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Abstract 

The US Army Engineer Research and Development Center, Coastal and 
Hydraulics Laboratory, has undertaken the development of the multi-
module Adaptive Hydraulics (AdH) hydrodynamic, sediment, water 
quality, and transport numerical code. This report documents the 
mathematical formulation and numerical implementation of the two-
dimensional depth-averaged module of AdH. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

The US Army Corps of Engineers (USACE), through the US Army 
Engineer Research and Development Center, has developed a robust, 
multi-dimensional, and mass conservative finite element (FE) 
hydrodynamic and constituent transport numerical model, Adaptive 
Hydraulics. Adaptive Hydraulics has been referred to as “ADH” and “AdH” 
in literature; the abbreviation AdH is used in this report in accordance 
with how Adaptive Hydraulics is referenced in peer-reviewed literature. 

Background 

The USACE hydrodynamic and transport numerical code AdH has been 
developed to be a general purpose hydrodynamic model over the past 
several years. As a normal consequence of this development effort, the 
underlying mathematics and numerical techniques require 
documentation. This documentation is required to not only provide a 
reference for users of the code but for the developers themselves to allow 
the maintenance of the most efficient and error-free code possible. 

Objective 

The objective of this report is to succinctly and accurately provide the 
mathematical and numerical background underpinning the AdH 
numerical code. 

Approach 

The objectives of this report are to provide the mathematical and 
numerical basis of the two-dimensional (2D) shallow water module of 
AdH (AdH-2D). This report obtains this objective by providing the 
formulation and discretization in distinct chapters as follows: 

1. Chapter 2 provides the generic 2D shallow water equations, including 
salient points that distinguish the mass conservative 2D shallow water 
equations from the non-conservative 2D shallow water equations.  

2. Chapter 3 provides detailed FE discretization, including a description of 
the stabilization scheme implemented into AdH-2D.  
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3. Chapter 4 provides details of the modifications to the Cartesian co-
ordinate shallow water equations to enable AdH-2D to perform Spherical 
co-ordinate simulations using Cartesian master elements.  

4. Chapter 5 describes the dynamic run-time temporal and mesh adaption 
schemes implemented into AdH-2D. 

5. Chapter 6 describes the mass conservative front tracking wet-dry scheme 
implemented into AdH-2D. 

6. Chapter 7 describes the linkage of AdH-2D to the sediment transport 
library, SEDLIB. 

7. Chapter 8 describes, in detail, the heat transfer formulations implemented 
into AdH-2D. 

8. Chapter 9 provides a summary of this report. 
9. Appendix A describes the equations of state for salinity, heat and sediment 

implemented into AdH-2D. 
10. Appendix B describes in detail the FE discretization of each individual 

term in the shallow water equations, including the discretization of 
boundary integration terms, and the treatment of stabilization terms. 

11. Appendix C provides a basic description of the friction library 
implemented into AdH-2D. 
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2 Depth-Averaged Shallow Water Equations 
in the Cartesian Coordinate System 

The AdH-2D in Cartesian Coordinates module of the AdH system has been 
in use since approximately 2003. It has been applied in hundreds of 
applications; a few representative examples are Berger and Lee (2004); 
McAlpin et al. (2009); and Bislip-Morales and Stockstill (2013). It is 
included here along with all of the newer features for completeness. The 
AdH-2D model utilizes the depth-averaged, Reynolds Averaged Navier-
Stokes (RANS) equations under the assumption that (1) the horizontal 
length scale is much greater than the vertical length scale and (2) the 
pressure is hydrostatic. The model is routinely used to compute unsteady 
hydrodynamics in water bodies such as oceans, estuaries, rivers, 
reservoirs, marshes, etc. The assumption of a hydrostatic water column 
reduces the RANS equations to the well-known 2D shallow water (SW) 
equations. In these equations, the conservation of mass and momentum 
for a continuum of incompressible fluid is mathematically described by the 
continuity and momentum equations. In two dimensions, these equations 
are described as 

 
*

0yxR
t x y

∂∂∂
≡ + + + =

∂ ∂ ∂

FFQ S  (1) 
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The following definitions complete these equations: 

 H = depth of fluid 
 𝑢𝑢,� �̅�𝑣 = depth-averaged velocity in the x and y directions, respectively 
 r = rainfall/evaporation 
 ρ  = ( , , )x y tρ is the fluid density 
 0ρ  = reference density 
 g  = acceleration due to gravity 
 bz  = bottom elevation 

xxσ , yyσ , xyσ and yxσ = Reynolds stress in xx, yy, xy and yx direction, respectively 

_x sτ  and _y sτ  = wind or wave surface stresses in the x and y direction, 
respectively 

 Cf = bottom friction coefficient 
 F = Coriolis coefficient = ( )2 sinω θ  

 
1

2V  = 
2 2

u v+ , 

 ω  = angular rotation of the Earth 
 θ  = latitude 
 P = pressure at the water surface. 
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To minimize notation, the bar over the depth-averaged values will be 
dropped in the remaining sections, and it is assumed that all velocities are 
depth averaged. 

Reynolds stresses are implemented using the streamwise and transverse 
set of coefficients:  

 2 2xx st vx vx vy tr
u u un n n
x y x

σ ν ν
 ∂ ∂ ∂

= + + ∂ ∂ ∂ 
 (6) 

 xy st vy vy vx vx vy tr
u u v v u vn n n n n
y y x y y x

σ ν ν
   ∂ ∂ ∂ ∂ ∂ ∂

= + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
 (7) 

 yx st vx vy vx vxx vy tr
u u v v u vn n n n n
y x x y y x

σ ν ν
   ∂ ∂ ∂ ∂ ∂ ∂

= + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
 (8) 

 2 2yy st vy vx vy tr
v v vn n n
x y x

σ ν ν
 ∂ ∂ ∂

= + + ∂ ∂ ∂ 
 (9) 

where 

 

1
2

1
2

vx

vy

un
V

vn
V

=

=
 (10) 

 stν  = kinematic turbulent eddy viscosity in the streamwise direction 
 trν  = kinematic turbulent eddy viscosity in the transverse direction. 

Note on conservative and non-conservative forms of the shallow water 
equation 

Equation 1 is written in what is generally referred to as the conservative 
form of the shallow water equations. If the momentum terms are 
expanded using the product rule and eliminating contributions that 
denote mass conservation, they transform to the non-conservative form. 
The non-conservative form of the equations do not conserve momentum 
across shocks or hydraulic jumps; this is an obvious consequence of the 
fact that velocities are not subject to any fundamental conservation 
principle in this form.  
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3 Finite Element (FE) Approach  

Numerical modeling of advection-diffusion equations has a long history in 
the field of applied mathematics. Methods that are most employed in 
riverine and ocean modeling are finite difference, finite volume, finite, and 
spectral-element techniques. The chief advantage of the FE method over the 
finite difference method is the ability to deal with unstructured grids. This 
kind of grid is attractive for numerical modelers for a number reasons. First, 
it facilitates the creation of irregular domains, such as uneven coastlines, 
narrow straits, and islands often found in oceanography as well as uneven 
river banks. Unstructured grids also offer the flexibility of spatially varying 
resolutions so that, for example, regions of interest can be extremely high 
resolution and vice versa. Therefore, computational effort is concentrated 
where the flow necessitates it. Finally, structured grids based on the 
geographical coordinates are plagued with difficulties near the poles. This is 
due to the convergence of the meridians, which requires unacceptably small 
time-steps to maintain stability. This constraint is not as much of an issue 
with unstructured grids. 

In addition to these benefits, the FE method also rests on a rigorous 
mathematical framework based on a weighted residuals formulation that 
permits a precise definition of notions such as the error, convergence rate, 
and stability conditions. Last, natural boundary conditions are easily 
applied as they enter the weak statement of the problem directly with no 
further impositions or approximations. 

A critical issue when applying the FE method to the shallow water 
equations is to find a suitable FE discretization pair for velocity and 
surface elevation (pressure). This pair should represent the geophysical 
flow accurately, be mass preserving, and not allow locking or the existence 
of spurious computational modes. AdH-2D utilizes triangular elements 
that have been shown to lock for elemental constant pressures with linear 
velocity. Locking is a result of the continuity equation being enforced too 
much as a result of the presence of more continuity equations (one per 
element) compared to the number of momentum equation pairs (one per 
node). The locking means that the velocity will be forced to a uniform 
value of zero. (For an explanation of the locking phenomena, see Carey 
and Oden [1986]). Linear pressure and linear velocity typically face 
problems with spurious modes. These spurious modes have a wide range 
of characteristics and may take the form of pressure (surface-elevation), 
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velocity, and/or Coriolis modes. The modes may cause aliasing and an 
accumulation of energy in the smallest-resolvable scale, leading to noisy 
solutions (see Walters and Carey [1984]).  

