Cia

PERFORMANCE OF SOILS UNDER TIRE LOADS

Report 3

TESTS IN CLAY THROUGH NOVEMBER 1962

Ьу

R. D. Wismer

February 1966

Sponsored by

U. S. Army Materiel Command Project No. 1-V-0-21701-A-046 Task 03

Conducted by

U. S. Army Engineer Waterways Experiment Station CORPS OF ENGINEERS

Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS.

17558342

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TA7 ₩34 No.3-666 Rept. 3 Cop. 2

FOREWORD

This report concerns tests with pneumatic tires in a fat clay conducted at the U. S. Army Engineer Waterways Experiment Station (WES) as a part of the vehicle mobility research program under DA Project L-V-O-21701-A-046, "Trafficability and Mobility Research," Task L-V-O-21701-A-046-03, "Mobility Fundamentals and Model Studies," under the sponsorship and guidance of the Directorate of Research and Development, Headquarters, U. S. Army Materiel Command.

Acknowledgment is made to Lt. Gen. A. G. Trudeau, former Chief of Research and Development, who directed that this test program be performed; to Mr. R. C. Kerr, chairman, and Dr. Lester Goldsmith, Dr. L. C. Stuart, Dr. Robert S. Rowe, and Mr. C. J. Nuttall, members of the ad hoc committee which recommended the research program; and to Messrs. R. R. Philippe and R. F. Jackson, U. S. Army Materiel Command, and Mr. M. V. Kreipke, Office, Chief of Research and Development, who advised in the formulation of the research procedures. Personnel of the Land Locomotion Laboratory (LLL), U. S. Army Tank-Automotive Center, and of the U. S. Army Transportation Research Command (TRECOM), Fort Eustis, Virginia, maintained liaison and made valuable comments and suggestions. Messrs. C. J. Nuttall and C. W. Wilson of Wilson, Nuttall, Raimond, Engineers, Inc., served as consultants and aided in the formulation of the test program, design of the test equipment, and analysis of data.

The tests were performed by personnel of the Army Mobility Research Branch (AMRB), Mobility and Environmental Division, WES, during the period from September 1961 to November 1962. Data from certain additional tests, performed through June 1963, have been incorporated in the

iii

analysis also. The test program was under the general supervision of Messrs. W. J. Turnbull, W. G. Shockley, and S. J. Knight, and the direct supervision of Dr. D. R. Freitag and Mr. J. L. McRae. Engineers actively engaged in the study were Messrs. C. J. Powell, R. D. Wismer, A. B. Thompson, J. L. Smith, and Sp4 J. R. Wood. This report was written by Mr. Wismer, and many of the plates and figures were prepared by Sp4 Wood.

Col. Alex G. Sutton, Jr., CE, and Col. John R. Oswalt, Jr., CE, served as Directors of the WES during the course of this study and preparation of this report. Mr. J. B. Tiffany was Technical Director.

CONTENTS

																		•													Page
FOREW	IORD	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•		•	iii
SUMM	RY		•••	•	• •			•		•	•				•	•	•		•	•	•	•			•	•	•		•	•	vii
PART	I:	IN.	FROI	DUC	TIO	N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	Bac Pur Sco Det	cpo cpo pe fin:	rou se iti	nd	• • • • • •	• • •	• • •	• • •	• • •	•		•	• • •	• • •	• • •	• • •	•		•	• • •	•	• • •	• • •		• • •	• • •	• • •	•	• • •	• • •	1 2 2 2
PART	II:	TI	EST	PR	OCE	DUI	RES		•	•	•	•	•	•	•	•	•		•	•	•		•		•	•	•	•		•	3
	Soi Mea Pro	ll asui ogra	reme ame	ent 1-S	of lip	Sc Cc	oil omp	. S	tr ed	en l t	igt	h Cc	• wi	th	i t	:he ; - S	e C 31i	or p	• ne ar	∙ P€ 1d	ene To	• eti owe	ron ed	∙ net T€	est	• ; D)at	La	•	• • •	3 7 9
PART	III:	; 1	ANA]	LYS	IS	OF	WH	EE	L	PE	RF	٥F	RMA	NC	Έ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
	Tov Pov Efi Efi	ved vere fec ⁻ fec ⁻	Whe ed V t o: ts (eel Whe f S of	el pee Rep	d d eti	on iti	Pe ve	erf e T	'or 'ra	me uf f	inc Cic	ee	• • •	• • •	• • •		•					• • •	• • •	• • •		• • •	• • •		• • •	11 14 22 23
PART	IV:	C	ONC]	LUS	ION	S A	AND	F	REC	OM	1MF	END	PA	'IC	NS	5	•		•	•	•	•	•	•	•	•	•	•		•	25
	Cor Red	1clu 20mr	usi nen	ons lat	ion	s	•	•	•	•	•	•	•	•	•	•	•				•	•			•	•	•	•	, .	•	25 25
LITER	RATUI	<u>R</u> E (CITI	ED		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
		_																													

TABLES 1-7

PLATES 1-21

v

· •

SUMMARY

This report analyzes the results of 184 multiple-pass tests with a single, smooth, pneumatic tire (9.00-14, 2-PR) in a fat clay at a high degree of saturation. These tests were performed using a wide range of tire loads, tire deflections, and soil strengths. Some of the tests were conducted to study the influence of speed on performance.

