DEPARTMENT OF THE ARMY CORPS OF ENGINEERS

BEACH EROSION BOARD
OFFICE OF THE CHIEF OF ENGINEERS

ON THE THEORY OF
THE HIGHEST WAVES

TECHNICAL MEMORANDUM NO. 116




ON THE THEORY OF
THE HIGHEST WAVES

TECHNICAL MEMORANDUM NO. 116

BEACH EROSION BOARD
CORPS OF ENGINEERS

JULY 1959



FOREWORD

In the design of certain types of structures, the highest
wave which can reach the structure for a particular set of wave
conditions is frequently of importance., Certain parts of the
structure may have to be designed to withstand a single highest
wave incidence rather than the more commonly occurring signifi-
cant or average waves, This paper presents a theoretical
development for computing the properties of the highest wave.
The theory is valid for all depths where the relative depth
(d/L ) is greater than about 0.04; the solution for the highest
wave in deep water (as calculated by Michell and Havelock) is
obtained as a special case,

This report was prepared in the Exploration and Production
Research bivision of the Shell Development Company in Houston,
Texas, as a part of their general program of wave investigations.
The author of the report, Dr. J. E. Chappelear, is a Physicist
in that organization,

Because of its application to the research and investigation
program of the Beach Erosion Board, and the wide interest in the
description of wave phenomena in this country, this report is
being published at this time in the Technical Memorandum series
of the Beach Erosion Board, through the courtesy of the author and
the Shell Development Company. It is hoped that dissemination of
this information may serve as a stimulus and a valuable aid to
workers in this country.

Views and conclusions stated in this report are not necessarily
those of the Beach Zrosion Board,

This report is published under authority of Public Law 166,
79th Congress, approved Jjuly 31, 1945,
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ON THE THEORY OF THE HIGHEST WAVES
BY

J. E. CHAPPELEAR

Shell Development Company, Exploration and Production Research Division, Houston, Texas
(Publicetion No, 203)

ABSTRACT

Following a suggestion of Michell,3 we have made a calculation
of the properties of the highest periodic gravity waves which can exist
in steady, two-dimensional flow, neglecting viscosity. The "highest wave"
is one satisfying the criterion of Stokes that the particle velocity at
the wave crest be equal to the wave velocity., The theory is valid for all
values of the parameter d/T2 greater than 0.2 ft/secQ. The highest wave
in deep water, whose properties were first calculated by Michell and by

s . . .
Havelock, 1s obtained as a special case.

INTRODUCTION

Calculation of the properties of the highest wave has been a
theoretical and practical problem of considerable interest since the
publication of the investigation of Gerstner.’ Gerstner found that in
water of infinite depth one could obtain an exact sclution in terms of
elementary functions, The wave motion 1s rotational and hence does not
seem to be physically realizable. For purposes of the investigation
described in this paper, the problem is to find an irrofational solution
to the equations of hydrodynamics raving the properties of a wave. It
should be steady and two-dimensional, with the particle velocity at the

crest equal to the wave velocity.



Stokes” pointed out that such a wave would have a sharp angle
of 120° at the crest. Michell,9 by means of an approximate treatment,
was able to find the highest wave in deep water and suggested how to
extend his results to water of finite depth. McCowan® found the highest
wave in shallow water (the solitary wave) by a modification of his treat-
ment of the ordinary solitary wave, Havelock' improved the numerical
procedure of Michell and showed, by an appropriate modification of the
assumed functional form of the solution, that there was a smooth transition
from the highest wave to the infinitesimal waves of the Airy theory. The
practical problem of prediction of wave properties in intermediate depths
is reviewed by Bretschneider,6 who also gives a summary of the literature.

This paper carries out the suggestion of Michell that his theory
could be extended to water of finite depth. His numerical results are
shown to be slightly inaccurate, largely as a consequence of a better
approximation procedure employed here. Numerical results are obtained for
values of the parameter d/T2 > 0.2 ft/secQ. The numerical results do not
agree exactly with the modified solitary wave theory of Munk,13 probably

owing to the inherent inaccuracies of both calculations.

THE HIGHEST PERIODIC WAVE
The problem to be solved is the determination of the surface
profile and particle velocity for the highest permanent wave in wafer of
finite depth. A mathematical formulation suitable for our purposes can be
stated rather concisely. Stoker’ (Chapter 1) gives a much more detailed

description of the general problem for waves which are not the highest.



