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Abstract 

Satellite monitoring of cyanobacterial harmful algal blooms in small 

freshwater lakes and reservoirs remains challenging. This is partly due to 

the configurations and resolutions of commonly utilized satellite 

imagers, which are traditionally designed for large terrestrial 

applications. The purpose of this report is to provide an efficient 

methodology for the detection and quantification of harmful algal bloom 

indicators via remote sensing imagery utilizing the newly developed 

open-source R package waterquality. To accomplish this goal, this report 

uses Harsha Lake as a case study to demonstrate the use of water quality 

proxies (chlorophyll-a, phycocyanin, and turbidity) for the evaluation of 

inland lake and reservoir water quality. This package and associated 

manuscript were designed to assist researchers and water managers by 

establishing a flexible and user-friendly workflow to improve water 

quality monitoring. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 

Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 

All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 

be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1  Introduction 

1.1 Background 

There has been a noticeable increase in both the occurrence and severity of 

cyanobacterial harmful algal blooms (CHABs) in water bodies across the 

United States (Anderson et al. 2000; Graham 2006; USEPA 2012a). 

CHABs have the ability to cause adverse effects on human and animal 

health as well as disrupt local economies (Anderson et al. 2000; Linkov et 

al. 2009; USEPA 2012a,b). However, consistent in situ monitoring of all 

at-risk water bodies in the United States would be extremely costly and 

labor intensive, if even possible. To compound this issue, CHABs are 

dynamic and respond quickly to environmental and hydrologic changes 

such as nutrient loads, air and water temperature, and wind speed, which 

may vary on timescales of days to hours (Dokulil and Teubner 2000; 

Hunter et al. 2008). This has given rise to the use of remote sensing 

methods for large-scope water quality studies. In general, satellite-based 

remote sensing offers a cost-effective and more consistent means of 

surveying large spatial extents, encompassing most US water bodies. 

There are multiple, available data sets from satellite sensors, many of 

which are free to the public or available to the Department of Defense 

through government contracts, that offer the spatial, spectral, and 

geographic coverage needed for the study of CHABs. These include such 

sensors as the Medium Resolution Imaging Spectrometer (MERIS), 

Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8, 

WorldView-2, and Sentinel-2 (Augusto-Silva et al. 2014; Blondeau-

Patissier et al. 2014; Beck et al. 2016; 2017; Johansen et al. 2018a; Klemas 

2012; Reif 2011; Stumpf et al. 2012). To avoid confusion, it is important to 

note that Sentinel-2 is actually a constellation of two identical satellites 

(Sentinel-2A and Sentinel-2B) with identical configurations. Since these 

two satellites utilized identical sensors, they are treated as a single satellite 

throughout the workflow. 

However, a major concern with this approach is satellite revisit time, 

which is frequently worsened by heavy cloud cover during the summer of 

mid-latitude regions often affected by CHABs. The issue is further 

compounded by the variation in each satellite imager’s spatial and spectral 

configuration, such as their pixel sizes, band centers, and band widths 

(Tables 1 and 2). Therefore, it is recommended that water managers and 
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researchers utilize multiple sensors to increase cloud-free image 

acquisition as well as capture as much of the water’s spectral signature as 

possible. Although spectral signatures are the foundation of remote 

sensing, high spectral resolution (many narrow spectral bands) is 

especially important to water quality remote sensing because water has a 

much lower signal-to-noise ratio compared to land observations, and algal 

pigments are often only detectable by narrow peaks (reflectance) and 

troughs (absorption) in the spectral signature (Beck et al. 2016, 2017; 

Johansen et al. 2018a). This is vital given that each water body contains 

unique mixtures of bio-chemical variables and physical characteristics. It 

is hypothesized that a comprehensive view would allow for precise 

detection and quantification of water quality for individual water bodies. 

To achieve this goal of precision-based water quality monitoring, the 

authors have developed an open-source R software package called 

waterquality (Johansen et al. 2018b; R Core Team 2017). This software 

package contains a continually growing list of satellite-derived algorithms 

for the detection and quantification of the following three common water 

quality proxies: chlorophyll, turbidity, and phycocyanin.  

Most commonly, chlorophyll-a is used as the measure of chlorophyll 

because it is the ubiquitous photosynthetic pigment found in both toxic 

and non-toxic algal species, and it is helpful for the detection of blooming 

conditions as well as blooms containing mixed algae species. However, 

this report refers to the more generic term chlorophyll because researchers 

have utilized a variety of techniques (cell counts, sonde spectral 

concentrations, corrected chlorophyll-a, etc.) to measure chlorophyll 

concentrations. Phycocyanin (PC) is an important indicator of CHABs and 

water quality risk because PC is a cyanobacteria/blue-green algae (BGA)-

specific pigment. Fortunately, PC contains a distinct spectral absorption 

feature centered on 620 nanometers (nm), which makes BGA/PC 

detectable to sensors with the appropriate spectral configuration (Schalles 

and Yacobi 2000; Simis et al. 2005; Randolph et al. 2008; Stumpf et al. 

2016; Wozniak et al. 2016). Turbidity is the relative clarity of water, and 

specifically it is the backscattering caused by suspended materials in the 

water. As such, turbidity is not a measure of CHABs directly but has been 

shown to be highly correlated with chlorophyll and BGA/PC 

concentrations in highly productive eutrophic water bodies and can be an 

early warning sign (Barnes et al. 2015; Dogliotti et al. 2015; Doxaran et al. 

2002, 2006; Moore 1980; Olmanson et al. 2013). Unfortunately, none of 

these parameters are a direct measure of toxicity, and most operational 
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imaging satellites do not contain the important phycocyanin spectral band 

associated with cyanobacteria. Some imagers, such as Landsat-8, have 

been found to have serious limitations for their ability to accurately 

quantify chlorophyll concentrations (Beck et al. 2016; Hunter et al. 2008; 

Stumpf et al. 2016). Despite these limitations, this research focused on 

these five sensors and three parameters because they still provide an 

effective methodology for estimating CHABs concentration (Beck et al. 

2016, 2017; Johansen et al. 2018a; Randolph et al. 2008; Schalles and 

Yacobi 2000; Simis et al. 2005; Stumpf et al. 2016; Wynne et. al 2008; 

Wozniak et al. 2016).  

1.2 Objective 

The main goal of this report is to describe the functionality of the 

waterquality package via a case study of Harsha Lake in Southwest Ohio, 

United States (Figure 1). The workflow is designed to allow users to 

efficiently convert atmospherically corrected reflectance imagery from any 

of the five satellite imagers (MODIS, MERIS, Landsat-8, Sentinel-2, and 

Worldview-2) into a suite of well-established water quality indices and 

subsequently evaluate those indices against in situ observations to 

quantify water quality for a given body of water (Johansen 2018c).  
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Figure 1. Sentinel-2A image of Harsha Lake Ohio, United States, on August 8, 2016, 

overlaying high-resolution aerial image of surrounding landscape with the 44 surface 

sampling locations. 

 

1.3 Approach 

The approach of this study is presented in Chapter 2, Data and Methods. 
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2 Data and Methods 

2.1 Imagery acquisition  

A suite of imager options to choose from is provided, including MODIS, 

MERIS, Landsat-8, Sentinel-2, and Worldview-2. These five satellite 

imagers range widely in their spectral, spatial (1.8 m – 300 m), and 

temporal resolutions (daily to 16-day revisit times), but all have near-

global coverage (Table 1). The data from these imagers are freely available 

to the public (except WorldView-2, which is available to Department of 

Defense personnel through a government contract), and require the 

creation and activation of an account on either the European Space Agency 

(ESA) Copernicus Hub (https://scihub.copernicus.eu) or the US Geologic Survey 

(USGS) Earth Explorer (https://earthexplorer.usgs.gov). Once activated, the user 

can log in to the Open Access Hub or Earth Explorer to search for available 

imagery based on spatial, temporal, and imagery needs at no charge. 

Table 1. List and description of the imaging satellites utilized in this study, including 

name, spatial resolution, temporal resolution, and source. 

Satellite Imager 

Spatial 

Resolution 

Temporal 

Resolution Source 

Worldview-2 1.8m 1.1 days https://www.digitalglobe.com/resources/satellite-information  

Sentinel-2 10-20m 5-10 days https://sentinel.esa.int/web/sentinel/missions/sentinel-2  

Landsat-8 30m 16 days https://landsat.usgs.gov/landsat-8  

MODIS 250m 1-2 days https://modis.gsfc.nasa.gov/  

MERIS (2002-

2012) 300m 3 days 
https://earth.esa.int/web/guest/missions/esa-operational-eo-

missions/envisat/instruments/meris  

2.2 Study area and surface measurements 

William H. Harsha Lake, also known as East Fork Lake, is a US Army Corps 

of Engineers (USACE) monitored fresh water reservoir located in Southwest 

Ohio with a surface area of approximately 8 km2 (Figure 1). Harsha Lake 

was chosen for this case study because it is a location of recent and 

frequently occurring algal blooms, including CHABs, and is a site of 

previous and ongoing research (Beck et al. 2016, 2017, 2018; Johansen et al. 

2018a; Xu et al. 2018). Harsha Lake is also a source of drinking water 

coupled with heavy recreational use, making re-occurring blooms and their 

associated toxins potentially dangerous for humans and wildlife, as well as 

posing potentially significant impacts to the local economy (USEPA 2012a). 

