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FOREWORD

Although circular piling is a much used structural element
in shore protection, harbor, and other maritime structures, it
has only been in the last few years that significant advances
have been made toward gaining a quantitative understanding of
the forces developed by wave action against piling. Recent tests
have advanced our knowledge of these forces considerably, but
certain inconsistencies have, however, been observed in much of
the early work. This paper presents an attempt to reconcile

some of these inconsistencles by using a somewhat different method
of analysis.

The author of the report, R, Curtis Crooke, is a California
engineer who has made a considerable study of this subject.
Because of its applicability to the general research and in-
vestigation program of the Beach Erosion Board, particularly as
concerns structural design, and through the courtesy of the
author, the report is being published at this time in the Tech-
nical Memorandum series of the Beach Erosion Board. Views and
conclusions stated in the report are not necessarily those of
the Beach Erosion Board,

This report is published under authority of Public Law 166,
79th Congress, approved July 31, 19L5.



RE-ANALYSIS OF EXISTING WAVE FORCE DATA ON MODEL PILES

by
R, Curtis Crooke
Temple City, California

All of the past published reports on wave forces contain irrec-
oncilable inconsistencies in the methods of deriving the forces produced
by the action of waves on piles and/or other structural members.

This led the author to feel that either the approach to the
analysis of model tests had to be varied to give consistent and reasonable

values, or full scale prototype tests had to be conducted under actual
gsea conditions which would give direct results.

A paper by Iversen and Balent(1)#* gives the results of experimental
work with flat disks and the derivation of the forces accomplished by
using a single coefficient (C) representing the combined effect of
drag and mass, A diagram of his test arrangement is shown in Figure 1.

Data were taken with two different size disks, 2 feet and 1 foot
in diameter, Four different driving forces were applied to each disk,

Table I 1ists the test conditions. The results of this test are shown
in Figure 2,

The following is the development of the correlation modulus as
used by Iversen and Balent:

Ma = (k) x (Mass of fluid displaced by the body)
Ma = added Mass

F-MoA=Cpf V25 +keBa (1)

where = force

= Mass of object
a Acceleration
= Velocity
a Area
=2

Displaced Volume

UJUJ<>(6’.{*=.1

The fluid which is in the field of disturbance of an object moving
through the fluid flows around the object. When the relative velocity
is steady, i.e., no acceleration of the body relative to the undis-
turbed fluid, the normal evaluation of the force existing on the body is
by a drag coefficient,

F
Cp = —— (2)

&=

# Numbers in parentheses refer to references on page19.



where Cp = Drag coefficient = @(Ng, Ny, geometry)
F = Force
@ = Fluid density
V = Velocity
S = Ares
NR = Reynolds modulus
Np = Froude modulus

The drag coefflcients are usually determined by experiment.

The addition of an acceleration to the motion produces an added
resistance which can also be developed in terms of a resistance coef-
ficient and a correlating modulus from a consideration of the wvarious
terms of the Navier-Stokes equations, The Navier-Stokes equations
written for one axis of an incompressible fluid particle are:

P%: X - g-% + /_LV21.1 <3)

where u = particle velocity in the x direction,

Du _9u 4+y3u + y 3u 4+ y 23U (L)
Dt X Y 232

where 2 » ) )
V2 = the Laplace operator 27 4 ) + _ 0 (5

dx ay2 322

The criteria for dynamical similarity may be developed from this
equation. For two systems which are geometrically and dynamically
similar, the ratios of the variables are:

VARIABLE RATIO VARIABLE RATIO
Length by Ll/L2 Density e P/P.
Time by  t1/tp Velocity by V1/V5
Pressure by pl/p2 Acceleration b, A1/, e
Viscosity by i-'-./'u,2 Body Force by )(1/)(2

Equation 3 written with the subscript 1 designates the flow in
system 1, Substitution of the ratios of Equation é give the equation
for the second system, Since this dynamical system 1s one which has
changes in velocity with respect to time, the term Ju/dt will be
designated as an acceleration, (a).
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FIGURE 1. SCHEMATIC OF IVERSEN'S TEST EQUIPMENT



TABLE I

Iversen's Experimental Conditions

Disk Dlameter Gross Driving Force Mass of Moving
Run No. Ft. Pounds Parts Slugs
29 2 L.78 1.263
30 2 6.78 1.325
3 2 8.78 1.387
32 2 10.78 1.LL9
34 1 2.28 0.512
35 1 3.28 0.5L3
36 1 4.28 0.57h
37 1 5.28 0.605
TABLE II