The waves are assumed to be periodic, steady, irrotational, and two-
dimensional, For the waves to be steady, there must be a steady flow
superposed in order to bring the wave profile to rest. The translational
velocity of the coordinate system relative to a fixed system is the wave
velocity, one of the wave properties to be calculated. The flow may be

represented conveniently by a complex velocity potential as a function of

2z, the complex position,

w(z) = ¢lx,y) + id(x,y) . (1)

The real part of w is the velocity potential, and the imaginary part is
the stream function, The derivative of w with respect to 2z is minus the
complex velocity, whose re¢al part is the horizontal velocity component

u(x,y) and whose imaginary part is the negative of the vertical velocity

component v{x,y).

QWiz) = -qlz) = -ulx,y) + ivix,y) . (2)

It is convenient to consider the boundary value problem in the
potential plane rather than in the z plane; that is, the potential is a
contformal map of the z plane onto the w plane. In the w plane, the region
occupied by one wave is a rectangle. The problem in the w plane is to

find a periodic function satisfying the boundary condition,

o] = e Loy, (3)

’



the Bernoulli theorem. This form of the theorem is obtained from the
usual form in Appendix I. Another boundary condition is that there is no

flow through the bottom,
In [g(u)lyeg = 0 (4)

For convenience, the real period of the complex velocity is chosen to be 7.

There, the condition of periodicity, the additional boundary condition, 1is

glw + 7) = glw) . (5)

It is still necessary to consider the question of what is meant
by the highest wave. Stokes suggested that the particle velocity at the
crest of the highest wave should equal the wave velocity, This condition
establishes an upper 1limit on the particle velocity, which might not occur
except in very special circumstances, However, a separate investigation
would be necessary to prove, either mathematically or physically, the
existence of the waves treated here. For the purposes of this paper, the
highest wave is defined as a wave satisfying Stokes' criterion.

In the moving coordinate system, the velocity at the crest is
zero, since the crest is part of the profile which is assumed to be steady,
Stokes proved heuristically that if the zero at the crest were assumed to
be a branch point {in particular he assumed that w « z“), the order of the
branch point would be 1/3 in the w plane, Consequently, the flow in the
vicinity of the crest would be the same as the flow in a corner between

walls inclined at 120°. A short proof employing the notation of complex



variable theory is presented in Appendix II., No exclusion is made of the
possibility that the character of the complex velocity in the vicinity of
the crest might be different, e.g., be propertional to (w log w}Q; no
proof has been found that such & behavior is impossible, but it does seem
physically reasonable that such a solution would be unstable relative teo
the one discussed here,

The complex velocity is now limited to being a periadic¢ function
with an array of zeros, everywhere regular. The free surface will bpe

a

identified with ¢({x,y) = ¢ and the bottom with Y¥(x,y) = 0. The procedure
of Stokes for the determination of the properties of waves of finite
height is first to assume that the velocity can be expanded in a Fourier
series along the bottom where the velocity is real, Then the velocity is
extended off the real axis by analytic continuation, Finally, the unknown
coefficients are calculated from Bernoulli's thc=orem by putting successive
coefficients of cos nd equal to zero. That the series obtained in this
fashion is convergent was first shown by Struik.®

Michell proposed a modification of this procedure which takes
explicit account of the nature of the branch points. The Fourier series
is multiplied by the 1/3 power of a periodic function of w which has simple
zerog at the correct positions in the w plane. Although there are a number
of possible choices, it is convenient to follow the sugzestion of Wichell
and to put

6/° v)

B ~DE o O - - >} -8 3
qglw) = ——jfir—(l + Shee %Ccos Bw o+ 20,e *€cos 4w + 2bae Cfcos 6w)
ax/
'

n



A constant factor with the dimensions of a velocity has been put equal
to 1, The function 6,(w) is one of Jacobi's theta functions (Erdelyi,’®

Vol. 2) and for this paper will be defined by its Fourier series

There are first-order zeros of @O(w) at w = mm + i{2n + 1) e where m and n

are integers., This property .. be verified by the transformation formula

Sriw
Oy(w) = ie? O lw - 1€) (8)
where the function 6, (w) is defined by
m
Gl(w) = 2 %/7 > (—l)ne—on(n+l)esin(2n + Dw {9)
7=0

G, is periodic with period and has

in consequence, will be valid only in

continued out of this recténgle periodically. The succeeding terms in the
‘ourier series in equation (8) are itted with the hope that their
nfluence on the solution would be smell, The choice of the t form of
5 L o —2 7€\ £ : 3 "
11 S i¢ lcients (i.2,, 20 e | confo vith Mi :11 an
J
elock, S 1ts for int te depth (¢ - w) are a special ca f
ese formule t o ¢ ¢ v the compl =locity, equation (8),
tical 2] ropose y Michell and Havelock for € - w

