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Abstract 

Recent advances from the science of spatial extremes and model 

regularization were applied to develop areal-based extremes of snow water 

equivalent (SWE) data for the upper Connecticut River Basin. 

Development of areal-based SWE exceedance probability estimates are of 

relevance for cool season probabilistic flood hazard analyses (PFHA). The 

approach profiled in this case study is applicable for other hydrometeor-

ological variables of relevance to PFHA. The methodology conforms with 

Extreme Value Theory (EVT) for the analysis of spatial extremes; hence, 

there is a firm theoretical basis for extrapolation. Trend surface 

development is guided by EVT theory and recent advances for regularizing 

general linear models. R, a free software environment for statistical 

computing and graphics, and QGIS, a free and open-source geographic 

information system, were the primary tools used for product development 

and delivery. The following R software packages were primarily used 

during project execution: evd, Glmnet, maps, raster, rgdal, SDMTools, sp, 

and SpatialExtremes. R software packages exist in the public domain and 

support PFHA analyses of varying complexities. Their application herein is 

not an endorsement or recommendation. It is recommended that one 

would need to evaluate any particular R software package regarding its 

suitability for use for any specific application. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 

Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 

All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 

be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

Simulation of cool season hydrologic processes such as snowmelt-induced 

flooding often involves using observed snow water equivalent (SWE). SWE 

is the amount of water contained within the snowpack. While it is often 

measured at discrete points in space to support water management 

operations, it can also be processed much like precipitation or flow data to 

support risk-informed hydrologic planning. SWE values are often specified 

on an areal basis (e.g., elevation bands or by sub-basin when they are used 

to support hydrologic simulation of cool season processes). Hence, related 

risk-informed hydrologic analyses require areal-based exceedance 

probabilities for SWE.  

1.2 Objective 

This case study demonstrates the use of max-stable spatial processes to 

calculate pointwise and areal-based exceedance probabilities for SWE.  

1.3 Approach 

Recent advances have demonstrated the capacity to efficiently, flexibly, 

and credibly model spatial extremes of pointwise maxima (e.g., Davison 

and Gholamrezaee 2011; Reich and Shaby 2012; Olinda et al. 2014; 

Stephenson et al. 2016; Nicolet et al. 2015; Blanchet and Davison 2011). 

Each of these studies involved application of max-stable processes, the 

stochastic process extension of extreme value theory (EVT). With their 

application, one can not only compute pointwise return level maps, but 

also by modeling the joint distribution, of SWE for the case study 

application presented herein, more complex areal-based exceedance 

probabilities such as  

 Pr {∫ Υ(𝑥)𝑑𝑥 > 𝑧𝑐𝑟𝑖𝑡ℬ
} (1) 

where Υ(𝑥), ℬ, and 𝑧𝑐𝑟𝑖𝑡 denote the joint distribution, an arbitrary area 

within the computational domain (e.g., a sub-basin, and a critical quantity 

greater than zero, respectively [Ribatet et al. 2015]).  
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2 Methods 

This section is a succinct practice-oriented summary of max-stable 

processes for the calculation of spatial extremes. Ribatet (2017, 2013), 

Ribatet et al. (2015), Davison et al. (2012), and Cooley et al. (2012) provide 

comprehensive technical descriptions of max-stable processes. From 

univariate EVT, it is known that if normalizing sequences exist for a 

sequence of independent and identically distributed random variables 

such that the rescaled variables have a nondegenerate limiting 

distribution, then the distribution is max-stable and, moreover, that a 

distribution is max-stable if and only if it is the generalized extreme value 

(GEV) distribution (Coles 2001). Mathematical nondegenerate limit law 

expressions of max-stability, comparable in form to the univariate case, 

that involve the existence of normalizing sequences also exist in the 

multivariate and stochastic process settings (Ribatet 2017). Univariate 

EVT results guarantee that the marginal distribution of max-stable 

processes are GEV distributed with possibly different parameters by 

location (Ribatet et al. 2015; Ribatet 2017).  

As previously mentioned, this study applies a max-stable spatial process 

wherein just as with univariate EVT this limiting process is used to model 

the partial maxima. It is convenient and without any loss of generality to 

define a simple max-stable process, denoted by {𝑍(𝑥): 𝑥 ∈ 𝒳 ⊂ ℝ𝑑 , 𝑑 ≥ 1}, 

to be with fixed unit Fréchet, rather than spatially variable GEV, margins. 

In this case, Pr{𝑍(𝑥) ≤ 𝑧} = exp(−1 𝑧⁄ ) ∀𝑥 ∈ 𝒳 and 𝑧 > 0. de Haan (1984) 

introduced the spectral representation of a simple max-stable process. It 

states that {𝑍(𝑥): 𝑥 ∈ 𝒳} ≡ {𝑚𝑎𝑥
𝑖≥1

𝜁𝑖𝑌𝑖(𝑥): 𝑥 ∈ 𝒳}, where {𝜁𝑖: 𝑖 ≥ 1} is a 

Poisson point process on (0, ∞) with intensity measure 𝜁−2𝑑𝜁 and 

{𝑌𝑖(𝑥): 𝑥 ∈ 𝒳, 𝑖 ≥ 1} a sequence of independent copies of a non-negative 

stochastic process {𝑌(𝑥): 𝑥 ∈ 𝒳} ∋ 𝔼{𝑌(𝑥)} = 1 ∀𝑥 ∈ 𝒳 (≡ indicates 

equality in distribution). The spectral representation of a max-stable 

process introduced by de Haan (1984) has resulted in the subsequent 

development of usable parametric models for spatial extremes, with 

different distributional assumptions for {𝑌(𝑥): 𝑥 ∈ 𝒳} resulting in different 

max-stable models.  

