
ER
D

C
TR

-1
9-

1

ERDC 6.2/6.3 Military Engineering (ME) RAFTER

Using EASEE’s Acoustical Calculations
in MATLAB

En
gi

ne
er

 R
es

ea
rc

h
an

d
D

ev
el

op
m

en
t

Ce
nt

er

 D. Keith Wilson, Ross E. Alter, Katrina M. Burch, and
Michelle E. Swearingen

January 2019

Approved for public release; distribution is unlimited.

The U.S. Army Engineer Research and Development Center (ERDC) solves
the nation’s toughest engineering and environmental challenges. ERDC develops
innovative solutions in civil and military engineering, geospatial sciences, water
resources, and environmental sciences for the Army, the Department of Defense,
civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library
at http://acwc.sdp.sirsi.net/client/default.

http://www.erdc.usace.army.mil/
http://acwc.sdp.sirsi.net/client/default

ERDC 6.2/6.3 Military Engineering (ME)
RAFTER

ERDC TR-19-1
January 2019

Using EASEE’s Acoustical Calculations
in MATLAB

D. Keith Wilson, Ross E. Alter, and Katrina M. Burch
U.S. Army Engineer Research and Development Center (ERDC)
Cold Regions Research and Engineering Laboratory (CRREL)
72 Lyme Road
Hanover, NH 03755-1290

Michelle E. Swearingen
U.S. Army Engineer Research and Development Center (ERDC)
Construction Engineering Research Laboratory (CERL)
2902 Newmark Dr.
Champaign, IL 61822

Final Report

Approved for public release; distribution is unlimited.

Prepared for Headquarters, U.S. Army Corps of Engineers
Washington, DC 20314-1000

 Under ERDC 6.2/6.3 Military Engineering (ME), Remote Assessment of
Infrastructure for Ensured Maneuver (RAFTER), funded by 62784/T40/46,
“Propagation Effects”

ERDC TR-19-1 ii

Abstract

EASEE (Environmental Awareness for Sensor and Emitter Employment)
is a Java-based software framework for modeling the impacts of the
weather and terrain on signal propagation and sensor performance.
EASEE includes extensive capabilities for representing the environment
(atmosphere, land cover, terrain elevation, and soil properties), along with
many different models related to acoustic, optical, radio frequency, and
seismic signals. This report describes how to run EASEE from MATLAB,
which is a popular software package for performing numerical calculations
and displaying graphics. For this purpose, a simple installation configura-
tion and MATLAB script were devised to set up and initialize EASEE. The
focus of the report is on using EASEE for acoustic propagation calcula-
tions, which is its most mature signal modality. The report describes two
general approaches to performing acoustical calculations in EASEE: one
that involves using EASEE for its environmental representation only and
then running the acoustic propagation calculation using a MATLAB
toolbox and a second that uses EASEE for both its environmental layer
and the acoustical calculation. Overall, this report shows that the MATLAB

user interface provides convenient access to EASEE’s powerful signal
modeling capabilities.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ERDC TR-19-1 iii

Contents
Abstract .. ii

Figures and Tables ... v

Preface .. vi

Acronyms and Abbreviations ...vii

1 Introduction .. 1
1.1 Background ... 1

1.1.1 What is EASEE? ... 1
1.1.2 EASEE software design and capabilities ... 2

1.2 Objective .. 3
1.3 Approach ... 4

2 Preliminaries .. 5
2.1 Installing the EASEE files .. 5
2.2 Changing the MATLAB JVM to Java 8 ... 5

3 Running EASEE .. 7
3.1 Getting started .. 7
3.2 Verifying the installation ... 8
3.3 Simple example .. 8
3.4 Some useful background ... 10

3.4.1 A very brief introduction to Java ... 10
3.4.2 Running Java from MATLAB ... 11
3.4.3 Importing packages and classes .. 12
3.4.4 Conversion of data types .. 14
3.4.5 The MATLAB disp command ... 16
3.4.6 Java enumerations and inner classes ... 16

4 Geographic Coordinates, Grids, and Elevation Maps .. 21
4.1 Geographic coordinates ... 21
4.2 Geographic grids ... 23
4.3 Digital elevation, surface, land cover, and soil grids .. 24

5 Environmental Representations .. 27
5.1 Atmospheric constants and conversions .. 29
5.2 Environmental components ... 30

5.2.1 Humid air representation.. 31
5.2.2 Solid-earth representation .. 32
5.2.3 Land cover representation ... 34
5.2.4 Soil representation .. 36
5.2.5 Snow representation ... 37
5.2.6 Atmospheric surface layer .. 38

ERDC TR-19-1 iv

5.2.7 Atmospheric vertical profiles .. 41
5.2.8 Clouds .. 45
5.2.9 Seismic vertical profiles .. 46

5.3 Environmental representations.. 48
5.3.1 Homogeneous environment ... 48
5.3.2 Vertical profile environment ... 52

5.4 Loading WRF Data .. 55
5.4.1 Single WRF Output File ... 55
5.4.2 Multiple WRF output files.. 60

6 Acoustic Propagation Calculations ... 66
6.1 Standard acoustic frequencies .. 66
6.2 AcousticMedium class .. 67
6.3 Calculation grids ... 70
6.4 Impedance-plane model ... 71

6.4.1 Flat ground .. 71
6.4.2 Uneven ground .. 75

6.5 Parabolic equation methods .. 78
6.6 BNOISE .. 83
6.7 Nord2000 .. 83
6.8 MATLAB acoustic propagation interface .. 83

7 Full Example Script for Testing EASEE in MATLAB .. 88

8 Conclusion .. 93

References ... 94

Report Documentation Page

ERDC TR-19-1 v

Figures and Tables

Figures

 1 EASEE framework ... 3
 2 Output from the methodsview('HumidAir') command in MATLAB 14
 3 Hierarchy of EASEE's environmental classes. Phrases in bold are the main

environmental classes within EASEE, and italicized phrases are
subclasses of the foremost environmental class—EnvironScenario. All
other listings are fields (e.g., friction velocity is a field within
AtmosSfcLayer, which is a field within AtmosOneDim, which is a field
within EnvironVertProf). All phrases with only capitalized terms (e.g.,
EnvironVertProf) are instances of classes. Blue font color indicates recent
additions... 28

 4 Vertical profiles of temperature, specific humidity, and wind speed as
created by specification of atmospheric surface layer properties for a
moderately windy, unstable case ... 43

 5 Vertical profiles of air temperature (blue), the eastward wind component
(red), and the northward wind component (orange) derived from a WRF
test file in the EASEE repository .. 60

 6 Vertical profiles of air temperature derived from three pseudoensemble
test WRF files in the EASEE repository ... 65

 7 Attenuation coefficient for air at 20°C, 40% relative humidity, and sea-
level pressure .. 69

 8 Transmission loss (TL) for propagation at a frequency of 100 Hz over
several different ground surfaces ... 75

 9 Terrain elevations (digital elevation model, or DEM) used for the
transmission loss calculation shown in Fig. 10. The coordinate axes are
the easting and northing relative to the southwest corner of the domain 77

 10 Transmission loss (TL) calculation for a source in hilly terrain. The
frequency is 100 Hz. The source is positioned at an easting of 7 km and a
northing of 5 km. The DEM for the calculation is shown in Fig. 9 78

 11 Comparison of transmission loss (TL) calculations by several different
codes .. 82

 12 Transmission loss resulting from a wide-angle parabolic equation
calculation using the MATLAB interface .. 87

 13 Same as Fig. 12 but using atmospheric output from the WRF weather
model .. 92

 14 Difference in transmission loss (TL) between Fig. 13 and Fig. 12 92

ERDC TR-19-1 vi

Preface

This study was conducted for the Assistant Secretary of the Army for Ac-
quisition, Logistics, and Technology (ASA[ALT]) under the U.S. Army En-
gineer Research and Development Center (ERDC) 6.2/6.3 Military Engi-
neering (ME), Remote Assessment of Infrastructure for Ensured Maneu-
ver (RAFTER) program, funded by 62784/T40/46, under the “Propaga-
tion Effects” pillar. The technical monitor was Ms. Danielle Whitlow, Pro-
gram Manager for RAFTER.

The work was performed by the Signature Physics Branch (CEERD-RRD)
of the Research and Engineering Division (CEERD-RR), ERDC Cold Re-
gions Research and Engineering Laboratory (CRREL), and the Ecological
Processes Branch (CEERD-CNN) of the Installations Division (CEERD-
CN), ERDC Construction Engineering Research Laboratory (CERL). At the
time of publication, Dr. Andrew Niccolai was Chief, CEERD-RRD; Mr. J.
D. Horne was Chief, CEERD-RR; Dr. Chris Rewerts was Chief, CEERD-
CNN; and Ms. Michelle Hanson was Chief, CEERD-CN. The Deputy Direc-
tor of ERDC-CRREL was Mr. David B. Ringelberg, and the Director was
Dr. Joseph L. Corriveau. The Deputy Director of ERDC-CERL was Dr.
Kirankumar V. Topudurti, and the Director was Dr. Lance D. Hansen.

COL Ivan P. Beckman was Commander of ERDC, and Dr. David W.
Pittman was the Director.

ERDC TR-19-1 vii

Acronyms and Abbreviations

1-D One-Dimensional

2-D Two-Dimensional

3-D Three-Dimensional

API Application Programming Interface

ARW Advanced Research WRF

ASA(ALT) Assistant Secretary of the Army (Acquisition, Logistics, and
Technology)

ASL Atmospheric Surface Layer

BNOISE Blast Noise

CERL Construction Engineering Research Laboratory

CNPE Crank-Nicholson Parabolic Equation

CRREL U.S. Army Cold Regions Research and Engineering Laboratory

DEM Digital Elevation Model

DSM Digital Surface Model

EASEE Environmental Awareness for Sensor and Emitter Employment

ERDC U.S. Army Engineer Research and Development Center

FASST Fast All-Season Strength

FFP Fast-Field Program

GFPE Green’s Function Parabolic Equation

IR Infrared

.jar Java Archive file

JDK Java SE Development Kit

JRE Java SE Runtime Environment

ERDC TR-19-1 viii

JVM Java Virtual Machine

KNEE KNEE is Not EASEE in Its Entirety

ME Military Engineering

MGRS Military Grid Reference System

MOST Monin-Obukhov Similarity Theory

NASA National Aeronautics and Space Administration

NCAR National Center for Atmospheric Research

NetCDF Network Common Data Format

NLCD National Land Cover Dataset

P- Compressional

PE Parabolic Equation

RAFTER Remote Assessment of Infrastructure for Ensured Maneuver

RF Radio Frequency

S- Shear

SPEBE Sensor Performance Evaluator for Battlefield Environments

TL Transmission Loss

UTC Coordinated Universal Time

UTM Universal Transverse Mercator

WRF Weather Research and Forecasting model

ERDC TR-19-1 1

1 Introduction

1.1 Background

1.1.1 What is EASEE?

EASEE (Environmental Awareness for Sensor and Emitter Employment)
provides a versatile software framework for modeling terrain and weather
impacts on signal propagation and the performance of battlefield sensors.
Two previous reports (Wilson et al. 2009; Wilson and Yamamoto 2014)
describe the overall design and many technical aspects of EASEE. As Wil-
son and Yamamoto (2014) explain,

The performance and utility of battlefield and homeland security sensors

depends on many complex environmental and mission-related factors.

This is generally true whether the sensors are ground-based or airborne;

whether the sensors are acoustic, seismic, optical, infrared (IR), radio

frequency (RF), or magnetic; and whether the observable features of sig-

nal emitters originate from vehicles, humans, or electronic equipment.

Realistic modeling and simulation of environmental factors can improve

the effectiveness of mission planning and can further the development of

more effective sensor system designs and doctrine for their usage.

The same report also summarizes the motivation underlying EASEE’s soft-
ware design and the history of its development:

The primary design goal in developing EASEE was to create a highly re-

usable software framework, which would provide realistic, physics-based

simulations of terrain and weather impacts on all types of battlefield sig-

nals and sensors. EASEE is a successor to the SPEBE (Sensor Perfor-

mance Evaluator for Battlespace Environments) software (Wilson et al.

2002), which had become widely used but accommodated only acoustics

and seismics. SPEBE was also written in MATLAB, which limited options

for interfacing it with other simulations and mission planning tools. The

EASEE project began as an ERDC [U.S. Army Engineer Research and De-

velopment Center] applied research work package in 2006. It involved a

complete adaptation of the capabilities of SPEBE into the Java program-

ERDC TR-19-1 2

ming language, to make the code more reusable, and a new, object-ori-

ented modeling paradigm that could accommodate signal modalities in

addition to acoustic and seismic.

Thus EASEE, a Java-based code, was the successor to SPEBE, a MATLAB-
based code. The motivation for making this transition, as described above,
remains valid. Largely because EASEE is written in Java, it has been suc-
cessfully integrated into many different user interfaces and deployed as a
web service. However, there are situations, especially in research applica-
tions, where it is nonetheless desirable to access EASEE’s modeling capabili-
ties from MATLAB. This turns out to be very feasible, since Java can be di-
rectly called from MATLAB. From a programming perspective, EASEE ap-
pears to function in essentially the same manner as native MATLAB code.
This report will describe how to use EASEE from MATLAB. First, however,
it is useful to outline some aspects of EASEE’s design and capabilities.

1.1.2 EASEE software design and capabilities

EASEE consists of two main components—EASEELib, which is the mili-
tarily sensitive and limited distribution parts of EASEE, and KNEE, which
contains the nonsensitive parts. KNEE is short for “KNEE is Not EASEE in
its Entirety.”* EASEELib and KNEE are compiled as separate .jar (Java ar-
chive) files. KNEE can run by itself, but EASEELib requires KNEE to run.

Figure 1 shows the basic software design of EASEE. The design involves a
sequence of interlinked modeling stages, from generation of the signal to
propagation through the environment, sensing of the signal, and pro-
cessing. Each step in the sequence is called a framework element. An ad-
vanced Java technique called generics enforces compatibility between
framework elements and data passed between them. The different models
thus always fit together as designed.

* The KNEE acronym is an homage to the acronym for the well known GNU software project, which

means “GNU is Not Unix.”

ERDC TR-19-1 3

Figure 1. EASEE framework.

EASEE presently incorporates modeling capabilities related to many dif-
ferent signal modalities, including acoustic, seismic, RF, visible, IR, and
chemical/biological. Additionally, EASEE includes its own detailed repre-
sentations of the environment, by which we mean primarily the atmos-
phere, land cover, terrain elevation, and subsurface properties. Each
model implemented as a framework element has its own class for translat-
ing environmental representations to parameters needed by the model.
EASEE’s environmental representation is an example of a data abstrac-
tion layer. (For a description of data abstraction layers, see, for example,
Rouse 2014.) The purpose of this layer is to isolate the modeling capabili-
ties from the environmental representation. Suppose we wish to interface
a new environmental data resource to EASEE (e.g., a new atmospheric
forecast model or a new land cover scheme). We thus would need to write
new code that translates the data resource into EASEE’s native environ-
mental representation. But this only needs to happen once—then the new
data resource will become available to all models in EASEE without modi-
fying any code associated with the individual models or their parameter
translation classes.

1.2 Objective

The primary purpose of this report is to provide an easy-to-use, step-by-
step manual for those interested in using EASEE to model outdoor sound
propagation. Specifically, our report shows how to run EASEE within
MATLAB, a programming platform that is widely used among potential
users of EASEE.

ERDC TR-19-1 4

1.3 Approach

EASEE is too extensive to practically describe here all of its components
and how they can be called from MATLAB. Rather, this report focuses on
some particular aspects of setting up the environmental representations
and running acoustic propagation models. The report also focuses on dy-
namic methods (those involving object instantiation) in EASEE, as op-
posed to static methods. In general, much of the functionality described
here (such as humidity conversions, calculation of absorption coefficients,
and calculation of solid material properties) is supported by static meth-
ods also. We do not attempt here to describe all the methods (static or dy-
namic) that are available in EASEE. Programmers may find additional
useful information by examining the constructors and other methods in
the original Java code (which are generally well documented) or by read-
ing the EASEELib and KNEE Javadoc (computer-generated HTML docu-
mentation). The test packages in EASEELib and KNEE are also very help-
ful in providing examples of how to call the code.

This report is intended primarily for acousticians and software developers
who wish to use EASEE to model outdoor sound propagation. However, it
may also be of interest to developers desiring an introduction to the func-
tionality of EASEE, complete with useful examples and test cases.

In this report, we first discuss some preliminaries about setting up
MATLAB and installing EASEE. Next, we discuss the various classes in
EASEE for representing the environment, by which is meant the atmos-
phere, surface state, and subsurface (geology). Lastly, we discuss how to
run propagation calculations in EASEE.

ERDC TR-19-1 5

2 Preliminaries

In this section, we describe the preliminary steps that the user must per-
form to run EASEE from MATLAB, beginning with how to configure the
Java Virtual Machine (JVM) and install the EASEE .jar files.

2.1 Installing the EASEE files

The files needed to run EASEE from MATLAB are distributed in the file
easee-repo.zip, which is available from the authors of this report. Place this
file in a convenient location and then unzip the contents. You should see a
few files and several directories, including air, CNPE, and EASEEInterface. If
you navigate to the EASEEInterface directory, you will find a folder called
easee-repo, and a number of other files, the most essential being
StartEASEE.m, SetPaths.m, RunCalc.m, PlotCalc.m, createMATLABShortcut.m,
and Rainbow.mat. In particular, the file StartEASEE.m automatically performs
a number of functions related to configuring paths, thus simplifying the pro-
cess of running EASEE from MATLAB. Also, the file TestEASEE.m contains all
of the executable MATLAB code in this technical report (except for section 7,
which is included in CalcExampWithWRF.m) and can be run sequentially (sec-
tion by section) or all at once so users do not have to manually copy all of the
code into MATLAB for testing purposes.

The folder easee-repo contains a number of .jar and executable files.
These include the KNEE and EASEELib .jar files, as well as a number of
other .jar files that are needed by EASEE.

The next subsection describes the final prerequisite to launching EASEE.

2.2 Changing the MATLAB JVM to Java 8

EASEE is compiled using Java version 8. As such, running EASEE from
MATLAB requires configuring MATLAB to use a Java 8 JVM, rather than
Java 7, which is the default JVM distributed with MATLAB as of version
R2017a. When MATLAB is originally installed, its JVM is separate from
the one by the operating system (Windows, MacOS, or Unix). To deter-
mine which Java version is installed on your operating system, type the
following into a command prompt:

java -version

ERDC TR-19-1 6

The output should look like java version "1.8.0…" if Java 8 is installed.

Users who do not have Java 8 running on their operating system will need
to download and install either the Java SE Runtime Environment (JRE)
or, if they wish to develop EASEE, the Java SE Development Kit (JDK,
which contains the JRE) from http://www.oracle.com/technetwork/java/javase/downloads
(Oracle, n.d.).

Once a Java 8 JVM has been installed on the target computer, it is still
necessary to point MATLAB to this JVM. The procedure depends on which
operating system you are using.

Instructions for Windows users: Create a MATLAB_JAVA environmental var-
iable and set it to the JRE folder, as described at MathWorks (2018a). You
will need to restart MATLAB.

Instructions for MacOS users: Several options are provided at MathWorks
(2018b). The one we found to be most satisfactory is running the script
createMATLABShortcut. For convenience, this script is included in the in-
stallation distribution. To use it, navigate to the EASEEInterface folder,
and then type

createMATLABShortcut('/Library/Java/JavaVirtualMachines/

jdk1.8.0_111.jdk/Contents/Home/jre')

(Substitute the location for the desired JRE in the quotes.) This will create
a new desktop shortcut that will start MATLAB but with the specified JRE.
We recommend that you retain this shortcut as well as the MATLAB icon
on the Dock, which will start with the MATLAB default JVM as before.

All users: Now, if you restart MATLAB and type ver at the MATLAB
prompt, you should see the desired version of the JVM listed. Note that
you will need to repeat the preceding instructions (Windows or MacOS) if
you install a new JVM.

Having installed EASEE, you are now ready to run it, as described in the
next section.

http://www.oracle.com/technetwork/java/javase/downloads

ERDC TR-19-1 7

3 Running EASEE

3.1 Getting started

The following three simple steps set the stage for running EASEE from
MATLAB:

1. Launch MATLAB (e.g., by double-clicking on the desktop icon).

2. Navigate to the EASEEInterface folder (where StartEASEE.m resides), us-
ing either the cd command at the MATLAB prompt or the “Browse for
Folder” button at the top of the command window.

3. At the MATLAB prompt, type

StartEASEE('easee-repo')

where easee-repo is the folder containing the EASEE/KNEE jar files.
Or, if the easee-repo folder is a subfolder within the current one (as is
the case with the normal file distribution), just type the following:

StartEASEE

The StartEASEE function will add these files to MATLAB’s Java class
path (which you can verify by typing javaclasspath at the MATLAB
prompt) and will attempt to call EASEE for the first time. If you see the
following error,

Undefined variable "DirectoryUtils" or class

"DirectoryUtils.setRootDirectory".