Experimentelly Determined Coefficient of Mass
Average Values, Average Deviation and Range

CH - 1.96 i 0025 (1.15 o 2.83)

Experimentally Determined Coefficlent of Drag
Average Values, Average Deviation end Range

Cp = 2.03 + 0.40 (0.98 - 3,50)
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Then from equations (3) and (6),
2
b(’baQ2A2+be by (2u23“2 + )
by, 3 X2
by, 0 Pp by 2
= by by P9 x2'51%b—x§*bpw(ﬂgv u,) (7)

This expression must be the same, for dynamical and geometrical
similarity, as Equation (3) written directly for the second system.

P2A2.+ P2 (u2 a__u_2_ +....)
0 *2

From Equations 7 and 8:

P |
C %5 - g x; "o vE up ()

b2
b b, =b v oob, by = PP & b, ¥ (9)
¢ Paz% 5 % kg F % 2

I IT 111 v v

Each of the terms of Equation 9 represent force ratios which can
be designated as those due tos

I Local Inertia
II Convectlive Inertia
III Gravity
IV Pressure
V Viscosity

For systems where the gravity and viscous fields are negligible,
only I, II and IV need to be considered., The pressures are due to the
object influence. An integration of pressures on the body will result
in the resistance to motion of the body; hence, the local and convective

inertias can be used to define the conditions under which the pressure
forces are similar.

Thus!
b 2 b
- v ___ D
be b, = b? i (10)
b, b b,
2l - (11)



In the application of these ratlos to the two dynamical systems
any corresponding velocity or acceleration which defines the motion may
be taken to evaluate the ratio between the systems. In the case of an
object moving through a staticnary fluid, the velocity and acceleration
of the object relative to the fluid at rest define the motion.

Ay L, A
Hence: P2 5 = p12 ( 2 22// 1h ) (12)
C2 %22 o, Y LA
s ~
Also: F = dSocpl.© 1
_{: p p (13)

when F is the force on the object and p is the pressure at the
boundary of the object of area S

F F Ay L2 A Ll

2 1
= (1L)
02 L2 V52 01 1° V2 ( Vp? v, 2 )

when geometrical and dynamical similarity exists, the ratio

Ay Lp Ay 1y

/ =1 (15)
V22 V12
thent
F AL
gz = L) e e

Equation 16 under the conditions previously stated thus gives the
correlating function for the resistance coefficient under accelerated
motion, If the viscosity and gravity effects are not negligible, a
similar analysis shows

2
C=¢(AL ’ VL?: v ) (17)
72 H gL
where:
AL
——— = Iversen's Modulus
v2
———j?& Reynolds' Number
n
V2

——— = Froude's Modulus
gL



It has been conceived that the Iversen approach could be applied to
the derivation of the forces produced by wave action and has been so
applied in this paper, Before giving this analysis in detail it has
been considered advisable to take a cursory survey of the problem as
handled by other analysts.

Munk in his original work(z) proposed using the maximum velocity
under the crest to determine the Reynolds number and to use the same
velocity in the force equation with the corresponding steady state co-
efficient of drag. This gave a force that was maximum at the crest and
went to zero at the still water level (8 = 90°).

The next step 1s to consider an object moving with constant accel-
eration in a fluld., This is slightly more complicated because there
are not only drag or shear forces, but also inertia forces. At this
point the agreement between various investigators breaks down.

The work by Morison(3) showed the interpretation of Munk to be an
oversimplification of the problem. This was obvious from the fact that
the measurements of wave force on & pile showed that the maximum force
did not occur at the crest, but occurred before the passage of the crest
at a varlable phase angle which depended upon the distance above the
bottom and the diameter of the pile,

Morison(3) developed a force equation containing two terms. One
term contained wave and pile constants, the velocity squared term and
drag coefficient; the second term contained wave and pile constants,
the acceleration and cosfficient of mass. The two terms of the equation
are 90° out of phase with each other, hence the requirements that the
maximum force was out of phase with the crest and varied with depth and
pile diameter were met.