An early attempt to eliminate the spurious oscillations found in the Galerkin 
FE SW formulation was to use mixed interpolation schemes for pressure 
(elevation) and velocities, with the pressure discretization at lower order 
(typically linear pressure and quadratic velocity). Although this mitigated 
the pressure oscillations, the velocity issues still remained. Throughout the 
years, a number of alternative methods have been introduced to reduce 
these oscillations, such as making use of the Generalized Wave Continuity 
Equation (Luettich and Westerink 2004) or by using a discontinuous 
Galerkin method. However, since a priority mission of the AdH-2D model is 
to accurately simulate transcritical, supercritical, and subcritical flows, it 
was decided that the same Streamline Upwind Petrov-Galerkin (SUPG) 
scheme, successfully used in the previous shallow water model HIVEL2D, 
would be used as a basis for AdH-2D.  

Unlike the standard Galerkin method, in the SUPG method (Hughes and 
Brook 1982) test/weight and trial functions are not the same. In the SUPG 
method, the test function is a linear combination of the trial function and 
some weighting of the spatial derivative of the trial function. This 
additional, elementally discontinuous, trial gradient term suppresses 
spatial oscillations in pressure and velocity in a controllable and consistent 
manner. Importantly, the SUPG method is not simply the Galerkin 
method with stabilization; it is a modification of the test function in a 
manner that is discretely consistent with the original equations of motion. 
The specific AdH-2D SUPG method used was originally described in 
Stockstill and Berger (1994). 

FE discretization 

The FE discretization is performed over a triangular element mapped to a 
computational parent {(0,0); (0,1); (1,0)} as represented in Figures 1 and 2. 

The 2D linear basis functions, denoted as φi, used for trial function 
discretization, are defined nodally on the parent element as 
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1

2

3

1φ ξ η
φ ξ
φ η

= − −
=
=

 (11) 

where 

ξ  and η  are locally defined variables whose values vary linearly from 0 to 
1 (Figure 2) so that 

1. at node 1, the value of ξ and η  is 0; and therefore 1φ  is equal to 1, 2φ and 

3φ are equal to 0 

2. at node 2, the value of ξ is 1 and η  is 0; and therefore 2φ is equal to 1, 1φ  
and 3φ are equal to 0 

3. at node 3, the value of ξ is 0 and η  is 1; and therefore 3φ is equal to 1, 1φ  
and 2φ  are equal to 0. 

Figure 1. Computational element figure. Figure 2. Variation in ζ and η. 

  

In traditional FE fashion, the linear trial functions are used to expand all 
solution variables so that for 3 node triangles, the continuous fields 
discretize to 

 ( ) ( ) ( ) ( )
3

1 1 2 2 3 3
1

, , , ,i ix x x x xφ ξ η φ ξ η φ ξ η φ ξ η= = + +∑  (12) 

 ( ) ( ) ( ) ( )
3

1 1 2 2 3 3
1

, , , ,i iy y y y yφ ξ η φ ξ η φ ξ η φ ξ η= = + +∑  (13) 
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 ( ) ( ) ( )
3

1
, , , , ,i iu t u tξ η ξ η φ ξ η= ∑  (14) 

 ( ) ( ) ( )
3

1
, , , , ,i iv t v tξ η ξ η φ ξ η= ∑  (15) 

 ( ) ( ) ( )
3

1
, , , , ,i ih t h tξ η ξ η φ ξ η= ∑  (16) 

where all variables are as previously defined.  

Equations 14 through 16 above expand the variables in the computational 
or parent space. The expansion in physical space is written as 

 ( ) ( ) ( )
3

1
, , , , ,iiu x y t u x y t x yφ

∧

= ∑  (17) 

 ( ) ( ) ( )
3

1
, , , , ,iiv x y t v x y t x yφ

∧

= ∑  (18) 

 ( ) ( ) ( )
3

1
, , , , ,iih x y t h x y t x yφ

∧

= ∑  (19) 

Where u(x,y,t), v(x,y,t), and h(x,yt) are time varying x-direction velocity, 
y-direction velocity, and depth, respectively. Hereafter, u, v, and h will be 

used to refer to the time varying quantities. In these equations, φ
∧

 is the 
basis function in the physical space.  

The transformation from the computational element to the physical 
element utilizes the Jacobian, J, defined as 

 ( ),

x x

J
y y
ξ η

ξ η

ξ η

∂ ∂ 
 ∂ ∂ =

∂ ∂ 
 ∂ ∂ 

 (20) 
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The relationship between the physical element area, denoted as Λ , and J 
is 

 ( )1 ,
2

J ξ ηΛ =  (21) 

All FE integrations are performed on the computational element. The 
following equations, for example, are typical mass and stiffness 
transformations from the physical to parent domain physical element: 

 ( ) ( ) ( ) ( )( )
2

11

0 0

, , , , 2
d

e

i j i jM x y x y d d d
ξ

ξ η

φ φ φ ξ η φ ξ η ξ η
−∧ ∧

= =Ω

= Ω = Λ∫ ∫ ∫  (22) 

and 

 
2

11

0 0

1
2d

e

j ji iK d d d
x y x y

ξ

ξ η

φφ φφ ξ η

∧∧
−

= =Ω

∂∂  ∂∂  = Ω =   ∂ ∂ Λ ∂ ∂  
∫ ∫ ∫  (23) 

where 

 
2d

eΩ  = 2D elemental domain (hereafter, referred to as eΩ ) 

Weak form 

One begins with the weak form of the analytic equations and then 
progresses to the FE statement. The weak statement of equation set (1) is 

 ( ) 0x y x x y y
w ww w d w n n d

t x yΩ Γ

 ∂ ∂ ∂
− − + Ω + + Γ = ∂ ∂ ∂ 

∫ ∫
Q F F S F F  (24) 

The terms xn and yn are the outward normal direction components along 

the boundary Γ . The weight function (or test function), w , is a function 
that is sufficiently smooth so that the operations in the equation are 
integrable. Furthermore, w  must also enforce the Essential boundary 
conditions. The function w is arbitrary except that it is zero along 
Essential boundary locations. Since w is arbitrary, any solution to 
equation set (1) is also a solution to the weak form. If classical solutions 
exist, they will satisfy the weak form. If, however, only non-smooth 
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solutions exist, the weak form will recover these and (1) will not. This is 
important for reproduction of hydraulic jumps and oblique shocks in the 
shallow water equations. Note that to this point exact solutions are being 
found. Now, there is a move to the FE statement in which numerical 
solutions that are approximations will be found. 

The development of the FE statement will be made in a semi-discrete form 
with the temporal derivative remaining analytic. Thus, the development 
proceeds as a spatial interpolation. AdH SW2 is implicit, so the unknown 
variables are all written for the new time-step. 

The dependent variables are interpolated on the individual elements using 
linear Lagrange polynomials. 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

, , ,

, , ,

, , ,

j jh
j

h j j
j

h j j
j

u x y t x y u t

v x y t x y v t

h x y t x y h t

φ

φ

φ

=

=

=

∑

∑

∑

 (25) 

where the subscript “j” indicates the nodal values of each variable.  

Now, re-form Equation set (1) with these nodal variables such that all the 
terms should have a subscript “h.” In the interest of simplicity, there will 
be a suspension from using the subscript “h” to indicate the approximate 
or discrete values, but it should be understood that one is now dealing 
with the approximate equations. 

Equation 1 provides the strong (or classical) form of the continuity and 
depth-averaged momentum equations; however, the FE method requires 
that these equations be formulated in their corresponding weak form by 
multiplying by a Petrov-Galerkin (PG) test/weight function, φ ϕΨ = + , 
(trial + gradient function) and integrating by parts over the domain to give 
the following FE statement.  
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For all i, find u, v, and h such that 

 ( )
e e

i i
i i x y i e i x x y y e i

e
d n n d

t x y
φ φφ φ φ

Ω Γ ∩Γ

  ∂ ∂∂
 ≡ − − + Ω + + Γ + =  ∂ ∂ ∂   

∑ ∫ ∫
QR F F S F F P 0  (26) 

where 

 Ωe = elemental 2D domain 
 Γe =  elemental boundary 
 Γ = the global boundary 
 nx, ny = unit outward normal in the x- and y-directions, respectively. 

 

i
c

i
i mx

i
my

R

R

R

 
 
 ≡  
 
  

R  (27) 

 i
cR  = residual of the ith discrete continuity equation 

 i
mxR  = residual of the ith x-direction momentum equation  

 
i
myR  = residual of the ith y-direction momentum equation 

 
*

e

i
c

i e e ei i
i mx ncx y e

i
my

P

P d
x y

P

φ φτ
Ω

 
   ∂ ∂ ≡ = + Ω   ∂ ∂  
  

∫P A A R  (28) 

 i
cP  = SUPG contribution to the ith continuity equation 

 
i
mxP  = SUPG contribution to the ith x-direction momentum equation 

 
i
myP  = SUPG contribution to the ith y-direction momentum equation 

 
eτ  = stabilization parameter. 

The discrete non-conservative shallow water equations are 

 0
* nc nc nc
nc x y nct x y

∂ ∂ ∂
= + + + =

∂ ∂ ∂
Q Q QA A SR  (29) 
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where 

 nc

h
u
v

 
 =  
 
 

Q  (30) 

 

             0

        0

0        0      

x
o

u h

g u

u

ρ
ρ

 
 
 =
 
 
 

A  (31) 

 
        0     

0             0

   0     

y

o

v h
v

g vρ
ρ

 
 
 

=  
 
 
  

A  (32)  

 

1 0 0
10 0

10 0

nc h

h

 
 
 
 =
 
 
 
 

S S  (33) 

The AdH-2D test function is then 

 e e ei i
i i x yx y

φ φφ τ
 ∂ ∂

Ψ ≡ + + ∂ ∂ 
I A A  (34) 

where 

 I = identity matrix. 