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
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Given these conditions, the lake is subject to routine monitoring by the 

USACE, the US Environmental Protection Agency (USEPA), and the 

University of Cincinnati, which has provided a wealth of water quality data 

for this research.  

Based on previous findings of Beck et al. (2016) and Johansen et al. 

(2018a), this study will focus on using the Sentinel-2A sensor for the 

water quality analysis of Harsha Lake. The imagery and coincident 

surface water observations were acquired on August 8, 2016. Due to the 

dynamic nature of CHABs, a host of measurements was collected on the 

same day as close to the image acquisition time as possible. The Yellow 

Springs Instrument (YSI) 6600 water quality sonde was used to collect 

surface fluoresce measurements of chlorophyll-a (Chl µg/L), 

phycocyanin (BGA-PC-reflective units [RFU]), and turbidity (Turbidity+ 

nephelometric turbidity units [NTU]). YSI sonde measurements were 

chosen over traditional water sample approaches because they offer a 

more consistent measurement and require less sophisticated lab 

equipment and technical expertise. Furthermore, the precision and 

accuracy of the YSI 6600 are more than sufficient for this research: 

Range of ~0-400 µg/L, which equates to a range 0-100 relative RFU, a 

detection limit of ~0.1 µg/L, resolution of 0.1 µg/L, and linearity/R² > 

0.9999 (YSI 2003). Additional measurements collected that were not 

directly incorporated in this study include the following: specific 

conductance, pH, water temperature, dissolved oxygen, air temperature, 

wind speed, and Analytical Spectral Devices spectroradiometer 

reflectance measurements.  

2.3 Atmospheric correction and image pre-processing 

Currently, the ESA and USGS mainly distribute uncorrected top-of-

atmosphere (ToA) reflectance or radiance products. It is highly 

recommended that all users perform an atmospheric correction to convert 

satellite imagery into bottom-of-atmosphere (BoA) reflectance before 

conducting imagery analysis on any of the satellite imagery. This is due to 

the fact that remotely sensed imagery derives the vast majority of the 

upwelling radiance from atmospheric scattering while only a small fraction 

is from the water’s surface (Bernstein et al. 2012; Gao et al. 2009; Griffin 

and Burke 2003). Thus, an atmospheric correction should be applied to 

remove the atmospheric scattering effect, compensate for the weak signal 

from the water’s surface, and subsequently improve pigment detection and 

concentration accuracy.  
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Choosing the most appropriate atmospheric correction technique can be 

challenging and is typically location- and user-dependent. Additionally, 

image quality, availability of in situ measurements, cost, and industry 

standards may play a role in this important decision. Currently, 

atmospheric correction is not automated and may require proprietary 

software to run specific techniques, such as Fast Line-of-sight 

Atmospheric Analysis of Hypercubes (FLAASH) and QUick Atmospheric 

Correction (QUAC), which are available in the remote sensing software, 

Environment for Visualizing Images (ENVI®). Ultimately, this step is left 

to the user to decide and implement. However, Xu et al. (2018) provide an 

evaluation of atmospheric correction techniques including FLAASH, 

QUAC, Sen2Cor, and Empirical Line Model (ELM), specifically for the 

detection of CHABs in Harsha Lake using Sentinel-2 imagery. Their 

findings demonstrate that the ELM approach is the most effective, but this 

approach is also the most demanding, requiring surface observations and 

the deployment of massive black and white tarps to be used as ground 

control targets. Given that this study was designed to be user friendly with 

minimal technical training, it was decided to use the ESA Sentinel-2-

specific atmospheric correction method, Sen2Cor, because it is open-

source and can be directly incorporated in the workflow using the R 

package sen2r (Main-Knorn et al. 2017; Ranghetti and Busetto 2018). 

Even with the development of the sen2r package, the use of raw Sentinel-2 

imagery can be challenging because full scenes cover vast geographic 

areas, making them computationally large and contain spectral bands with 

varying spatial resolutions (Drusch et al. 2012). Due to this, it is 

recommended to conduct additional image processing after atmospheric 

correction, such as spectral band sub-setting and spatial masking. Note 

that these pre-processing steps are added to the R workflow as 

supplemental scripts to be implemented before using the waterquality 

package. This increases the flexibility and usability of the workflow to 

include atmospheric correction, spatial resampling, band sub-setting, and 

image masking to get an image file that contains the appropriate spatial 

and spectral information necessary for water quality analysis. Pre-

processing an image significantly reduces the size of the image, which 

dramatically reduces the computation time for the water quality algorithm 

calculations. Using this approach can reduce a full scene image from 

approximately 3 gigabytes (GB) to less than 1 megabytes (MB). While this 

case study focuses on Sentinel-2 imagery, these functions can also be 

utilized for other satellite imagers as needed.  
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The final step, before using the waterquality package and conducting the 

water quality index calculations, is to verify that all inputs are in the 

standard format according to the sensor type in Table 2. This step is 

necessary regardless of which pre-processing techniques and atmospheric 

correction methods have been applied. In addition, it ensures that all 

analyses, irrespective of the researcher, are conducted utilizing the same set 

of band configurations, resulting in comparable and reproducible results.  

Table 2. The spectral band configurations of each of the satellite imagers utilized in 

this study, highlighting the variation in spectral resolutions from one imager to 

another. The letter “b” denotes which spectral band is being described. 

Imager Center (nm) Range (nm) Bandwidth (nm) GSD (m) 

WorldView-2     

b1 425 400–450 50 1.8 

b2 480 450–510 60 1.8 

b3 545 510–580 70 1.8 

b4 605 585–625 40 1.8 

b5 660 630–690 60 1.8 

b6 725 705–745 40 1.8 

b7 832.5 770–895 125 1.8 

b8 950 860–1040 180 1.8 

Sentinel-2     

b1 443 433-453 20 20 

b2 490.5 458–523 65 20 

b3 560.5 543–578 35 20 

b4 665 650–680 30 20 

b5 705.5 698–713 15 20 

b6 740.5 733–748 15 20 

b7 783 773–793 20 20 

b8 842.5 785–900 115 20 

b9 (b8a) 865 855–875 20 20 

Landsat-8     

b1 440 430–450 20 30 

b2 480 450–510 60 30 

b3 560 530–590 60 30 
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Imager Center (nm) Range (nm) Bandwidth (nm) GSD (m) 

b4 655 640–670 30 30 

b5 865 850–880 30 30 

MODIS     

b1 645 620–670 50 250 

b2 858.5 841–876 35 250 

MERIS     

b1 407 402–412 10 300 

b2 443 438–448 10 300 

b3 490 485–495 10 300 

b4 510 505–515 10 300 

b5 560 555–565 10 300 

b6 620 615–625 10 300 

b7 665 660–670 10 300 

b8 681.5 678–685 7 300 

b9 709 704–714 10 300 

b10 753.5 750–757 7 300 

b11 759.5 757–762 5 300 

b12 779.5 772–787 15 300 

b13 865 855–875 20 300 

b14 885 880–890 10 300 

b15 900 895–905 10 300 

To assist with this process, it was important to include the output of the 

pre-processing stage for the case study (Figure 2). For this example, the 

Sentinel-2 image was downloaded from the ESA Copernicus Open Access 

Hub and converted from ToA reflectance to BoA reflectance using the 

sen2r package in R. This package requires minimal technical knowledge to 

run once installed. In fact, converting a Sentinel-2 image from ToA to BoA 

only requires one function (sen2cor) and one argument (input file folder 

ending in .SAFE).  

There are other functions contained in the sen2r package, including a 

graphical user interface that allows users to download and pre-process 

imagery directly, but since this package is still in beta, it was decided to 
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incorporate only the single sen2cor function in this workflow. (For those 

interested in exploring this package further, please reference 

https://ranghetti.github.io/sen2r.) The output of the sen2r process is a series of 

folders and JPEG 2000 files organized using an .XML file. A small series 

of steps as outlined below allows for the conversion of this complicated 

layered folder structure to be reformatted into a single stacked .TIFF 

image. A full data flow diagram can be found in the Appendix (A-5).  

• Define the image directory to create a list of the JPEG 2000 file names. 

• Create raster template using an existing band so all bands have the 

same pixel dimensions. 

• Option 1 (recommended): use an Environmental Systems Research 

Institute (ESRI) Shapefile (.shp) or GeoPackage (.gpkg) file to clip or 

mask image to an area of interest (ESRI 1998; OGC, n.d.).  

• Option 2: use full scene for water quality analysis. Useful if evaluating 

multiple water bodies within a single scene. 

• Create subset of only the required spectral bands as stated in Table 2. 

• Finally, stack the raster and save image as .TIFF. 

Following the steps above, it was possible to reduce the Sentinel-2 full scene 

reflectance imagery and associated data from 1.18 GB of storage to 519 KB 

for the stacked .TIFF image of Harsha Lake. Thus, the pre-processing steps 

reduced the imagery size by 99.96% and significantly reduced requirements 

for storage as well as computation time of running the water quality 

algorithms. The reduction in image size is the driving force for the 

recommendation above, and although these steps are not required, users 

should expect significant increases in computation time with increases in 

image size. A subset of the final results of the pre-processing steps are 

displayed in Figure 2, where each plot corresponds to the commonly utilized 

Sentinel-2 bands: blue, green, red, and near infrared.  

https://ranghetti.github.io/sen2r
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Figure 2. Four important Sentinel-2 spectral bands commonly used in the calculation 

of many water quality algorithms contained in the waterquality package suite. 
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3 Image Analysis Using waterquality 

Once the data have been pre-processed and atmospherically corrected, the 

water quality algorithms can be applied using the waterquality package. 

