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Rotor Blade Design Framework for Airfoil 
Shape Optimization with Performance 

Considerations

ABSTRACT
This work introduces a framework for automated rotor blade airfoil design optimization 
based on helicopter performance. The framework combines two computational workflows, 
each created using the Galaxy Simulation Builder (GSB) software package.  First, the airfoil 
parameterization code ParFoil is used to generate a database of morphed airfoil geometries, 
with aerodynamic properties predicted by ARC2D (via C81Gen). The airfoil database is used 
to generate a surrogate model for airfoil performance coefficients based on ParFoil 
parameters. The second workflow utilizes the surrogate model to perform design optimization 
on a portion of a rotor blade. Optimization is carried out using GSB and the integrated Dakota 
numerical optimization library. This approach provides users with a variety of optimization 
algorithms and access to the Department of Defense Supercomputing Resource Center’s 
(DSRC’s) machines. The framework is demonstrated using Dakota’s multiobjective genetic 
algorithm (MOGA) to perform a multiobjective, constrained optimization of the tip region of 
the standard UH-60A main rotor blade. The problem is formulated such that the power 
coefficient is minimized for forward flight and hover, simultaneously, while subject to a 
constraint on the rotor pitch link load. The airfoil thickness and thickness crest position of the 
outboard SC1095 airfoil are the only design parameters used in this example study. Analysis 
of select points from the Pareto-optimal set shows reductions in main rotor power 
requirements across a full range of forward flight speeds. The power coefficients for hover 
and forward flight with advance ratio 𝝁 = 𝟎. 𝟑 are reduced by up to 0.90% and 3.47%, 
respectively. Improvements of up to 7% are predicted for higher flight speeds approaching  
𝝁 = 𝟎.𝟒. Furthermore, it is shown that the predicted pitch link load can be reduced by as 
much as 19.2% without incurring a penalty on rotor performance.  
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I. Nomenclature

𝑏 = airfoil boat-tail angle 
𝑐 = chord length 
𝑐𝑑  =  drag coefficient 
𝑐𝑙  =  lift coefficient 
𝑐𝑚 =  pitching moment coefficient 
𝐶𝑝 =  rotor power coefficient 
𝑑 = airfoil leading edge droop 
𝐹𝑝𝑙 = pitch link load 
𝑘 = airfoil leading edge radius 
𝑚 = airfoil maximum camber 
𝑁𝑐𝑓𝑑 = number of CFD evaluations 
𝑁𝑜𝑝𝑡 = number of optimizer evaluations 
𝑛 = airfoil trailing edge camber 
n = number of dimensions 
𝑝 = airfoil camber crest position 
𝑞 = trailing edge camber crest position 
R = rotor radius 
S =  speedup ratio 
𝑡 = airfoil maximum thickness  

𝑡𝑐𝑓𝑑  = CFD evaluation time 
𝑡𝑜𝑝𝑡 =  optimizer iteration time 
𝑤𝑠 = vertex weight factor 
𝑥 = airfoil thickness crest position 
�⃗⃗�  = design parameter vector 

Subscripts 
f = forward flight condition 
h = hover condition 

Acronyms 
DSRC = DoD Supercomputing Resource Center 
GSB = Galaxy Simulation Builder 
HPC = High Performance Computer 
LE =  airfoil leading edge 
TE = airfoil trailing edge 
UTTAS = Utility Tactical Transport Aerial 

System 

II. Introduction

The optimization of helicopter rotor systems is an important research topic. In particular, the development of 
advanced airfoils has been shown to greatly improve rotor efficiency [1,2]. Many methods for airfoil section 
optimization currently exist. In general, these methods pair a geometry generation or morphing tool with a numerical 
optimizer. Design parameterization tools construct new airfoil coordinates by blending several parameters using 
polynomial fitting and spline interpolation. ParFoil is one such tool [1]. This work extends the work done by Lim by 
incorporating the geometry creation capabilities of ParFoil with the Dakota numerical optimization library. 
Furthermore, the entirety of the optimization workflow is to be carried out using the capabilities of Galaxy Simulation 
Builder (GSB) [3]. The result is a self-contained optimization tool that can be implemented on a local workstation or 
in a High-Performance Computing (HPC) environment such as the Department of Defense (DoD) Supercomputing 
Resource Centers (DSRCs).  

Optimization for rotorcraft poses difficult challenges. For a vehicle in forward flight, the angle of attack and 
relative flow velocity of the impinging air are constantly changing. The unsteady nature of the aerodynamic conditions 
of the rotor significantly widens the flight envelope one must consider when designing a new airfoil. It is 
advantageous, then, to optimize the rotor based on overall vehicle performance metrics rather than a metric more 
commonly used for isolated airfoil shape optimization (e.g., lift-to-drag ratio). Obtaining these metrics for final 
evaluation typically involves the use of high-fidelity computational fluid dynamics (CFD) codes such as Helios to 
form a time-accurate picture of performance characteristics. Unfortunately, the high cost associated with CFD 
simulations makes direct use for optimization intractable in most cases.  