The superscript “e” means an element average value. It is important that 
the gradient (or discontinuous) portion of the test function have elemental 
constant coefficients to be assured of elemental conservation. Another 
subtle point is that the discontinuous (SUPG) portion of the test function 
(termed ϕ ) is only integrated against the discrete equation over the 
interior of the element. This means that Essential boundary conditions are 
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addressed by the continuous portion of the test function. Also, the 
additional SUPG portion of the integration does not participate in 
enforcing flux jumps or natural boundary conditions. These are addressed 
by the continuous φ  portion of the test function. 

There are two driving principles in the development of the PGtest 
function. First, AdH should be as consistent as possible. That is, a test 
function is applied to the entire discrete equation set. The second guiding 
principle is simplicity. AdH is an implicit model that uses the Newton 
method to linearize the discrete equations. All additions that result in a 
decision within the code can adversely affect the convergence of the 
Newton method at times. Many methods that have a lot of 
decisions/branches were developed for static meshes. This is so the 
methods get the best result for a particular mesh. Instead, with AdH there 
is reliance upon adaptive refinement to produce stable and accurate 
solutions, and only utilize more complex numerical decisions when the 
results are substantially improved. 

Consistency means that a test function is integrated with the entire discrete 
equations. This results in a higher-order accuracy (more accurately higher-
order convergence rate). Examining equation set (24), one might suspect 
that the test function is not being applied to the same equation. First, the 
continuous test function portion is integrated by parts, and the 
discontinuous portion (ϕ portion) is not. Analytically, integration by parts 
and not integrating by parts are identical (for smooth conditions). The only 
difference arises if addressing non-smooth conditions when integration by 
parts allows the recovery of solutions with jumps. Note that the 
discontinuous portion of the test function is only applied within the element 
where the solution is smooth. Flux jumps are relegated to the element 
edges. The second issue is that the discontinuous test function is applied to 
the non-conservative equations set. This is done primarily for convenience 
and simplicity. For smooth conditions, as it is assumed within the element, 
non-conservative and conservative equations sets result in the same 
solutions. The one set of terms that is not included with the integration with 
the discontinuous portion of the test function is the diffusion terms. Since 
the diffusion terms are second-order spatial derivatives (and the depth is 
treated as a constant in these terms), the linear interpolation of velocity 
does not support two spatial derivatives. That is, the direct implementation 
of these terms in the discontinuous test function portion of the FE 
statement is zero. In effect, these diffusion terms are dropped from the 
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discontinuous portion of the test function. This is a place in which the SUPG 
implementation consciously is inconsistent. These terms would be retained 
in the stabilization, however, if higher-order interpolation is used. And as 
one might expect, it is not a particularly good approach for simulating very 
low Reynolds number flow conditions.  

Now consider the specific nature of the eτ used in AdH-2D. This begins 
with the most general case and then is simplified to the form implemented 
in AdH-2D. Again, if a more complex form did not produce markedly 
better behavior or results, then it was not implemented in AdH-2D. In 
AdH-2D, as with most SUPG methods, this contribution is proportional to 
the gradient of the trial function, so that 

 eϕ φ= ∇⋅τ  (35) 

where 

 x

y

e τ

τ

 
=  

  

A

A
τ

e
x
e
y

 (36) 

The choice of the stabilization parameters, eτ , is now discussed. The most 
general form of the components are 

 ei
i

i

l
a

αγτ =  (37) 

where the subscript “i” indicates the two directions (X and Y), γ is a 
blending function to account for low Reynolds number flow by turning off 
the PG contribution, α  is a numerical coefficient (AdH-2D uses a 
standard range of 0<α ≤ 0.5, with a default of 0.5), eil is the element 
length in the ith direction, and ia  is the spectral radius. The elemental 

length used in AdH-2D is given as 

 ei ex ey el l l A= = =  (38) 

where eA  is the area of the element under consideration. Again, this 

simplifying choice was made since the two-value length did not make 
markedly better results and AdH-2D can rely on adaption to improve 
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solutions more simply. The blending function in AdH-2D is set to a 
constant of 1. AdH-2D applications are not low Reynolds number. 
However, it is very easy to implement this function if it becomes necessary. 

AdH-2d defines the spectral radius as 

 2 2e
x y

o

a a a u v ghρ
ρ

= = = + +  (39) 

Therefore, the stabilization parameter is no longer a vector but instead a 
constant ( e eτ=τ ). The stabilization parameter can then be written as 

 ee
e

A
a

τ α=  (40) 

Temporal discretization 

The temporal terms in the continuity and momentum equations are 
expressed using a second-order finite difference expression as 

 ( ) ( )
1 1

11
3 1 3 1
2 2 2 2 1

n n n n
n nn i i i i
i i

t
i

h h h h h hh
t t t

α α

+ −
++

    − − −       −∂        = + − ∂ ∆ ∆        

 (41) 

where 

 αt = factor that determines order of time stepping, 0 1α≤ ≤  
 ∆t = time-step size 
 n indicates the nth time-step, so that the actual time is t n t= ∆ . 

The x- and y-direction momentum temporal terms are again expressed 
using a finite difference expression as 

 ( )
( )3 1 3 11 1 1( ) ( ) ( ) ( )1 ( ) ( )2 2 2 2 1

n n n n n nhu hu hu hun hu hui i i i i ihu
tt t ti

α α

    + − + − − −+ −      ∂      = + −   ∂ ∆ ∆        

 (42)  



ERDC TR-20-8 17 

 

and 

 ( )
( )3 1 3 11 1 1( ) ( ) ( ) ( )1 ( ) ( )2 2 2 2 1

n n n n n nhv hv hv hvn hv hvi i i i i ihv
tt t ti

α α

    + − + − − −+ −      ∂      = + −   ∂ ∆ ∆        

 (43) 

where all variables are as previously defined. 

The exact forms of the integrated temporal terms in Equations 41-43 are 
presented in the appendices.  

Transport equations 

Adh-2D has the capability to transport passive as well as active 
constituents such as dyes, water quality constituents, salinity, 
temperature, etc., by weakly solving the advection-diffusion equation. This 
equation is written in the form of the mass conservation equation  

 0hc huc hvc ch chD D
t x y x x y y

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + − − =

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (44) 

where 

 c = depth-averaged constituent concentration 
 D = turbulent and molecular diffusivity.  

Note that u and v are depth-averaged variables as well. 

As was previously done with the shallow water equations, the transport 
equation is multiplied with the weight function and integrated to give the 
following weak form of Equation 44. 
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FE Discretization 

 
( ) ( ) ( ) ( )

( ) ( )

i i i i i
xx xy

i i
yx yy

x y xx x xy y

t i

yx y yy x

e c

ch chu chv hc hcD D
t x y x x y x

d
hc hcD D
x y y y

hc hcchu n chv n D n D n
x y

R d
hc hcD n D n
x y

c P P

φ φ φ φ φ

φ φ

φ

Ω

Γ

∂ ∂ ∂ ∂ ∂∂ ∂ − − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂  Ω
 ∂ ∂ ∂ ∂

+ ∂ ∂ ∂ ∂ 
∂ ∂ + − − − ∂ ∂ = + Γ +

∂ ∂ 
− ∂ ∂ 

+ +

∫

∫
g g g g

g ge

t

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

∑  (45) 

Where ce is the elementally averaged concentration and tP  is the SUPG 

contribution to the transport equation defined in a way similar to the 
hydrodynamic continuity SUPG contribution. Note that to remain 
consistent with the depth-averaged continuity, the transport equation 
must also include its Petrov contribution term, 𝑃𝑃�𝑐𝑐. 

Temporal discretization 

The temporal term is again expressed using a backward Euler expression 
as 

 ( )
( )3 1 3 11 1 1( ) ( ) ( ) ( )1 ( ) ( )2 2 2 2 1

n n n n n nhc hc hc hcn hc hci i i i i ihc
tt t ti

α α

    + − + − − −+ −      ∂      = + −   ∂ ∆ ∆        

 (46) 

where all variables are as previously defined. 
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4 Depth-Averaged Shallow Water Equations 
in the Spherical Coordinate System 

AdH-2D has the capability to solve the equations for mass conservation 
and motion in the spherical coordinate by transforming them into 
Cartesian coordinates using the Carte Parallelo-grammatique projection.  

Assuming that radius of the earth is much greater than the depth of the 
ocean and defining the following, 

 0 0( ) cosx R

y R

λ λ φ

φ

= −

=
 (47) 

where 

 λ  = longitude 
 φ  = latitude 

 0λ  = longitude of reference point 

 0φ  = latitude of reference point 
 R  = radius of the Earth. 

