
ER
DC

 M
P-

21
-3

 In Situ Analysis and Visualization to Enable
Better Workflows with CREATE-AVTM Helios

En
gi

ne
er

 R
es

ea
rc

h
an

d

D
ev

el
op

m
en

t C
en

te
r

Andrew C. Bauer, James R. Forsythe, Jayanarayanan Sitaraman,
Andrew Wissink, Buvana Jayaraman, and Robert B. Haehnel

June 2021

Approved for public release; distribution is unlimited.

The US Army Engineer Research and Development Center (ERDC) solves the
nation’s toughest engineering and environmental challenges. ERDC develops innovative
solutions in civil and military engineering, geospatial sciences, water resources, and
environmental sciences for the Army, the Department of Defense, civilian agencies, and
our nation’s public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library
at https://erdclibrary.on.worldcat.org/discovery.

http://www.erdc.usace.army.mil/

ERDC MP-21-3
June 2021

In Situ Analysis and Visualization to Enable
Better Workflows with CREATE-AVTM Helios

Andrew C. Bauer Robert B. Haehnel
 US Army Engineer Research and Development Center

 Cold Regions Research Engineering Laboratory
 7 Lyme Road
 Hanover, NH 03755

 Janarayanan Sitaraman

 Parallel Geometric Algorithms LLC
 Sunnyvale, CA 94087

Information Technology Laboratory
3909 Halls Ferry Road
Vicksburg, MS 39180

James R. Forsythe

US Navy NAVAIR 4.3.2.1
48110 Shaw Road
Patuxent River, MD 20670

Andrew Wissink and Buvana Jayaraman

US Army CCDC AvMC
Technology Development Directorate
Moffett Field, CA 94035

Final report

Approved for public release; distribution is unlimited.

Prepared for U.S. Army Corps of Engineers
Washington, DC 20413

Under Program Element Number 0212040, AMSCO 644115AX400

ERDC MP-21-3 ii

Preface

This study was conducted for the Department of Defense (DoD) High
Performance Computing Modernization Program (HPCMP). Funding for
Computational Research and Engineering (CPE) was provided under
Program Element 0212040, AMSCO 644115AX400 by the Deputy
Assistant Secretary of the Army for Research and Technology and
supported by the Future Vertical Lift Cross-Functional Team.

The work was performed by the Data Analysis and Assessment Branch
(Dr. Michael M. Stephens, Chief) of the Supercomputing Research Center
Division (Mr. Robert M. Hunter, Chief), U.S. Army Engineer Research and
Development Center, Information Technology Laboratory (ERDC-ITL);
and by the Terrestrial and Cryospheric Sciences Branch (Dr. John
Weatherly, Chief), of the Research and Engineering Division (Mr. David
Ringleberg, Acting Chief), U.S. Army Engineer Research and Development
Center, Cold Regions Research Engineering Laboratory (ERDC-CRREL).
At the time of publication, the Deputy Director of ERDC-ITL was Ms. Patti
S. Duett, and the Director was Dr. David A. Horner. The Deputy Director
of ERDC-CRREL was Mr. David B. Ringelberg, and the Director was Dr.
Joseph L. Corriveau.

This paper was originally presented at the American Institute of
Aeronautics and Astronautics Scitech 2021 Forum (Virtual Event, 19-21
January 2021) and published online 4 January 2021. This work was made
possible by the HPCMP’s allocation of computer time on the ERDC
DSRC’s Cray XC40, Onyx.

The Commander of ERDC was COL Teresa A. Schlosser and the Director
was Dr. David W. Pittman.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

In Situ Analysis and Visualization to Enable Better Workflows
with CREATE-AVTM Helios

Abstract
The CREATE-AVTM Helios CFD simulation code has been used to accurately predict rotor-
craft performance under a variety of flight conditions. The Helios package contains a suite of
tools that contain almost the entire set of functionality needed for a variety of workflows.
These workflows include tools customized to properly specify many in situ analysis and
visualization capabilities appropriate for rotorcraft analysis. In situ is the process of
computing analysis and visualization information during a simulation run before data is saved
to disk. In situ has been referred to with a variety of terms including co-processing,
covisualization, coviz, etc. In this paper we describe the customization of the pre-processing
GUI and corresponding devel-opment of the Helios solver code-base to effectively implement
in situ analysis and visualization to reduce file IO and speed up workflows for CFD analysts.
We showcase how the workflow enables the wide variety of Helios users to effectively work in
post-processing tools they are already familiar with as opposed to forcing them to learn new
tools in order post-process in situ data extracts being produced by Helios. These data extracts
include a various sources of infor-mation customized to Helios, such as knowledge about the
near- and off-body grids, internal surface extracts with patch information, and volumetric
extracts meant for fast post-processing of data. Additionally, we demonstrate how in situ can
be used by workflow automation tools to help convey information to the user that would be
much more difficult when using full data dumps.