Error in StartEASEE (line 16)

DirectoryUtils.setRootDirectory(repoPath);

then MATLAB could not find the .jar files. The likely cause is that the
name of the folder was incorrectly specified to StartEASEE. The same er-
ror will be issued when a version of Java other than Java 8 is running.

ERDC TR-19-1 8

3.2 Verifying the installation

Next, type the following six lines at the MATLAB prompt. If they execute
without error, then the EASEE and KNEE files have been properly installed:

import mil.army.usace.knee.acoustic.*;

test1=ImpedancePlaneParamsHomo;

disp(test1)

import mil.army.usace.easee.acoustic.*;

test2=ParabolicEqParamsHomo;

disp(test2)

As output, you should see

terrain diffraction included, por=0.38, tort=1.27, vort=1.758e-04,

...

terrain diffraction included, narrow angle, range res = 0.1,

height res = 0.1

You are now running EASEE!

3.3 Simple example

Let us consider a simple, but useful, example in which we calculate the
sound pressure above a rigid plane. When entering the following code, it is
important to remember that both MATLAB and Java are case sensitive.

First, we import the Java packages needed for the calculation by entering
the following at the MATLAB prompt:

import mil.army.usace.knee.acoustic.*;

import mil.army.usace.knee.environ.*;

import mil.army.usace.knee.grids.*;

Next, we will set the frequency, source height, receiver height, and range
(horizontal distance):

freq = 100.0; % frequency

srcHgt = 5.0; % source height

zmesh = 1.0; % receiver height

ERDC TR-19-1 9

rmesh = 0.0:100.0:1000.0; % horizontal ranges for output

The following sequence of commands sets up the parameters for the im-
pedance-plane model:

refAir = ImpedancePlaneModelTypes.RIGID.getRefAir();

ground = ImpedancePlaneModelTypes.RIGID.getGround();

paramsImp = ImpedancePlaneParamsHomo();

paramsImp.setMedia(refAir, ground);

Next, we create an impedance-plane calculation model with the parame-
ters specified above:

impp = ImpedancePlaneModel(paramsImp);

Lastly, we set up the grid for the calculation and run the model:

tgv = TransmitGridVert(srcHgt, zmesh, rmesh);

calcVals = impp.calcTransGridStruct(freq, tgv);

Now we can display the results of the calculation:

disp(10*log10(calcVals))

which yields transmission loss relative to the level that would be observed
at 1 m in free space. Note that EASEE calculates the mean-square sound
pressure; so in the preceding, we converted to decibels by multiplying by
10 rather than by 20. The following values will be displayed:

 -17.4677

 -34.1577

 -40.2729

 -43.9186

 -46.5455

 -48.6131

 -50.3266

 -51.7957

 -53.0857

 -54.2391

 -55.2846

ERDC TR-19-1 10

The complete code for this example can be found in the script CalcExam-
pImp.m, which is included in the installation distribution.

3.4 Some useful background

This section provides some background information on Java and MATLAB
that is useful for understanding how to employ EASEE.

3.4.1 A very brief introduction to Java

Here we provide a very brief introduction to Java for readers of this report
who might be familiar with MATLAB but not with Java. The main purpose
is to define Java terminology, such as objects, classes, methods, and con-
structors. For readers interested in a full tutorial on Java, we would rec-
ommend the book Head First Java (Sierra and Bates 2005) for those who
are learning Java as their first object-oriented language; Thinking in Java
(Eckel 2006) for those who have already learned an object-oriented lan-
guage; and Java All-in-One Desk Reference for Dummies (Lowe and Burd
2007) for a more complete reference. There are also many excellent, free,
online resources, such as the IBM Introduction to Java programming
course found at Perry (2010).

Java is a general-purpose, object-oriented programming language and was
designed to be simple and reusable on different computer architectures. As
the name would suggest, the focus of object-oriented programming is on
the concept of objects as opposed to procedures or functions, which was
the dominant programming paradigm in popular programming languages
such as BASIC and FORTRAN, which preceded Java.

Objects include attributes (data) and methods (procedures) that manipu-
late the attributes of the object. Objects are typically constructed (instanti-
ated) and then are dynamically modified during program execution. Meth-
ods that change the properties of an object are commonly called setter
methods; methods that retrieve existing properties are getter methods.

Java also supports the procedural or functional programming through
static, as opposed to instance, methods. The static methods do not require
construction of an object and can be thought of in the conventional sense
of receiving an output for a set of inputs. For some programming prob-
lems, static methods arguably provide a more natural solution than object-
oriented programming.

ERDC TR-19-1 11

Java objects are described by classes. The class defines fields, which repre-
sent the attributes of the object. The fields may be simple data types, such
as integers, floating point values, and Strings, or they may be other ob-
jects. The class also defines the instance methods for the object. Static
methods may also be defined, but these exist independently of the con-
struction of objects of the class.

Typically, classes are defined in a hierarchy, with parent classes and sub-
classes, or extensions. For example, a class for animals might be defined, a
subclass of which could be cats, which might have subclasses for lions, ti-
gers, and housecats.

3.4.2 Running Java from MATLAB

Since Java can be directly called from MATLAB, the EASEE Java code is
called very similarly to native MATLAB functions. The main differences
are that the desired Java packages must be imported and that many of the
operations produce or operate on Java objects, rather than on MATLAB
native data types. The Java objects generally cannot be directly manipu-
lated (e.g., retrieving, setting, and performing operations on their proper-
ties) within MATLAB; the objects must be manipulated by calling the
EASEE Java methods from MATLAB.

Java code, when called from within MATLAB (as opposed to when it is
called directly from Java), appears essentially the same as the original
Java, with a few notable differences:

1. Data types: The data types are not explicitly declared (since MATLAB, un-
like Java, is not a type-controlled language). Hence many data conversions
are performed automatically according to the MATLAB application pro-
gramming interface (API). This topic will be discussed later in its own sub-
section.

2. Object construction: The new keyword in Java is omitted in MATLAB
when calling a constructor method. Alternatively, one can construct a Java
object with MATLAB’s javaMethod function, but this is only necessary in
some special cases as described in the MATLAB documentation.

3. Invoking Java methods: Just as in Java, static methods are called by spec-
ifying the name of the class, followed by a period and then the name of the
method. Instance methods are called the same way, with the name of a

ERDC TR-19-1 12

valid object replacing the class name. Alternatively, the javaMethod func-
tion can be used, but this is usually unnecessary. If there are no arguments
to a method, MATLAB allows the empty parentheses to be omitted.

3.4.3 Importing packages and classes

The MATLAB import command, like the Java import statement, provides
a way to abbreviate the names of packages and classes. For example,
KNEE’s geo package has a class called GeoCoord, which represents geo-
graphic coordinates. To construct a geographic coordinate and assign the
result to the variable gc, one could either type

gc = mil.army.usace.knee.geo.GeoCoord(33.0, -62.2);

where the two numbers represent the latitude and longitude in degrees,
respectively, or

import mil.army.usace.knee.geo.GeoCoord;

gc = GeoCoord(33.0, -62.2);

A wild card (asterisk) can also be used to import all classes in a Java pack-
age. Thus the following will also work:

import mil.army.usace.knee.geo.*;

gc = GeoCoord(33.0, -62.2);

MATLAB does not recommend this last version of the import command
due to the potential for creating conflicts in the name space. For example,
if one of the imported Java classes implied by the wildcard is named
“close”, it could conflict with the MATLAB close function.

However, it is important to note that StartEASEE must be executed at the
MATLAB command prompt before MATLAB is able to import individual
classes in EASEE. Otherwise, if StartEASEE is included in a script that also
contains an import command for an individual class (e.g., import
mil.army.usace.knee.geo.GeoCoord), then MATLAB will produce an er-
ror. Therefore, to avoid confusion (and for convenience), we will use the
wildcard version of the import command in the following examples.

ERDC TR-19-1 13

After a package has been imported, one can list the methods within a Java
class that is located within that package (such as HumidAir within
mil.army.usace.knee.environ) by using methods('class'), for example

methods('HumidAir')

which displays

Methods for class HumidAir:

HumidAir getDewPoint getSpecHumDef notify

thermCond convHum getMixRat getTemp

notifyAll toString convRelHumToSpecHum getMolHum

getTempCelsius prandtl viscosity convSpecHumToRelHum

getPress getTempDef pressSat wait

density getPressAtm getTempFahr setPress

waterVaporPressure equals getPressDef getTempKelvin

setPressAtm getCaveats getPressMbar getThermCond

setPressMbar getClass getRelHum getViscosity

setSpecHum getDensity getSpecHum hashCode

setTemp

To find out more information about these methods, one can use
methodsview('class'). For example, typing

methodsview('HumidAir')

results in the following popup window (Figure 2), which shows the name,
return type, qualifier (e.g., static), and arguments for each method in the
HumidAir class.

The package containing the desired class should be imported before typing
methods or methodsview in the MATLAB command prompt. If not, then the
entire package name needs to be specified in the MATLAB command
prompt, for example:

methodsview('mil.army.usace.knee.environ.HumidAir')

ERDC TR-19-1 14

Figure 2. Output from the methodsview('HumidAir') command in MATLAB.

3.4.4 Conversion of data types

The MATLAB interface to Java performs a number of automatic conver-
sions between MATLAB and Java data types. These are fully described in
the MATLAB help page for “Pass Data to Java Methods.” The main thing
to keep in mind is that MATLAB’s basic data type for variables is a two-di-
mensional (2-D) array of complex numbers that may, in practice, hold sca-
lar data, a one-dimensional (1-D) array, or a 2-D array. The values may be
integer, real, or complex. Hence, when there are overloaded Java methods
(methods with the same name) having the same number of arguments but
with different types, MATLAB must choose which method is the closest
match to a specified argument list. The process involves internal rules for
selecting the most appropriate Java method at runtime.

In practice, the rules used by MATLAB usually lead to intuitive results. In
particular, if a MATLAB variable holds a real-valued scalar, MATLAB will
first search for a Java method with an argument of the Java type double. If
such a method does not exist, it will search for a method with type float,
then type long, then type int, and so forth. Analogously, the Java float
type corresponds to MATLAB single; thus MATLAB will attempt to find a
method with Java type float given a variable of type single.

The Java int type corresponds to the MATLAB int32 type, whereas long
corresponds to int64. Thus, if the programmer’s intent is to call a Java
method with argument of type int and there are overriding methods that

ERDC TR-19-1 15

take precedence, the variable must be first converted to the MATLAB type
int32.

A MATLAB variable of type logical will be mapped to a Java boolean if
possible. MATLAB char maps to a Java String.

Other nonsimple Java data types (i.e., Java objects) are not converted by
MATLAB. Rather, MATLAB retains a reference to the Java object, just as
Java would.

As a rather contrived example, suppose we have a Java class that defines
two methods called add, as follows:

public double add (double x, double y)

public int add(int x, int y)

Suppose we then set

val1 = 3.69;

val2 = 4.2;

If we then enter

disp(add(val1, val2))

MATLAB will call the add method for double arguments, as expected. But,
what happens if we instead set

val1 = 3;

val2 = 4;

Since MATLAB automatically stores these values in its native double-pre-
cision floating-point format, the preceding disp command will automati-
cally call the Java add method for double arguments. To call the int
method, we must explicitly enter

disp(add(int32(val1), int32(val2)))

MATLAB also performs automatic conversions based on array dimensions.
If the MATLAB variable is a scalar (dimensions 1 by 1), it will be converted

ERDC TR-19-1 16

to a scalar value in Java. If the MATLAB variable has a one nonsingleton
dimension (e.g., it is N × 1 or 1 × N), it will be mapped to a 1-D Java array.
If it has two nonsingleton dimensions, it will be mapped to a 2-D Java ar-
ray. For example,

z = [1.1 1.3; 2.4 3.5];

will map to a Java double[][] array.

Arrays of nonsimple data types are handled using MATLAB’s javaArray
function.

3.4.5 The MATLAB disp command

When a Java object is called by the MATLAB disp command, MATLAB
will call the Java class’s toString method, which provides customized out-
put depending on the definition within each Java class. Throughout the
EASEE environ and geo packages (and most others packages in EASEE),
an effort has been made to provide toString methods that usefully sum-
marize the properties of the object. What this means, in practice, is that
disp can be used to display helpful information about the object. For ex-
ample, typing

atm = HumidAir(18.1, 0.012);

creates an instance of the HumidAir class (which will be discussed layer).
When this object is displayed by typing

disp(atm)

we see the following information:

Humid air: temperature 18.1 (C), specific humidity 0.012,

pressure 101.33 (kPa)

3.4.6 Java enumerations and inner classes

Many classes in EASEE involve a programming pattern in which a Java
enumeration class is used to define a number of types of an object. For ex-
ample, the Helicopter class defines types for Apache, Blackhawk, and
other helicopters. The soil class defines types for sandy soil, clayey soil,

ERDC TR-19-1 17

etc. While these enumerations are very useful and convenient when pro-
gramming in Java, unfortunately they can be a bit awkward to use from
MATLAB, particularly when they are defined inside another class. Thus,
we describe here how to handle the Java enumerations from MATLAB.

As an example of an enumeration that is implemented in its own separate
class (as opposed to an inner class), let us first consider land cover defini-
tions in EASEE. (The land cover definitions will be discussed more fully
later in this report; here our focus is on describing the programming pat-
tern.) One of the land cover systems implemented in EASEE is the National
Land Cover Dataset (NLCD) 2001. This system consists of 20 different land
cover types. The class in EASEE that implements these types is called
NationalLandcoverDataset2001Types, where “Types” is generally added to
the end of an enumeration name. NationalLandcoverDataset2001Types, in
this case, is itself an enumeration; that is, we do not have to deal with the
complication of an inner class.

To import NationalLandcoverDataset2001Types, we type

import mil.army.usace.knee.environ.NationalLandcoverDataset2001Types;

The values method is used to create an array holding all of the available
enumerations in the order they are defined:

NLCDTypes = NationalLandcoverDataset2001Types.values();

If one were to simply type disp(NLCDTypes), MATLAB would provide a ra-
ther uninformative listing of references to Java objects. To actually list the
land cover enumerations, one can loop through the array while calling the
name method, as follows:

for m=1:length(NLCDTypes), disp(NLCDTypes(m).name); end

This command will yield the following output:

OPEN_WATER

ICE_SNOW

DEVELOPED_OPEN

DEVELOPED_LOW

DEVELOPED_MEDIUM

ERDC TR-19-1 18

DEVELOPED_HIGH

BARREN_LAND

FOREST_DECIDUOUS

FOREST_EVERGREEN

FOREST_MIXED

SHRUB_DWARF

SHRUB_SCRUB

GRASSLAND

SEDGE

LICHENS

MOSS

PASTURE

CULTIVATED_CROPS

WETLANDS_WOODY

WETLANDS_HERBACEOUS

The previous listing shows the actual names of the enumerations as they
would appear in the Java code. More useful, descriptive names can be
listed using the toString method in place of the name method. For exam-
ple,

for m=1:length(NLCDTypes), disp(NLCDTypes(m).toString); end

yields

Open Water (11)

Perennial Ice/Snow (12)

Developed, Open Space (21)

Developed, Low Intensity (22)

Developed, Medium Intensity (23)

Developed, High Intensity (24)

Barren Land (31)

Deciduous Forest (41)

Evergreen Forest (42)

Mixed Forest (43)

Dwarf Scrub (51)

Shrub/Scrub (52)

Grassland/Herbaceous (71)

Sedge/Herbaceous (72)

Lichens (73)

ERDC TR-19-1 19

Moss (74)

Pasture/Hay (81)

Cultivated Crops (82)

Woody Wetlands (90)

Emergent Herbaceous Wetlands (95)

The one-to-one correspondence of these descriptive names to the original
enumerations should be clear. The values in parentheses correspond to an
integer coding system for the land cover, which will be discussed later.
Since the MATLAB disp command automatically invokes the toString
method, the following code would produce the same descriptive listing:

for m=1:length(NLCDTypes), disp(NLCDTypes(m)); end

If we wish to create a new variable in MATLAB corresponding to one of
these enumerations, for example, FOREST_DECIDUOUS, we can enter

lcCode = NationalLandcoverDataset2001Types.FOREST_DECIDUOUS;

Alternatively, we could count down the listing and note that FOREST_
DECIDUOUS is the eighth element of the array. Thus, equivalent to the pre-
ceding, we could use

lcCode = NLCDTypes(8);

Programming with the Java enumerations becomes a bit more cumber-
some when the enumeration is implemented as a Java nested class. An
example is accessing the predefined types in the HumidAir class, which
represent the properties of humid air (a mixture of dry air and water va-
por). A number of predefined characteristic air masses are defined within
HumidAir by an inner class called Types. They can be listed by entering

HumidAirTypes = javaMethod('values',

'mil.army.usace.knee.environ.HumidAir$Types');

for m=1:length(HumidAirTypes), disp(HumidAirTypes(m)); end

This will result in

Polar, winter

Polar, summer

ERDC TR-19-1 20

Cold continental, winter

Cold continental, summer

Temperate, winter

Temperate, summer

Arid, winter

Arid, summer

Tropical, winter

Tropical, summer

ISA mean sea level

ISA tropopause

ISA stratosphere (20 km)

ISA stratosphere (32 km)

ISA stratopause

ISA mesosphere (51 km)

ISA mesosphere (71 km)

ISA mesopause

Note that the inner class is invoked from MATLAB using the $ operator,
which must be passed via the javaMethod function. Therefore the Types in
the HumidAir class cannot be accessed directly; the approach of creating an
array to access the enumerations, as described above with respect to the
land cover, must be used. Thus to create a HumidAir object with properties
characteristic of temperate summer air, we would thus enter

airCode = HumidAirTypes(6);

atm = HumidAir(airCode);

or, more simply,

atm = HumidAir(HumidAirTypes(6));

ERDC TR-19-1 21

4 Geographic Coordinates, Grids, and
Elevation Maps

In this section, we consider some features of EASEE that, while they do
not pertain directly to acoustical calculations, do support those calcula-
tions in important ways. Specifically, we describe KNEE’s geo package,
which provides capabilities for setting and manipulating Earth coordinates
and for representing data on geographic grids. To use the geo package,
first import it by entering

import mil.army.usace.knee.geo.*;

4.1 Geographic coordinates

The geo package supports Earth coordinate specifications in latitude/lon-
gitude, Universal Transverse Mercator (UTM), and Military Grid Refer-
ence System (MGRS). The latitude/longitude coordinates are generally
specified in decimal degrees, whereas UTM and MGRS are specified in
meters. The WGS84 Earth ellipsoid (datum) is used by default for all coor-
dinate systems.

The GeoCoord class in geo is used to create a geographic coordinate. Here
are the primary four constructors for this purpose:

public GeoCoord(double lat, double lng)

public GeoCoord(double easting, double northing, char latZone,

int lngZone)

public GeoCoord(double easting, double northing, String mgrsZone)

public GeoCoord(GeoCoord origin, double relEasting, double

relNorthing)

The first three of these correspond to the three coordinate systems men-
tioned above. The fourth specifies a coordinate relative to an origin coordi-
nate but offset by indicated distances to the east and north of the origin co-
ordinate. The offsets are interpreted based on the UTM projection in the
grid zone of the origin.

For example, to create a coordinate at a latitude of 43.5° and a longitude of
−72.4° (i.e., 72.4°W), we would enter

ERDC TR-19-1 22

gc1 = GeoCoord(43.5, -72.4);

Once a coordinate has been constructed, we can use the following methods
to retrieve its properties:

• getLat for the latitude (decimal degrees)
• getLng for the longitude (decimal degrees)
• getUTMEasting for the UTM easting (m)
• getUTMNorthing for the UTM northing (m)
• getLatZone for the UTM latitude zone (a character)
• getLngZone for the longitude zone number (an integer)
• getMGRSEasting for the MGRS easting (m)
• getMGRSNorthing for the MGRS northing (m)
• getMGRSZone for the MGRS grid zone (a string)

Furthermore, the following methods convert values to different units:

• toString or toStringDecDeg (which are equivalent) displays the coordi-
nate in latitude/longitude in decimal degrees.

• toStringDMS displays the coordinate in degrees/minutes/seconds.
• toStringUTM displays the coordinate in the UTM system.
• toStringMGRS displays the coordinate in the MGRS system.

Some other useful methods in the GeoCoord class calculate quantities of
one geographic coordinate relative to another. For each of these methods,
the current instance of the geographic coordinate is the origin, whereas the
specified argument is the termination. For example,

gc1 = GeoCoord(43.5, -72.4);

gc2 = GeoCoord(43.3, -72.2);

disp(gc1.getDistance(gc2))

displays the distance between the geographic coordinates gc1 and gc2. The
calculation is based on the UTM projection in the grid zone of gc1. The
output in this case is 27.47 km. The method getRelBearing returns the rel-
ative bearing (azimuth) of the termination relative to the origin. Hence,

disp(gc1.getRelBearing(gc2))

ERDC TR-19-1 23

returns 142.04°, where the orientation is specified in the geographic con-
vention, namely where 0° is northward and the angle increases clock-
wise. Therefore, in this case, gc2 is to the southeast of gc1. Similarly,
getRelNorthing and getRelEasting return the relative distance to the
north and relative distance to the east (as based on the UTM projected
coordinates).