The following relationship can be written as 

 
0cos

x y
R

x y x

x y
R

x y y

φ
λ λ λ

φ φ φ

∂ ∂ ∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂ ∂ ∂

 (48) 

The depth-averaged continuity equation under the hydrostatic assumption 
in spherical coordinates can be written as 

 1 1 tan
0

cos

h hu hv hv

t R R R

φ

φ λ φ

∂ ∂ ∂
+ + − =

∂ ∂ ∂
 (49) 

If a variable, S, is defined as follows, 

 0cos

cos
S

φ

φ
=  (50) 
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Equation 49 can now be written as 

 tan
0

h hu hv hv
S

t x y R

φ∂ ∂ ∂
+ + − =

∂ ∂ ∂
 (51) 

The x-direction strong momentum equation is written as 

 2

1 1 tan
2 sin

cos

1

2 cos

1 1
2 0

cos cos cos

1 2
cos cos

hu huu huv uvh
vh

t R R R

h
g

R

u v gh z F

R R R R

h u
R R

h
R

φ
ω φ

φ λ φ

φ λ

γ
ρν

φ φ λ φ λ φ λ

ρν
φ λ φ λ

φ

∂ ∂ ∂
+ + − − +

∂ ∂ ∂

∂
− −

∂

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂

 ∂ ∂
 ∂ ∂ 

∂   + ∂  

 (52) 

where 

 [ ]cosn n j n n
n

F C f L w t j Kα λ= + +∑  (53) 

with 

 F = tidal potential 
 Cn = Amplitude of tidal constituent “n” (Figure 3) 
 fn = nodal factor for tidal constituent “n”  
 Kn = phase of tidal constituent “n”  
 α  = elasticity of Earth = 0.69 (Hendershott 1981) 

 nw  = period of tidal component “n” (Figure 3) 
 j = 0, 1, 2 (j = 0 declinational, =1 diurnal, =2 semidurnal) 
 L0 = 3sin2(φ)-1 
 L1 = sin(2φ) 
 L2 = cos2(φ). 
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Figure 3. Constants for principal tidal constituents (Parker 2007). 

 
(** heavily dependent on ocean state) 

The x-direction strong momentum is further simplified to 

 2
2

tan
2 sin

2

0

2 2

hu huu huv uvh
S vh

t x y R

Sg h

x

z F
Sgh S

x x

u u vS h h S
x x y y x

φ
ω φ

γ

ρν ρν

∂ ∂ ∂
+ + − − +

∂ ∂ ∂

∂
+

∂

∂ ∂
=

∂ ∂

  ∂ ∂ ∂ ∂ ∂ − − +   ∂ ∂ ∂ ∂ ∂    

+

 (54) 

The y-direction strong momentum equation can be similarly written as 

 
2

1 1 tan

cos

1 1
2 sin 2

2

1 1
0

cos

2
cos

hv huv hvv uuh

t R R R

h v
uh g h

R R

u v gh z F

R R R R

h
R

φ

φ λ φ

ω φ ρν
φ φ

γ

φ φ λ φ φ

ρν
φ λ

∂ ∂ ∂
+ + + +

∂ ∂ ∂

∂ ∂
+ − −

∂ ∂

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂

∂   + ∂  

 (55) 

and 

 

2tan 1
2 sin

2

02 2

hv hvu hvv uuh h
S g

t x y R y

z F
gh

y y

h v Sh u vS
y y x y x

φ
ω φ

γρν ρν

∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂

∂ ∂
+ =

∂ ∂

    ∂ ∂ ∂ ∂ ∂
− − + +    ∂ ∂ ∂ ∂ ∂    

 (56) 
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These equations are identical to the Cartesian equations presented in 
Equation 1, except for a modification to the x-gradient terms, which are 
now multiplied by the spherical correction factor, S. This factor can be 
linear expanded just as the solution variables to give 

 ( ) ( ) ( ) ( )
3

1 1 2 2 3 3
1

, , , ,i iS S S S Sφ ξ η φ ξ η φ ξ η φ ξ η= = + +∑  (57) 

The FE integrations in spherical coordinates are performed as explained in 
the previous sections; however, the SUPG spectral radius, ia , is instead 

defined as 

 22
i x y e

o

a a a S U ghρ
ρ

= = = +  (58) 

where eS  is the elementally averaged spherical correction factor. 
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5 Temporal and Mesh Adaption 

One of the most widely used features of AdH-2D is the automatic temporal 
and spatial adaption options. In fact, it can be argued that temporal and 
spatial adaption is the only accurate way to adequately resolve transient 
flow and transport features. In this section, temporal and spatial adaption 
are discussed in detail. 

Temporal or time-step adaption 

Transient hydrodynamic and transport simulations usually require 
temporally varying time-steps, and a constant time-step size might not be 
sufficient to accurately capture the phenomenon of interest. To mitigate 
this, AdH-2D dynamically adapts the time-step using two formulations: 

1. Failure-Indicated 
2. Pseudo-Transient Steady State. 

Failure-Indicated time-step adaption 

AdH-2D tracks the number of non-linear iterations required to converge 
the solution to a user-specified tolerance. If the tolerance is not achieved 
within the maximum number of non-linear iterations specified, AdH-2D 
reduces the time-step and a new time-step is computed as 

 
4

old
new dtdt =  (59) 

Pseudo-Transient Computation (PTC) and Switched Evolution Relaxation 
(SER) 

Extremely transient hydrodynamic problems such as those that occur 
during dam and levee failure flows as well as in tidal bores can cause the 
“failure indicated time-step adaption” to go through several cycles of 
time-step reduction before arriving at an acceptable time-step size. For 
such problems, AdH-2D provides the user an option to use a modified PTC 
(Kelley and Keyes 1998) based time-step size computation. Savant et al. 
(2011) describe this modification as taking advantage of “initial accuracy of 
a, in general, temporally inaccurate computation after one newton iterate.” 
The strategy used is called SER and is mathematically described as 
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 ( )11
, , , , maxmin / ,

n nn n
c mx my c mx mydt dt R R dt

++ =  (60) 

where  indicates the l2 norm of the weak residual (given in Equation 

26) after one newton iterate. 

Equation 60 can result in a rapid increase in the time-step size, thereby 
jumping over important boundary events such as a singular wind stress 
event. To reduce the possibility of this occurring, AdH-2D modifies 
equation 60 to restrain the time-step size by always comparing against the 
initial time-step size. This is given as 

 ( )11
, , , , maxmin / ,

initial nn initial
c mx my c mx mydt dt R R dt

++ =  (61) 

where all variables are as previously defined. 

Savant et al. (2011) showed that the time-step size obtained through 61 is 
always the converged time-step. Importantly, the time-step size calculated 
through 61 does not guarantee that the simulation will achieve the 
specified tolerance within the maximum number of non-linear iterations 
specified. In these cases, AdH-2D reverts to the “failure indicated time-
step adaption” for that time-step, and after a successful time-step, returns 
to the PTC-SER scheme. 

Spatial adaption 

Dynamic mesh adaption is an important and vital feature of AdH-2D, 
particularly for transient simulations such as tidal flows where a static mesh 
resolution may be inadequate or excessive. AdH-2D utilizes the mesh 
adaption strategy presented in Tate et al. (2006) to dynamically adapt the 
mesh. This strategy is based on an elemental error norm, given as 

 
2

e e
h hu hvE d A
t x yΩ

  ∂ ∂ ∂
 = + + Ω  ∂ ∂ ∂  
∫  (62) 

where Ae is the area of the 2D element. The indicator, Ee, is approximated 
numerically using residual values with integration points at each node of 
the element. If Ee for an element is greater than the user specified limit, 
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that element is flagged for refinement. The refinement process progresses 
as follows: 

1. The longest edge is split.
2. Then the next longest edge is split.
3. The oldest edge is then split.

This process is repeated till the adaption reaches the maximum levels of 
refinement specified by the user. When the indicator falls below the user-
specified error, the un-refinement process progresses in the order the 
adapted edges were formed. This process is illustrated below in Figure 4 
for an element that is allowed to adapt twice. 

Figure 4. Refinement and un-refinement of an element. 
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6 Wetting and Drying 

Wetting and drying of a domain is an integral part of 2D modeling of 
rivers, dam breaks, and tidal systems. AdH-2D incorporates wetting and 
drying through a wet/dry front tracking algorithm. 

Figure 5 illustrates a generic element “e.”  

Figure 5. Generic element "e." 

 

This element, while undergoing wetting or drying, has four possibilities: 

1. Completely dry: in this, case no integration is performed on the element. 
2. Completely wet: in this case, the entire element is integrated. 
3. One node dry: in this case, the entire element is integrated as if it were 

completely wet; subsequently, the dry portion of the element is integrated 
(Figure 6), and this contribution is subtracted from the contribution of the 
entire element. In Figure 6, nodes 1 and 2 are wet, but node 3 is dry.  

Figure 6. One node dry case. 
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The dry element comprises of nodes 1’, 2’, and 3; the locations of nodes 1’ 
and 2’ are determined by locating the zero depth line by linearly 
interpolating from nodes 1 and 2. 

4. Two nodes dry: in this case, a new element is formed (see Figure 7) by 
tracking the zero depth line and this new element is integrated. 

Figure 7. Formation of new element. 

