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Dimensional Analysis of Structural Response in 
Complex Biological Structures

Abstract

The solution to many engineering problems is obtained through the combination of analytical, computational and 
experimental methods. In many cases, cost or size constraints limit testing of full-scale articles. Similitude allows observations 
made in the laboratory to be used to extrapolate the behavior to full-scale system by establishing relationships between the 
results obtained in a scaled experiment and those anticipated for the full-scale prototype. This paper describes the application of 
the Buckingham Pi theorem to develop a set of non-dimensional parameters that are appropriate for describing the problem of a 
distributed load applied to the rostrum of the paddlefish. This problem is of interest because previous research has demonstrated 
that the rostrum is a very efficient s tructural s ystem. T he u ltimate g oal i s t o e stimate t he r esponse o f a  c omplex, bio-inspired 
structure based on the rostrum to blast load. The derived similitude laws are verified through a  series of numerical experiments 
having a maximum error of 3.39%.

1. Introduction

The theory of similitude is applicable for testing a scaled, engineering model which is a proxy for the full-
scale prototype. A model and prototype are said to have similitude if they have geometric similarity, kinematic
similarity and dynamic similarity [9]. Dynamic similarity requires both geometric and kinematic similarity.
Hydraulic and aerospace engineering historically are two application areas where similitude has been a mainstay
for experimentation using scale models. Any new design concept needs to be scrutinized by rigorous theoretical
and experimental verification before it enters the production/manufacturing phase. Tests are generally performed on
a model that is similar, in a precise sense, to the prototype. Many times, the parameters involved are so complex
that they make prototype testing difficult. In such cases it is beneficial if the tests are done on a model that has

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2019.12.001&domain=pdf
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low manufacturing cost and is easy to manage, relative to the prototype. The behavior of the prototype can be
predicted from the model by defining a set of relationships that relates relevant characteristics of the prototype to
the model [9].

Similarity is defined by a unique set of characteristic parameters that ensure that the non-dimensional governing
equations are the same for all similar systems [11,26]. Creating similarity amongst systems assists in forecasting
performance of a system based on the results obtained from other similar systems that have already been analyzed
or can be studied more easily than the original system. In 1914, E. Buckingham formalized the original method
used by Lord Rayleigh and developed the proof of the Pi theorem for special cases. The theorem carries his name
now [6]. One of the more prominent examples of the power of the application of Buckingham Pi analysis is the
calculation made by the British Mathematician Taylor in the late 1940s to compute the yield of the first atomic
explosion by making estimates based on the photographs of the explosion [24,25].

In the preliminary stages of applying Buckingham Pi theorem; the principal quantities controlling the problem
are determined along with their dimensional relationships [12]. The Buckingham Pi theorem provides a tool to
reduce the number of parameters in a problem that need to be investigated. Safoniuk et al. [19] made use of
the Buckingham Pi theorem to scale a three-phase fluidized bed. This study made use of dynamic and geometric
similitude for deriving the scaling laws. Chouchaoui et al. [7] developed scaling laws for the elastic behavior of
a laminated cylindrical tube subjected to various loading conditions such as tension, torsion, bending, internal and
external pressure, etc. Yazdi and Rezaeepazhand [29] used similitude to design scale models to calculate the flutter
pressure of delaminated, composite beam-plates in a supersonic airflow. Ramu et al. [15] established structural
similitude for elastic models built from different materials. Their work made use of finite element analysis software
for validating the similitude relationships between the model and the prototype. Simitses et al. [16,21–23] carried out
several research efforts focused on symmetrically laminated plates to identify the similarity conditions between the
model and the prototype. Their research makes use of scaling laws for designing scaled models and uses theoretical
methods to compute the model data to predict the behavior of the prototype. Their method restricts the application
of similitude principles because an exact or analytical form of the solution must be derived prior to using this
methodology for a given set of problems. Ungbhakorn and Singhatanadgid [27] derived the similitude laws for
anti-symmetrically laminated plates by applying the similitude transformation directly to the governing differential
equations of buckling. In their work, the scaling laws for buckling loads on laminated plates with biaxial loading
conditions were derived.

