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POREI'iORD 

In the design of certain types of structures, the highest 
wave which can reach the structure for a particular set of wave 
conditions is frequently of importance . Certain parts of the 
structure may have to be designed to withstand a single highest 
wave incidence rather than the more commonly occurring signifi­
cant or average waves. This paper presents a theoretical 
development for computing the proper t ies of the highest wave. 
The theory is valid for all depths where the relative depth 
(d/L ) is greater than about 0.04; the solution for the highest 
wave °in deep water (as calculatej by Michell and Havelock) is 
obtained as a special case. 

This report was prepared in the Exploration and Production 
Research Division of the Shell Development Company in Hous t on, 
Texas, as a part of their general program of wave investigations. 
The author of the report, Dr. J. E. Chappelear, is a Physicist 
in that organization. 

Because of its application to the research and investigation 
program of the Beach Erosion Board, and the wide interest in the 
description of wave phenomena in this country, this report is 
being published at this time in the Technical Memorandum series 
of the Beach Erosion Board, through the courtesy of the author and 
the Shell Development Company. It is hoped that dissemination of 
this information may serve as a stimUlus and a valuable aid to 
workers in this country. 

Views anJ conclusions stated in this report are not necessarily 
those of the Beach Erosion Board. 

This report is published under authority of public Law 166, 
79th Congress, approved July 31, 1945. 
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ON THE THEORY OF THE HIGHEST WAVES 

BY 

J. E. CHAP PELEAR 
Sh.ll Development Company, Exploration and Production Research Divi$ion, Hou.ton, Texa$ 

(Publ icat ion No. 20J) 

ABSTRACT 

Follo~ing a suggestion of Michell,~ we have made a calculation 

of the properties of the highest periodic gravity waves which can exist 

in steady, two-dimensional flow, neglecting viscosity. The "highest wave" 

is one satisfying the criterion of Stokes that the particle velocity at 

the wave crest be equal to the wave velocity. The theory is valid for all 

values of the parameter d/T 2 greater than 0.2 ft/sec 2
• The highest wave 

in deep water, whose properties were first calculated by Michell and by 

Havelock,5 is obtained as a special case. 

IN TRO DUCTION 

Calculation of the properties of the highest wave has been a 

theoretical and practical problem of considerable interest since the 

publication of the investigation of Gerstner. 1 Gerstner found that in 

water of infinite depth one could obtain an exact solution in terms of 

elementary functions. The wave motion is rotational and hence does not 

seem to be physically realizable. For purposes of the investigation 

described in this paper, the problem is to find an irrotational solution 

to the equations of hydrodynamics raving the properties of a wave. It 

should be steady and two-dimRnsional, with the particle velocity at the 

crest equal to the wave veloci ty. 



Stokes
2 

pointed out that su::h a wave would have a sharp angle 

of 120 0 at the crest. Michell,3 by meffilS of an approximate treatment, 

was able to find the highest wave in deep water and suggested how to 

extend his resul ts to water of finite depth. McCowan4 found the highest 

wave in shallow water (the soli tary wave) by a modification of his treat­

ment of the ordinary soli tary wave. Havelock
5 

improved the nwnerical 

procedure of lVlichell and showed, by an appropriate modification of the 

assumed functional form of the solution, that there was a smooth transi tion 

from the highest wave to the infinitesimal waves of the Airy theory. The 

practical problem of prediction of wave properties in intermediate depths 

is reviewed by Bretschneider, ~ who also gives a summary of the literature. 

This paper carries out the suggestion of Michell that his theory 

could be extended to water of fini te depth. His numerical resul ts are 

shown to be slightly inaccurate, largely as a consequence of a better 

approximation procedure employed here. Numerical results are obtained for 

values of the parameter d/r 2 > 0.2 ft/ sec
2

• The numerical resul ts do not 

agree exactly with the modified solitary wave theory of Munk, 13 probably 

owing to the inherent inaccuracies of both calculations. 

THE HIGHEST PERIODIC WAVE 

The problem to be solved is the determination of the surface 

profile and particle velocity for the highest permanent wave in water of 

finite depth. A mathematical formulation suitable for our purposes can be 

stated rather concisely. Stoker7 (Chapter 1) gives a much more detailed 

description of the general problem for waves which are not the highest. 

2 



The waves are asswned to be periodic, steady, irrotational, and two-

dimensional. For the waves to be steady, there must be a steady flow 

superposed in order to bring the wave profile to rest. The translational 

velocity of the coordinate system relative to a fixed system is the wave 

velocity, one of the wave properties to be calculated. The flow may be 

represented conveniently by a complex veloci ty potential as a functjon of 

z, the complex position, 

w(z) ¢(x,y) + ltjJ(X,y) 

The real part of w is the velocity potential, and the imaginary part is 

the stream function. The derivative of w with respect to z is minus the 

complex velocity, whose real part is the horizontal velocity component 

u(x,y) and whose imaginary part is the negative of the vertical velocity 

component v(x,y). 

dw(z) - -q(z) 
dz 

-u(x,y) + iv(x,y) (2) 

It is convenient to consider the boundary value problem in the 

potential plane rather than in the z plane; that is, the potential is a 

conformal map of the z plane onto the w plane. In the w plane, the region 

occupied by one wave is a rectangle. The problem in the w plane is to 

find a periodic function satisfying the boundary condition, 

+4gr 1m [q (w) ] </; = € 

3 



the Bernoulli theorem. This form of the theorem is obtained from the 

usual form in Appendix I. Another boundary condition is that there is no 

flow through the bottom. 