 

In Figure 7, the new element comprises of nodes 1, 2’, and 3’. The position 
of nodes 2’ and 3’ are determined by linearly interpolating the location of 
the zero depth line. 
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7 Sediment Transport 

AdH-2D allows users to calculate the transport of cohesionless, cohesive 
and mixed sediments using implicit linkages to SEDLIB (Brown 2008). 
SEDLIB is designed to link to any code with an advection/diffusion solver. 
SEDLIB provides AdH-2D with sources and sinks for incorporation into its 
transport advection-diffusion equation solver. The solver then computes 
the suspended load transport (for silt and clay classes), bedload and 
suspended load transport (sand classes) and bedload transport (gravel 
classes). The sources and sinks are communicated to the parent code via a 
source/sink bed sediment flux for suspended load and bed load.  

Equation 45 is modified for each grain class as 

 
,

xx

xy yx

yy

t

j j j j
j

j j
j j

ij
t

je
j j sedlib

sl

j j
e c

c h c hu c hv hcD
t x y x x

hc hcD D d
x y y xR

hcD q
y y

c P P

φ
Ω

  ∂ ∂ ∂ ∂ ∂
+ + −  ∂ ∂ ∂ ∂ ∂  

  ∂ ∂ ∂ ∂
− − − Ω +  

∂ ∂ ∂ ∂=   
  ∂ ∂  − ∂ ∂  
 

+  

∫∑  (63) 

where j is the sediment class, ,j sedlib
slq  is the nodal suspended load normal 

vertical constituent flux for the jth grain class supplied by SEDLIB, 
t

jP is 

the SUPG contribution for the jth grain class, and other variables are as 
previously defined. 

Equation 63 is the sediment suspended load equation. Sediment can also 
move as bed load, in which case AdH-2D uses a bedload advection-
diffusion equation to compute the bedload transport. This equation can be 
written in the weak form as the following: 
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  ∂ ∂∂ ∂∂
+ + −  

∂ ∂ ∂ ∂ ∂  
  ∂ ∂∂ ∂  − − Ω +

∂ ∂ ∂ ∂  =
  ∂∂  − − −  ∂ ∂  
  

∫∑  (64) 

where δ is the elemental bed layer thickness, vb is the bedload velocity, j
bc  

is the bedload concentration of the jth class, , , , ,xx

j
b yy xy yxD is the bedload 

diffusion tensor, ,j sedlib
blq  is the nodal bedload normal vertical constituent 

flux supplied by SEDLIB, ,
bl

j sedlibS are the sources/sinks of bedload and 
b

jP  is 
the bedload SUPG contribution. The ,j sedlib

blq is computed as follows: 

 ( ), ( ) ( )bj sedlib j j
bl eq

b

v
q c c

L
β δ δ= −  (65) 

where β  is the fraction of the jth class in the bed surface and Lb is the bed 
load adjustment length (given in AdH-2D by the method of Jain). The 
transient and equilibrium bedload flux are defined as 

 ,
, ( )j sedlib j

bl transient b bq c vδ=  (66) 

and  

 ,
, ( )j sedlib j

bl equilibrium b eq bq c vβ δ=  (67) 

Using Equations 66 and 67, the average bedload flux can be written as 

 ( ), , ,
, ,

1j sedlib j sedlib j sedlib
bl bl equilibrium bl transient

b

q q q
L

= −  (68) 

Values of the bedload adjustment length, velocities, and equilibrium mass 
flux are provided by SEDLIB. 
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The bedload SUPG term in Equation 64 is  

 [ ] ,*
(

b

jj
bb b iP v R dτ φ

Ω

= ∇ Ω∫  (69) 

where the strong bedload equation can be written as 

 
,* ,, ,( )( )( ) ( )

bl

jjjj b yb x j j sedlib
b bl

v cv ccR S q
t x y

δδδ ∂∂∂
= + + − +

∂ ∂ ∂
 (70) 

The bedload SUPG stabilization coefficient is given as 

 e
b

b b

l
v v

τ α=
⋅

 (71) 

where all terms are as previously defined. The bedload diffusion tensor 
used in AdH-2D is isotropic and is written as 

 *
, , , , 2.5
xx yy xy yx

j j j j
b b b bD D D D K uδ= = = =  (72) 

where K is a user-defined constant with a default value of 1.0 and *u is the 
shear velocity provided by SEDLIB. 
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8 Heat Balance and Heat Flux 

AdH-2D has the capability to simulate the exchange of heat between the 
water column and the atmosphere. This chapter describes in detail the 
equations used by AdH-2D to compute this heat exchange. 

The heat exchange between the atmosphere and the body of water 
primarily takes place at the air-water interface. The heat exchange is a 
result of the dynamic interaction between the sources and sinks of heat, as 
illustrated in Figure 8, and is expressed mathematically by  

 net sw lw b l sen bedq q q q q q q= + + + + +  (73) 

where netq  is the net heat energy stored in the water column, swq  is the 
short wave radiation, lwq  is the long wave radiation, bq  is the back 
radiation, lq  is the latent heat of evaporation, senq  is the sensible heat, and 

bedq  is the heat transfer between the bed and the water column (usually 

assumed to be negligible) . The heat flux has units of Million Joules per 
square meter (MJ m-2 day-1). 

Figure 8. Sources and sinks of heat (adapted from Deas and Lowney [2000]). 

 

Several methods exist to account for this heat flux between water and air 
that range from simple, such as the equilibrium temperature method 
(Edinger et al. 1968), to complex, such as those described in Pond (1975). 
Conversely, complex methods of heat flux rely on many meteorological 
parameters to estimate the heat flux at the air-water interface and are in 
general extremely accurate. However, the data required to correctly apply 
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these models are seldom available, and researchers such as Chaudhry et al. 
(1983) and Ahmad and Sultan (1994), among others, have demonstrated 
that an equilibrium temperature based model can provide results 
comparable to those provided by complex models. The following 
discussion for the simple treatment is taken from Chaudhry et al. (1983) 
and Ahmad and Sultan (1994). 

Equilibrium temperature is a hypothetical/unique water temperature at 
which the net heat flux at the air-water interface is zero under a set of 
meteorological conditions. This condition is rarely achieved in the physical 
world but is very useful in the numerical simulation of heat transfer. 
Equilibrium temperature is a function of the dew point temperature, the 
short wave radiation, and the thermal exchange coefficient. The 
relationship is represented by 

 sw lw l s
e d

q q q qT T
K

+ − + = +  
 

 (74) 

where Te is the equilibrium temperature in degrees Celsius, Td is the dew 
point temperature in degrees Celsius, and K is the thermal exchange 
coefficient in MJ m-2 day-1 oC-1. 

The net heat, netq , is then described by 

 ( )net e sq K T T= −  (75) 

where Ts is the water temperature. 

The temperature increase or decrease depends on the net heat flux and is 
represented by an ordinary differential equation as 

 
( )

s netdT q
dt C Hρρ

=  (76) 

where ρ is the fluid density, ρC is the specific heat of water in Watts (W) 

Second (sec) per kilogram (Kg) per degree Celsius (C) (W.sec.Kg-1C-1), and 
H is water depth. 
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In the absence of observed data, the short wave flux can be estimated 
using 

 ( )0 1sw s aq H a R Cτ= −  (77) 

where H0 is the amount of solar radiation reaching the Earth’s outer 
atmosphere, aτ is the atmospheric attenuation, and Rs is the albedo. The Ca 
is the fraction of solar radiation not absorbed by clouds and can be 
calculated from 

 21 0.65a lC C= −  (78) 

where Cl is the fraction of sky covered by clouds. 

The amount of solar radiation reaching the Earth’s outer atmosphere is 
described by 

 [ ]0 2

12sin sin cos cos sin( ) sin(sc
e b

HH h h
r

φ δ φ δ
π

 = + − Θ 
 

 (79) 

where Hsc is the solar constant (1390 Wm-2), r is the relative distance 
between the Earth and the sun, φ is the local latitude (radians), δ is the 
declination (radians), he is the solar hour angle (radians) at the end of the 
time period, hb is the solar angle (radians) at the beginning of the time 
period over which H0 is being calculated, and Θ  is a correction factor (0 
between sunset and sunrise; 1 otherwise). The parameter r is calculated 
using 

 ( )21.0 0.017cos 185
365

r JDπ = + −  
 (80) 

where JD is a Julian day (1 on January 1). 

The declination, δ, is calculated using 

 ( )2 223.45 cos 172
360 365

JDπ πδ    = −      
 (81) 
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Hour angles, hb and he, are calculated using 

 

( )( )

( )   12
12

  121
12

*

*





 +∆−=





 +∆−−=

sre

srb

thh

thh

π

π

 (82) 

12for ≤rh  

and 

 

( )

( )( )



 −∆−−=





 −∆−=

121
12

  12
12

*

*

sre

srb

thh

thh

π

π

 (83) 

12for >rh , where hr is the hour of the day (1 to 24), and 

 π

π

2
  2

*

*

−=

−=

ee

bb

hh
hh

 (84) 

ππ 2 ,2for ** >> eb hh  

 π

π

2
  2

*

*

+=

+=

ee

bb

hh
hh

 (85) 

0 ,0for ** << eb hh  

and 

 
*

*  

ee

bb

hh
hh

=

=

 (86) 

ππ 20 ,20for ** ≤≤≤≤ eb hh  
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The factor st∆  is the adjustment for the fraction of the 15-degree 

increment that the observer is west of the standard meridian for the time 
zone. This factor is calculated from 

 ( )1  for west longitude
15s sm lmt L L−

∆ = −  (87) 

 ( )1  for east longitude
15s sm lmt L L∆ = −  (88) 

where Lsm is the standard meridian (degrees) and Llm is longitude of the 
local site (degrees). 