In addition to GeoCoord, there is a class called GeoCoord3D, which is very
similar to GeoCoord except that the constructors take an additional argu-
ment that indicates the height above ground level in meters.

4.2 Geographic grids

The geo package also enables the creation of geographic grids, by which is
meant a regular (Cartesian) grid of geographic coordinates. The coordi-
nates can be specified using latitude and longitude, UTM, or MGRS east-
ing and northing. Note that a regularly spaced grid in latitude and longi-
tude does not equate to a regularly spaced grid in distance. A 2-D grid can
be created by specifying the coordinates of the southwest and northeast
corners and the number of points in each direction:

SWcorner = GeoCoord(43.0, -72.0); % lat and lng of SW corner

NEcorner = GeoCoord(43.4, -71.7);

ptsLat = 50; % number of points in latitude direction

ptsLng = 40; % number of points in longitude direction

grid = GeoGridCart2D(SWcorner, NEcorner, ptsLat, ptsLng);

Note that the previous GeoGridCart2D constructor defaults to a lati-
tude/longitude grid. It is immaterial that the corner coordinates were
specified in latitude/longitude; they can be specified in any system. The
following constructor is equivalent to the previous although the grid sys-
tem and datum (Earth ellipsoid model) are specified explicitly:

grid = GeoGridCart2D(GeoGridTypes.LAT_LNG, DatumTypes.WGS84,

SWcorner, NEcorner, ptsLat, ptsLng);

Alternatively, if we desire a UTM grid, we may specify:

grid = GeoGridCart2D(GeoGridTypes.UTM, DatumTypes.WGS84,

SWcorner, NEcorner, ptsNorth, ptsEast);

ERDC TR-19-1 24

where ptsNorth and ptsEast are the number of points to the north and to
the east, respectively. The grid may also be specified by indicating the
spacing between grid points in each direction:

SWcorner = GeoCoord(43.0, -72.0); % lat and lng of SW corner

ptsLat = 50; % number of points in latitude direction

ptsLng = 40; % number of points in latitude direction

delLat = 0.01; % spacing in latitude direction

delLng = 0.01; % spacing in longitude direction

grid = GeoGridCart2D(GeoGridTypes.LAT_LNG, DatumTypes.WGS84,

SWcorner, delLat, delLng, ptsLat, ptsLng);

Within Java, the grid data are, by convention, stored such that latitude (or
northing) corresponds to the inner, or faster, varying array index, whereas
longitude (or easting) corresponds to the outer, or slower, varying grid in-
dex. That is, for a 2-D array f, use f[i][j] to retrieve a point at longitude
index i and latitude index j.

There are two extensions of GeoGridCart2D, namely GeoGridCart2DInt
and GeoGridCart2DDouble. These include grids to hold 2-D integer array data
(Java int[][]) and 2-D double array data (Java double[][]), respectively. For
example, one might store a digital elevation model as a GeoGridCart2DDouble
(as will be discussed momentarily). GeoGridCart2DInt includes methods
called setDataGrid and getDataGrid2DInt, which set and retrieve the integer
data array. Similarly, GeoGridCart2DDouble includes methods called
setDataGrid and getDataGrid2D, which set and retrieve the double data array.

The geo package also includes a class called GeoGridCart3D, which accom-
modates a three-dimensional (3-D) grid. The third coordinate is altitude.

4.3 Digital elevation, surface, land cover, and soil grids

A digital elevation model (DEM) represents the terrain elevation as a func-
tion of the geographic coordinates. Normally, the DEM is understood to
represent the “bare Earth” elevation (i.e., the elevation when all the objects
on the surface, such as vegetation and buildings, are removed). The digital
surface model (DSM) represents the elevation of the bare Earth plus the
surface elements. Currently, the acoustical calculations in EASEE use only
the DEM; the surface elements are ignored.

ERDC TR-19-1 25

Typically, the DEM and DSM would be read from a file, but to illustrate
the concept here for how a DEM is constructed and used in an EASEE cal-
culation, we contrive a DEM using the MATLAB peaks function for the ter-
rain elevations:

SWcorner = GeoCoord(43.0, -72.0); % lat and lng of SW corner

NEcorner = GeoCoord(SWcorner, 10000.0, 10000.0); %NE corner

10 km N, 10 km E

nPts = 50; % number of points in each direction of grid

dem = GeoGridCart2DDouble(SWcorner, NEcorner, nPts);

dem.setDataGrid(peaks(nPts));

This code snippet creates a domain with the southwest corner at the speci-
fied latitude and longitude and with the northeast corner 10 km to the
north and 10 km to the east of the southwest corner, as based on a UTM
coordinate projection. A geographic grid of size of 50 × 50 points is then
created, and the values of that grid are set using the peaks function.

Geographic grids are also used to represent land cover and soil properties,
which vary along the Earth-air interface. Although we have not yet dis-
cussed in detail how land cover and soil types are represented (that will be
the topic of sections 5.2.3 and 5.2.4, respectively), for present purposes it
is sufficient to understand that these properties are represented by inte-
gers, which encode the type of land cover or soil according to standardized
systems. The standardized system is described by a “decoder” class in
EASEE. Specifically, suppose lcDecoder and soilDecoder are objects spec-
ifying the mapping of integer data to land cover and soil types, respec-
tively, and that lcGrid and soilGrid contain the actual integer data grids
for the land cover and soil. Normally, these land cover or soil grids would
be read from a file, such as a GeoTiff format file. However, for illustrative
purposes, it is also worthwhile to consider how such data could be speci-
fied manually, as we did with the DEM. Building on the previous example
where we used the MATLAB peaks function to construct a DEM, let us
suppose that the land cover type consists of woody wetlands at negative el-
evations and mixed forest at positive elevations. Referring to the list of
NLCD 2001 land cover types in section 3.4.6, we see that the codes for
these land cover types (shown in the parentheses) are 90 and 43, respec-
tively. Hence, we set

ERDC TR-19-1 26

lcData = 90*ones(nPts);

lcData(peaks(nPts)>0) = 43;

lcGrid = GeoGridCart2DInt(SWcorner, NEcorner, nPts);

lcGrid.setDataGrid(int32(lcData));

Here, the MATLAB int32 function converts the double array to a 32-bit in-
teger array, which corresponds to the data type int[][] in Java. Similarly,
we can construct a soil grid consisting of organic silts (FASST [Fast All-
Season Strength] soil type number 11 [see section 5.2.4 for information
about FASST]) at negative altitudes and silty clayey sand (FASST soil type
number 16) at positive altitudes:

soilData = 11*ones(nPts);

soilData(peaks(nPts)>0) = 16;

soilGrid = GeoGridCart2DInt(SWcorner, NEcorner, nPts);

soilGrid.setDataGrid(int32(soilData));

ERDC TR-19-1 27

5 Environmental Representations

In this section, we discuss EASEE’s environ package, which represents en-
vironmental data. By environment, we mean the atmosphere, Earth sur-
face characteristics (terrain), and solid-earth (subsurface) properties. In
this section, we show how to create (instantiate, in Java terminology) ob-
jects representing the environment, for the eventual purpose of using them
in acoustical calculations. EASEE supports a great variety of approaches to
creating the environmental objects. Information on approaches not explic-
itly described here can be obtained by examining the original Java code or
Javadoc.

From a software-design perspective, EASEE has its own, complete internal
representation of the atmosphere, surface, and subsurface, which serves as
a data abstraction layer between the various types of external environ-
mental models and data and the signal and sensor models found in
EASEE. The main components of this representation are the atmospheric
profiles, atmospheric surface layer (part of the atmosphere adjacent to the
ground), subsurface profiles (primarily intended for seismic calculations),
terrain elevations, land cover properties, soil type, soil moisture, snow
type, and snow depth. The value of such an abstraction layer is that it iso-
lates the signal and sensor models from the external environmental mod-
els and data; when a new environmental model or data source is interfaced
with EASEE, all of the signal and sensor models will continue to function
without modification.

EASEE currently has three basic environmental representations. All
three are subclasses of the abstract class EnvironScenario. Figure 3
shows the hierarchy of environmental representations and the data ele-
ments at each stage in the hierarchy. In order of increasing complexity,
the three subclasses are homogeneous (the EnvironHomo class), 1-D (the
EnvironVertProf class), and 3-D (the EnvironThreeDim class). Here, “ho-
mogenous” means that the atmosphere and subsurface have constant
properties. Terrain properties, such as elevation and land cover, may
nonetheless vary along the Earth surface. The 1-D representation in-
cludes atmospheric and subsurface profiles that vary vertically. The 3-D
representation includes both vertical and horizontal variability. At the
time of the writing of this report, the 3-D representation was nearly com-

ERDC TR-19-1 28

plete although modeling capabilities using the 3-D atmospheric and sub-
surface fields had yet to be implemented. Thus, we do not describe the
EnvironThreeDim class here.

Figure 3. Hierarchy of EASEE's environmental classes. Phrases in bold are the main
environmental classes within EASEE, and italicized phrases are subclasses of the foremost
environmental class—EnvironScenario. All other listings are fields (e.g., friction velocity is a

field within AtmosSfcLayer, which is a field within AtmosOneDim, which is a field within
EnvironVertProf). All phrases with only capitalized terms (e.g., EnvironVertProf) are instances

of classes. Blue font color indicates recent additions.

EnvironScenario (common to all representations)
Digital elevation map
Digital surface map
Land cover type grid
Soil type grid
Snow type grid
Snow depth grid
Soil moisture grid
 EnvironHomo (homogeneous atmosphere/ground)

Homogeneous air layer
Homogeneous solid layer

 EnvironVertProf (horizontally stratified environment)
AtmosOneDim (1-D atmosphere)

AtmosSurfLayer
Friction velocity, sensible/latent heat fluxes, surface temperature, etc.

AtmosVertProf
Profiles of wind, temperature, humidity, and pressure

Clouds
Low-, mid-, and high-cloud layers, each with height and cover fraction

SubSurfOneDim (1-D subsurface)
SeismicVertProf

Profiles for density, compressional and shear wave speed, attenuation
 EnvironThreeDim (3-D environment)

AtmosThreeDim (3-D atmosphere)
2-D grid of atmospheric profile locations
AtmosSurfLayer[][] (2-D array of AtmosSurfLayer)
AtmosVertProf[][] (2-D array of AtmosVertProf)
Clouds[][] (2-D array of Clouds)

SubSurfThreeDim (3-D subsurface)
2-D grid of subsurface profile locations
SeismicVertProf[][] (2-D array of SeismicVertProf)

In this section, we describe construction of the EnvironHomo and
EnvironVertProf objects. Before actually getting to that point, we discuss
construction of a number of objects of many types that are components of
the environmental classes (e.g., air and solid representations).

ERDC TR-19-1 29

For the examples in this section, KNEE’s environ and geo packages must
both be imported using the commands (typed at the MATLAB prompt):

import mil.army.usace.knee.environ.*;

import mil.army.usace.knee.geo.*;

5.1 Atmospheric constants and conversions

As a preliminary, we describe in this subsection a simple, but useful, capa-
bility in EASEE, namely the availability of a number of constants related to
significant physical properties, particularly the thermodynamic properties
of air and water. These are found in the AtmosConstants class in KNEE’s
environ package. To display gravitational acceleration, for example, enter

disp(AtmosConstants.GRAV_ACC)

To display standard sea-level pressure, enter

disp(AtmosConstants.SEA_LEVEL_PRESS)

Or, to display the freezing point in Kelvin, enter

disp(AtmosConstants.FREEZING_PT_KELVIN)

Many other properties are available, which can be seen by examining the
Javadoc or the Java code for the AtmosConstants class. Alternatively, one
may list the names of each physical property within AtmosConstants by
typing the following:

fieldnames(AtmosConstants)

This produces

 ‘GRAV_ACC’
 ‘SEA_LEVEL_PRESS’
 ‘STAND_PRESS_MBAR’
 ‘FREEZING_PT_FAHR’
 ‘FREEZING_PT_KELVIN’
 ‘ROOM_TEMP_CELSIUS’
 ‘CELSIUS_TO_FAHR’
 ‘TRIPLE_PT_KELVIN’
 ‘GAS_CONST_DRY_AIR’
 ‘MOL_MASS_DRY_AIR’
 ‘MOL_MASS_WATER_VAPOR’

ERDC TR-19-1 30

 ‘MOL_MASS_RATIO’
 ‘SPEC_HEAT_RATIO_DRY_AIR’
 ‘SPEC_HEAT_DRY_AIR’
 ‘SPEC_HEAT_WATER_VAPOR’
 ‘LATENT_HEAT_WATER_VAPOR’
 'POISSON_CONST'
 'DRY_LAPSE_RATE'

The AtmosConstants class also provides static methods for converting tem-
perature and pressure between various units. Either scalar values or arrays
may be passed to these methods. The method degCToDegF, for example,
converts degrees Celsius to degrees Fahrenheit. Thus

disp(AtmosConstants.degCToDegF([0.0 100.0]))

displays an array with values of 32.0 and 212.0. Similarly,

• degCToDegK converts temperature from degrees Celsius to Kelvin,
• degFToDegC converts temperature from degrees Fahrenheit to degrees

Celsius, and
• degKToDegC converts temperature from Kelvin to degrees Celsius.
• paToMbar converts pressure from Pascals to millibars,
• mbarToPa converts pressure in the other direction,
• paToAtm converts pressure from Pascals to atmospheres, and
• atmToPa converts pressure in the other direction.

The AtmosConstants class also has static methods for converting between
ordinary temperature and potential temperature:

• tempKToPotTempK converts from ordinary to potential temperature.
• potTempKToTempK converts in the other direction.

These methods each take two arguments, the first being the temperature
in Kelvin, the second being the pressure in Pascal.

5.2 Environmental components

In this subsection, we describe the most important components of
the EASEE environmental representations: the EnvironHomo and
EnvironVertProf classes.

ERDC TR-19-1 31

5.2.1 Humid air representation

The HumidAir class represents a mixture of dry air and water vapor. Natu-
rally, it plays a particularly important role in modeling the atmosphere
and its impact on sound propagation. A HumidAir object is constructed by
specifying temperature, humidity, and pressure. The most basic construc-
tor is

HumidAir(double temp, double specHum, double press)

where temp is the temperature in degrees Celsius, specHum is the specific
humidity (ratio of the mass of water vapor [kg] to the total mass of the air
parcel [kg]), and press is the pressure in Pascals. For example, entering

atm = HumidAir(18.1, 0.012, 99000.0);

creates a MATLAB variable called atm, which holds a Java HumidAir object
representing air at a temperature of 18.1°C, specific humidity of 0.012, and
pressure of 99000.0 Pa.

The constructor may also be called with no arguments, a single argument
(temperature), or two arguments (temperature and specific humidity). In
these cases, default values are used for the unspecified variables. The de-
fault values are a temperature of 20°C, zero humidity, and standard sea-
level pressure (101325 Pa). For example,

atm = HumidAir(18.1, 0.012);

would assume standard sea-level pressure.

If we wish to specify the humidity in some way other than specific humid-
ity, we can use HumidAir’s conversion capabilities. Conversions are speci-
fied using the following integer codes: 1 = relative humidity (%), 2 = molar
concentration, 3 = specific humidity, 4 = mixing ratio, and 5 = dew-point
temperature (°C). The code precedes the humidity value. Thus, if the input
value is a relative humidity of 40%, the corresponding constructor (assum-
ing sea-level pressure) would be

atm = HumidAir(18.1, int32(1), 40.0);

ERDC TR-19-1 32

A number of predefined characteristic air masses are also available. These
are defined by a nested class in HumidAir called Types, which can be used
to construct a HumidAir object, as described in section 3.4.6.

The following are some useful getter methods for the HumidAir class:

• getTemp, which gets the temperature in degrees Celsius
• getTempKelvin, which gets the temperature in Kelvin
• getTempFahr, which gets the temperature in degrees Fahrenheit
• getPress, which gets the pressure in Pascals
• getPressMbar, which gets the pressure in millibars
• getPressAtm, which gets the pressure in atmospheres
• getDensity, which gets the density in kilograms per cubic meter
• getSpecHum, which gets the specific humidity
• getRelHum, which gets the relative humidity in percent (%)
• getDewPoint, which gets the dew-point temperature in degrees Celsius
• getMixRat, which gets the mixing ratio
• getMolHum, which gets the molar humidity

For example, the density can be displayed by entering

disp(atm.getDensity)

The HumidAir class also contains a static method called convHum, which
converts between different measures of humidity. The humidity measure
is specified using the previously described integer codes. Thus, to convert
from a relative humidity of 52% to mixing ratio, for example, we would en-
ter

disp(HumidAir.convHum(1, 4, 52.0))

The preceding assumes a temperature of 20.0°C at sea-level pressure. To
explicitly specify the temperature and pressure, add them as additional ar-
guments. For a temperature of 3.0°C and pressure of 105 Pa, enter

disp(HumidAir.convHum(1, 4, 52.0, 3.0, 10^5))

5.2.2 Solid-earth representation

The SolidIsoLinear class represents the properties of isotropic, linear
(primarily solid) materials. This SolidIsoLinear class has an associated

ERDC TR-19-1 33

class called SolidIsoLinearTypes, which defines several common solid
materials of interest. The types available can be listed by entering

solidTypes = SolidIsoLinearTypes.values;

for m=1:length(solidTypes), disp(solidTypes(m).name); end

which results in

AIR

WATER

ICE

SOIL

SAND_UNSAT

SAND_SAT

CONCRETE

SANDSTONE

SHALE

GRANITE

METAMORPHIC

BASALT

Omitting the name method above produces the following descriptive list:

air

water

ice

soil

unsaturated sand

saturated sand

concrete

sandstone

shale

granite

metamorphic rock

basalt

To construct a SolidIsoLinear object, we can simply pass the desired
SolidIsoLinearTypes enumeration (e.g., for unsaturated sand)

solid = SolidIsoLinear(solidTypes(5));

ERDC TR-19-1 34

or, more directly,

solid = SolidIsoLinear(SolidIsoLinearTypes.SAND_UNSAT);

Similarly, if we wish to construct a subsurface of granite (the tenth ele-
ment in the array), we would enter

subSurf = SolidIsoLinear(solidTypes(10));

or

solid = SolidIsoLinear(SolidIsoLinearTypes.GRANITE);

Alternatively, if we do not wish to use one of the predefined types, the solid
properties can be specified directly using one of the constructors

SolidIsoLinear(double rho, double K, double G)

or

SolidIsoLinear(double rho, double cp, double cs, double Qp,

double Qs)

The first constructor specifies the density, bulk modulus, and shear modu-
lus and assumes the medium is nonattenuative. The second constructor
specifies the density, compressional (P-) wave speed, shear (S-) wave
speed, quality factor for compressional waves, and quality factor for shear
waves. The quality factors characterize the wave attenuation and may be
set to 1000 for a nonattenuative medium.

