BEACH EROSION BOARD
OFFICE OF THE CHIEF OF ENGINEERS

CHANGES IN CONFIGURATION OF POINT REYES BEACH, CALIFORNIA 1955-1956

TECHNICAL MEMORANDUM NO. 91

CHANGES IN CONFIGURATION OF POINT REYES BEACH, CALIFORNIA 1955-1956

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS TECHNICAL MEMORANDUM NO. 91

FOREWORD

The design of shore protection measures, inc:luding the artificial nourishment of beaches, is governed to at significant degree by the characteristics of the beach material in the problem area. These characteristics usually vary with time at any given point and also vary from point to point along, and across the beach face. The securing and interpretation of a set of beach samples can be done more inteliigently if the cause and probable extent of these variations in beach characteristics are understood.

This report presents a summary of sand sample data obtained at one beach over a year* s period, and a type of statistical analysis of this data. To supplement the data and analysis in this memorandum, the user would probably find it to be of interest to refer to prior reports by other workers in the field of statistical interpretation of beach parameters, $\mathrm{e} . \mathrm{g}$, , Krumbein on Statistical Significance of Beach Sampling Methods, Beach Erosion Board Technical Memorandum No. 50; Trask and Johnson on Sand Variation at Point Reyes, California, Beach Erosion Board Technical Memorandum No. 65; and Krumbein on Relative Efficiency of Beach Sampling Methods, Beach Erosion Board Technical Memorandum No. 90. The report in addition presents certain data on beach cut and fill over this period, and also, as an appendix, over the previous 18 month periode. This latter portion was prepared a year before the main body of the report, and is included (unrevised in light of later findings) as ant appendix to afford ready reference and to extend the period of published data.

The report was prepared at the Waves Research Laboratory of the Institute of Engineering Research at the University of California in Berkeley in pursuance of contract DA-49-055-eng-8 with the Beach Erosion Board which provides in part for the study of beach materials. The author of this report, Parker D. Trask, is a Research Geologist at that institution. The appendix was prepared under the same contract by P. D. Trask, C. A. Johnson, and T. Scutt, all Geologists with the University of California.

Views and conclusions expressed in this report are not necessarily those of the Beach Erosion Board.

This report is published under authority of Public Law 166, 79th Congress, approved July 31, 1945.
Page
Abstract 1
Introduction: 2
Mechanical Analyses 6
Statistical Procedures 6
Description of Tables 8
Description of Figures 24
Character of Sediments 42
Grain Size Variation 42
Sorting 44
Skewness 44
Configuration of Beach 45
Cut and Fill 47
Concluding Remarks 48
References 49
Appendix A - Cut and Fill on Point Keyes Beach, California (June 1953 - March 1954)

Parker D. Trask
University of California

Abstract

Point Reyes Beach is a highly variable beach, characteri.zed by steep slopes, high berms and prominent cusps. It has been surveyed in the present study 8 times between August 1955 and June 1956. The sands are coarse, ranging from a mean of 560 microns (0.38 phi units) in Pebruary to 770 microns (0.84 phi units) in October:. Intervening months have intermediate grain sizes. The general variation or standard deviation of the samples on the beach ranges generally from 0.30 to 0.35 phi units, which indicates that the median diameter of twothirds of the samples on the beach at any one time ranges within 20 to 25 percent on either side of the mean for the beach. At times the beach is more variable than indicated above, and gravels with phi diameters of minus 3 (8 millimeters) are found on the beach. The sediments at all times are more poorly sorted than normal beach sands, as the mean coefficient of sorting ranges generally between 1.27 and 1.30 , in contrast with 1.20 or less for many beaches. No distinctive difference in sorting is observed between seasons. The sediments are evenly skewed.

The sediments on the lower foreshore are more coarse grained and better sorted than the sediments on the upper foreshore or berm. The deposits in the swales or bays between cusp points are more fine grained than on the foreshore or on the berm adjacent to the cusp points. The cusps range in height from 12 to 17 feet above mean low water and average 15 feet. The horizonta, interval between cusps ranges between 60 and 250 feet, with an average of 160 feet. The cusps change location on the beach from time to time. The average position of the cusps ranges within an interval of 50 feet measured normal to the coast line, and the maximum variation in position occurred within a period of 6 weeks between May and June 1956. Individual cusps or parts of the beach may advance or retreat a maximum distance of 160 feet. The cusps are actively eroded at times, particularly when low berms form on which the waves cut scarps as much as 5 feet in height in the preceding berm. At other times the cusps and beach are built up rapidly. As much as 8 inches of fill in 4 hours and 12 inches in 18 hours has been observed. The maximum fill at any one place in an
> interval of 6 weeks is 7 feet and the maximum cut is 10 feet. The winter months are periods of active cutting and sumer months a period of fill. The slopes on the beach are generally steep. In the swales between cusps the slopes are commonly 4 to 8 degrees, and on the slopes off the points of the cusps, from 6 to 15 degrees, with an average of about 10 degrees on the upper foreshore near the "Reference Point". Where the berm is being actively exoded slopes greater than 45 degrees or 100 percent have been observed.

INIRODUCTION

Point Reyes Beach is a highly variable beach on the Pacific coast of California, 35 miles northwest of San Francisco (Figure 1). The beach continually changes in configuration and in grain size. At times each succeeding wave brings up sand of appreciably different dimensions than that brought up by the preceding wave. The sand is coarse, ranging mainly in grain size from 500 to 750 microns. The foreshore is steep, commonly sloping 10 degrees and in places where cusps are being eroded, slopes as steep as 45 degxees have been observed. The beach outline is irregular, though the general beach trend is remarkably straight for a distance of 10 miles. The beach at times is characterized by a series of alternating protuberances and embayments 1500 to 3000 feet in length and ranging up to 200 feet in width. Superimposed on the protuberances and embayments are a series of cusps 60 to 250 feet apart. Both the cusps and protuberances change position with time. Rip tides are observed opposite many of the embayments. The beach is exposed to the full force of the waves, which strike it straight on. One or more bars lie off-shore. The prevailing drift is from north to south. The general location and setting of the beach are shown in Pigures 1 and 2.

The variability and irregularity of the beach have lead to an intensive study of it by the Waves Research Laboratory of the University of Califormia in cooperation with the Beach Erosion Board. Since June, 1953 the beach has been occupied at intervals of 4 to 15 weeks, except for a period between March, 1954 and May, 1955. In the first 18 months, of the investigation, two stations 5 miles apar:t on the beach were studied, but owing to the poor accessibility of one of the stations and the general similarity of the beach at this station to the beach at the other station, only one station has been investigated during the past 18 months. The results of the first 18 months investigation have been reported in two articles $(1,2)^{*}$. Reference 2 is included as appendix A to this report. The results of the second 18 -month period form the basis for the present papez.

The two previous reports show that the texture of the beach is highly variable. The standard deviation, sigma, of the groups of samples taken at each sampling interval ranged from 0.15 to 0.41 phi units. Series of samples collected within a circle with radius of 15 feet on

[^0]

FIGURE I. LOCATION OF POINT REYES BEACH

Figure 2. location of stations a and b
the average had 60 percent of the variation of the total area sampled on the beach. This area had a lineal extent of more than 500 feet and a width of more than 200 feet (See Figures 3 to 10). The sediments were distinctly finer in the early fall (October) at the end of the summer season than at other times. The lower foreshore was consistently more coarse-grained than the upper foreshore or berm. The coefficient of sorting was moderately high for an ocean beach, averaging 1.28 at one station and 1.45 at the other. The position of cusps changed between sampling intervals, such that some places on the beach had been cut or filled as much as 6 feet between intervals of study. No relationship between grain size and amount of cut or fill was indicated by the studies made.

In order to understand better the nature of the variations on Point Reyes Beach, the beach has been occupied at intervals of 6 to 8 weeks from August 1955 to June 1956. The beach was visited 8 times in this period. At each time a plane table map was made with alidade, stadia, and chain. The survey was made at Station $A, 3$ miles north of Point Reyes (Figure 2). The same sampling interval as in the first 18 months ${ }^{9}$ study and the same sampling stations were occupied. The se stations are located along five lines normal to the beach on a center line and at a distance of 64 and 256 feet on either side of the center line (Figures 3-10). Sample intervals along the individual lines are $1,4,16,32,48,64,96$ and 128 feet north (seaward) and south (landward) of the zero point, which was arbitrarily picked at the time of the first sampling in June 1953. Occasional samples were taken at other places, notably, on the crests of cusps and in places where particularlv coarse or fine sediments had been laid down. During the August, 1955-period of sampling, lines of samples were taken at right angles to each of the cusps and in the embayments between the cusps if one of the regular sample lines did not pass through such positions. The zero point lies 103 feet seaward from a reference stake, which is taken as the point of reference for the beach survey. This stake is 19 feet east (parallel to the beach) from the fence corner, just west of the mouth of the creek that lies west of the old Coast Guard building. In March, 1956 this reference stake was washed away in a storm and it has been replaced by a new stake lying 2 feet north of the old stake. The elevation of the ground at the point of the reference stake has arbitrarily been taken as 30 feet. The basis for this elevation is readings taken of water level during the first occupation of the station.

The individual times studies are indicated by letter symbols. Thus A represents the samples collected in August 1955, B, those collected in October, 1955 and so on through H, representing those procured in June, 1956. The letter X refers to samples collected in March, 1954 and reported in the previous publication on sand variations at Point Reyes Beach(1). The letter Y represents a small suite of samples collected on May 31, 1955 along the same sampling grid as the other samples, but at this time no contour map of the beach was made. The individual samples are designated by a coordinate system. Thus sample 25 W , 64 N represents the samples taken on the line of samples 25 feet west and 64 feet north (seaward) of the zero point, as indicated on the accompanying contour maps of the beach.

MECHANICAL ANALYSES

The mechanical analyses of the samples were made by the customary procedure of sieving with approximate ratio between sieves of one-half the square root of two. The samples were sieved for 10 minutes in the standard rotap sieving machine, and the samples were dried before sieving. The entire sample of 100 to 250 grams was sieved. The usual parameters were computed from the weight accumalation curve. The basic results are presented in Table 1 which shows median diameter in phi units, coefficient of sorting, $\log _{10}$ of the skewness, and the 10 and 90 percentiles, D_{10} and D_{90}, measured in microns. The data are grouped according to date of sampling and to sample station, starting with line 256 west and going from north to south. The analyses were made by J. Peter Berge and Patrick O^{\prime} Malley. The statistical studies of the results have been made by Sigrid Woodson.

The stardard deviation of the method of analysis is 0.02 phi unit, which for the range in grain size generally found on Point Reyes Beach corresponds to about 10 microns. Each of two samples was analyzed 9 times to determine the variation inherent in the method of analysis, The average median of one sample was 711 microns and of the other 522 microns. The standard deviation of these two samples was 0.020 and 0.022 phi units, respectively, corresponding to standard deviations of 11 and 7 microns. As the standard deviation of the samples as distributed on the beach ranges generally between 0.30 and 0.35 phi units, the variation caused by the method of measurement is small, about 6 or 7 percent of the total variation.

STATISTICAL PROCEDURES

The statistical methods used in this report are based upon the assumption that the various parametexs examined are taken for a normally distributed population and, in particular, that the median diameter (D_{50}) expressed in phi units is normally distributed. Many statistical comparisons among groups of samples have been made. The results of the great majority of such calculations do not appear in the tables but have been used as a guide in writing the text. All of the tests and procedures used in this report are described in greater detail by Hoel (3). If, in making a statistical study of a group of samples we let x_{i} be the value of the parameter for the ith sample and let n_{x} be the number of samples in the group under consideration, the mean, or arithmetic average is given by $\bar{x}=\sum \mathbf{x}_{\mathrm{i}} / \mathrm{n}_{\mathrm{x}}$. The standard deviation of the group, σ_{x} is given by $\sigma_{x}=\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2} / n_{x}}$. This is the interval on either side of the mean value which contains approximately 68 percent of the sample values (that i.s, on the average, 34 percent on either side of the mean). It is therefore: a measure of the spread of the data, about: the mean. The standard deviation of the mean, $\sigma x / \sqrt{n_{x}}$, is a measure of the reliability of the mean. If z groups of random samples from a population, x, are averaged, yielding z means, the chances are even that 68 percent of these means will lie within the interval of $\sigma_{x} / \sqrt{\mathbf{n}_{\mathbf{x}}}$
from the mean of the entire population.
The significance of a relationship between two variables x and y is determined by the standard method using the symbol t where

In the above equation the probability that the difference in means is real and not due to random variations, or in other words, the probability that both groups of samples could have been taken from the same population is indicated by

$$
\left[1-\int_{-t}^{+t} \phi(t) d t\right] \quad \text { where } \phi(t)=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}
$$

and i.s the normal curve of error. The probabilities as calculated by this equation are computed in terms of ratios, but are reported in Tables 3 and 5 in terms of percent, or 100 times the ratio. Thus a probability given as 5 percent, which corresponds to a value of " t " of 1.96 means that the chances are $5 / 100$ or one in twenty that the difference is due to random causes. In other words, the probabilities are 20 to 1 that the difference between the two means is real and not anomalous owing to vagaries of sampling. A probability of 1 percent, corresponding to a " t " of 2.58 , indicates the chances are 100 to 1 that the difference is real. Figures given in Tables 3 and 5 as 0.00 indicate a percentage probability of less than 0.005 ; that is, the chances are greater than 20,000 to 1 that the difference is real.

It should be borne in nind that the statistical theory for investigating groups of samples taken from a normally distributed population can be developed for the case in which the number of samples in the group is small, as well as for the more commonly used techniques in which the number of samples is supposed to be essentially infinite; i.e., the entire population has been included. For ordinary purposes small sample and large sample theories give identical results where the number of samples is equal to or greater than 30 . In the present paper the significance of a difference has been developed for the large sample theory and the number of samples usually ranged between 30 and 50 .