This package makes use of a suite of well-established algorithms designed 

for the evaluation of water quality using remotely sensed imagery. These 

algorithms are able to detect the spectral response of only the uppermost 

portion of the water column (up to approximately 1 m below the surface). 

Specifically, these algorithms were developed for the detection and 

quantification of the pigments associated with CHABs, which include the 

various measurements of chlorophyll/chlorophyll-a, the cyanobacteria 

specific pigment phycocyanin, and turbidity, used as an indication of water 

clarity (Mishra et al. 2014; Randolph et al. 2008; Simis et al. 2005; Stumpf 

et al. 2016; Wynne et al. 2008). Studies have demonstrated that these 

parameters can strongly co-vary, but the degree is influenced by water bio-

chemistry, geography, and atmospheric conditions (Dokulil and Teubner 

2000; Stumpf et al. 2016; Wynne et al. 2012, 2015). Localized variations 

and the subsequent effect on the algorithm’s performances are the 

justification for allowing the user to choose a single algorithm from a 

comprehensive list of available algorithms. As such, this package aids water 

managers and researchers in the move towards near real-time monitoring 

of algal blooms by providing a customizable and user-friendly approach for 

analyzing remotely sensed imagery for CHABs detection and quantification. 

3.1 Water quality algorithms 

Currently, the package contains 45 algorithms that can be applied for the 

detection of three parameters with each one being labeled by the 

parameter of the original author’s intent (Table 3 with references in the 

Appendix [A-1]). However, given the co-variance of these parameters and 

overlap between spectral bands, it may be appropriate to use one 

algorithm that was originally developed for one parameter (i.e., BGA/PC) 

for the detection of another (i.e, chlorophyll-a). Note that not all 

algorithms are able to be applied to all sensors. This limitation is due to 

the spectral configurations of each sensor displayed in Table 2. Careful 

documentation has been made so that each algorithm is searchable within 

the package, using a “?” in front of the algorithm name (?Am092Bsub), 

which provides the algorithm calculation and reference to the original 

paper. The output of these algorithms are in relative index values and not 

the actual estimated concentrations of chlorophyll (µg/L), phycocyanin 
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(RFU), or turbidity (NTU) values. Relative index values can be easily 

converted to estimated concentration values using in situ measurements 

and will be described in more detail in the algorithm evaluation and model 

validation section.  

Table 3. Comprehensive list of water quality algorithms, associated water quality 

parameter, and band arithmetic. Reference to the original source publication is found 

in the Appendix (A-1).  

Water Quality Algorithm 

Water Quality 

Parameter 

Original Band Calculation 

(w = wavelength in nm) 

 Al10SABI chlorophyll 

(w857 - w644) / (w458 + 

w529) 

 Am092Bsub chlorophyll (w681 - w665) 

 Am09KBBI BGA/PC 

(w686 - w658) / (w686 + 

w658) 

 Be162B643sub629 BGA/PC (w644 - w629) 

 Be162B700sub601 BGA/PC (w700 - w601) 

 Be162BsubPhy BGA/PC (w715 - w615) 

 Be16FLHblue chlorophyll 

(w529) - (w644 + (w458 - 

w644)) 

 Be16FLHBlueRedNIR BGA/PC 

(w658) - (w857 + (w458 - 

w857)) 

 Be16FLHGreenRedNIR BGA/PC 

(w658) - (w857 + (w558 - 

w857)) 

 Be16FLHviolet chlorophyll 

(w529) - (w644 + (w429 - 

w644)) 

 Be16FLHVioletRedNIR BGA/PC 

(w658) - (w857 + (w444 - 

w857)) 

 Be16MPI BGA/PC 

((w615) - (w601) - (w644 - 

w601)) 

 Be16NDPhyI BGA/PC 

(w700 - w622) / (w700 + 

w622) 

 Be16NDPhyI644over615 BGA/PC 

(w644 - w615) / (w644 + 

w615) 

 Be16NDPhyI644over629 BGA/PC 

(w644 - w629) / (w644 + 

w629) 

 Be16NDTIblue chlorophyll 

(w658 - w458) / (w658 + 

w458) 
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Water Quality Algorithm 

Water Quality 

Parameter 

Original Band Calculation 

(w = wavelength in nm) 

 Be16NDTIviolet chlorophyll 

(w658 - w444) / (w658 + 

w444) 

 Be16Phy2BDA644over629 BGA/PC (w644 / w629) 

 Da052BDA BGA/PC (w714 / w672) 

 De933BDA chlorophyll (w600 - w648 - w625) 

 Gi033BDA chlorophyll 

((1 / w672) - (1 / w715)) * 

(w757) 

 Go04MCI BGA/PC 

(w709 - w681 - (w753 - 

w681)) 

 HU103BDA BGA/PC 

(((1 / w615) - (1 / w600)) - 

w725) 

 Kn07KIVU chlorophyll (w458 - w644) / (w529) 

 Ku15PhyCI BGA/PC 

-1 * (w681 - w665 - (w709 

- w665)) 

 Ku15SLH BGA/PC 

((w715) - (w658) + (w715 - 

w658)) 

 MI092BDA BGA/PC (w700 / w600) 

 MM092BDA BGA/PC (w724 / w600) 

 MM12NDCI chlorophyll 

(w715 - w686) / (w715 + 

w686) 

 MM12NDCIalt BGA/PC 

((w700 - w658) / (w700 + 

w658)) 

 MM143BDAopt BGA/PC 

((1 / w629) - (1 / w659)) 

* (w724) 

 SI052BDA BGA/PC (w709 / w620) 

 SM122BDA BGA/PC (w709 / w600) 

 SY002BDA BGA/PC (w650 / w625) 

 TurbBe16GreenPlusRedBothOverViolet turbidity ((w558 + w658) / w444) 

 TurbBe16RedOverViolet turbidity (w658 / w444) 

 TurbBow06RedOverGreen turbidity (w658 / w558) 

 TurbChip09NIROverGreen turbidity (w857 / w558) 

 TurbDox02NIRoverRed turbidity (w857 / w658) 

 

TurbFrohn09GreenPlusRedBothOverBlue turbidity ((w558 + w658) / w458) 
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Water Quality Algorithm 

Water Quality 

Parameter 

Original Band Calculation 

(w = wavelength in nm) 

 TurbHarr92NIR turbidity (w857) 

 TurbLath91RedOverBlue turbidity (w658 / w458) 

 TurbMoore80Red turbidity (w658) 

 Wy08CI BGA/PC 

-1 * ((w686) - (w672) - 

(w715 - w672)) 

 Zh10FLH chlorophyll 

(w686) - (w715 + (w672 - 

w715)) 

3.2 Water quality index calculation function 

The main function of this package is called wq_calc(), which calculates 

water quality indices by using a reflectance raster stack, or multi-band 

raster layer, as an input, user-defined algorithm(s) selection, and satellite 

configuration selection corresponding to the following three variables: 

raster_stack, alg, and sat. 

• raster_stack - The input reflectance image to be used in band 

algorithm calculation 

• alg - Determines the algorithm to be utilized  

o Single Algorithm – “Zh10FLH” 

o Multiple Algorithm – c(“Zh10FLH, Wy08CI, Am092BSub”) 

o Type of Algorithm – “phycocyanin” 

o All Possible Algorithms (default) – “all”  

• sat - Determines the appropriate spectral configuration associated with 

the algorithm to be calculated from a predefined list  

o WorldView-2 

o Sentinel-2 

o Landsat-8 

o MODIS 

o MERIS 

All algorithms are calculated using the equations listed in Table 3 and the 

spectral band centers as described in Table 2. Consideration was given so 

that each band’s spectral center was as close as possible to the original 

algorithm’s wavelength. The band arithmetic for each sensor can be 

examined by opening the algorithms.R file inside the waterquality 

package. Due to the spectral configurations of Sentinel-2, 24 of the 45 

algorithms are able to be calculated for the three water quality parameters. 
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To demonstrate the comprehensive nature of this tool, all 24 algorithms 

were calculated, and four are graphed in Figure 3. Each algorithm is 

calculated using a unique equation, which results in a wide variety of value 

ranges displayed in Figure 3. At this point in the process, these values are 

referred to as relative indices because the values do not reflect the values 

associated with the three water quality parameters. For example, high 

values for one index may correlate with higher chlorophyll-a 

concentrations, while another might represent an inverse relationship.  

Predictive models have been developed using synthetic imagery, which 

apply these algorithms for multiple lakes over multiple dates, but due to 

the dynamic nature of CHABs and limited research on the transferability 

of these algorithms, a standard algorithm-model has yet to be established 

(Beck et al. 2016, 2017; Johansen et al. 2018a). Therefore, it is 

recommended that managers apply in situ measurements to develop 

personalized or precision-based predictive models for the water body of 

interest. However, this report provides a framework for the production of 

simple, predictive models using in situ measurements and the results of 

the waterquality package. 

