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In Situ and Post-Processing Volume Rendering with 
Cinema

ABSTRACT
We present a new batch volume rendering technique which allevi-
ates the time and expertise needed by the domain scientist in order 
to produce quality volume rendered results. This process can be 
done both in situ and as a post-processing step. The advantage of 
performing this as an in situ process is that the user is not required 
to have a priori knowledge of the exact physics and how best to 
create a transfer function to volume render that physics during the 
in situ run. For the post-processing use case, the user has the ability 
to easily examine a wide variety of transfer functions without the 
tedious work of manually generating each one.

CCS CONCEPTS

•Computing methodologies → Massively parallel 
algorithms;
•Human-centered computing → Scientific visualization; 
Visualization techniques.

1 INTRODUCTION
Direct volume rendering is a powerful visualization technique that
can reveal the intricacies of complex scientific data. Unfortunately 
though, generating a quality opacity transfer function in order
to reveal these intricacies is still as much of an art form as it is a
technical process. This can be a time consuming manual process and
the larger the dataset is, the more time consuming the process can
be. Additionally, when in situ analysis and visualization is added to
the workflow the burden on the domain expert can become too large
to overcome. If the data produced during the in situ instrumented
simulation run is not familiar enough to the domain expert then
this poses extra difficulties in trying to set up appropriate transfer
functions for volume rendering. To overcome these issues, we utilize

the concepts of Cinema [2] which generate a number of images
over a specified parameter space. Our parameter space is based on
creating a number of opacity transfer functions. In this paper we
demonstrate how volume rendering with Cinema can be used in
situ and post hoc to effectively visualize results.

2 BACKGROUND
The earliest published works for volume rendering [7] and in situ
processing [14] go back to 1984 and 1964, respectively, with a signif-
icant amount of work in both fields since then. Because of this we
refer readers to the recent survey papers on transfer function design
for volume rendering [9] and in situ analysis and visualization [4]
for more complete backgrounds in these subjects.

2.1 Transfer Function Design
In 2001 "The Transfer Function Bake-Off" [10] performed compar-
isons of four general approaches to transfer function design in
which they listed the following general methods:

• trial and error, with minimum computer aid;
• data-centric, with no underlying assumed model;
• data-centric, using an underlying data model; and
• image-centric, using organized sampling.

Since then transfer function generation has become more complex
with improved semi-automatic methods for users as well as dealing
with multi-dimensional data. Still though, many general use post-
processing tools currently utilize the trial and error method with
the GUI providing a simplified means of setting both the opacity
and color transfer functions for one-dimensional data.

2.2 In Situ Analysis and Visualization
While much of the early in situ work was focused on researching
the subject, of late a significant amount of work has also included
development of production level tools that are being used in a
variety of simulation codes. While tools like ParaView Catalyst [5],
VisIt LibSim [13] and Galaxy [1] are all able to do volume rendering
in situ, they make the assumption that setting the opacity transfer
function is a relatively straightforward task in setting up the in
situ visualization. While this may be the case where the domain
expert is very familiar with the problem set up being run, for use-
cases where the user has only a vague idea of the what the results
may look like, setting up an opacity transfer function before the
simulation is executed may produce undesirable results.

3 VOLUME RENDERINGWITH CINEMA
We utilize Cinema techniques to simplify creating an appropriate
opacity transfer function for volume rendering. The concept is
to explore a variety of opacity transfer functions in a methodical
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manner. This is done by dividing up the volume rendered field 
range into a number of subranges, N. Then, a set of functions are 
selected to represent the transfer function inside each of these 
subranges. We use a continuous piecewise linear function form, 
shown in Figure 1a. The simplest version would allow only one of 
these functions to be non-zero per Cinema image. For each image 
the function would vary between fully transparent and the user 
specified maximum opacity. This results in N+1 output Cinema 
images per camera view per output time step. In many situations 
though, this would not lead to useful output, especially in situ since 
it would only be able to display one portion of the full field range 
and everything else would be transparent.

The next step in complexity is allowing multiple functions to 
be simultaneously non-zero. If we allow all combinations except 
for the situations where all functions are enabled or all functions 
are disabled, i.e. rendering all field values at the specified opac-
ity level or nothing rendered, respectively, the number of output 
Cinema images per camera view per output time step becomes∑𝑁
𝑖=1

(𝑁+1)!
𝑖!(𝑁+1−𝑖)! . An example of this is shown in Figure 1b. This is

still problematic though in that there is still no proper control over
the opacity level. This can be improved by allowing each piecewise
linear function to have a maximum value that is less than the user
specified maximum opacity level. For this we add an extra Cinema
parameter corresponding to the number of non-zero opacity levels,
M, that each piecewise linear function will reach at its maximum
value. Figure 1c shows a transfer function constructed with M set
to 2 with the third and sixth functions attaining a maximum opacity
of 0.5 while the first function attains the user specified maximum
opacity of 1. This results in

∑𝑁
𝑖=1𝑀

𝑖 (𝑁+1)!
𝑖!(𝑁+1−𝑖)! images per camera

view per output time step, ignoring the two extreme cases.
Unfortunately, for even moderate values of M andN, the number

of images that are generated becomes unmanageable. For many situ-
ations users would want few of the subregion functions to be simul-
taneously active. In this case the number of simultaneously active
functions can be limited to be less than a given parameter L. This
limits the number of Cinema images created to

∑𝐿
𝑖=1𝑀

𝑖 𝑁+1
𝑖!(𝑁+1−𝑖)! .

