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PURPOSE: The goal of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to 
investigate the feasibility of collecting beach grain size information with images collected by 
citizen scientists to build a globally accessible database. 

INTRODUCTION: Engaging citizen scientists in scientific information collection through 
crowdsourcing has become a more popular and cost-effective way to collect large amounts of data 
while increasing interest in the research through public engagement (Irwin 2018). Citizen scientists 
equipped with their personal smartphones allow for very large datasets to be collected that would 
otherwise be financially or logistically impossible (Bauer-Civiello et al. 2018; Gura 2013; Harley 
et al. 2019). Additionally, it provides an opportunity to educate and engage the general public.  

Sediment grain size information collected through crowdsourcing could be particularly helpful in 
preliminary studies where sediment grain size information is not easily accessible or in large-scale 
studies where the sediment grain size is spatially variable. This information could be used in many 
different types of beach studies including the preliminary estimations of the depth of closure 
(Hallermeier 1981), application in the Sediment Mobility Tool (McFall et al. 2016; McFall and 
Brutsché 2018), or in large-scale shoreline change studies (Bauer-Civiello et al. 2018; Luijendijk 
et al. 2018; Harley et al. 2019). Additionally, most coastal projects and studies use coastal 
morphological models that assume a single, well-sorted grain size that is determined from a limited 
number of sediment samples collected in the field and processed in a laboratory, while it is known 
that the grain size varies spatially and temporally (Gallagher et al. 2011; Prodger et al. 2016). 
Soulsby (1997) identified the grain size as having the largest uncertainty of any parameter for 
sediment transport models. Having a spatially and temporally dense grain size database would be 
very beneficial for quantifying the uncertainty of coastal engineering projects.  

The present study investigates the feasibility of collecting sediment grain size information at sandy 
beaches in the United States by engaging citizen scientists. Techniques to estimate the sediment 
grain size from image data and identifying the sediment sample location are examined for 
accuracy. Additionally, the potential benefits of collaborating with citizen scientists are explored.  

GRAIN SIZE ANALYSIS TECHNIQUES: The most critical component of this feasibility study 
is to identify an efficient method to accurately estimate the sediment grain size on various sandy 
beaches. Four categories of analysis are considered: geometrical analysis, statistical analysis, 
machine learning, and physically shipping sediment samples for analysis. The three image analysis 
techniques (geometrical analysis, statistical analysis, and machine learning) are compared to sieve 
analysis following the ASTM C136 procedure with sieve sizes ranging from 0ϕ to 4ϕ in ½ϕ 
increments. Images collected for analysis were collected with cell phones with built-in 12–13 
megapixel cameras and a US coin for scaling. A more thorough examination of the different 
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techniques is described below. The desired percent error for the image processing techniques is 
less than 25% for the median grain size (d50). A 25% error in the d50 for a grain size of 0.3 mm* 
would result in a 20% difference in the calculated longshore transport according to the Costal 
Engineering Research Center (CERC) equation with a breaking wave height of 2 m, which is 
reasonable for morphological modeling (USACE 2002). A desired percent error of less than 25% 
for the d50 is precise considering that the cross-shore sorting of sediment on the subaerial beach 
can vary the grain size by more than 200% (Bascom 1951). 

Geometrical Analysis. Geometrical analysis (GA) applies digital image processing techniques 
to identify and separate sediment grains within an image into discrete objects and then estimates 
the size of objects or grains individually. A semi-automated image analysis routine was developed 
to identify and measure sediment grain size within the cell phone images. The routine employs 
algorithms from the MATLAB Image Processing Toolbox. The algorithm consists of three main 
parts: (1) preprocessing (e.g., load in image and select region to process), (2) image processing via 
thresholding to identify grains, and (3) calculation of grain size distribution.  