The famous Smith process (Smith 1990), also known as the Gaussian 

extreme value process, is given by {𝑍(𝑥): 𝑥 ∈ 𝒳} ≡ {𝑚𝑎𝑥
𝑖≥1

𝜁𝑖𝜑(𝑥 −

𝑈𝑖; 0, Σ): 𝑥 ∈ 𝒳}, where 𝜑(⋅; 0, Σ) is the 𝑑-variable Gaussian density with 
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zero mean and covariance Σ and {(𝜁𝑖 , 𝑈𝑖): 𝑖 ≥ 1} are the points of a Poisson 

process on (0, ∞) × ℝ𝑑 with intensity measure 𝜁−2𝑑𝜁𝑑𝑢 (Ribatet et al. 

2015; Ribatet 2017). The Schlather process (Schlather 2002), also known 

as the extremal Gaussian process, is given by {𝑍(𝑥): 𝑥 ∈ 𝒳} ≡

{√2𝜋 𝑚𝑎𝑥
𝑖≥1

𝜁𝑖𝑚𝑎𝑥(0, ε𝑖(𝑥)): 𝑥 ∈ 𝒳}, where {ε𝑖(𝑥): 𝑥 ∈ 𝒳} are independent 

copies of a stationary Gaussian process with correlation function 𝜌 

(Ribatet et al. 2015; Ribatet 2017). The R software package 

SpatialExtremes implements the Bessel, Cauchy, generalized Cauchy, 

powered exponential, and Whittle-Matern correlation functions (Ribatet 

2018). The Brown-Resnick process (Kabluchko et al. 2009; Brown and 

Resnick 1977) is given by {𝑍(𝑥): 𝑥 ∈ 𝒳} ≡ {𝑚𝑎𝑥
𝑖≥1

𝜁𝑖𝑒𝑥𝑝(ε𝑖(𝑥) − 𝛾(𝑥)): 𝑥 ∈ 𝒳}, 

where {ε𝑖(𝑥): 𝑥 ∈ 𝒳} are independent copies of a zero mean Gaussian 

process with stationary increments and semi-variogram 𝛾(𝑥) =

𝑉𝑎𝑟{ε(𝑥 + ℎ) − ε(𝑥)} 2⁄  (Ribatet et al. 2015; Ribatet 2017). The Smith 

model is in fact a special case of the Brown-Resnick process. The extremal-

t process (Opitz 2013) is given by {𝑍(𝑥): 𝑥 ∈ 𝒳} ≡

{𝑐𝜈
𝑚𝑎𝑥
𝑖≥1

𝜁𝑖𝑚𝑎𝑥(0, ε𝑖(𝑥))
𝜈

: 𝑥 ∈ 𝒳}, where {ε𝑖(𝑥): 𝑥 ∈ 𝒳} are independent 

copies of a stationary Gaussian process with correlation function 𝜌 and 

𝑐𝜈 = √𝜋2−(𝜈−2) 2⁄ Γ (
𝜈+1

2
)

−1
 where Γ is the gamma function (Ribatet et al. 

2015; Ribatet 2017). The Schlather process is a special case of the 

extremal-t process with 𝜈 = 1 (Ribatet et al. 2015; Ribatet 2017).  

Figure 1 includes separate plots of the Smith process with variance equal to 

2, Schlather process with 𝜌(ℎ) = 𝑒𝑥𝑝{−(ℎ 3⁄ )1}, Brown-Resnick process 

with 𝛾(𝑥) = (ℎ 3⁄ )1, and extremal-t process with 𝜈 = 4 and 𝜌(ℎ) =

𝑒𝑥𝑝{−(ℎ 3⁄ )1}, with each plot depicting five independent realizations of each 

respective process on 𝒳 = [0,10] (Ribatet 2015). Figure 2 depicts one 

realization of the Smith process with Σ given by the identity matrix, 

Schlather process with 𝜌(ℎ) = 𝑒𝑥𝑝{−(ℎ 2⁄ )1.5}, and the extremal-t process, 

with 𝜈 = 5 and 𝜌(ℎ) = 𝑒𝑥𝑝{−(ℎ 2⁄ )1.5}, for a 250 x 250 grid of 𝒳 = [0,10] ×

[0,10] (Ribatet et al. 2015). The Smith process realizations depicted in 

Figures 1 and 2 underscore the reports that it produces artificial surfaces 

that are too smooth for many practical applications (Ribatet et al. 2015; 

Ribatet 2017). The Schlather process realizations depicted in Figures 1 and 2 

underscore summaries emphasizing that it tends to produce, unrealistically, 

due to a limitation, larger areas with the largest values in comparison with 

the extremal-t and Brown-Resnick processes (Ribatet et al. 2015). The 

Brown-Resnick process is known to be difficult to work with (Ribatet et al. 

2015). Nicolet et al. (2015) reported better performance for the extremal-t 
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process relative to other available max-stable processes in their study of the 

dependence structure of extreme snowfall in the French Alps. 

Figure 1. Five independent realizations of the Smith, Schlather, Brown-Resnick, and 

Extremal-t processes on 𝓧 = [𝟎, 𝟏𝟎] (Ribatet 2015). 

    

Figure 2. One realization of the Smith process with 𝚺 given by the identity matrix, Schlather 

process with 𝝆(𝒉) = 𝒆𝒙𝒑{−(𝒉 𝟐⁄ )𝟏.𝟓}, and the extremal-t process, with 𝝂 = 𝟓 and 𝝆(𝒉) =

𝒆𝒙𝒑{−(𝒉 𝟐⁄ )𝟏.𝟓}, on a 250 x 250 grid (Ribatet et al. 2015). 