A method of detecting the significance of the difference between two means is available in both theories. For a qualitative measuremen ${ }^{+}$ of "significant" or "nonsignificant" the large sample test is far easier to apply where large numbers of such tests must be performed. For this reason large sample theory has been used throughout for the comparison of means, even when the size of the group would indicate the use of small sample theory. This procedure invariably indicates a
higher degree of significance than that given by small sample theory. The cases where this error becomes of irportance are those mentioned above in which only a qualitative measurement has been made.

DESCRIPTION OF TABLBS

The basic data on the samples collected for the present study are presented in Table 1. In some places the sand was distinctly stratified and two samples, an upper and a lower sample were taken. The lower samples are given first in the table and parentheses are placed around the median of the upper sample. Table 2 gives the mean grain size along the different north-south lines. The number of samples represented by each mean is given in order to indicate the general reliability of the mean. The table also shows the mean grain size of the entire population at each sampling time. This mean is based on all the samples collected, including those not represented on the main north-south lines, At sampling time A in August, 1955 several lines of samples were taken in addition to the standard lines. The general means thus do not represent the mean of the individual means presented in the lines above. The standard deviation, sigma, of the sample and the standard deviation of the mean of all the samples are also included in the table so that readers can more readily appraise the general variability of grain size and the significznce of the difference in means between samples. Data for March, 1954 and May, 1955 are also included in Table 2.

Table 3 gives the signifigance of the difference between means for the different sampling intervals. These are calculated according to the "t" formula described above. The data are presented in terms of percent, that is 100 times the parameter indicating the probability that the means are drawn from the same population. Thus the first figure of 0.29 percent for times X and A indicates that the chances are $100 / 0.29$ or 340 to 1 against the means being drawn from the same population. The large difference between these means indicates a considerable significance. The significance between the means for times C in November, 1955 and B in October is 10.10 , which indicates the chances are $100 / 10.1$ or 10 to 1 that the difference is not random but is real. Thus the probability is only moderate that the difference is real.

The data are rearranged in Table 4 to show the average grain size for the different elevation zones. The previous work on this beach indicates that the lower part of the foreshore is coarser than the upper. A similar study of the data was made in the present investigation. The means presented at the base of the table are taken fron Table 2 and are. given in order to help readers appraise the significance of differences between means.

Table 5 shows the signifieance of the difference between the averages for the different elevation zones. This table is constructed in the same way as Table 3.

Table 6 presents means of the coefficient of sorting for the different north-south lines for each interval of sampling. The general mean and the standard deviation are included for benefit: of those who wish to ascertain the significance of the difference between means, Table 7 gives the same thing for the elevation zones. No tables for significance of means are given, as the means are so close to one another that few significant differences are indicated.

Table 8 presents comparative data on cusps. It gives first the number of cusps along the stretch of beach studied, followed by data on the position and change in position of the cusps. For purpose of identification the cusps are designated from left to right or west to east on the beach by letters (Figures 3 to 10), beginning with A on the left. The position of different series of cusps is recorded with respect to distance from three east to west lines, namely, lines 200 west, 0 west, and 200 east. The position of the cusps at the individual times is shown for the nearest cusp to the west and east of the designated lines, respectively. The changes in position of these cusps is thus indicated by the difference in distance from the reference line between successive intervals of sampling. Below the data indicating position of cusps normal. to the beach, additional data are presented showing the position parallel. to the beach. The average distance of the cusps north of the 0 -north line is shown, as well as the maximum interval between the most seaward and the most landward cusps. Thus, in August 1955, the average position of cusps is 46 feet north of the zero north line and the maximum distance any cusp is seaward of another cusp is 59 feet. The data thus give information on the general shift in position of the beach at the area occupied. Cusp position is taken at the spit or horn of the cusp a.t the edge of the berm. Data are also presented on the average interval between cusps, and the maximum and minimum interval. Likewise information is given on the height and variation in height of the cusps.

Table 8 also shows the grain size distribution of different parts of the cusps. Four categories of samples in two groups were taken. The first group considers the samples on north-south lines passing through the cusps, and the other group considers samples taken on lines passing midway between the cusps in the indentations or bays. Each group includes two series of samples, those within 50 feet of the top of the cusp on the down or beach side and those within 50 feet on the upper or berm side. Similar suites were taken on the lines between the cusps. The dividing line for the latter series is the elevation of the cusp point itself. The samples on the beach or "lower bay" side are within a horizontal distance of 50 feet of the elevation of the crest of the cusp and those on the up or "upper bay" side are the same distance on the berm side of the cusp elevation.

Th．bIo 1
Baiac parame tors of Point Reyou sedimonts
（For explanation of paramotars see ond of Table ？）
Sories A－Augunt 26， 1955

Locntion		Modian． （phitunitr）	So	$\mathrm{Log}_{20} 3 \mathrm{~S}$	${ }^{D_{10}}{ }_{P_{n 1} \text { undts }}^{D_{90}}$	
328\％	941	1.03	3.19	0.000	340	700
32 明	64\％	1.24	1.21	0.012	320	840
328 m	482	0.48	1． 13	－0．006	420	1100
3280\％	OH	0.72	1．20	0.028	510	1150
2608	On	0.74	1.25	0.01 ？	415	810
2574	O21	0.48	1.04	－0．009	570	830
256m	120N	－0，78	1． 45	0.005	860	3640
256的	96：	－0．22	1.13	－0．006	600	1450
256］	6418）	． 87	2.48	． 062	327	2340
256N	641）	（－．26）	1.14	－． 002	620	1580
256ा	483	． 95	1.24	． 002	325	1050
256 W	323	． 97	2.81	． 007	320	780
8567	21.15	． 95	2.31	．020	340	790
256%	165	1.11	1.25	． 024	360	720
2667	411	． 95	1.22	－． 01.7	380	210
256.7	1818	． 65	1.14	． 005	520	820
2507	021	． 07	1.14	． 023	510	660
2567	45	． 78	1．22	－． 013	460	690
25 ता	163	． 42	1.28	－． 009	390	970
256］	323	－． 08	2.42	.004	580	1900
2580	645	． 14	1.23	－．005	620	1400
2583	72 S	． 54	1.11	－．，002	475	820
256\％	805	． 68	1.10	－．006	355	700
255\％	9\％	． 54	1.09	． 000	560	000
25.2	ON	． 84	1.24	．026	400	900
2017	6515	－． 35	1.17	．031	760	1850
2011	52．	． 67	1.31	－． 040	390	1170
2017	361	．e7	1.33	－．066	390	800
2027	Or	． 87	2，52	－． 017	330	920
1406	Bottor 55%	－． 26	1.20	．021	850	1300
1409	702 50	1.16	1.17	． 002	385	670
14 CW	351：	1.09	1.20	． 020	410	690
1407	O\％：	1.08	2.35	． 050	380	780
BET	483	－2．56	1．74	－．046	5000	－－
68\％	On	． 43	1.51	． 047	420	1530
65．	Cl	． 52	2.52	． 026	350	2500
64.7	85：	－． 26	2.18	． 006	2100	2000
64.4	61．11	－． 0.4	1.29	－． 04.5	510	2400
6.0	640	（．24）	1.20	．039	850	2700
64%	3221	． 92	1．28	－． 003	275	1100
64.5	751	． 92	1.35	－．027	310	780
647	40	． 58	1．5．	． 0226	340	1300
4， 7	$1 \times$	． 5 ？	1．30	－．04， 2	350	2300
64， 3	OH	． 57	1.30	． 005	370	\％，0
647	15	． 52	1.30	－．006	380	1230
4.1	4.5	． 60	1.4 .1	－．004	420	2300
647	165	．${ }^{\text {ch }}$	1.39	． 009	330	1350
647	325	． 32	1.24	． 03	440	990
347	64.5	－ 0	1.26	－．0．2	375	790
64．7	Sea．st．	－． 24	1.32	－． 031	62.0	1630
63^{-}	Or	． 35	1.31	－． 014	350	1310
$60:$	$0 \times$ \％	． 76	1.31	． 031	380	113
64%	550	－3．39	2.36	． 013	5000	10000
167	010	2.25	1．1． 11	－． 010	275	600
4.	ON	－ 2	2． 35	－．007	270	1000
20.	On	． 82	1.34	－． 018	370	875
ゴ	921	－． 60	1.3 .2	． 007	1030	2250
O27	64.11	． 43	2．44	． 042	390	2000
D3：	66.15	（．67）	1.25	－．004	300	2150
0：	45	． 82	1．4．3	． 046	340	－370
0\％	32 N	． 72	1.59	． 017	520	785
07.	16%	． 93	1．31	－．062	300	720
08	4．${ }^{\text {a }}$	1.42	1．21．	． 020	275	500
$0:$	15	． 72	1.46	－．028	320	1090
On：	$0:$	． 90	2．25	． 00.4	310	84.0
5＂	25	． 8.	1.85	－． 014	370	850
0ง	45	． 83	2.6 .2	． 0229	285	1080
07	163	3．09	1.20	－． 004	290	660
OT	325	1.33	1.11	． 311	360	580
07	945	． 75	1．60？	－．．001	290	10.0

Table 1 - Contimued
Beaic paramoters of Point Reyoa nedjnezte
(Sor axplaration of paranstare sea end of Table 1)
Soring A - August 26, 1955

Location		$\begin{aligned} & \text { Yodien } \\ & \text { (phi units) } \end{aligned}$	So		${ }^{0} q_{P_{n i} \text { units }} 30$	
0	Sea.St.	- 68	1.31	. 018	1100	2700
IE	OX	. 67	1.23	-. 088	380	820
988	0 O	. 85	1.31	-.000	270	920
168	0 N	1.00	1.14	. 020	350	720
168	Or	($=84$)	1.13	. 019	515	920
643	105R	. 54	1.27	.002	1000	2330
648	80 N	- 40	1.30	. 015	450	1260
648	64ir	. 48	1.25	. 002	395	910
645	64%	(-.41)	I. 26	. 018	890	2450
69^{4}	488	. 97	1.28	. 001	335	790
648	52 M	. 85	2.31	-. 019	360	1120
648	18N	. 42	1.34	. 031	410	1290
648	O:	-. 47	1.54	-. 053	420	2200
642	Sea.St.	-. 70	2.29	. 007	40^{0}	2200
3288	66\%	.17	1.30	. 002	570	2000
1.2 व安	Leger	1.06	1.22	-. 027	320	570
1288	558	(-3.13)	1.26	-. 023	5600	15000
12Es	384	2.09	1.31	. 057	370	760
1268	O2\%	. 97	1.08	.000	375	680
1948	75.	. 97	1.28.	-. 044	300	850
1948	38 M	. 50	1.28	-. 031	425	390
1948	218	-. 14	1.34	-.046	639	1570
1.948	$0 \times$. 92	1. 26	. 008	340	820
2568	1289	. 42	1.32	. 031	505	1310
2568	96\%	1.14	Is 30	. 060	355	720
2568	80\%	1.37	1.26	. 026	295	560
2588	645	1.09	1.28	. 047	370	740
2568	481	1.42	1.23	. 019	280	630
2568	32 I	1.2?	1.23	. 029	390	670
256E	238	-615	1.18	-.010	420	810
256E	234	(.56)	1.16	. 017	390	1160
2588	0:	. 51	1.12	-. 023	425	800
2568	Ses.st.	1.29	1.29	. 024	250	730
5528	104\%	2.25	2.58	. 028	280	780
3528	87\%	1.06	2.16	. 023	320	700
352 E	715	.98	1.27	-. 021	320	770
3528	3411	. 32	1.38	-.009	420	1300
252 E	OH	1.03	1.27	. 030	260	880
Series B - October 8, 1955						
356n	643	. 80	1,31	-. 023	335	825
256\%	325	. 97	1.25	-. 010	325	810
256]	164	.83	2.31	. 013	355	1020
256 m	4 IN	. 92	2.30	. 022	350	910
2567	17	. 65	1.30	-. 004	350	1250
25617	GIE	. 72	1.22	. 015	350	1050
256π	13	. 74	2.25	. 037	310	800
256]	45	. 53	1.57	. 000	380	1250
25 日i	168	. 74	1.25i	-. 048	325	1050
2500	328	-. 80	1.26	014	600	2650
2561	645	. 69	1.29	. 046	320	iuso
2561	645	(.32)	1.26	-. 005	540	1150
640	96\%	. 25	1.41	. 040	51 r	1250
$64{ }^{\text {c }}$	64ir	1.08	1.80	. 033	380	700
647	324	1.06	1.32	. 092	290	1180
$6 \cdot 5$	154	2.07	1.29	. 002	310	920
649	4 ${ }^{4}$	1.12	1.28	. 052	375	740
647	OS	1.05	1.28	.003	315	880
651	43	1.03	1.32	-. 002	300	910
$64 / 1$	265	. 69	1.28	. 005	370	1200
64%	323	. 18	1.50	-. 024	500	1400
64π	63N	¢. 05	1,081	. 088	395	800
17	On	. 60	1.44	. 024	370	1350
OR	120N	. 97	1.15	. 004	365	900
Cr	96 s	. 93	1.26	. 014	340	980
Ow	64x	1. 00	1.12	-.015	335	760
Or	32N	(-.14)	1.23	. 025	510	1700
Or	323	1.08	1.04	. 012	440	840
a^{\prime}	16II	. 38	1.15	. 007	380	680
Or	2011	. 72	1.26	-. 050	420	910
OII	4N	(.58)	1.34	. 083	370	870
Or	1.1	. 50	1.44	. 007	410	1380
ar	ON	. 74	1.12	- 0 ? 9	430	1700
OfI	18	. 76	1.36	. 052	430	2700
Or	45	. 95	1.47	. 010	390	1380

Mole 1 - Oontimack
Bazio peremotore of Point: Royer sediment (For axplenation of paramters voe end of Mbis 1)