An interactive graphical user interface (GUI) shown in Figure 1 was developed to guide users 
through the processing. Users load the image, enter the image scale (mm/pixel), and select a region 
within the image that is in focus and does not include the object used for scale. Cell phone images 
are collected as colored or red-green-blue images in which each pixel has a value describing the red, 
green, and blue component. The aim of image processing is to generate a binary image in which 
pixels are characterized with just two intensity values, 0 to denote background and 1 to indicate 
foreground or a grain. The selected region is first converted to an 8-bit integer grayscale image in 
which each pixel is assigned a single value from 0 to 255 to describe its brightness or intensity. It is 
then converted to a binary image using a segmentation technique called thresholding. Thresholding 
differentiates particles from the background based on grayscale pixel intensity (I(x,y)) relative to a 
defined intensity threshold, T (Gonzalez et al. 2004). Segmentation with thresholding can be done 
with one threshold for the entire image (e.g., global thresholding [GT]) or with a locally varying 
threshold in which each pixel gets an individual threshold value (e.g., local threshold [LT]). The GT 
routine applies the Otsu (1979) method, an automated cluster-based approach. The LT method 
separates the image into 0.5 mm sections, and the intensity threshold for a given pixel (T(x,y)) is 
defined as the Gaussian weighted mean of the intensities of the pixels within the local 0.5 mm region. 
In both methods, pixels with intensities equal to or exceeding the threshold value (T or T(x,y)) are 
characterized as grain pixels while those with intensities less than T or T(x,y) are defined as 
background. LT is more computationally expensive, but it tends to do better in cases with uneven 
background illumination (Gonzalez et al. 2004). The interactive GUI makes it simple to try both 
approaches and determine the one that performs better. To deal with particle overlap and separate 
touching grains, the binary image is further refined using watershed segmentation (Gonzalez et al. 
2004; Graham et al. 2005; Kornilov and Safornov 2018). Watershed segmentation is a classical 
algorithm for separating objects in an image. Finally, position and size for each identified grain are 
calculated, and a grain size distribution is generated.  

                                                 
*For a full list of the spelled-out forms of the units of measure used in this document, please refer to US Government 
Publishing Office Style Manual, 31st ed. (Washington, DC: US Government Publishing Office, 2016), 248-52, 
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf. 
 

https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
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Figure 1. (A) Flowchart describing the image processing GA algorithm. (B) Screen shot of the interactive 

GUI developed to guide users through the processing procedure. 

The GA algorithm was evaluated using cell phone images of sand from four beaches: one in a bay 
on the east coast (Calvert Cliffs State Park, Maryland) and three along the Gulf Coast of 
Mississippi (Ocean Springs, Biloxi, and Gulfport). The biggest challenge applying GA analysis to 
cell phone images was capturing photos at adequate resolution to distinguish edges of grains. Ideal 
resolution for sand is 0.01–0.03 mm/pixel. Median particle size (d50) estimated from GA are 
compared to d50 determined from sieve analysis in Table 1. In all cases, the GA d50 are 1.2–1.6 
times higher than d50 determined from sieve analysis. Differences between sieve data and GA are 
expected. With sieving, size is based upon the minimum particle axis while GA characterizes size 
of individual grains in terms of the equivalent spherical diameter or the diameter of a sphere that 
has the same area as the identified grain (Sime and Ferguson 2003; Li et al. 2005). Additionally, 
GA involves significantly fewer observations (e.g., Li et al. 2005, Figure 2A). Overall, larger 
grains were better resolved than smaller grains, some touching grains were not separated, and some 
grains were only partially resolved. The low mean error in Table 1 for Ocean Springs, MS, and 
Gulfport, MS, is due to bias associated with the partially resolved grains as shown in Figure 2A.  
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Table 1. GA grain size analysis results compared with the sieve-estimated d50 for field 
images of sediment. 

Location Material 
State 

# of 
Images 

# of 
Particles 
Identified 

mm/pixel 
range 

GA d50 
(µm) 

Sieve d50 
(µm) 

Mean 
Error in 

d50 
Calvert Cliffs, MD Wet 3 3290 0.01-0.02 529 ± 7 408 29.7 % 
Biloxi, MS Wet 2 3539 0.02-0.03 484 ± 17 295 64.1 % 
Ocean Springs, MS Dry 1 6566 0.02 367 300 22.3 % 
Gulfport, MS Dry 1 1462 0.01 317 263 20.5 % 
Total/Mean  7 3714 0.02 - - 34.2 % 

These GA results prompted a second sampling method in which the sediment sample was dried 
in an oven and a small spoonful of sediment was carefully dispersed, in an effort to separate 
grains, on a black background as seen in Figure 2B. For the coarsest grained sample tested, 
Calvert Cliffs, MD, there was little difference between the two sampling methods, but the 
separated grains method did better resolving grains in other cases as seen in Table 2. 
Unfortunately with this method, even fewer grains are observed. Additionally, it is more tedious, 
so it may not be ideal for the citizen scientist application.  

Table 2. GA grain size analysis results compared with the sieve-estimated d50 for images 
of separated grains on a black background. 