1m [q ( w) ] f = 0 o 

For convenience, the real period of the complex velocity is chosen to be TI. 

There, the condi tion of periodici ty, the additional boundary condition, is 

q(w + TI) q(w) 

It is still necessary to consider the question of what is meant 

by the highest wave. Stokes suggested that the particle veloci ty at the 

crest of the highest wave should equal the wave veloci ty. Thi s condi tion 

establishes an upper limit on the particle velocity, which might not occur 

except in very special circumstances. However, a separate investigation 

would be necessary to prove, either mathematically or physically, the 

existence of the waves treated here. For the purposes of this paper, the 

highest wave is defined as a wave satisfying Stokes' criterion. 

In the moving coordinate system, the velocity at the crest is 

zero, since the CT'8st is part of the profil e whi cll is assumed to be steady. 

Stokes proved heuristically that if the zero at the crest were assumed to 

be a branch point (in particular he assumed that w Q z~), the order of the 

branch point would be 1/3 in the w plane. Consequently, the flow in the 

vicinity of the crest would be the same as the flow in a corner between 

walls inclined at 120 0
• A short proof employing the notation of complex 

4 



vari ab l e theory is pr e s en t ed in Appendi x II. No exclusion is made of the 

poss i bili ty that t h e char a c t er of th e complex velocity in the vicinity of 

t he cre st might be different, e. g ., be pro por t ional to (k) log w)z; no 

proo f ha - bee n found that suc. a ehav io r is i mpossi b l e , but it does seem 

physical ly r easonable t h at such a so l u tion wo uld b e unsteble relative to 

t h e one discussed h er e . 

The compl ex velo e i ty i 8 now limi t ed to be i ng a penodi c function 

wi t h an a r ray 0 f zero s, everywh ere regu l ar. T e f r ee sur f ac e will 'oe 

i denti ied with lJ'(x,y) = t and the bo ttom with ~)(x,y) = O. The procedure 

o f Stokes for the det erm i n ation o f the pr o pert i es of waves of finite 

hei gh t is fir s t to aS Sl1'ne that t h e ve loci ty c an b e exp anded in a Fou r ier 

ser i es al ong the bottom wher e t he vel oci ty i s r eal . The n the veloci ty i2, 

ext ende 0 ff t he r eal ax i s by analyt i c continuat ion . Finally, th e unknown 

co e f f i ci ents are calculated from Bernoulli's t neorem by putting successi ve 

co e ffici n ts of cos n¢ equal to zero . That t h e s eries obtained in this 

fash i on i s convergent was first shown by St ru ik.
8 

Mi ch ell p r oposed a mo dification of t h is procedure which takes 

explicit accOU.nt of tHe nature o f t he bran ch points. The Fourier 8 Clries 

is mul tipli ed by the 1/3 power of 8 e riodic function of w which has simple 

zero s at the co r r ect posi tion s i n the w plane. Although there are a number 

of pos s i ble choices, it is conv en ient to follow t he sugg estion of Li chell 

an d to pu t 

q(w) 



A constant factor with the d i men sions of a velocity has been put equa l 

to 1. The function Do (w) is one of Jacobi's theta functions (Er delyi, 9 

Vol. 2) and for this paper will be definec! by its Fourier series 

OJ 

1 + 2 > (_1)ne-2n
2

€cos 2nw 

n = 1 

( 7) 

Ther e are fi r st-order zeros of eo (w) a t w = m7T + i (2n + 1) E wh ere m and n 

are int eg er s. Thi s property G,LYl be ve r ifi ed by t h e tran s fo rm a t i on f o r mula 

wh ere tl e functi on (}l(W) is rier'L1ed by 

2 e -" / 7 ) (- 1) n e - 2 n ( n + 1 ) E sin (2n + 1) w 
L--
7', = 0 

(8 ) 

(9 ) 

() 1 is per iodi c wi th pe r i od 277 and has t he sp ec i fi ed z er s . The f on nula s , 

i n conse quence, "i l l be v aJi d only i n t he rect angle bound ed by th e l ine 

·t, = 0 , <j; = 0, (~~ = 71, an V, = E. The elocity anei pro file are to be 

cont i n ue d ou t o f t his rec t ane-l e periodi caJl y. The su cceeding t erms in the 

Eou r i er 5er i es I n equ ati on ( 6 ) a r e ami tted with the bope t hat thei r 

ul fJu pn ce on t he ::;olu t i on wo ulo be smcl l. Thu cho' ce of the exact form of 

tu~ expan sion coeffi c ient s ( i. e . , 2 b .; p - 2jE) confo rms w' th Micbell and 
J 

I 3vel ccK, "IDOSe result s fo r infini te depth (c -, co ) are 8 speci a1 case o f 

these formul a s . ~ t can be hown that th e compl ex veloc i ty , ~ Qua t ion (6). 

is identi c al wi tn tr.at rrcro ~ed by MicheL and Hav e lo ck fo r E ~ :D , 



Because of the choice of uni ts, t h e munerical value of g is not 

gi 'en , and it m st be calculat ed as one of the unk owns, tog e ther with 

0 1 • O2 • and b 3 • All th ese unkno~ms d e pend u. on t he par ameter E, which 

specifi es t h e phy sical par ameters (e.g., t he ra tio of the de pth to the 

wave ength). It is rea so able that there is only one pU' ameter, since 

t her e is pr esumab ly only one "h ighe s t" wave in a g i en wat e r depth. 