Generally, similitude is used to scale the parameters from a larger-scale prototype to a smaller-scale model. In
the current study, similitude is used to scale results obtained from a small-scale computational prototype to a larger-
scale model. The computational prototype in the current research is the rostrum of the paddlefish. In preliminary
computational experiments, the rostrum has exhibited superior energy dissipation and load bearing capacity when
compared to a homogeneous material with a similar geometry [17]. Accordingly, the aim of this study is to develop
a set of scaling parameters to scale the computational prototype to a larger size and verify the similitude laws.

This paper is organized as follows: Section 2 gives a general background about the characteristics and function
of the rostrum. Section 3 describes the methodology of applying the Buckingham Pi theorem for a classical problem
with known solution. Section 4 demonstrates the use of Buckingham Pi theorem to derive a set of non-dimensional
Pi terms for a structure subjected to blast load. Section 5 presents the application of the scaling laws developed in
Section 4 as well as numerical verification of the derived similarity parameters using finite element analysis.

2. Rostrum characteristics and function

The paddlefish (Polyondon spathula) can be easily distinguished by the presence of its elongated rostrum as
shown in Fig. 1. It is among the most primitive of bony-finned fishes (Osteichthyes, Actinopterygil) and, together
with sturgeon, comprises an order of secondary cartilaginous fishes, the Acipenseriformes [14].

2.1. Rostrum geometry

The rostrum of paddlefish is a unique structure comprised of a network of cartilage, tissue, and interlocking
star shaped bones called the stellate bones. Fig. 2 shows the stellate bone arrangement in a rostrum of paddlefish.
As displayed in Fig. 3, there is interplay between the complex hierarchical lattice architecture and varying material
properties in the rostrum. This is typical of biological structures [4,5] and produces uncertainty as to what is dictating
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Fig. 1. The paddlefish.

Fig. 2. Paddlefishrostrum and stellate bone arrangement.

the structural response. Fig. 3(a) shows the cross section of the rostrum highlighting its three components. Fig. 3(b)
displays the outer soft tissue layer of the rostrum. Fig. 3(c) shows the inner hard cartilage of the rostrum, which
has an elastic modulus an order of magnitude stiffer than the tissue. Fig. 3(d) is representative of the inner soft
cartilage of the rostrum whose elastic modulus is an order of magnitude softer than the hard cartilage.

2.2. Rostrum function

The function of the long, paddle-shaped snout is an open question that has received considerable attention.
The sensory function of the rostrum enables the fish to detect the type of current [10] allowing them to feed
efficiently in both laminar and turbulent currents. Additionally, the sensory function allows the paddlefish to detect
tiny zooplanktons without using their visual, chemical, or hydrodynamic senses [28]. The function of the rostrum
changes at various stages of the life of paddlefish. In the juvenile stage, the shape of the rostrum is linear and is
almost one-third the body length. The primary function of the rostrum at the juvenile stage is sensory. During the
sub-adult stage, the shape of the rostrum is spatulate and its primary function is hydrodynamic. During this stage,
the paddlefish are active filter feeders. In the adult stage, the shape of the rostrum is linear and the primary function
is mechanical.
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Fig. 3. Components of rostrum.

Based on experimental data collected for paddlefish kept in round tanks in the laboratory [20], paddlefish increase
their body velocity by about 60 percent during filter feeding. Fish move by contracting muscles that propel their
body in the forward direction. During filter feeding, a paddlefish takes in enormous amounts of water in its mouth.
The added weight of this water requires more effort during swimming. In addition to this effort, Paddlefish use
forward body velocity to transport this water at high velocity. The lift generated by the rostrum during this phase
tremendously reduces the amount of effort required by the fish to move at high speed [3,13,17,18].

