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Abstract 

Photon-sensitive mapping lidar systems are able to image at greater 

collection area rates and ranges than linear-mode systems. However, these 

systems also experience greater noise levels due to shot noise, image blur, 

and dark current, which must be filtered out before the imagery can be 

exploited. Described in this report is a synthetic test data set of imagery 

from a notional airborne Geiger-mode lidar. Also described is the Bridge 

Sign algorithm, which uses a least-squares technique for noise filtering. 

The algorithm’s performance was validated using synthetic test imagery of 

both a toy scene and of a realistic scene, which were generated using the 

parameters of a notional airborne Geiger-mode system. Analysis of the 

results shows the technique effectively removes noise and preserves fine 

details with good fidelity. 
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1 Introduction 

1.1 Background 

Airborne lidar systems have been mapping the Earth’s surface since the 

pioneering flights by the NASA Wallops Airborne Oceanographic Lidar in 

the 1970s (Bressel et al. 1977). Lidar is able to capture 3D images of terrain 

at astonishing rates and levels of detail. Photon-sensitive airborne 

mapping lidar with a micropulse laser was demonstrated in 2001 (Degnan 

et al. 2008). The Jigsaw sensor demonstrated an airborne photon-

sensitive Geiger-mode avalanche photo-diode (GmAPD) focal plane array 

(FPA) in 2002 (Marino and Davis 2005), which enabled greater area 

collection rates and ranges than comparable linear-mode lidars. Other 

airborne Geiger-mode lidars included the Airborne Ladar Imaging 

Research Testbed (ALIRT) sensor that flew in 2010 (Knowlton 2011), the 

High-Altitude LIDAR Operations Experiment (HALOE) sensor (Gray 

2011), L3Harris’ Intelliearth system in 2015 (Stoker et al. 2016), and MIT 

Lincoln Laboratory’s Airborne Optical Systems Test Bed in 2017 (Clifton et 

al. 2015). All of these Geiger-mode systems experience significant noise 

and have employed a coincidence processing step for removing the noise 

from the imagery. Improvements to coincidence processing can improve 

the performance envelope of such lidar systems. This work describes a 

coincidence processing algorithm and the synthetic 3D point clouds that 

were used for validation. 

The two manufacturers of GmAPD for airborne applications are 

Massachusetts Institute of Technology (MIT) Lincoln Laboratory (Albota 

et al. 2002) and Ball Aerospace, which licensed the technology from 

Princeton Lightwave (Itzler et al. 2010) in 2018. GmAPD sensors have 

greatly increased sensitivity and data collection rates compared to sensors 

that use linear-mode avalanche photo-diodes (APD). Their advantage is 

that they support relatively lower link-budgets and greater area collection 

rates compared to linear-mode APD detectors, but their disadvantages are 

that they are more sensitive to shot noise and dark current, which must be 

filtered out of the data before it can be exploited. Additionally, the data 

filtering process must compensate for the blur caused by the laser pulse 

width, which the peak-finding electronics would otherwise perform in the 

case of linear-mode lidars. The high collection rates and resulting large 

quantity of data make these problems more acute. 
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Geiger-mode detectors operate in the following manner. The detector 

circuitry begins in a metastable “off” state. A detection occurs when a 

photon strikes the detector element and causes an electrical current that 

triggers the circuit to transition into a stable “on” state that cannot detect 

additional photons. Most GmAPDs in use in lidar systems today are 

synchronous, which means the entire FPA must reset before each laser 

pulse so that all detector elements are sensitive. In order to minimize the 

loss of sensitivity due to noise events, the FPA is not continuously active, 

but is turned on at a certain range value called the range gate; prior to 

where detections are expected. Asynchronous GmAPDs have circuitry to 

reset individual elements after each detection; however, there is still a 

non-zero recovery time, during which the element would be insensitive. 

