Removing Uranium (VI) from Aqueous Solution With Insoluble Humic Acid Derived from Leonardite

Fande Meng, Guodong Yuan, Steven L. Larson, John H. Ballard, Charles A. Waggoner, Zikri Arslan, and Fengxiang X. Han

July 2020
The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default.
Removing Uranium (VI) from Aqueous Solution
With Insoluble Humic Acid Derived from Leonardite

Steven L. Larson and John H. Ballard
Environmental Laboratory
U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180

Fande Meng, Zikri Arslan, and Fengxiang X. Han
Department of Chemistry and Biochemistry
Jackson State University
Jackson, MS 39217

Guodong Yuan
Zhaoqing University
Zhaoqing, Guangdong 526061, China

Charles A. Waggoner
Institute for Clean Energy Technology
Mississippi State University
Starkville, MS 39759

Final report
Approved for public release; distribution is unlimited.

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314
Under Project Number 458170, “Depleted Uranium (DU) Clearance from DoD Ranges”
Abstract

The occurrence of uranium (U) and depleted uranium (DU)-contaminated wastes from anthropogenic activities is an important environmental problem. Insoluble humic acid derived from leonardite (L-HA) was investigated as a potential adsorbent for immobilizing U in the environment. The effect of initial pH, contact time, U concentration, and temperature on U(VI) adsorption onto L-HA was assessed. The U(VI) adsorption was pH-dependent and achieved equilibrium in 2 h. It could be well described with pseudo-second-order model, indicating that U(VI) adsorption onto L-HA involved chemisorption. The U(VI) adsorption mass increased with increasing temperature with maximum adsorption capacities of 91, 112 and 120 mg g\(^{-1}\) at 298, 308 and 318 K, respectively. The adsorption reaction was spontaneous and endothermic. We explored the processes of U(VI) desorption from the L-HA-U complex through batch desorption experiments in 1 mM NaNO\(_3\) and in artificial seawater. The desorption process could be well described by pseudo-first-order model and reached equilibrium in 3 h. L-HA possessed a high propensity to adsorb U(VI). Once adsorbed, the release of U(VI) from L-HA-U complex was minimal in both 1 mM NaNO\(_3\) and artificial seawater (0.06\% and 0.40\%, respectively). Being abundant, inexpensive, and safe, LHA has good potential for use as a U adsorbent from aqueous solution or immobilizing U in soils.
Preface

This study was conducted for the U.S. Army Corps of Engineers under Project 458170, titled, "Depleted Uranium (DU) Clearance from DoD Ranges." The Grant Officer's Technical Representative was Mr. John H. Ballard, Office of the Technical Director for Installations and Operational Environments, ERDC-EL-EZT and the Technical Point of Contact was Dr. Steven L. Larson, Environmental Engineering Branch, ERDC-EL-EPE.

The work was performed by the Environmental Engineering Branch of the Environmental Processes Division, U.S. Army Engineer Research and Development Center, Environmental Laboratory (ERDC-EL). At the time of publication of this Miscellaneous Paper, Ms. Brooke Petery was Acting Branch Chief; Dr. Brandon Lafferty was Acting Division Chief; and Dr. Elizabeth Ferguson was the Technical Director for Installations and Operational Environments. The Acting Deputy Director of ERDC-EL was Dr. Justin Berman and the Acting Director was Dr. Jack Davis.

This report documents a collaborative study conducted under the sponsorship of the U.S. Army Futures Command with FY18 Congressional Program Increase Funds in PE 0603728A in the Fiscal Year (FY) 2018 Department of Defense Appropriations Act. Collaborative work was conducted by the U.S. Army Engineer Research and Development Center and Jackson State University via Cooperative Agreement W912HZ-16-2-0021.