Acronyms

API Application Programmer’s Interface.

CFD Computational Fluid Dynamics.
CPE Computational Prototyping Environment.

1

CSD Computational Structural Dynamics.

GUI Graphical User Interface.

HIGen Helios Input Generator.
HPC High Performance Computing or High Performance Computer.
HUI Helios User Interface.

MPI Message Passing Interface.

VTK Visualization Toolkit.

XML Extensible Markup Language.

I. Introduction
As compute power grows, workflows for rotorcraft simulations are getting more complex and demanding. This

is especially true for workflows that include high performance computing since both the fidelity of a simulation can
increase while simultaneously multi-experiment runs are becoming more common to providing more encompassing
information to the problem at hand.

For high fidelity single simulation runs, the data output can be extremely expensive to fully store and examine in a
post hoc fashion. For high fidelity rotorcraft simulations the time-dependent nature of the flow requires many time steps,
often many thousands to potentially tens of thousands for complex maneuvers. The typical method to reduce file IO,
and thus reduce simulation run time, is to output full data dumps at a reduced temporal frequency. The risk with this
method though is if the physics of interest occurs at a higher frequency than the data dump frequency and thus not all of
the useful information will be available for post hoc analysis.

For multi-experiment runs such as parameter sweeps, uncertainty quantification, etc., often times the quantity
of interest is not a single flow visualization but a summary report. In fact if there are enough runs then it becomes
impossible to view results for each run in a timely fashion. Still though, the user may want to view outlier results
whether they are the best results for optimization runs or worst results for failure analysis. Tools like Slycat [1] exist that
are designed to view multi-experiment results by storing representative images for each experiment run.

While there are several general workflow tools available [2–4] that are focused on mesh-based, PDE solver workflows,
it seems that there is enough variety in workflows and users’ needs that each platform has some deficiency to necessitate
more work in this area. For rotorcraft analysis this extension or customization comes in the form of multi-experiment
runs to analyze performance characteristics over different flight envelopes such as maneuvers, hover, different design
variations, various environmental conditions, etc. Beyond this, there are additional simplifications to reduce compute
time that can also be added to workflows. Examples include using simplified geometry, blade element theory instead of
full fluid structure interaction, actuator disk, etc. Adding to the complexity of these various rotorcraft analysis cases,
there is also the question of user access to compute resources, choice of pre- and post-processing tools, and monitoring of
computational jobs. All of these parts of workflow can be designed to work well together or can be developed separately
and this is often reflected in the user experience and in their success or failure in using the simulation ecosystem. In this
paper we discuss how in situ analysis and visualization fits in Helios’s workflow ecosystem through a design that has
evolved through much effort, several software releases and user feedback.

II. Background
In situ analysis and visualization has been around for over a half a century having first been done by Zajac in 1964 [5].

In the 1990s there were enough in situ systems developed that two survey papers were written [6, 7]. The interest for in
situ waned for a bit until general production needs increased and new systems needed to be developed that scaled to
higher levels of parallelism while also providing more robust functionality. This is when ParaView [8] and VisIt [9]
began to add in situ capabilities to their software via their Catalyst [10] and Libsim [11] packages, respectively. While
these new tools provided the needed in situ capabilities for simulation codes, the workflow for the domain expert was a
step backwards from many of the bespoke systems previously available. This is because configuring the in situ output
required extra effort on the part of the domain expert and this was not set up to work conveniently within their workflow.

2

Fig. 1 Zoomed in view of Helios dual grid mesh with AMR off-body and body-fitted near-body grids.

Additionally, loading data extract output from these infrastructures was initially limited to certain post-processing tools
that supported those file formats.

