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SPIE Proceeding: Meteorological property and temporal
variable effect on spatial semivariance of infrared

thermography of soil surfaces for detection of foreign
objects

Austin K. Workman and Jay L. Clausen

ABSTRACT

The environmental phenomenological properties responsible for the thermal variability evident in the use of 
thermal infrared (IR) sensor systems is not well understood. The research objective of this work is to 
understand the environmental and climatological properties contributing to the temporal and spatial thermal 
variance of soils. We recorded thermal images of surface temperature of soil as well as several meteorological 
properties such as weather condition and solar irradiance of loamy soil located at the Cold Regions Research 
and Engineering Lab (CRREL) facility. We assessed sensor performance by analyzing how recorded 
meteorological properties affected the spatial structure by observing statistical differences in spatial 
autocorrelation and dependence parameter estimates.

Figure 1. This figure shows a 3 dimensionsal representation of the thermal image recorded from our FLIR thermal
imaging technology. The height and color both denote the temperature at the given thermal resolution point



1. INTRODUCTION

The US Army has been testing a variety of sensor systems (thermal IR, seismic, acoustic, radar, electromag-
netic) for the detection of landmines and Improvised Explosive Devices (IEDs) at the countermine test site 
at Yuma Proving Ground (YPG) and other sites and has amassed a significant library of data. Presently, the 
US Army has spent the last several years developing and testing a variety of computer algorithms to improve 
the Probability of Detection (PD) of land mines and IEDs. The PD and reduction in False Acceptance Rate 
(FAR) and have not achieved the necessary objectives for a high confidence system. One reason for this, we 
hypothesize, is the lack of consideration for the impact of soil and atmospheric phenomenological properties 
on sensor performance for land mine and IED detection. Techniques for rapidly assessing the location of 
disturbed soils due to IED emplacement or other elicit activities within a large spatial area are needed by 
the Army. The coupling of wide area assessment technologies such as IR signatures, magnetic fields, or other 
spectroscopic sensor modalities with novel geospatial statistical methods is a means to effectively evaluate 
large spatial areas for soil disturbances. Our approach uses mid- and long-wave infrared imagery for detec-
tion of soil disturbances. For example, modern thermal sensors are capable at detecting thermal differences 
on the fraction of a degree scale. However, the common problem for practical use of this technology is its 
high rate of false positive detection requiring substantial manual analysis. The research objective of this 
work is to continue to research and understand the environmental (soil and atmospheric) phenomenological 
properties affecting temporal and spatial thermal variance of soils. The question being addressed is how to 
quantify the natural variance “noise” such that it can subtracted from a disturbed area “signal” by taking 
into account the physical phenomenological material and atmospheric properties. Our research is focused on 
the variables we have identified as having statistically significant and correlated difference due to variations in 
thermal irradiation measures for FLIR sensors. Our research will focuses on the interplay of environmanetal 
processes and thermal behavior.

2. BACKGROUND

Historically, electromagnetic sensor systems have been utilized to detect buried ferrous objects. However, 
buried land mines and IEDS are made out of ferrous and non-ferrous, e.g. plastic materials. With the 
current conflicts in Afghanistan and Iraq there has been an increased interest in other sensor modalities, e.g. 
thermal infrared (IR), hyper-spectral imagery, seismic, acoustic, ground penetrating radar, that are capable 
of detecting buried objects regardless of their material composition. These alternative sensor modalities could 
be operated independently. Increasingly there is interest in fusion of multiple sensor systems into a single 
comprehensive platform allowing for complimentary integrative analysis.1 Additionally, there is interest in 
using autonomous UAVs or ground platforms for quickly characterizing and area at standoff distances prior 
to conducting military patrols, convoys, or combat operations. Another application is using mines/IEDs to 
shape the battlefield, which requires an understanding of the conditions under which the mines/IEDs are 
detectable. A landmine is a type of self-contained explosive device that is placed into or onto the ground. 
They are mainly used as a military tactical weapon against vehicles or people.2 Their most common tactical 
use is to restrict enemy movement in times of war. They serve the same bordering purpose of physical 
barriers such as barbed wire, however landmines are unique in their ability to be undetectable, which further 
adds to the importance of sensor modalities and detection methods.3