   

Max-stable processes are fit using their bivariate distributions and pairwise 

likelihood estimation for reasons of computational practicality (Davison and 

Gholamrezaee 2011; Ribatet 2013; Ribatet et al. 2015; Ribatet 2017). Model 

selection among competing max-stable processes can be based on the 

composite likelihood information criterion, an adaption of the Takeuchi 

Information Criterion (TIC) (Takeuchi 1976), due to application of the 

composite pairwise likelihood formulation (Ribatet et al. 2015; Ribatet 

2017). However, the use of qualitative evaluations of model fit are also 

recommended (Ribatet 2017; Ribatet 2015).  

The extremal coefficient is a useful measure for summarizing dependence 

among extreme data (Davison and Gholamrezaee 2011; Ribatet et al. 2015; 
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Ribatet 2017). From multivariate extremes, for a max-stable random 

vector with fixed unit Fréchet margins 𝑍 = (𝑍1, … , 𝑍𝑘), 𝑘 ≥ 2, 𝑃𝑟(𝑍 ≤ 𝑧) =
𝑒𝑥𝑝(−𝑉(𝑧1, … , 𝑧𝑘)) for all 𝑧 = (𝑧1, … , 𝑧𝑘) ∈ (0, ∞)𝑘 where 𝑉, the exponent 

function, satisfies 𝑉(𝜆𝑧1, … , 𝜆𝑧𝑘) = 𝜆−1𝑉(𝑧1, … , 𝑧𝑘) ∀ 𝜆 >

0, 𝑉(∞, … , ∞, 𝑧𝑑, ∞, … , ∞) =  
1

𝑧𝑑
 for each 𝑑 ∈ (1, 𝑘), with two bounding cases; 

viz., at independence, 𝑉(𝑧1, … , 𝑧𝑘) =  
1

𝑧1
+ ⋯ +

1

𝑧𝑘
, and at dependence, 

𝑉(𝑧1, … , 𝑧𝑘) =  𝑚𝑖𝑛 (
1

𝑧1
, … ,

1

𝑧𝑘
) (Ribatet 2017; Davison et al. 2012; Davison 

and Gholamrezaee 2011). Hence, ∀ 𝑧 > 0, the (𝑍1 ≤ 𝑧, … , 𝑍𝑘 ≤ 𝑧) =

𝑒𝑥𝑝(−𝑉(𝑧, … , 𝑧)) = 𝑒𝑥𝑝 (
−𝑉(1,…,1)

𝑧
) = 𝑒𝑥𝑝 (

−𝜃

𝑧
) , where 𝜃, the extremal 

coefficient, is a quantity independent of the level of 𝑧 and a summary 

measure of the degree of dependence among the extreme data. The 

extremal coefficient varies between one, when the observations are fully 

dependent, and 𝑘, when they are independent (Ribatet 2017; Davison et al. 

2012; Davison and Gholamrezaee, 2011). Results from the spectral 

representation of a max-stable process combined with the understanding 

that observations of {𝑍(𝑥): 𝑥 ∈ 𝒳 ⊂ ℝ𝑑 , 𝑑 ≥ 1} are at discrete locations in 

𝒳 yield 𝜃 = 𝔼 { 𝑚𝑎𝑥
𝑗=1,…,𝑘

𝑌(𝑥𝑗)} (Ribatet et al. 2015; Ribatet 2017; Davison and 

Gholamrezaee 2011). Hence, the extremal coefficient can be approximated 

from simulation (Davison and Gholamrezaee 2011). However, for spatial 

extremes, the extremal coefficient function is a convenient summary 

measure of dependence among the extreme data (Schlather and Tawn 

2003). In the bivariate case, assuming isotropy, the extremal coefficient is 

a function of the Euclidean distance, ℎ, between any two observation sites 

and the 𝑃𝑟(𝑍(𝑥) ≤ 𝑧, 𝑍(𝑥 + ℎ) ≤ 𝑧) = 𝑒𝑥𝑝(−𝑉(𝑧, 𝑧)) = 𝑒𝑥𝑝 (
−𝑉(1,1)

𝑧
) =

𝑒𝑥𝑝 (
−𝜃(ℎ)

𝑧
) = 𝔼[max(𝑌(𝑥), 𝑌(𝑥 + ℎ))] with 𝜃(ℎ) ∈ [1,2]. There exists a 

unique straightforward mapping between the extremal coefficient 

function, 𝜃(ℎ), and the F-madogram (Cooley et al. 2006), a well-defined 

measure of dependence among extreme data. Moreover, there exist 

empirical estimators for the F-madogram (Ribatet et al. 2015; Cooley et al. 

2012). In summary, inspection of plots of the extremal coefficient function 

for a model and its data is a recommended qualitative evaluation of a fitted 

simple max-stable model. Using its bivariate distribution and properties of 

correlation functions for isotropic fields it can be shown that the Schlather 

process is unable to model spatial independence (Davison and 

Gholamrezaee 2011). This is the previously mentioned limitation of the 

Schlather process and the reason it produced larger areas with the largest 

values in Figures 1 and 2 when compared with the more flexible extremal-t 

and Brown-Resnick models. 
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The discussion so far has focused on the description, fitting, selection, and 

qualitative evaluation of max-stable processes with fixed unit Fréchet 

margins. Assuming fixed margins is not realistic for most practical 

applications. As previously mentioned, the marginal distributions of a 

max-stable process are GEV distributed, possibly varying by location. The 

pairwise likelihood used to fit a simple max-stable process can be readily 

adapted to accommodate the simultaneous estimation of trend surface and 

dependence parameters (Ribatet et al. 2015; Ribatet 2017; Ribatet 2015). 