Basic plots of the data (one dependent versus one independent variable with all other independent variables held constant) show the relative effect of each independent test variable on tire performance. Scatter of the pull and torque data points was found to be quite large for the early tests. An examination of the data showed that a difference in soil strength between the soil surface and the remainder of the soil mass was the probable cause of the scatter. Improvement in soil processing techniques subsequently produced more uniform soil conditions and virtually eliminated this scatter in the later tests.

A simple static analysis was found adequate to represent the forces and moments on a towed or powered pneumatic tire operating at small sinkages in a soft clay.

PERFORMANCE OF SOILS UNDER TIRE LOADS

TESTS IN CLAY THROUGH NOVEMBER 1962

PART I: INTRODUCTION

Background

In May 1959, the Chief of Research and Development, Department 1. of the Army, directed the Office, Chief of Engineers, to have the U.S. Army Engineer Waterways Experiment Station (WES) proceed with the investigation outlined in the "Plan of Tests, Performance of Soils Under Tire Loads," prepared jointly by LLL, TRECOM, and WES. The broad purpose of this project is to provide results that will point the way to the selection of the proper tire size and deflection for a given load and soil condition to achieve a specified degree of mobility. The study was initiated immediately, using a system composed principally of a singlewheel dynamometer system and a series of movable soil bins. Test techniques were developed to vary the wheel slip during a run so as to allow the towed, self-propelled, and maximum pull conditions to be defined within the usable length of the soil bins. A desert sand and an alluvial clay were selected as principal test soils, and procedures were developed for filling the bins so that the soils would be in a reasonably consistent and uniform state. A series of tires with different widths, diameters, cross sections, and structural characteristics were procured for testing. The details of the test plan, techniques, and equipment employed are given in Report 1 of this series. 1*

2. The testing program was begun with desert (Yuma) sand as the test soil. An analysis of the first-pass performance of a number of tires in the sand is presented in Report 2.² This analysis showed that tire width, tire deflection, load, and the strength of the soil systematically influenced the performance of the tire. Several useful numerics were developed that combined these factors.

^{*} Raised numbers refer to similarly numbered items in the Literature Cited following the text of this report.

Purpose

3. The tests reported herein are part of the comprehensive study of the interrelation of soft soils and pneumatic tires. The specific objectives of the tests were to:

- a. Gain experience in building soft, fine-grained soil test sections and conduct tests in these sections with pneumatic tires.
- b. Determine for one tire size the influence of the test soil, tire load, and deflection on the performance of the tire.
- <u>c</u>. Study the interrelation of the moments, forces, and displacements that can be measured as a pneumatic tire travels on a yielding soil.

Scope

4. The test program consisted of conducting 184 multiple-pass tests with a single tire (9.00-14, 2-PR) in highly plastic clay. Pertinent data on the test tire are given in table 1. Load and deflection of the tire were varied over a wide range, and soil strength conditions ranged from very soft to very firm. Some tests were conducted to study the influence of speed on performance.

Definitions

5. Certain terms used in this series of reports are unique to this study, while others are considered unique to this field of research. To facilitate the analysis of the data and the communication of the test results, these terms were rigidly defined in Report 1 of this series.¹

PART II: TEST PROCEDURES

Soil

6. A fine-grained soil has shear resistance because of interparticle attraction and friction. For a fine-grained soil of given mineralogy, interparticle attraction is solely dependent on particle spacing, while interparticle friction is dependent on effective stress and deformation. When a load is applied to a saturated, fine-grained soil, the shear resistance can increase only if the interparticle spacing decreases or the effective interparticle stresses increase. Neither of these events can occur in a saturated, fine-grained soil unless some water is expelled from the soil mass. Thus, the shear resistance of a saturated, finegrained soil is independent of the magnitude of the applied load when said soil is loaded under conditions that do not allow drainage of the pore water. In other words, the soil-water system described behaves as a material with a zero angle of internal friction.

7. Fine-grained soils that cause serious difficulty for vehicles usually are saturated or nearly so. A moving vehicle loads the soil at any one place for only a short time, insufficient to cause significant migration of the water from the highly stressed zones under the vehicle. Thus, the strength of such a fine-grained soil is not enhanced by the vehicle load, and in fact, sensitive or highly remoldable soils may undergo strength decreases due to destruction of a favorable soil particle arrangement.

Soil processing techniques and properties of test soil

8. The soil used in this test program was an extremely nonsensitive fat clay, selected mainly because it was expected to retain its strength characteristics under load when it was saturated or nearly saturated. Laboratory testing³ had shown this soil to behave as a load-independent material when its degree of saturation exceeded about 90 percent. Full-scale compaction studies^{4,5} had shown that 90 percent saturation could be achieved by compacting the loose soil-water mixture with rubber-tired rollers. Therefore, a rubber-tired roller was adopted for use in

processing soil, and one of the criteria for adequacy of the soil test section was the attainment of a minimum of 90 percent saturation. A description of the mixing and compacting technique is contained in Report 1 of this series.