Lower-fidelity, preliminary design tools such as RCAS [4] and CAMRAD II [5] address some of the challenges 
of full CFD simulations. These comprehensive analysis codes invoke simplified physics models and lookup tables to 
calculate blade structural response (e.g., bending, twisting, vibration) in addition to aerodynamic loads. They are 
highly useful tools; however, they are not capable of matching the fidelity of CFD. Furthermore, comprehensive codes 
typically rely on lookup tables (C81 tables) to provide lift, drag, and moment data for airfoils. When not readily 
available, producing these C81 tables (named for the legacy code for which they were developed) necessitate the use 
of an additional two-dimensional (2D) CFD flow solver, offsetting some of the computational advantage held by the 
mid-fidelity comprehensive codes. A surrogate model approach is desirable to decrease overall analysis time in 
situations where large numbers of C81 tables will be needed to perform the optimization.  

The objectives of this work are to 1) develop an automated, HPC-enabled workflow for building a surrogate model 
for the rapid generation of C81 airfoil performance tables, 2) develop an automated workflow for rotor optimization 
with vehicle performance considerations, and 3) demonstrate the capabilities of the framework with an example 
optimization problem. 
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III. Rotor Blade Optimization Framework

A. Galaxy Simulation Builder Overview
Complex digital workflows involving multiple simulations and disciplines can impose a tremendous burden on

the analyst. Each component of the workflow likely requires pre- and post-processing work to produce and interpret 
results (e.g., input file setup, converting file formats, visualizing data). For simulations that will be repeated several 
or more times, such as optimization, it can be advantageous to automate the workflow. To handle the automation 
process, this work makes use of Galaxy Simulation Builder (GSB) [3]. Galaxy is a workflow management system 
developed by Stellar Science, Inc. and the Air Force Research Laboratory to handle the scheduled execution of 
programs in a simulation. Galaxy is flexible and can handle running small simulations on a local workstation as well 
as very large simulations with many concurrent jobs running on multiple HPC hosts, managed by the Galaxy 
coordinator.  

One of the primary motivations for using Galaxy is its ability to run simulations on the DSRC’s machines. Access 
to these machines provides researchers with vast computing resources. Galaxy handles the scripts and environment 
setup for proper queuing and execution on the target DSRC system. Individual tasks within a Galaxy simulation are 
referred to as modules and can range from data transfer events to high-fidelity simulation executions.  

Analysis capabilities in Galaxy are largely provided through its integration with Dakota, an optimization and UQ 
software package developed by Sandia National Laboratories. See Dakota documentation in Ref. [6] for additional 
information and available capabilities. Galaxy provides customized GUI support for setting up Dakota simulations as 
part of the integration between the two tools. The combination of Galaxy’s parallel job monitoring, management, and 
execution with Dakota’s extensive analysis capabilities provides a powerful framework for high-fidelity and 
multidisciplinary analysis.  

B. Surrogate Model for C81 Table Generation
Performance data for 2D airfoils required by comprehensive rotorcraft analysis codes, such as RCAS and

CAMRAD II, are provided through C81 tables. Specifically, a C81 table provides coefficients of lift, drag and pitching 
moment (𝑐𝑙 , 𝑐𝑑 , and 𝑐𝑚, respectively) for a 2D airfoil as functions of Mach number, 𝑀, and angle of attack, 𝛼. GSB 
was used to develop an automated workflow for the construction of a surrogate model capable of generating a C81 
table from a set of parametric inputs. The traditional approach to C81 table generation is to use a CFD solver to 
populate each element in the table. While codes such as C81Gen exist to automate the table generation process [7,8], 
they are computationally expensive and consequently not well suited for optimization due to the large number of 
perturbations in geometry required to ensure adequate representation of the design space. The use of a surrogate model 
addresses this challenge directly by allowing computationally inexpensive C81 table generation for a large number of 
design variants.  

The presented framework uses the ParFoil code to describe airfoil shape using a set of nine meaningful design 
parameters. ParFoil starts with a baseline airfoil geometry and morphs it into a new design by augmenting the design 
parameters. The design parameters are leading-edge radius (𝑘), leading-edge droop (𝑑), camber (𝑚), camber crest 
position (𝑝), thickness (𝑡), thickness crest position (𝑥), trailing-edge camber (𝑛), trailing-edge camber crest position 
(𝑞), and boat-tail angle (𝑏). Before parameterization, the baseline airfoil coordinates are redistributed using a non-
uniform radial basis spline (NURBS). The baseline values for the design parameters are then extracted from the spline 
curve. Parameter augmentation is performed by applying either a scaling factor or delta value to the baseline, and then 
updating the airfoil coordinates. The individual effects of varying the parameters are shown in Fig. 1. A summary of 
the 𝑡 and 𝑥 parameters used in this study, their formulations, and their feasible bounds for the SC1095 airfoil is given 
in Table 1. 

Table 1 ParFoil parameter augmentation formulations with bounds for SC1095. 