Fluid–structure interaction (FSI) analysis of the rostrum of the paddlefish revealed interesting hydrodynamic
characteristics of the rostrum [13]. The unique geometrical shape, lightness and strength of the paddlefish rostrum
promote swimming enhancements when the fish is swimming both against and with the current. It was observed
from the FSI simulations that the fish’s velocity increased when the fish was swimming in the direction opposite
to the flow. When the fish is swimming against the flow, the shape and position of the rostrum generates vortices
which help propel the fish in a forward direction. The vortex generation helps the paddlefish maintain the high
speed needed for filter feeding and also provides the much-needed lift that prevents a nosedive into the bottom.
When the fish is swimming in the direction of the flow, a small velocity enhancement was observed.

3. Application of Buckingham Pi theorem to a uniform load on fixed plate

As an example of application of the Buckingham Pi theorem, consider a rectangular plate with all edges fixed
with a uniformly distributed load w over the entire plate as shown in Fig. 4. This case is chosen for analytical
validation of similitude because of the resemblance of its boundary conditions to the boundary conditions that
will be used in the blast analysis. The critical load Pcr of the plate depends on the distributed load w[F L−1],
the Young’s modulus E[F L−2] of the plate material, the cross sectional moment of inertia I [L4] of the plate, the
vertical deflection u[L] and the length of the plate l[L]. Pcr can be written for this case as follows:

Pcr = g(w, E, I, u, l) (1)

Application of the Buckingham Pi theorem to a general problem can be described as follows. Consider a
dimensional quantity F that represents a physical phenomenon and suppose that the dimensional quantities or
factors influencing this phenomenon are δ1, δ2, δ3, . . . δn . The relationship between F and the dimensional parameters
δ1, δ2, δ3, . . . δn is given by the following equation:

F = g(δ1, δ2, δ3, . . . δn) (2)

In Eq. (2), F is the dependent variable and δn(n = 1, 2, 3, . . . , n) are the independent variables. Eq. (2) can be
non-dimensionalized and expressed as shown in Eq. (3):

π1 = f (π2, π3, π4, . . . πn−k) (3)
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Fig. 4. Uniformly loaded plate with all edges fixed.

where π2, π3, π4, . . . πn−k are the dimensionless products of n physical parameters and k is the number of
fundamental dimensions (Force, Length, Time) or (Mass, Length, Time) involved in the physical phenomenon.

The similitude requirement stipulates that the π terms π2, π3, π4, . . . πn−k must be equal for the model and the
prototype if the functional relationship, (i.e., (π1)m = (π1)p ), is to be satisfied.

In this example, the number of physical variables, n, equals 6 and the number of dimensions, k, equals 2.
Therefore, there are n − k = 4 Pi groups. The quantities Pcr [F L−2], w[F L−1], E[F L−2], I [L4], b[L], t[T ], and
u[L] need to be represented in terms of non-dimensional Pi products similar to Eq. (3). The repeating variables
are selected in such a way that all the relevant dimensions are represented. For this example (E, l) are selected as
repeating variables that will be used to nondimensionalize the remaining quantities.

Pcr = g(w, E, I, u, l) (4)

π1 = Pcr Ealb

π1 = F( F
L2 )

a
Lb

a = 1; b = −2

π1 =
Pcr

E L2 (5)

π2 = W Ealb

π2 =
F
L2 ( F

L2 )
a
Lb

a = −1; b = 0

π2 =
W
E

(6)

π3 = I Ealb

π3 = L4( F
L2 )

a
Lb

a = 0; b = −4

π3 =
I
l4 (7)
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Table 1
Similitude relations.