The Commander of ERDC was COL Teresa A. Schlosser and the Director was Dr. David W. Pittman.
Removing uranium (VI) from aqueous solution with insoluble humic acid derived from leonardite

1. Introduction

Uranium (U) occurs naturally in several minerals as a mixture of three isotopes, U-238, U-235, and U-234 (Cordfunke, 1970). Depleted uranium (DU) is a by-product of the production of enriched uranium containing U-235 and U-234 at lower concentrations than natural U (AEPI, 1995). DU is used in kinetic energy penetrators and armor plating as well as having widespread applications as aircraft counterweights and radiation shielding in medical radiation therapy (Betti, 2003; Global Security, 2008). Leaching of U to water occurs naturally due to interaction with soil minerals (Choy et al., 2006; Munasinghe et al., 2015). Anthropogenic contamination also arises from U ore mining/processing, medical waste, nuclear power station operation, accidents, and weapons testing. Acid drainage water from U mine tailings contains U and other radionuclides at low pH, reported from sites worldwide, including Australia (Mudd and Patterson, 2010), Germany (Biehler and Falck, 1999), Canada (Berthelot et al., 1999), and Brazil (Campos et al., 2011). This has resulted in the release of U-and DU-containing wastes into soil and groundwater environments, posing risks to surface water and human health (Lienert et al., 1994; Krestou et al., 2004; Todorov and Ilieva, 2006; Gavrilescu et al., 2009; Steinhauser et al., 2014). U usually occurs as U^{6+} and U^{4+} oxidation states in soil and water environments and U^{6+} is the main stable valence under oxidizing conditions. The daily intake of U, as established by the World Health Organization (WHO), is 0.6 μg kg$^{-1}$ of body weight/day; the maximum U concentration in drinking water at 15 μg L$^{-1}$ (WHO, 2008) or 30 μg/L (U.S. Environmental Protection Agency, 2012).
A range of technologies have been developed for removing U from water, including adsorption, membrane processes, chemical precipitation, and ion-exchange (Dulama et al., 2013). Adsorption has become a popular choice due to its cost-effectiveness and ease of operation. Adsorbents used to remove U from water include microbial biomass (Kalin et al., 2004), activated carbon (Mellah et al., 2006), hematite (Xie et al., 2009), sepiolite (Donat, 2009), clay materials (Campos et al., 2013) and clay-humic complexes (Anirudhan et al., 2010). Recently, biopolymers, such as insoluble humic acids (HA), have been extensively used as adsorbents of heavy metals (Havelcová et al., 2009; Shaker and Albishi, 2014; Khalili and Al-Banna, 2015; Meng et al., 2016). HAs are naturally occurring in water and soil environments and play a vital role in environmental detoxification (Kochany and Smith, 2001; Yuan and Theng, 2012; Żołowska, 2015). They could also be extracted from leonardite and lignite. With abundant functional groups (e.g., quinone, amino, carboxylic, phenolic), leonardite-derived HA (L-HA) has a good propensity to bind metal cations (Olivella et al., 2002; Yang et al., 2015).

The objective of this work was to investigate the potential use of L-HA as a U adsorbent from U waste water such as mining tailings as well as other U contaminated sites such as army shooting ranges. To this end, the effects of pH, contact time, temperature, and initial U(VI) concentrations on U adsorption were assessed through kinetics adsorption experiments at 298 K and batch isotherm experiments at 298, 308 and 318 K. Further, the process of U(VI) desorption from the L-HA–U complex was investigated with batch kinetics desorption experiments at 298 K. Desorption studies were performed using diluted NaNO₃ as a background electrolyte to simulate a normal soil solution (Harter and Naidu, 2001) and artificial seawater as a marine environment simulant to study the tendency of U(VI) release from L-HA–U complex.

2. Experimental

2.1. Materials, reagents and preparation of solutions

Leonardite was purchased from Xinjiang Uygur Autonomous Region, China, which was similar in physical and chemical properties to leonardite from North Dakota, US. All reagents used in this study were of analytical grade. Nitric acid and sodium hydroxide, used for adjusting pH, were purchased from Thermo Fisher. Uranyl nitrate, 1% aqueous, was purchased from Poly Scientifical Corp. A L-HA-U complex was prepared for the desorption experiments by adding 1 g L-HA to a PTEF bottle with 250 mL of 120 mg L⁻¹ of U solution. The initial pH was adjusted to 5.0 ± 0.1 using HNO₃ or NaOH. After shaking for 12 h at 298 K, the bottle was centrifuged and the supernatant solution was diluted to 20 mg L⁻¹ of U. The initial pH of the U(VI) solution was adjusted to 5 ± 0.05 and shaken for 12 h.