Parameter Description Formulation Feasible Bounds (SC1095) 
Max Thickness 𝑡 = 𝑡0𝑓𝑡 0.5 ≤ 𝑓𝑡 ≤ 1.3 
Thickness Crest Position 𝑥 = 𝑥0 + Δx −0.1 ≤ Δ𝑥 ≤ 0.25

In this framework, the feasible upper and lower bounds for each parameter are provided to Dakota, and the space 
is sampled within these bounds. The design parameters for each sampled point are provided to ParFoil, and a new 
airfoil geometry file is generated. The output from ParFoil is passed to C81Gen for computation of airfoil performance 
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Fig. 1 Effects of parameter changes in ParFoil on airfoil geometry. The zero subscript denotes baseline value 
for the SC1095 airfoil. Note that changes in camber crest positions (𝒑 and 𝒒) have little visible effect for the 

SC1095 due to its near-symmetric design. Vertical scales are exaggerated. 

coefficients. C81Gen is a wrapper for 2D airfoil mesh generation and the ARC2D Navier-Stokes CFD solver 
developed at NASA Ames Research Center [9]. Its purpose, as stated above, is to automate the generation and 
tabulation of performance data from simulations encompassing all practical operational ranges. A typical C81 table 
contains 𝛼 − 𝑀 pairings with −180° ≤ 𝛼 ≤ 180° and 0.0 ≤ 𝑀 ≤ 1.0. To reduce computation time, the implemented 
framework limits C81Gen’s computations to −10° ≤ 𝛼 ≤ 20°. This subset is then patched into a full C81 table 
computed from the baseline geometry for which experimental data is available. It is noted that despite the reduction 
in function calls required to populate the smaller table, total execution times for C81Gen still averaged approximately 
2.6 hours running on 40-50 CPUs during testing, and that using greater numbers of CPU’s (e.g., 80-100) did not 
improve computation times. While not excessive for a small number of simulations, the runtime makes it prohibitively 
expensive for direct use in optimization requiring evaluation of many hundreds or thousands of design points. 

The feasible bounds are used by Dakota to populate the design space and the data is then collected and conditioned 
for model fitting. A Python interface was developed with functionality for C81 file manipulation and data storage. For 
the 𝑖th table in the database, the set of ParFoil design parameters, �⃗⃗� 𝑖 , and the table’s location, 𝑦𝑖 , are stored. A mapping
function, 𝜆, is then generated such that 𝜆(�⃗⃗� 𝑖) = 𝑦𝑖 . This mapping function is saved to disk and is available for future
use. The mapping function serves as one component of the surrogate model. When combined with additional Python 
methods developed for this framework, the mapping function allows users to access the C81 database and perform 
linear interpolation between tables. Querying the model returns a list of coordinates forming the n-dimensional 
bounding hyper-box, or simplex, containing the query point. Weighting factors for each vertex of the simplex are 
determined using one of two methods: 1) normalized distances to each vertex in the case of data sampled on a regular 
grid, or 2) transformation to barycentric coordinates for the case of data sampled on an irregular or sparse grid.  

The process described above is set up locally in GSB and launched on a specified host with a single command. 
The simulation flowchart as seen in GSB is shown in Fig. 2. Each module in the chart executes a specified program 
or script. Modules are executed in the order defined by arrows representing information flow. The workflow consists 
of two stages. The first stage is the database generation stage. This stage includes all of the modules between “Begin 
Parameter Sweep” and “End Parameter Sweep.”  Here, a parameter sweep can refer to whichever method is chosen to 
sample the design space, e.g., Latin hyper-cube sampling (LHS). Dakota handles variable substitution following the 
setup of separate working directories for each case. The “Preprocess” module is then used to handle any additional 
runtime configuration (e.g., export the ParFoil input file). ParFoil processes the input parameters and produces a 
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modified airfoil geometry file that is used by C81Gen to produce an airfoil table. The second stage is the surrogate 
model creation stage and is made up of the modules “Fetch Paths” and “Build Surrogate Model.”  

Fig. 2 Galaxy flowchart for preparing C81 table database and building the surrogate model. 

C. Rotor Blade Optimization
A second workflow has been developed using GSB for rotor blade optimization. An example of the simulation

flowchart as seen in GSB is shown in Fig. 3. The “Preprocess” module allows users to make any modifications to 
starting files that require information not known a priori (e.g., the path to working directory). This module also 
leverages the surrogate model described above to generate C81 tables using parameters defined by Dakota variable 
substitution. Next, one or more instances of RCAS are executed. The example in Fig. 3 shows two RCAS cases 
executed simultaneously. The RCAS scripts are provided by the user, allowing flexibility in the types of analyses 
being performed. Once the RCAS evaluations are complete, the objective and constraint function values are extracted 
in the “Pull Metrics” module and returned to Dakota. The metrics are defined by the user and can be a function of any 
quantity that is output from RCAS. Galaxy and Dakota take advantage of resources by concurrently evaluating as 
many asynchronous iterations as possible. The number of concurrent iterations depends on the optimization algorithm 
and allocated number of CPUs. A diagram of the entire two-step workflow, including the surrogate model builder and 
rotor blade optimizer are shown in Fig. 4 Details regarding the optimization techniques explored in this work are given 
in Sections V and VI. 