9. The degree of saturation actually achieved in the soil cars is shown by the saturation lines superimposed on the data in plate 1. Test procedures were modified after test Cll2 as explained in paragraphs 12-14 and the symbols in the plates distinguish between the initial tests (C7 to Cll2) and selected later tests through C268. Soil layers (0 to 6 in. and 6 to 12 in.) are also distinguished. With only a few exceptions, saturations between 90 and 100 percent were achieved. The overall mean was 95 percent. The stability or degree of load dependence of the soil under repeated passes of the wheel is illustrated by the data presented in plate 2. In this plate, the values obtained from several different types of soil measurements before traffic are compared with similar measurements made after traffic. (In this report, traffic denotes passes of a single wheel over the test soil.) Results from test sections with reasonably uniform initial soil-strength profiles are shown because the before-traffic and after-traffic measurements were represented by different layers in the soil cars (e.g. the zero depth in an after-traffic measurement was the surface of a rut). It is apparent that there was no consistent or significant increase or decrease with traffic in any of these soil strength-determining properties when the degree of saturation was approximately 95 percent.

10. The effectiveness of the soil-processing techniques in producing a load-independent soil condition over the desired range of strengths is further shown by the typical results of unconsolidated-undrained triaxial tests in plate 3. Three levels of strength that span the full range of test conditions are represented. The cone indexes, taken near the points in the test.soil from which the triaxial samples were extracted, are recorded within each Mohr circle, with the exception of the high-strength condition for which only a soil-car average was available. It should be noted that the existence of an apparent friction angle is questionable for the low- and medium-strength soils. These data agree very well with results of previous tests on laboratory-prepared samples.³ It is believed

that the techniques used in preparing the soil test sections for this study provided soil conditions that were essentially load independent. Uniformity of soil

11. <u>Variation limits</u>. When testing was begun, it was not known how uniform the test sections should be to provide consistent test results, nor precisely what degree of uniformity could be achieved with the processing techniques at hand. Somewhat arbitrarily, therefore, it was established that the goal of soil processing was to limit moisture content variation to <u>+1</u> percent and dry density to <u>+1</u> pcf and to obtain a cone index profile that did not show any marked change in cone index with depth (average slope of the cone index versus depth curve less than 1.5). In addition, the acceptable variation in cone index between any two of the three cone penetrations performed in the test lane at any depth within the 0- to 6-in. layers was generally limited to 20 percent of the 0- to 6-in. average cone index of the three penetrations. A summary of the soil data obtained for the tests is given in table 2.

12. Limits exceeded. An example of the soil measurements that were obtained in some of the early tests is shown in plate 4. It can be seen that certain variations exceeded the limits proposed. Two features in particular were objectionable: the occurrence of surface soil water contents that diverged from the mean, and a marked soil-strength gradient. Both features tended to reduce the probability that a simple average of strength measurements made in the soil test section reflected the conditions that actually influenced the tire behavior in a test. Consequently, in later tests greater effort was expended to obtain more uniform soil conditions and especially to reduce the extent to which the surface characteristics were different from those of the rest of the soil mass.

13. Improvements in techniques. Prior to test Cll3, soil cars were sprinkled with water at the end of each day. With the start of test Cll3, watering of the cars was reduced to a maximum of twice a week and was done then only if the surface of the clay appeared to be dry. The clay was not wetted within 2^{14} hr of the beginning of a test. In addition, just prior to a wheel test, the top 1/2 in. of the soil was trimmed off with a blade attached to the soil-processing truck.

14. Because of the improvement in test controls, more reliability

was placed on the traction results of the clay tests after Cll2. For this reason, the wheel tests from C7 through Cll2 will be referred to as the "initial" tests and denoted by open symbols on the data analysis plots, while those after Cll2 will be referred to as the "later" tests and will be denoted by closed symbols on the data plots. However, even in the later tests, inexplicable deviations from the general trend of results were encountered.

Effect of nonuniformity of soil

15. As a working hypothesis, it is considered that the force required to tow a wheel results primarily from energy losses expended in deforming a soft soil. Thus, in a soft soil, towed force is dependent more on the mass properties of the soil than on the surface properties. This hypothesis is in accord with current concepts of rolling friction. On the other hand, the traction that a powered wheel develops, especially a smooth, pneumatic-tired wheel, appears to depend significantly upon surface conditions. Thus, if the soil strength near the surface is different from that within the mass, the performance of a powered wheel probably will be influenced more by surface properties than by mass properties.

16. To illustrate the relative importance of surface and mass soil properties, certain first-pass data from two tests using the 9.00-14, 2-PR tire with an 890-lb load and 35 percent deflection were assembled:

	Test <u>C34</u>	Test <u>C119</u>
Moisture content (0- to $1/4$ -in.), %		34
Moisture content (O- to l-in.), $\%$	24J	38
Moisture content (0- to 6-in.), $\%$	39	40
Cone index (surface)	32	40
Cone index (0- to 6-in.)	42	39
Towed force, 1b	47	52
Pull at 20% slip, lb	128	446

17. The moisture content and cone index data obtained in the 0- to 6-in. layer were about the same in the two tests. The towed forces likewise were nearly identical. However, there was a big

difference in pulls achieved at 20 percent slip. The moisture content data for test $C3^{l_1}$ showed that oversprinkling of the soil surface had caused a significant increase in moisture in the O- to l-in. layer. Corresponding data for test Cll9, one of the first in which surface sprinkling had been reduced, showed the moisture content in the O- to l-in. layer to be significantly lower than that in the O- to 6-in. layer. The low moisture content in the top 1/4 in. should also be noted. The cone indexes corroborate the moisture content data. Therefore, the causes for the marked difference in the pull at 20 percent slip and the close agreement of the towed force measurements seem clear.