5.2.3 Land cover representation

The land cover is normally set using one of the predefined types, which
are based on a number of standardized systems for enumerating land
cover. The systems currently supported by EASEE include NLCD 1992
and 2001 (Java classes NationalLandcoverDataset1992Types and
NationalLandcoverDataset2001Types, respectively), GeoCover
(GeoCoverLCTypes), WorldView (WorldView2LCTypes), and VisNav
(VisnavLCTypes). Earlier, we discussed how to list the land cover enumer-
ations associated with NationalLandcoverDataset2001Types. The same

ERDC TR-19-1 35

procedure applies to the other land cover classes. For example, to see the
GeoCoverLCTypes, enter

GCTypes = GeoCoverLCTypes.values();

for m=1:length(GCTypes), disp(GCTypes(m)); end

which yields

Forest, Deciduous (1)

Forest, Evergreen (2)

Shrub/Scrub (3)

Grassland (4)

Barren/Minimal Vegetation (5)

Urban/Built-Up (6)

Agriculture, General (7)

Agriculture, Rice/Paddy (8)

Wetland, Permanent/Herbaceous (9)

Wetland, Mangrove (10)

Water (11)

Permanent or Nearly Permanent Ice/Snow (12)

Cloud/Cloud Shadow/No Data (13)

Once we have decided on the land cover system and particular enumera-
tion of interest, it is straightforward to construct the actual land cover of
interest. Namely, we would set

landCov = Landcover(lcCode);

where lcCode is the enumeration and landCov is a new variable, specifi-
cally an instance of EASEE’s Landcover class. For example, to create a
landcover for the GeoCover evergreen forest type, we would enter

landCov = Landcover(GeoCoverLCTypes.FOREST_EVERGREEN);

If we now type disp(landCov), output similar to the following will be dis-
played:

Landcover: Forest, Evergreen (2)

 Ar/Br root distribution: 6.706/2.175

 Min/max coverage (%): 70.0/80.0

ERDC TR-19-1 36

 Min/max leaf area index: 5.0/6.0

 Min/max stomatal Resistance: 200.0/500.0

 Maximum dew depth: 0.25

 Roughness height: 1.0

 Displacement height: 6.0

 Default temperature: 20 (C)

 Default specific humidity: 0

In the listings of the land cover types, the values in parentheses corre-
spond to integer codes, which represent the land cover type in data files;
for example, a code of 2 in the GeoCover system is “Forest, Evergreen,”
whereas 6 would correspond to “Urban/Built-Up.” The integer code can be
displayed using the getLcCode method:

disp(lcCode.getLcCode)

5.2.4 Soil representation

The soil properties are set in much the same manner as the land cover. For
soil types, EASEE currently supports only one system, namely the Fast All-
Season Strength (FASST) soil types, which are an extension of the U.S. Ge-
ological Survey soil classes (Frankenstein and Koenig 2004). These are
enumerated in the class FASSTSoilTypes. We can list the predefined soil
types by entering

FASSTTypes = FASSTSoilTypes.values();

for m=1:length(FASSTTypes), disp(FASSTTypes(m)); end

This results in the following output:

Well graded gravel (GW) (1)

Poorly graded gravel (GP) (2)

Silty gravel (GM) (3)

Clayey gravel (GC) (4)

Well graded sand (SW) (5)

Poorly graded sand (SP) (6)

Silty sand (SM) (7)

Clayey sand (SC) (8)

Inorganic silts (ML) (9)

Low-plasticity inorganic clays (CL) (10)

Organic silts (OL) (11)

ERDC TR-19-1 37

Inorganic silts with fine sands (CH) (12)

High-plasticity inorganic clays (MH) (13)

High-plasticity organic clays (OH) (14)

Peat (PT) (15)

Silty clayey sand (MC) (16)

Inorganic silty clay (CM) (17)

Evaporites (EV) (18)

Concrete (CO) (20)

Asphalt (AS) (21)

Bedrock (RO) (25)

Air (AI) (27)

Water (US) (28)

Snow (SN) (30)

A Soil object is constructed by passing the desired enumeration. Thus, if
we wish to set the soil type to silty clayey sand, which is the sixteenth ele-
ment in the preceding array, we would enter

soil = Soil(FASSTTypes(16));

where soil (lowercase) is now an instance of EASEE’s Soil (initial cap)
Java class.

As with the land cover enumerations, the values in parentheses in the pre-
vious listing correspond to the integer codes, which represent the soil type.

5.2.5 Snow representation

The SnowTypes class represents five different characteristic types of snow,
based on data provided by Dr. Don Albert of the ERDC Cold Regions Re-
search and Engineering Laboratory (pers. comm.). To list these, enter

snowTypes = SnowTypes.values();

for m=1:length(snowTypes), disp(snowTypes(m)); end

The result is

Snow, fresh (1)

Snow, mature always cold (2)

Snow, mature near freezing (3)

Snow, melting (4)

Snow, patchy (5)

ERDC TR-19-1 38

Snow is actually regarded by EASEE as a class of soil types; that is, the
snow layer is, in effect, a type of soil on top of the normal soil layer. Thus,
to create a snow object, pass the desired enumeration to the Soil construc-
tor. For example, to designate melting snow,

snow = Soil(snowTypes(4));

5.2.6 Atmospheric surface layer

The atmospheric surface layer (ASL) is defined as the part of the atmos-
phere in which the fluxes (momentum, heat, and moisture) are nearly
equal to their values at the surface (Stull 1988). Typically, the ASL ex-
tends from the Earth’s surface to about 50–200 m above. The environ-
mental layer in EASEE includes a representation of the ASL, namely the
AtmosSurfLayer class.

The following AtmosSurfLayer constructor specifies the most important
surface-layer parameters directly:

AtmosSurfLayer(double frictionVel, double sensibleHeatFlux,

double latentHeatFlux, double windDir, double surfTemp,

double surfSpecHum, double roughHgt, double dispHgt)

Here,

• frictionVel is the friction velocity,
• sensibleHeatFlux is the sensible heat flux,
• latentHeatFlux is the latent heat flux,
• windDir is the wind direction in radians (in the Cartesian convention,

where 0 is to the east and π/2 is to the north),
• surfTemp is the “surface” temperature, and
• surfSpecHum is the “surface” specific humidity.

We included the quotes around “surface” because what is actually meant
here is the temperature and humidity at 2 m height, which is the standard
meteorological height for surface temperature and humidity observations.
Although the roughness and displacement heights (roughHgt and dispHgt)
are not part of the surface-layer representation per se, they are needed in-
ternally by the constructor to deduce the wind speed at the standard wind
observation height, 10 m. Finally, the AtmosSurfLayer class includes static

ERDC TR-19-1 39

methods that convert the above Cartesian wind direction to the more fa-
miliar meteorological convention (0° from the north, increasing clock-
wise—convToMetConv) and vice versa (convToCartConv).

An alternative approach to specifying the surface layer involves the con-
structor

AtmosSurfLayer(WindTypes windEnum, StabilityTypes stabEnum,

double bowen, double windDir, double surfTemp, double

surfSpecHum, double roughHgt, double dispHgt)

This constructor is similar to the previous, except that the first three ar-
guments have been replaced by an enumerator for the wind category
(windEnum), an enumerator for the stability category (stabEnum), and the
value of the Bowen ratio. The Bowen ratio is the ratio of the sensible to
the latent heat flux at the surface, which is often assumed to be a con-
stant for a particular land cover type. Alternatively, we could use the fol-
lowing constructor:

AtmosSurfLayer(WindTypes windEnum, StabilityTypes stabEnum,

Landcover landCov, double windDir,

double surfTemp, double surfSpecHum)

in which case the Bowen ratio, roughness height, and displacement height
are automatically set to default values based on the land cover type.

To set a value for windEnum, first list the various wind categories as follows:

windTypes = javaMethod('values',

'mil.army.usace.knee.environ.AtmosSurfLayer$WindTypes');

for m=1:length(windTypes), disp(windTypes(m)); end

This will display the available categories:

Very, very low wind

Very low wind

Low wind

Moderate wind

High wind

Very high wind

ERDC TR-19-1 40

Thus we see that windTypes(4) would correspond to the moderate wind
category, etc. For the stability categories,

stabTypes = javaMethod('values',
'mil.army.usace.knee.environ.AtmosSurfLayer$StabilityTypes');

for m=1:length(stabTypes), disp(stabTypes(m)); end

yields

Very stable (clear, night)

Stable (some clouds, night)

Neutral (cloudy)

Unstable (some clouds, day)

Very unstable (clear, day)

Highly unstable (clear, day)

Thus, to construct a surface layer with moderate wind and very unstable
stratification, with a grassy ground surface, wind blowing to the east, a
surface temperature of 20°C, and surface specific humidity of 0.009, we
would set

landCov = Landcover(NationalLandcoverDataset2001Types.GRASSLAND);

asl = AtmosSurfLayer(windTypes(4), stabTypes(5), landCov, 0.0,

20.0, 0.009);

The AtmosSurfLayer class has a rich set of getter methods:

• getFrictionVel and getUStar are equivalent and both return the fric-
tion velocity.

• getSensibleHeatFlux returns the sensible heat flux.
• getLatentHeatFlux returns the latent heat flux.
• getTStar returns the surface-layer temperature scale.
• getQStar returns the surface-layer humidity scale.
• getBowenRatio returns the Bowen ratio.
• getWindDirCart returns the wind direction in the Cartesian convention

(radians).
• getWindDirMet returns the wind direction in the meteorological con-

vention (degrees).
• getSurfWindSpeed returns the surface wind speed.
• getObsHgtWind returns the observation height for the surface wind.

ERDC TR-19-1 41

• getSurfTemp returns the surface temperature.
• getObsHgtTemp returns the observation height for the surface temperature.
• getSurfSpecHum returns the surface specific humidity.
• getSurfRelHum returns the surface relative humidity.
• getSurfDewpoint returns the surface dew-point temperature.
• getObsHgtHum returns the observation height for the surface humidity.
• getObukhovLength returns the Obukhov length.
• getCV2 returns the structure-function parameter for velocity.
• getCT2 returns the structure-function parameter for temperature.

Methods are also available to calculate statistics related to turbulence;
these can be found by typing methods('AtmosSurfLayer') or by examining
the Javadoc or the original code.

5.2.7 Atmospheric vertical profiles

Many constructors are available to specify the atmospheric profiles. The
following constructor, which assumes a homogeneous, motionless atmos-
phere, is the simplest:

AtmosVertProf(double[] profHgt, HumidAir air)

Here, profHgt contains the heights in meters above sea level at which the
profiles are to be specified, and air is a humid air object specifying the
properties of the homogeneous atmosphere.

The following constructor is used to specify the full atmospheric profiles
directly:

AtmosVertProf(double[] profHgt, double[] vx, double[] vy,

double[] T, double[] q, double[] P)

Here, vx is the eastward component of the wind (m/s), vy is the northward
component (m/s), T is the temperature (°C), q is the specific humidity, and
P is the ambient pressure (Pa). All of the arrays passed to this constructor
must be the same length as profHgt.

In many applications, it can be useful to model the profiles using the
Monin-Obukhov similarity theory (MOST). (See, for example, Stull 1988.)
The following two constructors are available for this purpose:

ERDC TR-19-1 42

AtmosVertProf(double[] profHgt, AtmosSurfLayer asl,

double roughHgt, double dispHgt)

and

AtmosVertProf(double[] profHgt, AtmosSurfLayer asl, Landcover

landCov)

Here, asl is an atmospheric surface layer object as described in section
5.2.5. The first of these constructors specifies the roughness and displace-
ment heights directly; the second infers them from a land cover specifica-
tion. The following code illustrates the usage of this constructor, including
the creation of a plot of the temperature, specific humidity, and wind
speed profiles, as shown in Figure 4:

surfTemp = 20.0; % in degrees Celsius

surfRelHum = 40.0;

surfSpecHum = HumidAir.convHum(1, 3, surfRelHum, surfTemp);

% 1 = relative humidity, 3 = specific humidity

windDir = 0.0; % blowing to the east

windTypes = javaMethod('values',

'mil.army.usace.knee.environ.AtmosSurfLayer$WindTypes');

windEnum = windTypes(4); % moderate wind

stabTypes = javaMethod('values',

'mil.army.usace.knee.environ.AtmosSurfLayer$StabilityTypes');

stabEnum = stabTypes(4); % unstable

landCov = Landcover(NationalLandcoverDataset2001Types.GRASSLAND);

asl = AtmosSurfLayer(windEnum, stabEnum, landCov, windDir,

surfTemp, surfSpecHum);

profHgt = logspace(-1, 2);

atmos = AtmosVertProf(profHgt, asl, landCov);

figure;

subplot(1,3,1)

plot(atmos.getTempProf, profHgt);

xlabel('Temp. (C)'); ylabel('Height (m)')

subplot(1,3,2)

plot(atmos1.getSpecHumProf*1000.0, profHgt);

xlabel('Spec. Hum. (g/kg)'); ylabel('Height (m)')

subplot(1,3,3)

plot(atmos.getWindSpeedProf, profHgt);

xlabel('Wind speed (m/s)'); ylabel('Height (m)')

ERDC TR-19-1 43

Figure 4. Vertical profiles of temperature, specific humidity, and wind
speed as created by specification of atmospheric surface layer

properties for a moderately windy, unstable case.

Profiles are also available for benchmark acoustical calculations. The con-
structor in this case is

AtmosVertProf(double[] profHgt, AtmosVertProf.

BenchmarkProfileTypes profType)

where profType specifies the particular benchmark case. To list the availa-
ble benchmark cases (which are a nested class of AtmosVertProf), enter

benchTypes = javaMethod('values', 'mil.army.usace.knee.environ.

AtmosVertProf$BenchmarkProfileTypes');

for m=1:length(benchTypes), disp(benchTypes (m)); end

The following benchmark cases are then displayed:

Adiabatic lapse rate (neutral)

Shallow temperature inversion

Deep temperature inversion

Homogeneous (no refraction)

Weak upward refraction

Strong upward refraction

ERDC TR-19-1 44

Downward refraction

Acoustic benchmark 1 (from Attenborough et al. 1995)

Acoustic benchmark 2 (from Attenborough et al. 1995)

Acoustic benchmark 3 (from Attenborough et al. 1995)

Acoustic benchmark 4 (from Attenborough et al. 1995)

If we want to construct the benchmark profiles for Case 2 from Attenbor-
ough et al. (1995) with the profile evaluated at 5 m increments up to an al-
titude of 100 m, we would enter the following:

profHgt = 0.0:5.0:100.0;

atmos = AtmosVertProf(profHgt, benchTypes(9));

Once the atmospheric profiles have been constructed, the AtmosVertProf
class offers many convenient getter methods to retrieve their properties.
Besides the profiles specified explicitly by the constructor, additional pro-
files can be determined based on the ideal gas law and other relationships:

• getProfHgt returns the heights at which the profiles are specified (in
meters, starting at the lowermost point and increasing upward).

• getPressProf returns the pressure profile in Pascals.
• getPressProfMbar returns the pressure profile in millibars.
• getDensity returns the air density profile.
• getTempProf returns the temperature profile in degrees Celsius.
• getTempProfFahr returns the temperature profile in degrees Fahrenheit.
• getInvHgt returns the height of the temperature inversion at the top of

the boundary layer in meters.
• getSpecHumProf returns the specific humidity profile.
• getMixRatProf returns the water-vapor mixing-ratio profile.
• getRelHumProf returns the relative humidity profile.
• getWindSpeedProf returns the wind profile.
• getWindDirCartProf returns the wind direction in the Cartesian con-

vention (radians).
• getWindDirMetProf returns the wind direction in the meteorological

convention (degrees).
• getWindProfE returns the component of the wind velocity directed to

the east.
• getWindProfN returns the component of the wind velocity directed to

the north.

ERDC TR-19-1 45

All the methods with Prof in their names return double[] arrays with one
element for each profile height.

5.2.8 Clouds

The Clouds class defines cloud layers in the atmosphere. The most basic
constructor has no arguments, namely

Clouds()

This constructor specifies clear skies (absence of cloud cover). The follow-
ing is the next simplest constructor:

Clouds(double cloudCoverTotal, double cloudBaseHeight, double

cloudTopHeight)

which specifies a single cloud layer with the indicated fractional coverage
(cloudCoverTotal, a value between 0 and 1), cloud base height, and cloud
top height. The constructor

Clouds(CloudLayer cloudsLow, CloudLayer cloudsMid, CloudLayer

cloudsHigh)

specifies three separate cloud layers at low, medium, and high altitudes.
Each of these cloud layers is constructed using

CloudLayer(double cloudCover, double cloudHeightBase,

double cloudHeightTop, Clouds.CLOUD_TYPE cloudType)

where the parameters are the fractional cloud coverage; the cloud base
height; the cloud top height; and the type of cloud, which is a nested class
within the Clouds class.

Some of the useful getter methods in the Clouds class include getCloudsLow,
getCloudsMid, and getCloudsHigh, which retrieve the lower, middle, and
upper cloud layers (CloudLayer objects), respectively. For the CloudLayer
objects, the method getCloudCoverTotal gets the total cloud cover frac-
tion, getCloudBaseHeight gets the cloud base height in meters, and
getCloudTopHeight gets the cloud top height in meters.

ERDC TR-19-1 46

5.2.9 Seismic vertical profiles

The seismic vertical profiles are defined by the SeismicVertProf class and
contain information needed to model seismic wave propagation in the sub-
surface. The following constructor for SeismicVertProf specifies the pro-
files directly:

SeismicVertProf(double[] profDepth, double[] cp, double[] cs,

double[] Qp, double[] Qs, double[] rho)

Here, profDepth is an array indicating the profile depths (meters below
ground level); and the remaining arguments are arrays of the same length,
which specify the material properties of the seismic layers. Specifically, cp
is the compressional wave phase speed (m/s), cs is the shear wave phase
speed (m/s), Qp is the quality factor for compressional waves, Qs is the
quality factor for shear waves, and rho is the density (kg/m3). From these
basic five profiles, other material profiles of interest in seismological calcu-
lations readily follow.

Alternatively, the profiles can be specified using layers of SolidIsoLinear
objects (e.g., SOIL or GRANITE). The available constructors include

SeismicVertProf(SolidIsoLinear layer)

SeismicVertProf(double[] profDepth, SolidIsoLinear layer)

and

SeismicVertProf(double[] profDepth, SolidIsoLinear[] layers,

double[] transDepth)

The first two of these constructors specify a single solid type, which is
used throughout the entire subsurface. In the first version, default profile
depths are used, whereas in the second, they are specified explicitly. Alt-
hough the seismic profiles will not vary as a function of the depth, the
evaluation points can impact numerical solvers used for seismic wave
propagation. In the third constructor above, an array with material layer
descriptions is passed along with an array giving the depths of the inter-
face layers between the materials. The latter array should have a length
one less than the number of layers. As an example, let us construct a sub-
surface with a 1 m thick layer of soil above granite. Referring to the listing

ERDC TR-19-1 47

of SolidIsoLinear from section 5.2.2, SOIL is type 4 and GRANITE is type
10. Hence

profDepth = 0.2:0.2:5.0;

SolidIsoLinearTypes = javaMethod(‘values’,

'mil.army.usace.knee.environ.SolidIsoLinearTypes');

layers = javaArray('mil.army.usace.knee.environ.SolidIsoLinear', 2);

layers(1) = SolidIsoLinear(SolidIsoLinearTypes(4));

layers(2) = SolidIsoLinear(SolidIsoLinearTypes(10));

transDepth = 1.0;

svp = SeismicVertProf(profDepth, layers, transDepth);

Once the seismic profiles have been constructed, a number of getter meth-
ods are available to retrieve their properties, including profiles that are
calculated from those specified. The following methods all return double[]
arrays:

• getProfDepth returns the depths at which the profiles are specified (in
meters, where the depth closest to the surface is first and then in-
creases downward).

• getDensityProf returns the density profile.
• getBulkModProf returns the bulk modulus profile.
• getShearModProf returns the shear modulus profile.
• getPWaveProf returns the compressional wave speed profile.
• getSWaveProf returns the shear wave speed profile.
• getPQProf returns the profile of quality factors for compressional waves.
• getSQProf returns the profile of quality factors for shear waves.

For all of the preceding methods with a name ending in Prof, there is also
a method where Prof is omitted, which will return the value near the sur-
face. For example, getDensity returns the density at the uppermost profile
point. The method getLayer takes an integer argument and returns a
SolidIsoLinear object corresponding to the profiles at the corresponding
profile depth. If the argument is omitted, getLayer returns the uppermost
profile point. This can be very useful for obtaining other quantities of in-
terest. For example, getSeismicProf.getLayer.getRayleighSpeed returns
the Rayleigh wave speed at the surface.

ERDC TR-19-1 48

5.3 Environmental representations

Having discussed the individual components of EASEE’s environmental
representations, we now put these pieces together into the full product.
As mentioned in the introduction to this section, EASEE has two main
environmental representations: homogeneous atmosphere and subsur-
face (EnvironHomo) and vertical profile atmosphere and subsurface
(EnvironVertProf). These will now be described.

5.3.1 Homogeneous environment

The EnvironHomo class has a great variety of constructor methods, which
enable the environmental properties to be specified by various approaches
and to varying levels of complexity. The following is one of the simplest
constructors, which is pertinent to a flat, homogeneous ground surface:

EnvironHomo(double groundHgt, HumidAir atmos, SolidIsoLinear

subsurf)

The arguments are (1) the height of the ground in meters (usually relative
to mean sea level); (2) an object representing a humid atmosphere (as dis-
cussed in section 5.2.1); and (3) a solid, isotropic, linear object represent-
ing the subsurface (as discussed in section 5.2.2). This constructor uses de-
faults for the land cover (FASSTVegetationTypes.GRASS_SHORT) and soil
(FASSTSoilTypes.SAND_CLAYEY), which are assumed to apply throughout
the domain.

The following constructor is similar but enables the land cover and soil to
be specified explicitly:

EnvironHomo(double groundHgt, Landcover landCov, Soil soil,

HumidAir atmos, SolidIsoLinear subsurf)

As described in sections 5.2.3 and 5.2.4, respectively, many options are
available for specifying particular properties of the soil and land cover.

Consider the following slightly more complicated constructor for EnvironHomo:

EnvironHomo(GeoGridCart2DDouble dem, Landcover landCov,

Soil soil, HumidAir atmos, SolidIsoLinear subsurf)

ERDC TR-19-1 49

Compared to the previously considered version of the constructor, the
initial argument is a digital elevation model (DEM), in the form of a
GeoGridCart2DDouble object, which stores data on a 2-D geographic grid.
The DEM is constructed as described in section 4.3.