Fig. 3 Galaxy flowchart for rotor blade airfoil optimization. 

IV. Surrogate Model Selection and Evaluation

A. Linear Interpolation of Tables
Interpolation in high dimensional space (taken here to mean five or more) poses several challenges. The number

of grid points required to maintain array density on a regular grid becomes infeasibly large as the number of 
dimensions increases [10]. Additionally, coding practices dictate that the original dataset, or a copy, must be 
maintained, impacting model portability. Irregular grids present their own limitations due to dimensionality. Primarily, 
determining the location of a design point relative to the grid points becomes difficult as the number of dimensions 
increases. One reason for this is that the metrics used for determining the distance between points become less 
meaningful and less intuitive in high dimensions [11]. For example, it has been observed that the Euclidean distance 
between all points in a dataset approaches a constant value as the number of dimensions increases [12]. That fact also 
limits the usefulness of nearest-neighbors searches. Due to these practical considerations, the number of dimensions 
has been limited to be less than five during development and testing.  

Regular grids have the advantage of being easily searchable. Searching for the location of an arbitrary design point 
defined by the parameter vector �⃗⃗� ∗ in a n-dimensional regular grid is straightforward and involves determining the
grid coordinates that bound �⃗⃗� ∗ in each dimension. Thus, a bounding hyper-box is formed with 𝑁 = 2n vertices.
Weighting factors, 𝑤𝑠, for linear interpolation can then be calculated from the normalized distance from �⃗⃗� ∗ to each  
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Fig. 4 Two-step optimization framework flowchart. 

vertex.  Irregular or sparse grids require a different approach. For this work, Delaunay triangulation via Python and 
SciPy’s implementation of the Qhull library are used [13]. The algorithm computes the set of n-dimensional simplices 
(convex hulls of points) such that no point lies inside the circum-hypersphere of any simplex. Triangulation can be 
costly in high dimensions. The number of simplices required for the tessellation of P points in n-dimensions is 
𝒪(𝑃⌊n/2⌋) [14]. Limitations are mitigated by selecting fewer dimensions for analysis. Querying the triangulation at
point �⃗⃗� ∗ involves locating the simplex containing �⃗⃗� ∗and identifying the n+1 tables that form its vertices. Weighting
factors for each vertex are then determined by transforming their cartesian coordinates into barycentric coordinates.  

Regardless of the method used, once the bounding-box and weighting factors are determined, interpolation can 
then be performed via a weighted sum for each 𝛼 − 𝑀 pair across the tables. Thus, the coefficient value, 𝑐∗ 
(representing 𝑐𝑙 , 𝑐𝑑 , or 𝑐𝑚), for a new table defined at point �⃗⃗� ∗, is

𝑐∗(�⃗⃗� 
∗ ,𝛼,𝑀) = ∑𝑤𝑠𝑐∗(�⃗⃗� 𝑠, 𝛼,𝑀)

𝑁

𝑠=1

(1) 

where 𝑠 is a vertex of the bounding box, and 𝑤𝑠 is the corresponding weighting factor. 
 A comparison of 𝑐𝑑  trends at a range of Mach numbers for different C81 tables generated for the SC1095 airfoils 
is shown in Fig. 5. The simulated values from C81Gen (via ARC2D) differ somewhat from the experimental flight 
data at all Mach numbers. These discrepancies, along with similar ones for other Mach numbers and angles of attack, 
resulted in baseline 𝐶𝑝 values that were inconsistent depending on which table was used. Therefore, a direct 
comparison between tables from flight data and modified tables from C81Gen was not representative of the true 
performance increase (the benefit is overpredicted). Instead, a fairer comparison is made by using the table from 
C81Gen as the baseline. 

B. Machine Learning Models
Several machine learning algorithms were also investigated in addition to linear interpolation. The Scikit-Learn

library of regressors provides a wide array of machine learning algorithms. The standardized interface proved to be 
useful in testing, as it allowed for quick transitions to different regressors with minimal adjustments to the code 
[15,16]. Several models stood out among those tested. Examples include the Random Forest Regressor, based on a 
method of aggregated decision trees, and Multi-Layer Perceptron Regressor, a neural network algorithm. Validation 
was performed by comparing the model predictions for 𝑐𝑙 , 𝑐𝑑 , and 𝑐𝑚 against tables produced by C81Gen for 
parameter values unseen during training. Validation showed root-mean-squared-error (RMSE) values as low as 0.017 
and 0.012, respectively, with corresponding R2 values of 0.994 and 0.997, respectively. In addition to Scikit-Learn, 
neural networks using TensorFlow and Keras [17] were also investigated. Here, the RMSE and R2 scores were 0.014 
and 0.996, respectively. 
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While initially promising, a deeper investigation revealed that the error metrics reported above were insufficient 
or incomplete. Analyzing the coefficient trends for complete tables showed that the models did not perform equally 
well for all regions. The models had particular trouble accurately predicting drag for low angles of attack, where 𝑐𝑑  is 
multiple orders of magnitude smaller than that of higher angles of attack. This behavior is due to the use of off-the-
shelf error metrics when computing loss. The development of a suitable loss function for this problem is a topic of 
future research. 

