0.83 110 

Built-Up 0.72 0.77 0.75 277 

Overall Accuracy 0.85 

While the land cover mapping tools can likely be used on imagery outside 
of CONUS, the tools have not been evaluated or designed for this purpose. 
It is likely that reduced accuracy would be found if a user applies the tool 
to Outside Continental United States (OCONUS) imagery because training 
data was not yet collected there (future additions will include OCONUS 
imagery compatibility). Further, the single-date classifier relies on imagery 
from leaf-on season (e.g., not winter), while the two-date classifiers rely on 
snow-free imagery, one from leaf-on (summer/spring) and one from leaf-
off (winter) time periods. Any pixels containing snow will result in 
misclassification as a different category such as built-up because there is 
not yet a snow category. Future iterations of the model plan to address the 
snow issue by including a snow cover class, as well as expanding the tools 
to include OCONUS areas. 

4.3 Advancements with synthetic training data for sensor agnostic 
mapping 

As mentioned in the methodology section, the ultimate goal is to create an 
automated land cover type classification model and associated decision 
support tools to execute the model for an end user on more imagery than 
just Landsat 8 and Sentinel-2. Such tools allow the end user to generate 
up-to-date land cover type maps at higher temporal and spatial resolutions 
in comparison to outdated and coarser land cover products. Figure 12 
highlights the slightly modified methodology used to achieve this goal. 
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Figure 12. Expanded methodology for sensor-agnostic approach using Theil-Sen regression to 
transform training data of Sentinel-2 to represent synthetic data for the target sensor. 

 

Sentinel-2 and Landsat 8 imagery are used to create training data for 
selected land cover types across different ecological regions within 
CONUS. This data is then fed into a robust regression using Theil-Sen to 
transform the existing Sentinel-2 training data into synthetic training data 
representative of the target sensor, such as WorldView-3, Pleaides, or 
other airborne assets. The linear transformation from the Theil-Sen 
regression will be based on each Sentinel-2 band and corresponding, 
similar spectral bands from other sensors. Imagery will be aggregated and 
aligned to the same pixel size to match Sentinel-2. The resulting linear 
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relationships can be applied to the Sentinel-2 training data and can 
convert it into synthetic training data for the other sensor. 

Ultimately, this sensor-agnostic model would be wrapped into a Python-
based ArcGIS Pro toolbox to support rapid land cover type mapping for 
multispectral satellite and aerial imagery by end users. This would enable 
use for more sensors than just Landsat 8 or Sentinel-2; it could also 
include digital globe assets and more without the need to manually 
generate additional training data.  

There is potential to generate synthetic training data for Landsat 8 using 
the training data created with Sentinel-2 polygons and Sentinel-2 spectral 
values. This same methodology could be applied to other imagery assets of 
higher spatial resolution, such as Worldview-3. The generation of 
synthetic training data would save significant time without the need to 
manually label pixels for every given sensor. 

For prototyping purposes, we acquired coincident cloud-masked Landsat 
8 and Sentinel-2 imagery from the same acquisition date for Washington, 
DC, Los Alamos, New Mexico, and northern California, representing three 
unique climates. Both sets of imagery were resampled to 60m spatial 
resolution in order to align pixels to the lowest common spatial resolution 
of the two sensors. To get a spectrally balanced sample from each scene, 
we collected 600 points in each scene generated by stratified random 
sampling. The stratification was based on equal area sampling of the 
Normalized-Difference Vegetation Index (NDVI) with 6 equal interval 
classes (e.g., NDVI 1–0.66, 0.66–0.33, 0.33–0, etc.). Theil-Sen regression 
was performed between Sentinel-2 bands and Landsat 8 bands in order to 
generate a linear relationship to transform our Sentinel-2 training data 
into synthetic Landsat 8 training data. Unlike ordinary least squares 
regression, Theil-Sen is robust and accounts for the offsetting effects of 
outliers. The spectral bands are slightly different between Landsat 8 and 
Sentinel-2, so we regressed the most similar bands together (i.e., Landsat 
8 Band 2 with Sentinel-2 band 1, Landsat 8 band 3 with Sentinel-2 band 2, 
Landsat 8 band 4 with Sentinel-2 band 3, Landsat 8 band 5 with Sentinel-
2 band 7, and Landsat 8 band 6 with Sentinel-2 band 8). The process of 
generating synthetic training data for Landsat 8 is used to show how 
synthetically generated data could save time for applying the classifier to 
other sensor types. 
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Figure 13 shows the relationship between each Landsat 8 band and the 
synthetically generated Landsat 8 data based on Theil-Sen regression 
between the Sentinel-2 and Landsat 8 imagery. Overall, the relationships 
are strong; each band has R-squared exceeding 0.74. This suggests that 
transforming the Sentinel-2 training data based on this relationship may 
lead to accurate models for Landsat 8. This relationship could easily be 
applied to generate training data and classification models for other high 
resolution sensors such as Worldview. 