A. CREATE-AVTM Helios
CREATE-AVTM Helios, or Helios for short, is a high-fidelity rotorcraft analysis package developed collaboratively

over the past decade by the US Army and the DoD High Performance Computing Modernization Program (HPCMP)
CREATE program. Helios models the coupled aerodynamic and structural dynamics response of the vehicle using
Computational Fluid Dynamics (CFD) codes for aerodynamics, Computational Structural Dynamics (CSD) to model
structural bending, and trim software with multi-body dynamics to set the controls to achieve vehicle trim. In order to
accurately resolve both the viscous turbulent flow near the wall and the wake that impacts interactional rotor-rotor and
rotor-fuselage aerodynamics, Helios CFD uses a dual-mesh paradigm with a body-fitted near-body grid and a Cartesian
AMR off-body grid for the wake. An example of the dual-mesh paradigm is shown in Figure 1.

Unlike self contained single-language simulation codes, Helios utilizes a Python-based object-oriented infrastructure
to link together different multi-physics components: near- and off-body CFD solvers, CSD solver, overset connectivity
package, multi-body dynamics, etc. Each component can be written in its own desired language and wrapped by a thin
layer of Python code that maintains pointers to shared data and function APIs. The infrastructure orchestrates operations
between the underlying components in order to carry out the simulation desired by the user. This infrastructure-based
approach makes integration of in situ visualization straightforward. The visualization libraries can be readily integrated
in the same fashion as the underlying physics solvers, using the same data. Currently at version 11.0, Helios includes a
legacy and a cutting-edge pre-processing GUI, automated mesh generation, parallel near- and off-body solvers, and
several post-processing scripts to help with common analysis operations. The production-quality code has more than
100 licensed users across the DoD, U.S. universities, and various U.S. aerospace companies. For this paper we will only
discuss the parts of Helios that directly relate to the in situ processing and refer users to other references [12–14] for
more detailed background information.

B. ParaView Catalyst
ParaView Catalyst [10] is the production-level in situ library that is integrated with Helios. It is used in-line,

meaning that it is called directly from the simulation and uses the same compute resources as the simulation. The in situ
processing can be run in either batch mode via C++ or Python code or with a human-in-the-loop by connecting to the
ParaView GUI to modify the Python code operations. The most general use case is for users to set up their desired
analysis and visualization output in the ParaView GUI and then export those operations in a Python script for use during
the simulation run. Alternatively, developers familiar with the ParaView code base can program parameterized output
based on a user’s input to provide specific in situ analysis and visualization routines. To instrument a simulation code to
work with Catalyst, the following three calls must be made from the simulation code:

initialize This initializes Catalyst and sets up all in situ processing. This is usually called soon after MPI is
initialized for parallel simulation codes.
coprocess This is where the in situ analysis and visualization processing occurs and typically is called after each

3

time step. This does not imply that in situ processing occurs at each time step, only that the simulation checks with
the in situ processing operations whether something needs to be done. If something does need to be computed, only
then does this call take any significant compute resources for a given time step.
finalize This cleans up all Catalyst operations. This is usually called right before MPI is finalized for parallel
simulation codes.

Besides doing the actual in situ computations in the coprocess call, this is also where the simulation data structures
are copied into data structures that Catalyst understands. Since Helios uses Python as the main control language to
efficiently manage the different CFD solvers and other libraries operating underneath the covers, we also use Python as
the main control language for copying the Helios grid and field data structures into Catalyst grid and field data structures.
For the fields in Helios, we are able to use NumPy to conveniently and efficiently copy to Catalyst data structures but for
the unstructured and curvilinear grids we use Python-wrapped C++ code for computational efficiency.

III. User Workflows
Due to the wide variety of analysis requirements for rotorcraft, there are a variety of workflows that Helios is a key

component of. The simplest is of a single design along with a single flight path. The complexity can grow to include
variations on rotorcraft design, flight path, altitude, ambient conditions, mesh resolution, CFD solver choice, turbulence
modeling, etc.

A. Basic Workflow
The basic workflow is initiated through Helios’s pre-processing GUIs. The legacy GUI is called HUI and the new,

more functional GUI is called HIGen. The basic workflow involves creating a mesh and then using one of the Helios
pre-processors to create input files for a Helios simulation. After this, running the simulation, usually on an HPC
machine, and then examining the output files to gain insight into the problem at hand. For Helios there are a variety of
output files available including full data dumps, in situ extracts, log files and time-series information. In Helios version
11.0 the following in situ output is available, along with the required user information that needs to be specified during
the pre-processing step in their workflow:

• Internal boundary surface extract which outputs the geometry of the rotorcraft along with the fields defined over
that geometry. The user must specify the output frequency of this data extract.