Trend surfaces are functions defined on 𝒳 which use covariates to model 

the spatial variation of the location, 𝜇(𝑥), scale, 𝜎(𝑥), and shape, 𝜉(𝑥), 

parameters of the known GEV marginal distributions. For example, linear 
trend surfaces are of the form 𝜇(𝑥) = 𝜂𝜇,0 + 𝜂𝜇,1𝑐𝑜𝑣𝜇,1 + ⋯ + 𝜂𝜇,𝑛𝜇

𝑐𝑜𝑣𝜇,𝑛𝜇
 , 

𝜎(𝑥) = 𝜂𝜎,0 + 𝜂𝜎,1𝑐𝑜𝑣𝜎,1 + ⋯ + 𝜂𝜎,𝑛𝜇𝜎
𝑐𝑜𝑣𝜎,𝑛𝜎

, 𝜉(𝑥) = 𝜂𝜉,0 + 𝜂𝜉,1𝑐𝑜𝑣𝜉,1 + ⋯ +

𝜂𝜉,𝑛𝜉
𝑐𝑜𝑣𝜉,𝑛𝜉

, where 𝜂∙,𝑖 and 𝑐𝑜𝑣∙,𝑖 are the parameters and covariates of the 

linear trend surface for 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥), respectively. Potential 

covariates include, for example, gridded physiographic (e.g., such as x-

location, y-location, elevation, slope, aspect, curvature) and climatological 

(e.g., such as mean annual/monthly temperature, precipitation, wind, 

solar radiation) data. Ribatet (2017) underscored the importance of 

correctly modeling the spatial variation of the marginal parameters by 

carefully “building relevant trend surfaces including any relevant 

covariable.” Poor characterizations for 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥) complicates 

the dependence parameterization (Blanchet 2009; Ribatet 2017). In this 

study, linear trend surfaces for the marginal parameters were effectively 

and efficiently developed by applying previously mentioned theory from 

spatial extremes and recent advances for regularizing general linear 

models (Friedman et al. 2010; Tibshirani et al. 2010; Simon et al. 2011; 

Tibshirani et al. 2012). 

Regularization of the linear trend surface for 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥) is needed 

given the number of available and presumed relevant gridded covariate 

datasets and acknowledgment that there are 2𝑛∙ possible models that 
involve subsets of 𝑛∙ predictors where 𝑛∙ = 𝑛𝜇, 𝑛𝜎 , or 𝑛𝜉 (Gareth et al. 2013). 

If 𝑛∙ = 10/100, then there are 1,024/1.267651e+30 possible models to be 

considered for a given marginal parameter trend surface. Zou and Hastie 

(2005) introduced the elastic-net penalty as a compromise between ridge 

(Hoerl and Kennard 1970; Tikhonov 1943) and lasso (Tibshirani 1996) 

regression. Given observations 𝑦𝑖 , 𝑖 = 1, … , 𝑛 , an 𝑛 × 𝑚 matrix of 

normalized covariates 𝑋, and an assumed linear model 𝑦𝑖 = 𝜂0 + 𝜂1𝑥𝑖,1 +

⋯ + 𝜂𝑚𝑥𝑖,𝑚, the elastic net minimizes 
1

2𝑛
∑ (𝑦𝑖 − 𝜂0 − 𝜂𝑥𝑖

𝑇)2𝑛
𝑖=1 +
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𝜆 ∑ [
1

2
(1 − 𝛼)𝜂𝑗

2 + 𝛼|𝜂𝑗|]𝑚
𝑗=1 , where 𝜆 is a non-negative regularization 

parameter that is tuned to weight the overall strength of the penalty and 𝛼 ∈

[0,1] is specified to control the penalty term to vary from ridge regression at 

𝛼 = 0 to lasso regression at 𝛼 = 1 (Friedman et al. 2010). Ridge regression 

yields smooth solutions that include all the predictors whereas application 

of lasso regression results in automatic variable selection (i.e., sparse, much 

more easily interpretable solutions [Gareth et al. 2013]). The elastic net 

mixes the two methods. As 𝛼 increases from 0 to 1 for a fixed 𝜆, the number 
of zero-valued 𝜂𝑗 increases from 0 to the sparsity of the lasso (Friedman et 

al., 2010). In this study, variable selection was preferred, and 𝛼 was 

specified close to 1 for numerical stability (Friedman et al. 2010). Cross 

validation was applied to ensure that the minimizing value for 𝜆 was 

properly located for each elastic net application.  

Independently derived elastic net application results for 𝜇(𝑥), 𝜎(𝑥), and 

𝜉(𝑥) guided subsequent spatial GEV model formulation and evaluation. 

The log-likelihood of the spatial GEV model, which assumes independence 

among the sample observation sites, is given by 𝑙(𝜂𝜇, 𝜂𝜎 , 𝜂𝜉) =

∑ ∑ {−𝑙𝑜𝑔𝜎𝑖 − (1 + 𝜉𝑖
𝑦𝑖,𝑗−𝜇𝑖

𝜎𝑖
)

−1 𝜉𝑖⁄

−  (1 +
1

𝜉𝑖
) 𝑙𝑜𝑔 (1 + 𝜉𝑖

𝑦𝑖,𝑗−𝜇𝑖

𝜎𝑖
)}𝑛𝑜𝑏𝑠

𝑗=1
𝑛𝑠𝑖𝑡𝑒
𝑖=1 , 

where 𝜇𝑖, 𝜎𝑖, and 𝜉𝑖 are the GEV parameters for the 𝑖-th site and 𝑦𝑖,𝑗 is the 

𝑗-th observation for the 𝑖-th site (Ribatet 2009). For 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥), 

predictors associated with a set of elastic-net derived linear trend surface 

models, ranging in dimension from 1 to the dimension of the trend surface 

at the minimizing 𝜆, were used to define and evaluate a series of spatial 

GEV models. For example, if 10, 5, and 3 elastic-net directed trend surface 

models were extracted from applications of elastic net for 𝜇(𝑥), 𝜎(𝑥), and 

𝜉(𝑥), respectively, then 150 unique spatial GEV models were defined, 

fitted, and evaluated. Spatial GEV model selection and evaluation was 

based on information criterion scores and comparisons of the spatial GEV 

model parameter estimates with their at-site counterparts (Blanchet 2009; 

Ribatet 2009). 