Morison's method of determining the value of the coefficients is as
follows: The force or momenti on the pile is measured during the passage
of the waves. Also, the wave profile as it passes the plle is measured.
With this data it is possible to sclve the force equation for the value
of the coefficient of drag when the crest and trough pass the pile
(6 = 0, 8 = 180°) and to solve the force equation for the coefficient
of mass when both of the still water levels pass the pile (6 = 9090,
© = 2709), The coefficients can be solved only for these four points
in the wave cycle. The value of the coefficients is checked by holding
them constant throughout the wave cycle and the corresponding calculated
force curve is compared with the measured force curve,

In all of Morison's work no satisfactory explanation for the
variation in the values of the coefficients has been given, In one of
Morison's reports(h) he gave a curve of the coefficient of drag vs. the
instantaneous Reynolds Number (Figure 3), The correlation was not good
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and the data were all for very low values of Reynold's Number. He

states that no correlation for the coefficient of mass has been found.
Hence, in all of Morison's work the values of the coefficients have

been taken as averages of all measurements, (See Table 2 for the average
values over the full length of the pile and through the complete wave
cycle.

From communications with R, L. Wiegel of the Wave Research Projects
at the University of California, Berkeley, il was learned that a rough
correlation of the coefficient of drag vs. instantaneous Reynolds'
Number has been obtained in the analysis of the current prototype test
data, but nothing in the way of a correlation has been attained for
the coefficient of mass.

This is as one would expect, for Iversen(l) in conducting tests on
a disk under constant acceleration, had the following to say: "Published
experimental results, mostly with oscillating systems with small ampli-
tudes of motion, show an added mass constant that is higher than that
derived from potentisl flow with values that are dependent upon the fluid
and the object size, A few previous experiments on resistance in
unidirectional accelerated motion indicate that the added mass is variable
and depends upon the state of motion", G. P. Weinblum(5) had the follow-
ing to sayt "This means that for a given speed and acceleration the
added mass of a body may vary with the kind of motion; for 1nstance,
assume different values for a translation, a free or a forced oscillation
in the same direction. Under these circumstances, the question whether
and to what extent the concept of hydrodynamic masses can still be
maintained in the case of an accelerated motion of the body on a free
surface, appears justified. We shall here anticipate the answer: The
concept remains quite suitable; however, the quantities in question can
be functions of certain variables so that they lose their simple
geometrical character." Brahmig 6) saide "For an exact understanding of
the forces or loads acting on the body, a knowledge of hydrodynamic
inertia effects, and in individual cases their numerical magnitudes is
indispensable, In oscillatory phenomena in particular the effects of the
size of the oscillating mass on both the frequency and amplitude is
worthy of note. -- Whereas the calculated hydrodynamic mass depends only
on shape, its values vary with flow conditions in a real eddying medium.
The virtual mass of completely submerged or floating bodies in translation-
al motion is determined experimentally by measuring the force of
acceleration and the acceleration itself. Since frictionsl resistance
varies with time in accelerated motion, it is impossible to separate the
two components., Hence, it is not possible to prove that the pure hydro-
dynamic inertial resistance is a function of the acceleration as it is
suspected to be. --Since, however, the flow pattern about an oscillating
body and concurrently the magnitude of the entrained mass of the medium
changes not only with respect to frequency, but also with respect to
amplitude, the determination of the apparent mass by the method of free
vibrations is inherently unreliable."



A pile in ocean waves is by far the most complicated fluid flow
problem because there is not only unsteady motion but oscillatory motion.
For any one wave the frequency along the length of the pile is constant,
but the amplitude, hence inatantaneous velocities and acceleration,
vary with the depth and the phase angle. Of course, from wave to wave,
all of the conditions vary. Considering the preceding discussion it
should be apparent that the values of the coefficlents of mass and drag
should be variable quantities from wave to wave, phase angle in the wave,
and position vertically along the pile. This has not been the case asa
previously considered, as all published work assumes these coefficlents
to be constant.

The approach of Iversen has been applied to published data of
Morison(?;ﬁg and to unpublished data of Morison. The teat conditions,
wave characteristica, and values of the single coefficient,. correlating
modulus and Reynold's Numbers are given for all the available data in
Table III. .