Such asynchronous GmAPD FPAs are currently commercially available 

from Ball Aerospace (Kondratko et al. 2019), but to date, all GmAPD lidar 

systems known to the authors have used the synchronous FPAs. The 

phenomenon that occurs in GmAPD detectors when an FPA element 

becomes insensitive to additional photons after an initial detection event is 

termed blocking loss. This phenomenon partially drives how GmAPD 

detectors are operated and how lidar systems collect data. 

A Geiger-mode system records detection events by the FPA elements and 

their corresponding time-of-flight during sensor operation. The system 

also records the orientation of the receiver telescope and the sensor 

position as logged by the inertial measurement unit (IMU) and global 

positioning system (GPS) receiver. Data processing electronics combine 

these to calculate a position value for each photon detection event. A level-

1 (L1) data file is a binary file that contains the image frame number, FPA 

element number, and XYZ coordinate for each detection event. A binary 

file of level-2 (L2) data contains a set of points with XYZ coordinates that 

represent a three-dimensional scene by spacing the points along reflective 

surfaces within the scene. The L2 points may additionally have so-called 

“intensity” values that represent the relative reflectivity of the surfaces. A 

level-3 (L3) binary file consists of several files of L2 data that have been 

aggregated together and registered to a standard coordinate system. 

1.2 Objective 

The Bridge Sign coincidence processing algorithm creates a human-

interpretable L2 point cloud from L1 data. The algorithm is designed to 

balance several competing image characteristics that are necessary for 

good-quality output. It needs to remove spurious noise points, but 
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preserve faint objects. It also needs to resolve fine features and arbitrary 

surface orientation but also show surfaces as smooth and continuous. 

1.3 Approach 

The Bridge Sign algorithm aggregates and rasterizes photon detections in 

a way that preserves all the spatial information that was contained in the 

L1 data. It then filters the raster, identifies density peaks, and exports 

them as L2 points. This creates a product that preserves scene detail with 

minimal spurious clutter and is also intuitively interpreted by human 

viewers. 
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2 Coincidence Processing Approach 

Coincidence processing relies on the coincident location of several L1 

detection points close together to estimate whether a detection event was a 

noise event or a true reflected signal from a real surface. It is the procedure 

of converting relatively noisy L1 data into the de-noised and more useable 

L2 data. Power lines, narrow towers, and whip antennas are examples of 

objects that can be difficult to distinguish from clusters of noise counts. A 

coincidence processing algorithm may use a form of local averaging and 

threshold values to distinguish between noise and real objects. 

Image resampling techniques using irregularly spaced point clouds have 

been demonstrated for representing 2D images (Eldar et al. 1997) and 3D 

images (Amenta and Bern 1999) in many fields, including computer 

graphics and medical imaging. Previous approaches to reduce 3D imaging 

lidar measurements to human-interpretable point clouds have used 

statistical tests to classify all individual detection events as noise or true 

reflections, and then aggregating groups of true reflections into L2 points. 

These approaches have included the Maximum A Posteriori Coincidence 

Processing (MAPCP) algorithm developed by Johns Hopkins University 

Applied Physics Laboratory (Stevens et al. 2011) and the Multiple-Peak 

Spatial Coincidence Processing (MPSCP) algorithm developed by the MIT – 

Lincoln Laboratory (Vasile et al. 2012). Vasile et al. does describe a 

comparison of the image quality of the output between MPSCP and MAPCP; 

however, the lidar community does not currently have any standard test 

images for lidar or a standardized methodology for evaluating image 

quality. This has prevented us from making direct comparisons of Bridge 

Sign’s output image quality with other coincidence processing algorithms. 

Described below is a new approach for coincidence processing as 

implemented in the Bridge Sign algorithm and its performance using 

synthetic L1 data from a notional airborne Geiger-mode lidar sensor is 

shown. The sensor parameters were selected to be typical for airborne 

Geiger-mode lidar and can be found in Table 1. This algorithm rasterizes the 

point cloud imagery and uses a least-squares filter to remove noise rather 

than a statistical test on a point-by-point basis. The algorithm uses 

sufficiently-fine sample spacing to ensure that the Nyquist criterion is 

satisfied and spatial frequency information is preserved. As a result, this 

algorithm creates output images with good interpretability. The Bridge Sign 

algorithm implements this approach, which was written as a Python script. 
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Table 1. Parameters of a notional air-borne Geiger-mode 

mapping lidar sensor. 