• Cartesian interpolated extracts with chosen fields. The user must specify the geometry of the Cartesian grid
(minimum and maximum coordinate and number of points in each direction), aggregation for file IO, output
frequency, time averaging option with the frequency and what iteration to start time averaging the output.

• Cutting plane extracts. The user must specify an output filename, normal, origin, output frequency, set of offsets
and optional sphere limiter to reduce the cut plane output to only be within that sphere volume.

• Iso-surface, or contour, extracts. The user specifies the field, output frequency, iso-surface value(s) and output
filename. The iso-surface fields can be primitive or derived fields.

• Streamline extracts. The user specifies a set of seeds (point, line or point cloud), number of seeds, output frequency,
and output filename.

• Taps extract, or sensor location extracts. The user specifies a set of locations and tap output frequency and
automatically generates a .csv file for each tap location.

• Particle tracking extracts. The user specifies the same seed types as the streamline extracts, an output frequency,
an output filename, and a particle reinjection frequency (0 for no reinjection). However, unlike other extracts
which are only relevant to a particular time step, particle extracts must store both the current and previous times
for integration and write out this information for restart.

• Volumetric grid extracts to examine the fields and near-body, off-body, or combined near-body and off-body grids
the way the in situ processing computes over them. This is more useful as a debugging feature.

In addition to those specific data extracts, there are the global in situ options for Helios which are:
• Which iteration to begin outputting the in situ results at. Due to the complexity of the flow field and the difficulty
in prescribing accurate initial conditions for rotorcraft, generally the first two or three full rotorblade rotations of
the simulation are used to get rid of start up transients. Any in situ output through these iterations are usually
wasted computations and the option to start outputting after this initial start up phase is useful to save compute
time.

4

• Output format can be chosen to be legacy VTK XML format, aggregated VTK XML format or FieldView format.
The difference between the legacy VTK XML format and the aggregated VTK XML format is that the aggregated
VTK XML format produces less files by aggregating the data onto a smaller number of MPI processes. For
situations with high MPI process counts and time iterations and/or large numbers of runs this can be a very
important factor on HPC machines. As Helios developers we want to reach as many users as possible and allowing
users to choose which post-processing tool best fits their workflow allows them to focus on their work instead of on
learning new software. Figure 2 shows the same Helios boundary extract in a variety of post-processing packages.

• In Helios version 11.0 we added the ability to choose which fields to output. This provides the user with the
convenience of computing expensive quantities in situ. Additionally, fields that are not needed post hoc do not
have to be saved to disk, saving file IO.

The HIGen output section which includes in situ, or coviz in Helios terminology, is shown in Figure 3. This allows
the user to set up the in situ processing just as they would do for any other simulation operations during a Helios run.
Additionally, the in situ processing parameters are treated just as any other Helios input options would be so they can be
archived, shared and easily reused in separate simulation runs.

IV. In Situ Integration
The in situ computations that are done within Helios are a combination of using the ParaView Catalyst library and

bespoke integration. As previously discussed, there are two parts to the in situ integration with ParaView Catalyst. The
first part is adapting the simulation data structures into data structures that Catalyst understands. The second part is the
driver code that takes in the user input and runs the Catalyst in situ algorithms to output the requested data extracts.
While most of the data extract integration was straightforward, the particle paths extracts, Cartesian grid extracts and
field output selection bear some extra description due to their integration complexity.

A. Particle Paths Extracts
All of the other data extracts, described in Section III.A, that are computed inside of the Catalyst library are single

time step algorithms. They are essentially stateless and do not require information from any previous time step to
be computed. Particle paths are different in that they require both the previous and current time step (the Catalyst
particle path time stepping algorithm only requires two time steps). Particle tracking in unsteady problems is particularly
difficult with full-volume visualization because multiple timesteps of data must be stored on disk, only to be loaded
into memory later by the post hoc tool that computes the particle paths. This problem is largely alleviated in in situ
algorithms because the volume data is already in memory and never needs to be written to disk, but the implementation
still requires some special considerations. The first is that the in situ algorithm must cache the previous time step grid
and fields since it cannot rely on the simulation to store that information. Second is that for restarted simulations, the
state of the particle path algorithm must also be restarted. Thus, whenever Helios outputs restart information the particle
paths must participate in this action as well so that the proper particle path restart data is also available if a simulation
restart is to be performed. On a simulation restart, the in situ particle path algorithm essentially seeds the paths with
the particles from the restart file as well as making sure that subsequent seeds get reinjected at the appropriate time
step. This is much finer grain control than is normally available with particle paths in post-processing applications.
The advantage with the in situ particle path IO though is that only point-wise information is being stored instead of
volumetric information, which is a huge reduction in size.