The data consist of horizontal wave forces on horizontal cylinders,

vertical wave forces on horizontal e¢ylinders, horizontal wave forces

on spheres, and horizontal forces on vertical cylinders. These data
are suitable for this type of analysis because the vertical dimension
of the teat obJect is small compared to the water depth and the wave
charasteristics., This means that the values of particle velocity and
acceleratibn can be assumed to be constant over the vertical length of
the test segment without introducing any sizeable error.

The results of the analysis are shown in Figure L where all of the
dala have been plotted. Three different curves have been drawn through
the data representing the conditions for the sphere, the horizontal
cylinder and the vertical cylinder. With the amount of data available
it would seem as though three different curves exist and this is what
one would expect for the flow pattern will differ for each of the three
conditions,

It will be seen in Figure L that a very good correlation appears to
exist in the available data., It is conceived that a Reynold's Number
effect will appear at the lower values of the correlating modulus AD/V2
where the velocity term predominates over the acceleration. While the
model data have an upper limit of Reynold's Number of about 5 x 103 there
does appear to be some effect present as can be seen from the data on
the vertical cylinder where AD/VZ is less than approximately 10. It
looks as though for any constant value of AD/V? as the Reynold's Number
is increased, the value of "C" will decrease, This would give a family
of curves in the lower range of AD/V2 which would tend to approach each
other at some larger value of AD/VZ,



TABLE III

BASIC DATA
Wave [(Wave |Wave |SWL |Object
Run OrientJ Dia | Height Period|Length|Depth|Depth |Re Coeff AD
» |ObjJect|ation | FY M Secsy |F4 Pt Ft Hos 1 G 7 2
1 | ¢yl |Hortior|0.083][0.615 [1.200 [6.172 |1.543[0.489 | 2.1 103 6.1 2.38
2 u " " 10,620 (14196 64378 |1,543|0490 | 2.7 103]3.43 L.L6
3 " " " 10,601 {1,200 [64216 [1.5L5|0.490 |1.6 10, 8000 L+05
N " " " 06613 |14200 {64353 [14528(0.978 |5eh 103 1.24 0,08
5 " " " 10,618 |1.183 [6.259 [1.550/04980 | L6 107 2,11 0.40
6 | » " " 104630 |14183 | 64508 |1.524(0.979 |40 mg 2,62 0,77
7 " - 0,32 [04783 | 3.20h [1.503/0.985 1.} 103 1042 Le62
8 " . # 10s331 |0s775 | 34167 |1.148506985 [1laly 107|10.0 .60
19 "  Hagfler| ™ [0.568 |1.183 |6.452 [1.537|0.L7k 2.36 0.46
1.0 n " " 10,540 [1.183 |64452 |1.527]|0.990 5|1e36 0.13
16 |Sphere|Hor. [(0.125|0.209 |1.150 [5.913 |1.328[0.125 |2.2 10, 636 340
17 " " n 10,346 [1.183 | 6,085 (1,331 " | 2.0 103 13.6 555
18 " n " 10,249 |1.483 |8.696 |1.328] ™ 2.8 10:L 525 1.93
19 " " v 10,241 | 04850 | 3.732 |1.328) * L.k 107/11,l16 |9,100
20 n n " 10,257 | 0s7L7 | 3,468 [1.h51f ® 9.8 10.11,392 1,820
21 " " " 10,217 | 2133 L4770 | 1.328] " 2.8 10% 3,83 1.49
22 n " " 10,217 [ 2,133 a770 (1.328) " | k.5 105175 0.54
23 n " " 104273 | 2,167 [15.000 | 1328 " 5,1 107/ 1,67 0439
lla | Cyl [Hoo/Ver{0.042/0.188 (0,96 [Le77 |1.92 |0.59 | 8.9 10.19,278  |L4,000
Wb | = | » Jowes m | w | m |7 lo.s9 |17 107/ 2k, 778 |7,778
1lc " " 0.167] " " ¥ 059 | 3.6 10;(L8,000 (15,778
12a | " " 0.042 " " n " 070 | 1.2 103] 7,750 2,138
12b | " " 0.083 " " " " |0.70 |2.4 107 15,938 | L4,375
12¢ n n 0.167, ™ " n " 10,70 | L.7 10,130,125 |9,812
13a " " 0,042 ® " ] " 10,80 [1.5109]6,320 |1,760
13b " " 0,083 " " " " 10,80 | 3.0 107]12,800 |3,4L0
13c " n 0.167] " " " 10,80 |5.9 10| 22,160 |6,920
1lLa n n 0.0h2| ® B L " 0,90 |1.8 07| L,639 |1,333
b " n 0,083 " " " " 10,90 |3.5107|3,750 |2,667
e " " 0,167 " " " " 10490 | 7.1 10,|16,000 |5,361
15a " " 0,042 " n " (1,00 | 2.4 102,609 8LL
15 | " * | 0,083 " " " " 11,00 | b7 107} 5,984 11,672
15¢ " " 0,167 * n n " 11,00 9.5 10,/11,250 3,375
16a " = 0,042 v n " 11,10 | 3.0 10;11,E70 610
16b | " » 0,083 = n n " |1.10 5.9 10,|k,150 |1,220
6c n * 0,167 " " " * [1.10 |1.2 107(7,200 2,420
17a n " 0.042| " " n 1,20 |3.6 101 1,607 486
170 | ® " 0,083 = " n " [1.20 |7.110,(3,428 96k
17¢ n " 0.167| n n " 11,20 |1.k4 107(6,17L  |1,943
1.8a " " 0.042{ * " " " |1.30 |L.5 107(1,023 35L
N8b | = " 0.083| n ] n "o|1.30 | 8.8 10,(2,468 700
8¢ " u 0.167| n " " " [1.30 (1.8 107|k,800 (1,409
19a n n 0.042| * " " " 1.0 |6.0 10, e47 220
19b " " 0.083| ® " - * |1.40 (1.2 10511,390 L35
19¢ " " 0,267 " " " ® 11,40 |2.4 10°[2,898 875