Physical parameters Scale factor

Length S
Area S2

Volume S3

Linear displacement S
Moment of inertia S4

Point load SE S2

Line load SE S
Uniformly distributed surface load SE
Stress SE

π4 = uEalb

π4 = L( F
L2 )

a
Lb

a = 0; b = −1

π4 =
u
l

(8)

The Pi products represented by Eqs. (5) through (8) are dimensionless. Based on this analysis, the prediction
equation given by Eq. (3) is:

π1 = f (π2, π3, π4) (9)

Hence,
Pcr

El2 = f (
W
E

,
I
l4 ,

u
l

) (10)

The quantities affecting the physical phenomenon under study are integrated in Eq. (10) in terms of the dimension-
less Pi products. The functional relationship will be satisfied, (i.e., (π1)m = (π1)p), if the three non-dimensional
parameters π2, π3, π4 are equal for the model and the prototype.

Eq. (10) is a generalized equation and can be used to represent any system that is described by the same quantities.
Consider the dimensionless term (π3)m = (π3)p

Therefore,
Im
lm

=
Ip
l p

Im = Ip( l4
m
l4
p

)

where, S =
Lm
L p

Now, consider the dimensionless term (π1)m = (π1)p
Wm
Em

=
Wp
E p

Wm = Wp( Em
E p

)
Wm = Wp ∗ SE
where, SE =

Em
E p

Using the repeating variables E and l listed above, Table 1 shows how selected variables are non-dimensionalized.

3.1. Analytical verification of similitude relations

Consider a rectangular plate, with all edges fixed as shown in Fig. 4, loaded by a uniformly distributed w over
the entire plate. The length of the plate L is 216 inch, Young’s Modulus E is 435.11e06 psi , width b is 36 inch,
and thickness t is 6 inch subjected to a uniform load w of 10 lbs/in2. Table 2 shows the effect of scaling on
parameters such as weight, maximum displacement, and maximum stress. The values of the constants α, β1 can be
obtained from Table 11.4 in Roark’s formulas for stress and strain [30]. From Tables 1 and 2, it can be seen that
the maximum displacement and maximum stress follow the similitude relation derived using the Buckingham Pi
theorem.
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Table 2
Analytical verification of similitude relation.

Scale Weight Maximum displacement Maximum stress

ρLbt Umax =
αwb4

Et3 σmax =
−β1wb2

t2

S = 1 ρ ∗ (216 ∗ 36 ∗ 6) = ρ ∗ 46656 ρw
E ∗ 7776 −β1w ∗ 36

S = 2 ρ ∗ (432 ∗ 72 ∗ 12) = ρ ∗ 186624 ρw
E ∗ 7776 ∗ 2 −β1w ∗ 36

= ρ ∗ 46656 ∗ S3
=

ρw
E ∗ 7776 ∗ S

S = 4 ρ ∗ (864 ∗ 144 ∗ 24) = ρ ∗ 2985984 ρw
E ∗ 7776 ∗ 4 −β1w ∗ 36

= ρ ∗ 46656 ∗ S3
=

ρw
E ∗ 7776 ∗ S

4. Application of Buckingham Pi theorem to problems with blast loadings

Analysis using scaling laws can aid in determining the behavior of a structure from the response of a similar
model that is scaled geometrically by a parameter α. Carrying out full-scale experiments can be expensive and often
dangerous if the experiments involve explosives. This is certainly the case for the deformation of a wall in response
to a blast load. In such cases, experiments are performed on a smaller-scale model and the results are extrapolated
based on a set of scaling laws that relate the model to the prototype. The bio-structure of interest in the current
study is rostrum of the paddlefish. An earlier feasibility study conducted on the rostrum led to the conclusion that
the non-uniform geometry is a toughening mechanism that mitigates failure [3,13,17,18].

4.1. Development of Pi parameters

The following section will illustrate the use of Buckingham Pi theorem to derive a set of non-dimensional Pi
terms for a structure subjected to blast load. Here, [F, L , T ] are selected as the fundamental dimensions. The
deformation d[L] experienced by a structure impacted by blast loading depends on the linear dimension L[L],
stress or pressure σ [F L−2], density ρ[F L−4T 2], energy e[F L], velocity v[LT −1], mass m[F L−1T 2], force F[F],
and time t[T ]. There are 9 parameters and 3 fundamental dimensions, thus (n − k) = 6 non-dimensional Pi terms.
It follows that, Eq. (2) can be written in the following form

d = g(L , σ, ρ, e, v, m, f, t) (11)

Based on the Buckingham Pi theorem (L , σ, v) are picked as repeating variables that will be used to non-
dimensionalize the others.