Fig. 5 Trends in 𝒄𝒅 vs. angle of attack for the baseline SC1095 airfoil over a range of Mach numbers
comparing C81 tables from multiple sources. 

C. Cost Benefit of the Surrogate Model Framework
This section will discuss the advantages of using the surrogate model approach for C81 table production. Initially,

many C81 tables must be generated using CFD simulations (via C81Gen). Each of these tables takes an average of 
approximately 100-120 CPU-hours to complete. By comparison, the surrogate model using linear interpolation on a 
regular grid can generate a new table in 0.5-0.8 seconds. Let the speedup, 𝑆, be defined as the ratio of CPU times for 
optimization performed with the surrogate model (including generation of the database) to that of optimization 
performed using only CFD. The ratio can be represented as 

𝑆 =
𝑁𝑜𝑝𝑡(𝑡𝑐𝑓𝑑 + 𝑡𝑜𝑝𝑡)

𝑁𝑐𝑓𝑑𝑡𝑐𝑓𝑑 + 𝑁𝑜𝑝𝑡𝑡𝑜𝑝𝑡

, (2) 

where 𝑁𝑜𝑝𝑡 is the number of evaluations required by the optimizer, 𝑁𝑐𝑓𝑑 is the number of tables generated via CFD 
for the surrogate model database, 𝑡𝑜𝑝𝑡 is the time for a single optimizer iteration, and 𝑡𝑐𝑓𝑑  is the time to generate a 
table using CFD. The time for the surrogate model to generate a table is considered negligible.  

Due to the relationship in Eq. (2), it is difficult to form a general statement regarding the advantage provided by 
the model. The answer depends on several factors, e.g., the optimizer used, level of accuracy needed, number of 
parameters considered. Additionally, the equation provides an estimate based on CPU time, not wall-clock time. Thus, 
the true speedup also depends on the levels of parallelization used throughout each step (e.g., optimizer concurrency, 
table generation concurrency, CPU allocation for CFD). The surrogate approach is particularly powerful for 
population-based optimization algorithms (e.g., MOGA) which rely on a relatively large number of function 
evaluations to determine the global minimum. Multiobjective, gradient-based optimizers are also good candidates 
since they generally require one to survey a variety of function weights and starting points. Section VI provides 
examples using multiple optimization algorithms and their associated estimated speedups.  
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Fig. 6 Pitch link load plots for baseline UH-60A rotor during UTTAS pull-up maneuver. Plots a) and b) show 
the pitch link load time history (mean removed), and the half peak-to-peak pitch link load per rotor 

revolution, respectively. 

V. Optimization Objectives and Constraints

To demonstrate the optimization framework, RCAS is used to predict rotor performance during multiple flight 
conditions, subject to changes in the main rotor tip airfoil geometry. The objective for this case is to simultaneously 
minimize the power coefficients of the rotor for forward flight and hover, 𝐶𝑝,𝑓 and 𝐶𝑝,ℎ, respectively. At the same 
time, a constraint function, 𝐹𝑃𝐿, is calculated from the maximum load experienced by the rotor pitch link during an 
extreme maneuver.  
 The standard UH-60A main rotor has a radius 𝑅 = 26.83 feet and a rotational velocity of 27.03 rad/s. For forward 
flight, the prescribed free stream velocity of 218 ft/s corresponds to an advance ratio of 𝜇 = 0.3. Trim targets for this 
and the hover case are based on wind tunnel test conditions from Norman et al. [18]. The model consists of a single 
isolated rotor with 3-DOF hinge for blade lag, flap, and pitch. Pilot inputs for collective, lateral, and cyclic controls, 
as well as the nose-down pitching of the vehicle, are given initial values and then updated until equilibrium is reached. 
The hover condition uses the same model with updated initial conditions suitable for a zero free stream velocity.  

The Utility Tactical Transport Aerial System (UTTAS) pull-up maneuver is used to investigate maximum design 
load on the pitch link. Flight conditions are based on test C11029 of the UH-60A Airloads Flight Test Program [19]. 
The rotorcraft enters the maneuver near its maximum forward flight speed and quickly pulls up, achieving load factors 
which greatly exceed the steady-state lift limit of the rotor. In the severe case of the C11029 test condition, the vehicle 
experiences a normal load factor of 2.1g. The maneuver lasts for approximately 40 rotor revolutions before returning 
to level flight. During the maneuver, the time history of the pitch link load is recorded as shown in Fig. 6a. For each 
rotor revolution 𝐹𝑝𝑙 is captured as the half peak-to-peak value of the pitch link load, as shown in Fig. 6b. The maximum 
value of 𝐹𝑝𝑙 experienced during the maneuver is used as the value of the constraint function. An airfoil design is 
considered viable only if the maximum 𝐹𝑝𝑙 less than or equal to the baseline value calculated for the unmodified rotor. 