Series B - October 8. 1955

Losetiou		Median				
				-19		${ }_{45} 90$
π	163	. 69	1.42	. 080	445	1035
Or	325	. 50	1.57	. 048	450	2030
Of	523	. 96	1.47	$=057$	270	1220
IE	OH	. 77	1.22	-. 017	425	980
$5 \mathbb{8}$	47E	1.24	1.22	-. 022	300	680
648	64:	1.11	1.18	.011	370	890
648	32M	1.03	1.25	-. 038	280	920
643	164	1.11	1.06	. 009	340	895
645	4N	1.03	1.02	-.,003	330	546
$64{ }^{6}$	ON	. 87	1.08	-. 019	416	670
645	ON	(1.3.5)	1.03	. 010	340	545
642	45	1.60	1.04	. $00-4$	290	498
648	268	1.15	1.10	. 013	405	600
645	328	1.00	1.04	-. 009	360	650
64 E	545	. 95	1.32	. 062	375	1050
2568	963	1.03	2.48	. 072	380	1140
25退	648	. 97	1.12	. 007	405	960
2865	3212	1.06	1.28	. 018	310	705
c508	165	. 38	1.08	-. 013	302	640
256E	811	1.12	1.25	-. 016	285	570
2565	43	1.24	1.22	-.003	850	635
256E	48	1.06	3.19	. 001	330	730
256B	85	. 93	$\underline{1.28}$. 029	350	990
256 B	168	1.00	1.55	. 034	315	1150
2566	328	. 69	J. 2 ?	. 012	355	1100
256 E	643	1.60	1.28	. 012	310	740
		Sozies - \#ovember 12, 1955				
2507	1145	.25	1.22	-. 003	520	1250
2561	643	. 56	1.24	.001	420	1010
256\%	3215	-60	1.27	. 011	435	1250
2861	16N	. 84	1.34	.023	350	1100
256]	418	. 6 C	1.31	. 008	390	1120
256]	OR	. 74	1.26	. 015	385	2050
2561	45	. 69	2.35	.006	370	1000
2585	165	. 30	1236	-.018	415	1340
2.551	325	. 17	1.48	-. 005	385	1700
2567	645	. 32	1.25	. 015	530	1280
6雨120N		. 23	1. 35	. 002	880	2800
64X	96:	. 12	1.28	-. 022	520	1350
	645	. 67	1.28	. 018	390	1000
$\begin{aligned} & 64 \pi \\ & 650 \end{aligned}$	32\%	. 52	2.10	. 037	540	1030
	20\%	. 43	1.32	. 001	560	980
647	41	. 87	L. 32	.006	$4_{2} 20$	980
6417	OH	. 76	1.39	.061	360	1090
665807	45	1.00	1,24	-. 014	325	800
	168:	c 95	1.18	. 012	445	310
646	325	. 56	1.41	. 022	410	1200
601	645	.077	1.23	-. 001	405	1030
ar	948	. 06	1.36	-.022	500	1550
	64\%	. 62	1. 24	.002	435	2020
av	32\%	. 78	1.17	. 028	430	810
W	182:	. 84	1.50	. 000	350	980
Or	23	. 60	1..9	. 002	420	1230
Or	18	. 50	$1 .: 3$	-. 002	440	1100
Or	OV	. 56	1.52	. 016	405	1100
OV	18	. 69	1.27	. 012	380	968
W	45	. 48	1. 53	-. 008	408	1230
Of 163		. 54	1.39	. 024	390	1430
Or	323	. 30	1. 4	-. 023	408	1450
O1	645	. 78	2.28	. 009	360	1020
${ }^{18}$	903	. 8.8	1.83	-. 001	300	2030
	OR:	. 56	1.28	. 002	420	1180
48	O3	. 65	1.26	. 003	420	1000
648	1483:	. 03	1.33	. 001	620	1450
648	100\%	. 75	1.25	.003	580	980
$\begin{aligned} & 648 \\ & 64 \mathrm{E} \end{aligned}$	64\%	. 92	1.27	. 004	360	900
	32 N	1.05	1.26	-.01?	330	790

Table 1 - Contymund
Pasi.c perentars of Foint Reyoa sediments (for explanation of paramnters soe end of Thble Serios D - Decomber 28. 1955

Lecation		$\frac{\text { Modian. }}{\text { (phi units) }}$	So	$\log _{10} 8 \%$		
648	45	1.06	2.28	. 000	275	760
64.8	45	(1.09)	1.25	. 006	320	760
643	163	.97	1.28	. 002	320	820
6.5	32.5	. 92	1.23	. 010	385	880
64 E	645	. 54	1.50	. 019	350	2400
143E	100\%	. 76	1.23	-. 030	<00	1000
1438	$80:$. 93	1.29	. 018	400	390
212E	163	. 74	1.40	. 050	370	1450
216E	964	. 97	1.45	-. 114	270	900
2568	192:	. 27	I. 21	-. 01.0	505	1300
2565	14*\%	-60	1.47	-.03s	260	930
2565	1124	2.06	2.29	-.013	300	790
2565	64\%	3.06	1.17	-. 048	28.5	570
256 E	6411	(2.03)	2.32	-. 025	310	780
2668	32M	. 78	1.26	. 011	305	960
2568	16N	. 73	1.84	.036	400	1160
256 E	518	. 85	1.16	-. 01.6	360	820
256E	OHI	0.00	1.16	-. 024	660	t520
256E	OH	(.45)	1.80	-.002	470	1130
2568	43	. 56	1.28	. 009	410	2180
256E	32 s	. 00	1.59	. 015	\$50	1200
256E	643	. 93	1.28	. .024	220	910
C19E	155W	. 28	1.29	-.004	570	1090
419 E	2.3518	. 40	1.25	-. 005	500	1130
4198	8817	. 98	1.20	-. 007	550	780
Series E - Fobruary 11, 19S6						
$256 \square$	210\%	. 09	2.10	-. 002	745	1170
256w	1685	. 21	1.20	-. 007	525	1300
2567	126 H	. 63	1.34	-. 002	392	1000
25514	26N	.77	1.3 .35	. 011	368	1050
2567	64.3	. 57	1.82	. 000	400	1130
2567	5211	. 57	1.25	. 008	455	1185
25671	16\%	. 60	2.26	. 006	450	1045
256:	611	- 7	1.25	.003	480	1260
256 TH	4 N	. 47	1.55	. 008	580	1160
256FI	OX	. 69	1.26	. 014	450	1120
256\%	45	. 09	1.35	-. 032	475	1500
256\%	165	. 65	1.26	. 030	415	1050
256T	325	. 51	1. 36	-.028	535	1220
256\%	645	. 71	1. 33	. 011	370	2100
647	170N	. 06	1.24	. 004	530	1500
64 (1)	126\%	. 63	1,24	. 005	430	1035
647	96\%	. 58	2.37	. 002	380	1260
64π	64i	. 65	1.23	-. 053	370	910
34	32 N	. 51	1.24	-.005	453	1040
647	1631	-08	1.39	-.012	493	1670
689	48	.17	1.40	-. 059	250	1520
6845	On	. 45	1.37	-.002	430	1270
54T	45	. 59	1.25	. 015	460	1100
647	165	.46	1. 29	-. 001	495	1280
647	32 s	. 24	1.30	-. 003	520	1355
648	645	- 45	1.41.	. 030	420	1170
$1{ }^{1}$	ON	-.08	1.88	. 076	465	400
O	126M	- 12	1.13	-. 008	540	1230
O	64 M	, 41	1.25	.006	500	1220
OH	32 N	. 01	1.35	$\therefore 040$	585	1440
का	16N	0.00	1.30	-. 024	545	3500
OH	4 Ai	-. 37	1.34	. 089	785	23.00
(${ }^{\text {I }}$	$1{ }^{\text {H }}$	-. 36	1.52	. 014	600	5200
a	ON	0,00	1.75	. 057	510	\$700
0	15	. 21	1.78	. 057	433	4200
av	25	, 65	1.68	. 090	380	3150
Or	48	. 87	1.34	. 040	367	1400
O	165	.67	1.26	-. 0001	425	910
OH	325	. 46	1.23	. 007	500	2135
0 H	645	. 79	1.30	.024	407	220
CTI	895	1.00	1.27	-. 010	295	860
18	ON	. 13	1.44	-.04.7	525	2560
645	126N	-. 02	1.20	-.007	60.5	1640
648	953	. 25	1.92	-.021	525	22001
548	64N	. 51	1.3 .4	007	380	1290

pable 1 - Continuod
Basia paramators of Point Royos sedinents (Por axplanation of parametors ses ead of Table 1)

Saries E - Pebruary 11, 1956

Logation	
642	32.7
643	16\%
643	48
648	Oil
648	48
643	165
843	323
643	645
256E	1151
2868	963
28.68	649
2505	1815
256E	4 N
2563	OH:
2563	4 S
286]	163
2565	325
2568	328
2568	645

Madian				
(phi undts)	So	$\log _{10} 3$	D_{10}	${ }_{i t s}^{D_{90}}$
. 98	1.21	. 033	383	1340
0.00	1.11	. 001	640	1300
0.00	1.35	-. 014	523	1800
-.02	1.28	. 013	580	1720
. 13	1.56	. 002	520	1600
-. 20	1.32	. 040	765	2900
1. 16	1,21	-. 0.08	308	690
1.08	1.25	-. 011	283	705
-. 05	1.16	. 000	750	1460
. 84	1.25	. CO 2	376	895
.40	1.2 .2	. 008	555	1090
. 47	1.22	. 003	520	1095
-. 03	1.31	-. 002	590	2025
. 02	1.25	. 002	535	1480
. 50	1.28	. 007	345	1195
. 34	1.35	-. 0006	440	1380
. 62	1.31	. 013	390	1290
(.46)	1.28	-. 006	440	1120
. 56	1.29	. 200	440	1120

Serlec P - 血rech 24, 1956

25818	196\%	-. 59	1.30	. 012	910	2510
2565	12.85	. 50	2.37	. 01%	420	1340
256\%	965	. 46	1.24	-. 005	500	1100
250 H	645	. 25	1,25	-.01\%	488	1300
2567	4811	. 78	2.58	-. 001	375	1000
2561	32N	. 84	1.23	-. 004	372	930
25 \%	18N	. 76	1,25	. 011	400	920
356.	4N	. 90	1.27	. 005	355	845
256.	1\%	. 86	1.28	-. 0000	350	1000
256\%	OM	. 69	1.20	. 001	348	960
256T	15	. 55	1.31	-. 020	425	1070
2567	48	- 2	1.37	. 00.3	385	1130
256]	163	. 58	2.28	-002	413	1090
2567	32 S	. 85	1.2;	-.001	355	895
2567	483	. 85	1.26	. 00.4	366	025
256ส	649	. 88	2. 29	. 003	365	890
E4T	1301	- 35	2.33	-.006	455	1260
B4PT	968	. 43	2.35	-. 001	420	1295
640	641	-48	1.32	-. 020	400	1110
E4t	488	. 78	1.25	. 012	380	950
	32 s	. 64	1.38	.00.9	375	1130
S6T	10N	. 58	2.26	. 012	435	1110
6437	48	. 98	1.25	. 004	365	850
647	IH.	. 81	1.26	-. 004	375	905
64 N	OH:	. 83	2.24	. CO 7	368	860
847	4 S	.76	1.22	. 011	395	980
645	168	. 92	1.22	- 201	355	835
84%	328	. 58	1.31	. 012	366	1170
	488	. 93	1.30	. 014	355	925
64	645	. 60	1.29	- COS	395	1060
21.	OM	. 60	1.29	-.011	410	000
OHI	140\%	-. 28	1.23	. 004	680	2000
OW	9618	. 28	1.28	-. 013	510	1235
Or	648	. 41	1.30	. 001	505	1290
OnI	1611	. 80	1.28	. 009	270	9.35
का	$4{ }^{4}$. 62	1.24	. 003	430	1010
Or	18	. 52	1.30	$-.021$	400	1180
O	cs	. 64	1.22	. 014	450	1000
OH	15	. 76	1.26	- $\cos 3$	348	845
Ow	43	. 60	1.22	-. 009	440	970
Or	16 S	.12	1.31	. 003	465	1240
Or	ง28	. 29	1.25	. 002	550	1320
OW	328	(.25)	1,32	-.003	500	1380
or	4 tas	. 61	1.37	. 005	375	1190
ar	84 S	1.11	1.21	.013	330	750
017	843	1.05	1.21	. 000	295	720
15	On	. 58	1.20	. 003	425	980
468	OS	-. 08	. 35	-. 015	575	1950
648	1268	. 3 日	1.39	-. 019	390	1:380
645	96N	- 53	1.14	-. 011	365	1205

Serios P - Maroh 24, 1256

Location		Modian (phi ualts)	So	$\log _{1 / 0} 5$		
648	E4N	. 21	1.32	-.009	565	1550
642	32\%	. 21	1.31	$\sim .012$	510	1400
648	16N	. 27	1.28	-. 008	430	1340
64E,	4818180	. 46	3.26	. 014	515	1180
64E	181	. 46	1.28	. 007	486	1060
645	ON	. 26	1.36	-. 007	480	1400
643	15	. 40	1.29	-.001	455	1180
645	25	. 33	1.28	-.007	520	1280
645	$16 S$. 21	1.29	-. 007	51.0	1380
848	32 S	. 67	1. 42	. 001	345	1370
648	48 S	1.00	1.28	. 001	32 E	830
648	645	1.00	1.25	. 015	385	810
256E	1268	. 57	1.51	-.003	383	1185
256E:	96\%	. 35	1.41	-. 003	310	1030
25EE	64:i	- 43	1. 30	.015	495	1.350
2568	48\%	. 29	1.28	-. 007	460	1240
256E	32%	.46	1.29	-. 007	420	1120
256B	16N	.34	1.28	. 003	525	1280
256E	4N	-. 02	1.31	-. 023	575	1500
2565	1 N	-. 15	1.28	-. 026	576	2.580
256 B	ON	-. 14	1.32	-. 025	590	1810
2568	$0:$	(-.35)	1.14	-.006	890	3620
256 E	15	. 03	3.34	-. 027	540	1500
256E	48	-. 18	2.14	. 006	780	1580
256 E	165	-. 14	1.40	-. 040	490	1650
256 B	325	. 61	1.35	. 011	390	1200
258 E	485	- 92	1.31	-. 006	355	885
256E	645	1.00	1.22	-. 004	3\%5	765