Parameter Value 

Altitude 3000 m 

Speed 100 m/s 

Laser pulse rate 2 kHz 

FPA dimensions 32 x 128 pixels 

Instantaneous field-of-view 30e-6 rad 

Probability of detection 50% 

Range gate start 2500 m 

Range gate stop 3500 m 

Range bin size 5 cm 

Range jitter standard deviation 5 cm 

Angle jitter standard deviation 10e-6 rad 

Dark current rate 1500 photons/sec 

Sweep rate 20 sweeps/sec 

Sweep azimuth ±35e-3 rad 
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3 Validation Methodology 

Our approach uses a synthetic L1 file to validate a coincidence processing 

algorithm by comparing the output image with the known original scene. 

Synthetic data functions as its own truth image for comparison with the 

output imagery. Although field-collected L1 data would be far more 

realistic and representative of the way lidar sensors are used, it would 

require significant additional effort to establish a corresponding ground-

truth point cloud to go with it. Additionally, we are not aware of any 

publicly-released field-collected L1 Geiger-mode imagery. 

A simple caricature of an artificial scene describes the workflow, as shown 

in Figure 1. An L2 file is created that contains a pre-programmed artificial 

scene, represented by Figure 1(a). Then a synthetic L1 file was generated, 

symbolized by Figure 1(b), using the parameters of the sensor shown in 

Table 1. The L1 file was input into the Bridge Sign algorithm, which 

processed it and generated a processed and de-noised L2 file symbolized 

by Figure 1(c), which we compared to the original scene. Also generated 

was a synthetic L1 file by using converted genuine terrestrial imagery of a 

real scene into a synthetic airborne-collected L1 file. A real scene was 

imaged with a stationary terrestrial linear-mode lidar and the imagery was 

used as a basis to back-synthesized L1 file based on the parameters in 

Table 1. This allowed us to test the Bridge Sign algorithm using synthetic 

L1 data that contained realistically shaped terrain and vegetation.  

Figure 1. The synthetic data generation flow process begins with 

a synthetic scene (red dots left), which is the basis to generate a 

synthetic L1 binary file (green dots center), which is converted 

into a coincidence processed L2 binary file (blue dots right). 

 
a b c 
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3.1 Artificial scene 

A Python script was written to generate an artificial scene, which is shown 

in Figure 2. The scene is 100 by 100 m and the reflectivity value of the 

ground surface is 0.5. There is a 10 m diameter circular spoke target with a 

height of 2 m at the center of the scene with 32 evenly spaces spokes, each 

with a reflectivity of 1.0, tapering towards the center as illustrated in 

Figure 3. There is a second identical spoke target covered by a simulated 

foliage canopy 25 m south of the center. The simulated foliage consists of 

49,000 points approximately 5 m above the ground with random 

uniformly distributed reflectivity and transmissivity values between zero 

and one. There is another set of simulated foliage 25 m west of the center, 

but without a spoke target beneath it. North of the scene center are two 

sets of 36 tri-bar targets, each with a reflectivity of 1.0, positioned two 

meters above the ground. One set is oriented north-south and the other set 

is oriented east-west. The relative sizes and orientations of each of the two 

sets are shown in Figure 4. There is a 2 by 2 by 2 m cube with a reflectivity 

of 1.0 located 25 m east of the center and a 32 m wide logo painted onto 

the ground about 40 m south-east of the center. There is a coil-shaped 

target 35 m south-west of the center. The target is 5 m tall, has two 

complete loops, a coil diameter of 1.5 m, a tube diameter of .5 m, and a 

reflectivity of 1.0, as shown in Figure 5.  
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Figure 2. Artificial scene with test targets. 
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Figure 3. Spoke test target (a) as intended, (b) as synthetic L1 data in the open, (c) after coincidence 

processing in the open, (d) as synthetic L1 data under foliage, and (e) after coincidence processing 

under foliage. 