The max-stable process deployment herein was a two-step procedure 

involving trend surface and simple max-stable process model selection, 

with each step assuming independence among the extremes and fixed 

margins, respectively. The results from these two separate steps were 

subsequently combined to build a general max-stable process wherein the 

trend surface and dependence parameters were simultaneously fitted. 

Thereafter, pointwise and areal-based return levels can be computed for any 
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arbitrary area within the model domain. Areal-based exceedances are 

obtained by simulating multiple independent copies of the fitted max-stable 

process (Ribatet 2009; Ribatet 2013; Ribatet 2015; Ribatet 2017). Schlather 

(2002) introduced the basis for simulating an independent realization of a 

simple max-stable process with on only a finite number of replicates. 
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3 Snow Water Equivalent (SWE) 

Observations 

SWE time-series data were collected from 112 observation sites across four 

distinct surface networks as shown in Figure 3. The four SWE observation 

networks included the Hubbard Brook Experimental Forest (HBEF) 

maintained by the US  Forest Service 

(http://data.hubbardbrook.org/data/dataset.php?id=28), Soil Climate Analysis Network 

(SCAN) data managed by the Natural Resources Conversation Service 

(https://www.wcc.nrcs.usda.gov/scan/), snow sampling sites maintained by the New 

Hampshire Department of Environmental Services (NHDES) 

(https://www4.des.state.nh.us/Rti_home/snow_sampling_stations.asp), and snow survey data 

from the New England District of the US Army Corps of Engineers 

(USACE) 

(https://reservoircontrol.usace.army.mil/NE/pls/cwmsweb/cwms_web.cwmsweb.cwmsindex). Table 1 

summarizes the number of SWE observation sites and annual maxima 

associated with each network. The number of processed annual maxima 

(AM) for each observation site for the period 1950–2017 varied from 18 to 

68 and averaged 25.4 across all 112 sites. The average was influenced by 

the 2000–2017 period of record for the USACE-observed SWE time-series 

datasets. The SWE AM were observed early to mid-March on average. 

Figure 4 is a symbol plot of the mean of the SWE AM data, in inches, for 

each observation site, and it underscores the spatial variation of the data 

within and surrounding the upper Connecticut River Basin (CRB).  

http://data.hubbardbrook.org/data/dataset.php?id=28
https://www.wcc.nrcs.usda.gov/scan/
https://www4.des.state.nh.us/Rti_home/snow_sampling_stations.asp
https://reservoircontrol.usace.army.mil/NE/pls/cwmsweb/cwms_web.cwmsweb.cwmsindex
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Figure 3. SWE observation site locations overlain on a digital elevation model (DEM) 

(SWE networks: ▪=HBEF; ▪=SCAN; ▪=NHDES; ▪=USACE; DEM data source: PRISM 30 

year normal (Norm81m dataset) (http://www.prism.oregonstate.edu/normals/).  

 

Table 1. Number of observation sites and annual maxima associated 

with each SWE network. 

SWE Network 

Number of 

Observation Sites Period of Record 

Number of 

Annual Maxima 

HBEF 5 1955 – 2015 305 

SCAN 3 2000 – 2017 54 

NHDES 15 1950 – 2017 889 

USACE 89 2000 – 2017 1602 

http://www.prism.oregonstate.edu/normals/


ERDC/CHL TR-20-7  11 

 

Figure 4. Mean of the SWE annual maxima (inches) for each SWE observation 

location overlain on a digital elevation model (DEM) (DEM data source: PRISM 30 

year normal (Norm81m dataset) (http://www.prism.oregonstate.edu/normals/). 

 

http://www.prism.oregonstate.edu/normals/


ERDC/CHL TR-20-7  12 

 

4 Covariate Datasets 

Gridded datasets of likely relevant physiographic and climatological 

covariates were collected and processed to support trend surface modeling 

of the SWE AM for the latitude and longitude box defined by (41.25,44.5) ✕ 

(-73.75,-70.5) (Sexstone and Fassnacht 2014). Table 2 is a summary listing 

of the collected and processed gridded covariate datasets and their sources.  

Table 2. Summary listing of the 135 collected and processed base covariates. Monthly, annual, and 

seasonal (average of November – April monthlies) products were collected and processed for the 

climatology datasets (PRECIP, TMEAN, TMAX, TMIN, TDMEAN, DLWRF, DSWRF, EWIND, NWIND). 

Source: PRISM 30 year normal (Norm81m dataset) (http://www.prism.oregonstate.edu/normals/) 

(http://www.prism.oregonstate.edu/documents/PRISM_datasets.pdf) 

Covariates Description Resolution 

X, Y, Z (from DEM)  Coordinates and elevation for each raster grid cell 

30 arc sec* 

PRECIP Total precipitation 

TMAX Maximum temperature 

TMIN Minimum temperature 

TMEAN 0.5*(TMAX+TMIN) 

TDMEAN Mean dew point temperature 

Source: Geographic Resources Analysis Support System, Geographic Information System function 

r.slope.aspect (https://grass.osgeo.org/grass70/manuals/r.slope.aspect.html) 

SLOPE Slope 

30 arc sec 

ASPECT Aspect 

PROFILE 

CURVATURE Profile curvature 

TANGENTIAL 

CURVATURE Tangential curvature 

Source: Global 2010 Tree Cover (30 m)† (https://glad.umd.edu/dataset/global-2010-tree-cover-30-m) 

TREE COVER 

Percent maximum (peak of growing season) tree canopy cover (circa 

2010) 1 arc sec 

                                                                 

* For a full list of the spelled-out forms of the units of measure used in this document, please refer to US 

Government Publishing Office Style Manual, 31st ed. (Washington, DC: US Government Publishing 

Office, 2016), 248-52, https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-

STYLEMANUAL-2016.pdf. 