Sories G - iday 4, 1956

2663	128N	. 27	1.23	. 005	595	1245
2561	96N	-. 20	1.28	. 006	T30	1900
25614	CAN	. 76	1.18	. 017	430	900
2564	32:	. 59	1.23	. 608	435	1080
2561	16N	.76	1.21	-. 0003	400	990
256\%	ON:	. 50	1.25	-.002	435	1095
256s	45	. 62	2.25	-.009	415	1050
256w'	$16 S$. 64	1.28	. 009	495	1100
$256{ }^{\prime}$	32 S	. 57	1.32	. 021	430	1240
25681	645	. 85	1.27	. 002	350	875
654	160:i	. 79	1.12	-. 009	410	765
$64{ }^{4}$	128\%	. 40	1.30	-. 017	425	1180
64×1	964	0.00	1,24	-.022	560	$1 \leqslant 70$
649	648	. 93	1.23	-.005	355	800
64*	32N	.73	1.22	. 003	395	1000
644	16N	. 70	1.30	. 022	40.5	1075
6419	4	. 69	2.30	. 008	855	1000
6f\%	4N	(.84)	1.31	. 007	400	3075
64W	ON	. 88	1.25	. 014	400	900
68\%	4 S	. 85	1.27	. 001	347	2.5
	163	. 05	1.22	. 003	3ล0	865
64\%	32 S	. 85	1. 29	. 028	357	945
647	645	. 68	2.19	. 008	432	940
OII	180 N	.13	1.24	-. 003	715	1630
OVI	128N	. 56	1.25	. 015	510	1100
OVI	96.4	- 49	$\mathrm{I}=1.5$.002	1000	1900
Or	64N	. 91	1.22	-. 0005	558	820
cut	32N	. 86	1.20	-. 0005	356	686
Or	16N	. 33	1.31	. 005	525	15BO
(17	6:	.71	1.28	. 009	338	1030
dr	IN	.75	1.27	.011	385	1000
On	CH	.81	1.27	. 001	370	885
\%	19	. 78	1.22	. 000	368	e85
09	45	. 69	2.29	. 004	385	970
©	165	. 76	1.31	. 004	369	085
Or	323	.48	1.39	-. 012	370	1220
$\mathrm{CH}^{\text {r }}$	645	. 35	1.35	. 015	320	1000
Or	965	1.15	1.26	-. 018	252	¢75
645	160N	-. 03	1.23	-. 017	580	1510
648	128N	. 43	1.2̂	. 006	505	1190

Locat	ion	Ledian (pho unts)	So	$L^{\text {Log }} \mathrm{g}_{0} \mathrm{Sk}$	$\begin{gathered} \mathrm{D}_{10} \\ \mathrm{ph} \end{gathered}$	$\underset{\text { units }}{\mathrm{D}_{90}}$
648	96 N	. 38	1.30	. 016	505	1380
645	643	. 85	1.20	. 006	415	965
64	32M	. 83	1.25	. 002	370	885
$64 E$	18:	. 50	1.31	. 005	370	940
648	4	. 77	1.27	. 017	374	1000
648	On	. 37	1.30	-. 017	435	1175
641	4 S	. 37	1.32	-. 010	435	1185
643	$16 S$.44	1.41	. 026	485	1280
548	325	. 47	1.34	. 012	420	1290
648	64 S	. 88	1.18	-. 006	370	780
2006	7515	-3.08	1.18	-. 001	5430	11000
2568	12815	. 10	1.86	-. 005	500	1600
2568	961	-78	1.32	. 019	3.45	1070
2568	641	. 89	1.24	. 003	333	1600
2568	32 N	.41	1.29	. 011	505	1230
8563	168	. 60	1.30	. 012	430	1075
25685	48	. 76	1.27	. 001	367	925
2565	On	.56	1.30	. 001	420	1055
256\%	45	. 48	1.31	-.001	140	1115
25EL	185	.45	1.51	-. 024	500	1110
2535	325	. 13	1.32	-. 005	500	1460
$\begin{aligned} & 25 G B \\ & 2568 \end{aligned}$	64.5	. 73	1.16	. 022	395	1080
	963	1.03	1.24	-. 010	294	735
Seriais il - Juna 18, 1956						
256 B	64\%	.83	1.17	-. 002	395	820
256 W	32 N	. 05	1.36	. 010	520	1790
2564	16N	. 99	1.30	. 005	330	1000
2567	8 N	. 75	1.32	. 008	370	1050
2567	4N	. 80	1.27	-. 014	355	930
25 Wr	1N	. 80	1.25	. 008	375	920
2.56 M	08	. 73	1. 29	. 009	355	1000
25671	18	. 71	I. 25	. 005	395	1000
2667	45	. 78	1.25	-. 005	355	890
256 H	8 S	-48	1.33	-. 002	418	1320
2564	26 S	. 67	1.29	. 010	380	2100
256\%	32 S	. 69	1.31	. 006	390	1200
256]	645	. 55	1.36	-. 005	392	1270
2564	908	. 98	1.22	-. 015	312	740
6471	82N	. 84	I. 10	. 009	420	795
64817	64N	1.14	1.18	. 001	313	660
641	32N	. 98	1.36	-. 003	275	915
$6 \pm$	16\%	. 82	1.26	-. 006	345	880
6 保	8 K	. 40	1.39	-. 015	365	1480
647	45	. 38	1.49	-. 006	356	1600
6470	1N	. 35	1,36	-. 014	425	1365
5	Ois	. 75	1.26	-. 007	360	930
640	15	. 37	1.28	-.017	350	850
646	48	. 87	1.28	. 005	340	935
64t	日S	-98	1.27	.013	340	865
E46	163	. 71	1.29	. 007	40 C	1055
64.	328	. 87	1.26	-. 002	342	905
84	648	. 95	1.20	-.009	342	760
646	763	. 90	1.23	. 008	362	855
av	110	. 63	1.19	. 000	430	880
ar	82\%	. 95	1.12	. 007	400	690
CrI	645	1.24	1.16	. 005	300	620
or	32 N	. 25	1.35	-. 001	264	910
OW	16*	. 48	1.27	-.008	430	1120
ar	8 N	. 37	1.29	.007	420	1130
01	4 11	. 74	1.26	. 006	390	970
Of	1 N	. 73	1.24	-. 004	390	980
Of	OW	. 80	1.25	. 006	380	920
ON	15	. 67	1.29	-. 002	380	1070
Ow	25	.88	2.28	. 010	400	1060
On	45	, 58	1.27	. 002	425	1035
O	85	. 78	1.29	-.001	345	1100
CTI	165	. 51	1.31	-. 011	415	1100
Or	325	. 35	1.31	-. 014	425	1250
0	825	1.15	1.23	-.010	287	680

$$
\text { Table } 1 \text { - Continued }
$$

basic parameters of Point Reyes sediments (For explanation of parameters soo and of thble 1)

Series H - June 18, 1956

Loontion		rodian (phi units)				
		(phi uaits)	So	$\mathrm{LO}_{10} \mathrm{Sk}$	D_{10}	$\begin{array}{r} \mathrm{D}_{90} \\ \text { units } \end{array}$
643	88:	1.06	1.22	-. 016	32 E	636
648	64:	. 76	1.24	-. 009	335	890
648	32N	-. 07	1.26	-. 004	630	1660
648	16N	. 81	1.21	-. 003	383	960
648	8 K	. 84	1.33	-. 002	370	940
645	4N	.77	1.24	-. 008	379	930
$64{ }^{6}$	1\%	. 74	1.22	.009	415	960
64B	OX	. 50	1.35	-. 009	400	1220
64 E	13	. 44	1.29	-. 009	$44^{\text {n }}$	1155
64 E	4 S	. 42	1.24	-. 010	480	1100
645	BS	. 46	1.22	-. 0000	423	1300
645	16S	0.00	1.32	-. 030	540	1545
645	32S	. 22	1.43	-.008	430	1660
648	645	. 95	1.24	-. 014	313	780
64E	823	. 64	1.22	-. 003	436	910
256E	96K	1.19	3.27	. 009	283	715
256E	645	1.09	1.28	-. 003	288	745
2565	4811	. $\mathrm{EO}^{\text {O}}$	1.20	. 002	386	860
256E	32N	. 72	1.35	. 003	322	1090
256 E	16:	. 95	1.26	. 027	362	900
256E	88	. 60	1.24	. 014	425	1040
256E	cin	. 50	1.28	. 013	455	1275
256E	1N	. 56	1.32	-. 010	396	1095
2565	On	. 44	1.30	. 011	460	1300
256B	15	. 57	1.30	. 014	420	1200
2568	45	. 09	1.35	. 004	515	1640
2565	85	. 10	1.25	-.027	485	1400
2562	16 S	-. 48	1.20	-. 001	880	2040
256 E	325	. 60	1.34	. 053	390	1200
2551	645	. 96	1.29	-. 0004	280	830
256 B	82S	. 97	1.27	-.004	317	885
		Series Y - May 31, 1955				
25671	484	. 28	1.22	-. 0099	530	1195
256.	32\%	. 53	1.20	-. 004	480	1055
2.56 .5	16H	. 71	1.11	. 007	440	875
256.1	4 2	. 50	1.24	. 007	476	1085
256%	1*	. 37	1.29	-. 008	480	1805
256\%	On	. 50	1.26	. 002	460	1105
256 W	15	. 49	1.27	. 016	480	1085
256\%	45	. 47	1.25	-.002	480	1100
256%	168	. 60	1.18	. DOS	510	1295
256\%	32 S	-. 03	1.21	-. 008	545	1050
25.6"	648	. 27	1.21	-. 006	545	1185
2563	98S	1.17	1.19	-. 006	340	580
160 F	OH	. 91	1.21	. 012	380	800
260%	82S	.27	1.22	-. 016	660	1200
901	32N	, 06	1.21	-. 003	660	1390
gow	0 O	. 67	1.86	. 009	430	950
907	32 S	. 35	1.27	-.009	510	1175
161	$\mathrm{O}, 1$.89	1.17	-. 000 S	360	720
87	O	1,03	1.24	. 008	340	765
17	OR	. 94	1.19	-.006	255	715
ON	48 N	-48	1.82	-n003	520	1085
O5	324	. 22	1.21	. 00%	575	1245
0 \%	163	. 62	1.33	. 1.1 ̂̂	410	1340
OW	14:	. 93	1.23	- 013	340	740
O\%	O\%	1.05	1.22	-. 013	340	680
07	18	. 93	1.20	. 023	355	710
O\%	45	. 94	1.22	- 002	370	140
OW	168	. 69	1.21	. 000	415	980
ON	325	. 72	1,17	-. 003	430	920
Ov	645	. 80	1.18	-,,008	400	780
OW	963	. 67	2.28	-. 020	365	1070
IE	ON	. 90	1.12	.006	365	710
治	Cd	. 94	1.18	. 0024	370	755
165	CN	. 73	1.28	. 016	415	989
1108	O4	.69	1.20	. 012	430	830

Location		(phijundts)	So	$\log _{10} 5 \mathrm{k}$	$D_{10}{ }^{D_{\text {pis units }}}$	
170E	323	. 71	1.14	-. 005	430	870
1808	O4	.92	2.18	-. 005	370	700
	323	, 77	1.15	-. 003	480	785
2568	48\%	- B $_{8}$	1.27	-. 0005	450	1085
	32I	.77	1.19	-. 0001	410	805
	16S	. 67	1.26	. 008	410	980
	$4 \pm$. 75	1.24	. 004	430	895
	1N	. 73	1.17	-.,002	450	785
	ON	. 77	2.10	-. 0008	450	750
	13	.73	1.14	-. 002	440	800
	45	.76	1.27	. 005	430	905
	169	. 73	1.13	-. 011	430	795
	323	. 66	1.10	. 006	550	785
	848	.78	1.42	. 018	345	1340
	968	. 56	L. 46	-. 004	345	1240

Cooation is the ooordinate of the sample with referance to the 0 Morth 0 Hest point, in Coat North (N) or South (S) and West (V) or Bast (E).

1dd it the modian grain diamotor DOO of tha samale, expressed in phiund ta (if ϕ is the djarater in phi-unita and u ís tha diametor in millimeters, then $\phi=-\log _{2} \mathbf{L}^{\prime}$).

So is tho sorting coofficient wit the somple (for grain size in mfcron $\mathrm{So}_{0}=\sqrt{D_{75} \mathrm{D}_{25}}$.
Log 0_{0} sic is thi logeritha of the mkownasy of tho gamplo (for gruin sise in wi arons $\log _{10}$ Sk $\left.=\log _{10} \sqrt{\left(\mathrm{D}_{25} \times \mathrm{D}_{75}\right) /\left(\mathrm{D}_{50}\right)^{2}}\right)$.
D_{10} and D_{90} are the 10 and 90 parcantiles, respeativaly, of the size distribution of the purticles in the asmples, expressod in miorons.
Pambera in paranthoses refer to the upper of two semples taken at the same looals ty.