 
a b c 

 
d e 

Figure 4. Tri-bar test targets (a) as intended, (b) as synthetic L1 data, and (c) after coincidence 

processing. 

 
a b c 
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Figure 5. Coil test target (a) as intended, (b) as synthetic L1 data, (c) and after coincidence processing. 

 
a b c 

3.2 Real scene 

A set of targets were built on a mowed grass field at the National Geodetic 

Survey Testing and Training Center near Corbin, Virginia. These were 

scanned using a stationary terrestrial linear-mode lidar. This allowed us to 

verify the performance of the algorithm on a scene with realistically 

shaped terrain and foliage, illustrated in Figure 7(a). The data-synthesis 

process was applied to the terrestrial lidar data using the same parameters 

of the notional airborne Geiger-mode sensor. Figure 7(b) shows the 

corresponding simulated L1 data. The scene contains five sets of horizontal 

tri-bar targets oriented parallel to the ground and five sets of vertical tri-

bar targets oriented perpendicularly to the ground.  

3.3 L1 generation process 

A process to generate synthetic L1 data was applied to both the artificial 

and real scenes. A sensor flight path was defined that included four passes 

over the artificial scene: from south to north, north to south, east to west, 

and west to east. The sensor’s directional view sweeps back and forth 

through nadir and perpendicular to the flight path at a rate of 20 sweeps 

per second. The angle swept from nadir is ±35 mrad. The detector camera 

captures an image frame for each laser pulse. 

The L1 data was generated using a rasterization process. The artificial L2 

points are originally defined in a world-centric coordinate space, as 

illustrated by the blue dots in Figure 6(a), using the notional image 

introduced in Figure 1. The L2 points are projected into the frame-centric 

coordinate space shown in Figure 6(b) for each image frame, assigning 

each L2 point to a voxel that corresponds to the row, column, and range 



ERDC/GRL TR-20-1 11 

 

values, for which it was observed by the detector. The reflectivity and 

transmissivity values of the L2 points are assigned to their corresponding 

voxels in the frame-centric coordinate space. 

Figure 6. Synthetic L2 data points (blue dots) (a) in the world-centric 

coordinate space and (b) in the frame-centric showing sensor 

position (yellow dots) and photon detections (red stars).  

 
a b 

Figure 7. Test range scene with targets (a) as collected by terrestrial tripod-mounted linear-

mode lidar, (b) as synthetic L1 data, (c) and after coincidence processing. 

 
a b c 

A probability parameter of detecting a photon is computed for each voxel 

using the reflectivity value that had been previously assigned. For each 

voxel, all transmissivity values from closer ranges are multiplied together 

to compute the total transmissivity along the line-of-sight path. The 

reflectivity value of the voxel is normalized by this total transmissivity 

value. This normalized reflectivity parameter was used to generate a 

random number of detected photons with a Poisson distribution. In 

addition, a noise photon was generated for each FPA element, whose range 

from the opening of the range gate was modeled as an exponentially 

distributed random variable. For each FPA element, only the closest range 
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detection event is retained, shown by the red stars in Figure 6(b), as well 

as the associated loss of sensitivity due to lidar shadow (gray hatching) and 

blocking loss (red hatching). This replicates the phenomenon of blocking 

loss as detailed previously. The XYZ coordinate of each closest detection 

event is then saved to an L1 file, together with the image frame number 

and FPA element number. 