B. Cartesian Grid Extracts
In Helios version 10.1 we developed Cartesian grid extracts to provide efficient volumetric extracts over a portion

of the domain. We implemented the in situ algorithm to interpolate the fields onto the Cartesian grid using internal
Helios algorithms but utilized the VTK writers that are packaged with ParaView Catalyst to output the data. The
advantage of this bespoke implementation is that due to the dual grid nature employed in Helios, grid search structures
and interpolation are already implemented and constructed for use and this can be taken advantage of for interpolating
onto the Cartesian grid. The advantage of using the VTK writers that are packaged with Catalyst is that they are well
tested, efficient, portable, and can be easily swapped out when more efficient writers are developed inside of VTK.
Additionally, this reduces the development burden on the Helios development team. The advantage of using Cartesian
grid output from Helios is that the grid information is compact and essentially all of the storage cost is related to storing

5

Fig. 2 Images for the boundary extract for EnSight Standard 10.2.7, FieldView 17, ParaView 5.7, Tecplot360
2018R1, and VisIt 3.0.2.

6

Fig. 3 Helios HIGen preprocessor showing all output options including coviz.

7

selected fields, which the user specifies. Additionally, many analysis and visualization operations are significantly faster
on Cartesian grids due to the simple grid structure.

C. Field Output Selection
To reduce in situ processing as well as file IO, Helios allows the selection of fields to be written out in the data

extracts. Before Helios version 11.0 this was done in an ad hoc manner. As users’ needs grew, the output fields
expanded beyond the original fields of of density, momentum, energy, Q-criterion, and vorticity magnitude to also
include turbulence quantities, temperature and skin friction over the boundary surface extract. Outputting temperature
in the extracts was an optional choice and this could be done in dimensional or non-dimensional form. In Helios version
11.0 we extended this to being able to explicitly choose whether each available field variable is written out in all extracts
or not. This includes both primitive and derived solution quantities in both non-dimensional and dimensional forms.
Quantities like Q-criterion that require gradient information, and thus grid information, must be computed over the
volumetric grid before the extract geometry is computed. Derived fields that are simple algebraic computations like
velocity, enthalpy, etc., are computed over the extract geometry, e.g. the cutting plane, to reduce computational cost and
memory overhead. After all of the requested derived fields are computed over the extracts, all non-requested fields are
then excluded at the next stage of the processing pipeline before the writing stage of the in situ processing in order to
ensure that only the requested fields are saved to disk.

V. In Situ For Complex Workflows
As mentioned earlier, for more complex workflows like collective sweeps, tradespace analysis, etc. we expect that

the user will often not view the results of many of the individual simulation runs. At best, the user may look at highlight
images of the run. The advantage that in situ brings here is that the user has already decided what is important to view
during the problem set up. They will choose iso-surface fields and values, cut plane setups, and/or particle path extracts
to go along with the surface extracts for later use. When trying to provide summary information for a run for quick
perusal we only need to provide viewing mechanisms for these extracts instead of requiring the user to perform a full
analysis on a full volume dataset.

A. Computational Prototyping Environment
The Computational Prototyping Environment [15], or CPE for short, is a web-based workflow platform. It is

designed to work with Helios to assist with managing and monitoring jobs on HPC machines. The monitoring of jobs
includes both accessing HPC queue system information as well as Helios output information. CPE currently includes
three multi-experiment job launch capabilities with more planned in the future. The current three are collective sweep for
hover performance analysis, speed sweep for forward flight performance analysis and ensemble analysis for turbulence
model and grid sensitivity analysis. While not intended to replace all of the pre-processing parts of the workflow, CPE
currently provides collective and speed sweeps multi-experiment workflows with more planned for in future releases.
CPE’s web-based interface provides authenticated access to the DoD’s Distributed Supercomputing Resource Centers
(DSRCs) and a rich environment that allows launching new HPC jobs, monitoring running jobs and examining output
from completed jobs. The Helios output that can be viewed from CPE include:

• Log files which show informational and error messages that Helios generates during a simulation run.
• Time series tracking files of such information as model forces and coefficients.
• In situ output of cut plane, iso-surface and internal boundary data extracts.
For the in situ extracts that can be viewed in CPE, the user first chooses which experiment point and time step to

view extracts for. Given these, the user then selects from a list of extracts available at that time step. Note that a subset
of the cut plane, iso-surface and internal boundary data extracts may be available at that time step based on the user’s
configuration for that simulation run. Once the extracts are chosen for that time step then the user selects which fields to
use for pseudo-coloring. If no fields are chosen then a default grey color is used. Several preset viewing directions are
available as well to help the user inspect the results. An example of this is shown in Figure 4. The goal of the CPE
visualization is not for publication worthy images but to give the user quick and easy access to the current status of the
simulation to determine if any obvious errors have occurred.

8

Fig. 4 Computational Prototyping Environment (CPE) platform presenting in situ output from a Helios run.

9

Fig. 5 Sample in situ particle path and internal surface output of an idealized UH-60 rotorcraft simulation.

VI. Results
Quantifying workflow simplification and automation tools is a difficult to impossible task, especially considering the

variety of users that Helios supports as well as the tasks that Helios is used for. For in situ research the following are
often used as stand-in metrics for comparisons:

Time to Insight: Here a comparison is made between the total time to compute a data product such as an image of
a pseudo-colored iso-surface or a cut plane extract in situ and performing a full data dump and then computing that
same data product post hoc. It ignores HPC queue times and other parts of the workflow such as the time to set up
the in situ or post hoc operations as that is often user dependent.
Data Output Size: Here a comparison is made between full data dumps, which is often at lower frequencies, and
data extract dumps at higher frequencies. This can give an idea of the data that the user may need to manage during
post-processing but doesn’t give any indication of time saved using in situ methods compared to working with full
data dumps.

Even though data output size is not a perfect measure of the usefulness of in situ to our workflows, it can be inferred and
is an easy measure. We examine results from an idealized geometry of a UH-60 rotorcraft in forward flight. We ran
Helios on 880 MPI processes on the U.S. Department of Defense’s Onyx HPC machine. We computed internal surface,
cut plane and particle path extracts. The cut plane was chosen such that it was aligned with the flight path and bisected
the UH-60 in half. The internal surface and cut plane extracts were chosen since their output file size are proportional to
the full grid size while iso-surface output file size can be easily manipulated by choosing convenient contour values. For
the particle path extracts, 100 particle seeds were reinjected every 1,440 time steps and data was output every 72 time
steps. The particle path locations were updated after every simulation time step. The simulation was run for 5,647
iterations and shutdown automatically via queue time restrictions. Sample output of the internal surface and particle
paths at time step 4,320 is shown in Figure 5. For file size comparison, the full data dump size after the first iteration
was 19.7 GB. A single cut plane output was 61 MB and the internal boundary extract was 141 MB. The particle path
extracts for 80 different outputs came to a total of 9.1 MB.

VII. Summary
We have provided an overview of the in situ processing in Helios and how it is used for a variety of workflows. We

have demonstrated that the workflows do not require knowledge of any specific post-processing tool which reduces the
barrier to entry for users. The benefits to users have been key in both improved analysis of rotorcraft and reduced analysis
time. Future work includes a better user experience through more efficient in situ computation, reduced file IO time for
extracts, improved integration with HIGen pre-processing tool to help visualize where particle path seeds, streamline
seeds and cut planes are being placed, and a run-time update capability to modify certain in situ parameterized outputs
during a simulation run. For CPE, planned improvements include adding in the capability to modify Helios’s coviz
output during a simulation run.

VIII. Acknowledgements
Material presented is a product of the CREATE (Computational Research and Engineering for Acquisition Tools

and Environments) element of the U.S. Department of Defense HPC Modernization Program.
Funding for CPE was provided by the Deputy Assistant Secretary of the Army for Research and Technology and

10

supported by the Future Vertical Lift Cross-Functional Team. This work was performed by the U.S. Army Engineer
Research and Development Center under the Computational Prototyping Environment program.

This work was made possible by the Department of Defense High Performance Computing Modernization Program’s
allocation of compute time on the Engineer Research and Development Center’s Department of Defense Supercomputing
Resource Center’s Cray XC40, Onyx.

References
[1] Crossno, P., “Slycat Website,” , 2020. URL https://github.com/sandialabs/slycat.