† For a full list of the unit conversions used in this document, please refer to US Government Publishing 

Office Style Manual, 31st ed. (Washington, DC: US Government Publishing Office, 2016), 345-7, 

https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf. 

http://www.prism.oregonstate.edu/normals/
http://www.prism.oregonstate.edu/documents/PRISM_datasets.pdf
https://grass.osgeo.org/grass70/manuals/r.slope.aspect.html
https://glad.umd.edu/dataset/global-2010-tree-cover-30-m
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
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Source: National Aeronautics and Space Administration, North American Land Data Assimilation System 

(https://hydro1.gesdisc.eosdis.nasa.gov/data/NLDAS/README.NLDAS2.pdf) 

DLWRF Downward longwave radiation flux 

.125 deg DSWRF Downward shortwave radiation flux 

Source: National Oceanic and Atmospheric Administration National Centers for Environmental Prediction 

Climate Forecast System Reanalysis dataset (https://app.climateengine.org/) 

EWIND Eastward wind component 

.2 deg NWIND Northward wind component 

Source: Historical climate data for North America (https://sites.ualberta.ca/~ahamann/data/climatena.html) 

PPAS Percent precipitation as snow 1 km 

https://hydro1.gesdisc.eosdis.nasa.gov/data/NLDAS/README.NLDAS2.pdf
https://app.climateengine.org/
https://sites.ualberta.ca/~ahamann/data/climatena.html
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5 Analysis 

As previously mentioned, the max-stable model development process 

involved two key steps:  

1. characterizing the spatial/spatiotemporal variation of the extreme data 

(i.e., trend surface model selection) 

2. accounting for the inter-site dependence among the extreme data (i.e., 

simple max-stable model selection). 

This section succinctly highlights salient features associated with these two 

steps necessary for the deployment of a max-stable process model of SWE 

AM for the upper CRB. 

5.1 Trend surface modeling 

Figure 5 depicts the spatial distribution of at-site estimates of GEV model 

parameters for each SWE observation location, underscoring that a 

distinct unique trend surface likely exists for 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥), 

respectively. The 135 base spatial covariates (extracted at the 30 arc sec 

resolution), and their squares, constitute the entire set of 270 covariables 

considered to build each trend surface. Figure 6 includes summary plots 

associated with three independent elastic net applications to build trend 

surfaces for 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥), respectively. Each respective elastic net 

application was performed using the R software package glmnet 

(Friedman et al. 2010), employing 𝑘-fold cross validation with 𝑘 = 37, and 

with 𝛼 specified equal to 0.95. For each plot in Figure 6, the x-axis is the 

natural logarithm of 𝜆, the non-negative regularization parameter that is 

tuned to weight the overall strength of the penalty, the y-axis is the mean 

squared error (MSE), the top of the plot indicates the number of non-zero 

covariates as 𝜆 varies, the red curve and its error bars is the cross-

validation derived MSE including its one standard error lower and upper 

bounds, and the two dotted vertical lines indicate the locations of the 

cross-validation identified 𝜆 value that minimizes the MSE and the defined 

best regularizing model (Hastie and Qian 2016). The best regularizing 

model is defined to be at the largest 𝜆 value within one standard error of 

the minimizing MSE (Friedman et al. 2010; Hastie et al. 2009). Figure 7 

contains additional summary plots that are simply a rearrangement of the 

data depicted in the plots from Figure 6. The plots in Figure 7 clearly 

emphasize the tradeoff between mean MSE fit and model complexity for 
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each of the cross-validated elastic net derived independent trend surfaces 

for 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥), respectively. 

Several spatial GEV models were subsequently defined, fitted, and 

evaluated based on the cross-validation supervised elastic net applications, 

which identified optimal independent trend surfaces for 𝜇(𝑥), 𝜎(𝑥), and 

𝜉(𝑥), respectively. Besides the minimizing and best regularizing models, 

additional trend surface models for 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥) were extracted 

from each of the curves shown in Figure 6. Tables 3 – 5 summarize the 10, 

7, and 4 trend surface models that were extracted for 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥), 

respectively, for subsequent spatial GEV model definition, fitting, and 

evaluation. For each independent trend surface, models were extracted 

with the intent to cover the range [𝜆𝑚𝑖𝑛, 𝜆𝑟𝑒𝑔] ∪ (𝜆𝑟𝑒𝑔, 𝜆𝑚𝑎𝑥) where 

𝜆𝑚𝑖𝑛, 𝜆𝑟𝑒𝑔, and 𝜆𝑚𝑎𝑥 are the 𝜆 values corresponding with the minimizing, 

best regularizing, and intercept only models, respectively. Tables 3 – 5 

specify for 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥), respectively, the extracted 𝜆-valued trend 

surface models and, for each 𝜆 model, the corresponding cross-validated 

mean MSE, number of non-zero covariates, and percent deviance 

explained. A total of 10 + 10 ∙ 7 + 10 ∙ 7 ∙ 4 = 360 spatial GEV trend 

surface models were defined, fitted, and evaluated based on the 

independently derived elastic net trend surface models for 𝜇(𝑥), 𝜎(𝑥), and 

𝜉(𝑥) that are summarized in Tables 3 – 5, respectively. The first 10 spatial 

GEV fits only allowed the GEV location to vary, based on the 𝜆 models for 

𝜇(𝑥) specified in Table 3. For these first 10 spatial GEV fits, 𝜎(𝑥) and 𝜉(𝑥) 