18. While these data represent rather extreme examples, they nevertheless indicate that surface conditions must be recognized in the analysis of the pull data. Examination of the data for approximately the first 100 tests indicated that a surface soil effect on traction was clearly present in the tests. The effect was predominantly a lowering of the torque and pull values because of the excessive wetness of the surface, but in some instances, there was an increase in traction because of dry surface soil. The preparation techniques instituted for the later tests lessened, but apparently did not completely eliminate, the problem of maintaining consistent soil properties throughout the soil mass.

Measurement of Soil Strength with the Cone Penetrometer

Effect of shaft drag

19. Cone penetrometer tests were performed at three evenly spaced points in the test lane before traffic and at specified intervals during traffic. Cone index is computed as the unit pressure on the base of the cone but is not regarded as shear strength or bearing capacity, per se. One of the several advantages of the cone penetrometer is its ability to make measurements at various depths below the surface. In making measurements in soft clay prior to the first tire tests, it was found that the cone indexes increased with depth, whereas from the concepts outlined in paragraphs 6-10 there should have been no appreciable change in soil strength. The increase in cone index apparently occurred because the soft soil closed in on the penetrometer shaft and thereby added to the

penetration resistance. The resulting shaft drag was dependent on the relative diameters of the cone and the shaft, the surface area of the shaft in contact with the soil, and the cohesive strength of the soil (for a soil-to-soil failure along the shaft) or the adhesive strength of the soil (for a metal-to-soil failure along the shaft).

20. The penetrometer used for these pretest measurements had a cone with a 1/2-sq-in. base area (about 0.8 in. in diameter) mounted on a 5/8-in.-diameter shaft. The influence of different relative shaft-cone sizes was studied by making several cone penetrometer tests in both low-and high-strength clay using different sizes of cones and shafts. The cone and shaft dimensions of the different penetrometers employed were as follows:

Cone	Shaft	Cone	Shaft	Soil-Shaft
Base Area	Diameter	Radius	Radius	Clearance
sq in.	<u>in.</u>	in	<u>in.</u>	in.
1/2	5/8	-0.399	0.312	0.087
1/2	3/8	0.399	0.188	0.211
1.	. 5/8	0.565	0.312	0.253

Typical examples of the cone index profiles obtained in two soil-strength conditions with these penetrometers are presented in plate 5. It is apparent from these profiles that shaft drag occurred only on the 1/2-sq-in. cone with the 5/8-in.-diameter shaft and that the drag was more pronounced in the lower strength condition. It appears that the clay around the penetrometer hole moved inward radially an amount greater than the soil-shaft clearance of the 5/8-in.-diameter shaft, but less than that of the 3/8-in.-diameter shaft.

Effect of cone size

21. In tests C7 to C123 it was found expedient to use the l-sq-in. cone with the 5/8-in.-diameter shaft to eliminate shaft drag as well as to guard against the possibility of obtaining erroneous readings due to shaft bending. However, later in the testing program, it was found possible to avoid both shaft drag and bending with the 1/2-sq-in. cone with the 3/8in.-diameter shaft. Consequently, starting with test C124, the 1/2-sq-in. cone with the 3/8-in.-diameter shaft was adopted as the standard penetrometer for clay tests because of the mass of field data that has been

acquired over the past years with this particular cone size.

22. The two sizes of cones used did not give exactly the same evaluation of a soil condition. From the previously mentioned comparative penetrometer tests, it was found that the 1-sq-in. cone yielded cone indexes that were approximately 95 percent as high as those determined by the 1/2-sq-in. cone. Thus, the clay test data for the 9.00-14, 2-PR tire include cone indexes determined by two different cone sizes exhibiting no shaft drag but with a definite effect of cone size. The relation between the two sets of cone indexes is not perfectly linear; however, the effect of a 5 percent difference was so small that the cone indexes determined by the two different cone sizes have been considered equal in this report.

Programed-Slip Compared to Constant-Slip and Towed Test Data

23. The tests performed in the study were mainly of the programedslip type.¹ The programed-slip technique, which allows the test wheel to go through a broad range of slips in a single pass, permits information to be gathered in one test that would otherwise require six or seven constantslip and towed tests. However, if data from the programed-slip tests are to be accepted, they must be shown to be the same as for the equivalent constant-slip and towed tests.

24. Eighteen towed wheel and 27 constant-slip tests were performed with the 9.00-14, 2-PR smooth tire, representing essentially the complete range of loads, deflections, and soil strengths considered. The data are listed in tables 3 and 4, respectively. The towed wheel tests are identified by the letter T in table 3. Relevant pull data from these tests were compared with data determined at the towed (table 3) and 20 percent slip (table 5) points of equivalent programed-slip tests in plate 6. Since corresponding data for identical soil strengths were seldom available, towed force and pull at 20 percent slip for the programed-slip tests were obtained from faired curves relating these measurements and the independent test variables (plates 7 and 8). The resulting comparisons (plate 6) show some scatter about the l:l line, but appear to be commensurate with that experienced in the basic tests. As indicated in fig. a

of plate 6, one constant-slip test (C94, table 4) produced negative pull (-14 lb), while the faired line on plate 8 from programed-slip tests indicated a positive pull (+40 lb). However, if the 0- to 6-in. cone index of test C94 were 18 instead of the recorded 19, the corresponding pull at 20 percent slip from the faired curve would be -20 lb, thus yielding a good correlation with the pull measured in the constant-slip test. It was concluded that programed-slip tests furnish essentially the same values of pull at the towed and 20 percent slip points as the constant-slip and towed tests.