Let the objective function, 𝑓, be some combination of 𝐶𝑝,𝑓 and 𝐶𝑝,ℎ. The exact formulation of 𝑓 depends on the 
particular optimizer used. The optimizer receives the set of parametric inputs, �⃗⃗� , from Dakota such that �⃗⃗� = {𝑓𝑡 , Δ𝑥}.
The constrained optimization problem can thus be defined as 

(3) 

where 𝑋 is the feasible set of parameters satisfying the limits in Table 1, and �⃗⃗� 0 is the parameter vector describing the
baseline SC1095 airfoil.  

a) 

b)
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Fig. 7 Sketch of UH-60A standard rotor blade (top) and with the optimized section highlighted (bottom). 

VI. Results and Discussion

The standard UH-60A main rotor was used as the baseline for this study. The blades are made up of the SC1095 
airfoil from the blade root to a radial position of 0.48135R, the SC1094R8 from 0.48135R to 0.83851R, and back to 
the SC1095 from 0.83851R to the blade tip. This work morphs the outermost blade section, only as shown in Fig. 7. 
The tip section is morphed to minimize the power coefficient for two distinct flight conditions, forward flight with 
advance ratio 𝜇 = 0.3, and hover, as discussed previously. 

Optimization was carried out using two methodologies. The first used Dakota’s implementation of a multiobjective 
genetic algorithm (MOGA) to perform an initial global optimization. This MOGA, based on the work of Eddy and 
Lewis [20], is an efficient method that uses distinct-point and clustering metrics to generate a distribution of points in 
the Pareto frontier that is as close to uniform as possible. The second algorithm was the gradient-based CONMIN 
Fletcher-Reeves conjugate gradient method [21]. This method was implemented with multiple starting points to 
achieve an optimal solution. In both cases, two degrees of freedom were considered for the initial studies. The 
parameters 𝑡 and 𝑥 (thickness and thickness crest position) were chosen because 𝐶𝑝 was found to be most sensitive to 
changes in these parameters relative to the others. This sensitivity was reported previously by Lim [1] and is supported 
by subsequent observations during testing. The surrogate model for all cases presented below used linear interpolation 
on a regular grid with database size 𝑁𝑐𝑓𝑑 = 72.  

A. Unconstrained MOGA
The initial population used for the example case was 264. Optimization concluded after 58 generations and 3,000
function evaluations (2,429 unique) with a final population of 43 points representing the Pareto set. The results of this
case are shown in Fig. 8. The horizontal and vertical axes represent the power coefficients for forward flight and
hover, respectively, whereas the color of each point indicates the iteration. The baseline point refers to the 𝐶𝑝 values
for the unmodified rotor blade. The MOGA optimizer appeared well behaved, with a clear progression toward high-
performing areas of the design space. The estimated speedup factor for this case provided by Eq. (2) is 𝑆 = 33.3.  This
speedup represents a reduction in wall-clock time from 6 weeks to approximately 1.5 days based on the practices used
for testing.
 It can be seen in the Fig. 8 that 𝐶𝑝 in hover is less sensitive to changes in airfoil shape than for forward flight. 
Furthermore, all Pareto points that reduce 𝐶𝑝,𝑓 also reduce 𝐶𝑝,ℎ. These observations inform the selection of two points 
from the Pareto set for further examination. The first point selected (c1940) provides the largest reduction in 𝐶𝑝,𝑓, and 
the second (c1315) is a compromise in forward flight and hover performance. The relative response for these points 
is also indicated in Fig. 8. A summary of the design parameters and changes in 𝐶𝑝 compared to the baseline SC1095 
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airfoil is shown in Table 2 with sketches of each geometry shown in Fig. 9. In both cases, the thickness of the airfoil 
is reduced. While the thickness crest position is moved toward the chord center and toward the leading edge for c1940 
and c1315, respectively. 

The points c1940 and c1315 were then evaluated for a range of forward flight speeds. The advance ratio was varied 
from 𝜇 = 0.0 to 𝜇 = 0.4 and the power coefficient was calculated by RCAS for each condition. The results in  Fig. 
10 show an incremental decrease in 𝐶𝑝 for low flight speeds, with c1315 performing slightly better. Larger 
improvements are observed for higher flight speed, with c1940 yielding better results for 𝜇 ≥ 0.24. For very high 
flight speed (𝜇 ≥ 0.37), power reductions of 6-7% are obtained. 

Table 2 Optimized parameters and results for select points from unconstrained MOGA algorithm. 