3.4 Realism of synthetic L1 data 

Figures 3(b), 4(b), and 5(b) illustrate the synthetic L1 data. This 

rasterization approach simulates the image with less fidelity than ray 

tracing and can generate inaccurate representations of objects. This is 

because the reflectivity value of a voxel is based on a single L2 point, 

regardless of whether that L2 point fully subtends the voxel or how many 

additional L2 points of different reflectivity values are also located within 

that voxel. For example, if multiple points fall within an array element, 

then the highest reflectivity value and lowest transmissivity values are 

used for the entire element. Furthermore, this approach cannot accurately 

model features that are smaller than the instantaneous field-of-view of a 

single FPA element, since a single L2 point is modeled as entirely filling 

the element. This effect is visible in Figure 3(b), where the area at the 

target center has the same photon density as the wide spoke ends, instead 

of the 50% density that it should have. Nevertheless, this approach does 

have sufficient fidelity to model system and algorithm performance and 

human-perceived image quality. It also has the important advantages of 

being much easier and faster to implement, debug, and run on the 

computer. 

Figure 3(b) shows the image quality of the exposed spoke target in the L1 

point cloud. Inspection of the figure shows that spokes lose definition at 

approximately 1 m from the target center, which corresponds to a spoke 

width of 10 cm. Figure 3(d) shows the L1 image quality of the spoke target 

under foliage. The signal strength decreases due to loss of transmitted 

power and blocking loss, so spokes cannot be resolved closer than 

approximately 2 m from the target center, which corresponds to a spoke 

width of 20 cm. 

Figure 4(b) shows details of the 16 smallest tri-bar target sets. The third 

row from the bottom shows sets bar widths of 15, 12.5, 10, and 9 cm from 

left to right. The 15 bars are marginally distinguishable and the bars 

become less distinguishable as they become narrower. The resolution of 



ERDC/GRL TR-20-1 13 

 

the imagery may be limited by the sensor’s instantaneous field-of-view 

(IFOV) value of 30e-6 radians, which corresponds to a minimum ground 

sample spacing of 9 cm. Figure 5(b) shows a detailed view of the L1 image 

of the coil target. The notional sensor is downward pointing and sweeping 

through nadir, which results in strong lidar shadow. This is visible as a 

black ring of missing returns in the ground surface below the coil target. 

Furthermore, the top surface of the upper loop is fully visible, but it 

obscures the lower loop, which only shows sparse returns on the sides. 

The synthetic L1 imagery of the real scene demonstrates characteristics of 

realistic imagery, such as strong lidar shadow due to the nadir collection 

geometry of the notional sensor and the visibility of only the top surface of 

the vertical tri-bar targets. Lidar shadow also obscures much of the forest 

floor below the trees in the scene, although there are patches of ground 

visible where the sensor achieved successful penetration of gaps in the 

canopy. 
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4 Coincidence Processing Steps 

The Bridge Sign coincidence processing algorithm converts L1 imagery 

into L2 point clouds that are suitable for exploitation by human beings. 

The algorithm first divides the scene into sub-volumes, which it processes 

independently due to computational resource constraints. The sub-volume 

dimension is a user-defined parameter, which can be set based on the 

scale of the lidar data set and the amount of computer memory available to 

the user. This division of the scene also enables the algorithm to be 

parallelizable in a future version. The algorithm identifies all FPA image 

frames, whose line-of-sight intersect each sub-volume and associates them 

using a data structure. Then, each sub-volume is rasterized into a three-

dimensional grid, which is populated by the detections and interrogations 

from that part of the scene. The raster is de-noised using a least-squares 

filter and then a surface-finding step identifies local maximum points, 

which are saved to an L2 output file. 

4.1 Rasterization 

The flowchart in Figure 8 shows the processing steps of Bridge Sign, which 

begins by creating a 3D raster of the volume and iterating over every image 

frame associated with a sub-volume. Each sub-volume of the scene must 

have sample spacing that is sufficiently fine to capture all information 

within the signal and also be small enough to fit within computer main 

memory. The Nyquist sampling theorem requires the sampling rate to be 

twice the highest frequency within the image in order for a band-limited 

signal to be completely recovered (Gonzalez and Woods 2008). The 

original detector signal can be band-limited by the IFOV prior to 

digitization, the laser pulse width, the diffraction limit of the detector 

optics, or the bandwidth of the detector circuitry. The algorithm assumes 

that the maximum spatial frequency is limited by the IFOV and sets the 

raster voxel size at half its value. As illustrated by Figure 6, the native 

coordinate space of each image frame is based on the range to the detector 

and the FPA element index. The detections and interrogations of each 

image frame are resampled into the world-centric coordinate space using 

trilinear interpolation. In this way, the algorithm counts the total number 

of interrogations and detections of photons for each voxel of the raster. 
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Figure 8. Flow diagram showing the steps and operation of the Bridge Sign algorithm. 