Due to the difficulty of detection, landmines can lay dormant in areas that have long since become 
demilitarized zones. As of 2003, there was as estimated 70 million active landmines worldwide.4 These 
landmines have estimated to have caused over one million casualties estimated at 800,000 deaths.5 Being 
able to properly identify areas with prevalent with landmines can help increase safety, decrease maiming and 
death counts, and increase public sentiment.4, 5

Laying mines is simple and inexpensive, while in contrast, detecting and removing mines is expensive, 
difficult, and often dangerous. The goal of new age detection methods is to be able to detect all constructs of 
mines such as plastic, metal, or wood, in any type of soil, weather, or extenuating condition. The literature 
has shown that current methods perform with varying accuracy under different conditions with no optimal 
method yet discovered.6 Optimally, the best method would be able to give instantaneous detection with
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negligible amount of false alarms.7 Infrared thermography has received increasing interest over the past
decade as a sensor modality.8 Thermal IR is based on the concept that the thermal signature of soil is
altered by objects buried at shallow depths within the soil, regardless of metal content due to an altering
of thermodynamic properties.9 The technique measures surface-emitted electromagnetic energy in the IR
radiation band, also known as thermal radiation. Materials differ in thermal capacities, resulting in different
heating and cooling rates and associated infrared emissions.9 If a landmine is exposed on the physical surface
being imaged, differences in thermal signature will depend on the material of the landmine. In the more likely
case that a landmine is buried, the thermal signature of the soil at the surface above and around the mine
becomes a complex interplay of many different and unique factors such as, but not limited to, the soil texture
and water content,10 or the depth buried.11 There are a lot of methods in development concerning IR sensing
technology that look at diurnal cycles,12,13 numerical simulations,13,14 and meteorological properties12 as
well.

Many researchers acknowledged consistent challenge in the use of thermal IR for anomaly detection is the
heterogeneous nature of soils9 , which can mask the signature of buried objects due to the high variability
of thermal emissions of the soil itself. Soil IR signatures are affected by a host of environmental factors,
such as temperature, volumetric water content, material density, reflectance, and surface texture. However,
the manifestation of the variability within these factors, and their interactions, are poorly understood. For
instance, diurnal thermal fluctuations due to changing solar input throughout the day give rise to thermal
contrasts at the surface, but the mechanism of heat and moisture transfer contributing to these contrasts
remains unclear and unquantified.15 Adding to this complexity is the additional influence of a buried
object on both the heat and moisture transfer.15 Since thermal imaging as a sensor modality increased
in popularity in the early 2000’s, multiple papers have taken to studying varying types of properties.8

The most common approach taken from other researchers is to hold multiple factor properties constant
while adjusting a specific factor of interest in hopes of seeing a discernible pattern in the data output.
Van Dam9 discovered that in both dry and wet soils, the texture does not make much difference for the
thermal signature of a buried landmine. Van Dam also concluded that water content affects the thermal
signature, though the relationship did not have a quantifiable linear relationship. Koenig16 published a
paper that realized accounting for the properties of disturbed and undisturbed soil can help better detect
buried objects. The presence of a buried object disturbs the heat and diffusion parameters of the soil,
enabling anomaly detection.15 Contrasts in surface temperature are manifested by two phenomena – a
volume effect, which results in the soil emissions immediately surrounding buried devices contrasting with
background soil, and a surface effect, which reflects the soil disturbance from the physical act of burial.10,15

The extent of the volume effect is primarily determined by the characteristics of the object, although the
importance of soil volume is negatively correlated with the role of burial depth.15 The surface effect remains
for weeks after the disturbance and enhances the contrast induced by the buried object.10 Waldemar17

extended the work of Hong and Van Dam by observing varying contents of water and varying densities of
soil on landmine detection at a physical level, supported by numerically simulation. Prediction of expected
surface temperatures is complicated by the non-linear movement of water within soil and changes in surface
temperature during the drying process. To date, no direct quantifiable relationships have been established
relating the environments impact on thermnal sensor performance. Understanding the relationship between
meteorological conditions and soil conditions is paramount to being able to detect landmines and IEDs buried
in soil.