π1 = d Laρbvc

π1 = L La( FT 2

L−4 )
a
( L

T −1 )
c

a = −1; b = 0; c = 0

π1 =
d
L

(12)

π2 = σ Laρbvc

π2 = ( F
L2 )La( FT 2

L−4 )
b
( L

T −1 )
c

a = 0; b = −1; c = −2

π2 =
σ

ρv2 (13)

π3 = eLaρbvc

π3 = F L La( FT 2

L−4 )
b
( L

T −1 )
c

a = −3; b = −1; c = −2

π3 =
e

ρv2L3 (14)
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Table 3
Relationship between the model and prototype for the variables used in the current
analysis.

Parameters Scale factor Scale = 1 Scale = 2 Scale = 4

Length (L) α 1 2 4
Mass (M) α3 1 8 64
Stress (α) 1 1 1 1
Time (t) α 1 2 4
Velocity (V) 1 1 1 1
Displacement (U) α 1 2 4
Strain (ϵ) 1 1 1 1
Acceleration (A) 1

α
1 0.5 0.25

π4 = mLaρbvc

π4 = FT 2L−1La( FT 2

L−4 )
b
( L

T −1 )
c

a = −3; b = −1; c = 0

π4 =
m

L3ρ
(15)

π5 = f Laρbvc

π5 = F La( FT 2

L−4 )
b
( L

T −1 )
c

a = −2; b = −1; c = −2

π4 =
f

L2v2ρ
(16)

π6 = t Laρbvc

π6 = T La( FT 2

L−4 )
b
( L

T −1 )
c

a = −1; b = 0; c = 1

π6 =
tv
L

(17)

Recall, the Pi products displayed by Eqs. (12) through (17) are dimensionless. Based on this, the prediction equation
given by Eq. (3) will result in the following equation:

π1 = f (π2, π3, π4, π5, π6) (18)

Hence,
d
L

= f (
σ

ρv2 ,
e

ρv2L3 ,
m

L3ρ
,

f
L2v2ρ

,
tv
L

) (19)

Assuming that the strain rate is constant, Table 3 shows how to scale selected variables using the repeating variables
(L , σ, v).

4.2. Numerical verification of the derived scaling laws

The developed scaling laws are applied to a complex biological model. In the current research, the commercial
software package AbaqusTM [2] is used to perform computational mechanics experiments on the biological model
of interest. The description of the model and analysis details follows in the subsequent sections.

4.2.1. Model description
Numerical experiments are carried out on the paddlefish rostrum to study the effect of blast loadings on this

complex bio-structure. In the two cases considered, the rostrum is scaled 2 and 4 times its initial size. Similitude
theory is applied to scale the weight of the TNT used in the analysis. The parameters involved in the simulation are
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Fig. 5. Dimension of the rostrum.

Table 4
Rostrum mesh details used in the numerical experiments.

Rostrum part Element type [1] Element shape Geometric order Elements

Hard cartilage C3D8 Hexahedral Linear 10 943
C4D4 Tetrahedral Linear 303 203
Total nodes 105 747
Total elements 314 146

Soft cartilage C3D8 Hexahedral Linear 15 745
C4D4 Tetrahedral Linear 146 476
Total nodes 53 991
Total elements 162 221

Tissue C3D8 Hexahedral Linear 93 024
C4D4 Tetrahedral Linear 850 772
Total nodes 303 263
Total elements 943 796

Table 5
Materials used for component parts of rostrum.