O,



Because of the choice of units, the numerical value of g is not
given, and it must be calculated as one of the unknowns, together with
by, b,, and bg. All these unknowns depend upon the parameter €, which
specifies the physical parameters (e.g., the ratio of the depth to the
wavelength), It is reasonable that there is only one parameter, since
there is presumably only one "highest" wave in a given water depth,

On the free surface,
w =D + 1€ . (lO)

T

Wren this value of w is put into equation (6), there results

gl®d + 1€) = 5____wwv_.,6i/ﬁ{w)[l + 2ble_zecos 2(P + 1€)

2b e cos 4(P + 1e) + 2b3e'6€oos 6(d + 1€)] (11)

by the use of equation (9).
After considerable algebraic manipulation, the first four terms

in the Fourier series expansion of the lefi-hand side of eguation (3) can

be calculated. They are
i
> . : A E .
%—:q(dj + ZE) |4 = i ;m @i/j((f_)) 4 .cos (2]“1)¢ » (12)
o 7 —— J
j=
The functions A; are abbreviations for
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By - 72(377 + 1) 4 Bam® - —2(5m° - n°) + ?6(37’) -n)
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:.7——\ ] * a{': J - D’?C(—' v* /:1(.1(17"’)p) _ 8, .



e have employed as abbreviations

A = [1 +67(1 + 1*) + 6201 + %) + 02(1 + 1)1,
Al = [by(1 + M) + byby(1 + 0°%) « bobga(l + m°)],
A5 = (b1 + %) + baba(l + %) + b2(m)],
A5 = [bal1l + 1) + bibolm +m°)],
4 = [bybg(m + m*) « b3(n*)],

AL = [babg(mn® + n°)1,

AL = ban
ard
Bo = 44" + 2(41% + 457 + 457 - 44 + 4L% 447,
B
U ASAL + AfAL + AJAL + ALAL « ALAL + ALAL,

By = 4(A8AL + BAL® « ALAL + ASAL « AQAL + A144),
Be
T ASAL ~ ALAL « ALAL  ALAL v mgdy

Ba , p 2

o= 2(AGAL « ALag + A{AL + AgAL) 447,
BlO 4 ! 14 ! 14 14

. = 0‘45 + 441A4 + A{'lp’. * AQ 13,

.

Bip = 4(A8A% + ALAL + 2457 + 4341,



= A{AL + AJAL + A4AL,

Ble = O AI 4 ! d I2
o 24344 + ASAL) + A7,
BlB
- 4344« alag,
4
2
Boo = 4(4L4% + %Aé ))
Bas
-~ !
4 - AB’Aev
BQ4 ,2
= A4°,
2
and
B o= @ HE,
with the neglect of terms of higher order than e 1*%€ in the Fourier series
for €,(w), In order to obtain reasonable accuracy in computing &,(w) for

values of € as small as 0.2, it is necessary to retain terms of this order
We do not neglect products of the bj's, as do Michell and Havelock,
Consequently, the numerical results obtained here will not agree exactly
with their results for the case of infinite depth.

The right-hand side of equation (3) can also be expanded in a

Fourier series in the interval 0 < ¢ < 7, The expansion

sin [{Zr + i}; = ﬂ] = -5J5_ (6r + 1) } Cos

0



is useful in the calculations. The first four terms are

Y
e/ 06 /3 (¢) 63 N\

Im g{® + 1€) = - B. cos (27 - 1) (18
q ) T 7/ j- 1) )
J:
where the functions Bj are the abbreviations,
PR R (_Qe—ue_j_}+b 11 ,-8¢ _ 13} b [17 ,-12¢ _ 19
18 116 20, 2|112 160 3 280 352) * (19)
BZ = —l— + bl ‘lr\ - —5—6_“6} + bz{_l_]’;e“ef - E} * ba[———el'? ~L2e - ———19] " (20)
80 38 56 | 40 88 208 280
.1 7 1 ~ue 13 . 11 -8 17, -12¢ 19
B, = b, |—= - —=e +qu—--——w } + b P—e - ——]
3 224 1[176 40 ] 2156 104 3 64 136 - (21)
and
(
B, = L bit 7 5“8—).15] . b;[m ) 116—86] .\ bg{_l_@__ 17 ,-12¢) .
440 392 4186 =78 320 80 152 v
Now equation (3) reads
i
. . ]q«,jr_;w ) . .
0 =) Ay - ===—¢B;| cos (2j - 1) . (23)
3= ’
When the coefficients of the various cosines are put separately to zero,