The best way to understand the interrelationship of 2-dimensional spatially correlated observations, such
as pixels in a thermal image, is to observe the spatial variograms. A variogram, denoted 2γ(si, sj), of a set
of spatially correlated observations at locations s = (s1, s2, · · · , sn) is defined as the variance between field
values at two locations across all realizations of the field, given by the equation;

2γ(si, sj) = var (Z(si)− Z(sj)) , (1)

where Z(si) is the observation of thermal temperature at spatial location si.
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Spatial data are data that are collected in space. Spatial data is a realization of a spatial stochastic
process, {Y (s) : s ∈ D}, where s is the location from which the data is observed and D is a random set in
d-dimensional Euclidean space. Spatial statistical analysis arose not to answer the question “how much”,
but to answer the question “how much is where”.18 The basic theory behind spatial statistical methods
is the idea that observations in close spatial proximity tend to be more similar than observations that
are spatially separated, otherwise known in spatial analysis as autocorrelation. Correlation is defined as a
measure of similarity between two difference variables.19 Spatial Autocorrelation is the correlation among
values strictly attributable to their relatively close proximity.20 In spatial statistics this means observations
close in Euclidean space, while for time series this means observations close in time.

A Variogram is the most important tool in exploratory spatial analysis. the variogram measures the
spatial autocorrleation of a field by describing how sample data are related with regards to distance and
direction. We can construct semivariograms of the thermal signatures of out test plot for any FLIR thermal
images. Variograms allow us to visualize the spatial structure of the variability of the test plot and how the
variability compares across different factors.

3. EXPERIMENTAL DESIGN

The experimental design for our project had two different phases to analyze different features of the spatial
variance of thermal images. The first phase involved construction of test cell without manipulation of the
soil. Not controlling for external factors allowed us to get exploratory readings on how the natural processes
of our area affected thermal signature. This provided a baseline for our future phases that controlled for
factors such as homogeneity of soil. Phase II involved the construction of test plot using homogenized soil
from the plot. In Phase II we emplaced 158 subsurface thermistors and 26 volumetric water content readers
to measure how water content and thermal temperature changes across three dimensional space.

3.1 Phase I

As mentioned above, the plot is located at CRREL in an area cleared of brush and trees such that the
test section incurred nearly full sun all day. The study consisted of two 0.3 meter by 0.3 meter test plots
subsetted into 25 61cm by 61cm cells∗. One plot was scraped with a surface excavator to remove the surface
vegetation exposing bare ground of mineral soil, whereas the second plot had a vegetated strip running down
the center. We measured multiple different properties of the soil, but no manipulation of soil was performed.
The metal content of the soil was analyzed using x-ray fluorescence (XRF). The analytes included Ag, As,
Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Yi, and Zn. Soil samples were taken at various depths. Grain size
analysis was conducted following ASTM D422. There were three methods used to measure the density of
the in-situ soil; these included the drive cylinder and the EGauge. Surface roughness was measured using
a Reigl’s VZ400 LIDAR. Throughout both phases, we used a meteorological station to record a multitude
of different properties including: air temperature, relative humidity, pressure, wind speed, rain, and short
and long solar radiation. Data acquisition was on 15 minute intervals and synchronized to the thermal IR
cameras. The met station for phase I was located 50+ meters from the plot, while in phase II the met station
was located 13 meters from the plot.

3.2 Phase II

Phase II was similar in experimental design to phase I. The changes implemented in phase II were made
onto select factors to reduce spatial variability and noise. For phase II, we homogenized the soil down
to 65 centimeters below the surface to reduce spatial variability across the 3D plot. Phase II controlled
for the depth of the buried object and the object material by replicating object dimension and material.
Furthermore, to obtain a better understanding of the 3-dimensional behavior of the temperature and water
content spatial structure, we installed 158 thermistors and 26 water content readers at varying depths and
spatial locations. Lastly, we readjusted the FLIR camera to observe a grassy area and a non-homogenized

∗The plot subsetting was only used for analysis purpose, there were no physical barriers dividing the plot
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soil area outside the plot area of study to allow for a control of mediums to compare our homogenized soil
data analysis.

The size of objects placed below the surface level of the plot were larger in the phase II study

Figure 2. The blueprint of the 5cm depth shows the distribution of the thermistors across the Phase II plot design.