PART III: ANALYSIS OF WHEEL PERFORMANCE

Towed Wheel

Towed force

25. The force required to tow a wheel through the soil under the specified test conditions is considered to be the primary criterion of towed-wheel performance. The relations of towed force for a 9.00-14, 2-PR tire in clay to soil strength, load, and tire deflection are summarized in plate 7. It can be seen that towed force varied with changes in these independent parameters in an orderly fashion. The towed force increased as soil strength decreased, as tire deflection decreased, and as load increased. The scatter present in the various plots in plate 7 is not considered unreasonable. The maximum variation in towed force between two supposedly identical tests at high strengths was 15 lb, assuming all other measurements to be exact. At low strengths, the variation appears quite large, but here the relation was extremely sensitive to small differences in soil strength and a variation of only one or two cone index units could account for much of the observed scatter. Since all the data were for a single tire, no information was obtained on the influence of the overall tire dimensions on performance. The only factors evaluated were load, soil strength, and tire deflection; and the range of these was limited.

26. Load. The effect of load (W) on performance was studied by comparing the ratio of towed forces (P_T) obtained at two different loads (at one soil strength and tire deflection) with the ratio of the two loads. For example, if the towed force was 170 lb at an 890-lb load and under the same test conditions was 22 lb at 340-lb load, the load ratio is 890/340 = 2.6, and the towed force ratio is 170/22 = 7.7. Several such comparisons were made using data representing performance at 25 and 40 cone index from the faired curves in plate 7. These cone indexes were chosen because the curves of plate 7 usually were best established in those regions and because the towed forces were comparatively high. No towed force less than 6 lb was considered because a few pounds change could cause a large change in the towed force ratio. These comparisons

are shown in plate 9, and the data are listed below. The curve drawn suggests that towed force varies as a power of the load. For the data shown, the relation appears to fall about the line $\frac{P_{T_1}}{P_{T_2}} = K \left(\frac{W_1}{W_2}\right)^2$.

	Load and	Towed For	rce (Fair	ed Value	s)	
Deflection	W_ <u>1.</u>	W2	P _T	P _{T2}	W1 W2	PT1 PT2
	,	25 Con	le Index			
15 15 15 15 15 15 15 15 15 15 15	890 890 890 670 670 455 455 340	670 455 340 225 455 340 225 340 225 225	170 170 170 95 95 95 40 40 22	95 40 22 10 40 22 10 22 10 10	1.33 1.95 2.62 3.96 1.47 1.97 2.98 1.34 2.02 1.51	1.79 4.25 7.73 1.70 2.38 4.33 9.50 1.82 4.00 2.20
25 25 25 25 25 25 25	1330 1330 1330 890 890 670	890 670 455 670 455 455	305 305 305 128 128 73	128 73 33 73 33 33 33	1.50 1.99 2.92 1.33 1.95 1.47	2.36 4.18 9.25 1.75 3.88 2.21
35 35 35 35 35 35 35	1020 1020 1020 890 890 720	890 720 455 720 455 455	109 109 109 78 78 46	78 46 18 46 18 18	1.15 1.41 2.24 1.24 1.95 1.58	1.40 2.37 6.05 1.69 4.33 2.55
		<u>40 Con</u>	e Index			
15 15 15	890 890 670	670 455 455	100 100 45	45 16 16	1.33 1.95 1.47	2.22 6.25 2.82
25 25 25	890 890 670	670 455 455	50 50 28	28 12 12	1.33 1.95 1.47	1.78 4.17 2.33
35 35 35 35 35 35 35	1020 1020 1020 890 890 720	890 720 455 720 455 455	58 58 58 45 45 25	45 25 12 25 12 12	1.15 1.42 2.25 1.24 1.95 1.58	1.29 2.32 4.38 1.80 3.76 2.08

27. <u>Soil strength and deflection</u>. In principle, a similar analysis could be made of the effect of soil strength and tire deflection on performance. However, since some of the curves are quite flat over much of the range of cone index and since the influence of tire deflection on towed force is not well defined by these preliminary data, this analysis will be deferred until additional data can be obtained.

Sinkage

28. No special equation has yet been developed to determine the sinkage, i.e. the maximum penetration of any point on the test tire into the clay, although it is possible that the expression used in the tests on sand* may be applicable. For the clay reported herein, sinkage was computed as the depth of penetration of a point on the tire surface directly beneath the axle, a value which is relatively easy to obtain from the oscillograph record. Since the maximum penetration of a deflected tire occurs a few degrees behind the axle, the sinkage computed in this manner is somewhat less than the maximum sinkage.² However, examination of the detailed sinkage data showed that the error occasioned by use of the simplified method seldom exceeded 1/4 in. and was that large only when the sinkage was relatively large.