four equations in the four unknowns result;

all

the equations contain

the parameter ¢, The solutions to these equations as functions of € are



3 4 2
e | bs | b % l g B ! i H‘:i//gpr: f‘ff//s?ec2 “‘}}_2 fo’ ke I E
5= o l — | -
A'-“Ls_ 1 222 ] .O_BQO_M‘ 5.329 | .0666 _jO
430 | . 174 L0631 4,95 | .0775 6351 |
377 | 137 | .oeve | 4.58 | .oses 6854 |
0.3 | .3317 | .1100 | .03371 | 4.29! | .0996 .7321
qLi_j_:231g_ | .06065 | .01573 | 3.671 | .1328
0.5 | . 1705 .03684 | .00B94 | 3.208 | . 1659 -9526 |
.6 | .1280 | .02480 | .00€06 | 3.062 | .logs | .5871 | 1,045 1.0258 |
E7 ) O’Jﬁ " 0ig4n |7 L00469 | 2,011 | 2314 . 5 [ |.0792
0.8 | .08010 7.0_|5r.m._i Q0397 | .2626 R [ 1 B - S
0.9 | 06716 | 01300 | .00356 | 2.745 | .296l | 1.1 ]
1.0 | .05839 | .01195 | .00331 | 2.700 | .3282 R
.0 | .04076 | .01007 | .00286 | 2.615 | .6471 | .2205 | 1.2012
2.0 .04043 | .01004 | .00285 | 2.614 | .9655 ' L1479 , 5.947 [.2019 [
*The values of € which were used were correct to eignt decimals. Thus 0.2 memns means 0O, &

he final step in the problem is the integration to obtain =z

as a function of w,

This integration was performed numerically,

free surface,

o
ry

directly from ecu~tion (24).

(w)

au ¢
l dZW)
; Since the ling ¢y = € is the

a parametric rerresertation of tie free surface was obtained

Eocause g (w) has a branch point at w = 1¢

(the wave crest), it was convenient to purform the integration directly by

means of a power series expansion in the neigrvorhood of this point.
numerical values obtained are listed in Table 2.

normalized by dividing by the waveleng

The

The values have been

th
Vi



TABLE 2

= - . : - . ——
T 4894 | .a37a | 3866 | 3363 | . 747 | 082 |
1136 L1199 L1191 L119) S1212 z 1528 |789]
. 7979 .6992 | .eas L5976 RYLY .4937 | [ .3910 4 3400 | .2880 .2339 . 1755 tos5 |
. 15%2 . 1590 i ., F39€ ‘ LAR2 1448 |_ ,'5*% . 16726 « 1799 2067 | L3632
| _
l | 1434 | 1089
.168s | .2350
a021 L3474 ! o5 :
1701 1923 . .2629 L3218
] i o =
.9038 8071 [ 3562 1140
0,40 t —
.2230 | 2242 - 2635 3452
- L9053 | 8105 .4 {58 . 3629 .5081 J 188% 1168
o L2767 2793 L3219 3338 L3486 3673 L3915 4242
) 2/ b 1.0000 2532 L9065 2127 5229 1722 4205 3672 3123 1914
.60 — e
21 tx 1)) 1312 $315 3324 3361 3682 5777 L1891 4028 4193
- 2/ 1.0000 .9537 .9073 .8608 .8142 7673 1201 6243 .5259 4793 .4237 L3705 315 . 1936
T | arx /A 2886 .3890 .3900 .3919 1946 . 3082 .4027 L4148 L4120 L4428 UL 4704 4802 5364
e TR e T
. 2/ h 1.0000 .9539 .0078 L8616 .815) L7685 L7215 £260 L5279 4775 L4253 L1726 3173 L1952
.80 = o -
2Ytx)/A .4477 .448] 4404 .4515 ,4545 L4586 L4637 .AT12 .4953 5076 L8211 L5369 . 5566 £053
5 2/ A |.a0on .9541 .9081 .8620 .8158 .7692 7224 6272 .5293 4789 .4273 3741 .3187 L1963
.90 . £ 1
27 (x 1/ A 5081 .5086 .5099 5123 LEI56 .5200 5254 .5400 L BAQT 5720 L5861 6026 6218 .6726
i 2 /A 1, 0000 9542 .9083 .8623 .8162 .7697 . 7230 . 6290 5302 .4799 .4283 L3751 3107 1970
. 2Ytx /A 5695 5700 5715 5740 .5775 .5821 .5878 6029 (€255 6362 L6508 6676 6873 .7389
' 1B
2/ 0 1, 0000 9544 .9087 . 9629 9169 .7707 .724) 6295 LE720 818 4302 3770 L3216 . 1984
.00 LIS (S oL
2Yix /N | 1.2018 2020 | 1,2037 | 1,206 | 1.2103 | t.21%s | 1.2217 1.2383 1.26048 2740 | 1.289a 071 | 1.3 1.3807
- 2x/A 1.0000 9544 .9087 .8629 .8170 .7708 .7242 .5320 .4818 3 | 3218 | .1985
: 2Y(x) A | 1.8330 | 1.8386 | 1.8403 | 1.8430 | 1.R469 | 1.8520 | 1.8584 1.6749 1.8971 L9107 | 1,926 9439 | 1.9643 2.0175
note, Table 1. T o B