Figure 3. Outdoor plot experimental design and set up with corresponding thermal image
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4. SPATIAL ANALYSIS

Previous research has shown a link between weather conditions and meteorological processes effected the
spatial distribution of the heat signature of soil surfaces, but our goal of this study is to numerically quantify
to what degree each measurable factor contributes in determining the spatial distribution, structure, and
numerical output for soil surfaces so we can better understand the ideal conditions to scan for subsurface
land mines and IEDs. Quantifying spatial variability will provide a better understanding about how weather
interacts with spatial properties.

4.1 Weather Event ANOVA

We recorded and catalogued the weather conditions for all days in which we recorded thermal images. We
divided the weather event into three distinct categories: “Sunny/Clear”, “Cloudy”, and “Rain”. In an at-
tempt to decrease noise and outlier observations, we only observe days in which there was consistent sunshine
or cloud cover or rain throughout the day. As mentioned in section 2, variograms are the best way to ob-
stain 2-dimensional representations of spatial structure and allows us to cross-compare the spatial structures
by shape and parameters estimates. Empirical variograms and theoretical variograms were constructed for
23 chosen days. The variograms were constructed from thermal images taken at 10am. The variogram
comparison can be see in figure 4 below:

Figure 4. Variograms of selected thermal images by weather event

Next we fit theoretical variograms to calculate spatial parameters that model the spatial structure so that
we can compare spatial structure with numerical methods. Tables 1 and 2 are two numerical comparison
methods the confirm that the groups are statistically significantly different.

Table 1. One-way ANOVA of sill estimates by weather event

DF Sum Sq. Mean Sq. F-value p-value
Weather Event 2 31.24 17.98 19.84 2.23× 10−05

Residuals 19 14.96 0.79
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Table 2. Tukey HSD by group analysis

diff lwr upr p adj
fair-cloudy 1.35 0.22 2.49 0.0181
rain-cloudy -1.58 -2.84 -0.33 0.0122
rain-fair -2.94 -4.13 -1.75 < 0.001

4.2 Phase I object emplacement

The objects we placed in phase I were widely varying in depth, material, shape, and size, so we were not
able to quantify how individual object classifications compare. However we were able to quantify the overall
effect of object emplacement on spatial variability. We test whether the object emplacement is affecting
maximum spatial variability by observing the pre vs post-emplacement sill estimates with a corresponding
analysis of variance (ANOVA). Figure 5 shows the distribution of the spatial sill values of the before and
after groups. The tests showed that the pre and post-emplacement variograms are not significantly different
by means of parameter estimate comparison. However further tests showed that same thermal image with
objects and without objects had statistically significant variograms, evidenced in figure 6. These conflicting
results led us to conclude that objects effect spatial variability of thermal surface temperatures, but we were
unable to determine to what degree.

Figure 5. Log-transformed spatial sill and sill parameter estimates for 23 thermal images
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Figure 6. Log-transformed spatial sill and sill parameter estimates for 23 thermal images

4.2.1 Phase I results, discussion, and conclusion

From our analysis, we have only statistically proven that weather event causes varying levels of spatial
variability, that the diurnal cycle effects maximum spatial variability, and that object emplacement effect
the maximum spatial variability. Analysis of individual factors such as shortwave solar radiance and water
content were inconclusive due to the data resolution and unknown soil properties.

4.3 Phase II in-depth meteorological and time factor analysis

As mentioned in section 3, the Phase 2 analysis of our data had us control for as much noise causing variation
as possible, such as homogenizing the soil and controlling the object size and depth. In phase I, we noticed
that there was a trend in time of day, weather condition, and the maximum spatial variability, but we were
unable to relate them to any numerical factor due to the low resolution of data we observed. In phase 2,
we were able to line up our meteorological data output with the thermal image time stamps to produce
graphical representations highlighting the inter-relationship of solar irradiance and spatial thermal variance,
shown below in figure 7 and 8.

Figure 7. Day with high solar variance and the corresponding spatial variogram by hour
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Figure 8. Day with low solar variance and the corresponding spatial variogram by hour

This lead us to believe that there is a relationship between the short wave solar irradiance and the spatial
sill and range. More specifically, we hypothesized that high solar irradiance causes the surface to heat areas
of high thermal sensitivity, while areas of the plot that have low thermal sensitivity remain low in thermal
signature. This process causes the thermal surface to have high contrast, meaning that pixels have high and
low readings in close spatial proximity, causing the max spatial variance (sill) to be high and causes the
spatial dependent lag (range) to be low.