2.2. Preparation and characterization of L-HA

The traditional alkaline-acid procedure was used to obtain HA from leonardite (Havelcová et al., 2009; Meng et al., 2016). Briefly, 50 g leonardite were added to 500 mL of 0.1 M NaOH solution in a Teflon-lined container, heated to 40 °C, then sonicated for 30 min. After standing overnight in the sealed container, the supernatant liquid was slowly poured off and 0.1 M NaOH was added to the solid residue. This extraction procedure was repeated six times. The L-HA was obtained by adding 6 M HCl to the collected supernatant liquid while stirring to pH 2, centrifuging at 3000 r/min⁻¹ for 15 min and washing the precipitate with deionized water, and centrifuging for three times. The final precipitation with pH 4.02 was freeze-dried for use. The L-HA was analyzed for its physical and chemical properties. Ash content of the L-HA was determined by heating samples in a muffle furnace at 800 °C for 4 h under air atmosphere. Elemental contents were determined by an elemental analyzer (Vario micro cube, Elementar, Germany) for dried sample. The pH was determined in boiled, distilled water with a pH meter at a solid-liquid ratio of 1: 10 (Mettler Toledo, Switzerland). Surface morphology was observed with a Scanning Electron Microscope (SEM, Hitachi S-4800, Japan, 3 kV). Functional groups were quantified according to the method of International Humic Substances Society (http://www. humicsubstances.org/acidity.html). Briefly, a solution containing 0.36 ± 0.01 g L⁻¹ (base on a dry ash-free) of HA (with pH adjusted to 3.0 with HCl and 0.1 M NaCl as background electrolyte) was titrated with carbonate-free 0.1 M NaOH at 25 °C to pH 8.0 and 10.0. The contents of carboxyl and phenolic-OH groups were calculated from NaOH consumption between pH 3.0 and 8.0 and between 8.0 and 10.0, respectively.

2.3. Batch experiments

2.3.1. Batch adsorption experiments

First, initial U solutions (60 mg/L) were prepared. The pH values of the U solutions were adjusted to pH 3, 4, 5, 6, 7, 8 with 0.1 M HNO₃ or NaOH solutions before mixing with L-HA. Dissolved U in pH adjusted solutions was measured again. Twenty mg (accurate to 0.0001 g) L-HA was added to 50 mL centrifuge tubes containing 30 mL U solution. The tubes were capped and placed on a temperature-controlled shaker at 298 K. After 12 h of shaking the tubes were centrifuged, and the supernatants filtered through 0.45-µm membrane (Whatman, UK). The clear supernatants were diluted with 1% HNO₃ for U analysis with a Varian 820-ICP-MS, (Varian Inc., USA) where the U concentrations should be less than 100 µg/L. The kinetic study was conducted in the solution with pH 5.0 at 298 K for 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, and 4 h. The initial U concentrations are high for most U contaminated sites, however, this research effort is partially directed toward military shooting ranges, where U concentrations in soil have been reported as high as 2700 mg/kg (Larson et al., 2009). To simulate high concentrations of absorbed U in a solid matrix, a relatively high initial U concentration such as those used in the present study seemed desirable. Adsorption thermodynamics were assessed with initial U(VI) concentrations from 5 to 120 mg L⁻¹ at three temperatures (298, 308 and 318 K). Thirty mL of the U(VI) solutions were added into 50 mL centrifuge tubes containing 20 mg L-HA. The initial pH of U(VI) solution was adjusted to 5 ± 0.05 and shaken for 12 h.

2.3.2. Batch desorption experiments

A L-HA–U complex was prepared for the desorption experiments by adding 1 g L-HA to a PTEF bottle with 250 mL of 120 mg L⁻¹ of U solution. The initial pH was adjusted to 5.0 ± 0.1 using HNO₃ or NaOH. After shaking for 12 h at 298 K, the bottle was centrifuged and the obtained residue (L-HA–U complex) was dried at 105 °C until constant weight. Desorption of the U(VI) from the L-HA matrix was studied using 1 mM NaNO₃ (as a simulated soil solution) (Harter and Naidu, 2001) or artificial seawater. Twenty mg of the L-HA–U were placed into 50 mL tubes containing 30 mL of a 1 mM NaNO₃ solution with a pH 5.03, or artificial seawater with a pH 6.98. The tubes were capped and continuously shaken in a temperature-controlled shaker at 298 K. The shaking time are 0.25, 0.5, 0.75, 1, 1.5, 2, 3 and 4 h for artificial seawater, and 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6 and 8 h for 1 mM NaNO₃. The supernatants were filtered and analyzed for U concentration by ICP-MS.
All batch adsorption and desorption experiments were performed in duplicates. The adsorption or desorption mass was calculated by the differences of U concentration in solution before and after adsorption or desorption. Software Origin8.0 (OriginLab, USA) was used for data processing.