[2] Brown, N., Nash, R., Gibb, G., Prodan, B., Kontak, M., Olshevsky, V., and Der Chien, W., “The Role of Interactive Super-
Computing in Using HPC for Urgent Decision Making,” High Performance Computing, edited by M. Weiland, G. Juckeland,
S. Alam, and H. Jagode, Springer International Publishing, Cham, 2019, pp. 528–540.

[3] Directed EnergyDirectorate of theAir Force Research Lab and Stellar Science LtdCo, “Galaxy: A framework formulti-site, cross-
platform simulation and optimization,” , 2018. URL https://www.stellarscience.com/Galaxy_White_Paper.pdf.

[4] Kitware Inc., “Computational Model Builder Website,” , 2020. URL https://www.computationalmodelbuilder.org/.

[5] Zajac, E. E., “Computer-Made Perspective Movies as a Scientific and Communication Tool,” Communications of the ACM,
Vol. 7, No. 3, 1964, pp. 169–170. https://doi.org/10.1145/363958.363993.

[6] Heiland, R., and Baker, M. P., “A Survey of Co-Processing Systems,” , August 1998. URL https://rheiland.github.io/coproc/
CoprocSurvey.pdf.

[7] Mulder, J., Wijk, van, J., and Liere, van, R., “A survey of computational steering environments,” Future Generation Computer
Systems, Vol. 15, No. 1, 1999, pp. 119–129. https://doi.org/10.1016/S0167-739X(98)00047-8.

[8] Ahrens, J., Geveci, B., and Law, C., “ParaView: An End-User Tool for Large-Data Visualization,” The Visualization Handbook,
2005.

[9] Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G. H.,
Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E. W., Camp, D., Rübel, O., Durant, M., Favre, J. M., and Navrátil,
P., “VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data,” High Performance Visualization–Enabling
Extreme-Scale Scientific Insight, 2012, pp. 357–372.

[10] Fabian, N., Moreland, K., Thompson, D., Bauer, A. C., Marion, P., Geveci, B., Rasquin, M., and Jansen, K. E., “The ParaView
Coprocessing Library: A Scalable, General Purpose In Situ Visualization Library,” Proceedings of the IEEE Symposium on
Large-Scale Data Analysis and Visualization, 2011, pp. 89–96. https://doi.org/10.1109/LDAV.2011.6092322.

[11] Whitlock, B., Favre, J. M., and Meredith, J. S., “Parallel In Situ Coupling of Simulation with a Fully Featured Visualization
System,” Eurographics Symposium on Parallel Graphics and Visualization, 2011. https://doi.org/10.2312/EGPGV/EGPGV11/
101-109.

[12] Sankaran, V., Sitaraman, J., Wissink, A., Datta, A., Jayaraman, B., Potsdam, M., Mavriplis, D., Yang, Z., O’Brien, D., Saberi,
H., Cheng, R., Hariharan, N., and Strawn, R., Application of the Helios Computational Platform to Rotorcraft Flowfields,
chapter and pages. https://doi.org/10.2514/6.2010-1230, URL https://arc.aiaa.org/doi/abs/10.2514/6.2010-1230.

[13] Sitaraman, J., Potsdam, M., Wissink, A., Jayaraman, B., Datta, A., Mavriplis, D., and Saberi, H., “Rotor Loads Prediction
Using Helios: A Multisolver Framework for Rotorcraft Aeromechanics Analysis,” Journal of Aircraft, Vol. 50, No. 2, 2013, pp.
478–492. https://doi.org/10.2514/1.C031897, URL https://doi.org/10.2514/1.C031897.

[14] “A Dual-Mesh Unstructured Adaptive Cartesian Computational Fluid Dynamics Approach for Hover Prediction,” Journal of
the American Helicopter Society, Vol. 61, No. 1, 2016.

[15] Haehnel, R. B., Christensen, S. D., Whitlow, J. L., Bauer, A. C., Meyer, A., Rangarajan, G., Wenren, Y., Harden, D., Hoch, B.,
Clark, S., and Eiseman, A., “A Computational Prototyping Environment interface for DoD CREATE) " Helios Simulations,”
AIAA Scitech 2021 Forum, 2021 in press.