Figure 9. Scatter plot of sill by incoming short wave IR (left) and spatial range by incoming shortwave IR (Right)
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Figure 10. Categorized box-plot representation of scatter plot shown in 9. The solar radiance values are binned into
bins of 100.

Figures 9 and 10 shows that low values of solar radiance correspond with low spatial sill values, while
large solar radiance levels correspond to high spatial sill values. These results corroborated future analysis
that analyzed time of day concurrently with the amount of solar radiation to determine when the spatial
variability is at a level to allow for the clearest visibility for subsurface IEDs.

4.4 Subplot Temporal Variance

The plot is divided into the following subplots for the Phase II analysis, shown in figure 11 .

Figure 11. Categorized box-plot representation of scatter plot shown in 9. The solar radiance values are binned into
bins of 100.

In phase 1, we showed that, on average, the temperature of subplots with objects placed on the surface
or underneath the surface was affected and different from subplots without objects. However, we were only
able to conclude that temporal variance was by objects, but not what certain properties correlated to the
temporal trends due to the variability among object size and materials. Phase II controlled the material,
depth, and location of the subsurface objects allowing us to better understand temperature response across
time, shown in figure 12
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Figure 12. From top left to bottom right: Deep plastic object, deep metal object, shallow metal object, shallow
plastic object

Due to the homogeneity of the soil, the placement of the objects causes the thermal temperature readings
to change drastically directly after the object emplacement. This trend can be observed most notably in
the bottom right subset, which contains a shallowly buried plastic object. Prior to emplacement, the mean
temperature deviation seems consistent through time, but the plot experiences a much higher variability in
temperature after the object was emplaced. This drastic change in thermal variation can be attributed to the
thermodynamic heat flow properties of plastic objects. Each of the objects and depths cause differing trends
for each of the subplots containing objects. The subplot containing a plastic object buried deep shows
a stabilizing of temperature post placement causing the temperature variation to decrease. The subplot
containing a metal object buried deep shows a noticeable negative shift in temperature, meaning the object
has a cooling effect on the surface temperature. The subplot containing a shallowly buried metal object
shows an increasing trend in thermal signature through time for post placement. These trends are even
more accentuated when we look at a subplot containing no buried object shown in figure 13 below:
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Figure 13. From top left to bottom right: Deep plastic object, deep metal object, shallow metal object, shallow
plastic object

4.5 Object Visibility Measure

We spent the most of this paper discussing which meteorological properties effect spatial and temporal
variance, which has been paramount to help our understanding of detection of buried objects. Now that
we know what factors effect spatial variance, we can begin to use those relationships to dive deeper into
what it really means for an object to be detectable. For example, does having a large sill or large spatial
range mean that contrasts will show spatial anomalies more clearly, or do those spatial conditions wash out
any potential object visibility? To assess the problem of variability vs visibility, we decided we need to use
features of spatial variability to make a measure of visibility so then we can assess which meteorological
properties effect the spatial variance in a way that makes subsurface objects visible. What constitutes as
detectable for someone studying thermal images is how easily one can notice unnatural or abnormal change
in temperature (often represented as color). Take for instance the following two thermal images, both which
have had the objects placed underneath the soil surface.

Figure 14. Thermal images

The researcher would look at the left graphic in figure 14 and determine that 4 objects were placed 
in each of the four corners based on the obscure thermal patterns. Therefore, to assess visibility, a high 
visibility measure is assigned for each subplot for that thermal image. Conversely, the right graphic in figure 
14 has no clear object visibility, thus is assigned a poor visibility measure for each subplot. Our eyes expect 
there to be smooth gradient change across 2-dimensional space. When sudden drastic changes occur across 
space, our eyes and minds recognize the unnatural change due to our abilities to recognize patterns. The 
change that is happening in a numerical sense is a sudden decrease or sudden increase in values of adjacent
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geospatial locations. Variograms measure the average spatial variance for each preset lag distance binned
from the shortest distance apart to the max distance apart for all geospatial locations. We use the spatial
variance, γ, at each subplot location, si, as an indication of object visibility. However, being able to see an
object is relative to how large the spatial variance of the subplot is in relation to the other subplots and
in relation to the overall plot variance. If there is a relatively large spatial variance in a subplot while the
overall plot shows little variability, then the gradient of that section will be noticeably different. Thus the
equation for recognizing spatial variance is a ratio of how large the maximum or average spatial variation is
a compared to the overall plot spatial variance shown in equations 2 and 3 below