2.4. Models

2.4.1. Adsorption and desorption kinetics models

The pseudo-first-order model and pseudo-second-order model are often used to describe adsorption or desorption dynamics processes.

The pseudo-first-order model equation (Eq. (1)) describes adsorption in solid-liquid system on the basis of adsorption capacity of solid (Ho, 2004).

\[
q_t = q_1 (1 - e^{-k_1 t})
\]
(1)

The pseudo-second-order model equation (Eq. (2)) has been applied for analyzing the mechanism of adsorption processes involving chemisorption from liquid solution (Ho and McKay, 1999; Ho, 2006).

\[
q_t = \frac{q_2^2 k_2 t}{1 + q_2 k_2 t}
\]
(2)

where \(q_1\) and \(q_2\) are the amount of U(VI) sorbate onto or desorbed from adsorbent at the equilibrium state (mg g\(^{-1}\)), \(q_t\) is the amount of sorbate adsorbed onto or desorbed from adsorbent at time \(t\) (mg g\(^{-1}\)), \(k_1\) is the pseudo-first-order equilibrium rate constant (1 h\(^{-1}\)), and \(k_2\) is the pseudo-second-order equilibrium rate constant (g\(\cdot\)mg\(^{-1}\)h\(^{-1}\)).

2.4.2. Adsorption isotherms models

An adsorption isotherm model can be used to describe the adsorption between liquid and solid phases at equilibrium state. The adsorption of U(VI) by L-HA was modelled using the Langmuir and Freundlich models. The Langmuir model assumes a uniform heterogeneous adsorption not restricted by monolayer (Yang, 1998; Mellah et al., 2006). The Langmuir model assumes a uniform adsorption in solid-liquid system on the basis of adsorption capacity of solid (Ho, 2004), and the standard Gibbs free energy \(\Delta G^0\) (kJ mol\(^{-1}\)), standard enthalpy change \(\Delta H^0\) (kJ mol\(^{-1}\)), and standard entropy change \(\Delta S^0\) (J mol\(^{-1}\) K\(^{-1}\)) were calculated using the following equations,

\[
\Delta G^0 = -RT\ln K_0
\]
(5)

\[
\ln K_0 = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT}
\]
(6)

and \(K_0\) can be defined as the following equation where:

\[
K_0 = \frac{q_e}{C_e}
\]
(7)

where \(R\) is the gas constant (8.314 J mol\(^{-1}\) K\(^{-1}\)), \(T\) is the temperature in K, \(C_e\) is the equilibrium concentration (mmol L\(^{-1}\)), and \(q_e\) is the amount of U(VI) adsorbed on L-HA at equilibrium state (mmol g\(^{-1}\)).

3. Results and discussion

3.1. Properties of HA

The L-HA had a pH value of 4.02, an ash content of 78.7%, and carbon content of 58.7%. The size and shape of the L-HA precipitate particles may greatly impact adsorption rate and capacity. SEM graphics of fresh L-HA indicated that its surface was heterogeneous and fully covered by small spherical particles (Fig. 1). As a sphere has the largest surface area for a given volume, the small spherical particles would favor U adsorption over the L-HA surface. According to Stevenson (1994) and Tan (2014), the spectra of L-HA showed oxygen-containing functional groups which appear at around 3414 cm\(^{-1}\) (O-H stretching of H-bonded hydroxyl group and partially N-H stretch), 1700 cm\(^{-1}\) (C=O stretch of COOH), 1570 and 1353 cm\(^{-1}\) (anti-symmetrical and symmetrical stretching of COO\(^{-}\)), and 1190 cm\(^{-1}\) (C-O stretch or phenolic C-OH) (Fig. 2). The carboxyl and phenolic-C=O functional groups of L-HA were 6.18 and 1.82 mol/kg C, respectively. Soler-Rovira et al. (2010) observed a strong correlation between the carboxyl group content of HA and its adsorption capacity for heavy metals. Thus, the L-HA used in this study would have a high adsorption capacity for metal cations.