Additional Cinema controls include specifying the maximum opac-
ity level, limiting the range of the subregion division space to less
than the full field range and whether or not to export the transfer
functions to a JSON file for later use.

4 RESULTS
4.1 In Situ Volume Rendering Results
We utilized SENSEI’s [3] Oscillator mini-app as the driver for testing
the in situ Cinema volume rendering technique. Our algorithms
were built in a custom version of ParaView Catalyst [5]. The SENSEI
Oscillator was run with 8 oscillations that varied the field between
values of 0 and 1. The Cinema volume rendering output parameters
had 5 subregions, N, over the entire field range with the number of
non-zero opacity levels,M, set to 2 and themaximum number active
piecewise linear functions, L, set to 2. This resulted in 72 images
per output time step with only one camera angle used. Sample
Cinema output is shown in Figure 2 for simulation time 9.5. See the

a)

b)

c)

Figure 1: Examples of piecewise linear opacity transfer func-
tions: a) Six continuous piecewise linear functions shown
together; b) three piecewise linear function simultaneously
active; and, c) three piecewise linear functionswith different
maximum opacity levels simultaneously active.

reproducibility information in Appendix A for details on replicating
the results1.

4.2 Post-Processing Volume Rendering Results
For our post-processing use case we utilize hovering rotor simu-
lation results from the HPCMP CREATETM-AV Helios rotorcraft
simulation code [11]. The data is from a simulation of a hovering
rotor. A rotor consists of a collection of lifting surfaces distributed
radially about a common rotation axis. The aerodynamic wake of
a hovering rotor primarily consists of helical tip vortices and he-
lical wake sheets with additional vortex dynamics and secondary
structures included which provides a challenging application for
volume rendering techniques. A review of the current state-of-the-
art for hover predictions is provided in [6]. Multiple results have
been manually volume rendered with an example being shown
in Figure 3a. While this image visualizes the tip wake well, the
wake sheets are not fully shown. To visualize the wake sheets, we
utilized the Cinema volume rendering method with the following
parameters:

N=10,20,30 We refined the subregion value to properly resolve
the wake sheets.

M=2 We used 2 for the maximum number of simultaneous
functions since we knew that the wake sheets would be in
a continuous range and that we may want a slightly wider,
non-translucent portion of the opacity transfer function to
visualize the wake sheet.

L=1 Since we were only visualizing the wake sheets we only
needed one maximum opacity value. We set the maximum

1The reproducibility appendix is the standard form that the authors found
for Supercomputing which describe the system and conditions under which
the results were produced. The website that contains the software is at
https://zenodo.org/record/3904437#.X2zCXXZKgSF.
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Figure 2: Images for the 0th, 15th, 30th, 45th and 60th opacity
transfer functions from the SENSEI Oscillator.

opacity value to 0.5 because of the multiple wake sheets
present.

Field range We initially used the original image’s field range
of [-0.2, 0.4]. In the final run the field range was set to [-0.01,
0.0005] to better capture the small wake sheet phenomena.

One of the Cinema output images from the post-processing runs is
shown in Figure 3b. With the aid of the Cinema images and their
corresponding transfer functions, we were able to construct an
appropriate opacity transfer function that combined the qualities of
the original opacity transfer function, shown in Figure 4a, that was
able to capture rotor tip vortices along with the Cinema opacity
transfer function that captured the wake sheets. The final volume
rendered image is shown in Figure 3c along with its combined
transfer functions in Figure 4b. The thin bump in Figure 4b is
the portion of the opacity transfer function that corresponds to
visualizing the wake sheet.

5 CONCLUSION
We demonstrated initial work on using Cinema techniques with
volume rendering for both in situ and post hoc use. For in situ,
the technique provided a way to use volume rendering without
requiring specification of an appropriate opacity transfer function
a priori. For post-processing, the Cinema technique was helpful in

a)

b)

c)

Figure 3: Comparison of volume rendered images: original
image (a); Cinema image targetingwake sheet resolution (b);
and, image using combination of original and Cinema gen-
erated opacity transfer functions (c).
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a)

b)

Figure 4: Original (a) and manually modified (b) transfer
functions from using Cinema for post-processing.

exploring a number of opacity transfer functions efficiently to find
a small scale phenomena in the simulation results, which was not
found manually.

Future work includes proper integration into ParaView andmeth-
ods to reduce the number of images generated even further. We
expect that using histogram information to eliminate ranges of the
field that are either too densely or sparsely populated with data
could significantly reduce the number of images generated when
either the number of opacity levels, L, is greater than 1 or when the
maximum number of simultaneously active piecewise functions,
M, is large. In addition to reducing the number of images produced,
there is such work as explorable images [12] and the various Cin-
ema viewers [8] that can be used to reduce the number of useful
images the domain scientist needs to view in order to glean insight
into their problem at hand.
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