1

n

n∑
i=1

γ(si)

1

N

N∑
i=1

γ(S)

(2)

and
σ2(si)

σ2(S)
, (3)

Where σ2(si) is the maximum spatial decay semivariance, or sill, of the subplot i, and σ2(S) is the sill
of the entire plot. We know where the objects are buried, and we take advantage of that fact when dividing
the plot into subplots, though these measures would valid even if we were not gifted the knowledge of object
location prior to dividing the plot. Because some of the sill and range measurements we obtain are really
large, we also created a metric that scales between 0 and 1 as follows

1

n

n∑
i=1

γ(si)

1

N

N∑
i=1

γ(S) +
1

n

n∑
i=1

γ(si)

(4)

and
σ2(si)

σ2(S) + σ2(si)
, (5)

To validate that this use of spatial variance as a measure of object visibility we observe 5000 thermal
images and calculate the visibility metrics. After we obtain these visibility metrics we can test if high
visibility metric values correspond to thermal images with obvious objects in the subsurface. by subplot, we
get the following distribution of visibility metrics:
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Figure 15. Left are the average semivariance risk ratio (equation 4 values for each subplot. Right are the average 
sill risk ratio (euqation 5 values for each sublot.

According to the average semivariance ratio (left graphic in 15) the median visibility metric for the top 
left (deep plastic) and top right (deep metal) subplot are not statistically different in average semivariance 
visibility ratio from the non-object having plots, but there are several box-plot-determined outliers where 
these subplots are experiencing high visibility measure. This is extremely important for our study. This lets 
us know that the deeper objects are difficult to see visibly, on average, but there are certain times and certain 
conditions where the objects become visible, which we can now attempt to quantify statistically. Next, these 
box-plots also show that the visibility measure for both the shallow objects was much larger compared to 
every other subplot with the plastic shallow subplot being significantly larger than even the shallow metal. 
There are thermal images in which the visibility measure is as low for the shallow objects as for the average 
subplot, meaning that even shallow objects have conditions it is is essentially invisible in a thermal image.

We decided that we need to quantify the time of the day where the visibility is the highest for each 
subplot. Once we have quantified time’s effect on visibility, we will look further into the variable to see what 
meteorological conditions are occurring at these high visibility times. Figure 16 above shows the average 
visibility at every 15 minutes of the day for each subplot. For these averages we found the visibility measure 
for each of the 4 subplots over 5000 thermal images. The grey represents the average visibility measure for 
the 5 subplots that do not have any objects. As we see in the shallow plastic object, the visibility measure is 
larger for every time stamp for the entire day, which is what we expect from observing the thermal images. 
The shallow plastic image is already known to be highly visible under almost any condition, thus we expect 
the visibility measure to be universally higher than the average non-object subplot visibility measures. The 
two deep buried objects are obviously much more difficult to see with thermal images. At some time points, 
e.g. 10:30 and 20:00, the visibility measure for the deep buried objects are no more visible than the non-
object subplots meaning that we can assume the visibility is poor. Figure 17 below shows the differenced 
visibility measure for the 4 subplots which help us identify when visibility should be highest for each of the 
subplots.
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Figure 16. The average visibility metric at a 15 minute increment throughout the day for each object-containing
subplot

Figure 17. Left: Poor visibility measures for all; Right: Poor visibility for deep mines and shallow metal, average
visibility for shallow plastic

 15



The best time of the day, on average, to see the deep buried objects is between 05:00 and 08:00 and 
between 15:15 and 19:00. The specificity of this time is very important because the worst times for visibility 
are very close in time to the best times for visibility, this is a concept of thermodynamic heat flow that is 
described later in the a discussion section.