On t h e free surface , 

( 10) 

When t h i s v al ue of 1{) is put into equat ion (6), th ere resul ts 

q (¢ + iE) 

by the use. of equation (9). 

After cons i d er aGle algebrai c manipulation, the first four terrns 

in the Fo ur ier series expansion of t he left-hand side of equation (3) can 

be ca l cul at ed . The.v are 

4 

ei IJ (et)) \ A .cos L_ J 

The f un ct ion .::; -1 . a ' . a hrev i ation s for 
J 

j = 1 

(2j - 1) <P ( 12) 



" " 4 

BIA(e. 38 29) B19 ( 38) • ___ ,l~ - 3~ • --- 7~ 
2 4 

8 
- 7B o71 

Be (Q ~e B 0 - - .1/ + ~) . _ 1_ ( Q7) 3 e 
2 4 - - I .;. 91/ ) -

+ _ 1 _ (c'T! 1 6 ) fj (2 1 ) 8 
4 -. I - ~ 0 Tf . ~. ( , 7 a ) _ ":J EO 2 7] 

8 

( 13) 

(14 ) 

( 5) 

( Ie) 



te have employed as abbreviat ions 

and 

A' o 

A{ 

[b 2 (1 + 7)2 ) + b 1 b 3 (1 + 7)4) + b~(7))], 

A ,2 2 (A,2 A,2 A,2 A,2 4, 2 A,2) 
0+ 1 + 2 + 3 - 4 +'5 + e , 

A6A~ + AfA~ + A( A~ + tl£A~ + A~A~, 

2(A 'A' + A'A' + A'A' + A'A') + A,2 o 4 1 ,1 3 1 ,0, :1 e 2, 

A 6 A~ + AiA~ + Af '~ + A ~ A ~, 

9 



B 14 

AiA b A ~A ~ A~AJ, + + 
4 

BiB 
2(A~A~ A~At) A' :; + + ,., 4 , 

G 

BiB 
A~A~ + A ~A ~ , 

4 

8 20 4 (A ~A ~ + +A ,2) , 
, . 6 • 

822 
A ~A~ , 

4 

8 24 A,2 
2 

B , 

and 

-4E e . 

with t h e n egl e ct of ten.s of hi gher order t an e-l1PlE in t he ourier s erie 

for 6 i (w), In ord e r to obtain r ea onab l e accuraGY i c om u t i,·, .:11 (1t1) fo r 

values of E a s mal ] as 0.2, it i s nece. sary to r At ain t e ms f th i " or er . 

iNe do not n eg lect products of the b j' s, as do JVj ichell and Ha velo ck . 

Consequently, t e nwneri ca] r es uJ ts obtai ned h e r e will not s bre e xac tly 

wi th their resul ts for the case of inf i n i t e depth. 

Th e rig t-hand side of equa tion (3) can also e exp anded i n 8 

Fourier series in t he int erval 0 :::. q'. .:;. TJ. The ex p sian 

m 

sin [[ 2r + ~] -~] 

10 

.., ) 
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is useful in the calculations. The fir2,t four terms are 

1m q (¢ + i E) 

where the functions B j are the abbrevIations, 

1 + b r.2..e - u € _ _2..-1 + b [n-e -8£ _ ~] + b [2e -12£ - ~] 
8 1 11 6 40) 2 ll2 160 :3 280 352 

1 + b [2 _ 5 e - ll EJ + b [11e- 8 £ _ 13] + b [Re-12€ _ R] 
80 1 32 56 2 40 88 :3 208 280 

and 

1 + b l-_7- - le - U £ J + b r, l( .13 -- Re - 8 €) + b [12. __ 17 e - 1 2 € \ 
440 1 392 416 L .:.:72 320 :3 80 15 2 J 

Now eq ati on (3) read s 

( 19) 

( 20) 

( 21) 

. ( 22 ) 

( " 3 \ ~ . ) 

~ en the coeffi cient s of t h arious cosine s arA p t epara t e l to zer o , 

four equati ons i n the f liT unknown", result; a 1 U e equations c tain 

the par ameter E. T e so ut i ons tc tht:se e q la t ion s a f unc t ions of E are 

giv n in Tab l e 1. 