Figure 3. Four Sentinel-2 algorithms produced by the wq_calc function in the 

waterquality package. Note that measurements of each algorithm are relative index 

values and do not represent absolute water quality parameter values. 
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3.3 Algorithm evaluation and model validation 

Due to the many potential analytical and statistical options, it was decided 

to exclude algorithm evaluation or model validation directly from the 

waterquality package. However, it is important to include an example in 

the workflow given that a standard approach has yet to be established. The 

initial step of this process requires in situ observations with corresponding 

spatial coordinates of the observations and one water quality 

measurement (chlorophyll, BGA/PC, or turbidity). To increase usability, 

two options are included in the workflow for extracting the pixel values 

from the water quality parameters. The first option is to import an ESRI 

Shapefile (.shp) containing the spatial and water quality information. The 

second option is to take a spreadsheet with these values and convert them 

into a spatial object called a GeoPackage file (.gpkg). The latter option is 

preferred because a .gpkg file is a single file that contains all of the spatial 

information while a shapefile is made up of multiple separate files. Once 

the spatial object and the raster stack are created and loaded into the R 

working environment, a single function called extract from the raster 

package can be applied to extract the corresponding pixel values of all of 

the algorithms and combined with the in situ water quality information 

into a single data table called a data frame in R (Hijmans 2017). This data 

frame is then utilized as the input for the algorithm evaluation and model 

validation, or can be easily exported as a .CSV file or Excel spreadsheet for 

subsequent analysis or archiving.  

Before conducting the final statistical analysis, it is recommended to 

inspect the sample locations on the imagery for any mixed or cloudy pixels 

that might alter the effectiveness of the predictive model. This can be 

accomplished by manually viewing the vector points on top of the original 

reflectance imagery. Any sample point that corresponds to any non-water 

(clouds, coast, and manmade objects, etc.) pixel should be removed. For 

this study, only one location (H03) was contaminated by mixing, where 

the land near the lake’s beach was combined with water. By removing this 

location, the study was left with 41 in situ observations to be used in the 

model. To offer additional context, summary statistics can be produced 

using the R package pastecs and the function stat.desc, providing a host of 

metrics including the minimum, maximum, mean, range, and standard 

deviation of each variable (Grosjean and Ibanez 2018).  

The final step is to evaluate the performance of each algorithm with the 

in situ measurements collected for each of the three water quality 
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parameters. This report follows the methodology set forth by Johansen et 

al. (2018a) by building a function to calculate a repeated k-fold cross-

validation using the R package, caret (Kuhn et al. 2018; Stone 1974). This 

process allows for the evaluation of the entire suite of algorithms for the 

chosen water quality parameter. Due to the size of the data, it was 

determined that a three-fold with five repeats was most appropriate. There 

are two types of outputs from this statistical function. First, the k-means 

cross validation method produces average r2, root mean square error 

(RMSE) and mean average error (MAE) values for the 15 models (three 

folds * five repeats). Second, a linear regression model is calculated using 

all 41 sample points together to calculate an r2, p value, slope, and 

intercept. This function is written so that the user has to define only the 

data frame, a random seed value to ensure reproducibility (this study used 

the date of the first model run), the column numbers of the algorithms 

being evaluated, and the column name of the in situ water quality 

parameter being evaluated. Since this study acquired in situ 

measurements for all three water quality parameters, the water quality 

parameter input name must be manually changed for each to produce 

three separate statistical output tables.  
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4 Results 

The 41 sampled surface locations were used to calculate the descriptive 

statistics for the three water quality parameters and the following 

environmental variables at Harsha Lake: secchi depth, wind speed, air 

temperature, and water temperature (Table 4). YSI sonde measurements 

indicated that during the sampling campaign, water quality conditions 

were fair with relatively low concentration levels of all three water quality 

parameters. Chlorophyll concentrations averaged 7.30 µg/L with a 

maximum concentration of 11.74 µg/L occurring at sampling location 

H24B and a minimum concentration of 3.93 µg/L at H16B. These two sites 

also contain the minimum and maximum concentrations of BGA/PC, 

indicating a moderate degree of collinearity (Figure 4). This geographic 

bifurcation of the lake into relatively higher concentrations in the east and 

relatively lower concentrations in the west as well as the dominance of 

cyanobacteria as the primary chlorophyll producer has been documented 

in previous studies of Harsha Lake (Beck et al. 2016, 2017; Johansen et al. 

2018a; Xu et al. 2018). A divergence between previous studies and the 

present study is the relatively low concentration level of all three water 

quality variables. This deviation allows for additional investigation into 

potentially detecting the lower limits of these algorithms and determining 

how algorithm performance is affected by concentration levels. 

Understanding algorithm thresholds and performance at low 

concentration levels is pivotal because adverse effects start to emerge that 

affect both human and animal health at chlorophyll-a concentrations as 

low as 10 µg/ L (Chorus and Bartram 1999; Stumpf et al. 2016). 

Table 4. Descriptive statistics of YSI sonde-collected surface measurements for 

Harsha Lake acquired on August 8, 2016.  

 

Secchi 

Depth 

(cm) 

Wind 

Speed 

(m/s) 

Air Temp 

(°C) 

Water 

Temp 

(°C) 

Turbidity 

(NTU) Chl (µg/L) 

BGA/PC 

(RFU) 

Min 50.98 0.13 25.30 28.73 1.30 3.93 4.44 

Max 111.94 5.15 34.50 30.07 12.04 11.74 12.10 

Range 60.96 5.02 9.20 1.34 10.74 7.81 7.66 

Mean 93.06 2.24 30.15 29.31 3.00 7.30 6.44 

Std Dev 15.77 1.18 2.47 0.29 2.29 2.17 1.53 
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Figure 4. Covariance plot of the YSI sonde-measured surface locations for the three 

water quality parameters, turbidity (Turbid_NTU), chlorophyll (Chl_ugL), and blue-

green algae/phycocyanin (BGA_PC_RFU).  

 

4.1 Chlorophyll 

Six of the 24 Sentinel-2 algorithms tested produced correlations sufficient 

for the detection of chlorophyll with r2 values ranging from 0.505 to 0.665, 

RMSE values from 1.234 to 1.587, and relative error of 15.8% to 20.3% 

(Table 5). For the comprehensive results of all chlorophyll algorithms, see 

Appendix (A-2). The two highest performing algorithms were Al10SABI 

and Go04MCI, which performed well even with low surface chlorophyll 

concentrations (Figure 5). Of particular interest is the difference between 

the spectral bands and the calculation of these two algorithms. Al10SABI 

uses four bands covering much of the visible spectrum to compute a 

surface algal bloom index (SABI) style algorithm (865 – 665) / (490.5 + 

560.5) while Go04MCI uses three spectrally concentrated bands to 
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calculate a Maximum Chlorophyll Index (MCI) style algorithm (705.5 –

665 – (740.5 – 665).  Even though both make use of the 665 nm band, 

these appear quite different and capture very different spectral features 

associated with chlorophyll and BGA/PC.  

4.2 Blue-green algae/Phycocyanin (BGA/PC) 

Only two of the 24 algorithms tested produced high enough correlations to 

be considered for this study. For the comprehensive results of all BGA/PC 

algorithms, see the Appendix (A-3). The two algorithms were Go04MCI 

and Al10SABI, which were the same as the top performing chlorophyll 

algorithms, but in reversed order. The r2 values were 0.657 and 0.576, 

RMSE of 0.957 and 1.052, and relative error of 12.5% and 13.7% for 

Go04MCI and Al10SABI, respectively (Table 5). An unexpected result was 

that there were only two acceptable BGA/PC algorithms, since previous 

studies demonstrated that the dominant algal species of Harsha Lake 

during bloom conditions was cyanobacteria; thus, a stronger overlap 

between the chlorophyll and BGA/PC algorithms was expected (Johansen 

et al 2018a). Stumpf et al. (2016) offer a possible solution, who found that 

when cyanobacteria is the dominant algal species, chlorophyll algorithms 

are the preferred choice. In addition, this might be further exemplified 

with relatively low concentration levels of both pigments. An additional 

contributing factor to note is that the Sentinel-2 imager does not contain 

the 620 nm spectral band associated with BGA/PC.  

4.3 Turbidity 

Finally, 5 of the 24 turbidity algorithms evaluated were deemed sufficient 

for the detection of turbidity (NTU) as measured by the water quality 

sonde. The turbidity algorithms had r2 values ranging from 0.506 to 0.693, 

RMSEs from 1.760 to 1.414, and relative errors of 13.2% to 16.4% 

(Table 5). For the comprehensive results of all turbidity algorithms, see the 

Appendix (A-4). The highest performing algorithm was the Go04MCI 

algorithm followed by a three-way tie of the Am092Bsub, Wy08CI, and 

Ku15SLH algorithms. This tie is likely the result of the original algorithms 

being forced into specific Sentinel-2 bands, which results in multiple 

algorithms creating the same index values. Only the Go04MCI algorithm is 

shared among all three water quality parameters, and there is no overlap 

between chlorophyll and BGA/PC for the remaining four acceptable 

performing turbidity algorithms. Given that turbidity is a general water 
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clarity metric, this makes sense because these algorithms encompass 

additional spectral features than the more specific pigment algorithms.  

Table 5. Evaluation of top-performing algorithms for each water quality parameter at 

Harsha Lake according to Pearson's r test (Type-1), linear regressions, and k-folds 

cross-validation. 