 

4.2 Least-squares filtering 

Once all detections and interrogations have been counted, the algorithm 

applies a least-squares filter to the raster. The windowed filter iterates over 

all the voxels in a sub-volume. It centers on each voxel and its neighboring 

voxels and calculates c, the vector of coefficients of a 2nd-order polynomial 

of a 3D scalar field using least squares. These local polynomials both 

smooth the image, as shown in Figure 9, and allow the detection of local 

maxima and saddle points.  

The vector dmeas represents the detections of each voxel in a neighborhood, 

which are shown by Figure 9(a) and the vector dest represents the 

polynomial approximation, which is shown by Figure 9(b) and is defined as 

 
𝐝𝑒𝑠𝑡 = 𝑀𝒄 =  |𝟏 𝐱 𝐲 𝐳 𝐱𝟐 𝐲𝟐 𝐳𝟐 𝐱𝐲 𝐱𝐳 𝐲𝐳| |

𝑐0

𝑐1

⋮
𝑐9

|

𝒄 =  (𝑀𝑇𝑀)−1𝑀𝑇𝒅𝑚𝑒𝑎𝑠

, (1) 

where x, y, and z are vertical vectors, whose elements are the coordinates 

of each voxel in the local neighborhood and c0 through c9 are the 

coefficients of the 2nd-order polynomial. The value of dest at a given point p 

can be expressed as 

 𝐝𝑒𝑠𝑡 =  
1

2
𝐩𝑇𝐻𝐩 + 𝐩𝑇𝐠 + 𝑐0, (2) 
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where the gradient of the polynomial g and the Hessian matrix H are 

computed as 

 𝐠 =  |

𝑐1

𝑐2

𝑐3

| H =  2 |

𝑐4 𝑐7 𝑐8

𝑐7 𝑐5 𝑐9

𝑐8 𝑐9 𝑐6

|. (3) 

Singular value decomposition can calculate the eigenvectors and 

eigenvalues of H, which define the three eigenvectors of the polynomial 

and the second derivative values along each eigenvector. The center of the 

polynomial is calculated to be 

 𝐩𝑐𝑒𝑛𝑡𝑒𝑟 = −𝐻−1𝐠. (4) 

Given the first eigenvector v1, the point along the first eigenvector of the 

polynomial that is closest to the center of the neighborhood can be 

calculated to be 

 𝐩𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝐯1𝐯1
𝑇𝐩𝑐𝑒𝑛𝑡𝑒𝑟. (5) 

4.3 Surface finding 

Figure 10(a) illustrates how a second-order 3D polynomial approximates 

the local density of detected points near a voxel. These polynomials can be 

aggregated together to approximate a larger and more complex surface, as 

illustrated in Figure 10(b). Each polynomial has three eigenvectors and the 

first two are parallel to the local surface. A sequence of neighboring 

polynomials imply a surface, and the first two eigenvectors of each 

polynomial are tangential to that surface. 

A set of discrete L2 points can represent this surface by sampling each 

location on the surface that is closest to any given voxel. The white square 

in Figure 10(a) is pcenter as described by Equation 4, the point of absolute 

maximum in the direction of every eigenvector and every point along the 

first eigenvector is a point of maximum density in the direction of the 

second eigenvector. The white circle in Figure 10(a) represents pclosest as 

defined by Equation 5, the point along the first eigenvector that is closest 

to the center of the neighborhood in the lower-right voxel. The algorithm 

algebraically calculates the coordinates of the polynomial center, the 

closest point along the first eigenvector, and the closest point along the 

plane defined by the first and second eigenvectors. The intensity of each 
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point is set equal to the value of the polynomial at those locations, and 

those values are compared to a threshold value. Locations of relative 

maximum values are saved as L2 points if they meet the threshold value. 