Lastly, let us consider the following EnvironHomo constructor, which allows
specification of land cover and soil that vary across the interface between
the ground and air:

EnvironHomo(GeoGridCart2DDouble dem, LandcoverDecoder lcDecoder,

GeoGridCart2DInt lcGrid, SoilDecoder soilDecoder,

GeoGridCart2DInt soilGrid, HumidAir atmos,

SolidIsoLinear subsurf)

Here, lcDecoder and soilDecoder are objects specifying the mapping of in-
teger data to land cover and soil types, respectively, as described in section
4.3. After creating lcGrid and soilGrid, we would then construct the de-
sired environment using the command

env = EnvironHomo(dem, NationalLandcoverDataset2001Types.

OPEN_WATER, lcGrid, FASSTSoilTypes.GRAVEL_WELL_GRADED,

soilGrid, atm, subSurf);

It is important to keep in mind that the specified land cover and soil de-
coders indicate only which decoding algorithm to use, rather than the ac-
tual land cover or soil types (those are specified by lcGrid and soilGrid,
respectively). Though NationalLandcoverDataset2001Types.OPEN_WATER
and FASSTSoilTypes.GRAVEL_WELL_GRADED were specified above, the de-
coder can be any valid instance of the Java class for representing the
land cover or soil system. In this case, for the land cover, we could have
alternatively used NationalLandcoverDataset2001Types.OPEN_WATER,
NationalLandcoverDataset2001Types.WETLANDS_WOODY, or any other valid
instance of NationalLandcoverDataset2001Types, as opposed to, say, an
instance of GeoCoverLCTypes.

Once a homogeneous environment has been constructed, a snow layer and
soil moisture may be additionally specified. A single value for the soil
moisture fraction throughout the domain may be set using the
setSingleSoilMoisture method. The moisture is a value between 0 and 1,
although if a value is specified that exceeds the soil porosity (which can be

ERDC TR-19-1 50

retrieved using FASSTSoilTypes.getPorosity()), the value will be reduced
to the porosity (since the soil moisture fraction cannot exceed the poros-
ity). To set the soil moisture to 0.2, for example, we would enter

env.setSingleSoilMoisture(0.2);

The setMultiSoilMoisture method specifies soil moisture that varies
across the domain. Specifically, it takes as input a GeoGridCart2DDouble
object, which stores the soil moisture on a geographic grid.

The snow layer includes both the snow type and depth. The
setSingleSnowCover method specifies a snow cover that does not vary
over the domain. It takes two arguments, snow depth and snow type.
For example,

env.setSingleSnowCover(0.1, SnowTypes.SNOW_FRESH);

specifies 0.1 m of fresh snow throughout the domain. The setMultiSnowCover
method is used to specify a spatially varying snow cover. It has the form

setMultiSnowCover(GeoGridCart2DDouble snowDepth, SoilDecoder

snowDecoder, GeoGridCart2DInt snowGrid)

where snowDepth is a geographic grid specifying the snow depth, snowDecoder
is an instance of the decoder class for the snow (e.g., SnowTypes.SNOW_FRESH),
and snowGrid is a grid of integer codes indicating the snow types.

The EnvironHomo class provides many getter methods that can be used to
obtain and display the properties of an object. For example, the DEM is re-
trieved by entering

demOut = env.getDem();

The method getMeanElev returns the mean elevation for the DEM. The lo-
cal terrain height can be retrieved at a particular coordinate by specifying a
GeoCoord as the argument to the getDem method. That is,

disp(env.getDem(coord))

ERDC TR-19-1 51

displays the terrain elevation at coord,where coord is an instance of GeoCoord.
The following command displays the elevation at a distance 100 m north and
200 m east of the specified coordinate:

disp(env.getDem(GeoCoord(coord, 100.0, 200.0)))

The getDsm method functions similarly to getDem, except that it pertains
to the digital surface map (DSM) rather than the DEM. Here, DSM is
the elevation of the bare Earth plus the height of the objects (e.g., build-
ings and vegetation) on the surface (DEM generally is for the bare
Earth.) The getDsm method without argument returns the entire DSM
grid, getDsm with a coordinate returns the DSM at that coordinate, and
getMeanSurfElev returns the mean for the DSM.

Similar getters are provided for the land cover (getLandcover), soil
(getSoil), snow type (getSnow), snow depth (getSnowDepth), and soil
moisture (getSoilMoisture). All of these methods can accept a coordinate
as an argument, for which they return the value at that coordinate. How-
ever, the getLandcover, getSoil, and getSnow methods, when used without
an argument, return the most prevalent land cover, soil, and snow type,
respectively, since it would make no sense to return a mean value for these
quantities. The getLandcoverGrid, getSoilGrid, and getSnowGrid methods
return the entire grids. The getSnowDepth and getSoilMoisture methods,
without arguments, return the entire grids, whereas getMeanSnowDepth and
getMeanSoilMoisture return the means.

A variety of getters are also available to retrieve the atmospheric and sub-
surface properties. In this regard, it should be kept in mind that, for the
EnvironHomo class, the atmospheric and subsurface properties are constant
throughout the domain.

The atmospheric properties are retrieved with the getAtmos method, fol-
lowed by a getter for the desired quantity. To retrieve the temperature in
degrees Celsius and store the result in the variable temp, one would enter

temp = env.getAtmos().getTemp();

Similarly, instead of getTemp, one could use getTempKelvin to get the tem-
perature in Kelvin and getTempFahr to get the temperature in degrees
Fahrenheit. Setting

ERDC TR-19-1 52

hum = env.getAtmos().getSpecHum();

retrieves the specific humidity, whereas getRelHum, getMolHum, and
getMixRat return the relative humidity, molar humidity, and mixing ratio,
respectively. The getDensity method returns the air density, getPress re-
turns pressure in Pascals, and getPressMbar returns the pressure in milli-
bar.

The subsurface properties are retrieved with the getSubSurf method, fol-
lowed by the desired quantity. In particular,

• getDensity returns the density,
• getBulkMod returns the bulk modulus,
• getPWaveSpeed returns the compressional (P-) wave speed,
• getSWaveSpeed returns the shear (S-) wave speed,
• getRayleighSpeed returns the Rayleigh wave speed,
• getPQualFac returns the quality factor for P-waves, and
• getSQualFac returns the quality factor for S-waves.

5.3.2 Vertical profile environment

The EnvironVertProf class represents a horizontally stratified environment,
that is, an environment in which the atmospheric and subsurface profiles
depend on the vertical coordinate only. Internally, EnvironVertProf is
the same as EnvironHomo, except that the homogeneous atmosphere and
subsurface representations are replaced by representations of the classes
AtmosOneDim and SubSurfOneDim. So, most of the description in the previous
section regarding EnvironHomo still applies to EnvironVertProf, except re-
garding setting of the properties of the air and subsurface and retrieval of
data using the getAtmos and getSubSurf methods.

The AtmosOneDim class includes the vertical profiles in the atmosphere,
specifically, the temperature, specific humidity, pressure, wind speed, and
wind direction, which are encapsulated within an AtmosVertProf object
(section 5.2.7). AtmosOneDim also includes a representation of the atmos-
pheric surface layer (by an AtmosSurfLayer object, section 5.2.6) and cloud
layers (by a Clouds object, section 5.2.8). Internally, the SubSurfOneDim
contains the vertical density profile and the seismic vertical profiles of
compressional (P-) wave speed, shear (S-) wave speed, and quality factors
for P- and S-waves, as represented by a SeismicVertProf object (section
5.2.9).

ERDC TR-19-1 53

Here are three of the most basic and flexible constructor methods for the
vertical profile environment:

EnvironVertProf(double groundHgt, AtmosOneDim atmos,

Landcover landCov, Soil soil, SeismicVertProf seis)

EnvironVertProf(AtmosOneDim atmos, Landcover landCov, Soil soil,

GeoGridCart2DDouble dem, SeismicVertProf seis)

and

EnvironVertProf(AtmosOneDim atmos, GeoGridCart2DDouble dem,

LandcoverDecoder lcDecoder, GeoGridCart2DInt landcover,

SoilDecoder soilDecoder, GeoGridCart2DInt soil,

SeismicVertProf seis)

The first of these constructors assumes flat ground and no terrain. The
second and third allow the DEM to be explicitly specified. Furthermore,
the first and second constructors apply to an environmental model in
which the land cover and soil properties are the same throughout the do-
main; the third allows them to vary horizontally. Construction of the DEM,
land cover, and soil objects appearing in these constructors follows from
the discussion in the previous subsections. The new aspect of these con-
structors is the AtmosOneDim object. (Because the SubSurfOneDim is basi-
cally just a wrapper around the SeismicVertProf class, the constructors
take the SeismicVertProf object directly.)

AtmosOneDim has a rich variety of constructors, which enables the atmos-
pheric profiles to be specified directly by certain benchmark cases or by
MOST. These constructors are often quite similar to AtmosVertProf; how-
ever, using the AtmosOneDim constructor is preferable in such cases to en-
sure that the AtmosSurfLayer and Clouds objects are constructed in a man-
ner that is compatible with the vertical profiles.

The following two constructors specify the vertical profiles and clouds ex-
plicitly while inferring information about the surface layer:

AtmosOneDim(AtmosVertProf atmos, double frictionVel, double

sensibleHeatFlux, double latentHeatFlux, double roughHgt,

double dispHgt, Clouds clouds)

ERDC TR-19-1 54

or

AtmosOneDim(AtmosVertProf atmos, double roughHgt, double dispHgt,

Clouds clouds)

For both forms, one would ordinarily construct the profiles using one of
the methods in section 5.2.7 and the clouds using one of the methods in
section 5.2.8. The first form specifies the vertical profiles directly as an
AtmosVertProf object and builds the surface layer from the specified fric-
tion velocity (m/s), sensible heat flux (W/m2), latent heat flux (W/m2),
roughness height (m), and displacement height (m). The lowermost
height in the profiles is used to determine the surface temperature and
humidity. The second form is similar but infers the friction velocity and
heat fluxes by applying MOST to the two lowermost heights of the pro-
files.

The following constructor yields an atmosphere based solely on profiles
constructed from MOST:

AtmosOneDim(double[] profHgt, AtmosSurfLayer asl,

double roughHgt, double dispHgt, Clouds clouds)

Here, AtmosSurfLayer is the class for representing atmospheric surface
layers, as described in section 5.2.6. The arguments roughHgt and dispHgt
are the surface roughness and displacement heights, respectively. They
may be retrieved from the land cover by using the getRoughHgt and
getDispHgt methods.

AtmosOneDim also has a constructor for benchmark profiles, which is of the
same form as that for AtmosVertProf (section 5.2.7), namely

AtmosOneDim(double[] profHgt, AtmosVertProf.BenchmarkProfileTypes

profType)

The previous section discussed a number of getter methods with regard to
the EnvironHomo class that enable examination of the properties of the en-
vironment. Those methods generally apply to EnvironVertProf as well,
with the main exceptions being getAtmos and getSubSurf (methods re-
turn objects representing the 1-D atmosphere and subsurface, respec-

ERDC TR-19-1 55

tively, as opposed to homogeneous representations). Some methods spe-
cific to EnvironVertProf are also defined in this class, namely getAtmosSL,
getAtmosProf, getClouds, and getSeismicProf, which return the atmos-
pheric surface layer, atmospheric profiles, clouds, and seismic profiles,
respectively. One can then append additional getter methods to obtain
the quantity of interest. For example, if env is an object of the
EnvironVertProf class, env.getAtmosSL.getFrictionVel would return
the friction velocity.

5.4 Loading WRF Data

As described in section 5.3.2, EASEE supports a great many methods to
construct vertical profile environments. However, these all assume that
the user has already obtained information on the atmosphere from other
sources. We previously circumvented the question of what that source
might be. In this subsection, we focus on a method that enables EASEE to
ingest a particular source of atmospheric data, namely output from the
Weather Research and Forecasting (WRF) weather model.

The WRF model (with the Advanced Research WRF [ARW] solver) is a re-
gional weather model that solves fully compressible, Eulerian, nonhydro-
static equations (Skamarock et al. 2008) and can produce atmospheric
forecasts at a variety of horizontal, vertical, and temporal resolutions. It
also includes many parameterization options for planetary boundary-layer
physics, surface physics, and other atmospheric domains. Because WRF is
a community model, it is free and publicly available at the WRF Model Us-
ers’ Page (NCAR 2018) and is used widely by the atmospheric community,
with over 39,000 users in over 160 countries (NCAR 2017). Overall, WRF’s
versatility and large user base make it desirable as a source of atmospheric
data for EASEE.

EASEE supports the usage of either (1) a single WRF output file or (2) an
ensemble of WRF output files (i.e., a set of model output files from nearly
identical simulations differing only in the initial or boundary conditions).
The following two subsections describe the procedures for working with
single or ensemble forecast files, respectively.

5.4.1 Single WRF Output File

To use data from the WRF output file’s native format—NetCDF (Network
Common Data Format)—EASEE uses methods from the NetCDF-Java API

ERDC TR-19-1 56

v4.6. This API requires the creation of a Java-NetCDF object (NetcdfFile)
from the WRF output file that can be readily used within EASEE. To do
this, first open the WRF output file in MATLAB:

ncfile = WrfLoader.openNetcdf(fileLocation);

where fileLocation is the path to the desired WRF output file and ncfile
is the NetcdfFile object derived from the WRF output file that can be used
within EASEE.

Generally, users will provide their own WRF files for use within EASEE.
However, there are also some example WRF files that can be accessed
through the online GitLab repository that contains EASEE; KNEE can be
cloned from this repository, and the WRF test files can then be obtained.
Please contact the authors for more information about accessing the
GitLab repository.

If you would like to use the single WRF test file and you have cloned the
KNEE portion of the EASEE GitLab repository, then the test file can be
found at the following file path:

\path\to\KNEE\KNEE\src\test\resources\TestWeatherFiles\WRF\

wrfout_d01_2017-01-01_00_00_00

where \path\to\KNEE\ is the path to the EASEE/KNEE directory on your
local machine. The test file specified by the above path has 17 time steps,
with output at 3-hour intervals over 2 model days (from 2017.01.01 at
0000 UTC [Coordinated Universal Time] to 2017.01.03 at 0000 UTC).
The simulation domain has a 5 km horizontal resolution and 29 vertical
model layers (model top is at 100 hPa [10 kPa]). The domain is centered at
40.°N, 75.°W and spans 150 grid cells west–east and 120 grid cells south–
north.

If you would like to use your own WRF output file instead, or if you receive
the above test file through means other than cloning the GitLab repository,
simply substitute the appropriate path to the file for fileLocation.

For the case of a single file, the WrfLoader class is used to construct an ob-
ject that extracts weather data from a WRF output file. WrfLoader extends
the AtmosOneDim class and thus comes preequipped with default versions of

ERDC TR-19-1 57

AtmosVertProf, Clouds, and AtmosSurfLayer objects. Specifying this con-
structor updates these default objects by using data from the WRF output
file, allowing a more accurate AtmosOneDim object to be created.

There is one main constructor available for WrfLoader:

WrfLoader(NetcdfFile ncfile, int nest, double lat, double lon,

int timeIndex, double roughHgt, double dispHgt)

This constructor requires a WRF output file and the approximate location
in latitude (−90° to 90°) and longitude (−180° to 180°) at which you would
like to extract a vertical atmospheric profile. The latitude/longitude values
are specified in decimal degrees. Alternatively, a variation of the construc-
tor allows you to instead specify the latitude and longitude indices (e.g., 1,
2, 3, . . .) corresponding to the grid cell numbers in the south–north and
west–east directions, respectively. WRF simulations can be conducted
with multiple nested horizontal domains (e.g., with a parent domain at
9 km horizontal resolution and a smaller, nested domain at a finer 3 km
horizontal resolution). The variable nest refers to the horizontal model do-
main in which you would like to sample a vertical profile (i.e., the parent
domain would be 1, the next nested domain would be 2, etc.). (Note that
nest = 1 for a WRF simulation with a single domain, such as the aforemen-
tioned WRF test file). Finally, roughHgt and dispHgt represent the rough-
ness height (m) and displacement height (m), respectively.

The following is an example of loading data from the single WRF test file
into EASEE and plotting vertical profiles of air temperature and wind.

First, import KNEE’s environ and geo packages:

import mil.army.usace.knee.environ.*;

import mil.army.usace.knee.geo.*;

Next, open the WRF test file using its path on your local machine:

ncfile = WrfLoader.openNetcdf('\path\to\KNEE\KNEE\src\test\

resources\TestWeatherFiles\WRF\wrfout_d01_2017-01-

01_00_00_00');

ERDC TR-19-1 58

where \path\to\KNEE\ is the path to the EASEE/KNEE directory on your
local machine.

At this point, you can test whether your chosen latitude and longitude values
(e.g., 40, −75) fit within the estimated boundaries of the domain. This can
be accomplished by running WrfLoader.getWrfLatLonIndices(ncfile, 40,
-75). You must adjust your latitude/longitude values until the last line of
output from this command reads, for example, Closest lat/lon indices:
(59, 74), where 59 and 74 are the vertical and horizontal positions of the
closest grid cell, respectively.

Then, use the WrfLoader constructor to initiate an object with WRF data:

wrfFile = WrfLoader(ncfile, 1, 40, -75, 1, 0.1, 0.2);

where 1 refers to the chosen domain within the WRF simulation (only one
domain in this file, so nest = 1), 40 (40°N) is the chosen latitude, −75
(75°W) is the chosen longitude, 1 is the second time step (0-based Java in-
dices), 0.1 is the roughness height in meters (typical for grassland), and
0.2 is the displacement height in meters (estimated as twice the roughness
height).

The following output should be generated after running the WrfLoader
constructor:

Boundaries of the model domain: [36.98319625854492,

42.858577728271484, -79.8861083984375, -70.49801635742188]

Specified lat/lon: (40.0, -75.0)

Closest lat/lon: (40.000, -75.000)

Closest lat/lon indices: (59, 74)

Additionally, typing wrfFile at the MATLAB command prompt will print
summaries of the objects for the atmospheric surface layer, atmospheric
vertical profiles, and clouds:

wrfFile =

Atmospheric surface layer: friction velocity 0.695 m/s,

sensible heat flux -46.446 W/m^2, latent heat flux 0 W/m^2, wind

direction 216.824 deg (cw from N)

ERDC TR-19-1 59

 Atmospheric vertical profiles: 29 profile points, inversion

height 732.0818481445312 m

 Low cloud layer: (coverage = 0%, base height = 2.0 (km)),

mid cloud layer: (coverage = 0%, base height = 2.0 (km)), high

cloud layer: (coverage = 0%, base height = 2.0 (km)), aerosol =

AEROSOL_RURAL

Now that the WRF data have been successfully imported, use methods
from EASEE to extract the vertical profiles of temperature and wind, and
then use MATLAB commands to plot them:

atm = wrfFile.getAtmosProf; % Atmospheric vertical profile

object

profhgts = atm.getProfHgt; % Vertical profile heights

proftemps = atm.getTempProf; % Air temperature

profwinde = atm.getWindProfE; % Eastward component of wind

profwindn = atm.getWindProfN; % Northward component of wind

plot(proftemps, profhgts, profwinde, profhgts, profwindn,

profhgts)

line([0 0], ylim, 'LineStyle','--'); % vertical ref line at

temp/wind = 0

legend('temp','wind_E','wind_N','Location','southeast')

xlabel(['Temperature (' 176 'C), Wind (m s^{-1})']) % 176 is the

character code for the “degrees” symbol

ylabel('Altitude (m)')

title('Vertical Profiles of Temperature and Wind')

The above block of code should produce Figure 5.

Alternatively, you can plot wind speed and/or wind direction. Simply sub-
stitute the following lines into the larger chunk of code above and adjust
the variable names and axis labels:

profwindspeed = profhgts.getWindSpeedProf;

profwinddir = profhgts.getWindDirMetProf; % direction from which

wind is blowing in degrees (0-360), starting at N then

clockwise

ERDC TR-19-1 60

Figure 5. Vertical profiles of air temperature (blue), the eastward wind
component (red), and the northward wind component (orange) derived from

a WRF test file in the EASEE repository.

5.4.2 Multiple WRF output files

If you would like to instead use multiple WRF output files (i.e., a forecast
ensemble), then first identify the path of each WRF output file, and open
the files in MATLAB using the following commands:

ncfile1 = WrfLoader.openNetcdf(fileLocation1);

ncfile2 = WrfLoader.openNetcdf(fileLocation2);

ncfile3 = WrfLoader.openNetcdf(fileLocation3);

...ncfile”n” = WrfLoader.openNetcdf(fileLocation’’n’’);

where fileLocation1,2,...n are the paths to the desired WRF output
files and ncfile1,2,...n are the NetcdfFile objects derived from the WRF
output files that can be used within EASEE.

As with the single WRF output file case, users will generally provide their
own WRF files for use within EASEE. However, there are also some exam-
ple WRF files within the EASEE repository that can be used for testing
purposes.