TABLE III

BASIC DATA
Wave |Wave |Wave |SWL |Object

Run Orient Dia |Height|Period| Length| Depth|Depth |Re Coeff AD2
os_|Objectlation |Fy |Ft Sec | Ft Ft |Ft i c X
20a | Gyl |Hoo/fer 0,044 0,186 [0.96 |La77 [1.92 [1.50 | 8.0 103 394 15,3
20b | ® " 10.083 " " " " |1.50 | 1.6 105|359 261
20¢ w9 " 0.167 " " " " 11.50 3.2 lOa_ 2057 566
21 " " |o.0ud - " " " 10:59 | 646 10,/17) 72.9
22 " .. n n " " no10.90 2.3 1029 Tely
23 n " " n n " " |1s00 |25 10,35 el
2l 1" " u " n " " 1,10 | 2.8 102 23 )
25 " n " " n " " ]1.20 [3.1105(21 5e5
26 u " " n " " " [1.30 | 3.5 102 18 L9
27 n 1" n " u " "o 1.0 |2.8 102 gl 9.3
28 " " " n L " " 11450 (7.3 102 6.6 1.1
29 " " 0.,08% n n " " 10.80 |2.,1 102 272 36.04
30 " " 0.167 » " n " 1le0 |1l 101 150,250 |11,000
31 n a 0042 0415l |0.98 [Le97 |2.00 |0.72 [Fa6 101 386 182
32 " n " n " n " 10,80 |[7.8 102 L6k 10
33 " n n n n n n 1000 1.1 102 168 65'7
3L " n 1 n n n w110 [ 2.3 105|371 21.1
35 " " 0.083 " " " " 10.72 |13 102 1,268 360
36 n f " " " " 1 0430 [1.5 102 856 277
37 " t " n n n " 1.03 202 102 521 lTO
38 " " " ] 1 n ¥ 11,20 3.5 102 265 Bhe9
39 1 " " " ] " 1.0 | 5.6 102 130 1.8
ho 1 " " " " hd " 1.60 9.8 102 h?'h g 19lh
hl 1" n 0.167 n 1 " n 0.72 2e 102 2’820 725
L2 1 n " n " " " 10,80 |[3.1 102 2,020 557
L3 1" n ] " 1 n " 1100 |Le5S ].02 1,290 376
Ll u " n n n " " 1,20 T-0 101 670 17l
L5 n " 04042/ 0,19 [0.96 [Lhe82 |[1.91 [0.59 |[8.9 101 170 1.1
N ] n ] " " " " 0,70 |[9.5 102 183 L0
L7 n " n n " n " 10,80 [1.1 102 16} 3L.6
48 " n " " n n " 10,90 |1l.1 102 143 35.7
L9 " n " n n f "11,00 1.2 102 135 .l
50 n n 1" " " " L l1.10 2.5 102 31.9 8.2
5’1 n " n n " n " 1,20 109 102 72 16-6
g2 " " n n " n " 11,30 |3.6 102 2.6 5.0
53 n " n n " " mo 11,40 | 8.l 102 5e5 0.L9
sl " n " n ) n m 11,50 |9.2 107 | L.8 0e5k
g5 " f 0,083 " " " |0.59 |2.4 107|1280 360
56 " " "o " n n L 0.70 - iy w 00
57 '] " L] n n " n 0.80 5.9 100 3 Bw 920
58 n " " n n n " |9.%0 |6 10,|3L42,000 |10L,000
59 " " l " L " n 1.20 6 102 383300‘) m’m
60 ) " " n " ] " 11,10 | 2.5 101 257 70
61 " n n n fn " " 1.20 ?-7 101 2,325 730
62 " " n n n ] " 1.30 |l.2 10 ]J.;B,?SO 1,0.000