Bule 2
Averago grain aize along Wortk-South lines in pini vaits

	I Mar. 1954		Y	A	B	0	D	E	F	9	日
			4 y	ALis*	Oat.	Hov.	Dea.	Fob.	3ar.	May	Juno
			1955	1535	1985	1955	1955	1956	1956	2966	1956
2561	sid	. 71	. 49	. 52	. 59	. 51	. 69	. 50	. 60	. 54	, 69
	H	8	12	27	12	10	11	14	16	10	14
641	3 c	. 49		. 42	. 86	. 62	. 70	. 41	.69	. 69	. 70
	1.	6		14	10	11	12	12	14	13	15
a^{1}	: Ld	. 38	. 73	. 80	. 74	0.59	. 42	. 32	. 53	. 61	. 74
	r	12	11	15	26	$1: 3$	14	14	15	15	16
84B	yd	. 51		. 09	. 10	. 90	. 87	, 35	. 44	. 53	57
	N	5		9	10	12	13	11	14	12	15
2568	2d	. 81	.70	. 97	1.60	. 96	. 69	.37	.29	, 58	. 60
	I	5	12	10	11	12	13	11	16	12	16
Hean	¢	. 46	. 66	. 62 (1)	. 84	. 75	. 68	. 38	. 50	, 58	-58
	μ	730	635	1555	560	595	325	770	710	670	685
$\frac{\sigma}{\sigma / \sqrt{\mathbf{N}_{T}}}$. 38	. 27	. 52	. 50	-30	. 35	. 34	. 33	. 30	, 31
		. 056	. 038	.051	. 039	. 039	. 041	. 043	. 038	.03B	, 036
		46	50	105	61	60	75	64	78	63	76

Md - Mean madian danoter in phis units
I - Wunber of gamplos roprosonted by mean dinmetar
Vasn 中-Moen modian diamator is plis unj ts of all aamples on cusch
Hean it Samo modian diematar in maderana
o - Standard dovistion of individunl samples on beach
$\sqrt{M_{T}}$ - Standard devistion of moan ϕ in phl units
Yi - tosal number of atuples on booch
(1) Exaludes throe goarse semples. If these threo ganplea are inoluded meas is 0.52 phi unita, σ ia 0,83 phi wits and $\sigma / / N N_{T}$ is - 060 phi unsts

Table 3

Significance of means of entire area

	$\begin{gathered} \mathrm{X} \\ \text { Mar } \end{gathered}$	$\underset{\text { uxy }}{Y}$	A Aug.	$\begin{gathered} \text { B } \\ \text { Oct. } \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { Nov. } \end{gathered}$	D Dac.	$\begin{gathered} \xi \\ \text { Feb. } \end{gathered}$	F ;har.	$\stackrel{\text { G }}{\text { tay }}$	$\begin{aligned} & \mathrm{H} \\ & \text { June } \end{aligned}$
	1954	1955	1955	1955	1955	1955	1956	1956	1956	1956
7	0.29									
4	4.55	52.87								
B	0.00	0.08	0.06							
0	0.00	9.49	4.24	10.10						
D	0.15	71.88	35.76	0.47	2.14					
E	25.85	0.00	0.03	0.00	0.00	0.00				
F	54.85	0.23	5.74	0.00	0.00	0.12	3.66			
G	7.35	13.10	52.87	0.00	0.16	7.35	0.05	11.41		
H	0.53	76.42	42.95	1.83	30.30	100.00	0.00	9.30	12.36	
H	. 46	. 66	. 62	. 64	.75	. 68	. 38	. 50	. 58	. 68
$\mathrm{H}_{\mathbf{T}}$	46	50	105	61	60	75	64	78	63	76
σ / \sqrt{N}	- ${ }^{-} .056$. 038	. 051	. 039	. 039	. 041	. 023	. 038	.038	. 036

See Teble 2 for explemation or $\mu_{d}, \mathrm{~K}_{\mathrm{r}}{ }^{\text {and }} \sigma / \sqrt{\mathrm{N}_{T}}$
The sigaificance in per cent is the paroantage probabillty that the difference in moan median diametor could havs arimen from purely random causes. A firgure of less than 5 per cont indicatos thas the difforence is roal and not due to vaçaries of gemplag. A figure of 0 00 means tiet the ahmoes are more than 20,000 to 1 that the differenoe is real.

Thible 4
Average grain sizs of alevation zones

$$
\begin{aligned}
& \begin{array}{lllllllllll}
\text { 2one } & \text { feot } & \text { A } & \text { B } & \text { D } & \text { G }
\end{array} \\
& \begin{array}{clllllll}
\text { Aug. } & \text { Oct. } & \text { Nove } & \text { Doo. Feb. } & \text { Mar. } & \text { Say } & \text { Juno } \\
1955 & 1955 & 1955 & 1955 & 1956 & 1956 & 1956 & 1955
\end{array} \\
& \text { M - Mien sodion olavster in phi units } \\
& \pi_{9} \text { - Number of enmples evoragod } \\
& \text { Mnyon }{ }_{\mathrm{T}} \text { and } \mathrm{Z}_{\mathrm{T}} \text { ara from Tnblo } 2 \\
& \text { Unan and } \sigma \text { in rows represent the ontire populatson of the semplec } \\
& \text { ropresentod in the row. Thoy sire based on the individual samples }
\end{aligned}
$$

Tabla 5
Signifioance of means of elevation zones
Elevation zone

$3-6$	$6-9$	$9-12$	$12-15$	$15-18$	$18-21$	21

Per cent

6-9	4.66						
9-12	0.00	0.23					
12-15	0.07	9.30	5.88				
15-18	0.13	19.36	0.14	37.35			
18-21	0.01	2.09	18.68	43.54	3.24		
$21+$	0.01	1.11	81.81	13.89	3.49	28.46	
Phi units							
Liean	. 29	. 53	. 77	. 66	. 62	. 70	.79
σ	. 56	. 46	. 33	. 35	. 33	. 24	. 37
σ / \sqrt{N}	. 100	. 066	. 043	. 040	. 021	. 032	. 077
II	31	48	60	75	251	57	23

See rable 3 for explanation
The data ere jased on the population of each zone for all 8 timos of occupation - A to H , inclusive.

Tabla 6
Sorting of North-South lines

> as - Means sorting of all samples on line
> It - Number of samples
> σ - Standard deviation of all samples on beach
> N - Total number of somples on baEch
> (1) - Mesn of means
> (2) - Mesin of all samples on baach

Tarle 7
Sorting of elevetion zones

Elev. zone	Date								$\text { INean }(1)$
	A	B	C	D	E	F	G	H	
	Aug.	Oet.	ivov.	Dec.	Feb.	Mar.	Nay	June	
	1955	1955	1955	1555	1956	1956	1956	1956	
$3-6 \mathrm{M}$N	1.27	--	1.26	1.30	1.19	1.33	1.18	1.18	1.25
	7	--	4	4	6	4	2	5	7
6-9 Ms	1.30	1.33	1.29	1.41	1.24	1.31	1.30	1.21	1.30
	22	4	5	2	3	6	5	4	8
9-12 Ms	1.29	1.19	1.26	1.23	1.31	1.28	1.24	1.30	1.26
	26	5	4	5	3	2	7	5	8
$\underset{\mathrm{N}}{12-15}$	1.30	1.22	1.22	1.26	1.27	1.31	1.23	1.29	1.26
	27	6	10	4	12	8	7	4	8
$15-18 \mathrm{~ms}$N	1.19	1.25	1.32	1.29	1.41	1.28	1.30	1.27	1.29
	14	40	29	39	24	42	28	47	8
$\mathrm{l}_{\text {18-21 }} \mathrm{Na}$	1.17	1.24	1.29	1.25	1.29	1.27	1.26	1.28	1.26
	2	4	4	9	13	13	8	6	8
$\begin{gathered} 21+\frac{\mathrm{Ms}}{\mathrm{~N}} \end{gathered}$	1.24	1.28	1.31	1.39	1.34	1.25	1.24	1.23	1.29
	3	1	3	3	2	2	4	5	8
$\begin{aligned} & \operatorname{Mean}(2) \\ & N_{T} \\ & \sigma / \sqrt{N}^{2} \end{aligned}$	1.28	1.25	1.27	1.30	1.32	1.29	1.27	1.27	
	108	61	60	75	64	78	63	76	
	. 011	. 016	. 011	. 015	. 018	. 006	. 008	.007	
$\sigma / \sqrt{\mathrm{N}}^{\mathrm{T}}$	mis -	Mean sor	ting	f el eva	tis on 20				
	N -	Number	of samp	les in	elevati	on zone			
	N_{T} -	Totel	mber.	amples	on beac				
	T	Standar	devi	tion of	mean	orting	of samp		
	(2) -	Mean of	all s	mples	n beach				

Charsoteristic foatures of ousps
Detes

	A	E	c	D	B	7	G	H	Ave
	Aug．	Oot．	1100.	Dec．	Web。	\therefore 亿r．	： lay	Jane	
	1955	1955	1955	1955	1.966	1956	1956	1956	
$\therefore \mathrm{O}$ ．of cusps	5	4	4	5	5	6	5	4	5

Characteristic leatures of cusps
Man madian grain size in phi units

cusp slope ${ }^{(3)}$ ． 77	． 93	． 58	． 76	． 56	． 44	.37	． 66	． 67
ausp crest ．50	． 59	－ 83	． 56	． 42	． 47	． 76	． 46	． 52
lower bay ． 99	1.06	－73	1.02	.39	.57	． 86	． 78	－86
uppor bay（4）${ }^{.79}$	1.00	． 77	． 91	－16	.71	.53	． 67	.75
moan median ${ }^{(4)} .62$	． 84	． 75	． 68	， 38	． 50	． 58	．6日	． 63

Wasn enarklaiset af sortiog

Suplanetion

Diatomoes and elovations are tren in feot
（1）＂roo West，Tost ousp $13^{\text {＂}}$ for Aupust 1955 maans that the frst ousp west of
 thet the first ousp east of In ne 200 instins is foet east of that line．
（2）＂Laximun di florence＂represents distanco mossured in feet in seaward di－ reation．
（3）Cusp slope＂ropresents ampler ．inthin 50 foot of point of the cusp on sommrd or down side．
＂Cuap crost＂，represonts semples on the berm int thin 50 feot of the edge ol the ousp．
＂Lowor bay＂sanples are samplos from the bev or swalo betweon ousps taken Within a horizontal distance of $5 G$ feat of the elevation of the ousp pointe Doper bey semplos are within． 50 foet of the gasps elevation n the landund sido．
（4）Voan median and sorting reprasent peans for the entire beach，not for the group of samples representirig the particular parts of cusps．
（5）The steragas in the last solumara of two types．One represents the wean of the 8 masas representing the individual timea the boachwas oocupied． The otiner，which is cestriotod to the last two cetogorice givine modian grain size and sorting for difforont parts of the ousps repreanents the en－ tire suitio of semplos in esch category for all the 3 tinas the boach was oocupisd．Such neans do not ropresent the aman of the res．ns except in the last line for each group，where means representing the eatire samples on the ceach are averaged．

DESCRIPTION OF FIGURES

Figure 1 shows the general location of Point Reyes, 35 miles northwest of San Prancisco. The beach is exposed to the full force of the waves from the open Pacific Ocean. Figure 2 gives the general features of Point Reyes Beach. The part of the beach studied in the present investigation is situated at Station $A .3$ miles northeast of Point Reyes. Station B, investigated in the previous work has not been oocupied in the present study. The beach extends in a nearly straight line between the headland of Point Reyes on the south and the high land extending southeastward from Tomales Bluff. The land back of Station A rises to a height of about 250 feet. The cliff at Point Reyes and the highlands west of Tomales Bay attain a maximum elevation of more than 500 feet. The bedrock of the area, west of Tomales Bay consists of quartz diorite below, overlain by conglomeratic sandstones and chert of Miocene age and this in turn by dune sand of Pleistocene and Recent age. In the area adjacent to Station A, Pleistocene dune sand is exposed in the cliff's behind the beach. In places this old dune sand is eroded during winter storms. The San Andreas fault passes northwesterly through Tomales Bay and separates areas underlain by Franciscan rocks of Mesozoic age on the east from the quartz diorite and other rocks on the west.

Figures 3 to 10 show the beach configuration for the 8 times the beach was occupied between August, 1955 and June, 1956. The cusps are lettered alphabetically from left to right. The position of the outer edge of the berm is indicated by a dashed Iine.

Profiles of the beach are shown in Figures 11 to 1.4. Profiles are given for three of the five lines of samples, namely, 256-W, $0-W$, and 256 E . On Pigures 11 the profile at time X . for March, 1954 is included in order to show the change in beach after the beach was occupied in the previous study. Beach characteristics for time X are shown in each of the two previous publications on Point Reyes Beach,(1) and (2). In Figures 11 to 14, three profiles are combined together for purposes of comparison and three series of profiles are shown on each figure. In order to indicate the differences in elevation between successive periods of occupation of the beach, the last profile of the series shown above is repeated in the series given below. Thus the first series in pigure 11 shows times X, A and B; and the second series indicate times B, C and D.

Figure 15 shows average median diameter by elevation zones. In preparing this table all the samples for each elevation zone shown in Table 3 have been averaged for each time the beach was occupied. These averages are represented by dots placed at the midpoint of each elevation zone. Three series, each containing three graphs are shown in Pigure 15. These correspond to the 8 suites of samples, A to H inclusive, and the average of all samples in series A to H_{0}. The average is not the average of the 8 averages for the suites A to H but: is a composite mean of all the samples collected in suites A to H.

The areal variation of grain size in August 1955 is shown in Pigure 16. The beach was occupied more fully at this time than at any other time. The figure is presented as an example giving the general variation in grain size over the beach at a typical time. As the statistical studies show that the areal variation is similar each time the beach was occupied little is gained by showing maps of the areal variation at the other times. Maps were prepared, but they show the same general variability and trends.

Pigure 17 shows the sorting by elevation zones. The chart was prepared in the same manner as Figure 15 and is based on data presented in Table 7. The general relationship of sorting to median grain diameters is represented in Pigure 18. This figure represents all the samples collected during times A to H inclusive.

Figures 19 to 26 present maps showing the cut and fill between successive times of occupation of the beach. On these figures "cut" means erosion or scour between successive times of occupation of the beach, Fill represents deposition. Thus Figure 19 shows the amount of cut and fill between August 1955 and March 1954, which was the time of the previous occupation of the beach. The contours on Pigures 19 to 26 were prepared by superimposing one beach contour chart upon another and marking difference in elevations where contour lines cross one another on the two charts. Contours are then drawn upon the basis of difference in elevation on the two charts. To give some idea of the configuration of the beach, 5 -foot contour lines on the beach surface are shown for the later of the two charts used in preparing the cut and fill chart. Thus in Figure 19 the heavy contour lines show the position of the 5 -foot contour in August 1955, which time was the later of the two times used in preparing the cut and fill map shown in Figure 19.