Figure 10(b) illustrates the detection density raster as it would be 

approximated by 2nd-order polynomials. The white dots are the L2 points 

that trace out the reflective surfaces. 

Figure 9. A cross-section of the raster showing (a) the number of detected photons within 

each voxel and (b) the result of smoothing with the least-squares filter. 

 
a b 

Figure 10. (a) The filtered raster approximates a local region relative to the bottom right voxel. 

(b) L2 points are spaced along contour lines of maximum density, which trace out surfaces. 

 
a b 
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5 Discussion 

Inspection of the Bridge Sign output of both the artificial scene and the 

terrestrial lidar scene shows that the L2 point cloud outputs match the 

original scene with good fidelity and image interpretability. There are no 

spurious points above the ground, showing that the effects of background 

light and dark current have been removed. Furthermore, there is no 

apparent patterning on the ground surface due to the uneven scan pattern 

of the sensor. 

Figure 3(d,e) illustrates how the algorithm handles the unavoidable 

tradeoff between feature sensitivity and surface integrity. For low SNR 

imagery, it may not be possible to distinguish between actual gaps in a 

surface and patches of lower-than-normal returns due to signal variance. 

The spoke target imagery shows a reasonable tradeoff between 

distinguishing the wheel spokes and filling in gaps in the surface. The 

spoke edges do have a ragged quality, which is reasonable given the L1 

SNR shown in Figure 3(d), but they also correctly maintain a flat and level 

surface, with no curling up or down and no melted-surface type of 

distortion. The height values of the spoke target surface in the L1 point 

cloud have a standard deviation of 5.2 cm and the height values of the 

target in the filtered L2 point cloud have a standard deviation of 4.2 cm. 

Figure 4(c) shows how much sharpness was lost by coincidence 

processing. The 15 cm bars are merged into a single rectangle, although 

the next largest set of 17.5 cm bars are still clearly distinguishable. This 

corresponds to approximately two times the IFOV of 9 cm. 

Figure 5(c) shows that Bridge Sign preserves the shape of the round upper 

surface of the coil target without any flattening-type of effect, although 

lower surfaces are lost due to lidar shadow. Analysis of the terrestrial lidar 

scene shows that tree foliage is represented by rounded surfaces in the L2 

data, although it is represented by 3D clouds of points in the L1 data. 

Nevertheless, the foliage does not show any flattening-type effect that 

would represent the foliage as flat horizontal planes, which would cause 

them to be confused with man-made features.  
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6 Conclusion 

The use of synthetic imagery allows us to control the main sensor 

parameters that affect image quality and compare output quality with the 

original scene. This comparison demonstrates that the Bridge Sign 

algorithm produces output imagery with good fidelity and interpretability. 

All else being the same, generating higher quality L2 point clouds can 

enable better quality image products, such as digital surface models for 

topographic mapping or more accurate feature classification. 

Alternatively, improved coincidence processing can enable satisfactory 

image quality at lower laser transmitter powers than would otherwise be 

required. Future work may improve image quality by using a different 

windowing filter. For instance, the signal-to-noise ratio of the imagery 

varies across the scene, so a filter that dynamically adjusts for that could 

produce better results. It would also be valuable to develop new techniques 

for coincidence processing that are more computationally efficient since 

Bridge Sign and other current coincidence processing require more 

computing resources than can be easily integrated into a sensor package. 



ERDC/GRL TR-20-1 20 

 

References 

Albota, M. A., R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, 
B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson. 2002. 
“Three-dimensional imaging laser radar with a photon-counting avalanche 
photodiode array and microchip laser.” Applied Optics 41(36) 7671-7678. 