The integration was continued from the trough vertically to the
bottom and then along the bottom to a point directly underneath the crest,

a path shown in Figure 1.

——

(D.ll)

(A/2,6'-H) (0.€¢)

(m/2,¢)

N

d=1/x [ v dx
o

(x72,0)

(n/2,0)

Figure !
The depth, which is the averagze distance from the profile to the bottom,

A
J Yixydx (25)
0

> |

and the wave height, which is the vertical distance from crest to trough,
B = r(o) - Ym : (26)
were computed. The ratios d/A and #/d are given in Table 1.

In the z plane the velocity can be represented by a complex

Fourier series,



glz) = -Cq + % C,cos nkz (27)

where £ is the wave number defined as

ko= 2m/N (28)

The number of terms in the series j was left variable in order that the

series could be used tc fit the various velocity fields with & preassigned
accuracy., The velocity was computed at a large number of points along the
path shown in Yigure 1, 2xcluding the immediate vicinity of the crest, The
coefficients €, were calculated to zive the best fit at these points in the

sense of least squares. The values of the C, are listed in Table 3 as

TABLE 3
2 . i ' R -
0. 1 Cs | -CalCs i___—ﬁ'./co | Crn/Ce Dl__L,_, : T Dq
‘ | | |
. |
20 | L1540 | .or7ari0)= | Lara0ni00= | zvircio0™t | L525901007% | 1.949 | 5.722 L 76.19
| .1600 f 81330100~ | 3124010070 | 1433010077 | .2344010)7% | 1.940 | 5.451 |
& | .16a8 718501017 | 222201047 | .73701100~" | 1.9131 098 | 79.16
i SRS S oA jemae GO SOl ) o AL !
.50'1 . 1698 | .6220¢(10)~" ,isoaum“‘ |_-3986(10)"" 1.8815 | 4.7371  72.067

.8094 | 50,248

0.40 | .1718 | 376001007 | 560501007 | .7540¢i0)"° - 1.7887
|

5
4
3
. 1605 220501017 | .2|99(m)-i! Y 3.1579 | 25.626
2
2
2

| 1456 | .1204t10)=' | .@@asii01-" | 692 | 2.7159 | 26.878

. 1267 | 674501007 | .3905¢1007° | 4209 | 21.682

| cros2 | .3ma201007% | isesot | . 2.2240 | 18.536

.90 | .9106t100" | .224501007" | .977301017" | . | 2.0927 | 16.53!
.00 | .73970000~" | L1370t | 5205010070 | | 2.00¢4 | 15.336
0o | .10670100=" | 185001017 | .i261¢100~° | | 1.5649 | 1.8295 | 13.03!
.00 | . 1445(10)7° t".w:}(loL“J 313001007 | | 1.5645 | 1.8263 | 12.994

ratios C,/Cy. (4 is defined as the wave velocity, following Stokes., No

more than six coefficients were needed for any value of €.



With the wave velocity and wavelength known, the period T can be
calculated., Then the dimensionless ratio d/gT2 was obtained, and hence
H/gT2 and K/gTQ. The values of d/T2 and H/T2 in units of ft/sec2 were
obtained by multiplication by ¢ (32.2 ft/sec ). They are listed in Table 1,
together with 277/gT>.

Within a distance of about 1/36 of a wavelength from the crest,
many more terms would be required in equation (27) because of the rapid
variation of the velocity. However, in this neighborhood an exact
expression can be obtained., Expansion of equation (6) in a power series

and term-by-term integration yield

)2/9 5/3 8/3

+ Bilw - 1¢€) + Bolw - 1¢) + eee (29)

i

2 - i€’ = Bilw - 1€

where the B; are various functions of bj and €. The distance from the
bottom to the crest in the z plane is €', Then w - i€ can be obtained

from equation (17) as a function of z - i€’ by some algebraic manipulation.