Part Material

Tissue Vinyl ester epoxy
Hard cartilage Polyethylene fibers
Soft cartilage Polyethylene/Epoxy

(as isotropic)

scaled based on Tables 1 and 3. Fig. 5 shows the numerical model of the rostrum used in the current simulations.
The length, width, and the thickness of the model are 275 mm, 80 mm, and 27 mm, respectively. Table 4 gives
details of the mesh used in the analysis.

4.2.2. Material property
As depicted in Fig. 3 (a through d), the three components of the rostrum exhibit differences in material properties;

therefore, these properties are determined from experimental nano-indentation studies carried out on the rostrum [8].
The three materials selected to represent the behavior of the components of the rostrum are shown in Table 5.
Tables 6, 7, and 8 depict the material properties of the components of the rostrum model. Polyethylene/Epoxy used
for soft cartilage as shown in Table 8 is used as isotropic with the largest value of modulus and strength.

4.2.3. Force and displacement boundary conditions
The Abaqus/ExplicitTM [2] solver is used for performing the dynamic analysis. Three sets of numerical

experiments are carried out on the rostrum. Table 9 shows the details of the trinitrotoluene (TNT) weights and
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Table 6
Vinyl ester epoxy for the tissue component in rostrum.

Commercial name Ashland Derakane® 8084

Elastic modulus 2.9 GPa
Elongation 8–10%
Ultimate tensile strength 76 MPa
Mass density 1.14 g/cc

Table 7
Polyethylene fibers for hard cartilage component in
rostrum.

Commercial name Honeywell Spectra® fiber
S-900 5600

Elastic modulus 66 GPa
Elongation 3.5%
Ultimate tensile strength 2.18 GPa
Mass density 1 g/cc

Table 8
Polyethylene/Epoxy (as isotropic) for soft cartilage
component in rostrum.

Commercial name Polyethylene/Epoxy
(as isotropic)

E1 49,762 MPa
E2 1,470 MPa
G12 455 MPa
n12 0.27
Mass density 1.05 g/cc
F1t 896.32 MPa
F1c 112.31 MPa
F2t 4.19 MPa
F2c 4.19 MPa
F12 7.53 MPa

Fig. 6. Boundary condition on the rostrum.

time durations of the numerical experiments performed in the current study. Displacement boundary conditions on
the edges of the rostrum are fixed for all degrees of motion as depicted in Fig. 6. Fixed boundary conditions are
chosen for the edges to hold the rostrum in a stationary position when it is under the influence of the shock wave
from the blast load.
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Table 9
Numerical experiment details.

Scale Length of
rostrum (mm)

Weight of
TNT (kg)

Time duration
(s)

Distance between
model and TNT (mm)

1 275 0.02 0.025 1000
2 550 0.16 0.05 2000
4 1100 1.28 0.1 4000

Fig. 7. Non-dimensional displacement on top surface of rostrum (a) prototype (b) model scale factor = 2 (c) model scale factor = 4.

5. Numerical validation of scaling laws

The scaling laws are validated by comparing the values obtained from the numerical prototype and scaled models
with the theoretically expected values from application of Buckingham Pi theorem. The displacement contours for
the prototype and model are plotted. Parameters such as displacement and stresses are used for comparison along
vertical and horizontal axes of the rostrum. Also, nodal values of displacement, stresses, velocity, and strain are
compared for estimating the percentage deviation from the values predicted from the scaling laws.

5.1. Displacement contours of the rostrum

Fig. 7 displays the non-dimensionalized displacement for the model given by Eq. (12) and the prototype. As seen
from Fig. 7, the displacement shows qualitatively very similar results for the prototype and scaled model. Since the
rostrum has fixed plate boundary conditions applied on all edges, the center of the rostrum experiences maximum
displacement. To further analyze the displacement trend, subsequent sections plot the non-dimensional displacement
along the horizontal and vertical axes that pass through the region of the rostrum that is experiencing maximum
displacement. The minor differences observed in the non-dimensional displacement in Fig. 7 may be attributed to
the discretization error of the numerical scheme.