The long wave radiation is the radiation emitted by the atmosphere and 
the water and is given by 

 
( ) ( )

( )

4 4

2

0.97 273 273

0.74 0.0065 1 0.17

lw a s

a

q T T

e C

σ β

β

 = + − + 

= + +
 (89) 

where σ is the Stefan-Boltzmann constant (4.9 × 10-9 MJ m-2 K-4), β is the 
atmospheric emissivity, ea is the air-water vapor pressure (millimeter of 
mercury [mm Hg]), and C is the cloud cover (0 for clear and 1 for total 
cloud cover). 

The latent heat of evaporation is given by 

 [ ]0.07l s aq W e e= −  (90) 

where es is the saturated vapor pressure (mm Hg), W is the wind speed in 
meters per second, and other variables are as previously defined. 

The sensible, or convective, heat flux is expressed as 

 ( )0.042
1000

a
s a s

Pq W T T= −  (91) 

where Pa is the air pressure (mm Hg), Ta is the air temperature (0C), and 
other variables are as previously defined. 
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If the observed data are not sufficient to compute the full heat balance, 
AdH-2D uses only the short wave flux to compute heat balance, given as 
follows: 

 s netdT Q
dt C Hρρ

=  (92) 

 ( )net h e sQ K T T= −  (93) 

 s
e d

h

QT T
K

= +  (94) 

where netQ  and sQ  are the net heat flux (Wm-2) and short wave flux (Wm-2), 
respectively, ρC  is a function of the water temperature and the wind speed 

and 

 

( ) ( )

( )
( )

2

4.5 0.05 0.47  

0.35 0.015 0.0012  
0.5  

3.3

h s

m m

m s d

K T f W

T T
T T T

f W W

β

β

= + + +

= + +

= +

=

 (95) 
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9 Summary  

This report presents the development and implementation of the 2D 
cartesian and spherical coordinate module of the AdH numerical suite. 
The report presents a thorough description of the FE method used to solve 
the 2D equations, including weak descriptions of the equations, 
stabilization formulations, and explicitly written integration contributions 
for the cartesian and spherical equations. 
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Appendix A: Equations of State for Density 

AdH-2D has the capability to transport two kinds of constituents: 
(1) barotropic constituents that do not affect the hydrodynamics and 
(2) baroclinic constituents that affect the hydrodynamics. For the latter, 
AdH-2D is formulated to treat density as a linearly varying variable, as 
described in Equation 52. It can be influenced by salinity, temperature, 
and sediment. This chapter presents the equations of state used by 
AdH-2D to compute density from these dependent variables. 

Equation of state for the influence of temperature and salinity  

In AdH-2D density is dependent upon salinity and temperature through 
the equation of state presented in Pritchard (1980). This equation of state 
is described as follows: 

 ( )
32 3 4 2 22

0 1 2 3 4 0 1 2 0, ,0 ( ) ( )wS t b b t b t b t b t S c c t c t S d Sρ ρ= + + + + + + + + +  (96) 

where ( ), ,0S tρ  is the density of fluid at a salinity of S (ppt), temperature t 
(oC), and pressure 0 (bars). The variable wρ  is the density of reference 

pure water, given by 

 2 3 4 5
0 1 2 3 4 5w a a t a t a t a t a tρ = + + + + +  (97) 

The constants in Equations 101 and 102 have the following values: 

a0 = 999.842594, a1 = 0.06793952, a2 = -0.009095290 

a3 = 0.0001001685, a4 = -0.00000120083 

 a5 = 0.000000006536332, b0 = 0.824493 

 b1 = -0.0040899, b2 = 0.000076438 

b3 = -0.00000082467, b4 = 0.0000000053875 

c0 = -0.00572466, c1 = 0.00010277, c2 = -0.0000016546 

d0 = 0.00048315 
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Linearized equation of state for the influence of temperature and 
salinity  

A linearized form of Equation 96 is available in AdH-2D as well and is 
expressed as 

 0 0( , ,0) [ ( ) ( )]rS T T T S Sρ ρ α β= + − − + −  (98) 

where rρ is the reference density equal to 1027 kg/m3, T0 is the reference 

temperature equal to 10 oC, and S0 is the reference salinity equal to 
35 PSU*. The constant α is the coefficient of thermal expansion and is equal to 
0.15 kg/(m3.oC),† and β  is the coefficient of saline contraction and is equal 
to 0.78 kg/(m3.parts per thousand [ppt]).  

Equation of state for the influence of sediments 

AdH-2D has the capability to transport sediment in suspension as well as 
in bedload. The presence of sediment may have an influence on the density 
of the fluid. This relationship is presented in AdH as 

 ( , ,0, ) ( , ,0)S T C S Tρ ρ ρ= + ∆  (99) 

where ρ∆ is the change in density due to sediment, C (kilogram/kilogram) 
is the total concentration of sediment in the water column, and other 
variables are as previously defined. The density change, ρ∆ , is expressed as 
follows: 

 ( )
1

(1 ) / 1
ng

i i i i i
i

C SG SG C SGρ
=

∆ = − − −  ∑  (100) 

where ng is the number of sediment classes, Ci is concentration of the ith 
sediment class, and SGi is the specific gravity of the ith sediment class.  

                                                                 
* Practical Salinity Unit 
† kg = kilogram; m = meter 
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Appendix B: Discretization and Integration of 
Individual Terms 

This appendix presents the detailed breakdown of the integrations for all 
the terms composing the weak continuity and momentum equations. 
Figure 9 lists the AdH-2D routines where these integrations are 
performed. 

Figure 9. AdH-2D integration routines. 

 

Continuity equation 

This section describes the FE discretization of the continuity equation. 

Temporal term 

The temporal term 
h
t

∂
∂

 is integrated consistently as follows: 
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 ( )( )
11

1 1 2 2 3 3
0 0

1 1 2k k k k
i ih d h h h d d

t t

ξ

ξ η

φ φ φ φ φ η ξ
−

Ω = =

Ω = + + Λ
∆ ∆∫ ∫ ∫  (101) 

where 

k = the time under consideration (t-1, t, or t+1). 

Convective storage/change term 

The and hv
y

∂
∂

terms form the convective storage terms in the 

continuity equation. The weak form of these terms is integrated using 
integration by parts as follows: 

 ( ) ( ) ( )i
i i xhu d hu d hu n d

x x
φφ φ

Ω Ω Γ

∂∂
Ω = − Ω + Γ

∂ ∂∫ ∫ ∫ g  (102) 

 ( ) ( ) ( )i
i i yhv d hv d hv n d

y y
φφ φ

Ω Ω Γ

∂∂
Ω = − Ω + Γ

∂ ∂∫ ∫ ∫ g  (103) 

The second term on the right-hand side (RHS) in Equations 102 and 103 is 
the line integral over the element boundary multiplied by the shape 
function. These terms will be discussed later in this appendix. These 
integrals can be simplified for linear basis functions on triangles to 

x-direction terms: 

 ( )
11

0 0

( )( ) ( )( )(2 )i i ihu d h u d h u d d
x x x

ξ

ξ η

φ φ φ η ξ
−

Ω Ω = =

∂ ∂ ∂
− Ω = − Ω = − Λ

∂ ∂ ∂∫ ∫ ∫ ∫  (104) 

 ( )
11

0 0

( )( )(2 )i ihu d h u d d
x x

ξ

ξ η

φ φ η ξ
−

Ω = =

∂ ∂
− Ω = − Λ

∂ ∂∫ ∫ ∫  (105) 

y-direction terms: 

 ( )
11

0 0

( )( ) ( )( )(2 )i i ihv d h v d h v d d
y y y

ξ

ξ η

φ φ φ η ξ
−

Ω Ω = =

∂ ∂ ∂
− Ω = − Ω = − Λ

∂ ∂ ∂∫ ∫ ∫ ∫  (106) 
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 ( )
11

0 0

( )( )(2 )i ihv d h v d d
y y

ξ

ξ η

φ φ η ξ
−

Ω = =

∂ ∂
− Ω = − Λ

∂ ∂∫ ∫ ∫  (107) 

Momentum equations 

This section describes the discretization of the x-direction and the 
y-direction momentum equations. 