  
Global Model Cross-Validated Average 

Algorithms 

Water 

Quality 

Parameter r² Slope Intercept p-value r² RMSE MAE 

Al10SABI Chl 0.665 -33.305 -1.352 0.000 0.677 1.234 0.958 

Go04MCI Chl 0.645 0.035 4.611 0.000 0.673 1.337 1.04 

TurbDox02NIRoverRed Chl 0.556 -13.001 11.552 0.000 0.568 1.459 1.162 

Da052BDA Chl 0.511 28.531 -24.368 0.000 0.523 1.535 1.25 

MM12NDCI Chl 0.511 64.421 3.982 0.000 0.520 1.526 1.22 

Be16FLHGreenRedNIR Chl 0.505 0.073 17.937 0.000 0.545 1.587 1.265 

Go04MCI BGA/PC 0.657 0.025 4.523 0.000 0.659 0.958 0.763 

Al10SABI BGA/PC 0.576 -21.885 0.753 0.000 0.613 1.052 0.789 

Go04MCI Turbidity 0.693 0.038 0.052 0.000 0.726 1.435 1.047 

Am092Bsub Turbidity 0.66 0.117 -0.296 0.000 0.537 1.454 1.117 

Wy08CI Turbidity 0.66 0.117 -0.296 0.000 0.533 1.415 1.085 

Ku15SLH Turbidity 0.66 0.059 -0.296 0.000 0.585 1.414 1.100 

Be16FLHBlueRedNIR Turbidity 0.506 0.071 3.441 0.000 0.501 1.76 1.257 
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Figure 5. Estimated Chlorophyll-a concentration (μg/L) for Harsha Lake, Ohio for 

August 8, 2016. Estimated concentrations were calculated by applying the Al10SABI 

algorithm derived linear model (-1.352x – 33.305) to the Al10SABI index values. 
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5 Conclusions 

The goals of this report are two-fold: (1) To establish a user-friendly 

workflow for evaluating satellite-based remote sensing of water quality 

with a particular focus on CHABs (see the Appendix [A-6]), and (2) To 

investigate the effectiveness of using Sentinel-2 imagery for the detection 

and quantification of three water quality parameters using the newly 

developed open-source R package waterquality. This package allows for 

the easy conversion of reflectance imagery from five satellite imagers into 

45 water quality algorithms. Furthermore, this report outlines a 

standardized workflow that guides researchers from data acquisition to 

statistical analysis of these algorithms with user-provided in situ 

measurements. Comprehensive R scripts and materials are available by 

referencing Johansen, 2018c. Study goals were accomplished by 

conducting a case study using Sentinel-2 imagery for Harsha Lake in 

Southwest Ohio and dense surface observations collected the same day as 

the satellite overpass.  

The results of this case study are promising because 13 algorithm-

parameter pairs had r2 values of 0.5 or greater. Of these 13 pairs, 6 were 

highly correlated with chlorophyll, 2 with BGA/PC, and 5 with turbidity 

(Table 5). There was significant overlap between two of the highest 

performing algorithms, which confirms the principle of transferability of 

these algorithms between pigments or what Johansen et al. (2018a) 

termed “portability.” For example, the Go04MCI algorithm had r2 values 

of greater than 0.5 for all three water quality parameters and was the top-

performing algorithm for both BGA/PC and turbidity (second best for 

chlorophyll). Also of note is the Al10SABI algorithm, which was the 

highest-performing algorithm for chlorophyll and second best for BGA/PC 

but did not meet the r2 threshold for turbidity. Given the complexity and 

dynamic nature of CHABs, it is encouraging that many simple reflectance 

algorithms demonstrate moderate to high levels of correlation between 

in situ observations and the three parameters. Each water quality 

parameter had at least one algorithm with an r2 value greater than 0.65, 

indicating a strong correlation between the remotely sensed algorithms 

and in situ measurements. More importantly, the relative errors associated 

with these algorithms are very low (Chlorophyll RMSE ranged from 1.234 

to 1.587 µg/L), which is accurate enough to be implemented into an early 

warning system. For example, if Harsha Lake implemented the Chorus 

and Bartram (1999) chlorophyll-a threshold of 10 µg/L, any location that 
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exceeded this concentration should be subject to additional testing. Given 

this threshold, there are two areas (northeast and southeast) that are 

visually identified as exceeding 10 µg/L in purple in Figure 5. These two 

areas should be subjected to further testing to evaluate algal species as 

well as test for any potential harmful toxins. Since algorithm performance 

will vary to some degree for each water body, concentration thresholds 

and error acceptance levels should be established locally by water 

management professionals.  

Overall, algorithm-water quality parameter pairs correlate strongly 

enough with the surface observations of chlorophyll, BGA/PC, and 

turbidity to assist in the monitoring of water quality in freshwater bodies. 

These results continue to build upon a series of papers that consistently 

demonstrate moderate to high levels of accuracy in detection and 

quantification of water quality that implement simple and transferable 

methods. Additional investigation is still needed to explore how 

concentrations levels of all three water quality parameters influence 

algorithm performance. This is especially important around threshold 

standards, such as 25 µg/L of chlorophyll, where harmful effects of algal 

blooms may start to manifest (USEPA 2012a; Miltner 2018). The 

waterquality R package and subsequent workflow developed for this study 

was specifically designed to increase the usability and coverage of CHABs 

detection by using a multi-sensor, multi-algorithm approach. Ultimately, 

this study adds value to the water quality and CHABs community by 

assisting researchers and managers to conduct near real-time water 

quality monitoring required to understand and protect against future 

CHABs events. 
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Appendix: Water Quality Algorithms, 

Workflow, and Computation 
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Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for 
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Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; 

Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for 
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Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; 

Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for 

Estimating Phycocyanin Values and Cyanobacterial Total Biovolume 

in a Temperate Reservoir Using Coincident Hyperspectral Aircraft 

Imagery and Dense Coincident Surface Observations. Remote Sens. 

2017, 9, 538. 
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Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; 

Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; 

Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for 

Estimating Phycocyanin Values and Cyanobacterial Total Biovolume 

in a Temperate Reservoir Using Coincident Hyperspectral Aircraft 

Imagery and Dense Coincident Surface Observations. Remote Sens. 

2017, 9, 538. 
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Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; 

Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; 

Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; 

Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for 

Estimating Phycocyanin Values and Cyanobacterial Total Biovolume 

in a Temperate Reservoir Using Coincident Hyperspectral Aircraft 
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2017, 9, 538. 
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Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; 

Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; 

Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; 

Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for 

Estimating Phycocyanin Values and Cyanobacterial Total Biovolume 

in a Temperate Reservoir Using Coincident Hyperspectral Aircraft 

Imagery and Dense Coincident Surface Observations. Remote Sens. 

2017, 9, 538. 

 Be16NDTIviolet 

Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; 

Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; 

Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; 

Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for 

Estimating Phycocyanin Values and Cyanobacterial Total Biovolume 

in a Temperate Reservoir Using Coincident Hyperspectral Aircraft 

Imagery and Dense Coincident Surface Observations. Remote Sens. 

2017, 9, 538. 

 Be16Phy2BDA644over629 

Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; 

Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; 

Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; 

Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for 

Estimating Phycocyanin Values and Cyanobacterial Total Biovolume 

in a Temperate Reservoir Using Coincident Hyperspectral Aircraft 

Imagery and Dense Coincident Surface Observations. Remote Sens. 

2017, 9, 538. 

 Da052BDA 

Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Warner, R. A., Tester, P. 

A., Dyble, J.; Relating spectral shape to cyanobacterial blooms in the 

Laurentian Great Lakes. Int. J. Remote Sens., 2008, 29, 3665–

3672. 

 De933BDA 

Dekker, A.; Detection of the optical water quality parameters for 

eutrophic waters by high resolution remote sensing, Ph.D. thesis, 

1993, Free University, Amsterdam. 

 Gi033BDA 

Gitelson, A.A.; U. Gritz, and M. N. Merzlyak.; Relationships between 

leaf chlorophyll content and spectral reflectance and algorithms for 

non-destructive chlorophyll assessment in higher plant leaves. J. 

Plant Phys. 2003, 160, 271-282. 
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 Go04MCI 

Gower, J.F.R.; Brown,L.; Borstad, G.A.; Observation of chlorophyll 

fluorescence in west coast waters of Canada using the MODIS 

satellite sensor. Can. J. Remote Sens., 2004, 30 (1), 17–25. 

 HU103BDA 

Hunter, P.D.; Tyler, A.N.; Willby, N.J.; Gilvear, D.J.; The spatial 

dynamics of vertical migration by Microcystis aeruginosa in a 

eutrophic shallow lake: A case study using high spatial resolution 

time-series airborne remote sensing. Limn. Oceanogr. 2008, 53, 

2391-2406 

 Kn07KIVU 

Kneubuhler, M.; Frank T.; Kellenberger, T.W; Pasche N.; Schmid M.; 

Mapping chlorophyll-a in Lake Kivu with remote sensing methods. 

2007, Proceedings of the Envisat Symposium 2007, Montreux, 

Switzerland 23–27 April 2007 (ESA SP-636, July 2007). 