3.2. Effect of initial pH

Matrix pH is an important factor controlling the adsorption process of U(VI) onto L-HA because it may influence the surface charge of L-HA and change the U speciation in solution as well as solubility of humic substances (Misaéldes et al., 1995; Camacho et al., 2010; Khalili and Al-Banna, 2015). As shown in Fig. 3, U(VI) adsorption onto L-HA was pH-dependent and the maximum U adsorption occurred at pH 6.0. At low pH the positive charge arising from amino groups on the surface of L-HA increases, which increases the competition of H\(^+\) for U at surface binding sites and reduces the U adsorption (Wang et al., 2010). At pH < 3.0, UO\(_2\)\(^{2+}\) is the dominant species for adsorption; at pH 3.0–5.0, (UO\(_2\)\(^{2+}\))(OH)\(^{2+}\), (UO\(_2\)\(^{3+}\))(OH)\(^{3+}\), and (UO\(_2\)\(^{3+}\))(OH)\(^{3+}\) are present for adsorption; at pH > 5.0, intense hydrolysate [(UO\(_2\)\(^{3+}\))(OH)\(^{2+}\)] occurred and were adsorbed (Misaéldes et al., 1995; Camacho et al., 2010). The ionization of L-HA increases with pH, resulting in an increase in negative charge that allows adsorption of more mass of U. The resolubilization of L-HA below pH 6 was tested and found to be low (<0.20%), becoming negligible (<0.10%) in the presence of U. However, resolubilization of L-HA increased above pH 6.0. Some precipitate in U solution was observed at pH 8 before mixing with L-HA. Thus, at pH > 6.0, the dissolution of L-HA complexes, as well as the formation of U(VI) hydroxide species (e.g., UO\(_2\)(OH)\(_2\)), reduced U(VI) adsorption onto the L-HA (Camacho et al., 2010;
Wang et al., 2010; Milja et al., 2011). The mass of U adsorbed at pH 5.0 was 60 mg/g and increased to 67 mg g\(^{-1}\) at pH 6.0. Since U-contaminated water, such as uranium mining wastewater, is usually an acidic condition, we selected pH 5 for kinetics and thermodynamic adsorption experiments to better simulate that environment.

3.3. Adsorption kinetics

Reaction time is another important factor influencing U(VI) adsorption onto L-HA (Fig. 4). Pseudo-first-and second-order models are often used to describe adsorption or desorption dynamic processes. U adsorption mass increased quickly in the initial 0.25 h and then increased slowly until an equilibrium state was reached at 2 h. In order to describe the adsorption process and explore the adsorption mechanism, the adsorption data obtained at 298 K were fitted to pseudo-first-order and pseudo-second-order models.

The values of adsorption kinetic parameters and coefficients of determination (R\(^2\)) from the models were summarized in Table 1. Both pseudo first and second models gave good R\(^2\) values. The pseudo-second-order model yielded a slightly higher R\(^2\) value (which was close to 1) and close agreement between adsorption mass value (q\(_2\)) and the experimental q\(_e\). This suggests that U(VI) adsorption onto L-HA involves chemisorption, such as ion-exchange, chelation and surface-complexation (Ho and McKay, 1999; Ho, 2006).

3.4. Adsorption isotherm

Fig. 5 demonstrates that U adsorption increased with rising initial concentrations and temperature. In order to quantify the potential adsorption capacities of L-HA for U(VI) at different temperatures, the data obtained from batch experiments was fitted
using the Langmuir model (Eq. (3)) and Freundlich model (Eq. (4)).

In general, as temperature increased, the ionization of carboxylic acids also increased, making the surface of adsorbents more reactive towards adsorption (Ellis, 1963; Uslu and Tanyol, 2006). The adsorption capacity of U(VI), calculated using the Langmuir model, increased from 91 mg g\(^{-1}\) at 298 K to 112 mg g\(^{-1}\) at 308 K, and then to 120 mg g\(^{-1}\) at 318 K, which were higher than other organic materials, such as cross-linked chitosan (Wang et al., 2009) and activated carbon (Kütahyalı and Eral, 2010). The adsorption data were well fitted to the Freundlich and Langmuir models (Table 2), however, the Langmuir model seemed more suitable than Freundlich model (RL\(^2\) > RF\(^2\)) at experimental temperatures. This may be a result of surface and collision energy change with temperature (Van den Boomgaard et al., 1978; Michelsen et al., 1992; Uslu and Tanyol, 2006). Rising temperature increases surface activity of adsorbents and the kinetic energy of U, thus increasing the potential for its adsorption. The Langmuir model has been extensively used to describe the adsorption processes of heavy metals, even reactions with low reversibility, indicating a strong affinity and binding (Lasheen et al., 2012). The k\(_L\) is the adsorption equilibrium constant indicating the affinity of binding sites. The k\(_L\) increased and then decreased with increasing temperature, implying that the affinity of binding sites changed with temperature. This might not necessarily be related to changes in the dominant adsorption mechanism in a specific temperature range (Uslu and Tanyol, 2006).