Case ID 𝒕/𝒄 𝒙/𝒄 𝚫𝑪𝒑,𝒇

(𝝁 = 𝟎. 𝟑) 
𝚫𝑪𝒑,𝒇

(hover) 
Baseline 0.095 0.27 – – 

c1940 0.068 0.36 -3.38% -0.62%

c1315 0.058 0.23 -2.51% -0.83%

Fig. 8  MOGA optimization results for variation in 
airfoil thickness and thickness crest position. 

Fig. 9 Optimized airfoil geometries shown with 
baseline SC1095. Vertical scale is exaggerated.

Fig. 10 Main rotor power coefficient (𝑪𝒑) versus advance ratio for unconstrained MOGA airfoils. Plots
show a) the values of 𝑪𝒑 and b) percent change compared to baseline. Wind tunnel data from Ref. [18].

a) b) 

c1940 

c1315 
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B. Constrained MOGA
The MOGA optimization described above was repeated with the constraint on 𝐹𝑝𝑙 active and all other conditions

unchanged. The initial population was 264 and the optimization concluded after 79 generations and 3,000 function 
evaluations (2,338 unique). The final population was 23. The results for this case are shown in Fig. 11. The horizontal 
and vertical axes represent the power coefficients for forward flight and hover, respectively, while the color of each 
point indicates the change in the constraint function. Negative changes in 𝐹𝑝𝑙 represent improved characteristics. The 
estimated speedup ratio for this case provided by Eq. (2) is 𝑆 = 28.6. 

From the Pareto set, two points are selected for examination. The points are indicated in Fig. 11 and summarized 
in Table 3. The first (c2382) provides the maximum reduction in forward flight power, and the second (c1071) 
compromises forward flight and hover performance. The response surfaces for 𝐶𝑝,𝑓, 𝐶𝑝,ℎ, and 𝐹𝑝𝑙 are shown in Fig. 
14a, b, and c, respectively, with the location of c2382. In addition to the largest improvement in 𝐶𝑝,𝑓, point c2382 also 
resulted in a 19.2% reduction in 𝐹𝑝𝑙; the largest decrease of any design in the Pareto set. This result showcases the 
ability of the framework and the MOGA optimizer to explore the design effectively and locate a point with favorable 
characteristics from the non-smooth 𝐹𝑝𝑙 response surface. 
 The Δ𝐶𝑝,𝑓 values in Table 2 and Table 3 indicate that a better performance in forward flight was obtained when 
evaluating the constraint. Despite the difference being small, this result is counterintuitive. It is likely that subsequent 
MOGA generations, had they been allowed, would have slightly improved the results of the unconstrained 
optimization case. 

Table 3 Optimized parameters and results for select points from constrained MOGA algorithm. 

Case ID 𝒕/𝒄 𝒙/𝒄 𝚫𝑪𝒑,𝒇

(𝝁 = 𝟎. 𝟑) 
𝚫𝑪𝒑,𝒇

(hover) 
𝚫𝑭𝒑𝒍

(UTTAS) 
c2382 0.077 0.37 -3.43% -0.43% -19.2%

c1071 0.054 0.27 -2.22% -0.90% -0.6%

Fig. 11 Constrained MOGA optimization for 
variation in airfoil thickness and thickness crest 

position. 

Fig. 12 Optimized airfoil geometries with 𝑭𝒑𝒍

constraint shown compared to baseline SC1095. 
Vertical scale is exaggerated.

c2382 

c107
1 
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Fig. 13 Main rotor power coefficient (𝑪𝒑) versus advance ratio for constrained MOGA airfoils. Plots show
a) the values of 𝑪𝒑 and b) the percent change compared to baseline. Wind tunnel data from Ref. [18].

Fig. 14 Subplots a), b), and c) show the response surfaces for 𝑪𝒑,𝒇, 𝑪𝒑,𝒉, and 𝚫𝑭𝒑𝒍, respectively for changes
in thickness (𝒕/𝒄) and its crest position (𝒙/𝒄). 

C. Unconstrained Multiobjective CONMIN
A study was conducted to examine the feasibility of using a gradient-based method to perform the blade

optimization. The goal of this study was the same as for the MOGA case, above. The objective function, 𝑓, is defined 
using a simple weighted-sum by the equation 

𝑓(�⃗⃗� ) = 𝑤𝑓𝐶𝑝,𝑓(�⃗⃗� ) + 𝑤ℎ𝐶𝑝,ℎ(�⃗⃗� ), (4) 

where 𝑤𝑓 and 𝑤ℎ are function weight coefficients for the forward flight and hover cases, respectively. Both 𝐶𝑝 values 
are normalized such that 𝐶𝑝,𝑓(𝑧 0) = 𝐶𝑝,ℎ(𝑧 0) = 1.