Figure 9 and 10 above described how solar irradiance effects spatial parameter estimates. The spatial sill, 
often interpreted as the maximum spatial variance of geospatial field is directly, although noisily, correlated to 
incoming solar irradiance. Higher solar irradiance values brought on by intense direct sunlight causes increase 
in spatial thermal variance of the soil surface. The spatial range is the distance apart that two geospatial 
points reaches the maximum spatial variance and is often interpreted as the distance apart that geospatial 
points stop showing spatial correlation. The spatial range decreases as the solar irradiance increases. This 
means as the soil surface is exposed to direct sunlight for extended periods, geospatial points are correlated 
at shorter distances and the contrast increases across the soil surface. Low spatial range values correlate to 
a more uniform thermal image.

The highest visibility measure for the shallow plastic object corresponds to when there is 0 (zero) solar 
irradiance, which matches with the time of day graphic in the previous section. There is no solar irradiance 
at night. The visibility metric for the shallow plastic was highest during the nighttime and sunless hours 
of 22:00 to 05:00. Thus we see the compounding evidence that lower solar irradiance levels and early day 
hours correspond to high visibility marks for the shallow plastic object subplot. The shallow metal object 
is most visible during the middle times of the day and is least visible during the early and late hours of the 
day. There also appears to be a dip in visibility measure at 19:00. On average, the object is most visible at 
high solar irradiance levels and is least visible at low solar irradiance values. At times when there is typically 
high solar irradiance 10:00 – 17:00, we get the best visibility measure. We conclude that solar irradiance 
has an effect on visibility but under some constraints of time. Furthermore, we see the “washout effect” 
discussed earlier when the solar irradiance is abnormally high. At peak sunlight hours when there has been 
constant sun exposure leading to incoming solar IR readings in the 800s, the entire plot becomes so hot 
that any thermal signature is completely washed out. Not surprisingly, looking at just the solar irradiance 
does not tell a lot about the deeper buried objects subplots. The objects are so deeply buried the sunlight 
doesn’t have the same thermodynamic effect. From the time variable analysis, there is only a short window 
of time in which the deeper objects are visible, and those times correspond to times of high variability of solar 
irradiance. For the time frame from 10:00 to 12:00, there are no large visibility measure values. For the 16:00 
- 19:00 time frame there are several large visibility measures. We conclude that there are conditions during 
the 16:00-19:00 time frame that cause an increase in visibility that we can attempt to quantify. Conversely, 
high solar irradiance times never allows for high visibility for the deep object subplots, under any condition. 
In other words, high solar irradiance completely renders deep buried objects invisible to thermal imaging 
technology regardless of other known significant factors.
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Figure 18. Left: Poor visibility measures for all; Right: Poor visibility for deep mines and shallow metal, average
visibility for shallow plastic

4.6 Rain and Water Content

Rain events that saturate the top level of the soil with water increase the visibility measure for deeper
buried objects. The thermodynamic heat flow predicts this behavior. The deeper objects will be heated to
a steady state temperature similar to the surface and surrounding layers. Once a sudden rain event occurs
and rapidly cools the surface soil, the deeper layer objects remain heated to the high ambient temperature
until the water soaks in to the lower layers. Thus, as we see in figures 19 and 20, the visibility measure is at
its highest in the time series directly when the rain is falling and the surface water content is high, but the
deep water content is still low.

Figure 19. Top Left: Deep Plastic
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Figure 20. Top Right: Deep Metal