3.5. Desorption experiments

The L-HA-U complex for desorption experiments contained 30.84 mg U/g. Desorption experiments were investigated with 1 mM NaNO\(_3\) to simulate a soil-water system and artificial seawater to simulate a marine environment.

3.5.1. Uranium desorption in 1 mM NaNO\(_3\)

U desorption from L-HA-U in 1 mM NaNO\(_3\), a soil simulant, increased quickly as time increased from 0.25 to 2 h and then reached an apparent equilibrium at 3 h (Fig. 6a). Desorption processes took a longer time to reach equilibrium than adsorption processes. At equilibrium, the desorption mass of U(VI) was 19 \(\mu\)g g\(^{-1}\) (only 0.06% of the adsorbed mass), indicating that the L-HA had a high retention capacity for U(VI), and thus good potential use as an inexpensive adsorbent in uranium contaminated soil.

3.5.2. Uranium desorption in artificial seawater

U(VI) desorption in artificial seawater increased quickly as time increased from 0.25 to 1.5 h and then slowly increased to reach an equilibrium at 3 h (Fig. 6b). The equilibrium desorption mass (q\(_e\)) of U(VI) was 125 \(\mu\)g g\(^{-1}\), 0.4% of the adsorbed mass. This was higher than that in 1 mM NaNO\(_3\), which is in agreement with results in literature (Ladshaw et al., 2015) and could be explained by three potential mechanisms: 1) seawater with high ionic strength contains cations (e.g., Mg\(^{2+}\), Ca\(^{2+}\)) that compete with U(VI) adsorption onto L-HA (Anagnostopoulos et al., 2017); 2) seawater has a pH > 6, which partially dissolves the L-HA releasing U back into solution; 3) CO\(_3\)\(^{-}\) and HCO\(_3\)\(^{-}\) in seawater (HCO\(_3\)\(^{-}\) + OH\(^{-}\) + CO\(_3\)\(^{2-}\) + H\(_2\)O\(_\text{aq}\) may easily form complexes with U (Krestou and Panias, 2004; Santos and Ladeira, 2011), thus competing with L-HA for U. In most U-contaminated seawater, the U concentration may not be as high as in this experiment. Meinrath et al. (2003) reported groundwater concentrations as high as 50 mg L\(^{-1}\) up to percent concentrations. Toque et al. (2014) found corrosion rates of

Table 1
Parameters of kinetic models for U(VI) adsorption onto L-HA.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>q(_e) (mg g(^{-1}))</th>
<th>Pseudo-first-order</th>
<th>Pseudo-second-order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q(_1) (mg g(^{-1}))</td>
<td>k(_1) (1 h(^{-1}))</td>
<td>R(^2)</td>
</tr>
<tr>
<td>298</td>
<td>51.2</td>
<td>48.2</td>
<td>9.42</td>
</tr>
<tr>
<td>308</td>
<td>91</td>
<td>0.29</td>
<td>0.99</td>
</tr>
<tr>
<td>318</td>
<td>120</td>
<td>0.78</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Table 2
Parameters of adsorption isotherms for U(VI) adsorption onto L-HA at different temperatures.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Freundlich model</th>
<th>Langmuir model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/n</td>
<td>q(_m) (mg g(^{-1}))</td>
</tr>
<tr>
<td></td>
<td>k(_f) (mg(1+n)L(^{n})g(^{-1}))</td>
<td>R(^2)</td>
</tr>
<tr>
<td>298</td>
<td>0.33</td>
<td>91</td>
</tr>
<tr>
<td>308</td>
<td>0.28</td>
<td>112</td>
</tr>
<tr>
<td>318</td>
<td>0.33</td>
<td>120</td>
</tr>
</tbody>
</table>

Fig. 5. Isotherms of U(VI) adsorption onto L-HA. (a) Langmuir model; (b) Freundlich model.
1.9 g cm$^{-2}$ y$^{-1}$ from DU kinetic penetrator materials in the open ocean. Use of DU kinetic penetrators around marine environments might be expected to result in high uranium concentrations. The present finding indicates that the high retention capacity of L-HA for U(VI) could potentially be used to remove U(VI) from contaminated seawater.