 Ku15PhyCI 

Kudela, R.M., Palacios, S.L., Austerberry, D.C., Accorsi, E.K., Guild, 

L.S.; Application of hyperspectral remote sensing to cyanobacterial 

blooms in inland waters, Torres-Perez, J., 2015, Remote Sens. 

Environ., 2015, 167, 1-10. 

 Ku15SLH 

Kudela, R.M., Palacios, S.L., Austerberry, D.C., Accorsi, E.K., Guild, 

L.S.; Application of hyperspectral remote sensing to cyanobacterial 

blooms in inland waters, Torres-Perez, J., 2015, Remote Sens. 

Environ., 2015, 167, 1-10 

 MI092BDA 

Mishra, S.; Mishra, D.R.; Schluchter, W. M., A novel algorithm for 

predicting PC concentrations in cyanobacteria: A proximal 

hyperspectral remote sensing approach. Remote Sens., 2009, 1, 

758–775. 

 MM092BDA 

Mishra, S.; Mishra, D.R.; Schluchter, W. M., A novel algorithm for 

predicting PC concentrations in cyanobacteria: A proximal 

hyperspectral remote sensing approach. Remote Sens., 2009, 1, 

758–775. 

 MM12NDCI 

Mishra, S.; and Mishra, D.R. Normalized difference chlorophyll 

index: A novel model for remote estimation of chlorophyll-a 

concentration in turbid productive waters, Remote Sens. Environ., 

2012, 117, 394-406 

 MM12NDCIalt 

Mishra, S.; Mishra, D.R.; A novel remote sensing algorithm to 

quantify phycocyanin in cyanobacterial algal blooms, Env. Res. Lett., 

2014, 9 (11), DOI:10.1088/1748-9326/9/11/114003 

 MM143BDAopt 

Mishra, S.; Mishra, D.R.; A novel remote sensing algorithm to 

quantify phycocyanin in cyanobacterial algal blooms, Env. Res. Lett., 

2014, 9 (11), DOI:10.1088/1748-9326/9/11/114003 

 SI052BDA 

Simis, S. G. H.; Peters, S.W. M.; Gons, H. J.; Remote sensing of the 

cyanobacteria pigment phycocyanin in turbid inland water. Limn. 

Oceanogr., 2005, 50, 237–245 

 SM122BDA 
Mishra, S. Remote sensing of cyanobacteria in turbid productive 

waters, PhD Dissertation. Mississippi State University, USA. 2012. 

 SY002BDA 

Schalles, J.; Yacobi, Y. Remote detection and seasonal patterns of 

phycocyanin, carotenoid and chlorophyll-a pigments in eutrophic 

waters. Archiv fur Hydrobiologie, Special Issues Advances in 

Limnology, 2000, 55,153–168 
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Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; 

Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; 

Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; 

Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for 

Estimating Phycocyanin Values and Cyanobacterial Total Biovolume 

in a Temperate Reservoir Using Coincident Hyperspectral Aircraft 

Imagery and Dense Coincident Surface Observations. Remote Sens. 

2017, 9, 538 

 TurbBe16RedOverViolet 

Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; 

Shu, S.; Wu, Q.; Wang, S.; Berling, K.; Murray, A.; Emery, E.; Reif, M.; 

Harwood, J.; Young, J.; Martin, M.; Stillings, G.; Stumpf, R.; Su, H.; 

Ye, Z.; Huang, Y. Comparison of Satellite Reflectance Algorithms for 

Estimating Phycocyanin Values and Cyanobacterial Total Biovolume 

in a Temperate Reservoir Using Coincident Hyperspectral Aircraft 

Imagery and Dense Coincident Surface Observations. Remote Sens. 

2017, 9, 538 

 TurbBow06RedOverGreen 

Bowers, D. G., and C. E. Binding. 2006. “The Optical Properties of 

Mineral Suspended Particles: A Review and Synthesis.” Estuarine 

Coastal and Shelf Science 67 (1–2): 219–230. 

doi:10.1016/j.ecss.2005.11.010 

 TurbChip09NIROverGreen 

Chipman, J. W.; Olmanson, L.G.; Gitelson, A.A.; Remote sensing 

methods for lake management: A guide for resource managers and 

decision-makers. 2009. 

 TurbDox02NIRoverRed 

Doxaran, D., Froidefond, J.-M.; Castaing, P. ; A reflectance band ratio 

used to estimate suspended matter concentrations in sediment-

dominated coastal waters, Remote Sens., 2002, 23, 5079-5085 

 

TurbFrohn09GreenPlusRedBothOverBlue 

Frohn, R. C., & Autrey, B. C. (2009). Water quality assessment in the 

Ohio River using new indices for turbidity and chlorophyll-a with 

Landsat-7 Imagery. Draft Internal Report, US Environmental 

Protection Agency. 

 TurbHarr92NIR 

Schiebe F.R., Harrington J.A., Ritchie J.C. Remote-Sensing of 

Suspended Sediments—the Lake Chicot, Arkansas Project. Int. J. 

Remote Sens. 1992;13:1487–1509 

 TurbLath91RedOverBlue 

Lathrop, R. G., Jr., T. M. Lillesand, and B. S. Yandell, 1991. Testing 

the utility of simple multi-date Thematic Mapper calibration 

algorithms for monitoring turbid inland waters. International Journal 

of Remote Sensing 

 TurbMoore80Red 
Moore, G.K., Satellite remote sensing of water turbidity, Hydrological 

Sciences, 1980, 25, 4, 407-422 

 Wy08CI 

Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Warner, R. A., Tester, P. 

A., Dyble, J.; Relating spectral shape to cyanobacterial blooms in the 

Laurentian Great Lakes. Int. J. Remote Sens., 2008, 29, 3665–

3672. 

 Zh10FLH 

Zhao, D.Z.; Xing, X.G.; Liu, Y.G.; Yang, J.H.; Wang, L. The relation of 

chlorophyll-a concentration with the reflectance peak near 700 nm 

in algae-dominated waters and sensitivity of fluorescence 

algorithms for detecting algal bloom. Int. J. Remote Sens. 2010, 31, 

39-48 
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A-2. Evaluation of all chlorophyll algorithms for Harsha Lake according 

to Pearson's r test (Type-1), linear regressions, and k-folds cross-

validation 

Chl (µg/L) Global Model 

Cross-Validated 

Average 

Algorithms r² Slope Intercept 

p-

value r² RMSE MAE 

Al10SABI 0.665 -33.305 -1.352 0.000 0.677 1.234 0.958 

Go04MCI 0.645 0.035 4.611 0.000 0.673 1.337 1.040 

TurbDox02NIRoverRed 0.556 -13.001 11.552 0.000 0.568 1.459 1.162 

Da052BDA 0.511 28.531 -24.368 0.000 0.523 1.535 1.250 

MM12NDCI 0.511 64.421 3.982 0.000 0.520 1.526 1.220 

MM12NDCIalt 0.511 64.421 3.982 0.000 0.522 1.521 1.216 

Be16FLHGreenRedNIR 0.505 0.073 17.937 0.000 0.545 1.587 1.265 

TurbChip09NIROverGreen 0.473 -18.557 11.165 0.000 0.507 1.603 1.291 

TurbHarr92NIR 0.457 -0.036 10.439 0.000 0.482 1.622 1.269 

Am092Bsub 0.385 0.085 4.921 0.000 0.387 1.711 1.488 

Ku15PhyCI 0.385 0.085 4.921 0.000 0.425 1.744 1.513 

Wy08CI 0.385 0.085 4.921 0.000 0.396 1.710 1.488 

Ku15SLH 0.385 0.042 4.921 0.000 0.433 1.732 1.516 

Be16FLHBlueRedNIR 0.244 0.047 7.589 0.001 0.303 1.911 1.539 

Be16NDTIblue 0.224 26.466 7.627 0.002 0.271 1.962 1.570 

TurbLath91RedOverBlue 0.223 13.369 -5.781 0.002 0.250 1.970 1.574 

Be16FLHviolet 0.211 -0.026 12.185 0.002 0.309 2.045 1.543 

Gi033BDA 0.167 30.513 5.038 0.008 0.207 2.007 1.782 

TurbFrohn09GreenPlusRedBothOverBlue 0.156 5.492 -6.516 0.010 0.222 2.027 1.634 

TurbBow06RedOverGreen 0.096 15.948 -2.861 0.049 0.151 2.118 1.832 

TurbMoore80Red 0.041 -0.010 9.908 0.206 0.211 2.397 1.928 

Am09KBBI 0.041 -7.405 5.876 0.206 0.121 2.210 1.935 

Be16FLHVioletRedNIR 0.024 -0.008 8.749 0.337 0.126 2.280 1.912 

TurbBe16GreenPlusRedBothOverViolet 0.021 -0.271 9.743 0.366 0.146 2.352 1.949 

Be16NDTIviolet 0.016 -5.867 10.533 0.428 0.178 2.347 1.984 

TurbBe16RedOverViolet 0.000 -0.070 7.545 0.909 0.130 2.344 2.001 
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A-3. Evaluation of all BGA/PC algorithms for Harsha Lake according to 