29. The relation of sinkage of towed wheels to the primary test parameters for the 9.00-14, 2-PR tire in clay is shown in plate 10. The similarity between these curves and those representing towed force relations (plate 7) is apparent. This similarity leads, quite naturally, to a direct correlation of sinkage and towed force. Plate 11 shows a grouping of all test data obtained by plotting the ratio of towed force to load against the towed sinkage. It is of some interest to note that it was necessary to use the force/load ratio to obtain a single curve. This makes the plot dimensionless, since the other factor, diameter, was

*
$$z = \frac{2H}{H^2 + (\delta_{MH} + H)^2}$$

where z is sinkage, H is the hub movement, and δ_{MH} is the maximum center-line deflection of the tire on an unyielding surface.²

constant. When the towed force alone was plotted, the data tended to separate on the basis of the load employed. It is thought that this resulted from the different requirement of units when plotted in a dimensional form (i.e. sinkage in inches and towed force in pounds). While considerable scatter still was evident, the relation was considered to be essentially correct since no special trends were noted. It is possible that much of the variation experienced arose from the sinkage approximation, and, at small sinkages, from energy losses in the tire deflection, resilient soil deflections, slip, and other factors unaccounted for in the analysis.

Powered Wheel

Powered-wheel force systems

30. A representation of the forces acting on a powered wheel is shown in fig. 1. The load on the wheel is represented by the force W acting vertically downward through the axle. With the direction of travel from left to right as shown, the input torque, M, acts clockwise

Fig. 1. Theoretical force system

with respect to the axle, 0. The output pull is represented by the force P acting horizontally through the axle in the direction opposite to travel. The soil reactions are represented by the forces H, V, and T. The horizontal force, H, and the vertical force, V, are considered to be the components of the resultant of the forces acting normal to the wheel surface. The force T is the traction resulting from soil shear stresses.

31. <u>Static equilibrium</u>. To be in static equilibrium, the forces acting on the powered wheel must satisfy the following equations.

Sum of the horizontal forces must equal zero:

$$\Sigma F_{H} = -P - H + T \cos \eta = 0$$

or

$$T = \frac{P + H}{\cos \eta}$$
(1)

Sum of the vertical forces must equal zero:

$$\Sigma F_{V} = V + T \sin \eta - W = 0$$

 or

$$\Gamma = \frac{W - V}{\sin \eta}$$
(2)

Sum of the moments must equal zero:

 $\Sigma M_{O} = M + Hy - Vx - Tr_{O} = O$

or

$$T = \frac{M + Hy - Vx}{r_{e}}$$
(3)

32. The forces P and W are measured by the test apparatus, and their lines of action are known. The moment, M, is also known from the test measurements. However, the magnitude and the line of action of the soil reactions, H, V, and T, are not known from the data measured during a normal test. Special tests in which measurements are made of soil stresses are being conducted, but the results are incomplete. However, these data indicate that, with good approximation, it can be assumed that the resultant of H and V passes through the axle center line; thus, it can be stated that the moments due to H and V are equal in magnitude but opposite in sign and, therefore, cancel each other. Equation 3 then becomes:

$$T = \frac{M}{r_e}$$
(3a)

33. The line of action of the resultant shear force (T) would be parallel to a line drawn between the initial and the final points of tiresoil contact if it is assumed that the same shear force per unit of area exists at all points on the tire-soil interface. However, the tire-soil interface is not a straight line as shown, and the shear stress is not uniform but increases generally with depth. The actual resultant shear, therefore, is not parallel to the straight line but probably makes a smaller angle (η) with the horizontal. The effective moment arm, r_e , is probably not greatly different from the deflected radius of the tire, r_d , especially at small sinkages. At small sinkages, the angle η probably approaches zero, as well. If it is assumed that $\eta = 0$ and $r_d = r_e$, equation 3a becomes

$$T = \frac{M}{r_d}$$
(3b)

Then, combining this with equation 1 and, for simplicity, letting the deflected radius be the undeflected radius, r_u , minus the maximum in-soil deflection, δ_{MS} , at the particular dynamic condition to be considered, the equation becomes

$$\frac{M}{r_u - \delta_{MS}} = P + H$$
 (4)

This approximation, depicted in fig. 2, is considered to be reasonably valid for small sinkages, and it has been used to assist in the analysis of powered-wheel traction.

34. Self-propelled point. At the self-propelled point, all the

Fig. 2. Simplified force system. Assume $r_e = r_u - \delta_{MS}$ and $\eta = 0$

tractive effort that a wheel develops is expended in overcoming motion resistance, i.e. P = 0. If, in addition to the assumptions stated in the previous paragraphs, the towed force is considered to approximate the motion resistance at the self-propelled point, i.e. $P_T = H_{sp}$, equation ¹/₄ becomes

$$P_{\rm T} = \frac{M_{\rm sp}}{(r_{\rm u} - \delta_{\rm MS})_{\rm sp}}$$
(5)

where M_{sp} is the torque at the self-propelled point. This added approximation probably will be reasonably good for tests in which the sinkage is about the same at both the towed point and the self-propelled point.