Initial testing revealed some key shortcomings of the gradient-based approach. Starting from the baseline 
configuration consistently results in a solution which falls short of the global minimum. Furthermore, changing the 
weighting coefficients has an unpredictable effect on the solution, with an increased bias toward forward flight 
performance not necessarily improving 𝐶𝑝,𝑓. In fact, in many instances, the opposite effect was observed. The reason 
for this difficulty is due to a large, flat area in the response surface. The challenge faced is not unlike the Rosenbrock 
function [22], often used for performance testing optimization algorithms. This flat region contains the true minimum 
but it is difficult for any gradient-based optimizer to traverse efficiently. The cube root of the response data is taken 
to increase curvature and mitigate the effect of the small gradient. Note that doing so does not change the solution, it 
only serves to increase gradient sensitivity along each axis. Thus, Eq. (4) is modified and the objective function 
becomes 

𝑓(�⃗⃗� ) = 𝑤𝑓 √𝐶𝑝,𝑓(�⃗⃗� )
3

+ 𝑤ℎ √𝐶𝑝,ℎ(�⃗⃗� )
3

 . (5) 

b) 
a) 

c2382 c2382 c2382 

b)
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A sensitivity study was conducted for a range of starting points and weighting factors. The starting points are 
defined as A) the baseline airfoil (𝑓𝑡 = 1.0, Δ𝑥 = 0.0), B) near forward flight optimum (𝑓𝑡 = 0.7, Δ𝑥 = 0.09), and C) 
near hover optimum (𝑓𝑡 = 0.53, Δ𝑥 = 0.0). Points B and C were determined from previous MOGA results. 
Additionally, due to the relative expected performance gains in each condition (i.e., expected Δ𝐶𝑝,𝑓 > Δ𝐶𝑝,ℎ), the 
range of response weights are defined favoring performance in forward flight. For each starting point and weighting 
factor pair, the CONMIN Fletcher-Reeves conjugate gradient method [21] for unconstrained optimization is used to 
minimize Eq. (5). The full set of results from this survey are shown in Table 4. The total number of function evaluations 
performed in this survey was 930, giving this case an estimated speedup factor of 𝑆 = 9.9. The weighted response 
surface contours and optimizer histories for a subset of the cases are shown in Fig. 15.  

The results in Fig. 15 show the dependence of the result on the initial location. The optimizer failed to converge 
on the minimum value for all but starting point B, despite the measures taken above and having a relatively smooth, 
convex response surface. It is worth noting that cases with starting point B delivered marginally better forward flight 
performance than that of the MOGA cases. More work is needed to improve robustness and reliability of the gradient-
based methodology for this problem.  

Table 4 Optimized parameters and results for unconstrained CONMIN. 

Case ID 𝑤𝑓 ∶ 𝑤ℎ 𝑡/𝑐 𝑥/𝑐 Δ𝐶𝑝,𝑓 Δ𝐶𝑝,ℎ 

A1 0.50 : 0.50 0.07864 0.3632 -2.95% -0.34%
A2 0.80 : 0.20 0.08150 0.3790 -2.89% -0.28%
A3 0.85 : 0.15 0.08160 0.3791 -2.89% -0.28%
A4 0.90 : 0.10 0.08366 0.3817 -2.78% -0.23%
A5 0.95 : 0.05 0.08304 0.3774 -2.81% -0.28%
B1 0.50 : 0.50 0.06790 0.3658 -3.38% -0.61%
B2 0.80 : 0.20 0.07249 0.3688 -3.47% -0.51%
B3 0.85 : 0.15 0.07234 0.3693 -3.46% -0.51%
B4 0.90 : 0.10 0.07230 0.3685 -3.47% -0.51%
B5 0.95 : 0.05 0.07233 0.3689 -3.47% -0.51%
C1 0.50 : 0.50 0.07114 0.3723 -3.43% -0.52%
C2 0.80 : 0.20 0.06852 0.3219 -3.26% -0.58%
C3 0.85 : 0.15 0.07223 0.3662 -3.44% -0.51%
C4 0.90 : 0.10 0.07080 0.3460 -3.33% -0.54%
C5 0.95 : 0.05 0.07188 0.3232 -3.21% -0.47%

VII. Conclusion
 This work represents significant initial progress in the development of a new, automated approach to rotor blade 

optimization. The work met each of the stated objectives by 1) developing a surrogate model workflow that was shown 
to substantially reduce the required computational resources of several example optimization cases, 2) creating a 
flexible workflow for rotor blade optimization that leverages the surrogate model, and 3) executing and evaluating a 
demonstration case on an HPC system. The demonstration successfully reduced the predicted UH-60A rotor power 
coefficient over a full range of forward flight speeds while simultaneously reducing the maximum pitch link load 
experienced during an extreme pull-up maneuver.  

The challenges faced during this work help inform future development. The impact of the optimization framework 
on the UH-60A power coefficient is smaller than anticipated, based on prior results reported by Lim [1]. Several 
improvements are planned to address this and to add new capability. Future versions will allow for multiple airfoil 
sections to be modified independently. Furthermore, additional design parameters (e.g., blade twist, sweep, taper 
anhedral), constraints (e.g., acoustics), and surrogate model approaches (e.g., machine learning) will be considered.  
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Fig. 15 Weighted response surfaces (colored contours) and optimizer histories (black dotted lines). The 
green and red circles are the start and end points for the optimizer, respectively. 
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