Temporal term 

The temporal terms (
hu
t

∂
∂

 and 
hv
x

∂
∂

) can be integrated either consistently 

or in a lumped fashion. For stability purposes, AdH-2D uses the lumped 
integration technique, though both integrations are provided below for 
completeness. 

x-direction term: Consistent integration 

 ( )( )
11

1 1 1 2 2 2 3 3 3
0 0

1 1( ) 2k k k k k k k
i ihu d h u h u h u d d

t t

ξ

ξ η

φ φ φ φ φ η ξ
−

Ω = =

Ω = + + Λ
∆ ∆∫ ∫ ∫  (108) 

x-direction term: Lumped integration 

 
11

0 0

1 1( ) ( )(2 )i hu d hu d d
t t

ξ

ξ η

φ η ξ
−

Ω = =

Ω = Λ
∆ ∆∫ ∫ ∫  (109) 

 ( )1 1 2( )
3i i

hu d hu
t t

φ
Ω

Λ
Ω =

∆ ∆∫  (110) 

y-direction term: Consistent integration 

 ( )( )
11

1 1 1 2 2 2 3 3 3
0 0

1 1( ) 2k k k k k k k
i ihv d h v h v h v d d

t t

ξ

ξ η

φ φ φ φ φ η ξ
−

Ω = =

Ω = + + Λ
∆ ∆∫ ∫ ∫  (111) 

y-direction term: Lumped integration 

 
11

0 0

1 1( ) ( )(2 )i hv d hv d d
t t

ξ

ξ η

φ η ξ
−

Ω = =

∂ Ω = Λ
∆ ∆∫ ∫ ∫  (112) 
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 ( )1 1 2( )
3i i

hv d hv
t t

φ
Ω

Λ
∂ Ω =

∆ ∆∫  (113) 

where all variables are as previously defined. 

Convective terms 

The 
huu

x
∂

∂
, hvu

y
∂

∂
, 

hvu
x

∂
∂

, and hvv
y

∂
∂

 terms i form the convection/advection 

terms in the x- and y-direction momentum equations. This section will 
detail the FE discretization of each of these terms. 

The weak form of these terms is integrated by parts as follows: 

 ( ) ( ) ( )i
i i xhuu d huu d huu n d

x x
φφ φ

Ω Ω Γ

∂∂
Ω = − Ω + Γ

∂ ∂∫ ∫ ∫ g  (114) 

 ( ) ( ) ( )i
i i yhuv d huv d huv n d

y y
φφ φ

Ω Ω Γ

∂∂
Ω = − Ω + Γ

∂ ∂∫ ∫ ∫ g  (115) 

 ( ) ( ) ( )i
i i xhuv d huv d huv n d

x x
φφ φ

Ω Ω Γ

∂∂
Ω = − Ω + Γ

∂ ∂∫ ∫ ∫ g  (116) 

 ( ) ( ) ( )i
i i y

whvv w d hvv d hvv n d
y y

φ
Ω Ω Γ

∂∂
Ω = − Ω + Γ

∂ ∂∫ ∫ ∫ g  (117) 

Again, the second terms on the RHSs are the line integrals over the 
element boundary multiplied by the shape function. The first term on the 
RHS in Equation 114 is integrated for linear triangles as follows: 
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The first term on the RHS in Equation 115 is integrated as follows: 
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The first term on the RHS in Equation 116 is integrated as follows: 
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The first term on the RHS in Equation 117 is integrated as follows: 
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Pressure terms 

The terms 2
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 represent the pressure terms in 

the x- and y-direction momentum equations. Multiplying with the weight 
function and integrating by parts results in the following: 
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The second terms on each RHS are the line integrals over the element 
boundary multiplied by the shape function. These terms are used in 
AdH-2D to determine the model domain and are explained later in this 
report. 

For a constant density, the first terms in Equations 122 and 123 are 
integrated as follows: 
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and 
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If density is treated as a linearly varying variable, however, so that 
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Then, Equations 122 and 123 are integrated as follows: 
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and 
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Reynolds stress terms 

The Reynolds stress contributions to the momentum terms 
0

xx
h

x
σ

ρ
 ∂

−  ∂  
, 

0
yx

h
y

σ
ρ

 ∂
−  ∂  

, 
0

xy
h

x
σ

ρ
 ∂

−  ∂  
, and 

0
yy

h
y

σ
ρ

 ∂
−  ∂  

, where xxσ , xyσ , yyσ , and 

yxσ are Reynolds stresses computed outside the FE framework using 

Equations 6, 7, 8, and 9. For these terms, AdH uses elemental averages for 
depth and Reynolds stresses for stability. Multiplying by the weight 
function and integrating by parts results in the following: 
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where eh is the elementally averaged depth. AdH-2D assumes that there 

are no Reynolds stress contributions from the boundary. 

The first term on the RHS of these equations can be simplified on linear 
triangles with elementally averaged depths and stresses to give 
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AdH-2d assumes that boundary contributions from Reynolds stress terms 
are zero (second term on the RHSs of equations 128-131). 

Body force terms 

Gravity body force terms 

The momentum contributions, 
0
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ρ
ρ

∂

∂
and 
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y

ρ
ρ

∂

∂  
are gravitational 

body force terms. These contributions are multiplied by the weight 
function and integrated consistently to obtain 
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Friction stress body force terms 

The terms 
2

fC u V
and 

2
fC v V

 are the friction stress terms in the x- and 

y-direction momentum equations, respectively. These terms are 
multiplied with the weight function and integrated consistently to obtain 
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where V  is the elementally averaged velocity magnitude. 

Coriolis force terms 

The fvh and fuh terms in the x- and y-direction momentum equations are 
the Coriolis force terms. These terms are multiplied by the weight function 
and consistently integrated to obtain the following: 
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where ϕ the latitude, and λ is the angular velocity of Earth. 

All elemental/body integrations for each 2D equation have been given. The 
next section describes the FE integration of the boundary terms (line 
integrals) that arise from the integration by parts of the weak contributions 
to both the depth-averaged continuity and momentum equations. 

Boundary line integration terms 

Continuity convective storage/change terms 

The terms ( ) i xhu n dφ
Γ

Γ∫ g and ( ) i yhv n dφ
Γ

Γ∫ g  are the boundary line integration 

in equations 102 and 103, respectively. These terms are integrated based 
on 1D basis functions defined as 
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 (142) 

where the subscript “1e” denotes one dimensional (1D) expansions over a 
1D element. 

The integration of these terms involves 1D elements as shown in Figure 10.  

Figure 10. 1D Line integral basis functions. 

 

The basis function definitions in Equation 142 are used to expand the 
variables as 
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where the variables are as previously defined. 

Applying this gives 
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where xn  is the normal in the x-direction for the line segment and y∆  is 

y-ordinate distance between the nodes on the line segment. For a 1D 
element, xn is equal to the y-ordinate distance between the nodes on the 

element.  

The second integral gives 

 

( )

( )

1

1 1 , 1 , 1
0

1

1 , 1
0

( )

                 

e e i y y e i e

e i e

hv n d n hv Ld

x hv Ld

ξ

ξ

φ φ ξ

φ ξ

Γ =

=

Γ =

= −∆

∫ ∫

∫

g

 (147) 

where yn  is the normal in the y-direction for the line segment and L is the 

length of the line segment. For a 1D element, yn is equal to x−∆ , where x∆

is the x-ordinate distance between the nodes on the 1D element. 

Momentum equation convection terms 

The terms ( ) i xhuu n dφ
Γ

Γ∫ g and ( ) i yhuv n dφ
Γ

Γ∫ g  are the x-direction momentum 

boundary line integral terms from Equations 114-115. Equations 143-145 
are utilized to integrate these line integrals as follows: 
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and  
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The terms ( ) i xhuv n dφ
Γ

Γ∫ g and ( ) i yhvv n dφ
Γ

Γ∫ g  are the y-direction momentum 

boundary line integral terms from Equations 116-117. Equations 146-148 
are again utilized to integrate these line integrals as follows: 
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and  
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Momentum equation pressure terms 

The term 21
2 igh dρ φ

Γ

Γ∫  are the pressure boundary line integrals in the x- 

and y-direction momentum equations. Equations 143-145 are utilized to 
integrate these line integrals as follows: 

For the x-momentum equation: 
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and for the y-momentum equation: 
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All contributions to the FE residuals for all equations have now been 
detailed. The following section describes boundary conditions in AdH-2D. 

Boundary conditions 

Discharge/total flow boundary  

AdH-2D allows the user to specify inflow and outflow boundaries at any 
number of locations on the boundary of the domain. The mathematical 
and FE treatment of the discharge boundary is similar to the boundary line 
integrals presented in the previous section and is as follows: 

Continuity contribution: 
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where  

q  = conveyance capacity dependent upon the flow depth and friction.  

x-momentum contribution: 
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y-momentum contribution: 
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Tailwater or water surface elevation boundary  

AdH-2D allows the user to specify tailwater boundaries at any number of 
locations on the boundary of the domain. The mathematical and FE 
treatment of the tailwater boundary is similar to the boundary line 
integrals presented in the previous section. 

Flow per unit length boundary  

AdH-2D allows the user to specify flow per unit width at any number of 
locations on the boundary of the domain. The mathematical and FE 
treatment of the discharge boundary is similar to the boundary line 
integrals presented in the previous section.  

Supercritical flow boundary  

AdH-2D allows the user to specify supercritical inflow and/or outflow at any 
number of locations on the boundary of the domain. The mathematical and 
FE treatment of the discharge boundary is similar to the boundary line 
integrals presented in the previous section.  