ERDC TR-19-1 61

If you would like to use the multiple WRF test files and you have cloned
the KNEE portion of the EASEE GitLab repository, then the test files can
be found at the following file paths:

\path\to\KNEE\KNEE\src\test\resources\TestWeatherFiles\WRF\

wrfout_d01_2017-01-01_00_00_00_file#

where \path\to\KNEE\ is the path to the EASEE/KNEE directory on your
local machine and where # refers to an integer from 1 to 3. The three test
WRF files located at the above file paths are “pseudoensemble” members
(i.e., they are different temporal subsets of the original file,
wrfout_d01_2017-01-01_00_00_00).

The test files specified by the above path each have four time steps, with
each file containing output at 3-hour intervals that sequentially cover 1.5
model days (i.e., file1 is 2017.01.01 at 0000, 0300, 0600, and 0900 UTC;
file2 is 2017.01.01 at 1200, 1500, 1800, and 2100 UTC; etc.). All of the
other domain metadata are the same as those for the original
wrfout_d01_2017-01-01_00_00_00 file from the “Single WRF Output
File” section.

If you would like to use your own WRF output files instead, or if you receive
the above test files through means other than cloning the GitLab repository,
simply substitute the appropriate paths to the files for fileLocation1,2,...n.

After the WRF output files have been opened, you can use the WrfEnsemble
constructor, which constructs an environmental ensemble from a list of
WRF output files:

WrfEnsemble(List<NetcdfFile> ncfile, int nest, int latIndex, int

lonIndex, int[] timeIndex, EnvironVertProf env)

This constructor is similar to the WrfLoader constructor in that WRF out-
put data are specified along with the location at which vertical atmospheric
profiles should be extracted. However, the main differences are that
ncfile in this constructor consists of multiple NetcdfFile objects, the
timeIndex field is an array of time steps rather than a single time step, and
a default EnvironVertProf object is specified instead of other component
parts such as roughHgt. Furthermore, this constructor formulation re-

ERDC TR-19-1 62

quires latitude and longitude indices corresponding to the grid cell num-
bers in the south–north and west–east directions, respectively, rather than
exact values of latitude and longitude. These are obtained using a method
called getWrfLatLonIndices, which is described later in this section.

Similar to the WrfLoader constructor, WrfEnsemble extends the
EnvironModelEnsemble class and thus contains a default ensemble
(EnvironEnsemble) of EnvironVertProf objects. Specifying this constructor
updates the component parts of these default EnvironVertProf objects
using data from the WRF output files, allowing more accurate
EnvironVertProf objects to be created.

The following is an example of loading data from multiple WRF test files
into EASEE and plotting vertical profiles of air temperature from each “en-
semble” member (noting that the three files are actually “pseudoensem-
bles” derived from the same original simulation).

First, import KNEE’s environ and geo packages and Java’s ArrayList
package using the following commands:

import mil.army.usace.knee.environ.*;

import mil.army.usace.knee.geo.*;

import java.util.ArrayList;

Next, open the three WRF test files using their paths on your local ma-
chine:

ncfile1 = WrfLoader.openNetcdf('\path\to\KNEE\KNEE\src\test\

resources\TestWeatherFiles\WRF\wrfout_d01_2017-01-01_00_

00_00_file1');
ncfile2 = WrfLoader.openNetcdf('\path\to\KNEE\KNEE\src\test\

resources\TestWeatherFiles\WRF\wrfout_d01_2017-01-01_00_

00_00_file2');
ncfile3 = WrfLoader.openNetcdf('\path\to\KNEE\KNEE\src\test\

resources\TestWeatherFiles\WRF\wrfout_d01_2017-01-

01_00_00_00_file3');

where \path\to\KNEE\ is the path to the EASEE/KNEE directory on your
local machine.

ERDC TR-19-1 63

Then, create a Java ArrayList to hold the multiple WRF files. The WRF
files are added to the ArrayList one at a time:

fileList = ArrayList;

fileList.add(ncfile1);

fileList.add(ncfile2);

fileList.add(ncfile3);

The WrfEnsemble constructor requires several parameters that must be created
before the constructor is used. First, instantiate a default EnvironVertProf
object:

env = EnvironVertProf();

Next, you can use an EASEE method called getWrfLatLonIndices to con-
vert your chosen latitude and longitude values to integer indices on a grid:

latlon = WrfLoader.getWrfLatLonIndices(ncfile1, 40, -75);

% latlon contains two elements: a latitude index and a

longitude index

Note that the output from the above command may indicate that your cho-
sen latitude/longitude values are not within the estimated bounds of the
simulation domain. You must adjust your latitude/longitude values until
the last line of output from this command reads, for example, Closest
lat/lon indices: (59, 74).

Finally, determine the number of time steps available in the WRF files so
that you do not accidentally use time indices that are out of range:

timesize = WrfLoader.getTimeSize(ncfile1);

If you type timesize into the MATLAB command prompt, you will see that
there are four time steps in each WRF file. Thus, your Java-based time in-
dices must be within the range [0, 3], inclusive.

Now you can use the WrfEnsemble constructor with the above parameters:

wrfFiles = WrfEnsemble.makeEnvironEnsemble(fileList, 1,

latlon(1), latlon(2), 0:2, env);

ERDC TR-19-1 64

where 1 refers to the chosen domain within the WRF simulations (only one
domain in these files, so nest = 1); latlon(1) and latlon(2) are the grid
indices of latitude and longitude, respectively; and 0:2 are indices of the
time steps (first through third) to be sampled from the original files.

From this WrfEnsemble object, you can extract separate ensemble mem-
bers:

wrfEnsMem1 = wrfFiles.getEnsembleMember(0);

wrfEnsMem2 = wrfFiles.getEnsembleMember(1);

wrfEnsMem3 = wrfFiles.getEnsembleMember(2);

The three wrfEnsMem variables above represent the three ensemble mem-
bers within the WrfEnsemble set of simulations.

After the individual files have been extracted, it is easier to analyze the
WRF data. Now you can plot temperature profiles for each ensemble
member:

wrfEnsMem1_t2 = wrfEnsMem1.get(1); % Extracts WRF data from the

first ensemble member (“Mem1”), second time step

wrfEnsMem2_t2 = wrfEnsMem2.get(1);

wrfEnsMem3_t2 = wrfEnsMem3.get(1);

wrfEnsAtm1 = wrfEnsMem1_t2.getAtmosProf; % Atmospheric vertical

profile object

wrfEnsAtm2 = wrfEnsMem2_t2.getAtmosProf;

wrfEnsAtm3 = wrfEnsMem3_t2.getAtmosProf;

profhgts = wrfEnsAtm1.getProfHgt; % Same profile heights can be

used for all ensemble members

proftemps1 = wrfEnsAtm1.getTempProf; % Air temperature

proftemps2 = wrfEnsAtm2.getTempProf;

proftemps3 = wrfEnsAtm3.getTempProf;

plot(proftemps1, profhgts, proftemps2, profhgts, proftemps3,

profhgts)

line([0 0], ylim, 'LineStyle','--'); % Vertical reference line

at temp = 0

legend('temp1','temp2','temp3','Location','southwest')

xlabel(['Temperature (' 176 'C)']) % 176 is the character code

for the “degrees” symbol

ylabel('Altitude (m)')

ERDC TR-19-1 65

title('Vertical Profiles of Temperature for Three "Ensemble"

Members')

The preceding block of code should produce Figure 6.

Figure 6. Vertical profiles of air temperature derived from three
pseudoensemble test WRF files in the EASEE repository.

ERDC TR-19-1 66

6 Acoustic Propagation Calculations

KNEE’s acoustic package provides a number of data representations and
basic calculations related to acoustics. These include, for example, calcula-
tion of air absorption, porous media models for ground impedance, and
calculation of the sound field above an impedance ground. Assuming the
StartEASEE.m script has been run successfully (section 3.1), the KNEE
acoustic package can be imported into MATLAB with the following com-
mand:

import mil.army.usace.knee.acoustic.*;

More advanced and militarily sensitive capabilities, such as the National
Aeronautics and Space Administration (NASA) Green’s Function Parabolic
Equation (GFPE) method, are found in the EASEELib acoustic package,
which is imported with the following command:

import mil.army.usace.easee.acoustic.*;

We begin this section with a discussion of several useful preliminaries:
namely, how to construct standard octave and one-third octave bands,
how to construct acoustic media for air and porous media, and how to set
up calculation grids to store the model output. We will then consider sev-
eral particular propagation models. Lastly, we will discuss an alternative
approach to performing acoustical calculations, which involves construct-
ing the environmental properties using EASEE and then performing the
actual propagation calculations in MATLAB.

6.1 Standard acoustic frequencies

KNEE’s spectra package contains Java classes for representing and ma-
nipulating power spectra. Although we will not describe the functionality
of this package in detail here, we do describe one particularly useful fea-
ture, namely the availability of standard frequencies for octave and one-
third octave bands. To access these frequencies, first import the
BandedPowerLawSpec class:

import mil.army.usace.knee.spectra.BandedPowerLawSpec;

Then, to retrieve standard octave band center frequencies, for example, enter

ERDC TR-19-1 67

freq = BandedPowerLawSpec.STANDARD_OCTAVE_CENTER_FREQS;

This will create a MATLAB array containing all of the standard frequen-
cies. To retrieve standard one-third octave-band center frequencies, enter

freq = BandedPowerLawSpec.STANDARD_ONE_THIRD_OCTAVE_CENTER_FREQS;

Similarly, the STANDARD_OCTAVE_LOWER_FREQS and STANDARD_OCTAVE_UPPER_
FREQS provide the lower and upper frequency bounds for the standard octave
bands, whereas STANDARD_ONE_THIRD_OCTAVE_LOWER_FREQS and STANDARD_
ONE_THIRD_OCTAVE_UPPER_FREQS provide the analogous results for one-third
octave bands.

6.2 AcousticMedium class

The AcousticMedium class plays an important role in EASEE’s implementa-
tion of acoustics by enabling the construction of the acoustical properties
(impedance, complex wave number, attenuation, phase speed, etc.) of me-
dia. In particular, EASEE’s models for the acoustical properties of air and
for porous media are extensions of this class.

To use the acoustic medium class, you will first need to import the Apache
Commons complex-number class by typing

import org.apache.commons.math3.complex.Complex;

This class is needed because Java, unlike MATLAB, does not directly sup-
port complex numbers. The AcousticMedium class defines methods to re-
trieve

• the characteristic impedance (getImped and getNormImped, for the un-
normalized impedance and the impedance normalized by the reference
value of ρ0c0, where ρ0 is the reference density and c0 is the reference
sound speed);

• the characteristic admittance (getAdmit and getNormAdmit);
• the characteristic resistance (getResist and getNormResist);
• the characteristic reactance (getReact and getNormReact);
• the complex wavenumber (getWaveNumber and getNormWavenumber, the

latter being normalized by 2πf/c0, where f is the acoustic frequency);
• the phase speed (getPhaseSpeed);

ERDC TR-19-1 68

• the attenuation coefficient in Np/m (getAtten);
• the complex bulk modulus (getCompBulkMod); and
• the complex density (getCompDensity).

The methods for the impedance, admittance, complex wavenumber, com-
plex bulk modulus, and complex density return complex values of the
Apache complex number type. The methods for resistance, reactance,
phase speed, and attenuation return real values, which can be more con-
venient to manipulate in MATLAB.

All of the previously described methods can accept either a single value for the
frequency or an array of values. The output would correspondingly be a single
value or an array of values providing results for each specified frequency.

The AirMedium class is an extension of AcousticMedium, which provides the
acoustical properties of air at a particular temperature, humidity, and
pressure. In this regard, AirMedium is complementary to the HumidAir class
in the environ package, which was discussed in section 5.2.1. In fact, one
can construct an AirMedium object either by specifying the air properties
directly or by passing a HumidAir object:

air = AirMedium(19.1, 0.01, 1e5); % air at 19.1 C, 0.01 spec

hum, 10^5 Pa

or

air = AirMedium(HumidAir(19.1, 0.01, 1e5));

The two preceding constructors produce equivalent results. The pressure
can be omitted from either one, in which case sea-level pressure is as-
sumed. With the second form, any of the HumidAir constructors described
earlier in this report may be used.

Once the AirMedium has been constructed, we can call the methods previ-
ously described for the AcousticMedium class. For example, the following
code creates a plot of attenuation between the frequencies of 20 Hz and
20 kHz for air at 18.1°C, 40% relative humidity, and sea-level pressure:

air = AirMedium(HumidAir(18.1, int32(1), 40.0));

freq = logspace(log10(20), log10(20000));

ERDC TR-19-1 69

loglog(freq, air.getAtten(freq))

xlabel('Frequency (Hz)')

ylabel('Attenuation (Np/m)') % 1 Np = 8.69 dB

xlim([20 20000])

Figure 7 shows the result.

Figure 7. Attenuation coefficient for air at 20°C, 40% relative humidity,
and sea-level pressure.

The AcousticMedium class also serves as the basis for EASEE’s representations
of the acoustical properties of porous media. The models currently supported
are Attenborough’s four-parameter model (AttenboroughFourParamMedium),
the Delany-Bazley model (DelanyBazleyMedium), the relaxation model
(RelaxMedium), and the Zwikker-Kosten model (ZwikkerKostenMedium).

As an example, let us consider the Zwikker-Kosten model, which repre-
sents the porous medium using three parameters: static flow resistivity,
porosity (void fraction), and the so-called structure constant, which is re-
lated to pore tortuosity. Two primary constructors are provided:

ZwikkerKostenMedium(double por, double flowres)

and

ERDC TR-19-1 70

ZwikkerKostenMedium(double ks, double por, double flowres)

The first of these constructors accepts the porosity (a fraction between 0
and 1) and static flow resistivity and then estimates the structure constant
based on the porosity. The second allows all three parameters to be set di-
rectly.

Information on the other porous models and their constructors can be
found in the Javadoc or by directly examining the Java code.

The BenchmarkMedium class, which extends AcousticMedium, sets the
ground properties as appropriate to certain acoustical benchmark calcula-
tions found in Attenborough et al. (1995) and Di and Gilbert (1993).

6.3 Calculation grids

EASEE calculations are performed on a grid (array) of specified source
and receiver positions. The structure of the grid depends on the underlying
symmetry of the underlying propagation calculation. Two main types of
structured grids are of interest for running the acoustic propagation mod-
els: vertical and polar. The vertical grid is used for models for which the
output depends on source height, receiver height, and horizontal range be-
tween the source and receiver. The polar grid introduces a dependence on
the azimuth (e.g., the direction relative to the wind). For both the vertical
and polar grids, the horizontal source position is assumed to be zero (me-
ters for the vertical grid, degrees for the polar grid).

Let us consider an example for setting up a vertical grid. In this example,
the grid has a single source height of 5.0 m and a single receiver height of
1.0 m, and the range varies from 0 m to 1000 m in increments of 10 m:

import mil.army.usace.knee.grids.*;

srcHgt = 5.0;

rcvHgt = 1.0;

range = [0.0:10.0:1000.0];

tgv = TransmitGridVert(srcHgt, rcvHgt, range);

The polar grid is constructed with one additional argument, representing
the azimuth in radians. By convention, the azimuth is bounded between −π
and π. The following code sets up a polar grid with 16 evenly spaced angles:

ERDC TR-19-1 71

azi = linspace(-pi, pi-pi/8, 16);

tgp = TransmitGridPolar(srcHgt, rcvHgt, range, azi);

6.4 Impedance-plane model

6.4.1 Flat ground

The impedance-plane propagation model, implemented in the KNEE pack-
age by the Java class mil.army.usace.easee.knee.ImpedancePlaneModel,
solves for the sound field above a flat, impedance boundary (Attenborough
et al. 1980). The atmosphere above the plane is assumed to be a homogene-
ous half-space, represented using the AirMedium class.

As discussed in the Background section, each model in EASEE has an as-
sociated Java class (or classes) defining the parameters needed by that
model. A propagation model is created by first constructing the parame-
ters and then constructing the propagation model using these parameters.
Consider, for example, the following code:

params = ImpedancePlaneParamsHomo;

impModel = ImpedancePlaneModel(params);

or, more simply,

impModel = ImpedancePlaneModel(ImpedancePlaneParamsHomo);

Here we have constructed the parameters based on default values, which
in this case correspond to impedance typical of grass-covered soil and dry
air at room temperature and sea-level pressure. The Homo at the end of the
ImpedancePlaneParamsHomo signifies that the parameters are constructed
for a homogeneous environment (EnvironHomo). The impedance-plane
model also has a parameter class called ImpedancePlaneParamsVertProf,
which is for a vertical profile environment.

The following constructor for the impedance-plane model parameters
passes the properties for the air and ground layers explicitly:

ImpedancePlaneParamsHomo(AcousticMedium refAir, AcousticMedium

ground)

ERDC TR-19-1 72

Any valid AcousticMedium may be used for both the air and ground. How-
ever, only the phase speed, density, and attenuation of the air layer and
the specific impedance of the ground layer will impact calculations made
with the impedance-plane model. AirMedium is a nonabstract subclass of
AcousticMedium and is generally used for the air layer refAir. Similarly,
one of the porous-media models mentioned in section 6.2 (such as
ZwikkerKostenMedium) is used for the ground.

The following constructor explicitly passes an EnvironHomo object, which
may be constructed using the procedures described in section 5.2:

ImpedancePlaneParamsHomo(EnvironHomo scene)

In this version of the constructor, the surface temperature, humidity, and
pressure values from this environment are used to construct the air prop-
erties, whereas the soil properties are used to construct the ground imped-
ance. All other information in the EnvironHomo object is ignored.

Another useful approach to constructing parameters for the impedance-
plane model uses predefined acoustical ground types and benchmark
cases. The following code lists the available definitions:

modelTypes = ImpedancePlaneModelTypes.values;

for m=1:length(modelTypes), disp(modelTypes(m)); end

This results in

FREE_SPACE

RIGID

RELEASE

AIR

BENCHMARK_10_HZ

BENCHMARK_100_HZ

BENCHMARK_1000_HZ

DG_BENCHMARK_100_HZ

DG_BENCHMARK_200_HZ

DG_BENCHMARK_500_HZ

DG_BENCHMARK_1000_HZ

ASPHALT

FOREST

ERDC TR-19-1 73

GRASS

GRAVEL

ICE

SAND

SNOW

WATER

Hence, to construct a model for a grass-covered ground surface, we would
enter

params = ImpedancePlaneParamsHomo(modelTypes(14));

impModel = ImpedancePlaneModel(params);

In the previous listing of predefined acoustical ground types, the types
starting with BENCHMARK_ are from Attenborough et al. (1995), whereas
those starting with DG_BENCHMARK_ are from Di and Gilbert (1993).

The basic procedure for running the propagation model is to create a
structured grid, which specifies the geometry of the problem, and then call
the calculation using this grid and other input parameters, such as the
acoustic frequency. Assuming a vertical grid has been constructed as de-
scribed in section 6.3, we calculate and display the transmission loss using

freq = 100.0;

pmag2 = impModel.calcTransGridStruct(freq, tgv);

transLossGrass = 10*log10(pmag2);

plot(range, transLossGrass)

The key to the preceding code is the call to the calcTransGridStruct
method, which takes two arguments, namely the frequency and the trans-
mission grid, and returns the sound field for receiver positions on the
specified grid. Note that the output of EASEE acoustical calculations is the
squared magnitude of the pressure, normalized by the pressure that
would be observed at 1 m in free space. Hence, we convert the output to
decibels by taking ten times the base-ten algorithm. This quantity is often
called the transmission loss, or TL. (Strictly speaking, it would make more
sense to call the negative of this quantity the transmission loss, since a
loss would then be positive. The TL as defined here might more properly
be called a transmission gain. Nonetheless, this quantity is conventionally
called the transmission loss.)

ERDC TR-19-1 74

To rerun the previous calculation with a rigid ground surface, we would
enter

params = ImpedancePlaneParamsHomo(modelTypes(2));

impModel = ImpedancePlaneModel(params);

transLossRigid = 10*log10(impModel.calcTransGridStruct(freq, tgv));

And to rerun the calculation for snow,

params = ImpedancePlaneParamsHomo(modelTypes(18));

impModel = ImpedancePlaneModel(params);

transLossSnow = 10*log10(impModel.calcTransGridStruct(freq, tgv));

The following code listing brings together all of the previous steps to per-
form TL calculations for a rigid surface, grass-covered ground, and snow
and then plots the results:

import mil.army.usace.knee.grids.*;

import mil.army.usace.knee.acoustic.*;

srcHgt = 5.0;

rcvHgt = 1.0;

range = [0.0:10.0:1000.0];

tgv = TransmitGridVert(srcHgt, rcvHgt, range);

modelTypes = ImpedancePlaneModelTypes.values;

params = ImpedancePlaneParamsHomo(modelTypes(14));

impModel = ImpedancePlaneModel(params);

freq = 100.0;

pmag2 = impModel.calcTransGridStruct(freq, tgv);

transLossGrass = 10*log10(pmag2);

params = ImpedancePlaneParamsHomo(modelTypes(2));

impModel = ImpedancePlaneModel(params);

transLossRigid = 10*log10(impModel.calcTransGridStruct(freq, tgv));

params = ImpedancePlaneParamsHomo(modelTypes(18));

impModel = ImpedancePlaneModel(params);

transLossSnow = 10*log10(impModel.calcTransGridStruct(freq, tgv));

h = plot(range, transLossRigid, range, transLossGrass, range,

transLossSnow);

set(h, 'linewidth', 2)

xlabel('Range (m)', 'fontsize', 14)

ylabel('TL (dB)', 'fontsize', 14)

ERDC TR-19-1 75

set(gca, 'fontsize', 14, 'linewidth', 2)

legend('rigid', 'grass', 'snow')

Figure 8 shows the resulting plot.