3.5.3. Desorption kinetics

The U desorption processes could be described by the pseudo-first-order and pseudo-second-order models (Konvalinka et al., 1977; Tsai et al., 2008). Fitting parameters are displayed in Table 3. Although both equations fit the data well ($R^2 > 0.95$), q_1 was closer to q_0 than q_2. This suggests that a pseudo-first-order model is more suitable than a pseudo-second-order model to describe the desorption process. This implies that desorption may be controlled by the abundance of adsorbed U on the surface of humic substances. Following an instantaneous release of adsorbed U at initial phase was a slow desorption with decreasing in the abundance of U on the surface. The initial fast desorption was due to U release from the external sorption sites of L-HA, whereas the slow desorption was due to diffusion-limited release of U from the internal sorption sites (McKinley et al., 2004; Tsai et al., 2008).

3.6. Adsorption thermodynamics

U(VI) adsorption (q_m) and ln K_0 increased with rising temperature (Tables 2 and 4), suggesting that the adsorption process was endothermic (Boparai et al., 2011). This relationship implies that an increase in temperature favors U adsorption capacity with endothermic adsorption process.

Thermodynamic parameters for U(VI) adsorption onto L-HA were calculated using the measured data in Fig. 7a shows the values of ln K_0 at different temperatures were calculated from the plot of ln (q_m/C_0) versus q_m and supposing q_e approach to zero (Fig. 7a) (Boparai et al., 2011; Khalili and Al-Banna, 2015). The values of ln K_0 and ΔG^0 calculated by equation (5) are summarized in Table 4. Negative values of ΔG^0 indicate that the adsorption reaction was spontaneous and the extent of spontaneity of adsorption reaction increased with increasing temperature. According to equation (6), the values of ΔH^0 and ΔS^0 were determined by a plot of ln K_0 versus 1/T (Fig. 6b) (Raji and Anirudhan, 1998; Boparai et al., 2011). The positive value of ΔS^0 (115 J (mol K)$^{-1}$) revealed that the adsorption process was spontaneous and the affinity of L-HA for U(VI) was high for this system (Khalili and Al-Banna, 2015). The positive value of ΔH^0 (22.5 kJ mol$^{-1}$) observed in this study indicates that the adsorption of U(VI) onto L-HA is endothermic, which is supported by the increasing U adsorption mass with increasing temperature. Due to limited kinetic experimental data at only one temperature, activation energy of DU adsorption process was not able to calculate. Thus, the detailed thermodynamic analyses of U adsorption was limited by current study.

3.7. Adsorption mechanism

L-HA had a complex structure, with high content of functional groups capable of reacting with metal cations. The FTIR spectra of L-HA and L-HA-U samples (Fig. 2) revealed the changes in intensity of peak frequencies had little change, suggesting the lack of reactions of functional groups capable of reacting with metal cations. The FTIR spectra of L-HA and L-HA-U samples (Fig. 2) revealed the changes in intensity of peak frequencies had little change, suggesting the lack of reactions of functional groups capable of reacting with metal cations. The FTIR spectra of L-HA and L-HA-U samples (Fig. 2) revealed the changes in intensity of peak frequencies had little change, suggesting the lack of reactions of functional groups capable of reacting with metal cations.