11

https://github.com/sandialabs/slycat
https://www.stellarscience.com/Galaxy_White_Paper.pdf
https://www.computationalmodelbuilder.org/
https://doi.org/10.1145/363958.363993
https://rheiland.github.io/coproc/CoprocSurvey.pdf
https://rheiland.github.io/coproc/CoprocSurvey.pdf
https://doi.org/10.1016/S0167-739X(98)00047-8
https://doi.org/10.1109/LDAV.2011.6092322
https://doi.org/10.2312/EGPGV/EGPGV11/101-109
https://doi.org/10.2312/EGPGV/EGPGV11/101-109
https://doi.org/10.2514/6.2010-1230
https://arc.aiaa.org/doi/abs/10.2514/6.2010-1230
https://doi.org/10.2514/1.C031897
https://doi.org/10.2514/1.C031897

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

June 2021
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

In Situ Analysis and Visualization to Enable Better Workflows with
CREATE-AVTM Helios

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
0212040A

6. AUTHOR(S)

Andrew C. Bauer, James R. Forsythe, Jayanarayanan Sitaraman, Andrew Wissink,
Buvana Jayaraman, and Robert B. Haehnel

5d. PROJECT NUMBER
485610

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

See next page.
ERDC MP-21-3

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
US Army Corps of Engineers
Washington, DC 20314

USACE
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

This paper was originally presented at the American Institute of Aeronautics and Astronautics Scitech 2021 Forum (Virtual Event,
19-21 January 2021) and published online 4 January 2021.
Additional funding information AMSCO: 644115AX400

14. ABSTRACT

The CREATE-AVTM Helios CFD simulation code has been used to accurately predict rotorcraft performance under a variety of flight
conditions. The Helios package contains a suite of tools that contain almost the entire set of functionality needed for a variety of
workflows. These workflows include tools customized to properly specify many in situ analysis and visualization capabilities
appropriate for rotorcraft analysis. In situ is the process of computing analysis and visualization information during a simulation run
before data is saved to disk. In situ has been referred to with a variety of terms including co-processing, covisualization, coviz, etc. In
this paper we describe the customization of the pre-processing GUI and corresponding development of the Helios solver code-base to
effectively implement in situ analysis and visualization to reduce file IO and speed up workflows for CFD analysts. We showcase
how the workflow enables the wide variety of Helios users to effectively work in post-processing tools they are already familiar with
as opposed to forcing them to learn new tools in order post-process in situ data extracts being produced by Helios. These data extracts
include various sources of information customized to Helios, such as knowledge about the near- and off-body grids, internal surface
extracts with patch information, and volumetric extracts meant for fast post-processing of data. Additionally, we demonstrate how in
situ can be used by workflow automation tools to help convey information to the user that would be much more difficult when using
full data dumps.

15. SUBJECT TERMS
High performance computing; Computer simulation; Prototypes; Engineering; Web-based user interfaces

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON

a. REPORT

Unclassified

b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified SAR 17
19b. TELEPHONE NUMBER (include
area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Andrew C. Bauer Robert B. Haehnel
 US Army Engineer Research and Development Center
Information Technology Laboratory Cold Regions Research Engineering Laboratory
3909 Halls Ferry Road 7 Lyme Road
Vicksburg, MS 39180 Hanover, NH 03755

James R Forsythe Janarayanan Sitaraman

US Navy NAVAIR 4.3.2.1 Parallel Geometric Algorithms LLC
48110 Shaw Road Sunnyvale, CA 94087
Patuxent River, MD 20670

Andrew Wissink and Buvana Jayaraman

US Army CCDC AvMC
Technology Development Directorate
Moffett Field, CA 94035

	Word Bookmarks
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	Disclaimer

	MP text_In_Situ_Paper.pdf
	Introduction
	Background
	CREATE-AVTM Helios
	ParaView Catalyst

	User Workflows
	Basic Workflow

	In Situ Integration
	Particle Paths Extracts
	Cartesian Grid Extracts
	Field Output Selection

	In Situ For Complex Workflows
	Computational Prototyping Environment

	Results
	Summary
	Acknowledgements

	298 Page .pdf
	Word Bookmarks
	Block1
	Block2
	Block3
	Block4a
	Block5a
	Block5b
	Block6a
	Block6c
	Block6e
	Block5d
	Block5e
	Block5f
	Block5fa
	Block7
	Block72
	Block8
	Block8a
	Block9aa
	Block92aa
	Block10
	Block11
	Block12
	Block13
	Block14
	Block16
	Block19a
	Block16a
	Block16b
	Block16c
	Block17
	Block18
	Block19b