Wave |Wave |Wave |SWL |Object

AD
Orient{ Dia |Height|Period|Length ggpth gzpth ig’ goeff _7'2
Objectl ation [FY rt Sec Ft Tnn T 102 e 7
Cyl |Hor/Ver|{0.083[0.19% [0.96 |[L.82 l-g 5 117 302 = s
B N A v [0: (L7 201281300 |29600
N e I R B | 1
A S I B 00 |32 102753 |28
" n n " 1 " " [0.50 | 3.2 02 L 5 262
" 1" ] n 1] n L 0.% 1.1 1 2 “:B 255
. ; I ] : ey i e 82,800 | 28,LlL
" " u " " n n 171,10 |3, 129&‘0 25:?00
; ] A I o | w1130 |12 10211900 | 3025
" 2 n " " "o11.30 [1l.2 2 36; 95.2
" n " n " 1.40 Tel 102 e 28,5
" " " n " 11,50 | 7.6 igl i3100 |1h.700
L] 1) n " 00911 hlS? 1069 0059 l‘-sl.g 101 %’Bm 8’250
) . A I A e looh 18650 @20
. . ; ; ] oo 8.0 10} [1k,375 |51
) . ) p ] . : 2'33 1'0 102 10:2?1 3,300
" n n n n . 1- 102 5 L 2,183
" " n " " n n 1410 -g 102 h’5h2 1,558
u n " n n " " 1.20 1. 102 ,]_55 17050
. . . | . . X i'ﬁg 2.8 102 3’15& 696
" f . . s
: : : : : _n n 1.50 j.g lgg 15530 l};,gg
S N R I R I et
u n 0,083 " n " ) 0.59 2.6 10L[12°850 |10225
. . o . " o |53 106 733 |3,067
M " n . n ] " 0,80 ﬁ-o 101 3 ?550 27550
" ] e ; ; . g'gg 5.0 10t|5,51%  |1,650
n » e
SRR R = o
" n n = = L
: : : : " " " 1.30 | 1,0 10%_ l.g% gi:g
u n " 8 n " " 1140 |1l.4 10 1:- p
n ® 104042/ 0.188 |0.96 | L.77 " |0s59 = == =
" 1 ™ 0.083 ] L] " 0.59 1 5 103 5 s 0
" " 0,167 " " " " 10459 . 102 2'2 s
n u 0.042] " n " # [0s70 | k.2 2|2+ 2
u " 0.033 " " n ¥ 1070 | 8.3 133 1. 5
" » lo.67 " " “ 10,70 (1.7 107 5.2 0
o » |o.ouz ® . o[22 (080 [h 20g2ue 0
» | * loogs = [ « | = [T lojgo |91 102 -0 0
[ n 0.167 " L n . 0|B° 1.8 102 gll o
w | ow Jooou2l v | w | * | w |oio |5 10,2.1 0
" n |o.083 = n " " 10,90 [1.0 103 33 8
™ o 0:167 ] [ ” : 2.6”6 g.g ioz 10? 0
" - L] L
" w loogsl o+ [ . 11,00 |1.1 103(1.7 0




TABLE III

BASIC DATA

[ Wave |Wave |Wave |SWL |Object

Run. Orieny Die |Height|Period|Length Depth|Depth | Re Coeff @2
lloe |Object| ation | Ft r't Sec Ft Ft Ft NOe C v