Pearson's r test (Type-1), linear regressions, and k-folds cross-

validation 

BGA/PC (RFU) Global Model Cross-Validated Average 

Algorithms r² Slope Intercept p-value r² RMSE MAE 

Go04MCI 0.657 0.025 4.523 0.000 0.659 0.958 0.763 

Al10SABI 0.576 -21.885 0.753 0.000 0.613 1.052 0.789 

Be16FLHGreenRedNIR 0.467 0.049 13.655 0.000 0.518 1.137 0.868 

Am092Bsub 0.428 0.063 4.668 0.000 0.343 1.255 0.999 

Ku15PhyCI 0.428 0.063 4.668 0.000 0.386 1.213 0.966 

Wy08CI 0.428 0.063 4.668 0.000 0.376 1.195 0.954 

Ku15SLH 0.428 0.031 4.668 0.000 0.352 1.244 0.977 

TurbDox02NIRoverRed 0.365 -7.438 8.871 0.000 0.413 1.227 0.905 

Da052BDA 0.350 16.673 -12.067 0.000 0.335 1.287 1.055 

MM12NDCI 0.336 36.913 4.537 0.000 0.318 1.274 1.037 

MM12NDCIalt 0.336 36.913 4.537 0.000 0.328 1.325 1.074 

TurbBow06RedOverGreen 0.310 20.274 -6.478 0.000 0.334 1.317 1.039 

Be16FLHBlueRedNIR 0.289 0.036 6.660 0.000 0.311 1.343 0.971 

TurbLath91RedOverBlue 0.284 10.672 -4.004 0.000 0.316 1.327 0.984 

TurbChip09NIROverGreen 0.270 -9.907 8.502 0.000 0.354 1.280 0.966 

Be16NDTIblue 0.268 20.433 6.691 0.001 0.325 1.344 1.002 

TurbHarr92NIR 0.226 -0.018 7.996 0.002 0.304 1.330 0.953 

TurbFrohn09GreenPlusRedBothOverBlue 0.096 3.035 -1.197 0.049 0.188 1.528 1.104 

TurbBe16RedOverViolet 0.065 0.676 4.064 0.109 0.197 1.621 1.243 

Gi033BDA 0.061 12.977 5.477 0.121 0.136 1.563 1.194 

Be16NDTIviolet 0.029 5.541 3.386 0.287 0.186 1.599 1.216 

Be16FLHviolet 0.024 -0.006 7.611 0.329 0.150 1.550 1.126 

Be16FLHVioletRedNIR 0.022 0.005 5.455 0.356 0.164 1.661 1.237 

TurbBe16GreenPlusRedBothOverViolet 0.013 0.153 5.058 0.470 0.138 1.565 1.180 

TurbMoore80Red 0.012 0.004 5.442 0.497 0.219 1.654 1.244 

Am09KBBI 0.008 -2.297 5.997 0.581 0.045 1.538 1.177 
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A-4. Evaluation of all turbidity algorithms for Harsha Lake according to 

Pearson's r test (Type-1), linear regressions, and k-folds cross-

validation 

Turbidity (NTU) Global Model Cross-Validated Average 

Algorithms r² Slope Intercept p-value r² RMSE MAE 

Go04MCI 0.693 0.038 0.052 0.000 0.726 1.435 1.047 

Am092Bsub 0.660 0.117 -0.296 0.000 0.537 1.454 1.117 

Ku15PhyCI 0.660 0.117 -0.296 0.000 0.534 1.479 1.125 

Wy08CI 0.660 0.117 -0.296 0.000 0.533 1.415 1.085 

Ku15SLH 0.660 0.059 -0.296 0.000 0.585 1.414 1.100 

Be16FLHBlueRedNIR 0.506 0.071 3.441 0.000 0.501 1.760 1.257 

TurbLath91RedOverBlue 0.488 20.949 -17.498 0.000 0.435 1.758 1.226 

Al10SABI 0.485 -30.103 -4.819 0.000 0.547 1.708 1.168 

Be16NDTIblue 0.455 39.901 3.493 0.000 0.454 1.776 1.292 

Da052BDA 0.413 27.143 -27.127 0.000 0.409 1.859 1.291 

MM12NDCI 0.395 59.960 -0.088 0.000 0.398 1.853 1.305 

MM12NDCIalt 0.395 59.960 -0.088 0.000 0.385 2.020 1.393 

TurbBow06RedOverGreen 0.385 33.855 -18.568 0.000 0.365 1.974 1.447 

TurbBe16RedOverViolet 0.300 2.184 -4.669 0.000 0.292 2.087 1.615 

Be16FLHGreenRedNIR 0.248 0.054 10.890 0.001 0.276 2.099 1.424 

TurbDox02NIRoverRed 0.242 -9.084 5.972 0.001 0.320 1.941 1.192 

TurbFrohn09GreenPlusRedBothOverBlue 0.234 7.103 -14.869 0.001 0.309 2.078 1.328 

TurbBe16GreenPlusRedBothOverViolet 0.206 0.899 -5.095 0.003 0.260 2.258 1.672 

Be16NDTIviolet 0.202 21.935 -9.084 0.003 0.289 2.265 1.721 

Be16FLHVioletRedNIR 0.187 0.023 -1.314 0.005 0.328 2.357 1.760 

TurbChip09NIROverGreen 0.163 -11.540 5.404 0.009 0.281 2.008 1.209 

TurbMoore80Red 0.151 0.021 -2.315 0.012 0.238 2.313 1.712 

Gi033BDA 0.123 27.754 0.944 0.024 0.161 2.198 1.514 

TurbHarr92NIR 0.091 -0.017 4.482 0.056 0.212 2.130 1.310 

Am09KBBI 0.033 -7.034 1.648 0.257 0.127 2.241 1.476 

Be16FLHviolet 0.003 0.003 2.417 0.747 0.212 2.441 1.602 
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A-5. Data flow diagram, waterquality_workflow 

 



ERDC/EL TR-19-20  39 

 

A-6. Comprehensive R code for waterquality_workflow (Johansen 

2018c) 

#Title: waterquality_workflow: A case study and workflow for 

detecting and quantifying cyanobacterial harmful algal blooms 

(CHABs) from Sentinel-2 Imagery 

# Author: Richard A. Johansen 

# Date: December 6th 2018 

# Source: https://github.com/RAJohansen/waterquality_workflow 

# Citation: Richard A. Johansen. (2018). 

RAJohansen/waterquality_workflow: waterquality_workflow: A case 

study and workflow for detecting and quantifying cyanobacterial 

harmful algal blooms (CHABs) from Sentinel-2 Imagery (Version 

v.0.2). Zenodo. http://doi.org/10.5281/zenodo.2003619 

 

### Initial Requirements and R Packages -------------------------

--------------- 

#Packages must be installed using install.packages("Package 

Name") or  

# devtools::install_github("Package Name"), if this is the first 

time you are using these packages. 

library(tidyverse) 

library(raster) 

library(waterquality) 

library(sen2r) 

library(sf) 

library(gdalUtils) 

library(magrittr) 

library(rgdal) 

library(caret) 

 

#### Sen2Cor Atmospheric Correction------------------------------

--------------- 

#Make Sure Dependencies are installed 

check_sen2r_deps() 

#Once all are installed close dependencies GUI 

 

#Run sen2cor 

#default output will be in a new folder at the same level as the 

input level 1C 

#Calculate time elapsed using system.time Process takes ~30 

minutes 

sen2cor(".../S2A_MSIL1C_20160808T162342_N0204_R040_T16SGJ_2016080

8T162611.SAFE") 

 

### Preprocessing imagery ---------------------------------------

--------------- 

#Recommended*** Option 1: Preprocess Clipped & Masked Reflectance 

Imagery 

 

#Image Directory Folder 

Image_Directory = 

"C:/temp/S2A_MSIL2A_20160808T162342_N0204_R040_T16SGJ_20160808T16

2611.SAFE/GRANULE/L2A_T16SGJ_A005900_20160808T162611/IMG_DATA/R20

m" 
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# Extracts all raster files from Image Directory with extention 

.jp2 

Rasters = dir(Image_Directory, pattern = "*.jp2$", full.names = 

TRUE) 

 

#Import Shapefile of Area of Interest 

AOI = st_read("C:/temp/waterquality Vignette/Harsha_Lake.gpkg") 

 

#Reproject AOI if needed (Example - UTM Zone 16) 

Projection = "+proj=utm +zone=16 +datum=WGS84 +units=m +no_defs 

+ellps=WGS84 +towgs84=0,0,0" 

AOI = st_transform(AOI, Projection) 

AOI = as(AOI, "Spatial") 

 

# Create Template for Final Raster Stack 

#For Sentinel-2 we want our final output to be in 20m so use Band 

5 

raster_B5 = raster(Rasters[[5]]) 

raster_template = raster(raster_B5) 

 

# Resample, Crop, & Stack All Images 

raster_stack = Rasters %>%  

 lapply(raster) %>%  

 lapply(resample, raster_template) %>% 

 lapply(crop, AOI) %>% 

 stack() 

 

# Mask cropped image for further reduction of the stacked image 

S2_Ref_Image <- mask(raster_stack,AOI) 

 

#Band Subset 

S2_Harsha <- S2_Ref_Image[[1:9]] #Sentinel-2 Algorithms Only Use 

Bands 1-8A 

 

#Save Final Stacked Image as Tiff 

writeRaster(x = S2_Harsha, 

 filename= "C:/temp/S2_Harsha_08082016.tif", # save as a tif 

 datatype ="FLT4S", # save as a float 4 significant digits 

 overwrite = FALSE) #Overwrites same named file 

 

 