Location # of 
Images 

# of Particles 
Identified 

mm/pixel 
Range 

GA d50 
(µm) 

Sieve d50 
(µm) 

Mean Error in 
d50 

Calvert Cliffs, MD 4 5792 0.01-0.03 506 ± 5 408 24.0 % 
Biloxi, MS 4 1265 0.01 304 ± 1 295 3.1 % 
Ocean Springs, MS 3 741 0.01 302 ± 10 300 0.7 % 
Gulfport, MS 4 1652 0.01 326 ± 8 263 24.0 % 
Total/Mean 15 2363 0.01 - - 13.0 % 
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Figure 2. GA results for images of sediments collected at Gulfport, MS, using (A) 

the default method with in situ field images and the (B) separated grains 
method on a black background. The images on the left are the raw 
images, and the images on the right show the outline of grains identified 
by GA highlighted in yellow.  

Statistical Analysis. Statistical methods characterize grain size using a measure of image 
texture. Approaches have included auto-correlation (Rubin 2004; Warrick et al. 2009), 
semivariance (Carbonneau et al. 2004; 2005), and fractals (Buscombe and Masselink 2009), 
among others. Statistical methods do not require identification of individual grains but often 
require some calibration, which restricts their versatility. 

The wavelet approach of Buscombe (2013) relies on spectral analysis of the image to identify 
dominant spatial wavelengths, which is used to estimate grain size, but utilizes a wavelet-derived 
power spectra, rather than a Fourier-derived one as in Buscombe et al. (2010). Unlike Fourier-
derived spectral analysis, wavelet analysis does not require stationary or statistically homogeneous 
images. It is therefore less sensitive to the number of grains in the image or the preferred orientation 
of the grains and is better suited for analyzing poorly sorted sediments (Buscombe 2013). Perhaps 
most critical for field-obtained images at disparate locations, it does not require calibration for 
sediment type or geographic position. The wavelet-based grain size analysis methodology is more 
thoroughly discussed in Buscombe (2013). 

A Python implementation of the Buscombe (2013) wavelet-based grain size estimation tool is 
freely available on GitHub at https://github.com/dbuscombe-usgs/pyDGS. The python package is 
referred to as pyDGS, and it requires only the name and path to the image of the sediment sample 
to run. The spatial resolution of the image is one of several optional inputs; however, if it is not 
specified, the grain size estimates are returned in pixels. All optional inputs are set to default for 

https://github.com/dbuscombe-usgs/pyDGS
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the results presented herein unless otherwise specified. The Python analysis returns the d50, 
standard deviation, skewness, and kurtosis of the grain size distribution, among other parameters.  

The wavelet analysis used in pyDGS may be susceptible to influence by interrogation window size 
as larger windows may identify lower-frequency harmonics that will skew the d50 results. 
Consequently, the tool was not solely applied to the full image of the sediment sample. A sub-
windowing technique was employed, whereby the tool was also applied to a series of sub-windows 
with identical square image size. The pixel sizes for the square sub-windows ranged from 500 to 
1600 pixels, in increments of 100 pixels. Each sub-window was generated by shifting the x/y pixel 
position of the upper left-hand corner of the sub-window 300 pixels right/down from the upper 
left-hand corner of the previous sub-window. The first sub-window begins in the upper left-hand 
corner of the image – pixel coordinates (x = 0, y = 0). The windowing schema is represented 
pictorially in Figure 3. Non-square sub-windows were not retained for analysis. The Python grain 
size estimation tool was applied to each sub-window for all tested window sizes, as well as the 
full-size image. 

This sub-windowing technique allows for the interrogation of the variability in the d50 estimate 
with changing image (or sub-window) size within the Python grain size estimation tool. Figure 4 
shows the variation in estimated d50 for an image taken of dry surface sand in Gulfport, MS. 

 
Figure 3. Representation of the windowing schema for 1600 x 1600 pixel 

sub-windows from a Biloxi, MS, dry surface image. 
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Figure 4. Top panel - variation in estimated d50 with variable window size for an image taken of dry 

surface sand in Gulfport, MS – the median (red), min/max (black), and upper/lower quartile 
(blue) of the estimated d50 values across all the image sub-windows are reported. The d50 of 
this sample as measured by sieve analysis is shown as a green dashed line. Bottom panel – 
number (N) of sub-windows analyzed for each window size. 