35. Test data for the self-propelled condition are given in table 6. The relation of towed force to the ratio of torque at the self-propelled point and deflected radius is evaluated in plate 12. The correlation is quite good as demonstrated by the close agreement between the data points and the line representing 1:1 relation. The scatter is well within the probable experimental error. The sinkage at the self-propelled point in all tests used in the plot was 1.5 in. or less.

36. On a typical pull-slip curve for a pneumatic tire operating in clay (fig. 3), the pull does not reach a definite maximum except possibly at a very high slip. Thus, it was necessary to choose a particular dynamic condition in the positive pull region in order that pulls could be compared. A specific slip condition was chosen because the same velocities, both absolute and relative (between tire and soil), then exist in each test. Several specific slip points (20, 40, and sometimes 60 and 80 percent) were evaluated in each test. In the analyses, primary consideration was given to the 20 percent slip condition (table 5) because this slip is large enough to develop 80 and 90 percent of the extrapolated pull at 100 percent slip and yet small enough for the wheel to operate at a reasonably high efficiency.

37. The pull at 20 percent slip (P_{20}) developed by the 9.00-14, 2-PR tire operating in fat clay is shown in relation to percent deflection, load, and soil strength in plate 8. The faired curves in this and all succeeding plots depicting pull give primary consideration to the later test results.

This plate shows that the pull at 20 percent slip increased with increasing soil strength (cone index) and increasing deflection, and that these increases were nonuniform. The effect of load on pull was not as clearly defined and appeared to vary with both soil strength and tire deflection.

38. Effect of soil strength. The rate of change of pull with respect to soil strength varied from very large at the lower cone indexes to very small at the higher cone indexes for all loads and all deflections (plate 8). The largest rate of change was in the low cone index region for 35 percent deflection condition. The data suggested two critical soil strengths in relation to pull development, one at 20 and the other at 60 cone index. Below 20 cone index, the decrease in pull per unit decrease in cone index was rapid. In fact, all test conditions for which the soil strength was 15 cone index or less and surface contact pressure was in excess of 7 psi failed to produce positive pull. Above 60 cone index, there was little increase in the pull at 20 percent slip, regardless of load-deflection condition. In the 20 to 60 cone index range, there was a general increase in pull development with increasing cone index, but the rate at which the pull increased varied with load, deflection, and cone index. Thus, a separate relation between cone index and pull at 20 percent slip was required for each load-deflection condition.

39. Effect of deflection. The effect of percent deflection on pull at 20 percent slip is shown for a typical test load (455 lb) in plate 8d. In the very soft soil, deflection had little influence, but in firm soil, the greatest pull was achieved with the greatest deflection. Since the combination of firm soil and high deflection resulted in a relatively large contact area, the results suggest that a large contact area (and therefore low pressure) enhances performance. However, the increase in pull was not linear with increasing deflection but apparently increased at a decreasing rate. Thus, there is probably a limit to the benefit gained by increasing percent deflection.

40. Effect of load. Pull does not appear to be a direct function of load as it is of soil strength and deflection. For the 35 percent deflection condition, for example, the effect of the load on pull was erratic

between 20 and 60 cone index. However, for a given soil strength and tire deflection, the pull/load ratio appears to have a fairly regular inverse relation with load (plate 13).

Torque at 20 percent slip

41. Using torque as a measure of tractive effort, a relation of tractive effort to load can also be shown (plate 14). The 1020-1b load at 35 percent deflection (see plate 14c) may be an exception to the relation, although it seems more likely that these data are not valid. The 1020-1b load data were not considered reliable because of the small number of tests performed at this load in the initial phase of testing. Except for this, plus a few scattered tests at other loads, the tractive effort-load relation can be explained in terms of the dependence of tractive effort on soil shear stress and soil shear area. Since the clay can be considered a purely cohesive soil within the soil strength range tested, the soil shear stress was independent of load; but the soil shear area was dependent upon tire deflection and wheel sinkage--both of which were dependent upon load. Thus, tractive effort, which is considered to be the product of contact area times unit stress, must also be dependent upon load.

Sinkage at 20 percent slip

42. A direct relation between sinkage at 20 percent slip and load for a constant deflection-strength condition is observed in plate 15 for all deflections and strengths with the exception of the 1020-1b load at 35 percent deflection (plate 15c). It does not seem likely that the 1020-1b load actually produced lower sinkages at 20 percent slip than did the 890-1b load. Because of the doubtful reliability of the 1020-1b load data as discussed in the preceding paragraph, these data should be disregarded until further tests can be made.

Analysis of forces at 20 percent slip

43. Returning to the force system of a powered wheel as shown in figs. 1 and 2, rearranging equation 4 for the 20 percent slip condition results in the following equation if sinkage is small ($\eta \approx 0$):

$$P_{20} = \frac{M_{20}}{(r_{\rm u} - \delta_{\rm MS})_{20}} - H_{20}$$
(6)

If the motion resistance at 20 percent slip (H_{20}) is assumed equal to the towed force (equation 5) for the particular tire-soil condition considered, equation 6 reduces to

$$P_{20} = \frac{M_{20}}{(r_u - \delta_{MS})_{20}} - P_T$$

or

$$P_{20} = \frac{M_{20}}{(r_{u} - \delta_{MS})_{20}} - \frac{M_{sp}}{(r_{u} - \delta_{MS})_{sp}}$$
(6a)

This is a nonconservative assumption because the motion resistance at 20 percent slip can be expected to be larger than the towed force because of the larger sinkage likely at the 20 percent slip condition. Before observing the relation of equation 6a to the test data, it is advisable to review the inherent assumptions: (a) the resultant normal force on the tire passes through the axle center line, (b) $r_e = r_u - \delta_{MS}$, (c) angle $\eta = 0$, and (d) $H_{20} = P_{T} = H_{SD}$.