99¢| Cyl |HorArer|0.167/0.188 (0496 |Le77 [1.92 |1.00 |2.3 103 - 0
100a| " " 0.0L2| m " "o 11,10 | 6. 103 2.3 0
100b| " 0,083 " " " " 11,10 (1.3 107 1. Q
100¢| ™" " 0.167| " " " 11,10 | 2.5 103 - 0
10la| L 0,042 " " 11,20 7.1 105 2.3 0
101b| *® wo[0,083] " " "11.20 |1.h 10? 1.7 0
10lc| ™ " 0,167, " " " W20 2.8 107 1.4 0
102a| " v o.aL2| w " " no 1,30 |0 1o§ 1.3 0
102b| ™ " 04083 v " n U 11,30 | 1.6 102 0.9 0
102¢| m10,167| ® X " 130 [3.2 103 349 0
N03a| " t 02| " n o110 9.2 105 1.5 0
103b| " 0,053 " 0 " mL) (148 102 0.7 0
103¢| L 0.167] " " " mo1) | 347 10% 047 0
NoLka | ¥ " Y02 " " mo11.50 0 1.0 102 2.k )
hoLb | » W 10.033 v o u n{1.50 | 2.0 1o§ 1.1 0
10he | n 0,167 o n " 11450 | L.0 107 1.2 0
o5 | " 0.0L2[0619l (0496  LeB82  |1491 [1.60 |1el 17| 2498 D626
9% " " J.0L2| v L " moo1,70 |1.2 107 2.8 D637
107 " " 0,063 " L N 1,80 1.3 10% 20 <.1
178 " " 0,042 06277 [1a22 5,81 [1.00 [0.99 [1.5 107| 1.9k (1422
109 | " o " " t 0,70 1.7 102) 2,01 [0.15
119 ] n " .on " " " 0,80 1.8 103 2. L‘S Qe 11
111 L] " 1" " " " " 090 1.6 1;)3 3-’-19 0428
2 | v n 04083 0 " " n0.59 2.8 102| 1.7 0.9
113 n " " " BT " 1 0,70 345 103 2.9 0.15
1, | o " wo | ] " " 10,80 [3.3103] 1y |0e37
115 " " " " n " no 10,90 [3.7 197 340 0el3
N6 | v v 0,167 o " " " 0459 | 2.9 103 29.7 |81
117 " " n " " " & 0.7 3.9 10% 18.9 L.8
118 " " " " n " " 10480 | 2.7 105| 4047 10.5
119 " " 0.042| 06452 0697 492 [2,00 [0.72 | 645 15| 5.2 1.52
120 " " " n u " " 10,80 |Le7 10%| 16.7 3.48
121 | m n " " " n n 1,00 |10 102 3.2 9.50
122 " " " " n " 1,20 | 1.2 log 3.1 0.51
123 " n 0,083 " n " 0s72 | Le2 105| 1346 |37.0
102, | " u " u " 0,80 | 2.9 10, 360 9545
125 n " n " " " 1,00 | 3.2 192 279 7867
126 1" " 1" " 1 1 " 1e20 9.7 ]_og h0.9 10,2
127 fn fl " n " " " 1030 9.1 10 60.7 111.5
108 | ; « | ! n L0 | 2.2 103) 11,3 |2.9
129 " " n " " " " 1450 | 3.6 10°| 6.9 1.1
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There is considerable scatter in the points plotted as AD/V2
approaches zero, (or the points determined for the forces directly
under the wave crest). It is impossible to say what the cause is except
that all of these data were taken at one time and there is the possibility
that there is an experimental error.

The values of the coefficient "C" for all points below AD/V2 = 10
are plotted against Reynold's Number in the insert of Figure L, and it
can be seen that there is a great deal of scatter. Considering only the
points labeled 95¢ through 103c (points where phase angle equals zero
and the acceleration terms equal zero) it will be seen that there is a
‘general decrease in the values of the single coefficient "G" as the
Reynold's Number is increased. For the remainder of the points one
would not expect a correlation (such as in steady state conditions)
between the single coefficient "C" and the Reynold's Number, because in
these cases the acceleration term is also present.