Figure 4 shows that the results of the Python wavelet-based grain size estimator do not appear to 
vary with changing image size. However, it does suggest that the quality of the results may still 
benefit from a windowed approach to the analysis. In general, the median of the reported d50’s 
across all sub-windows appears to yield results very close to the sieve-measured d50. In contrast, 
the comparatively large spread in the min/max (and to a lesser extent, the upper and lower quartile) 
values suggests that the results from individual sub-windows are susceptible to larger errors. 

Table 3 shows the comparison of the aggregated pyDGS grain size analysis results to the sieve-
estimated d50 for various sites and sediment conditions. Sediment samples were collected from 
three sites (Biloxi, MS; Gulfport, MS; and Calvert Cliffs, MD). The reported pyDGS-estimates of 
d50 in Table 3 are the median d50 estimates across all sub-windows of all images characterizing a 
particular sediment sample location/material state. 
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Table 3. pyDGS grain size analysis results compared with the sieve-estimated d50.  

Location Material 
State 

# of 
Images 

mm/pixel 
Range 

pyDGS d50 
(µm) 

Sieve d50 
(µm) 

Mean Error 
in d50 

Biloxi, MS Dry 4 0.01 – 0.05 468 259 80.7 % 
Biloxi, MS Dry/Surface 4 0.01 – 0.04 367 267 37.5 % 
Biloxi, MS Wet 4 0.02 – 0.06 269 295 8.8 % 
Gulfport, MS Dry 5 0.01 – 0.04 286 263 8.7 % 
Gulfport, MS Dry/Surface 5 0.01 – 0.05 229 283 19.1 % 
Gulfport, MS Wet 4 0.01 338 438 22.8 % 
Calvert Cliffs, MD Dry 5 0.02 – 0.05 484 304 59.2 % 
Calvert Cliffs, MD Wet 4 0.01 – 0.04 630 408 54.4 % 
Total/Mean - 33 0.03 - - 36.4 % 

The percent error values in Table 3 indicate that pyDGS is approximating the sieve-measured d50 
well for the majority of samples, with estimated errors less than 40% for more than half the 
samples. These errors are similar to the results in Buscombe (2013), which had less than 50% root 
mean square error for natural sediments. The pyDGS algorithm performs markedly superior in 
estimating the grain size of the Gulfport, MS, soil samples relative to the other two regions (Biloxi, 
MS, and Calvert Cliffs, MD). This may be due to better lighting in the image. 

Machine Learning Analysis. The SediNet framework (Buscombe 2020) uses machine learning 
to estimate grain characteristics. Models are trained using example images and associated grain 
size percentiles computed from sieve analysis. The model uses a deep neural network framework 
to learn the mapping between the image and sieve data and extracts only the image features that 
covary strongly with grain size. Whereas the wavelet method offers a generic means to estimate 
grain size, SediNet allows customization to specific environments, such as ocean beaches. The 
model was trained using 63 images collected from the seven sites shown in Table 4. Each image 
was taken from a different altitude, thus had a unique scaling, and had an associated grain size 
distribution from a sieve analysis on a physical sample collected from the site. Each image had a 
quarter dollar coin (24.26 mm in diameter) in the field-of-view for scaling. Blurred imagery and 
imagery of very wet sand were discarded. Of the remaining focused images of relatively dry sand, 
several 1024 × 1024 × 3 pixel sub-windows were cropped, avoiding the coin, other objects, strong 
shadows, etc. Those images were also horizontally flipped to augment the dataset, providing the 
machine-learning model more labeled image examples to train with. This process of sub-windows 
and flipping images resulted in 517 total images for training and testing the model, each with a 
scale in mm/pixel. For each image, three percentiles of the cumulative grain size distribution, 
namely the 10th, 50th and 90th, were converted from millimeters to pixels. The model was trained 
to estimate the grain size in pixels, from which the size in millimeters was later recovered.  
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Table 4. SediNet grain size analysis results compared with the sieve-estimated d50. 