Table 3

<table>
<thead>
<tr>
<th>Condition</th>
<th>q<sub>m</sub> (mg g<sup>-1</sup>)</th>
<th>k<sub>1</sub> (h<sup>-1</sup>)</th>
<th>R<sup>2</sup></th>
<th>q<sub>2</sub> (mg g<sup>-1</sup>)</th>
<th>k<sub>2</sub> (g (mg h)<sup>-1</sup>)</th>
<th>R<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM NaNO<sub>3</sub></td>
<td>18.7</td>
<td>19.3</td>
<td>0.66</td>
<td>23.9</td>
<td>0.027</td>
<td>0.95</td>
</tr>
<tr>
<td>Artificial seawater</td>
<td>125</td>
<td>122</td>
<td>2.36</td>
<td>137</td>
<td>0.024</td>
<td>0.99</td>
</tr>
</tbody>
</table>
are 3.0 and 10.0, respectively (Tan, 2014). Under the batch isotherm adsorption experiment conditions of this study (pH < 5) the phenolic—OH groups were almost non-ionized. Thus, carboxyl would be the dominant functional groups to adsorb U(VI). Further, a better fitting of U(VI) adsorption data to a pseudo-second-order model, rather than to a pseudo-first-order model, indicates the adsorption process involved chemisorption. Therefore, the main type of chemisorption may be surface complexation of U with the carboxyl groups of L-HA.

4. Conclusions

L-HA produced from leonardite with the traditional alkali-acid method had a high carboxyl ion content and spherical morphology. U(VI) adsorption onto the L-HA was pH-dependent and the time to reach equilibrium was 2 h. The calculated maximum adsorption capacity of L-HA for U(VI) was 91, 112 and 120 mg g⁻¹ at 298, 308 and 318 K, respectively. Adsorption data fitted a pseudo-second-order model better than pseudo-first-order model, suggesting the chemisorption nature of U(VI) binding onto L-HA. The adsorption was spontaneous and an endothermic based on thermodynamic data. Desorption of U(VI) from L-HA−U reached equilibrium in 3 h and the percentages of desorbed U(VI) were only 0.08% in simulated soil solution (1 mM NaNO₃) and 0.40% in artifi
cial seawater. Addition of L-HA to U-contained wastes may decrease its risks to ecosystem and human health. Being abundant, inexpensive, effective and environmentally friendly, L-HA has a good potential to become a useful adsorbent for use in U- and DU-contaminated sites.

Acknowledgements

This study was supported by the U.S. Army Environmental Quality Technology (EQT) Program, the U.S. Army Engineer Research and Development Center (W912HZ-16-2-0021), the U.S. Nuclear Regulatory Commission (NRC−HQ−84−15−G−0042 and NRC−HQ−12−G−38−0038) and the U.S. Department of Commerce (NA11SEC4810001−003499). FD Meng and GD Yuan acknowledge the support from Chinese National Key Research and Development Program (2016YFD0200303−4) and Key Research and Development Program of Shandong Province (2016CYS05M01−1). Additionally, we thank personnel from the University of Southern Mississippi, Department of Chemistry and Biochemistry, who provided support for FTIR analyses.

References

Ho, Y.S., 2004. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59, 171−177.

Fig. 7. (a) Plot of ln (qe/Ce) versus qe at different temperatures, (b) plot of lnK2 versus 1/T.
ABSTRACT

The occurrence of uranium (U) and depleted uranium (DU)-contaminated wastes from anthropogenic activities is an important environmental problem. Insoluble humic acid derived from Leonardite (L-HA) was investigated as a potential adsorbent for immobilizing U in the environment. The effect of initial pH, contact time, U concentration, and temperature on U(VI) adsorption onto L-HA was assessed. The U(VI) adsorption was pH-dependent and achieved equilibrium in 2 h. It could be well described with pseudo-second-order model, indicating that U(VI) adsorption onto L-HA involved chemisorption. The U(VI) adsorption mass increased with increasing temperature with maximum adsorption capacities of 91, 112 and 120 mg g⁻¹ at 298, 308 and 318 K, respectively. The adsorption reaction was spontaneous and endothermic. We explored the processes of U(VI) desorption from the L-HA-U complex through batch desorption experiments in 1 mM NaNO₃ and in artificial seawater. The desorption process could be well described by pseudo-first-order model and reached equilibrium in 3 h. L-HA possessed a high propensity to adsorb U(VI). Once adsorbed, the release of U(VI) from L-HA-U complex was minimal in both 1 mM NaNO₃ and artificial seawater (0.06% and 0.40%, respectively). Being abundant, inexpensive, and safe, LHA has good potential for use as a U adsorbent from aqueous solution or immobilizing U in soils.

SUBJECT TERMS

Uranium contamination, Depleted uranium, Leonardite, Humic acid, Artificial seawater, Desorption, Soil