In order to determine if the shape of the curve of the single coeff-
icient C vs. AD/VZ is correct to give the desired results as to phase
angle vs. depth and pile diameter, the prototype conditions shown in
Figure S were assumed, and the force curve calculated for two diameter
plles at three depthsof submergence. In these calculations the force
was calculated using the curve for the horizontal force on a horizontal
cylinder shown on Figure L4 to obtain the appropriate values for the
coefficient, The results are given in Figure 5 which shows the increase
in phase shift with depth and the increase in phase shift with pile
diameter. It will be noted in Figure 5 that the values of AD/VZ for
the assumed prototype wave conditions are of the same order of magnitude
as the model results. This means that it should be possible to obtain
model and prototype data which -will cover the same range of AD/Vz.. Thus,
lesa data will be needed to either define the curve or to eliminate
the usefulness of the method, That is, one is not faced with all model
data at one end of a curve and all prototype at the other end as is
the case of the correlation of the drag coefficient with Reynold's
Number,

This type of correlation with only one coefficient for use in
the wave force equation gives rise to values of the coefficient that
are dependent upon the velocity and the acceleration, both of which vary
over the length of the pile and the depth of submergence. This is as
it should be, While the exact curves cannot be defined with the limited
amount of data on hand, it can be said that the shape of the curve is
correct, as it duplicates the physical conditions that have been measured.

At this point it would appear that the Iversen approach is the
correct one to be used for wave force studies. What is needed now is
some prototype data covering larger Reynold's Numbers and different wave
conditions., There is every reason to believe that the prototype data
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will follow tne same trends and will completely define the relation-
ships between the single coefficient "C", the correlating modulus
AD/VZ and Reynold's Number. This will be true whether the waves are
deep water waves or shallow water waves as long as the appropriate
theories are used for computing the velocities and accelerations.
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APPENDIX

In order to check equation (17) the method of dimensional analysis
has been used,

Dimensional analysis is a method by which a partisl knowledge of
a physical situation may be capitalized and put into available form.
The kind of partial knowledge necessary is a knowledge of the general
nature of the fundamental equations which govern the system and in
addition, the nature of the boundary conditions which, together with
the equations, determine the detailed solution in any special case.
It is not required that the equationa should be actually written out in
detail; in fact, the utility of the method is largely in its application
to problems so complicated that the fundamental equations could not be
actually written down as, for example, in most practical problems of
hydraulics,

Dimensional solutions do not yield numerical answers but they provide
the form of the answer so that every experiment can be used to the
fullest advantage in determining a general empirical solution,

Dimensional analysis rests on the basic principle that every
equation which expresses a physical relationship must be "dimensionally
homogeneous™; that 18, that an equality can exist only between like
quantities., This restriction, with the requirement that the ratio
between two solutions must not change when the units used to express
the magnitudes of the variables are altered, limits the form of physical
equations by requiring that the dimensional variables involved can
enter only in groups which are products of powers.

The problem at hand is to derive the modulus of which the single
coefficient (C) is a function.

It is assumed that the wave force (F) caused by ocean waves on a
pile is a function of:

Force = 0 (length, viscosity, density, velocity, gravity,

acceleration) (18)
or:
F-Xce® 1P vep d g8 af (19)
where:
F = Force = MLT™2 and in units of Mass (M),vLength (L) and
Time (T).
o= Density = ML-3



and

from

L = length = L

V = velocity = 1l
T viscosity = Mr-1lr-1
g = gravity = LT-2

A = acceleration = LT-2

a, b, ¢, d, e, f are unknown powers.

Substituting (20) into (19):

MET=2 o (ML=3)2 ()P (rr-1l)e (Mp-lr-1)d (pr-2)e (1r-2)f

Grouping the terms:

(M) 1za+4d

(L) 1 2-3a+b+c-d+e+T{

(T) <2 =2 =c=-d =268 - 2f

which

a =l =d

b =2 -d+e + ¢

c =2 =-d - 28 -2f

d -- cannot be determined
e == cannot be determined
f == cannot be determined

Substituting (23) into (19):

F =3¢ e (1-d)(2-dve+f)y(2-d-2e-2f) pd ge ,f

which reduces to:

F = ()LZ v2 zc P(-d)L(-d#B#f) v(-d~23-2f)'ud gﬂ Af
which, upon gathering of terms, gives:

e ()

F=pl?v3c (Q——Vl) ‘d»(

n

from which:

v
L
24

2
- éVL v AL
o= GG (4]

A-2

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(17)