Site Name # Images 
# Images for 
Training and 

Testing 
mm/pixel 

Range 
SediNet d50 

(µm) 
Sieve d50 

(µm) 
Mean Error 

d50 

Assateague, MD 12 116 0.1 - 0.18 475 323 41.2 % 

Biloxi, MS 8 74 0.01 - 0.04 241 264 11.6 % 

Calvert Cliffs, MD 5 32 0.01 - 0.05 336 305 18.1 % 

False Cape, VA 12 106 0.1 - 0.18 352 249 49.3 % 
Gulfport, MS 10 88 0.02 - 0.05 275 275 11.3 % 

Ocean Springs, MS 8 67 0.03 - 0.05 307 300 17.2 % 

Outer Banks, NC 8 34 0.03 - 0.06 314 303 8.4 % 
Total/Mean 63 517 0.064 - - 22.4 % 

The 517-image set was split randomly into 258 images (50%) for training the model and 257 
images for testing. The SediNet model was trained following Buscombe (2020), using 1024 × 1024 
× 3 pixel imagery rather than the 512 square-pixels noted in the manuscript. A schematic of the 
model is shown in Figure 5. The image is fed into the network through a series of layers that are 
designed and trained to automatically detect image features that can be used to estimate grain size 
using a separate multi-layer perceptron for each estimated grain-size percentile. The back 
propagation algorithm is used to optimize the weights of the feature extractor layers using an 
iterative procedure to minimize observed-estimated grain size discrepancy. The model was 
evaluated by comparing the mean percent difference in observed and estimated grain sizes over 
the 257-image test set. Table 4 summarizes model accuracy for the d50 at the seven sites, as well 
as overall accuracies. Figure 6 shows that the model tends to overpredict the size of the finest 
grains. This could be due to image resolution issues where the grains are so small they are sub-
pixel or otherwise the lack of distinction between adjacent grains or interstices. This tends to 
manifest when grain sizes are less than three pixels. The same limitation is known to severely 
affect grain size results using the wavelet method. One consequence of having variably scaled 
imagery is the necessity to compute all grain sizes in pixels, then convert back to equivalent sieve 
sizes using the scaling of each image. There is a significant variability in error per site (Figure 6 
and Table 4), ranging from 8% to 50% with a mean of 22%. This is likely because of the variability 
in both beach sedimentology and image resolution from the camera setup. Images from Assateague 
and False Cape were up to four and one-half times lower resolution than the other images.  
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Figure 5. A schematic of the SediNet model implementation used in this study. Numbers in 

input and output layers correspond to the size in pixels of the image features used 
by that layer. By the final layer, the information in the image has been reduced to a 
vector of length 1024 that is used to make grain size predictions. 
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Figure 6. Observed versus estimated grain size in pixels for the (A) d10, (B) d50, and (C) d90, and (D-F) 

average estimated grain size in millimeters for the seven sites detailed in Table 4. Dashed line 
is the 1:1 relationship. 

In the future with sufficient data, the results here and in Buscombe (2020) strongly suggest that 
per-site (or similar groups of sites) models would be more accurate. The current model estimates 
average beach d50 to within 20% at five out of the seven sites. This error range is similar to the 
results of the wide sedimentological spectrum of well and poorly sorted sediment tested in 
Buscombe (2020).  

Physical Shipment and Analysis. The physical shipment method is the least cost effective 
but may have the best accuracy. With this technique, the citizen scientist would physically collect 
a sample, note the location the sample was taken, and mail it in to a central location for analysis. 
Pre-paid mailing containers could be distributed to encourage this method. This method would be 
appropriate if periodically used in conjunction with one of the other image-based techniques to 
update and validate the results. 

ACCURACY OF THE CELL PHONE GLOBAL POSITIONING SYSTEM (GPS): 
GPS-enabled smartphones provide a convenient, low-cost way for the public to collect location 
data. The accuracy of the GPS unit used by citizen scientists in this data collection effort is a 
potential source of error that needs to be evaluated. Other researchers have tried to estimate the 
error associated with the horizontal location provided by smartphones. The results vary but are 
generally less than 5 m. For example, Tomastik et al. (2017) found cellphones (Android 2.3, 4.4, 
5.0) to have an error less than 2.36 m (horizontal) under open-area conditions. In another study, 
Schaefer and Woodyer (2015) found the absolute accuracy to range between 2.64 to 4.19 m. The 
Schaefer and Woodyer study included iPhones, Samsung, and Sony phones and found no 
difference among the phones. Data for this project would be collected from the beach with no tree 
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cover. Thus, less than 5 m accuracy is expected. The cross-shore variability of the beach grain size 
between morphological features (e.g., dune, berm, swash) can be significant, but the 
morphological features are generally larger than 5 m, making the cell phone’s GPS accurate 
enough for crowdsourcing data. To minimize the potential error induced by the cell phone GPS 
accuracy on the grain size studies, the cross-shore morphological feature where the image is taken 
should be noted. 