TABLE I 

£. 6 , 6, i> , r d/A Hid dlT' HI1" 211" _ 27IC~ 
€ ' I A £ 

ftl se c 
, 

H I sec 
, 

;(f'f- r.\ 

o .• . 496 .222 .0890 5. 39 .0666 .870 .1 990 .1 72 9 .583 0 . I 178 . 26 1 

0 . 23 . 430 . 174 . 063 1 4. 9 ') .077 ') .82 I . 25 2 4 . 20 74 .635 1 .1320 .1') 9 
;; 

0.26 . j 77 . 137 . 04.5 6 4.58 . 0 885 .786 . 3 1 I I . 24<14 . 6854 .1 4(;') . 0 69 

0. 3 . 3 3 17 .11 00 . 0 3371 4.291 . 0 996 .7582 .3 7 35 .28 3 4 .7 321 .1 609 . 057 -
0. 4 .2 339 . 06065 .01 5 73 3.671 . 1329 . 6932 . 5 822 .4038 . 8558 . 2034 .04 1 - ---
0.5 .1705 .03 684 . 00894 3. 29 8 .1 6 5 9 . 6 386 . 809 8 . 5 17 1 . 9526 . 2 ·1 }9 . 0 6 7 --
0. 6 .1 2 81 .024 80 . 00606 3 .062 .198 'l . 58 7 1 1.04 5 . 6 134 1. 0258 . 2823 . 05 3 

0.7 . 0994 9 . 01 848 . 004 69 2 . 9 1 I . 2 3 1.;1. . 5386 1. 260 . 6894 1. 0 79 2 . 318 7 . 050 

0 . 8 . 080 19 . 015 04 .0039 7 2. 8 1 I .263 8 . 4 93 9 1. 5 1 I .7461 1. 1176 .354 1 .04 6 

Cl. 9 . 0 6 71 6 . 0 13 09 .0 0356 2 . 74 5 .2961 . 4 535 1.73 6 . 78 76 1.1 444 . 3883 .043 

1. 0 . 05839 .011 95 . 003 31 2.700 . 3 282 . 4 17 5 1. 95 6 . 81 63 1. 1634 . 4 2 18 . 042 

2 .0 . 04076 .0100 7 .002 86 2. 6 15 . 6471 . 2 205 3.986 . 8 7 8 7 1.20 12 .7434 . 0 38 

3. 0 .0 4043 .01004 . 0 02 85 2.614 .9655 .1479 5 . 94 7 . 8 797 1. 2 0 19 1. 06 1 B .039 
o 

"The values of < which were une d were correct to ei n t deci mal,. 'l'hus 0.2 mesne O. ;~OOOOCD O, I\Il d 0 . :;).:; rncll.l\~ O. Z3.'33333S. 

Th e final step in the problem is the integrati on to obt ai n z 

a a function of w, 

z(w) (24) 

This int egration was performed nwneric a lly . Since the line ~ = E is t he 

free surface, a parametri c represerGat ion 0 f the; free sur faCe wa s obtai! eel 

directly from e;'J~tion (24). E;:cause q (w) has a branch poi nt at w = l E 

(the wave crest), it was conveni en t to p]rforrn the integrati on directly by 

means of a power series exp(3Ilsion in the neir.:borhood of this point. The 

n um erical valu e s obtained ar e listed in Tab le 2. The values have been 

no rma lized by div i ing by t h e wavel en g t h. 

12 



TABLE 2 

r>", ""--'O / A 1. 0000 "9468 " a9~e . 6'45 · 7955 . 74e9 . 69 76 · 6< 7~ . 5'154 . 5424 · 4e9~ .4, 7' .'866 . ~3 63 . 1854 . 23B .1 7 7 I n B ~ 0 
0 . 20 

2Y Ix }/> ... . I 199 .11 90 .1170 .11 4 9 · 11 36 · I 136 .11 '0 · I 172 .ll g2 . 120 1 .1 199 . 119 1 .1 191 .1 21 2 . 1265 . 1365 .1 528 .17B9 .2 3 6 

- - - -- -
0 2>:/) I OO{)O "948' "897< . 8412 . 1 919 ~.~ ~69~,~489 · 59 76~ . !)4,) 7 .4937 . • '2 1 . 3910 · }400 . 2880 .2339 .1755 .1085 0 

0 . 2 .- -
· 1 :;6~ Ulr II " .I }n .1. }62 . 1 ' I .I H9 .1 $32 . I H· I ~ .!i" 1?5-9 · I ~ 74 . 1}90 .1 }'J6 • t of, J2 • 1 .Q~ 9 . J'5 15 .1 626 .1 799 / ~O61 . ' 6 .3 9 

- - - --

0. 26 
];rll. 1.0000 " 9~ 9 3 . 099 1 . 6.91 .6000 . 7' 09 . 7(112 . M 12 · WO • . 549.< . 4978 . :'64 · ~O5 1 . 3 ·1)4 . 290 " . 2 35 7 · 1165 . 108 9 0 

:!l' 1;< 1/>" "I H 8 .1 5 3 !) .1 ?29 • J :i22 · I ~"'O . 1523 .1 533 · P5i! 6 .1 51i 1 .1 575 · 15 ~9 .1 606 . 1636 .1 665 .1 7M .1890 .2073 .2 350 . '9'30 

2rH I 0000 . 9 50) . 9OO~ , A'? ' 2 .802 1 .7 ~ll "1039 · 6 5J I "601B " ~'l l . 5021 . A'09 . 399. " 347~ .29"2 .239f · 1188 · 11 05 r. 
0 !I\"! 