After the rain event on the 22nd of August 2018, it does not rain again for the following 7 days, and
the solar irradiance is very high at readings upwards of 800. The water content begins decreasing as it
is evaporating out of the soils. The visibility measure for both deep buried objects then becomes much
noisier and unpredictable and slowly decreases back towards its mean visibility that of which is very poor,
comparatively. Water content has an opposite effect on the shallow buried objects. The moment of the rain
event, the visibility measure for both the shallow metal and plastic object drops and becomes increasingly
noisy and volatile. For the shallow metal we see a complete paradigm shift in detection for the days directly
following the rain event. The shallow metal object is most visible during daylight hours from 11:00-17:00,
on average. However the 23rd -25th (the days directly preceding the rain event) show poor visibility during
daylight hours and increased visibility during night hours. Four days after the rain event, we see the
metal object return to its natural state and it has high visibility measures again during 11:00-17:00 hours.
Furthermore, the 26th-29th see higher max visibility measures for each consecutive day a trend more easily
noticeable in 23. Each consecutive day, the incoming Shortwave IR increases and the WC decreases. The
thermodynamics suggest that days of consecutive and consistent sunlight will increasingly heat the shallow
metal object making its signature more distinctive. The shallow plastic object behaves very similarly to the
shallow metal object. The 23rd and 24th of August show very low visibility measures during the daylight
hours. The 25th onward have high visibility measures for daylight hours as the system returns to its natural
state. Although the daylight visibility measure for the shallow plastic is clearly affected by rain events, the
object remains highly visible at night and early morning hours despite the rain. The visibility for the shallow
plastic is high under most circumstances, however after rain events, shallow objects are harder to see in a
thermal image taken during daylight hours. For metal objects it took 3 days to return to the natural state,
and for plastic object it took 2 days to return to its natural state

Figure 21. Bottom Left: Shallow Metal
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Figure 22. Bottom Right: Shallow Plastic

Figure 23. Deep Metal subplot visibility measure as water content decreases for consecutive days

5. CONCLUSION

Our initial analysis showed us that weather events changed the thermal signature of the soil surface enough 
to see statistical differences in spatial structure by multiple different parameter estimates. We saw that sunny 
clear days showed a much higher maximum spatial variance and a much shorter spatial range culminating 
in a spatial structure buried objects had high contrast. Conversely we observed that rain washed out the 
thermal signature of the soil and thus decreased the maximum spatial variance and increased the spatial 
range. Rain events cause the thermal signature to show little contrast giving the look of an evenly distributed 
temperature across the entire soil surface.

Our exploratory analysis in phase I led to a quantification of the relationship between buried objects 
and soil surface thermography and spatial structure. There is a statistically significant decrease in thermal 
variance when objects are removed from the analysis of the thermal images. This means that on average, 
there will be an increase in thermal variance if there are objects on or below the soil surface.

Phase II saw us dive deeper into the statistical relationships between weather, objects, time and spatial 
structure of thermal images. High solar radiation days with diurnal cycles mirroring temperature diurnal 
cycles track and scale thermal signature variograms in the same diurnal pattern. As the solar radiance gets 
larger, the variogram sill increases and the spatial variability increases. As the solar radiance begins to 
decrease, so too does the spatial sill and variance. On days with low solar radiance, the soil surface thermal 
signature remains muted and causes the variograms to drastically decrease in sill and spatial variance. When 
the solar radiance is low, the variograms also lose the diurnal pattern. Any spike in solar radiance causes 
jumps is spatial variance, but without continued exposure of sunlight, the variograms remain low.

  19



These statistical evaluations were validated by looking at scatterplots and categorized box-plots of spatial
parameters vs solar IR shortwave measurements. The graphical trends were proven with statistical tests
showing statistically conclusive results (P < 0.0001). Phase II expanded on the phase I results that objects
increased spatial variance by looking at time series of soil surface temperature difference before and after
placement of subsurface buried objects. Depth of buried object and material properties effect the temperature
variance differently. Temperature variation was minimized for deep buried objects with the deep metal object
having a noticeable cooling effect. The shallow plastic object caused the soil surface to experience greater
variation. The shallow metal object initially showed no effect, but as time passed, the signature of that
subplot increased in temperature at a steady linear rate.

All of the meteorological and temporal analysis culminated in our use of statistical variability as a
measure of object visibility and the analysis correlating meteorological properties and time to high and low
moments of object visibility in thermal images. Our conclusions from our visibility metric analysis were in
line with previously observed output. The shallow objects experienced much larger visibility measures, on
average. This coincided with our analysis of temporal variation that showed the shallow plastic subplots
experience much wilder variations from the mean compared to every other subplot. Furthermore, we were
able to identify the peak time and peak solar radiance and weather conditions for determining the visibility
of objects. Night time hours work well for shallow plastic, midday hours work well for shallow metal, and
the moments of sunrise and sunset are best for visibility of deep objects during a series of clear days. Rain
and water content has a contrasting washout effect on visibility.
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