Figure 8. Transmission loss (TL) for propagation at a frequency of 100 Hz
over several different ground surfaces.

6.4.2 Uneven ground

The impedance-plane model can also be run in conjunction with a wedge
terrain diffraction model (Wilson and Yamamoto 2014). This model, in
effect, replaces the terrain between the source and receiver by a wedge
shape that approximates the effect of the intervening terrain. Internally,
EASEE runs the impedance-plane and diffraction models separately and
then adds the loss due to the impedance ground to the loss due to terrain
diffraction. The terrain diffraction calculation is turned on using the
setTerrainEffect method:

params.setTerrainEffect(true);

The terrain diffraction calculation requires a DEM. The DEM, as discussed
earlier, is specified on a geographic grid. In this case, it is necessary to ex-
plicitly specify the geographic coordinates of the source and receiver. The
calcTransGridGeo method is used for this purpose. This method has the
following form:

ERDC TR-19-1 76

GeoGridCart2DDouble calcTransGridGeo(double freq, GeoCoord srcCoord,

double srcHgt, GeoGridCart2D rcvGrid, double rcvHgt)

The input arguments are the frequency, a geographic coordinate for the
horizontal source position, the source height, a geographic grid for the
horizontal receiver position, and the receiver height. The output is a 2-D
geographic grid, with a double[][] data array, holding the squared pres-
sure magnitude as calculated for each position in rcvGrid.

The following code listing illustrates how to perform a propagation calcu-
lation in complex terrain using the calcTransGridGeo method. In this ex-
ample, the peaks function is used to create the terrain elevations, which is
shown in Figure 9. The impedance-plane model, with terrain effects, is
then called to calculate the TL, with the result shown in Figure 10.

import mil.army.usace.knee.geo.*;

import mil.army.usace.knee.grids.*;

import mil.army.usace.knee.acoustic.*;

SWcorner = GeoCoord(43.0, -72.0); % lat and lng of SW corner

NEcorner = GeoCoord(SWcorner, 10000.0, 10000.0);

%NE corner 10 km N, 10 km E

nPts = 50; % number of points in each direction of grid

rcvHgt = 1.0;

rcvGrid = GeoGridCart2D(GeoGridTypes.UTM, DatumTypes.WGS84,

SWcorner, NEcorner, nPts);

srcHgt = 5.0;

srcCoord = GeoCoord(SWcorner, 5000.0, 7000.0);

dem = GeoGridCart2DDouble(rcvGrid);

demData = 100.0*peaks(nPts);

dem.setDataGrid(demData);

params = ImpedancePlaneParamsHomo(ImpedancePlaneModelTypes.GRASS);

params.setTerrainEffect(true);

params.setTerrainElev(dem);

impModel = ImpedancePlaneModel(params);

freq = 100.0;

pmag2 = impModel.calcTransGridGeo(freq, srcCoord, srcHgt,

rcvGrid, rcvHgt);

transLoss = 10*log10(pmag2.getDataGrid2D);

xaxis = linspace(0.0, 10.0, nPts);

figure(1)

ERDC TR-19-1 77

imagesc(xaxis, xaxis, dem.getDataGrid2D);

hc = colorbar('vert');

hc.Label.String = 'Height (m)'; hc.Label.FontSize = 14;

set(gca, 'fontsize', 14)

axis('equal'); axis('xy'); caxis([-800 800])

xlabel('easting (km)', 'fontsize', 14)

ylabel('northing (km) ', 'fontsize', 14)

figure(2)

imagesc(xaxis, xaxis, transLoss);

xlabel('easting (km)', 'fontsize', 14)

ylabel('northing (km)', 'fontsize', 14)

hc = colorbar('vert');

hc.Label.String = 'TL (dB)'; hc.Label.FontSize = 14;

set(gca, 'fontsize', 14)

axis('equal'); axis('xy'); caxis([-120 -50])

Figure 9. Terrain elevations (digital elevation model, or DEM) used for the
transmission loss calculation shown in Fig. 10. The coordinate axes are the

easting and northing relative to the southwest corner of the domain.

ERDC TR-19-1 78

Figure 10. Transmission loss (TL) calculation for a source in hilly terrain. The
frequency is 100 Hz. The source is positioned at an easting of 7 km and a

northing of 5 km. The DEM for the calculation is shown in Fig. 9.

6.5 Parabolic equation methods

Parabolic equations (PE) efficiently calculate the impacts of weather and
ground impedance on sound propagation in the atmosphere (Gilbert and
Di 1993; Salomons 2001). Two PE codes are currently available in EASEE.
These are Crank-Nicholson PE (CNPE), which is written in Java, and
NASA’s GFPE, which was originally written in FORTRAN and then com-
piled for Windows. Both are found in the EASEELib acoustic package.

The CNPE and GFPE share the same classes for defining parameters.
Specifically, two classes are available, ParabolicEqParamsHome and
ParabolicEqParamsVertProf. As the names of these classes suggest, they
are used for homogeneous and vertical profile environments, respectively.
The basic constructors are

ParabolicEqParamsHomo(EnvironHomo scene)

and

ERDC TR-19-1 79

ParabolicEqParamsVertProf(EnvironVertProf scene)

For example, to create the parameters for a vertical profile calculation,
enter

scene = EnvironVertProf;

params = ParabolicEqParamsVertProf(scene);

These classes also have methods to set the computational parameters. The
setComp method controls the parabolic approximation, range step, and
height step:

setComp(boolean wideAngle, double delr_norm, double delz_norm)

The first argument specifies whether a wide-angle calculation is to be used
(if available); the second and third arguments are the range and height
steps, as normalized by the wavelength. By default, a narrow-angle calcu-
lation is performed with the step values both set to 1/10 of a wavelength.
For example, to set up a narrow-angle calculation with normalized range
and height steps of 1/20 of a wavelength, enter

params.setComp(false, 0.05, 0.05);

The following method controls the characteristics of the absorbing
(sponge) layer at the top of the calculation domain:

setAbsLayer(double layerHgt, double layerThick)

The first of these arguments is the height at which the absorbing layer be-
gins as a fraction of the maximum horizontal range in the calculation. For
example, if the maximum horizontal range is 10 km and layerHgt is 0.1,
the absorbing layer will begin at 1 km. The second argument is the thick-
ness of the absorbing layer in wavelengths.

The CNPE and the GFPE currently handle only flat ground with constant
ground properties. Both perform calculations using the polar transmission
grid (TransGridPolar class) as described in section 6.3.

ERDC TR-19-1 80

Once the parameters and calculation grid have been constructed, it is
straightforward to call either of the PE calculations. The name of the calcu-
lation class for the CNPE is CNParabolicEqn, whereas the GFPE is
NASA3DGfpe. For example, to instantiate a CNPE calculation, enter

cnpe = CNParabolicEqn(params);

The following MATLAB code (which is a listing of a complete script) illus-
trates how to construct an environment (in this case, based on profiles
constructed with MOST), run the CNPE and GFPE calculations, and then
plot the results. For comparison purposes, we also run the impedance-
plane model (section 6.4.1) and an alternative version of the CNPE availa-
ble through the MATLAB interface (to be discussed in section 6.8).

SetPaths

%% Set the class paths and import the needed packages.

import mil.army.usace.knee.environ.*;

import mil.army.usace.knee.acoustic.*;

import mil.army.usace.easee.acoustic.*;

import mil.army.usace.knee.grids.*;

%% Set up the vertical profile environment.

surfTemp = 20.0;

surfRelHum = 40.0;

surfSpecHum = HumidAir.convHum(1, 3, surfRelHum, surfTemp);

windDir = 0.0;

windTypes = javaMethod('values',

'mil.army.usace.knee.environ.AtmosSurfLayer$WindTypes');

windEnum = windTypes(4); % moderate wind

stabTypes = javaMethod('values',

'mil.army.usace.knee.environ.AtmosSurfLayer$StabilityTypes');

stabEnum = stabTypes(4); % unstable

landCov = Landcover(NationalLandcoverDataset2001Types.GRASSLAND);

asl = AtmosSurfLayer(windEnum, stabEnum, landCov, windDir,

surfTemp, surfSpecHum);

groundHgt = 0.0;

profHgt = logspace(-1, 2);

clouds = Clouds;

atmos = AtmosOneDim(profHgt, asl, landCov.getRoughHgt,

landCov.getDispHgt, clouds);

ERDC TR-19-1 81

soil = Soil(FASSTSoilTypes.SAND_POOR_GRADED);

seis = SeismicVertProf(SolidIsoLinear

(SolidIsoLinearTypes.SAND_UNSAT));

env = EnvironVertProf(groundHgt, atmos, landCov, soil, seis);

%% Parameters and grid for the calculation.

freq = 250;

srcHgt = 5.0;

maxRange = 1000.0;

maxHgt = 199;

azi = 0.0;

rcvHgt = 2.0;

range = 0.0:10.0:maxRange;

tgv = TransmitGridVert(srcHgt, rcvHgt, range);

tgp = TransmitGridPolar(srcHgt, rcvHgt, range, azi);

%% Perform the calculations.

params = ParabolicEqParamsVertProf(env);

cnpeModel = CNParabolicEqn(params);

tlCnpe = 10*log10(cnpeModel.calcTransGridStruct(freq, tgp));

gfpeModel = NASA3DGfpe(params);

tlGfpe = 10*log10(gfpeModel.calcTransGridStruct(freq, tgp));

params = ImpedancePlaneParamsVertProf(env);

impModel = ImpedancePlaneModel(params);

tlImp = 10*log10(impModel.calcTransGridStruct(freq, tgv));

[rmesh, zmesh, pTL] = RunCalc(4, env, freq, srcHgt, maxRange,

maxHgt, azi, false, true, false, 1, false);

%% Plot the results.

fontsize = 14;

linewidth = 2.0;

h = plot(range, tlImp, 'c-.', range, tlGfpe, 'r-', range,

tlCnpe, 'b--', rmesh, -pTL(3,:), 'g:');

set(h, 'linewidth', linewidth)

xlabel('Range (m)', 'fontsize', fontsize)

ylabel('TL (dB)', 'fontsize', fontsize)

ylim([-80 0])

set(gca, 'fontsize', fontsize, 'linewidth', linewidth)

legend('Impedance plane', 'Green''s function PE', 'Java CNPE',

'MATLAB CNPE')

ERDC TR-19-1 82

Figure 11 shows the resulting plot. At distances less than about 200 m, the
CNPEs and impedance-plane model are in close agreement. This is to be
expected since the meteorological effects are not very large near to the
source; hence, the impedance-plane model, which does not include the
meteorology, gives a good result in this range. However, the GFPE differs
substantially from the other calculations at these distances, even though
previous works (e.g., Gilbert et al. 1990; Salomons 1998; Lihoreau et al.
2006) illustrate the accuracy of both the GFPE and other PE methods.
This anomaly may occur because solutions of the GFPE may only come
into agreement at the end of the first range step that separates applications
of the Fourier transform. Thus, at these short distances (<200 m), the
CNPE seems to be preferable to the GFPE.

For longer distances, greater than about 200 m, the PE calculations all
give nearly the same result. The predictions from the PEs differ substan-
tially from the impedance-plane model due to the importance of the mete-
orological effects, in this case downward refraction in the downwind direc-
tion. The Java CNPE has a slightly smaller TL than the other two PEs
(about 1 dB less). The reason for this discrepancy is unclear, but it is not
very significant in a numerical sense.

Figure 11. Comparison of transmission loss (TL) calculations by
several different codes.

ERDC TR-19-1 83

6.6 BNOISE

The ERDC Construction Engineering Research Laboratory’s BNOISE
(Blast Noise) model is based on look-up tables generated by a fast-field
program (FFP) (Salomons 2001). The table look-up is relatively fast alt-
hough the accuracy of the calculation depends on the availability of a table
generated with profiles similar to those in EASEE’s environmental object.

Use of BNOISE is very similar to the PEs. Classes for setting up the model
parameters are available for the homogeneous and vertical profile environ-
ments, which are named BNOISEParamsHomo and BNOISEParamsVertProf, re-
spectively. The name of the actual calculation class is BNOISE. For example,
once a vertical profile environment object and calculation grid have been
constructed (by an approach such as that illustrated by the code listing in
section 6.5), a BNOISE calculation can be run using

bnoiseModel = BNOISE(BNOISEParamsVertProf(env));

tlBnoise = 10*log10(bnoiseModel.calcTransGridStruct(freq, tgp));

6.7 Nord2000

The Nord2000 model (Plovsing 2006) was originally developed for noise-
control applications. Unlike the impedance-plane model, the PEs, and
BNOISE, it is a heuristic (approximate) model rather than a numerical
method for solving the wave equation or a variant thereof. However,
Nord2000 does have the advantage of being able to handle terrain diffrac-
tion and spatially varying ground-impedance.

Nord2000 is run by the same general approach described for the other
models. The classes for setting up the model parameters are
Nord2000ParamsHomo and Nord2000ParamsVertProf, and the propagation
model class is Nord2000Model. The Nord2000 model is imported using

import com.brrc.easee.acoustic.*;

6.8 MATLAB acoustic propagation interface

In addition to the propagation models available in EASEE, a number of
models have been coded directly in MATLAB. An interface has also been
developed to run these MATLAB models using the environmental repre-
sentations in EASEE. This can be regarded as a hybrid approach to using

ERDC TR-19-1 84

EASEE in MATLAB; we use EASEE to define the inputs to the calculation
but then run the actual calculation in MATLAB (rather than in Java).

The MATLAB models currently support only flat ground and a single type
of land cover and soil. But several useful capabilities are provided that are
unavailable in the Java code. For one, random turbulent fields, including
temperature and wind velocity fluctuations, can be synthesized and incor-
porated into propagation calculations by using the parabolic equation (PE)
and ray-tracing methods. This can be useful in cases of upward refraction,
in which scattering by turbulence is particularly important (Wilson et al.
2015). Second, a capability exists for smoothly transitioning from the PE at
narrow angles (within about 15°–20° of horizontal, where the PE is accu-
rate) to an impedance-plane model at high angles (where the PE is inaccu-
rate). The MATLAB interface also includes a ray-tracing calculation, which
can be overlaid on the TL calculation if desired.

The MATLAB interface involves two primary functions (m-files):
RunCalc.m and PlotCalc.m. These functions run the propagation calcula-
tion and plot the output, respectively. The header for RunCalc.m, which
shows the input and output arguments, is

function [rmesh, zmesh, pTL, r_ray, z_ray, t_ray] =
RunCalc(CalcType, env, freq, zsrc, maxRange, maxHgt,

thmesh, biDirCalc, useEff, incTurb, numReal,

findRayPaths, useImpAtHighAngle, limitAngle, useMOST)

The first input argument, CalcType, specifies the method for calculating
the TL. The allowed values are 1 = impedance plane model, 2 = ray tracing,
3 = fast-field program, 4 = narrow-angle PE, and 5 = wide-angle PE. The
second argument is an EnvironVertProf object constructed using EASEE,
which specifies the atmospheric vertical profiles and ground properties.

The remaining input arguments are as follows:

• freq: acoustic frequency (Hz)
• zsrc: source height (m)
• maxRange: maximum horizontal distance (m)
• maxHgt: maximum height (m)
• thmesh: azimuthal angles at which the calculation will be performed

(deg)

ERDC TR-19-1 85

• biDirCalc: true to perform a calculation at thmesh and at thmesh + pi,
where the calculations are joined together with the source at zero range

• useEff : true to use the effective sound-speed approximation
• incTurb: true to include random atmospheric turbulence
• numReal: number of turbulence realizations to include prior to averag-

ing
• findRayPaths: true if ray paths are also to be calculated and overlaid

on the TL display
• useImpAtHighAngle: true if the impedance plane model is to be substi-

tuted for high elevation angles when a PE calculation is used
• limitAngle: elevation angle (deg) above which the impedance model is

to be used (when useImpAtHighAngle=true)
• useMOST: use the Monin-Obukhov Similarity Theory for the profiles

(regardless of whether MOST was used to construct the profiles in the
EnvironVertProf object)

The input arguments starting with birDirCalc are all optional, in which
case they will be set to defaults (biDirCalc = false, useEff = false,
incTurb = false, numReal = 1, findRayPaths = false,
useImpAtHighAngle = false, limitAngle = 30.0, useMOST = false).

The output arguments of RunCalc are as follows:

• rmesh: horizontal coordinate mesh for TL
• zmesh: vertical coordinate mesh for TL
• pTL: TL (in decibels relative to a distance of 1 m from the source)
• r_ray: horizontal coordinates of rays
• z_ray: vertical coordinates of rays
• t_ray: time coordinates of rays

The final three arguments are empty if no ray-tracing calculation was re-
quested (i.e., CalcType was set to 2 and findRayPaths was set to false).

The header for PlotCalc.m is

function h = PlotCalc(fig, rmesh, zmesh, pTL, r_ray, z_ray,

t_ray, fontsize, clims, cbarlabel)

Here, fig is the number of the figure window for the plot. If an empty ar-
ray is passed, a new figure window will be opened. The next six inputs

ERDC TR-19-1 86

match the output of the PlotCalc function. The argument fontsize speci-
fies the font size to be used for the axis labels; clims specifies the color
limits; and cbarlabel specifies the label for the color bar. These last three
arguments can be omitted, in which case they will be set to defaults (12,
[30 90], and 'TL (dB)', respectively). The single output argument h is a
handle to the axes of the plot, which can be used to tailor other graphics
properties as desired.

The following code, which is a complete MATLAB script, illustrates how to
construct an environment, run a wide-angle parabolic equation calculation
through the MATLAB interface, and then plot the results as a 2-D image
(vertical plane). Figure 12 shows the plot that results from running this
code:

SetPaths

import mil.army.usace.knee.environ.*;

surfTemp = 20.0;

surfRelHum = 40.0;

surfSpecHum = HumidAir.convHum('relative', 'specific',

surfRelHum, surfTemp);
windDir = 0.0;

windTypes = javaMethod('values',

'mil.army.usace.knee.environ.AtmosSurfLayer$WindTypes');

windEnum = windTypes(4); % moderate wind

stabTypes = javaMethod('values',

'mil.army.usace.knee.environ.AtmosSurfLayer$StabilityTypes');

stabEnum = stabTypes(4); % unstable

landCov = Landcover(NationalLandcoverDataset2001Types.GRASSLAND);

asl = AtmosSurfLayer(windEnum, stabEnum, landCov, windDir,

surfTemp, surfSpecHum);

groundHgt = 0.0;

profHgt = logspace(-1, 2);

clouds = Clouds;

atmos = AtmosOneDim(profHgt, asl, landCov.getRoughHgt,

landCov.getDispHgt, clouds);

soil = Soil(FASSTSoilTypes.SAND_POOR_GRADED);

seis = SeismicVertProf(SolidIsoLinear(SolidIsoLinearTypes.

SAND_UNSAT));

env = EnvironVertProf(groundHgt, atmos, landCov, soil, seis);

CalcType = 5; % wide-angle parabolic equation

ERDC TR-19-1 87

freq = 250;

zsrc = 5.0;

maxRange = 1000.0;

maxHgt = 0.2*maxRange;

thmesh = 0.0;

[rmesh, zmesh, pTL, r_ray, z_ray, t_ray] = RunCalc(CalcType, env,

freq, zsrc, maxRange, maxHgt, thmesh, true, false, false,

1, true);

PlotCalc([], rmesh, zmesh, pTL, r_ray, z_ray, t_ray);

Figure 12. Transmission loss resulting from a wide-angle parabolic equation
calculation using the MATLAB interface.

ERDC TR-19-1 88

7 Full Example Script for Testing EASEE in
MATLAB

The following example script—entitled CalcExampWithWRF.m—can be cop-
ied and pasted into MATLAB to test EASEE and its functionality with
data from the WRF weather model. It is also located in the folder where
StartEASEE.m resides. It produces many of the plots shown previously and
two additional plots (Figures 13 and 14) that illustrate the difference in TL
between simulations that include and exclude WRF weather model data.