2 Y Ix II i . .1 108 . 1707 . 1703 .1701 · 170 I · 17 . 1717 · 17!Jl .17 e · 176 7 · I ~ B9 .I S IB .1 8 6 0 · 19 2 3 .2016 .2151 .2344 .26 29 . 3 218 
-

'Ol io. LOOOO I . 9 517 . 93}5 . 8552 . 80 7 1 · 7587 .71 0 2 . 66 1 ~ . 6 11 9 . 562 1 . 51 17 . 4&0 7 .4090 . ~ ~6~ . 3021 . 24 5 3 .1 8 41 .11 ... 0 0 
O .. 10 

· 22~ 2 :2)' 1 x I / ~ .22 2 7 . 22 26 .223 0 . 2'~4 . 225" . 2274 . 2298 . 2,!r28 . 2365 . 7 41 1 . 14~e 5 40 . 26!5 .2759 . 2924 . 3 145 · 34~3 . ~06S 

'iX/A 1.0001) .9!i~ ) . 9Q5} · BS7\,> "alos " 7628 . 7149 . 6666 " 6178 " 56B4 . 5IB" . 4676 . 4158 . >,,29 . 308 1 . 2505 · I BS3 · II t>B 0 
O.!iO 

. ~9 1 ' · <<4 2 2 [' 'x III<. . ?75 9 . 27 61 "27,, 7 · 2777 .2 79 3 .28! 3 . 2114 3 . 28BO . 2925 . 2978 . 3044 . 3 123 .32 19 . 3~313 . 3486 . 3673 . 48 78 

'.';x / ) I. n oco . 9 5 32 .9 06 ~ . 959 7 . B I27 . 7655 .71 80 .670 2 . 62 17 • 5 7.!6 . S22Q . <722 I 42 05 . 3(07. .3 12 3 .~~¢3 · 19 1 ~ .11 9 0 0 
. 60 

21' Ix 1/ 1<. . 3 3 12 3 15 .33 24 .3 339 . D6 1 . 33 90 . 3·\29 . 3476 . 3532 . 360 1 . 369 . ~ 77 7 . 389 1 "4028 . 4193 . ·1396 . 465 3 . 4995 . ~64G 

'O/A 1.0000 .9537 .9073 .8608 .8142 .7673 . 7201 . 6725 . 6243 . 5755 . 52 59 . <753 .4 217 . 3705 . 3 15 3 .2569 .1936 .1205 0 
0.70 

2Yl x I/A. . ;886 .3890 "3900 .3919 . 39·\6 . 3902 . 40 27 · ~O82 . 4149 . 422 8 · " 20 . 44 28 . 4555 . <704 . 488 2 .5097 . 5 3004 .5715 . 6 379 

2>: / "- 1. 0 000 .9539 . 9 0 78 .8616 .815 , . 7685 .7215 · 67.~ I · ~2eo .5774 .5no . 4 7 75 .4258 . 3726 .3173 . 2588 .1 9.,2 .1 21 5 n 
0. 80 -

2 Ylxl/~ . •• 77 .44BI .4 4 94 .4515 .4545 .4 586 . 463 7 .4698 . " 7'l2 . 485 9 . 495 9 . ~O16 • ~2 1 I .5369 . 5556 .5778 . 6053 .6412 .7083 

2>:!A 1. 0 00 0 .9541 .9081 .8620 .8158 .7692 .7224 . 6 751 . 6~ 72 "5767 .5293 . 4 769 .4273 .374 I .31B7 .2601 .1963 .1223 0 
0.90 

2Y(x J/.\ .5081 .5086 .5099 .5123 .5150 .5200 .5254 . 5321 .5400 .54 91 , S~ 9 7 . ;; 72 0 . ~86 1 .6026 .6218 .6447 .6726 .7090 .77 6 7 

2x/A. I. ODOO .9542 .9083 .8623 .8162 .7697 .7230 .6758 .6290 . 5 Ji#~ . 5 ~O2 .4 7 9~ .4 28 3 · 37~ I . 31~ 7 . Z6 10 .1970 .1228 0 
1.00 

21' 1% 1/). .5695 . ~ 70D .5715 .5740 .5775 . 5821 .5878 . 59 48 . 15029 . 6 12 5 . 6235 . 6362 . Moa .6676 . 68" .7105 .7389 .7756 I .8436 
I 

2</>" 1 .0000 .9 5" . .9087 .8629 .8169 .7707 .7U I . 6 771 . 6295 · ~ 811 . ~ 3 2.0 . 481 8 . 430 3 .3770 . J~I [ . 2627 .1984 .1238 0 
2.00 

2 )'1 % II >" 1.20 15 1. 2020 1 . 2037 I .206-1 1.21 0 } r.2 I ~, o!. 1.2217 1. 229 3 1.2383 1.24 96 1.260< 1 . 27'0 1.2894 1. 3071 I" 3276 1.35 16 1.380 7 1.418 I 1. 4 869 

2:r /A ! . 591 2 . 5320 
-

.1 238 [ . 1.0000 . 9!i-14 .9087 .8629 .8170 . 77 08 .7242 .6771 . 6295 . ~ 8 IB . 4~O3 .377 1 .32 16 .26 27 .1985 
3.00 

2r (x l/ A I. B3B I I. B3BIS 1.8403 1.8430 I. A46 9 1.85 20 I. B584 I . 86 ~9 1. 87.19 1.8852 1.8971 1. 9 107 l. n!> 1 I. 'J4~9 1. 964 3 1.9884 2.0175 2. 0;<S 2.1236 

·~H footbOl l!!!, 'Z'.&b l e 1. 