are intercept only models. The next 10 ∙ 7 spatial GEV fits allowed 𝜇(𝑥) 

and 𝜎(𝑥) to vary as defined in Tables 3 and 4, respectively, while 𝜉(𝑥) 

remained fixed as an intercept only model. The final 10 ∙ 7 ∙ 4 spatial GEV 

fits allowed 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥) to vary as defined in Tables 3 – 5, 

respectively. Figure 8 is a summary of the 360 spatial GEV model 

evaluations, as measured by their information criterion scores. The spatial 

GEV model with the lowest information criterion score was defined by the 

minimizing MSE trend surfaces for 𝜇(𝑥) and 𝜎(𝑥) and effectively the best 

regularizing model, with two non-zero covariates, for 𝜉(𝑥). Figure 9 

includes scatter plots which compare the spatial GEV model with the 

lowest information criterion score with its at-site estimates. Computed 

correlation values associated with the scatter plots shown in Figure 9 are 

0.923, 0.877, and 0.581 for 𝜇, 𝜎, and 𝜉, respectively. 
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Figure 5. Spatial distribution of the at-site extremal model parameters (a) 𝝁, (b) 𝝈, 

and (c) 𝝃, respectively. 

 

(a) 
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Figure 5. Continued. 

 

(b) 
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Figure 5. Continued. 

 

(c) 
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Figure 6. Summary plots associated with three independent elastic net applications 

to build trend surfaces for (a) 𝝁(𝒙), (b) 𝝈(𝒙), and (c) 𝝃(𝒙), respectively. 

 
(a) 

 
(b) 

 
(c) 
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Figure 7. Summary plots associated with three independent elastic net applications 

to build trend surfaces for (a) 𝝁(𝒙), (b) 𝝈(𝒙), and (c) 𝝃(𝒙), respectively, that 

underscore the tradeoff between model fit and complexity. 

 
(a) 

 
(b) 

 
(c) 
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Table 3. Summary of elastic net derived trend surfaces for 𝝁(𝒙) extracted for spatial 

GEV model definition, fitting, and evaluation (*=best regularizing 𝝀 model; 

**=minimizing 𝝀 model). 

Model Index 

Number of 

Non-Zero 

Covariates Mean MSE % Deviance 𝝀 

01 0 2.5034 0.00000 1.38700 

02 3 2.2585 0.12280 1.26400 

03 4 2.0086 0.22560 1.15100 

04 5 1.7984 0.31160 1.04900 

05 8 0.9476 0.66290 0.47570 

06 10* 0.7591 0.75440 0.22600 

07 12 0.7377 0.77210 0.16320 

08 14 0.7383 0.77640 0.14870 

09 16 0.7298 0.79180 0.11780 

10 18** 0.5951 0.84960 0.04437 

Table 4. Summary of elastic net derived trend surfaces for 𝝈(𝒙) extracted for spatial 

GEV model definition, fitting, and evaluation (*=best regularizing 𝝀 model; 

**=minimizing 𝝀 model). 

Model Index 

Number of 

Non-Zero 

Covariates Mean MSE % Deviance 𝝀 

01 3 0.2442 0.36990 0.24330 

02 5 0.2099 0.48720 0.15280 

03 8 0.1968 0.54650 0.11560 

04 10 0.1777 0.61380 0.07605 

05 14* 0.1726 0.63540 0.06027 

06 22 0.1706 0.71260 0.02999 

07 31** 0.1495 0.81880 0.00815 
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Table 5. Summary of elastic net derived trend surfaces for 𝝃(𝒙) extracted for spatial 

GEV model definition, fitting, and evaluation. The minimizing model with a mean MSE 

value of 0.0571 was at 𝝀 = 0.0272243 with 6 non-zero covariates, and the best 

regularizing model, with a mean MSE equal to 0.07, was at 𝝀 = 0.1049096, with two 

non-zero covariates. 

Model Index 

Number of Non-

Zero Covariates Mean MSE % Deviance 𝝀 

1 1 0.0744 0.15500 0.12640 

2 2 0.0691 0.22180 0.10010 

3 4 0.0661 0.26820 0.08314 

4 5 0.0600 0.34270 0.04984 

Figure 8. Plot of information criterion scores for the defined, fitted, and evaluated 

spatial GEV models (model naming convention: “Mod” + “𝝃(𝒙) Model Index” + “𝝈(𝒙) 

Model Index” + “𝝁(𝒙) Model Index”).  
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Figure 9. Comparisons of the fitted spatial GEV trend surface models with 

corresponding at-site estimates (µ= GEV location; σ = GEV scale; ξ = GEV shape; 

Model = spatial model; MLE = at-site maximum likelihood estimate). 

 

5.2 Simple max-stable model selection 

The Extremal-t max-stable process was fit to the observed pointwise 

SWE AM, with each site’s data transformed to the unit Fréchet 

distribution to solely account for the spatial dependence among the data. 

Five different correlation functions were considered, viz., the Bessel, 

Cauchy, generalized Cauchy, powered exponential, and Whittle-Matern 

correlation functions (Ribatet 2018). The Extremal-t process using a 

Whittle-Matern correlation function was selected based on its lowest 

information criterion score. Values of 59.6616, 0.1766, and 1.6451 were 

estimated for its range, smooth, and degrees of freedom parameters, 

respectively. Figure 10 is a plot of the extremal coefficient function, a 

succinct measure of spatial dependence as a function of distance, 

associated with the fitted Extremal-t process together with binned 
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pairwise observation estimates. It depicts a non-trivial spatial 

dependence among the SWE AM in the upper CRB at a normalized 

distance of 4, which is approximately 180 miles.  