Amenta, N., and M. Bern. 1999. “Surface reconstruction by Voronoi Filtering.” Discrete 
and Computational Geometry 22 481-504. 

Bressel, C., I. Itzkan, J. E. Nunes, and F. Hoge. 1977. “Airborne oceanographic lidar 
system.” Proc. 11th Int. Symp. Rem. Sens. Env. 2 1259-1268. 

Clifton, W. E., B. Steele, G. Nelson, A. Truscott, M. Itzler, and M. Entwistle. 2015. 
“Medium altitude airborne Geiger-mode mapping LIDAR system.” Proc. SPIE 
9465. 

Degnan, J., R. Machan, E. Leventhal, D. Lawrence, G. Jodor, and C. Field. 2008. “Inflight 
performance of a second-generation photon-counting 3D imaging lidar.” Proc. 
SPIE 6950. 

Dumanis, D. 2016. “Airborne optical systems test bed (AOSTB)” Technical Report, MIT 
Lincoln Laboratory, https://apps.dtic.mil/dtic/tr/fulltext/u2/1033486.pdf  

Eldar, Y., M. Lindenbaum, M. Porat, and Y. Y. Zeevi. 1997. “The farthest point strategy for 
progressive image sampling.” IEEE Trans. on Image Proc. 6(9) 1305-1315. 

Gonzalez, R. C., and R. E. Woods. 2008. Digital Image Processing. Upper Saddle River, 
New Jersey: Pearson Prentice Hall. 

Gray, G. 2011. “High Altitude Lidar Operations Experiment (HALOE) – Part 1, System 
Design and Operation.” Proc. Of Military Sensing Symposium, Active Electro-
Optic Systems. 

Itzler, M., M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. 
Zalud, T. Senko, J. Tower, and J. Ferraro. 2010. “Geiger-mode avalanche 
photodiode focal plane arrays for three-dimensional imaging LADAR.” Proc. of 
SPIE 7808. 

Knowlton, R. 2011. “Airborne ladar imaging research testbed.” MIT Lincoln Lab. Tech 
Notes. 

Kondratko, P., R. Irwin, A. Strevey, J. Medbery, and P. Earhart. 2019. “Geiger-mode 
avalanche photodetector camera technology at Ball Aerospace.” Proc. SPIE 
11005. 

Marino, R. M., and W. R. Davis. 2005. “Jigsaw: a foliage-penetrating 3D imaging laser 
radar system.” Lincoln Laboratory Journal 15(1), 23-36. 

Stevens, J. R., N. A. Lopez, and R. R. Burton. 2011. “Quantitative data quality metrics for 
3D laser radar systems.” Proc. of SPIE 8037. 

https://apps.dtic.mil/dtic/tr/fulltext/u2/1033486.pdf


ERDC/GRL TR-20-1 21 

 

Stoker, J. M., Q. Abdullah, A. Nayegandhi, and J. Winehouse. 2016. “Evaluation of single 
photon and Geiger mode lidar for the 3D elevation program.” Remote Sensing 8, 
767. 

Vasile, A. N., L. J. Skelly, M. E. O’Brien, D. G. Fouche, R. M. Marino, R. Knowlton, M. J. 
Khan, and R. M. Heinrichs. 2012. “Advanced coincidence processing of 3D laser 
radar data.” Adv. Vis. Comp.: 8th Int. Symp. 382-393. 

 

 



ERDC/GRL TR-20-1 22 

 

Acronyms 

APD avalanche photo-diodes 

ALIRT Airborne Ladar Imaging Research Testbed 

FPA focal plane array 

GmAPD Geiger-mode avalanche photo-diode 

GPS global positioning unit 

HALOE High-Altitude LIDAR Operations Experiment 

IFOV instantaneous field-of-view 

IMU inertial measurement unit 

MAPCP Maximum A Posteriori Coincidence Processing 

MIT Massachusetts Institute of Technology 

MPSCP Multiple-Peak Spatial Coincidence Processing 
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