The integration was continued from the troug'h vertically to the 

bottom and then along the bottom to a point directly underneath the crest, 

a path shown in Figure 1. 

(0, .' ) 

L_~-=-+~~!ii-"-_-.-_-;';'- (" 12 , .. - H ) 

A 
d~ IIX 1 YI'I d. 

o 

(A 12, 0) 

----~------...... ~----~-x 

(0, < ) 
~ _______ ... (" 12, .) 

(" 12,0 ) 

--~----------~~----¢ 
F i 9 u re 

The depth, which is the average distance from t e profile to t h e bottom, 

d 

and the wave he i ·ht, which is the vertical distance from cr e st to trough , 

H y(o) -Y [~J ( 26) 

were computed. Th t:) ratios dl'A. and Hid are g iven in Ta bl e 1. 

In t he z pI ane t he veloci t y c an be r ep r e sent ed b y a compl ex 

Fourier e i e s~ 
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q (2) 

j 

-C 0 + L C nCO S n k 2 

n= 1 

where k is the wave nwnber defined as 

k = 2n/"-

(27) 

( 28) 

The nwnber of terms in the series j was left variable in orde r that the 

series could be used to fi t the various veloci ty fi elds wi th a preassigned 

aCCUTBcy. The veloci ty W9.S computed at a large number of points along the 

pat:1 shown in Ii.2'ure 1, ='xcluding the immediate vicinity of the crest. Tne 

coefficients Cn were calculated to give the best fi t at these points in the 

sense of least squares. The values of the Cn are listed in Table 3 as 

HaL E 3 

€ ~Ct / c~ -c , i C 0 -c ,/ c9 - C.I C 0 c ~/co D, D2 Do 

! 
0.20 . 1549 . 9 17 4 1 101-' , 4 140 1 10 1-' . 27 1" 10 1-' .52591101-' 1 . 9 4 9 5 .722 76 . 19 

O~ 23 . ! 150 0 .131 33 1 101- ' .3 12411 0 1-' .1 433 1101-' . 2 34 4 110)-' 1.940 5 . 45 1 82 .74 
0 

.7 18 5 110)-' .2222110)-' .7370110)-' 0. 26 .1 648 1. 9 131 5.098 79 .16 - -
0. 3 0 .1 6 98 . 6 2201 10) -', .1 59 4 1 101-' .3986110)- ' 1.8'315 4.7371 72 .067 

0. 4.0 .1718 .376 0110 )-' . 5605 I 10 1 - 2 .7 ')401101- 3 
1.7887 3.8094 50 .248 

0 . 5 0 .1 6 05 . 22 05 (10)-' .2 I 991 10 ) - 2 1.7191 3.1579 35 .626 

0. 60 .1 4 5 4 .1 ;>04 110 )-' .88 4 5 1 10 1- " I. fi f 92 2.7159 26.878 

0 . 70 . 1267 .67 45 110)-' . 3 9 0 5 11 0 )-" 1. 6352 2. 4 2 09 21. 6 82 

0. 8 0 .1082 .38 42110)-' .1895 110)-3 1. 6 120 2. 22 40 18. 5 36 

0.90 .9106 (1 0 )-' . 2245110)- ' .9773 1 10)-' 1.5964 2.0927 16.581 

1. 0 0 . 75971 )0)- ' . 13 4 7110 )_ • .52 05 110)-' 1.5860 2.00' 4 15.336 

2 . 0 0 .106 71 10 )-' .18501101-' .1261(10)-" 1. 564 9 1.829 5 13.031 

3 . 00 I .1 4 45 (10)_ 2 .3363110)-" . 3 I 3 I 1 10)-" 1.5645 , 1.'32 6 3 I 12. 994 

ratios C
71
JC O' CO is defined as the wave veloci ty, following Stokes. No 

mo re than six coe f ficients were n eed ed for any value of E. 
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Wi th the wave velocity and wavelength known, the period T can be 

calculated. Then the dimensionless ratio d/gT'2 was obtained, and hence 

/
'2:2 

H gT and VgT • The values of d/T
2 

and H/T'2 in uni ts of ft/sec'2 were 

obtained by multiplication by g (32.2 ft/sec'2). They are listed in Table 1, 

together with 2TTVgT:2. 

Within a distance of about 1/36 of a wavelength from the crest, 

many more terms would be required in equation (27) because of the rapid 

variation of the veloci ty. However, in thi s ne i g11borhood an exact 

expression can be obtained. Expansion of equation (6) in a power series 

and term-by-term integration yield 

. , 
z - t E B'( . )2/3 B'( . )5/3 B'( . )8/3 oW-tE + lW-1E + 2W-tE +'" (29 ) 

where the Bj are various functions of b j and E. The distance from the 

bottom to the crest in the z plane is E'. Then W - iE can be obtained 

from equation (17) as a function of z - iE' by some algebraic manipulation. 