Figure 10. Summary measure of fit for the selected Extremal-t simple 

max-stable process (𝜽 is the extremal coefficient function; h is 

normalized distance). 

 

5.3 General max-stable model development and application 

A general max-stable model was subsequently fit, using constrained 

optimization, which combined information learned from the separate 

efforts that focused on trend surface model selection while assuming 

independence among the sites and simple max-stable process model 

selection which assumed fixed margins (Ribatet 2017). Figures 11 and 12, 

extremal coefficient function and scatter plots associated with the fitted 

general max-stable model that simultaneously estimated the dependence 

and trend surface parameterizations, agree well with their respective 

counterparts, which were obtained independently rather than 

simultaneously, viz., Figures 10 and 9, respectively. The plots in Figure 13 

present the fitted trend surfaces for 𝜇(𝑥), 𝜎(𝑥), and 𝜉(𝑥), and resulting 
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pointwise return levels for SWE AM, in inches, at the 100-year return 

period, respectively. As previously mentioned, with a fitted max-stable 

process, one can readily compute, via simulation, areal-based exceedances 

for any arbitrary area (e.g., sub-basin(s), or elevation band(s)) within the 

model domain. Figure 14 depicts two simulated realizations of the fitted 

max-stable process for SWE AM, in inches, for the approximately 

690-square mile White River Basin located in the upper CRB. Figure 15 is a 

computed histogram, based on 200 simulations of the fitted process, of 

mean SWE AM, in inches, for the White River Basin. With simulations from 

a fitted max-stable process of a hydrometeorological parameter for an area 

of interest one can readily estimate areal exceedance probabilities for 

context, understanding, and risk evaluation (e.g., for PFHA, areal 

precipitation totals, snow totals, probable maximum precipitation 

estimates, temperatures, sea heights). Table 6 is a summary of exceedance 

probability estimates, derived using the distribution shown in Figure 15, of 

the US National Weather Service's National Operational Hydrologic Remote 

Sensing Center SNOw Data Assimilation System (SNODAS) modeled mean 

SWE AM for the White River Basin for 2004–2017, inclusive. 

Figure 11. Summary diagnostic of fitted general max-stable 

process model. 
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Figure 12. Comparisons of the fitted general max-stable model with corresponding at-

site estimates (µ= GEV location; σ = GEV scale; ξ = GEV shape; Model = general max-

stable spatial model; MLE = at-site maximum likelihood estimate). 
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Figure 13. Fitted trend surfaces for (a) 𝝁(𝒙), (b) 𝝈(𝒙), and (c) 𝝃(𝒙), and (d) the 100-

year pointwise return levels of SWE AM, in inches, for the upper CRB. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14. Two independent copies of the fitted max-stable model of SWE AM, in 

inches, for the White River Basin in the upper CRB. 
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Figure 15. Computed histogram of mean basin SWE 

AM, in inches, for the White River Basin of the upper 

CRB. 

 

Table 6. Areal-based exceedance probability estimates 

of the SNODAS modeled mean SWE AM for the 

White River. 

Year 

White River 𝑺𝑾𝑬̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒙 

(in) 

Exceedance 

Probability 

2004 5.33 0.585 

2005 6.79 0.325 

2006 3.14 0.945 

2007 7.12 0.290 

2008 11.09 0.030 

2009 7.97 0.225 

2010 5.89 0.500 

2011 9.17 0.120 

2012 4.52 0.725 

2013 5.25 0.610 

2014 8.63 0.180 

2015 7.30 0.265 

2016 2.64 0.970 

2017 5.88 0.505 
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6 Summary 

Practice-driven hydrologic modeling planning analyses involving the 

treatment of cool-season processes often require areal SWE estimates as 

input. Thus, pointwise SWE data observations must first be modeled, 

spatially, to properly support risk-informed hydrologic analyses involving 

the treatment of cool season processes. This case study application 

succinctly profiled a max-stable spatial process modeling analysis of SWE 

AM data within and surrounding the upper CRB as a means by which to 

address this identified need. The case study leveraged EVT and recent 

advances for regularizing linear models to systematically and efficiently 

guide the trend surface modeling component of the max-stable process 

deployment. Spatial dependence of the SWE AM data was observed to be 

non-trivial for the entire length of the modeled upper CRB, further 

underscoring the max-stable spatial process modeling analysis. Simulated 

independent copies of the fitted max-stable spatial process provided the 

basis to compute the distribution of mean SWE AM for the 690 square 

miles. White River Basin located in the upper CRB. The estimated 

distribution was subsequently used to evaluate the exceedance probability 

of SNODAS modeled mean SWE AM for the White River for the years 

2004–2017, inclusive. The max-stable modeling analysis profiled in this 

case study is the spatial process extension of univariate and multivariate 

extreme value theory; hence, extrapolation from fitted max-stable 

processes are credible. Moreover, the max-stable modeling analysis 

profiled in this case study is general in that it can be applied to other 

hydrometeorological parameters of relevance for probabilistic flood 

hazard analyses.  
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Acronyms and Abbreviations 

AM Annual maxima 

CRB Connecticut River Basin 

DEM digital elevation model 

EVT extreme value theory 

GEV generalized extreme value 

HBEF Hubbard Brook Experimental Forest  

MSE mean squared error  

NHDES New Hampshire Department of Environmental Services 

SCAN Soil Climate Analysis Network  

SNODAS SNOw Data Assimilation System  

SWE snow water equivalent 

USACE US Army Corps of Engineers  
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