Surface stress terms 

AdH-2d allows the specification of both wind and wave induced stresses 
into the x- and y-direction momentum terms.  

Wind-induced surface stress  

AdH-2d provides two options for the calculation of wind stresses: (1) the 
Wu (1982) method and (2) the Teeter (2002) method. The stresses are 
elementally averaged and integrated as follows:  

 
3

_ _ ,
1

1 2
3i x wind x wind i

i
dφτ τ

=Ω

Ω = Λ∑∫  (157) 

and 
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where 

_x windτ  and _y windτ  are the wind stress components in the x- and y-directions 

respectively. 

Wave-induced surface stress  

AdH-2d provides two options for the specification of wave stresses: (1) 
components of the wave stress tensor and (2) wave forces (radiation 
stresses).  

If the components of the wave stress tensor are specified, AdH-2d 
computes an elementally averaged applied wave force as follows: 
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i i
x wave xx wave xy wave

i x y
φ φτ τ τ

=

 ∂ ∂
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and 
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∑  (160) 

where _xx waveτ , _xy waveτ , _yy waveτ , and _yx waveτ  are the wave stress components 

in the xx-, xy-, yy-, and yx-directions, respectively. The computed wave 
stress force is then integrated as follows: 

 ( )_ _
1 2
3i x wave x wavedφτ τ

Ω

Ω = Λ∫  (161) 

and 

 ( )_ _
1 2
3i y wave y wavedφτ τ

Ω

Ω = Λ∫  (162) 
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Determination of model domain extents 

The second terms on the RHS of equation 125 and 126 are the line 
integrals over the element boundary multiplied by the shape function. 
These terms are used in AdH-2D to determine the model domain. They are 
integrated based on 1D basis functions defined in equation 145. The 
integration of these terms involves marching around each line of the 
computational parent element and adding the contributions to each vertex 
from the line that includes that vertex, as shown in Figure 11.  

Figure 11. 1D line integral basis functions on 2D elements. 

 

The shape functions, defined in Equation 142, and variable expansions, 
defined in Equation 143 and 145, are used to integrate the boundary 
pressure terms to determine the domain no flux boundary.  

For the x-momentum equation: 

 

1
2 2

0 0 0
1

2

0 0

1 1
2 2

1                     
2

i x x i

i

gh n d g n h Ld

g y h Ld

ρ ρφ φ ξ
ρ ρ

ρ φ ξ
ρ

Γ

Γ =

= ∆

∫ ∫

∫

g
 (163) 

and for the y-momentum equation: 
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Where all variables are as previously defined. Note that contribution for a 
node is added from each line segment that the node is a part of.  

This integration is done on a 2D element using the 1D element that 
comprises the element. On an interior edge, the 1D element is adjacent to 
two active elements, each producing an equal and opposite contribution, 
resulting in no RHS contribution for this edge. On a boundary edge, 
however, there will be a contribution from the pressure boundary. In this 
way, the model implicitly finds no-flux boundaries without any explicit 
domain boundary specification from the user. 

Petrov-Galerkin (PG) terms 

Equation 28 mathematically represents the PG terms used in the 
discontinuous part of the AdH-2D equation set. This equation, presented 
again, is the following: 

 
*

e

i
c

i e e e ei i
i mx ncx y e

i
my

P

P d
x y

P

φ φτ
Ω

 
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∫P A A H R  (165) 

where e e ei i
x yx y

φ φτ ϕ
 ∂ ∂

+ = ∂ ∂ 
A A is the discontinuous part of the AdH-2D test 

function and all terms are as previously defined. 

The PG terms, in general, are integrated as elementally averaged values 
times the discontinuous part of the AdH-2D test function,ϕ . 

Note that as previously stated, the discontinuous part of the test function 
is only integrated within interior of the element and therefore includes no 
boundary terms. Boundary terms, as previously described, are taken care 
of through the continuous part,φ , of the test function. 

If the following are defined, where the superscript “e” denotes sum over 
the elemental and where the subscripts “x, y” denote gradient in the x and 
y, respectively, 
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The PG terms can be written as follows: 

Continuity equation 
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x-direction momentum equation 
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y-direction momentum equation 
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Where all variables are as previously defined and the overbar indicates an 
elemental average. 

(166) 



ERDC TR-20-8 61 

 

Appendix C: Friction Library 
AdH-2D has the capability to represent the coefficient of friction, fC , 

using a number of physically relevant formulations to accurately account 
for friction losses.  

Bed shear coefficient of friction 

The bed shear formulation computes a shear stress coefficient resulting 
from a steady (or quasi-steady) current field. The formulation given here is 
derived from a modified form of the classic logarithmic velocity profile. 
This modified profile was physically justified by Christensen (1972). The 
traditional profile yields a velocity of -∞ at the bed whereas the modified 
profile forces the velocity to 0 at the bed. The formulation is as follows: 

 
( ) ( ){ }

2

2
1 ln 1 1 1fC κβ

β β

 
 =
  + + − +  

 (170) 

 29.7 h
k

β =  (171) 

 0.4κ =  (172) 

where fC  is the bed shear stress drag coefficient, h is the water depth, k is 

the equivalent sand roughness height, and κ is the Von Kárman constant.  

Submerged aquatic vegetation (SAV) coefficient of friction 

The SAV formulation will compute a shear stress coefficient for use in 
computing the bottom shear stress resulting from a steady (or quasi-
steady) current field over a bed consisting of SAV. The formulation given 
here is from Christensen (1985) with average vegetation characteristics 
taken from Jacobs and Wang (2003). 

The shear stress is computed as follows: 
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2
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β λ β λ
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 (173) 
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 29.7 h
k

β =  (174) 

 1 29.7 t
k

λ = −  (175) 

 
2
3 savt h≅  (176) 

 0.4κ =  (177) 

where all variables are as previously defined, t is the apparent thickness of 
the near-zero velocity region induced by the presence of the SAV, hsav is 
the undeflected stem height of the SAV, and κ is the Von Kárman constant.  

The approximate value given for t as a function of hsav is taken from Jacobs 
and Wang (2003). A recommended value of k, also taken from this source, 
is given as follows: 

 
1

10 savk h≅  (178) 

Unsubmerged rigid vegetation coefficient of friction 

The unsubmerged rigid vegetation formulation will compute a shear stress 
coefficient for use in computing the bottom shear stress resulting from a 
steady (or quasi-steady) current through rigid, unsubmerged vegetation. 
Some examples of this might include flow through mangrove stands, 
through phragmites in coastal wetlands, or through trees and other 
obstructions in coastal storm surge flooding. The formulation given here is 
taken from Walton and Christensen (1980). This formulation includes the 
form drag induced by flow through the obstructions and the skin drag 
induced by flow over the bed. 
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 . 0.4f SC =  (180) 

where .f SC is the drag coefficient for the stems, δ is the average stem 

diameter, and m is the average stem density.  
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Evenly distributed obstruction coefficient of friction 

The evenly distributed obstruction formulation will compute a shear 
stress coefficient for use in computing the shear stress resulting from a 
steady (or quasi-steady) current through or over an evenly distributed 
field of flow obstructions. This formulation can be used to simulate flow 
through or over wetland vegetation, trees, buildings, or any other 
subgrid-scale obstructions. The obstructions are modeled as a field of 
evenly distributed cylinders. 

The formulation given here is a combination of the 
UNsubmegedRigidVegatation formulation taken from Walton and 
Christensen (1980) and the SubmergedAquaticVegetation formulation 
taken from Christensen (1995) and Jacobs and Wang (2003). 

To apply this formulation, first, a drag coefficient is computed with the 
assumption that the obstructions are unsubmerged. Then, a drag 
coefficient is computed with the assumption that the obstructions are 
submerged. The final computed drag coefficient is selected to be the 
minimum of these two values.  

The drag coefficient associated with unsubmerged obstructions is given as  
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 (181) 

 . 0.4f SOC =  (182) 

where .f UC  is the bed shear stress coefficient for unsubmerged conditions, 

h is the water depth, kB is the equivalent sand roughness height of the bed, 
.f SOC is the coefficient for a single obstruction, δ is the average obstruction 

diameter, and m is the average obstruction density.  

The coefficient of friction associated with submerged obstructions is given 
as follows: 
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k
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2
3 OBSt h≅  (186) 

 0.4κ =  (187) 

where .f SC is the bed shear stress drag coefficient associated with 

submerged obstructions, h is the water depth, kC is the equivalent sand 
roughness height of the obstruction canopy (when they are submerged), t is 
the apparent thickness of the near-zero velocity region near the bed induced 
by the presence of the obstructions, hOBS is the average height of the 
obstructions, and κ is the Von Kárman constant. The approximate value 
given for t as a function of hOBS is taken from Jacobs and Wang (2003). 
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Acronyms and Abbreviations 

2D two-dimensional 

AdH Adaptive Hydraulics 

FE finite element 

PG Petrov-Galerkin 

PTC Pseudo-Transient Computation 

RANS Reynolds Averaged Navier-Stokes 

RHS right-hand side 

SAV submerged aquatic vegetation 

SER Switched Evolution Relaxation 

SUPG Streamline Upwind Petrov-Galerkin 

SW shallow water 

USACE US Army Corps of Engineers 
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