Pigure 27 shows the relationship between cusp interval and average grain size on the beach for the 8 times the beach was occupied in the present study.

FIGURE 3. SAMPLE LOCATIONS, PT, REYES BEACH-SERIES A-AUGUST 26, 1955

FIGURE 4. SAMPLE LOCATIONS, PT. REYES BEACH-SERIES B-OCTOBER 8, 1955

FIGURE 5. SAMPLE LOCATIONS, PT. REYES BEACH-SERIES C-NOVEMBER 12, 1955

FIGURE 6. SAMPLE LOCATIONS, PT.REYES BEACH-SERIES D-DECEMBER 28,1955

FIGURE 7. SAMPLE LOCATIONS, PT. REYES BEACH-SERIES E-FEBRUARY II, I956

FIGURE 8. SAMPLE LOCATIONS, PT. REYES BEACH-SERIES F-MARCH 24, 1956

FIGURE 9. SAMPLE LOCATIONS, PT. REYES BEACH-SERIES G-MAY 4,1956

FIGURE 10. SAMPLE LOCATATIONS, PT. REYES BEACH-SERIES H-JUNE 18,1956

FIGURE 11. BEACH PROFILES, LINE 256 W (MARCH 1954-MARCH 1956)

FIGURE 13. BEACH PROFILES, LINE OW (DECEMBER 1955-JUNE 1956) LINE 256 E (MARCH 1954-OCTOBER 1955)

FIGIIRE 16. AREAL VARIATION IN MEDIAN DIAMETER

FIGURE 13. CUT AND FILL BETWEEN MARCH 1954 AND AUGUS: 1955

FIGURE 20 CUT AND FILL BETWEEN AUGUST 1955 AND OCTOBER 1955

FIGURE 21. CUT AND FILL BETWEEN OCTOBER 1955 AND NOVEMBER 1955

FIGURE 22. CUT AND FILL BETWEEN NOVEMBER 1955 AND DECEMBER 1955

FIGURE 23. CUT AND FILL BETWEEN DECEMBER 1955 AND FEBRUARY 1956

FIGURE 24. CUT AND FILL BETWEEN FEBRUARY 1956 AND MARCH 1956

FIGURE 25. CUT AND FHLL BETWEEN MARCH 1956 AND MAY 1956

FIGURE 26. CUT AND FILL EETWEEN MAY 1956 AND JUNE 1956

FIGURE 27. RELATION OF CUSP INTERVAL TO GRAIN SIZE

CHARACTER OF SEDIMENTS

Grain Size Variation.

The general variation in grain size is shown in Table 2. The areal variation at a typical time is given in Figure 16, which gives the areal variation of the median diameter with respect to beach contours in August, 1955. The mean grain size ranges from 0.38 phi units in February 1956 to 0.84 phi units in October, 1955. The mean diameter shows a progressive change throughout the season. It is 0.38 in February, the minimum; 0.50 in March; 0.58 in May; 0.68 in June; 0.62 in August; 0.84 in October, the maximum; and 0.68 in December. Table 2 shows that the median is 0.62 in August 1955. This figure of 0.62 excludes three very coarse samples, two of which have phi diameters of more than minus 3, (See Figure 16). If the se three samples, (Samples 68W, 48N; 44W, 55 N ; and $128 \mathrm{E}, 55 \mathrm{~N}$) are included the average median is 0.52 . These three coarse samples were specially selected to show how coarse the beach can get. In part they represent places where returning water flowed in a stream and sorted the pebbles: In other places they seem to show the effect of wave wash. As shown by the two samples at 128E, 55N they are underlain by normal beach sand. The sediments in these three places were round, flat pebbles; the median diameter of the coarsest samples was 8.8 gillimeters or one-third inch.

The extreme mean medians of 0.84 and 0.38 phi units correspond to 560 and 770 microns, respectively. Similar variations were noted in the previous study (1) where the medians for October, 1953 and March, 1954 were 0.90 and 0.48 respectively.

The standard deviation of the samples at the individual sampling times ranged mostly between 0.30 and 0.35 phi units. The extremes were 0.27 in May, 1955 and 0.52 in August, 1955. The large figure for August represents a highly variable condition and is even larger, 0.83 phi. units, if the three coarse samples are included. In the previous work between June 1953 and March 1954 the standard deviation had a similar range. The extremes were 0.29 in June, 1952 and 0.41 in February 1954. In November, 1954 a group of 11 samples had a standard deviation of 0.15 ; but as shown in the previous report(1) the standard deviation of a small group of samples tends to be lower than a large group. A standard deviation, 0.30 to 0.35 phi units, indicates that 68 percent of the samples on the beach are within ratios of $5 / 4$ and $4 / 5$ of the mean median diameter; that is, the median diameter is within 20 to 25 percent of the mean value for 68 percent of the samples and more than that for the other 32 percent.

A part of the variation in grain size is caused by lamination of the samples. The samples are taken by scooping up material from the upper two inches of the sand. At times, the lower layers of sand are finer or coarser than the upper layers at time of sampling. In a few instances, upper and lower samples were taken. In such samples, the
upper layer was first: scooped off, and then the lower sample was taken. Such samples are indicated by appropriate notes in Table 1. No attempt has been made to study such lamination in the present investigation, other than to report obviously different sizes in the different layers as indicated in Table 1.

The pattern of variation in grain size in August 1955, is shown by Figure 16. The areal variation of the beach was greater at this time than at any other time the beach was occupied. The figure shows the generally coarse sediments of the beach.

The differences in grain size from one time of occupation to another are indicated by Table 3. This table shows the significance of the difference between mean grain size of the entire beach at different times, expressed in percent. A figure of 5 percent means that the chances are $100 / 5$ or 20 to 1 that the difference is real and not anomalous. The data in the table show that between successive occupations of the beach the differences between mean grain size range from a moderate to an extremely great distinctive difference. That is the beach is continually changing i.ts character. Only between May and August 1955, where the significance in percent is 52.9 does the difference seem indistinctive, though significances of around 10 percent are noted for three other times, October-November 1955, March-May 1956, and May-June 1956. Cextain months are noticeably different from all other months. October, when the grain size is small and February when it is coarse, show very little affinity with other months.

The coarser grain size in the lower foreshore is better indicated by the data presented in Tables 4 and 5 and in Figure 15. In Table 4 the median diameters of the samples are averaged for each three-foot zone for each time of sampling. Table 5 shows the significance of the differences between mean grain diameter of the sands in the different elevation zones. Figure 15 presents graphically the means shown in Table 4. It is obvious from these data that the sediments in the zone of 3 to 6 -foot elevation are coarser than those in other zones. The sediments in the 6 to 9 -foot zone similarly are coarser than those in the 9 to 12-foot zone; however, above the 9 to $12-f$ oot zone no distinctive differences are indicated. This distinction in grain size is clearly portrayed by the data in Table 5. The significance of difference between the 3 to $6-$ foot and the 6 to $9-f o o t$ zone is 4.7 percent and between the 6 to 9 and 9 to 12 -foot zones it is 0.2 percent. The significance of differences between other successive zones is much less. The relationship for the lower zones is brought out in another way. In 6 out of 7 of the suites of sediments taken between August, 1955 and June 1956, the mean phi diameter of the 3 to 6 -foot zone is lower than in the 6 to $9-$ foot zone, and in 6 out of 8 suites the mean phi diameter of the 6 to $9-f$ foot zone is lower than in the 9 to $12-$ foot zone. A similar relationship was found in the previous study(1). However, in that investigation the sediments on the berm were observed to be slightly
coarser than those on the upper foreshore. No such difference is indicated by the data in the present study.

Sorting

The coefficients of sorting of the different suites of samples are sumarized in Tables 6 and 7 and Figures 17 and 18. The average sorting ranges mainly between 1.27 and 1.30 with extremes of 1.31 in Pebruary 1956 and 1.21 in May 1955. The general average for this beach is 1.28. In the previous series for the period, June 1953 to November 1954, the sorting ranged between 1.23 and 1.33 , with an average of slightiy less than 1.29 . The coefiicjent of sorting in the recent series is a little higher in December and March than at other times, but tie differences are hardly enough to be distinctive. A similar relationship was observed in the previous samples (1).

The standard deviation of the samples ranges between 0.06 and 0.14 phi units. The maximum deviation was observed in the winter nonths. The range in standard deviation in the present series of samples is similar to that of the earlier series(1).

The sorting of the samples as arranged by individual elevation zones shows no distinctive differences except; for the sediments in the 3 to 6 -foot zone, in which the sorting seems better than in higher zones. The general overall average of the sediments in this zone is 1.25 compared with 1.30 in the 6 to 9 -foot zone and 1.27 for the higher zones.

As shown by Inman (4) sorting is crudely related to grain size. Marine and beach sediments tend to be best sorted for grain diameters between 1.50 and 200 microns. For greater and smaller grain size the sorting is poorer; that is, the coefficient of sorting is larger. This relationship was found in the previous study (1) of Point Reyes Beach. In the report describing the results of that work a table showing the coefficient of correlation between sorting and grain size was presented. A similar relationship has been found in the present study, the results of which are shown graphically in Figure 18. Though the scatter is high a generally increasing degree of sorting is shown for increasingly smaller grain size.

Skewness

The sediments in the present suites of samples are so evenly skewed that no distinctive differences are indicated. Perhaps more detailed analyses, using screens with closer ratios between successive sieves, might give more reliable measures of skewness than the sieves used in the present invesgigation. However, the weight accumulation curves give such consistent results that the conclusion is reached that the sediments on this beach are evenly skewed.

The configuration of the beach is shown by Figures 3 to 10 . Profiles of the beach slopes are given in Figures 11 to 14 and the characteristic features of the cusps are presented in Table 8. The beach has a variable outline, characterized by cusps. These cusps are more or less crescentic in shape. Most of them have fairly sharp pointed flattopped promontories at their extremeties and more or less gently sloping swales or bays in the indentations of the shore line between cusps. The top or crest of the cusp forms a part of the berm, and is nearly level. Swales between the cusps gradually nerge into the berm. The interval between cusps ranges from 60 to 250 feet. The average is 161 feet. The interval varies roughly with the season, being large in the summer and fall and small in the winter and spring. The maximum average interval is 205 feet in October and the smallest is 115 feet in March. Thus the long intervals tend to be associated with fine sediments and short intervals with coarse sediments. This relationship is subject to exceptions because the interval between cusps is small in August.

The relationship between eusp interval and grain size is more clearly brought out by Figure 27. On this figure the average cusp interval is plotted against average grain size of the beach for each of the 8 times it was occupied in the present series. The data indicate a general trend from a large interval with fine sediments to a short interval with coarse sediments. Whether such a trend is real or anomalous can hardly be established with 8 times of occupation. The general. relationship cannot be as straight as indicated, because extrapolation of the graph to zero phi units, or one millimeter, indicates a cusp interval of zero feet.

The elevation of the crest or point of the cusps varies mainly between 14 and 16 feet. Extremes are 12 and 17 feet. The elevation changes from time of one beach occupation to another. No seasonal trend in height is indicated. The position of the front of the cusps with respect to the zero-line parallel to the beach likewise changes from one time of occupation to another. The total range in average position of the cusps parallel to shore is 44 feet, from 29 North to 73 North. This maximum range in position took place between successive occupations of the beach in May and June 1956. No seasonal trend is indicated by the data. The beach may be out or in during summer or winter.

The large swales or indentations of 1500 to 3000 feet in lineal extent along the beach and up to 200 feet at right angles to the beach, noted in the previous survey (1) were not observed during the current series of occupations. In the former study the cusps had approximately the same interval as in the current series, but they were superimposed upon the larger: indentations of the coastline. In the current series the general. coastline was more irregular: The large indentations were
associated with rip tides. Evidently the rip tides vary in magnitude and extent from one period of time to another, as they were not so evident during the cur rent series of occupation as in the preceding series.

In an effort to determine the pattern of migration of the cusps a series of measurements showing position of the cusps with respect to arbitrary reference lines at right angles to the beach are shown in the first part of Table 8. Three reference lines are given, 200 West, 0 West and 200 East. The distance of the nearest cusps to both east and west of these reference lines is shown in the table.

The data presented on Figures 3 to 14 and in Table 8, do not indicate whether the cusps have moved up or down the beach. The maximum lateral change in position of cusp points from one time of occupation to another is about 60 feet, which is something less than one-half interval between cusps. This is a significant change in position, but whether it is one-half cycle to the east or west, or more than one cycle in either direction is not indicated by the data.

At intervals during the visits to the beach, cusps were in the active process of being eroded. At one time, May 1956, three levels of cusps were observed at elevations of 10,14 and 17 feet. The ones at 10 feet appeared to be in the process of formation. At another time, a series of small cusps with a short interval of spacing were noted at an elevation of about 8 feet. When the beach was occupied in August 1956, no cusps were present and the existing berm was being actively eroded by waves washing over a new berm at an elevation of 10 to 12 feet. A scarp, 5 feet in height lay at the rear of the new berm where the old berm was being eroded. That the cusps can form at a rapid rate is shown by the rapid rate of fill noted during the preceding August, when in the course of 4 hours as the tide came in, 8 inches of fill were deposited on the middle foreshore in one place. Stakes placed in the beach were used as means of measurement. The maximum fill observed was 12 inches from 2 p.m. in the afternoon to $9 \mathrm{a}, \mathrm{m}$. the next day.

The slope of the beach at Point Reyes beach is steep, On the swales or bays between cusps the slope is commonly 4 to 8 degrees and on the upper part of the foreshore on the cusp points the slope is 6 to 15 degrees. At times the slopes immediately below the crest are high; 17 to 20 degrees have been noted frequently and on the day just mentioned when the cusps were being eroded, the slope was greater than 45 degrees, or 100 percent, on the scarp at the rear of the lower berm.