The result is 

u) - i E 

where the Bj are various fUDctions of the B j. 

obtained by di f f e renti ation, 

q (z ) 

en [ 
. "1

1
/

2 ~1 Do z -1 E I + 
- 1 (., ) 

16 

(30 ) 

The veloci ty is then 

, (31) 



where the Dn are various functions of /; j and E given in equations (36), 

(37), and (38). 

Transformation to a stationary coordinate system can be accom-

plished by adding 1 to the complex veloci ty and putting x = x' - Cot. The 

introduction of polar coordinates, as is sho~~ in Figure 2, yields 

cmd 

ex 
_1 

tan 

The radius vector from the crest, r, 

is measured in units of the wave-

1 ength. The angle a: between the 

vertical and r is measured positive 

coun terclock wi se. The di stance from 

the crest to the ocean bottom m e~ s-

ured in units of t h e wavelen~ th is 

just -, 
to • 

X I - Cot 

E' - Y 

( x', y') 

Figure 2 

( 32) 

(33) 

The velocity components are given by equation (2). They are 

and 

u 

Co (34) 
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v:here 

and 

1) 

Co 
Do ·r 1 / 2 ~r;::-2 ' a 2D 3 / 2 '2 r;::-2 D 3 '>J;.c sln - 11" Sln ~a + '>J~ 21" COS 

2 

Do 
1\ 1/2 

o 

7al 
2J 

(37) 

(38) 

The abbrevi ation s used in equations (36), (37), and ( ,)8 ) ar'e 

li sted below: 

J (1 - 3e- 4E + 5e- 12E - 7e- 24E + ge- 4 ,OE _ lle-eoE) 

K (l - 27e- 4E + 125e- 12E - 343e- 24E + 72ge- 40 ( - 1331e- eoE ) 

E (J)1/2 

F 1 + a'cosh 2E + b'cosh 4E + c'cosh 6E 

G -2 (a' cosh 2E + 4b' cosh 4E + 9c' co sh 6E) 

H 2(a'sinh 2E + 2b'sinh 4E + 3c 'sinh 6E) 

a 2b
1
e- 2E 

b' 2b 2 e- 4E 

c 2b 3 e- eE 

The fW1ctions D1 , D2 , and D3 are gi ven in Table 3. 1\0 1 s the wave] ength 

in appropriate units. 

18 



DISCUSSI ON OF RESULTS 

The current engineering practice for prediction of properties 

of waves is summarized by Bretschneider. 
8 

The material presented there 

is partially empirical and partially theoreticaJ, with various ingenious 

extrapolation techniques bein ec u ed for predictions in regions where there 

are no available data. 

Figures :3, 4, and 5 gi VB a cornpari son between certain wave 

properties calculated here and those given by Bretschneider. The calculated 

values are in all cases shown as solicllines, and the values which have 

been read off Bretschneider's charts are sho wn as dashed lines. A considera-

tion of the figures indicates that there is small reason to prefer either as 

a representation of the experimental data. 

The case of very large depth was investigated by putting E = 10 

into the equations resul ting from equation (23). The sol utions were the same 

as in the case E = 3, wi thin an accuracy of three signi fici311t fi gures. There 

are three other nwnerical treatmen ts of the problem, those of Michell, 3 

Havelock , 5 and Yama da. 11 The ratios C~/R'A (the dirnensionlc,ss wave velocity) 

and H/'A (the steepness) are co mpa r ed in Table 4. 

TABLE 4 

Michell __ ~____ Y~mada~happ~ar 

c: ~ / f1'_'A_+--__ O_, _I 9_'_---+ __ 0_,_1_9_1 __ +1_ ° ~_8_9_9 _ 0 , 1_9_1 3 __ 

H I_'A_ -----'-_ _ O_ , 1 4 2 ~I!~~ 0 , 141 2 0 , 1428 

The wave corre s po nd i ?; 1;0 t he slnol l est value of E can be compared 

to t h e highest s I i t ary wa ve; this ha Leen inve s t i !1; a t ed by I,IcCo wan
4 

811d 
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TABLE 5 

I 
I McCowan Yamada Chappelear 

---~------ +------t---------
2 I 

Colr;H i 2 1.999 I 1.602 

_H,--I d __ -_ -c-' =_--_0_:_78 __ 0_-_----'---_0_. 82 34 -r-=_ 0. 8696 -

Yamada. 12 In Table 5 the dimensionless ratios C~/r;H and Hid are listed 

for comparison. It is apparent that the value E = 0.2 is still rather far 

from the solitary wave. 

As has been pointed out by Bretschneider, it is rather surprising 

that the breaking index curve calculated here lies above that predicted for 

2 
small values of diT. His curve in this region is taken directly from the 

modified solitary wave theory of Munk, and it might well be argued that the 

highest wave in any depth should be the (modified) soli tary wave. 

At least three different explanations might be advanced for the 

apparent anomaly. First, there is of course no mathematical reason why 

there cannot be two solutions to the equations of hydrodynamics for waves 

in thi s region. In thi s case the di fference isreal, and some addi tional 

theoretical or experimental investigation of the question of stabili ty is 

necessary. Second, there is a possibili ty that ei ther theory is wrong in 

this region. The modified solitary wave then could associate the wrong 

wavelength with the wave. The waves in question are for the smalJest three 

values 0 fE, for whi ch the equations are the least accurate. Al though the 

final answers should be correct to two significant figures, some chance 

collection of numerical errors might have brought this result about. 