5.2. Displacement versus distance along horizontal and vertical axis of rostrum

Fig. 8 displays the non-dimensional displacement along the vertical axis of the rostrum that is plotted as a function
of distance for the prototype and scaled models. Since the rostrum is restrained along its edges, as shown in Fig. 9,
zero displacement is observed in these locations. For the models scaled to twice and four times the original model
dimensions, the displacement shows nearly identical values along the vertical axis of the rostrum as displayed in
Fig. 8. The maximum displacement is observed along the center of the rostrum. This is because the center region
is relatively far from the restrained boundary conditions along the rostrum edges. As seen in Fig. 8, two peaks in
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Fig. 8. Displacement versus true distance along vertical axis passing through the center of rostrum.

Fig. 9. Displacement versus true distance along horizontal axis of rostrum.

displacement are observed at distances of approximately x = 25 mm and x = 50 mm distance from the tip of the
rostrum. A third peak is observed at approximately a distance of x = 110 mm from the tip of the rostrum, which
also corresponds to the maximum displacement observed along the central vertical axis. This correspondence results
from the point charge placement, which is in close proximity to this area of maximal displacement. The displacement
steadily decreases along the vertical axis as displayed in Fig. 8. A very small peak is observed around x = 250 mm
distance from the tip of the rostrum. The center cartilage is stiffer in this region providing strength and rigidity,
thus influencing the displacement.

The non-dimensional displacement shows a similar trend along the vertical axis of the rostrum for the prototype
and scaled models as expected from the similitude theory. The scale factors used in the current analysis are S = 2
and S = 4, since the base model is scaled up to 2 and 4 times its original size. The numerical simulation achieved
the values as predicted by the Buckingham Pi theorem.

Fig. 9 shows the displacement along the horizontal axis of the rostrum located at approximately 63.5 mm from the
tip of the rostrum. This position was selected for the horizontal axis because maximum displacement was observed
along this axis as depicted in Fig. 7. As before, the non-dimensional displacement is plotted along the horizontal
axis for the prototype and the scaled models. Again, very similar quantitative behavior is observed for the prototype
and scaled models. As seen in Fig. 9, zero displacement is observed along the edges of the rostrum owing to the
restrained boundary condition. A peak is observed in displacement at a distance of 15 mm from the left edge of
the rostrum. The displacement decreases near the center bone of the rostrum at a distance of x = 40 mm from the
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Fig. 10. Stress (MPa) versus true distance along vertical axis of rostrum.

left edge. It is observed that the center bone provides stability as observed from the decrease in displacement. At x
= 70 mm, another displacement peak is observed. The two displacement peaks are observed near the region of the
complex lattice architecture of the rostrum signifying that they are the major load bearing members of the rostrum.
This result suggests that, the lattice architecture bears the load while the center bone provides stiffness/stability to
the structural system.

5.3. Von-Mises stress versus distance along horizontal and vertical axis of rostrum

Based on the similitude relations used for the current analysis, the stress should be the same for scaled models.
Fig. 10 shows the Von-Mises stress along the center bone of the rostrum model.

Identical values of stresses are obtained for the scaled model along the vertical axis of the rostrum when the
rostrum is scaled to 2 and 4 times its original size. Also, the stresses observed along the center bone of the rostrum
have not crossed the failure stress represented by the purple line in Fig. 10.

Fig. 11 represents the Von-Mises stress along the horizontal axis of the rostrum. The stress pattern and values
follow the laws of similitude for the prototype and both scaled cases. The material has reached failure stress in
areas where maximum displacement was observed. Owing to the unsymmetrical geometry of the rostrum, the load
distribution exhibits an unsymmetrical distribution. The left side of the rostrum shows stresses reaching beyond the
failure stress while the right side shows stresses well below the failure stress. Also, the center bone, represented
by the x-axis distance of 30–60 mm, shows a pronounced reduction in the stresses. Therefore, the center bone is
pivotal in providing stability to the system and experiences a significantly low stress level.