The grain size seems to vary with position on the cusps, but the sorting does not. In making a study of grain size variation on the cusps, the cusps were divided into four parts. Two of them were on the promontories or projections of the cusps on the boundary between one cusp point and the other; and two were in the swales or bays between the cusps. Each category was further divided into two groups, one for samples within 50
feet seaward of the elevation of the crest of the cusp and the other within 50 feet landward of this elevation. The summaries thus made are presented in the lower part of Table 8. The data indicate that the grain size in the lower part of the bays between cusps is distincly more fine grained than the general average for the beach and for the samples on the points of the cusps. The general average median diameter in the lower part of the swale is 0.86 phi unit compared with 0.63 for the overall average for the beach and 0.52 for the crest of the berm and 0.67 phi unit for the cusp slope. This general trend seems to hold for most of the times the beach was occupied. It perhaps is associated with the lower slope of the bays compared with the cusps and thus with slower velocity of return water. The relationship also may be anomalous, owing to the small number of times the beach has been sampled, though the probable errors of the means as indicated by the standard deviation suggest the differences are moderately distinctive. The upper part of the foreshore in the bays above the elevation of the berm crest is slightly coarser than the sediments below, which suggests that the results are anomalous, because if the grain size is controlled by velocity of return water it should be lower on the upper part of the beach than on the lower part. All that can be interpreted at present is the suggestion that the sediments in the swales are finer than on the cusp points.

No general differences came out of the sorting study of the cusps. The only trend suggested by the data on sorting is a crude relationship between coefficient of sorting and cusp interval. The better the sorting, that is, the lower the coefficient of sorting, the greater is the interval between cusps. As the scatter of the points, when the data are plotted, is high, the relationship may be more apparent than real. However, it is in line with the relationship between grain size and sorting mentioned above (Figure 18). The fine-grained sediments in the present suite of samples are better sorted than the coarse-grained sediments and the finer sediments have a greater cusp interval than the coarse sediments (Figure 27).

CUT AND PILL

Point; Reyes Beach cuts and fills at a remarkable rate. This feature is shown by Figures 11 to 14 which show beach profiles for each time the beach was occupied; and by Pigures 19 to 26 which show the cut and fill over the beach at each time it was surveyed. Similar profiles and cut and fill maps were presented in the previous report on this beach ${ }^{(2)}$.

Figures 19 to 26 show that the maximum amount of cut in any one interval between occupations is 10 feet between December and February (times D and E, Figure 23), and the minimum 1 foot, between August and October and between November and December: (Figures 20 and 22). The maximum fill is 7 feet, between August and October and between December and February (Figures 20 and 23), and the least is 2 feet between May and

June (Figure 26). The se f igures are for the maximum and minimum cut and fill shown upon the area mapped. The shaded portion on the maps indicates the axea which was filled. The maximum time of fill was between August and October and November and December, when 90 percent of the map area was filled. The maximum times of cutting were between December and Pebruary and between May and June (Figures 23 and 26) when more than 70 percent of the area was cut.

The cut and fill represents two processes; one, removal and formation of cusps which cause the local areas of large cut and fill, and the other, general accretion over the beach. The period from August to December was largely a period of fill and the time between December and June was largely cut, though a large amount of fill took place between March and May. The fill is thus mainly associated with the time that fine deposits are forming in the beach and the cut with the period when coarse sediments are being deposited. As the waves are generally high in winter and low in summer, wave energy thus may be a contributing factor in determining whether the beach cuts or fills.

Pigures 11 to 14 give a picture of the horizontal and vertical cut and fill between successive occupations of the beach. Por example, along line 256 West the zero contour shifted a maxiroum of 100 feet in the course of the investigations, and the maximum shift between any two successive occupations is 65 feet. Along the $14-$ foot contour the maximum shift for the entire time is 160 Geet and the greatest shift between successive times of investigations is 70 feet. At the 20 -foot contour the shifts are less as this contour marks the crest of the storm berm. The beach at the 20 -foot mark, however, is subject to erosion, particularly during the winter months.

Pigures 11 to 14 also give information on the average slope of the beach. At the seaward end of the profiles the slopes range mainly from 4 to 8 percent. Slopes of 6 to 15 percent are commonly found between the 10 and 15 -foot elevation. The steeper slopes are on the point of cusps.

CONCLUDING REMARKS

Point Reyes Beach is a highly variable beach. It erodes in the winter and builds up in the summer. At times of erosion relatively coarse sediments are deposited and, with times of fill, relatively fine sediments are laid down, though the beach almost always consists of coarse sand, that is, with median diameter between 500 and 1000 microns. At times finer and coarser sand than this size is found. The configuration of the beach is ircegular, and is characterized by cusps which shift position both laterally and perpendicularly to the shore line along the beach, some times at a rapid rate. The wave pattern on the beach invariably is irregular. At times each succeeding wave brings in sand of different grain size. At other times the pebbles at the edge of the swash mark
are several millimeters in diameter. These pebbles are round and flat and consist mainly of Pranciscan chert and greenstone in varying degrees of metasomatic metamorphism.

The configuration and grain size distribution of the sand upon the beach undoubtedly is a result of the wave pattern, but the wave pattern in turn is influenced by the shape of the beach, because the beach configuration determines the pattern of downrush of water which in turn affects the uprush pattern. The bars offshore, which probably are irregular in outline give the waves a complicated pattern and varying velocity distribution, which in turn affects the grain size and the processes of erosion and deposition. The water off shore generally is too rough to attempt: studies of the bottom with a boat or DUKW. Purthermore to understand the processes of erosion and deposition of the beach, one would have to make daily observations on the beach. The shortest interval between visits in the present study has been 6 weeks, and in this time invariably the beach had changed greatly in configuration and moderately in grain size. Further study of this beach at; closer intervals is needed.

REFERENCES

1. Trask, Parker D., and Charles A. Johnson, "Sand Variation at Point Reyes Beach', Beach Erosion Board Technical Memorandum No. 65. 1955
2. Trask, Parker D., Charles A. Johnson, and Theodore Scott, "Cut and Fill on Point Reyes Beach, California", Univ. of Calif. Inst. Engr. Research, Publ. Series 14, Issue 19, 31 pages, September 1955 (Appendix A to this report).
3. Hoel, P. G., "Introduction to Mathematical Statistics ${ }^{1 t}$, John Wiley \& Sons, New Xork, 2nd edit. 331 pages. 1954.
4. Inman, D. L., "Sorting of Sediments in Light of Rluid Mechanics" , Jour. Sed. Petrology, Vol. 19. pp. 51-70, 1949.

CUT AND PILL ON POINT REYES BEACH, CALIPORNIA* (June 1953 - March 1954) by

Parker D. Trask, Charles A, Johnson \& Theodore Scott University of California

ABSTRACT

The beach at Point Reyes, 35 miles northwest of San Francisco, California, cuts and fills in an irregular manner, as indicated by contour maps of the beach made at different seasons of the year. Maps of this beach have been made at two stations, 5 miles apart, at three seasons of the year; one in June 1953 at the end of the winter season, one in October: 1953 at the end of the summer season, and one in February and March 1954 in the middle of the winter season. In the intervals between sampling, the beach was locally cut and filled as much as 6 feet. Point Reyes Beach is a long straight beach between two headlands exposed to the full force of the waves of the north Pacific. It is characterized by cusps 60 to 200 feet apart, averaging 125 feet. The cusps are superimposed or large embayments or undulations of the beach which seem to be associated with rip tides. The: embayments are 1500 to 3000 feet apart and extend up to 200 feet inward from the protuberances that separate them from one another. The pattern of cut and fill on Point Reyes beach is irregular and is associated with the migration or destruction of the cusps and embayments as they change position in the course of time. The beach in general does not prograde or retreat from season to season; just the individual parts of the beach change position, and in so doing the beach locally cuts and fills. The cause of the migration of the large embayments seemingly is change in position of the rip tides. The cause of movement of the cusps is not apparent. The variation in grain size with cut and fill was also investigated, but no relationship was found.

[^1]
INTRODUCTION

Point Reyes beach, 35 miles northwest of San Francisco, California, is a variable beach. The grain size on this beach changes greatly within a short distance for given times, and from time to time at given places. The average median diameter during different times of the year ranges between 600 and 750 microns. Variations of 150 to 250 microns from these averages are of common occurrence. The beach also cuts and fills extensively from one season to another. This cut and fill is more of a lateral phenomenon along the course of the beach than an advance and recession of the general shore line, as happens on numerous pther beaches. The beach is exposed to the ocean for a distance of 2500 miles offshore. The waves thus beat upon it with full force. The beach is remarkably straight over a distance of 10 miles between two headlands.

In connection with a study of grain size variation on this beach* . data were obtained which permitted the making of charts and statistical studies of the cut and fill at two stations, 5 miles apart along the beach. These stations were occupied at three times during the year, June and October 1953 and February or March 1954 and are designated as Station A and Station B. Station A is three miles northeast of the headland of Point Reyes; Station B is 5.2 miles northeast of Station A. The graphs and statistical compilations of these studies form the basis for the present paper.

The paper on grain size variation to which reference has just been made contains tables and figures that show the location of the samples and summarize the results of the mechanical analyses that were made. The median diameter and sorting of these samples are also presented in Figures $9-20^{* *}$ of the present report. These figures also show the profile of the beach along the lines from which samples were obtained. The primary purpose of the investigation was to determine the grain size variation among samples taken according to a rectangular grid at Station A and B. In the sampling program, samples were taken on 5 lines normal to the shore - namely, along a centerline and on lines east and west on either side of the centerline. Samples were taken on these lines at regular intervals of $16,32,64,96$ and 128 feet, and at a few other positions as well. As the samples were taken at equal distances from a zero line parallel to the beach, profiles parallel to the beach can also be drawn. Two such profiles are shown in Figure 21.**

[^2]The samples are numbered according to coordinates from a zero point. Thus, sample 256 W 16S represents a sample on the line 256 feet west of the zero point at a position 16 feet south of the zero line parallel to the beach. The mechanical analyses of the samples were made by Gerald Grabe, using standard procedure. The sieves differed in size by geometric ratio. The samples were sieved in a rotap for 10 minutes.

METHODS OF STUDY

The general geographic setting of Point Reyes Beach is indicated on Figures 1 and 2*. Detailed analysis of the cut and fill is shown on Figures 3 to 8. A typical chart showing beach contours and the sample grid is presented on Figure 9. A summary of the statistical compilations is given in Tables 1 and 2. The grid lines for February 1954 shown in Figure 9, are at an angle of about 15 degrees to the lines for June and October. The beach slopes, as shown on Figures 9-21**, are based on the beach contours shown in Figures 3-9 of the report on grain size variation just cited. The lines of cut and fill shown on Figures $3-8$ in the present report are also based on the beach contour lines presented on Figures 3-9 of the grain-size report. The contour lines on these charts are based on surveys made with transit and tape. The contours were drawn in the office after the data were taken.

In preparing the contour lines showing cut and fill upon the beach between periods of sampling, the procedure was to superimpose the beach contour charts for the individual times of sampling and mark off difference elevations where the contour lines cross one another. Cut and fill contours were then drawn upon the basis of the difference elevations. Lines of fill during the interval between the two times of sampling are indicated as positive, and lines of cut as negative. Areas of fill are marked by hash-1ines. Heavy contours show topography of the beach at the later of the two time intervals.

In preparing the data for Table 1, showing average cut and fill between intervals, the area between individual lines of cut and fill (i.e., between the cut and fill isopleths) was computed by planimeter for each foot difference in cut or fill. These unit areas of cut and fill were then averaged. In view of the fact that the sampling and survey points occupied at the time the beach was studied were not designed for studies of cut and fill, some of the lines showing equal cut and fill are based on relatively few data.

A statistical study of the average median grain diameter of samples between the individual cut and fill lines is presented in Table 2. The averages presented in this table are based on 1 to 10 samples. Averages

* See Figures $1 \& 2$ of main text; not reprinted in this Appendix.
** Figures 10-21 not printed; see Technical Memorandum No. 65 of the Beach Erosion Board.

$$
A-3
$$

based on 1 or 2 samples are indicated by asterisk. The probable error of the averages thus is large, particularly in consideration of the inherent variability in grain size.

In making planimeter studies of cut and fill, the same area on the beach is covered for each time interval. This area forms the central part of the general map area covered on the charts. Owing to insufficient control, the exterior parts of the map area were not used. The areas for which planimeter control was made for Stations A and B are shown on the charts for June for each area (Figs. 3 and 6). In compiling statistics on variation in grain size between cut and fill contour lines over the entire map area were used. Thus the data in Table 2 represents a larger area than those in Table 1, which were restricted to the area blocked out on Figure 3 and 6 for planimeter studies.

RESULTS

Station A. The pattern of cut and fill varied at each station. At some times the areas of cut and fill were normal to the beach, at others parallel, and at still others in a transverse or circular direction. In the interval between June and October at Station A the lines of equal cut: and fill tend to be normal to the shore. That is, the cut and fill isopleths exhibit a trend at right angles to the coast for part: of theirs course. The period between June and October, at Station A was a period of general fill for this part of the beach. The average fill as indicated in Table 1 is 1.78 feet. The maximum fill was 6 feet on the upper part; of the berm in the central part: of the area. Two areas were cut, one with a center 80 feet seaward from the point of maximum fill, where the beach was cut 2 feet, and the other about 100 feet east of this place where the beach likewise was cut 2 feet. Between these two areas of cut was an area of fill, the maximun being 2 feet. The cut and fill pattern at Station A between June and October 1953 thus is irregular. The rate of change in cut and fill, that is, $\Delta T / \Delta S$, where ΔT is the difference in elevation between successive time intervals, and ΔS is the horizontal distance on the beach, is large. In one place this slope line ($\Delta T / \Delta S$) is 8 feet in 80 feet, or 10 percent.

The main causes of the differences in cut and fill between June and October are the disappearance and change in position of the cusps at that season, and a seaward advance of the shore of 30 or 40 feet. The alternation of areas of cut and fill parallel to shore is the manifestation of loss of cusps between June and october. North of the area of planimeter control, that is, in the area of the lower foreshore, the average fill is 2 or 3 feet in response to the advance of the shore seaward.