Finally, the functional forrl1s chosen to represent the veloci ty might not be 
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applicable. This is indicated by the fact t .a t the two waves corresponding 

to the smallest val ues of E have very small secondary hwnps. Furthermore, 

the numerical determination of b 1 , b 2 , b 3 , and f was rendered more diffi-

cult by an apparent lack of stability of the equations to the iterative 

scheme used in their solution; that is, it was necessary to resort to 

averaging of successive iterations to control the oscillations. Even when 

the averaging procedure was used, it was not possib] e to solve the 

equations wi th unlimi ted accuracy. Since such oscil] ations are not 

normally present in well -formul ated physical problems, it m:.ght be 

concluded that the problem is not formulated correctly. 'Whether any of 

these proposed explanations is correct cannot be answered here. 

COMMENTS AND CON CLUSIONS 

A brief discussion of the use of the tables should clarify the 

procedure necessary to calculate approximately the properties of any 

particular wave. It is first necessary to select the depth and the period. 

Then the wave height, the ,Iavelength, and E are found by interpolation on 

Table 1. The profile is obtained by interpolation on E in Table 2. The 

veloci ty component s are cal cul ated from the equations gi ven below. 

u(x' - Cot,y) 

Co 

v(x' - Cot,y) 

Co 

j 

\Cn cos n(h' - wt)cosh nky 
L- Co 
n=l 

~Cn ( 
L sin n h' - wt) sinh nky 

Co 
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vVe have put 

w 2nlT (41) 

and 

'AIr 

Equations (41) and (42) follow directly from equation (36) by omitting 

the term corresponding to the uniform flow (Co) and replacing x by 

X I - ct. 

At the crest, the velocity vector has the components (Co.O), 

as is indicated by equation (39). For distances from the crest less than 

about 1/36 a wavelength, equations (34) and (35) are used to calculate 

the velocity components. Equations (32) and (33) yield r. and (1, and Do, 

D 1., and D2 are obtained from Table 3. The ratio of E I to E is found in 

Table 1. 

It would be very interesting to demonstrate experimentally that 

the wave predicted here theoretically exists. It is unlikely that con­

ditions would occur at sea so that this would be possible: however, 

experiments in a wave tank should in principle be able to produce these 

waves. If not, some insight would be gained into how to modify our 

theoretical procedure to predict this limitation. 

I-lavelock found an extension of the procedure of Michell for 

connecting the highest waves wi th the fini te ampli tude waves of Stokes. 

He employed the same functional fonn to represent the veloci ty, but 

satisfied Bernoulli's equation on a line ~ = ~, where I~I < lEI. 
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The branch points in the velocity were put above the wave. The velocity 

potential could then be expanded in a Fourier series convergent everywhere 

wi thin the wave; the results for coefficients of the various terms agreed 

wi th those coeffi cients cal culated by the procedure of Stokes wi thin the 

limi t of accuracy of the calculations. 

The procecure of Havelock wag applied to the waves predicted 

here, but the resul ting formulas were so formidable that they were useless 

for practical purposes. 
10 

It i s s~gested that the results of Dee, who 

has extended the Stokes-Struik theory to the fi fth order 0 f approximati on, 

be used for calculating all except the highest waves. 

There seems to be no convenient way to estimate the errors made 

in the various approximations, since the correct solution is not available. 

The solutions would be exact if they did not violate the Bernoulli theorem 

to a certain extent. As a measure of the error, it is convenient to employ 

the ratio of the maximum fluctuation in the energy due to the errors to the 

difference in potential energy between crest and trough. 

Measure of error 
6(gY + ~U2 + ~1/) 

gH 
E 

This measure of the error would be zero for the exact solution, and 

presumably could be improved by addition of terms in the series . E is 

gi ven as a function of E in Table 1. 

An inspection of Table 2, which gives the profile, indicates that 

the four smallest waves have a slight secondary crest in the position 

expected for the trough. The rise is at most about 5 percent of the total 
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wave height. It is reasonable to assume that this effect is not real but 

is due to the omission of higher harmonies from the assumed form for the 

complex velocity, equation (6). The measure of error, E, is also largest 

for these waves, although perhaps not excessive except for the two smallest 

values of E. 
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AP PENDIX I 

The Bernoulli theorem is usually written 

1 'q (w) ,2 + ~ 1m z (w) 
2 

const. ( 1-1) 

on the free 'surface, w = ¢ IE. The partial derivative of equation 

(1-1) witn respect to ¢ is 

o (1- 2) 

Now 

( 1-3) 

Substitution of equation (1-3) into equation (1-2) yields 

+461 1m q (¢ + i E) (1-4) 
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APPENDIX II 

It is assumed that the largest term in an expansion of q(w) 

about the crest is proportional to w 8
• 

q (w) (11-1) 

Then an integration gives 

1 (11-2) Z = -------------

The origin of coordinates may be shifted to the crest. Then 

the free surface is w = ¢. The Bernoulli theorem yields 

o 

In order to satisfy this equation, it is necessary that 

622 09 1 28 

1 
3 

(11-3) 

(11-4) 
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