Figure 13. Relationship of Landsat 8 data to synthetically generated Landsat 8 data shown 
for DC, New Mexico, and northern California data points. 

 

Theil-Sen regression indicated promising results. Table 5 shows the root 
mean square error (RMSE) for the Theil-Sen regression of each Sentinel-2, 
Landsat 8 band combination across the three sites (New Mexico, 
California, DC) and compared with a single site (California). In each case 
and as expected, the synthetically generated Landsat 8 imagery (labeled as 
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“predicted”) had a lower RMSE than the original Landsat 8 imagery did as 
compared with the Sentinel-2 imagery for each band. We show the RMSE 
for the single California site to demonstrate that model error is further 
reduced if the Theil-Sen regression is applied using location-specific data. 
RMSE averaged 165 reflectance units (single site) versus 294 reflectance 
units (three site). From the Theil-Sen regression, coefficients and intercept 
can be extracted and applied direcly to the training data for 
transformation into synthetic data. This result suggests that synthetic 
training data accuracy would be best by using local site imagery only for 
transforming the Sentinel-2 data into synthetic training data for the sensor 
of interest. Further testing and exploration should be conducted to 
evaluate the results from training classifiers with this synthetic data. 

Table 5. Relationship of Landsat 8 data to synthetically generated Landsat 8 data shown for 
DC, New Mexico, and northern California data points. 

Band Combination RMSE S2, 
actual L8 
(1 image) 

RMSE S2, 
predicted L8 
(1 image) 

RMSE S2, actual 
L8 (3 images) 

RMSE S2, 
predicted L8 
(3 images) 

S2 Band 2, L8 Band 2 241 144 354 204 

S2 Band 3, L8 Band 3 233 155 342 223 

S2 Band 4, L8 Band 4 259 161 377 251 

S2 Band 8A, L8 Band 5 395 229 522 491 

S2 Band 11, L8 Band 6 388 174 486 328 

S2 Band 12, L8 Band 7 322 131 453 266 

4.4 Installation and usage of ArcGIS Pro Tools 

The land cover mapping capabilities have been written into a custom 
ArcGIS Pro Python-based toolbox compatible with any windows computer 
with ArcGIS Pro version 2.5 or higher and 8GB RAM or more. Easy-to-
follow instructions on installation, usage, and use cases are available in 
separate tutorial and user guide documents. 
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Conclusion 

This project led the development of pretrained machine learning 
classifiers to create land cover type models and associated decision 
support tools for use in the CONUS region. The pretrained machine 
learning models were created for use with a single date of Sentinel-2 
surface reflectance imagery as well as two dates of Sentinel-2 or two dates 
of Landsat 8. Each of the three separate satellite imagery models were 
then integrated into ArcGIS Pro GUI using Python toolboxes with parallel 
processing and image chunking to serve as easily accessible decision 
support tools for U.S. Army Corps of Engineers (USACE) customers. The 
decision support tools enable a user to create a land cover type map 
without the need to generate training data or to rely on costly or outdated 
static maps. Further, the ArcGIS Pro tools enable a user to generate a map 
in a matter of minutes with minimal user input. The land cover type 
classes can easily be recategorized for interchangeability with other land 
cover maps used in terrain analysis applications such as VizNav. 

The estimated overall accuracy of the three pre-trained models is 82% 
(Sentinel-2 two date), 86% (Landsat 8 two date), and 85% (Sentinel-2 one 
date), which suggests generally good performance across most land cover 
types. After testing the imagery across varied ecoregions of CONUS, the 
study found future areas of improvement to the models should include 
better separability between evergreen and deciduous trees, as well as the 
separability between bare areas and built-up areas. These errors are 
attributed to spectral similarities found across the geographically 
distributed training imagery. 

Ultimately, the semi-automated land cover mapping tools serve as a 
foundation on which to build more advanced land cover mapping tools. 
We also showcased a methodology that will leverage training data built on 
one sensor platform and apply Theil-Sen robust regression to generate 
synthetic training data for other imagery platforms. This would expand the 
sensor capabilities and add additional models.  

Future improvements under this project will expand the geographic 
coverage of the models outside of CONUS, incorporate advanced deep 
learning models for more robust classification, account for snow cover in 
order to increase versatility, and expand into higher spatial resolution 
sensors. 
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