The result is

3/2

w - =220 Bz - ae)? T Bz - aet)® v eee] ()
O

where the B} are various functions of the B}. The velocity is then

obtained by differentiation,

q(z) z 161\11/2 [ 18/ A
= - I (& = 1€ - .. s
Cm DO - 1%‘. )‘ —:—l + 1)1 L'—‘—_‘L—/\} + DQ {Z_._li_l + ] y (51)



where the [ are various functions of bj and € given in equations (36),
(37), and (38).

Transformation to a stationary coordinate system can be accom-
plished by adding 1 to the complex velocity and putting x = x' - Cot. The

introduction of polar coordinates, as is shown in Figure 2, yields

s (32)

The radius vector from the crest, r,

is measured in units of the wave-
lengtn, The angle o between the
vertical and r 1s measured positive

counterclockwise. The distance from

the crest to the ocean bottom meéds-

ured in units of the wavelength is

sust e, Figure 2

The velocity components are given by equation (2)., They are
_ 1/2
e T 1 - Dor {;5 cos % - 2D,r°’? cos 20 + NZ D,r® cos 2%} (34)

and



L. = Dorl/Q{%E sin & - 20,r°/? sin 20 + V2 D,r® cos 2?] ,  (3)
Ca 2 2|
vhere
1/2
Do = L5 [2 EF}S/Q o (36)
2 O Co
D, = 1.2 ",?_ EF}S/2 {l + ﬁ] )\8/2 » (37)
5 3 3 F.
and

2 s |11(1 , ¥ 11 H .G _ 1
= & EF S I E e U ¢ St
g '4'5[5 } {25{3 F] 4{18 “F F 8

gﬂ A . (38)

The abbreviations used in eguations (36), (37), and (3B) are

listed below:

J = (1 - 3e™%F + De 1Z€ - 7,746 4 geaD€ _ 77,780C€)

K= (1 - 27e7%€ + 125e712€ -~ 340e72%€ + 72Qe740€ - 1331e7°00€)
E = (J)7

F =1 +a'cosh 2¢ + b'cosh 4e¢ + c'cosh Be

G = -2(a’cosh 2¢ + 4b'cosh 4e + 9 'cosh 6¢)

H

= 2{a’'sinh 2¢ + 2b'sinh 4€¢ + 3¢ 'sinh fe)

a' = 2b,e7 %€
b' = 2b,e” %€
c' = 2bgeT 8¢

The functions D,, D,, and D, are given in Table 3. Ao 1s the wavelength

in appropriate units,



DISCUSSION OF RESULTS

The current engineering practice for prediction of properties
of waves is summarized by Bretschneider,® The material presented there
is partially empirical and partially theoretical, with various ingenious
extrapolation techniques being used for predictions in regions where there
are no available data.

Figures 3, 4, and 5 give a comparison between certain wave
properties calculated here and those given by Bretschneider, The calculated
values are in all cases shown as solid lines, and the values which have
been read off Bretschneider's charts are shown as dashed lines. A4 considera-
tion of the figures indicates that there is small reason to prefer either as
a representation of the experimental data.

The case of very large depth was investigated by putting € = 10
into the equations resulting from equation (23). The solutions were the same
as in the case € = 3, within an accuracy of three significant figures. There
are three other numerical treatments cf the problem, those of Michell,8
Havelocrc,5 and Yamada, & The ratios cﬁ/gx (the dimensionless wave velocity)

and #/N {the steepness) are compared in Table 4,

TABLE 4
T © Michell | Havelock | Yamada | Chappelear
Colgh 0.191 0.191 | 0.1899 0.1913
SEvaTh L Eale i B 2 . st s :
HIA | 0.142 0.1418 10,1412  0.1428
The wave corresponding fto the smallest value of € can be compared
. . . . . T 1 % 4 ¥
tc the highest solitary wave; this has Leen investizated by kicCowan and
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TABLE 5

McCowan J Yamada 41 Chappelear

Colgd ' 2 1.999 |.602
Hid | 0.780 0.8234 ~0.8696

Yamada,'® In Table 5 the dimensionless ratios Cg/gH and #/d are listed
for comparison, It is apparent that the value € = 0,2 is still rather far
from the solitary wave,

As has been pointed out by Bretschneider, it is rather surprising
that the breaking index curve calculated here lies above that predicted for
small values of d/TQ. His curve in this region is taken directly from the
modified solitary wave theory of Munk, and it might well be argued that the
highest wave in any depth should be the (modified) solitary wave,

At least three different explanations might be advanced for the
apparent anomaly. First, there is of course no mathematical reason why
there cannot be two solutions to the equations of hydrodynamics for waves
in this region. In this case the difference is real, and some additional
theoretical or experimental investigation of the question of stability is
necessary. JSecond, there is a possibility that either theory is wrong in
this region, The modified solitary wave then could associate the wrong
wavelength with the wave., The waves in question are for the smallest three
values of ¢, for which the equations are the least accurate, Although the
final answers should be correct to two significant figures, some chance
collection of numerical errors might have brought this result about.