#Option 2: Preprocess Full Image Reflectance Imagery 

#Image Directory Folder 

Image_Directory = 

"C:/temp/S2A_MSIL2A_20180918T154911_N0206_R054_T18STD_20180918T20

5506.SAFE/GRANULE/L2A_T18STD_A016925_20180918T160118/IMG_DATA/R20

m" 

# Extacts all raster files from Image Directory with extention 

.jp2 

Rasters = dir(Image_Directory, pattern = "*.jp2$", full.names = 

TRUE) 

S2_Ref_Image = stack(Rasters)  

 

#Band Subset 

S2_Harsha <- S2_Ref_Image[[1:9]] #Sentinel-2 Algorithms Only Use 

Bands 1-8A 
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#Save Final Stacked Image as Tiff 

writeRaster(x = S2_Harsha, 

 filename= "C:/temp/S2_Harsha.tif", # save as a tif 

 datatype ="FLT4S", # save as a float 4 significant digits 

 overwrite = FALSE) #Overwrites same named file 

 

 

###Calculate Water Quality indices using waterquality------------

--------------- 

S2_raster <- 

stack("C:/R_Packages/USACE_WQ/Data/S2_Harsha_08082016.tif")  

S2_wq <- wq_calc(raster_stack = S2_raster, alg = "all", sat = 

"sentinel2") 

writeRaster(x = S2_wq, 

 filename= "C:/temp/S2_Harsha_WQ_08082016.tif", # save as a tif 

 datatype ="FLT4S", # save as a float 4 significant digits 

 overwrite = FALSE) #Overwrites same named file 

### Extract Values from Raster imagery from Shapefile------------

--------------- 

#Option 1: Import Shapefile 

wq_points <- shapefile('C:/temp/samples.shp') 

 

#Option 2: Create spatial file from spreadsheet 

#Read water quality data from csv 

library(sp) 

wq_df <- 

read.csv("C:/R_Packages/USACE_WQ/Data/Harsha_WQ_Measurements_0808

2016.csv") 

 

# Get long and lat from your data.frame. Make sure that the order 

is in long/lat. 

xy <- wq_df[,c(4,3)] 

# Create spatial objects (points) using xy and rest of water 

quality data 

#define projection! Harsha Lake is in utm zone 16 

wq_points <- SpatialPointsDataFrame(coords = xy, data = wq_df, 

proj4string = CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 

+towgs84=0,0,0")) 

##View points on map 

#require(mapview) 

#mapview(wq_points) 

writeOGR(obj=wq_points, 

dsn="C:/R_Packages/USACE_WQ/Data/Harsha_wq_points.gpkg", 

layer="wq_points", driver="GPKG") # this is in geographical 

projection 

 

#Extract values from tiff using points 

#Input raster image 

raster <- 

stack("C:/R_Packages/USACE_WQ/Data/S2_Harsha_WQ_08082016.tif") 

##View raster on map 

#require(mapview) 

#mapview(raster[[1]]) 

waterquality_data <- data.frame(wq_points, extract(S2_wq, 

wq_points)) 

write.csv(waterquality_data, file = 

"C:/R_Packages/USACE_WQ/Data/Harsha_WQ_Algs_08082016.csv") 
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### Inspect and Remove mix pixels--------------------------------

--------------- 

#Manually inspected image for mixed pixels and clouds. 

#One sample site (H03) removed because pixel appears mixed land 

covers due to beach 

#Read Data frame  

df <- 

read.csv("C:/R_Packages/USACE_WQ/Data/Harsha_WQ_Algs_08082016.csv

") 

 

#Removed H03 

df <- df[c(1:2,4:42),] 

 

### Calculate Descriptive Stats and Create Scatterplot matrix----

--------------- 

#Calculate Summary statistics 

df_stats <- pastecs::stat.desc(df[,c(5:7,9,15:18)]) 

 

#Scatter Plot of highest performing algorithms  

#Optional: Add Text to graph 

# Run fit model 

fit <- lm(Chl_ugL~BGA_PC_RFU, data = df) 

rmse <- round(sqrt(mean(resid(fit)^2)), 2) 

coefs <- coef(fit) 

b0 <- round(coefs[1], 2) 

b1 <- round(coefs[2],2) 

r2 <- round(summary(fit)$r.squared, 2) 

eqn <- bquote(italic(y) == .(b0) + .(b1)*italic(x) * "," ~~  

 r^2 == .(r2) * "," ~~ RMSE == .(rmse)) 

 

#Chl & PC & Turbidity Scatterplot Matrix 

panel.lm <- function (x, y, pch = par("pch"), col.lm = "red", 

...) {  

 ymin <- min(y) 

 ymax <- max(y) 

 xmin <- min(x) 

 xmax <- max(x) 

 ylim <- c(min(ymin,xmin),max(ymax,xmax)) 

 xlim <- ylim 

 points(x, y, pch = pch,ylim = ylim, xlim= xlim,...) 

 ok <- is.finite(x) & is.finite(y) 

 if (any(ok))  

 abline(lm(y[ok]~ x[ok]),  

 col = col.lm, ...) 

} 

 

pairs(df[c(15,16,18)], panel=panel.lm) 

 

 

#Chl & Al10SABI  

ggplot(df, aes(Chl_ugL, Al10SABI)) + 

 geom_point() + 

 geom_smooth(method = "lm",se = FALSE) + 

 theme_classic() +  

 labs(x = "Chlorophyll (µg/L)", y = "Al10SABI", subtitle = eqn) + 

 theme(axis.title.y = element_text(angle = 0, vjust = 0.5)) 
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#BGA_PC_RFU & Go04MCI  

ggplot(df, aes(BGA_PC_RFU, Go04MCI)) + 

 geom_point() + 

 geom_smooth(method = "lm",se = FALSE) + 

 theme_classic() + 

 labs(x = "BGA/PC (RFU)", y = "Go04MCI", subtitle = eqn) + 

 theme(axis.title.y = element_text(angle = 0, vjust = 0.5)) 

 

#Turbidity & Go04MCI  

ggplot(df, aes(Turbid_NTU, Go04MCI)) + 

 geom_point() + 

 geom_smooth(method = "lm",se = FALSE) + 

 theme_classic() + 

 labs(x = "Turbidity (NTU)", y = "Go04MCI", subtitle = eqn) + 

 theme(axis.title.y = element_text(angle = 0, vjust = 0.5)) 

 

###Conduct Cross-Validated linear regression Analysis------------

-------------- 

# Set seed using date created for reproducibility 

set.seed(2018-11-09) 

 

# Run LM and Cross-Validation Function 

# DONT NOT ALTER 

extract_lm_caret = function(y, x, df){ 

 my_formula = as.formula(paste(y, "~", x)) 

 caret_model = train(form = my_formula, 

 data = df, 

 method = "lm", 

 na.action = na.exclude, 

 #repeated k-fold validation 

 trControl = trainControl(method = "repeatedcv", 

 number = 3, repeats = 5))  

 my_lm = caret_model$finalModel 

 CV_R_Squared = getTrainPerf(caret_model)[, "TrainRsquared"] 

 RMSE = getTrainPerf(caret_model)[, "TrainRMSE"] 

 MAE = getTrainPerf(caret_model)[, "TrainMAE"] 

 R_Squared = summary(my_lm)$r.squared 

 P_Value = summary(my_lm)$coefficients[8] 

 Slope = summary(my_lm)$coefficients[2] 

 Intercept = summary(my_lm)$coefficients[1] 

 data_frame(R_Squared = R_Squared, Slope = Slope, Intercept = 

Intercept, P_Value = P_Value, 

 CV_R_Squared = CV_R_Squared, RMSE = RMSE, MAE = MAE) 

} 

 

#Define Parameters 

#Column numbers of water quality indices from df 

indices <- 24:49 

#Water quality parameter to evaluate against indices 

WQ_parameter <- "Turbid_NTU" #In situ water quality parameter 

(Must match name from column in df) 

 

#Run LM and Cross-Validation 

Algorithms = names(df)[indices] 

names(Algorithms) = Algorithms 

Harsha_Turbidity_08082016 = Algorithms %>%  
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 map_dfr(~extract_lm_caret(y = WQ_parameter, x = ., df = df), 

.id="Algorithms") 

 

### Export Results ----------------------------------------------

--------------- 

write_csv(Harsha_Turbidity_08082016, 

path=".../Harsha_08082016_Turbidity_Results.csv") 
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Acronyms and Abbreviations 

BGA cyanobacteria/blue-green algae 

BoA bottom-of-atmosphere  

CHABs cyanobacterial harmful algal blooms  

ELM Empirical Line Model  

ENVI Environment for Visualizing Images  

ESA European Space Agency  

ESRI Environmental Systems Research Institute 

FLAASH Fast Line-of-sight Atmospheric Analysis of Hypercubes 

MAE mean average error 

MERIS Medium Resolution Imaging Spectrometer 

MODIS Moderate Resolution Imaging Spectroradiometer 

NTU nephelometric turbidity units 

PC Phycocyanin 

QUAC QUick Atmospheric Correction 

RFU reflective units 

RMSE root mean square error 

SABI surface algal bloom index  

ToA top-of-atmosphere 

USACE US Army Corps of Engineers 

USEPA US Environmental Protection Agency 

USGS US Geologic Survey 

YSI Yellow Springs Instrument  
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