The main change between October and March, as shown on Figure A, is the erosion of the west part of the chart area, where a maximum of 6 feet of cut is recorded. The east half of the map area is essentially fill,
though one area of cut of 2 feet is shown in the central part. On the whole the area neither gained nor lost sediment, as the average difference in elevation between March and October is only 0.16 feet of fill.

The lines of equal cut and fill are more perpendiculax than paraliel to the coast line, though the pattern is somewhat irregular. The data presented in Figure 4 suggest that Station A was opposite one of the large indentations or areas of erosion, believed to be caused by rip currents, in which the beach is cut back toward the cliffs. A comparison of the beach contours for March and October shows the erosion of the west part of the map area and the development of cusps in the east part.

The cut and fill between June 1.953 and March 1954 shown in Figure 5 forms a complex pattern. The beach, both in March and in June, had cusps, but the cusps were not at the same position at successive times. Also, in March the west part of the beach had been cut back toward the cliffs. The result was 5 feet of cut on the west side of the map area and a general area of fill in the east part, amounting to as much as 5 feet at the east edge. The shore line was in much the same general position in March as in June. Many of the cut and fill isopleths trend normal to the beach for considerable distance. The beach area showed a net gain of 1.54 feet of fill between June 1953 and March 1954.

Station B. The pattern of cut and fill at Station B, 5 miles north of Station A, is different than at A. The cut and fill isopleths for the period of June to October 1953 trend parallel to the coast line, as shown on Figure 6. The area of the foreshore in general has eroded 1 to 2 feet except at the east end, where it has been filled to a maximum of 5 feet. Slight changes in the berm of 1 or 2 feet are also observed. In general the area has been neither filled nor cut. The average difference in the area of planimeter control, according to Table 1 , is 0.16 feet of fill, Comparison of contours of the beach surface between June and October: shows the development of prominent cusps in the east part of the map area in October, which accounts for the 5 feet of fill. In general, Area B changed relatively little between October and June.

At Station B between October 1953 and February 1954, as shown by Pigure 7, the east half of the area was extensively cut and the west was filled. Both the cut and fill attained a maximum of 6 feet. The beaches as a whole, however, changed relatively little, as the general change in the map area studied is a cut of only 0.13 feet (Table 1). The variation in amount of cut and fill is associated with shift in position of cusps. A tongue of erosion runs westward across the outer part of the berm more or less parallel to the shore line. Inspection of beach contours for the two periods suggests that in October the map area was on the east edge of one of the large embayments of the coastline, which caused the beach contour lines to be bent inward toward the west, whereas in February 1954 the map area was on the west edge of one of the embayments and the beach contour lines trended inward toward the east.

Between February 1954 and June 1953 the map area shows lit:tle gain or loss of sediment. The average is 0.03 feet of fill. As shown by Figure 8, the east half of the map area has lost sediment and the west: side has gained sediment, thorgh irregularities exist in this pattern. The maximum gain on the west is 5 feet and loss on the east is 4 feet. The effect of shifting cusps is indicated by circular patches. The net loss on the east is presumably influenced by the large embayment that had developed in that ane a in Pebruary 1954.

Cut and fill along profiles. Profiles normal to the beach alongr the east-west lines of the sampling grid are presented in Figure 10 to 20*. Three 1 ines are shown on each figure. For Figures 10 to 19* the lines for June, October and February or March axe given. For Figure 20*, which shows the beach at Station B for February 1954, the profiles are presented in two halves. One half shows profiles for the grid lines $0-W, 64 W$, and 256 W , and the other for the lines $0-\mathrm{W}, 64 \mathrm{E}$, and 256 E . Figure 21* presents profiles for Stations A and B along the $0-N$ line through the zero point parallel to the shore. The figures also contain data on median diameter and sorting. The median is given both in microns and in phi units. In Table 2 which presents data on the relation of grain size to cut and fill. the median diameters are presented in phi units. Corresponding grain diameters in microns are readily determined. by consulting the scales on the two sides of Figures 10 to $21^{\star *}$.

At Station A, as shown by Figure 10*, the foreshore on grid line 256 W at the west end of the map area is in essentially the same position for June and October, but is pushed back in March. At the zero point ($0-W, O-N$) the cut between October and March is more than 5 feet. The general decrease in grain size up the foreshore is well shown in this figure. The sorting is approximately 1.25 , which is the general average for Station A. The irregularity in grain size distribution of the different samples is well shown by this figure.

Along line 64 W , Station A (Figure 11*), little change is noted between June and March. On the profile for October the upper part of the foreshore near the berm is very steep and the back end of the berm 64 feet south of the zero line is also steep. The zero west line at Station A shows considerable change in the crest of the berm between all three time intervals (Figure 12^{*}). The grain size and sorting are rather irregular from sample to sample. Similar relations are shown for line 64E (Pigure 13*). The 256 E line (Figure 14*) shows continual fill between June and March. The sediment s along the different profiles are irregular in grain size.

An essential characteristic of all profiles at Station A is the uniform slope of the foreshore from season to season. At Station B similar relationships prevail. Along line 256 W , Station B , (Figure $15^{\text {* }}$) the fill between October 1953 and March 1954 is rather pronounced. This
*Not printed; see Tech. Memo No. 65 of the Beach Erosion Board.
fill seemingly is associated with the change in flank of one of the embayments presumed to be associated with rip tides. The grain size variation is more regular along this profile than on some of the other profiles. Along line 256 W the grain size decreases up the foreshore and then increases on the berm, as is the general habit for Point Reyes beach. The sorting tends to become poorer shoreward, which likewise seems to be a characteristic of this beach. The profile along line 64 W at Station B is essentially the same for all three seasons, but the grain size distribution varies greatly from place to place. The zero west line ($0-W$), Figure 17 *, shows the fill associated with the development of a cusp during Pebruary. The berm exhibits relatively little change. The median diameter of the sand on this profile during Pebruary and June is highly irregular, but not in October, when it varies at a regular rate from coarse on the lower foreshore through fine on the upper foreshore, to coarse again on the berm.

The 64E profile (Figure 18*) varies relatively little in shape from season to season, but the grain size variation is great. Station 256E (Figure 19*) shows considerable fill in October, during the period when the west part of the map area was being extensively eroded. The sediments on this profile also are variable.

Figure 20* indicates how the beach slope changes from profile to profile from west to east across the beach at Station B in Pebruary 1954. It should be recalled that the grid lines on this section are at an angle of 15 degrees to the grid lines of Figure 10 to 19*.

Profiles parallel to the beach are shown in Pigure 21*. The line of the profile is the zero north line, which passes through the upper part of the foreshore near the berm. Station A is shown in the upper part: of the figure and Station B in the lower part. The figure shows very clearly the change in position of the cusps from season to season. In comparing this figure with Pigures 10 to 20^{*}, one should note that the vertical scale is greater in Figure 21* than in the other figures. The variations in elevation between cusps thus are accentuated.

Grain size variation. A statistical study of grain size variation is presented in Table 2 , This table shows the average median diameter for each interval of one foot difference in cut or fill between the periods October and. June, February or March and October, and February or: March and. June. The individual averages are based on 1 to 10 samples. The averages thus have a fairly high probable error, particularly in consideration of the variability in grain size. No general relationship is indicated by the variation in grain size with the amount of cut and fill. On theoretical grounds one would not expect to find much variation. The samples represent the upper two inches of sediment. Thus, considering that the fill between intervals of sampling commonly azounts to several. feet, and assuming that grain size variation might be related to
*Not printed; see Tech. Memo, No. 65 of the Beach Erosion Board.
the same processes that cause the cut and fill, in order for a relationship between grain size and fill to be apparent, the grain size distribution throughout the entire column of sediment that has been eroded or deposited must be known. Furthermore, the variations in cut and fill represent the total variation during the four or five months betiween sampling intervals. Actually the beach may have been cut or filled in an irregular manner during that interval of time. Thus the final end product can hardly be expected to exhibit any relationship to details of the processes of cut and fill, granted that such a relationship might exist. Purthermore, the average grain size for the whole population of samples taken at each station at each time interval is included in Table 2 to show the general grain size distribution of the area under consideration. It should be pointed out that the area that forms the basis for the statistical compilation in Table 2 is the entire part of the general area sampled. Thus considering the variability in grain size distribution on the beach, the respective averages shown in Table 2 do not necessarily agree with the general average for the entire station.

A few interesting relations come out of the data in Table 2, but owing to the vagaries of sediment variation on this beach the relationships presumably are more apparent than real. At Station A the sediments in the area of cut during the period of October to March are generally more fine grained than those in the areas of fill during the same period. The average median diameter of the samples for March in areas of cut of 1 to 7 feet is 0.84 phi units compared with 0.52 for the area of fill from 0 to 6 feet (560 microns compared with 700 microns). The reverse trend is noted for the sediments in the same zones for october at the beginning of the period of cut and fill. It might thus be interpreted that the processes leading to erosion of the sediments might: al.so lead to the deposition of fine materials. That is, at the beginning of the period of erosion the sediments are coarse and at the end they are f ine, and vice versa for the areas of fill, No such difference between areas of cut and fill is noted for the other time intervals for which data are available. The question merits further study, but if it is investigated core samples should be taken and the beach should be occupied at shorter intervals. In passing, the comment might be made that in areas of cut the sediments exposed at the surface might represent material deposited sometime previously and only recently exposed by erosion. Thus the grain size would have little connection with the conditions of sedimentation prevailing at the time of survey.

In this connection it should be pointed out that the average median diameter of the sediments in the areas of $f i l l$ between March and June shown in Table 2, column 3, is about 1.0 phi unit. or 500 microns, compared with 0.52 phi unit or 700 microns for the areas of fill between March and October. This relationship is the reverse of the one just: described, which suggests that perhaps the relationship is anomalous.

Another matter that should be considered is the grain size variation with respect to position on the beach. As shown in Figures 10 to 20* the median diameter in general decreases upward on the foreshore to the edge of the berm, where it begins to increase in size again. Thus for any given interval of time the conditions of sedimentation prevailing at that interval of time should vary in a more or less orderly fashion across the beach. Granting the same general conditions of deposition at a later time, but with different configuration of the beach or a different location of the cusps, then at given points in space the grain size will, or may, be different, depending upon the wave pattern and the position of the beach surface at the particular time. If at the same time the general conditions of sedimentation change so that the general grain size is larger or smaller over the entire area, the grain size distribution on the beach becomes further complicated. All in all, the relation of grain size distribution to beach morphology is a complicated subject. It warrants further investigation.

CONCLUSIONS

The main result that arises from this work is the presentation in a somewhat detailed way of the cut and. fill on a highly variable beach. The grain size distribution varies greatly within a short distance at: any given place. It also varies with position on the beach. The shape of the beach is irregular and generally contains cusps 60 to 200 feet apart. These cusps migrate or are destroyed in a manner not; yet understood. The variations in beach shape presented in this paper indicate very clearly that the cusps do change their position. The cusps are superimposed upon much larger undulations of the beach line, 1500 to 3000 feet in length and up to 200 feet in width. These large undulations also change their position. The beach itself as a whole, however, does not seem to change its position. The water line on the average appears to be at about the same place throughout the year, in contrast with other beaches which build out and retreat with the season. This generalization that the Point Reyes beach in gross is constant, is not supported by sufficient data to be substantiated; rather, it is a concept that comes out of the work done to date.

The present report is a by-product of an investigation carried out for another purpose, Specific lines of attack were not planned. The data that are presented thus are those that arose in the course of other work. In the future special study should be made of the variations in the shape of the beach, particularly with the object of endeavoring to determine the cause of the variations. To achieve this purpose a detailed sampling program should be undertaken. The beach should also be sampled at shorter intervals than in the past, and with better topom graphic control. Such a program should throw light upon the regimen of Point Reyes beach.

[^3]

FIGURE 3. CUT AND FILL BETWEEN OCTOBER 1953 AND JUNE 1953 AT STATION A (COAST GUARD STATION)

FIGURE 4. CUT AND FILL BETWEEN MARCH 1954 AND OCTOBER 1953 AT STATION A (COAST GUAFD STATION)

FIGURE 5. CUT ANO FILL BETWEEN MARCH $\begin{gathered}1954 \text { AND JUNE } \\ \text { APPENDIX A }\end{gathered} 1953$ AT STATION A (COAST GUARD STATION)

FIGURE 6. CUT AND FILL BETWEEN OCTOBER $\begin{aligned} & 1953 \text { AND JUNE } 1953 \text { AT STATION B (ABBOTTS LAGOON) } \\ & \text { APPEN }\end{aligned}$

FIGURE 7. CUT AND FILL BETWEEN FEBRUARY, 954 AND OCTOBER 1953 AT STATION B (ABBOTTS LAGOON) APPENDIX A

FIGURE 8. CUT AND FLLL BETWEEN FEBRUARY 1954. AND JUNE 1953 AT STATION B (ABBOTTS LAGOON) APPENDIX A

9622051

[^0]: *Numbers in parentheses refer to References listed on page $\mathbf{N O}^{\circ}$

[^1]: *Originally prepared September 1955, this report has been added as an appendix to afford ready reference from the body of the main report. As this report was prepared a year earlier than the main report, conflicts in qualitative statements between the two reports may occur; no effort has been made to revise or bring this appendix up to date. The report was prepared at the Waves. Research Laboratory of the Institute of Engineering Research at the University of California in Berkeley in pursuance of contract DA-49-055-eng-8 with the Beach Erosion Board.

[^2]: *Trask, Parker D, and Charles A. Johnson. Sand Variation on Point Reyes Beach, California, Beach Erosion Board Tech. Memo. No. 65, 1955.
 **Figs. 9-21 of present report are same as Figs. 9-21 of previous report published as Tech. Memo. No. 65 of Beach Erosion Board; Figs. 10-21 are not reprinted in this appendix.

[^3]: \pm Not printed; See Tech. Memo. No. 65 of the Beach Erosion Board.