Finally, the functional forms chosen to represent the velocity might not be
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applicable. This is indicated by the fact tnat the two waves corresponding
to the smallest values of € have very small secondary humps, Furthermore,
the numerical determination of 6,, b,, b,, and g was rendered more diffi-
cult by an appdrent lack of stability of the equations to the iterative
scheme used in their solution; that is, it was necessary to resort to
averaging of successive iterations to control the oscillations. Even when
the averaging procedure was used, it was not possible to solve the
equations with unlimited accuracy, Since such oscillations are not
normally present in well-formulated physical problems, it might be
concluded that the problem is not formulated correctly., Whether any of

these proposed explanations is correct cannot be answered here,

COMMENTS AND CONCLUSIONS

A brief discussion of the use of the tables should clarify the
procedure necessary to calculate approximately the properties of any
particular wave. It is first necessary to select the depth and the period.
Then the wave height, the wavelength, and € are found by interpolation on
Table 1. The profile is obtained by interpolation on € in Table 2, The

velocity components are calculated from the equations given below.

u(x' - Cot,y) N Eﬁ_cos n{kx' - wt)cosh nky . (39)
Co L_ ¢,
n=i
vix' - Cot,y) < —C
e = " sin n(kx' - wt)sinh nky (40)

Co LG, | '
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We have put

w = 21T (41)

and
Co = NT (42)

Equations (41) and (42) follow directly from equation (36) by omitting
the term corresponding to the uniform flow (Cy,) and replacing x by
x' - ct.

At the crest, the velocity vector has the components (Co,0),
as is indicated by equation (39). For distances from the crest less than
about 1/36 a wavelength, equations (34) and (35) are used to calculate
the velocity components, Equations (32) and (55) yield r and a, and Do,
D:, and D, are cbtained from Table 3. The ratic of €' to € is found in
Table 1.

It would be very interesting to demonstrate experimentally that
the wave predicted here theoretically exists, It is unlikely that con-
ditions would occur at sea so that this would be possible- however,
experiments in a wave tank should in principle be able to produce these
waves, If not, some insight would be gained into how to modify our
theoretical procedure to predict this limitation.

Havelock found an extension of the procedure of Michell for
connecting the highest waves with the finite amplitude waves of Stokes,

He employed the same functicnal form to represent the velocity, but

satisfied Bernoulli's equation on a line ¥ = 8, where |B| < |¢
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The branch points in the velocity were put above the wave. The velocity
potential could then be expanded in a Fourier series convergent everywhere
within the wave; the results for coefficients of the various terms agreed
with those coefficients calculated by the procedure of Stokes within the
limit of accuracy of the calculations.

The procecure of Havelock wag applied to the waves predicted
here, but the resulting formulas were so formidable that they were useless

o
who

for practical purposes. It is suggested that the results of Dee,1
has extended the Stokes-Struik theory to the fifth order of approximation,
be used for calculating all except the highest waves,

There seems to be no convenient way to estimate the errors made
in the various approximations, since the correct solution is not available.
The solutions would be exact if they did not violate the Bernoulli theorem
to a certain extent., As a measure of the error, it is convenient to employ

the ratio of the maximum fluctuation in the energy due to the errors to the

difference in potential energy between crest and trough,

AlgY + %ui’ + %v)
g

Measure of error ~

This measure of the error would be zero for the exact solution, and
presumably could be improved by addition of terms in the series, £ is
given as a function of € in Table 1,

An inspection of Table 2, which gives the profile, indicates that
the four smallest waves have a slight secondary crest in the position

expected for the trough, The rise is at most about 5 percent of the total
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wave height. It is reasonable to assume that this effect is not real but
is due to the omission of higher harmonies from the assumed form for the
complex velocity, equation (6). The measure of error, E, is also largest

for these waves, although perhaps not excessive except for the two smallest

values of e,
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APPENDIX I

The Bernoulli theorem is usually written

% lg (w)]? + ¢ Im z(w) = const. (I-1)

on the free surface, w = ¢ - 1€, The partial derivative of equation

(I-1) with respect to ¢ is

lg(p + ie) ] % lg(¢ + ie)] +g—%<¢,e) -0 . (1-2)