5.4. Comparison of scaling laws with numerical studies

Tables 10 and 11 show the comparison of the parameters obtained from the scaling laws and numerical studies
conducted on the rostrum. Since the TNT was placed 1000 mm away from the center of the rostrum, the center
node shown in Fig. 12 was selected for comparing the scaling laws with numerical results. The physical parameters
on the same node are compared for the prototype and the scaled models. As seen in the comparison table the
errors are within a maximum of 3.39% percentage. Hence, the numerical experiments have verified the similitude
parameters identified by the Buckingham Pi theorem within a reasonably acceptable error range. These results, as
well as others presented in this section, imply that the selection of parameters used in the Buckingham Pi analysis
was correct. The small numerical errors may be the result of the discretization error involved in the scheme.

5.5. Implementation of scaling laws for cantilever beam boundary condition

The rostrum in its natural habitat behaves as a cantilever beam with a fixed support near the mouth of the
paddlefish. It is subjected to two kind of loads, i.e., its own weight and the hydrodynamic forces. Hence, it possesses
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Fig. 11. Stress (MPa) versus true distance along horizontal axis of rostrum.

Fig. 12. Node selected for comparison of numerical results with scaling laws.

a naturally optimized configuration geared to overcome bending moments. In light of this, the scaling laws developed
in the current study are applied to the rostrum with a cantilever beam displacement boundary condition. The force
boundary condition is identical to the blast load described in Table 9.

Fig. 13 displays the non-dimensional displacement for the prototype and the scaled model. Since the rostrum is
restrained at the bottom with a cantilever beam boundary condition, zero displacement is observed on the base of
the rostrum. As seen from Fig. 13, displacement shows an identical trend for the prototype and the scaled models.
This again shows that correct parameters were selected for deriving the non-dimensional Pi terms.
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Table 10
Comparison of physical parameters obtained from scaling laws and numerical experiments on the rostrum between prototype 
and model scaled by a factor of 2.

Prototype Scaled model (S = 2)
from scaling laws

From numerical
experiment

Percentage error

Von Mises stresses in MPa 21.9543 21.9543 22.0979 0.6541
Maximum principal stresses in MPa 0.618881 0.618881 0.601492 2.8097
Spatial displacement in mm 1.92884 3.85768 3.86485 0.1859
Spatial velocity in mm/s 514.26 514.26 507.276 1.3581
Logarithmic strain in mm/mm 0.00250712 0.00250712 0.00251508 0.3175

Table 11
Comparison of physical parameters obtained from scaling laws and numerical experiments on rostrum between prototype and
model scaled by a factor of 4.

Prototype Scaled model (S = 4)
from scaling laws

From numerical
experiment

Percentage error

Von Mises stresses in MPa 21.9543 21.9543 22.0753 0.5511
Maximum principal stresses in MPa 0.618881 0.618881 0.597848 3.3986
Spatial displacement in mm 1.92884 7.71536 7.66811 0.6124
Spatial velocity in mm/s 514.26 514.26 506.477 1.5134
Logarithmic strain in mm/mm 0.00250712 0.00250712 0.00251336 0.2489

Fig. 13. Non-dimensional displacement on top surface of rostrum with cantilever beam displacement boundary condition (a) prototype (b)
model scale factor = 2 (c) model scale factor = 4.

6. Conclusion

The current research has demonstrated that structural deformation caused by blast impact can be represented in
terms of dimensionless Pi terms by application of the Buckingham Pi theorem. This study presents the development
of similitude relationship for a simple system where the solution is known to verify application of this approach.
Numerical experiments were carried out on the rostrum of paddlefish to demonstrate the development and application
of similitude laws for blast loading for complex structural models. From the analysis presented, it is evident
that deformation, stress, velocity, and strains have been successfully scaled within a reasonably acceptable error
range. The strategy presented in this study can be employed to develop and apply similitude relations through the
application of the Buckingham Pi theorem.
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