SCHOOL AND CITIZEN ENGAGEMENT: Citizen science projects offer an opportunity for 
students to participate in an authentic research experience. This can increase confidence in a 
student’s ability and foster an appreciation for the scientific process. The Next Generation Science 
Standards allow educators and students to spend more time analyzing data (National Research 
Council 2012). The database will provide an opportunity for students to learn science and 
engineering practices defined by the Next Generation Science Standards, such as the following:  

• asking questions 
• planning and carrying out investigations  
• analyzing and interpreting data 
• using mathematical and computational thinking 
• constructing explanation 
• engaging in argument from evidence 
• obtaining, evaluating, and communicating information.  

The dataset provides an opportunity for students in coastal areas to collect data and for students 
everywhere to have access to the data to conduct studies. This database could be used by students 
to create and test hypotheses about why grain size varies. For example, students might believe that 
wave size controls sediment size. They could test this hypothesis with the database and wave 
characteristic data from the National Data Buoy Center. Additionally, students might assume grain 
size is related to the width of the continental shelf. They could test this with the grain size database 
and a bathymetric map of the ocean. In summary, this crowdsourcing methodology could be used 
as a bridge between research scientists and educators to extend authentic research opportunities to 
students and the general public while bolstering data records that can inform research.  

SUMMARY: The feasibility of engaging citizen scientists in the collection of meaningful beach 
grain size information has been investigated and determined to be achievable. The proposed 
methodology involves citizen scientists uploading imagery from which grain size information 
would be extracted and returned to a public database. Three techniques for determining grain size 
from beach sediment imagery were investigated: geometrical analysis, statistical analysis, and 
machine learning. With the geometric analysis, grain size was estimated by thresholding imagery 
and separating individual grains with watershed segmentation. Geometrical analysis estimated d50 
from in situ imagery with an average error of 34% and from imagery of carefully prepared 
sediment samples with an average error of 24%. Identifying individual particles in citizen scientist 
imagery of beach sediment using geometric analysis is expected to require some user input. Grain 
size was also estimated by determining relevant length scales of pixel intensity variations with 
wavelet-derived power spectra to investigate statistical approaches to optical granulometry. A 
wavelet based tool (pyDGS) estimated d50 from citizen scientist style imagery of beach sediment 
with an average error of 36%. The final method of estimating sediment size in this study was 
machine learning. A machine learning model (SediNet) trained on citizen scientist style imagery 
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of beach sediment estimated the d50 of beach sediment with errors less than 20% at five out of 
seven sites. The sites with more than 20% error had significantly lower resolution images.  

Based on the results of this feasibility study, the machine learning technique using SediNet will 
continue to be used and developed for use with imagery collected by citizen scientists. Results 
from the high-resolution images using this technique had less error than the preferred maximum 
error of 25%. Additionally, the SediNet model will continue to be trained as additional images and 
physical samples are collected to improve its accuracy and robustness. A framework to house 
crowdsourced imagery and an interactive website to engage citizen scientists will be developed. 
Crowdsourcing scientific data collection offers an opportunity to encourage involvement in the 
scientific process and foster interest in coastal science while acquiring data on a very large 
geographic scale with the potential to address new and exciting topics. 

ADDITIONAL INFORMATION: This CHETN was prepared as part of the US Army Corps of 
Engineers (USACE) Coastal Inlets Research Program (CIRP) by Brian C. McFall, David L. 
Young, Kelsey A. Fall, and Douglas R. Krafft, US Army Engineer Research and Development 
Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Vicksburg, MS; Shelley J. Whitmeyer 
and Alesha E. Melendez of James Madison University; and Daniel Buscombe of Marda Science, 
LLC. Questions pertaining to this CHETN may be directed to Brian McFall 
(Brian.C.McFall@usace.army.mil), David Young (David.L.Young@usace.army.mil), Shelley 
Whitmeyer (whitm2sj@jmu.edu), or the USACE CIRP Program Manager, Tanya M. Beck 
(Tanya.M.Beck@usace.army.mil). Additional information regarding CIRP may be obtained from 
the CIRP web site http://cirp.usace.army.mil/. 

This ERDC/CHL CHETN should be cited as follows: 

McFall, B. C., D. L. Young, K. A. Fall, D. R. Krafft, S. J. Whitmeyer, A. E. 
Melendez, and D. Buscombe. 2020. Technical Feasibility of Creating a Beach 
Grain Size Database with Citizen Scientists. CHETN ERDC/CHL-IV-125. 
Vicksburg, MS: US Army Engineer Research and Development Center. 
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