Now
9y - 1 op . _ 1 . I-3
3 Iql|?® oy lg |? tm (1-3)

Substitution of equation (I-3) into equation (I-2) yields

2o fgle + ie)|® = +ag Tmg(op + i€) . (I-4)
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APPENDIX II

It is assumed that the largest term in an expansion of g (w)

about the crest is proportional to W

glw) = Aw® . (I1-1)
Then an integration gives
z = - L . (II-2)
A8 - Dwb?

The origin of coordinates may be shifted to the crest. Then

the free surface is w = ¢. The Bernoulli theorem yields

|A|Aé% 8 + 4% Tm4a -0 . (I1-3)

In order to satisfy this equation, it is necessary that

5 = % . (TT1-4)

9622 09} 28 G 4504



1. Wave height

BEACH EROSION BOARD, C. E., J. S. ARMY,
2, Wavs theory

WASHINGTON, D, C.

ON THE THEORY OF THE HIGHEST WAVES by I. Chappelear, J. E.
J. E. Chappelear, July 1959, 28 pp., IT. Title

5 tables, and 5 11lus,

TECHNICAL MEMORANDUM NO., 116

UNCLASSIFIED

As suggested by Michell, propertles of the highest periodic gravity
waves whilch can exist in steady two-dimensional flow, neglecting viscosity,
are calculated, The "highest wave" is defined as one satisfying the
criterion of Stokes that the particle velocity at the wave crest be equal
to the wave velocity. The theory is valid for all values of the parameter
d/T? greater than 0.2 ft./sec.2, Tne highest wave in deep water, whose
properties were first calculated by Michell and by Havelock, is obtained
as a speclel case,

BEAGH EROSION BQARD, C. E., U. S. ARMY, 1. Wave height

WASHINGTON, D. C. 2. Wave theory
ON THE THEORY OF THE HIGHEST WAVES by I, Chappelear, J. E.
J. E, Chappelear, July 1959, 28 pp., II, Title

5 tables, and 5 illus,
TEGNICAL MEMCRANDUM NO. 116

UNCLASSIFIED

As suggested by Michell, properties of the highest periodic gravity
waves which can exist in steady two-dimensional flow, neglecting viscosity,
are calculated. The "highest wave" is defined as one satisfying the
criterion of Stokes that the particle velocity at the wave crest be squal
to the wave velocity. The theory is valid for all values of the parameter
d/T2 greater than 0.2 ft./sec.?. The highest wave in deep water, whose
properties were first calculated by Michell and by Havelock, is obtained
as a special case.

BEACH EROSION BOARD, C. E., U. S. ARMY,
WASHINGTON, D. C.

1. Wave height
2. Wave theory

ON THE THEORY OF THE HIGHEST WAVES by I, Chappelear, J. E,
J, E. Chappelear, July 1959, 28 pp., II., Title

5 tables, and 5 illus,

TECHNICAL MEMORANDUM NO, 116

UNCLASSIFIED

As suggested by Michell, properties of the highest periodic gravity
wavea which can exist in steady two-dimensional flow, neglecting viscosity,
are calculated. The "highest wave" 1s defined as one satisfying the
criterion of Stokes that the particle velocity at the wave crest be equal
to the wave velocity. The theory is valid for all wvalues of the parameter
d/T2 greater than 0,2 ft./sec.?., The highest wave in deep water, whose
properties were first calculated by Michell and by Havelock, is obtained
as a speclal case,

BEAGI EROSION BOARD, C, E., U. S. ARMY,
WASHINGTQN, D, C.

1, Wave height
2. Wave theory

ON THE THEORY OF THE HIGHEST WAVES by I. Chappelear, J, E.
J. E, Chappelear, July 1959, 28 pp., II, Title

5 tables, and 5 illus.

TECHNICAL MEMORANDUM NO, 116

UNCLASSIFIED

As suggested by Michell, properties of the highest periodic gravity
waves which can exist in steady two-dimensional flow, neglecting viscosity,
are calculated. The "highest wave" is defined as one satisfying the
criterion of Stokes that the particle velocity at the wave crest be equal
to the wave velocity. The theory is valid for all values of the parameter
d/T? greater than 0,2 ft./sec.2. The highest wave in deep water, whose
properties were first ecalculated by Michell and by Havelock, is obtained
as a special case.