%% This script allows one to fully test EASEE for use in MATLAB
with data

% from the WRF weather model.
% The script initializes EASEE, tests its functionality with WRF

weather
% model output, runs calculations with the impedance plane model,

and
% calculates 2D acoustic propagation with the wide-angle

parabolic equation
% with and without WRF weather data. Figures 1-4 are found in

the
% technical report entitled "Using EASEE’s Acoustical

Calculations in
% MATLAB," by Keith Wilson et al. Figures 5-6 are additional

figures that
% represent, respectively, transmission loss from a wide-angle

parabolic
% equation simulation that includes WRF model output, and the

difference
% between this simulation and one that does not include WRF model

output.

clear
close all

% Initializing EASEE for MATLAB
StartEASEE

%~~~~~~~~~~~~~~~~~~~~~~~
% USER INPUT
% Please change the example path below to your local parent

directory for KNEE
KNEEdir = 'C:\Users*username*\Documents\EASEE_Git';
lat = 40; % latitude
lon = -75; % longitude
timeInd = 1; % time index (0 = first time step)
%~~~~~~~~~~~~~~~~~~~~~~~

% Testing the installation
import mil.army.usace.knee.acoustic.*;
test1=ImpedancePlaneParamsHomo;

ERDC TR-19-1 89

disp(test1)
import mil.army.usace.easee.acoustic.*;
test2=ParabolicEqParamsHomo;
disp(test2)

%% Testing functionality of EASEE with WRF weather data

% One WRF file
import mil.army.usace.knee.environ.*;
import mil.army.usace.knee.geo.*;
ncfile = WrfLoader.openNetcdf([KNEEdir '\KNEE\src\test\

resources\TestWeatherFiles\WRF\wrfout_d01_2017-01-
01_00_00_00_file1']);

WrfLoader.getWrfLatLonIndices(ncfile, lat, lon)
wrfFile = WrfLoader(ncfile, 1, lat, lon, timeInd, 0.1, 0.2);
atm = wrfFile.getAtmosProf; % Atmospheric vertical profile

object
profhgts = atm.getProfHgt; % Vertical profile heights
proftemps = atm.getTempProf; % Air temperature
profwinde = atm.getWindProfE; % Eastward component of wind
profwindn = atm.getWindProfN; % Northward component of wind
geocoord = WrfLoader.getWrfGeoCoord(ncfile, lat, lon);

figure(1)
plot(proftemps, profhgts, profwinde, profhgts, profwindn,

profhgts)
line([0 0], ylim, 'LineStyle','--'); % Vertical reference line

at temp/wind = 0
legend('temp','wind_E','wind_N','Location','southeast')
xlabel(['Temperature (' 176 'C), Wind (m s^{-1})']) % 176 is the

character code for the “degrees” symbol
ylabel('Altitude (m)')
title('Vertical Profiles of Temperature and Wind')

% Multiple WRF files
import mil.army.usace.knee.environ.*;
import mil.army.usace.knee.geo.*;
import java.util.ArrayList;
ncfile1 = WrfLoader.openNetcdf([KNEEdir '\KNEE\src\test\resources\

TestWeatherFiles\WRF\wrfout_d01_2017-01-
01_00_00_00_file1']);

ncfile2 = WrfLoader.openNetcdf([KNEEdir '\KNEE\src\test\resources\
TestWeatherFiles\WRF\wrfout_d01_2017-01-
01_00_00_00_file2']);

ncfile3 = WrfLoader.openNetcdf([KNEEdir '\KNEE\src\test\resources\
TestWeatherFiles\WRF\wrfout_d01_2017-01-
01_00_00_00_file3']);

fileList = ArrayList;
fileList.add(ncfile1);
fileList.add(ncfile2);
fileList.add(ncfile3);
env = EnvironVertProf();
latlon = WrfLoader.getWrfLatLonIndices(ncfile1, lat, lon); %

latlon contains two elements: a latitude index and a
longitude index

timesize = WrfLoader.getTimeSize(ncfile1);

ERDC TR-19-1 90

wrfFiles = WrfEnsemble.makeEnvironEnsemble(fileList, 1, latlon(1),
latlon(2), 0:2, env);

wrfEnsMem1 = wrfFiles.getEnsembleMember(0);
wrfEnsMem2 = wrfFiles.getEnsembleMember(1);
wrfEnsMem3 = wrfFiles.getEnsembleMember(2);
wrfEnsMem1_t2 = wrfEnsMem1.get(1); % Extracts WRF data from the

first ensemble member (“Mem1”), second time step
wrfEnsMem2_t2 = wrfEnsMem2.get(1);
wrfEnsMem3_t2 = wrfEnsMem3.get(1);
wrfEnsAtm1 = wrfEnsMem1_t2.getAtmosProf; % Atmospheric vertical

profile object
wrfEnsAtm2 = wrfEnsMem2_t2.getAtmosProf;
wrfEnsAtm3 = wrfEnsMem3_t2.getAtmosProf;
profhgts = wrfEnsAtm1.getProfHgt; % Same profile heights can be

used for all ensemble members
proftemps1 = wrfEnsAtm1.getTempProf; % Air temperature
proftemps2 = wrfEnsAtm2.getTempProf;
proftemps3 = wrfEnsAtm3.getTempProf;

figure(2)
plot(proftemps1, profhgts, proftemps2, profhgts, proftemps3,

profhgts)
line([0 0], ylim, 'LineStyle','--'); % Vertical reference line

at temp = 0
legend('temp1','temp2','temp3','Location','southwest')
xlabel(['Temperature (' 176 'C)']) % 176 is the character code

for the “degrees” symbol
ylabel('Altitude (m)')
title('Vertical Profiles of Temperature for Three "Ensemble"

Members')

%% Impedance plane model
import mil.army.usace.knee.grids.*;
import mil.army.usace.knee.acoustic.*;
srcHgt = 5.0;
rcvHgt = 1.0;
range = [0.0:10.0:1000.0];
tgv = TransmitGridVert(srcHgt, rcvHgt, range);
modelTypes = ImpedancePlaneModelTypes.values;
params = ImpedancePlaneParamsHomo(modelTypes(14));
impModel = ImpedancePlaneModel(params);
freq = 100.0;
pmag2 = impModel.calcTransGridStruct(freq, tgv);
transLossGrass = 10*log10(pmag2);
params = ImpedancePlaneParamsHomo(modelTypes(2));
impModel = ImpedancePlaneModel(params);
transLossRigid = 10*log10(impModel.calcTransGridStruct(freq, tgv));
params = ImpedancePlaneParamsHomo(modelTypes(18));
impModel = ImpedancePlaneModel(params);
transLossSnow = 10*log10(impModel.calcTransGridStruct(freq, tgv));

figure(3)
h = plot(range, transLossRigid, range, transLossGrass, range,

transLossSnow);
xlabel('Range (m)');
ylabel('TL (dB)');
legend('rigid', 'grass', 'snow')

ERDC TR-19-1 91

title('Transmission loss over different ground surfaces')

%% Wide-angle parabolic equation calculations (2D plots)
% Without weather data from the WRF model
SetPaths
import mil.army.usace.knee.environ.*;
surfTemp = 20.0;
surfRelHum = 40.0;
surfSpecHum = convhum('relative', 'specific', surfRelHum, surfTemp);
windDir = 0.0;
windTypes = javaMethod('values',
 'mil.army.usace.knee.environ.AtmosSurfLayer$WindTypes');
windEnum = windTypes(4); % moderate wind
stabTypes = javaMethod('values',
 'mil.army.usace.knee.environ.AtmosSurfLayer$StabilityTypes');
stabEnum = stabTypes(4); % unstable
landCov = Landcover(NationalLandcoverDataset2001Types.GRASSLAND);
asl = AtmosSurfLayer(windEnum, stabEnum, landCov, windDir,
 surfTemp, surfSpecHum);
groundHgt = 0.0;
profHgt = logspace(-1, 2);
clouds = Clouds;
atmos = AtmosOneDim(profHgt, asl, landCov.getRoughHgt,

landCov.getDispHgt, clouds);
soil = Soil(FASSTSoilTypes.SAND_POOR_GRADED);
seis = SeismicVertProf(SolidIsoLinear(SolidIsoLinearTypes.

SAND_UNSAT));
env = EnvironVertProf(groundHgt, atmos, landCov, soil, seis);
CalcType = 5; % wide-angle parabolic equation
freq = 250;
zsrc = 5.0;
maxRange = 1000.0;
maxHgt = 0.2*maxRange;
thmesh = 0.0;
[rmesh, zmesh, pTL1, r_ray, z_ray, t_ray] = RunCalc(CalcType, env,

freq, zsrc, maxRange, maxHgt, thmesh, true, false, false, 1,
true);

PlotCalc([], rmesh, zmesh, pTL1, r_ray, z_ray, t_ray);
title('Without WRF')

% With weather data from the WRF model
SetPaths
import mil.army.usace.knee.environ.*;
env = EnvironVertProf(groundHgt, wrfFile, landCov, soil, seis);

% Using wrfFile instead of atmos
[rmesh, zmesh, pTL2, r_ray, z_ray, t_ray] = RunCalc(CalcType, env,

freq, zsrc, maxRange, maxHgt, thmesh, true, false, false, 1,
true);

PlotCalc([], rmesh, zmesh, pTL2, r_ray, z_ray, t_ray);
title('With WRF')

% Plotting the difference between simulations that include and
% do not include weather data from the WRF model
pTLdiff = pTL2 - pTL1;
PlotCalc([], rmesh, zmesh, pTLdiff, [], z_ray, t_ray, [],

[-20 20], 'TL Difference (dB)');
title('With WRF - Without WRF')

ERDC TR-19-1 92

Figure 13. Same as Fig. 12 but using atmospheric output from the
WRF weather model.

Figure 14. Difference in transmission loss (TL) between Fig. 13 and Fig. 12.

ERDC TR-19-1 93

8 Conclusion

This report has shown how EASEE can provide a powerful MATLAB
toolbox for creating representations of the atmosphere and terrain and for
calculating sound propagation based on these representations. This
toolbox is potentially useful for many projects involving acoustics and
noise control.

We described two general approaches, both of which involved using
EASEE to represent the propagation environment (atmosphere and ter-
rain): In one approach, we used EASEE to perform the sound propagation
calculations, while in the other, we used MATLAB. Both approaches are
potentially useful, depending on whether the user wishes to code their
propagation algorithms in Java or MATLAB.

We envision follow-ons to this effort in two main directions. First, the at-
mospheric representations are already being extended to 3-D, and it would
be desirable to have a library of sound propagation models that can per-
form calculations with these 3-D data. Second, toolboxes for other signal
modalities, such as radio frequency (RF), visible, and infrared (IR) propa-
gation could be created.

Overall, this MATLAB interface can be helpful for those would would like
to access the already numerous signal modeling capabilities of EASEE, and
its utility will continue to improve as more features are added to EASEE in
future versions.

ERDC TR-19-1 94

References
Attenborough, K., S. I. Hayek, and J. M. Lawther. 1980. Propagation of Sound over a

Porous Half-Space. Journal of the Acoustical Society of America 68 (5): 1493–
1501. https://doi.org/10.1121/1.385074.

Attenborough, K., S. Taherzadeh, H. E. Bass, X. Di, R. Raspet, G. R. Becker, A. Güdesen,
A. Chrestman, G. A. Daigle, A. L’Espérance, Y. Gabillet, K. E. Gilbert, Y. L. Li, M.
J. White, P. Naz, J. M. Noble, and H. A. J. M. van Hoof. 1995. Benchmark Cases
for Outdoor Sound Propagation Models. Journal of the Acoustical Society of
America 97 (1): 173–191. https://doi.org/10.1121/1.412302.

Di, X., and K. E. Gilbert. 1993. An Exact Laplace Transform Formulation for a Point
Source above a Ground Surface. Journal of the Acoustical Society of America 93
(2): 714–720. https://doi.org/10.1121/1.405435.

Eckel, B. 2006. Thinking in Java. 4th ed. Upper Saddle River, NJ: Prentice Hall.

Frankenstein, S., and G. G. Koenig. 2004. Fast All-Season Soil Strength (FASST).
ERDC/CRREL SR-04-1. Hanover, NH: U.S. Army Engineer Research and
Development Center.

Gilbert, K. E., R. Raspet, and X. Di. 1990. Calculation of Turbulence Effects in an
Upward-Refracting Atmosphere. Journal of the Acoustical Society of America
87 (6): 2428–2437. https://doi.org/10.1121/1.399088.

Gilbert, K. E., and X. Di. 1993. A Fast Green’s Function Method for One-Way Sound
Propagation in the Atmosphere. Journal of the Acoustical Society of America
94:2343–2352. https://doi.org/10.1121/1.407454.

Lihoreau, B., B. Gauvreau, M. Bérengier, P. Blanc-Benon, and I. Calmet. 2006. Outdoor
Sound Propagation Modeling in Realistic Environments: Application of Coupled
Parabolic and Atmospheric Models. Journal of the Acoustical Society of America
120 (1): 110–119. https://doi.org/10.1121/1.2204455.

Lowe, D., and B. Burd. 2007. Java All-in-One Desk Reference for Dummies. 2nd ed.
Indianapolis, IN: Wiley Publishing, Inc.

MathWorks. 2018a. How do I change the Java Virtual Machine (JVM) that MATLAB is
using on Windows? MATLAB Answers. Last modified 9 May 2018.
https://www.mathworks.com/matlabcentral/answers/130359-how-do-i-change-the-java-
virtual-machine-jvm-that-matlab-is-using-on-windows.

MathWorks. 2018b. How do I change the Java Virtual Machine (JVM) that MATLAB is
using on macOS? MATLAB Answers. Last modified 13 June 2018.
https://www.mathworks.com/matlabcentral/answers/103056-how-do-i-change-the-java-
virtual-machine-jvm-that-matlab-is-using-on-macos.

NCAR (National Center for Atmospheric Research). 2017. The Weather Research and
Forecasting Model. https://www.mmm.ucar.edu/weather-research-and-forecasting-model
(accessed 2 June 2017).

https://www.mathworks.com/matlabcentral/answers/130359-how-do-i-change-the-java-virtual-machine-jvm-that-matlab-is-using-on-windows
https://www.mathworks.com/matlabcentral/answers/130359-how-do-i-change-the-java-virtual-machine-jvm-that-matlab-is-using-on-windows
https://www.mathworks.com/matlabcentral/answers/103056-how-do-i-change-the-java-virtual-machine-jvm-that-matlab-is-using-on-macos
https://www.mathworks.com/matlabcentral/answers/103056-how-do-i-change-the-java-virtual-machine-jvm-that-matlab-is-using-on-macos
https://www.mmm.ucar.edu/weather-research-and-forecasting-model

ERDC TR-19-1 95

NCAR (National Center for Atmospheric Research). 2018. WRF Model Users’ Page.
http://www2.mmm.ucar.edu/wrf/users/ (accessed 26 December 2018).

Oracle. n.d. Java SE Downloads. http://www.oracle.com/technetwork/java/javase/downloads.

Perry, S. J. 2010. Introduction to Java Programming, Part 1: Java Language Basics,
Object-Oriented Programming on the Java Platform. IBM Developer.
https://www.ibm.com/developerworks/java/tutorials/j-introtojava1/index.html.

Plovsing, B. 2006. Nord2000. Validation of the Propagation Model. Delta Acoustics AV
1117/06. Hørsholm, Denmark: Danish Electronics, Light & Acoustics.

Rouse, M. 2014. Data Abstraction Layer. WhatIs.com. Newton, MA: TechTarget.
https://whatis.techtarget.com/definition/database-abstraction-layer.

Salomons, E. M. 1998. Improved Green’s Function Parabolic Equation Method for
Atmospheric Sound Propagation. Journal of the Acoustical Society of America
104 (1): 100–111. https://doi.org/10.1121/1.423260.

Salomons, E. M. 2001. Computational Atmospheric Acoustics. Dordrecht, the
Netherlands: Kluwer Academic.

Sierra, K., and B. Bates. 2005. Head First Java. 2nd ed. Sebastopol, CA: O’Reilly Media,
Inc.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y.
Huang, W. Wang, and J. G. Powers. 2008. A Description of the Advanced
Research WRF Version 3. NCAR/TN–475+STR. Boulder, CO: National Center
for Atmospheric Research.

Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. Boston: Kluwer
Academic Publishers.

Wilson, D. K., J. T. Kalb, N. Srour, T. Pham, and B. M. Sadler. 2002. Sensor Algorithm
Interface and Performance Simulations in an Acoustical Battlefield Decision
Aid. ARL-TR-2860. Adelphi, MD: U.S. Army Research Laboratory.

Wilson, D. K., R. Bates, and K. K. Yamamoto. 2009. Object-Oriented Software Model for
Battlefield Signal Transmission and Sensing. ERDC/CRREL TR-09-17. Hanover,
NH: U.S. Army Engineer Research and Development Center.

Wilson, D. K., and K. K. Yamamoto. 2014. Environmental Awareness for Sensor and
Emitter Employment (EASEE): Software Design Version 2. ERDC/CRREL TR-
14-27. Hanover, NH: U.S. Army Engineer Research and Development Center.

Wilson, D. K., C. L. Pettit, and V. E. Ostashev. 2015. Sound Propagation in the
Atmospheric Boundary Layer. Acoustics Today 11 (2): 44–53.

http://www.oracle.com/technetwork/java/javase/downloads
https://www.ibm.com/developerworks/java/tutorials/j-introtojava1/index.html

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display
a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

January 2019
2. REPORT TYPE

Technical Report/Final
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Using EASEE’s Acoustical Calculations in MATLAB

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62784/T40/46

6. AUTHOR(S)

D. Keith Wilson, Ross E. Alter, Katrina M. Burch, and Michelle E. Swearingen

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
 NUMBER

U.S. Army Engineer Research and Development Center (ERDC)
Cold Regions Research and Engineering Laboratory (CRREL)
72 Lyme Road
Hanover, NH 03755-1290

ERDC TR-19-1

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Headquarters, U.S. Army Corps of Engineers
Washington, DC 20314-1000

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

ERDC 6.2/6.3 Military Engineering (ME) RAFTER

14. ABSTRACT

EASEE (Environmental Awareness for Sensor and Emitter Employment) is a Java-based software framework for modeling the impacts
of the weather and terrain on signal propagation and sensor performance. EASEE includes extensive capabilities for representing the
environment (atmosphere, land cover, terrain elevation, and soil properties), along with many different models related to acoustic,
optical, radio frequency, and seismic signals. This report describes how to run EASEE from MATLAB, which is a popular software
package for performing numerical calculations and displaying graphics. For this purpose, a simple installation configuration and
MATLAB script were devised to set up and initialize EASEE. The focus of the report is on using EASEE for acoustic propagation
calculations, which is its most mature signal modality. The report describes two general approaches to performing acoustical
calculations in EASEE: one that involves using EASEE for its environmental representation only and then running the acoustic
propagation calculation using a MATLAB toolbox and a second that uses EASEE for both its environmental layer and the acoustical
calculation. Overall, this report shows that the MATLAB user interface provides convenient access to EASEE’s powerful signal
modeling capabilities.

15. SUBJECT TERMS
EASEE (Computer program), Computer software, Detectors--Environmental aspects, Detectors--Computer simulation,
Remote sensing--Atmospheric effects, Digital communications
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified SAR 106
19b. TELEPHONE NUMBER (include
area code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

	Abstract
	Figures and Tables
	Preface
	Acronyms and Abbreviations
	1 Introduction
	1.1 Background
	1.1.1 What is EASEE?
	1.1.2 EASEE software design and capabilities

	1.2 Objective
	1.3 Approach

	2 Preliminaries
	2.1 Installing the EASEE files
	2.2 Changing the MATLAB JVM to Java 8

	3 Running EASEE
	3.1 Getting started
	3.2 Verifying the installation
	3.3 Simple example
	3.4 Some useful background
	3.4.1 A very brief introduction to Java
	3.4.2 Running Java from MATLAB
	3.4.3 Importing packages and classes
	3.4.4 Conversion of data types
	3.4.5 The MATLAB disp command
	3.4.6 Java enumerations and inner classes

	4 Geographic Coordinates, Grids, and Elevation Maps
	4.1 Geographic coordinates
	4.2 Geographic grids
	4.3 Digital elevation, surface, land cover, and soil grids

	5 Environmental Representations
	5.1 Atmospheric constants and conversions
	5.2 Environmental components
	5.2.1 Humid air representation
	5.2.2 Solid-earth representation
	5.2.3 Land cover representation
	5.2.4 Soil representation
	5.2.5 Snow representation
	5.2.6 Atmospheric surface layer
	5.2.7 Atmospheric vertical profiles
	5.2.8 Clouds
	5.2.9 Seismic vertical profiles

	5.3 Environmental representations
	5.3.1 Homogeneous environment
	5.3.2 Vertical profile environment

	5.4 Loading WRF Data
	5.4.1 Single WRF Output File
	5.4.2 Multiple WRF output files

	6 Acoustic Propagation Calculations
	6.1 Standard acoustic frequencies
	6.2 AcousticMedium class
	6.3 Calculation grids
	6.4 Impedance-plane model
	6.4.1 Flat ground
	6.4.2 Uneven ground

	6.5 Parabolic equation methods
	6.6 BNOISE
	6.7 Nord2000
	6.8 MATLAB acoustic propagation interface

	7 Full Example Script for Testing EASEE in MATLAB
	8 Conclusion
	References