44. The relation between the measured pull at 20 percent slip for the 9.00-14, 2-PR tire operating in clay and the pull at 20 percent slip calculated by equation 6a is shown graphically in plate 16a. The correlation is quite good. It should be noted, however, that the directly measured pull values are generally lower than the values computed from measured torque, tire radius, and tire deflection. This is attributed mainly to the fact that the computed quantity, $\frac{M_{SP}}{(r_u - \delta_{MS})}$, i.e. motion resistance at the self-propelled point, is probably smaller than the actual motion resistance when the wheel is slipping at 20 percent, because in the latter condition, sinkage is greater. When a more nearly correct motion resistance is used, the scatter about the 1:1 line is reduced considerably. This is illustrated in plate 16b. To obtain the plot shown, the equation

$$P_{20} = \frac{M_{20}}{(r_{u} - \delta_{MS})_{20}} - \frac{M_{sp}}{(r_{u} - \delta_{MS})_{sp}}$$

$$P_{20} = \frac{M_{20}}{(r_{u} - \delta_{MS})_{20}} - P_{T_{z20}}$$

in which P_T at the sinkage actually incurred at 20 percent slip was substituted for the term $\frac{Sp}{(r_u - \delta_{MS})}$. Proper P_T values were determined by the equation $P_T = W(0.015 + 0.123z)$ from plate 11. In this form, the equation might be considered to be total traction output = total traction input. The improved relation lends credence to the simple analysis presented of the powered-wheel system, at least for light pulls and low sinkages. Note that points occur on both sides of the 1:1 line in plate 16b up to about 400 lb, but thereafter the pulls calculated by dividing measured torque by an effective radius are all higher than those measured more directly.

Effect of Speed on Performance

45. Studies have shown that the effective shear strength of a cohesive soil increases as the rate of strain increases.⁷ Therefore, it was reasonable to expect that the torque, pull, towed force, and sinkage recorded in a wheel test would be affected by the rate of travel of the wheel. A few tests, including towed, constant-slip, and programed-slip, were run to gain some appreciation of the extent of the influence of the speed (table 7). Towed tests have an advantage in that inertial forces in the carriage system are negligible (although they can be important at rapid accelerations). Furthermore, this type of test provides an opportunity to average results over a longer distance and to dissipate transient oscillations that can occur at high speeds. Powered tests, both constant- and programed-slip, could not be run as fast as towed tests because the torque input requirements exceeded the available system output.

46. The results of the variable-speed towed tests are presented graphically in plate 17. Although only three towed speeds were used, a

reasonable range of test conditions was represented by judicious selection of loads, deflections, and soil strengths. It is apparent from plate 17 that sinkage (fig. a) and towed force (fig. b) decreased with increasing speed and that the greatest change occurred within the speed range 0 to 6 fps. These results suggest that at higher speeds less energy is expended in deforming the soil.

47. One test condition (455-1b load, 15 percent tire deflection, and a cone index that averaged 36) was selected for powered-wheel speed tests, and the results of pull and torque measurements at 20 percent ship, shown in plate 18, corroborate both shear studies⁷ and results of towed wheel tests. Torque (fig. a) and pull (fig. b) measurements indicated increases in performance with increases in speed. Apparently, sinkage (fig. c) decreased, but not to the degree noted in towed-wheel tests.

Effects of Repetitive Traffic

48. The ultimate requirement of the test program will involve extrapolation of single-wheel performance to multiwheel (vehicle) performance. Thus, it is of interest to examine the results obtained on each pass with the intent of evaluating the degree to which the performance data on any one pass, particularly the first, are indicative of multiplepass performance. In examining the results of these tests, it should be borne in mind that there was little or no strength change in the test soil as a result of traffic. Therefore, the trends indicated cannot be related directly to performance in soils that either increase or decrease in strength under traffic loadings.

49. The effect of repeated passes of the test wheel is shown in a general way by the data plotted in plate 19. It is apparent from this plate that multiple passes had relatively little effect on the magnitude of the tire-soil performance parameters shown, except for cumulative sinkage, for either the high- (cone index ~50) or low-strength (cone index ~20) condition. It should be noted, however, that although the cumulative sinkage increased with each pass of the tire, the incremental sinkage was approximately constant, particularly during the second through fifth passes. Thus, a significant increase in motion resistance would not be

expected and, in fact, was not evident, as shown by the relatively constant magnitude of pull and towed force for the different passes. Results of a constant-slip test of 20 passes are presented in plate 20, and serve tc substantiate and extend the observations made for the programed-slip tests.

50. The effect of multiple passes on pull at 20 percent slip, torque at 20 percent slip, and towed force for this tire operating in clay is shown in a different manner in plate 21. In this plate, the firstpass value of the different parameters is compared with the arithmetic means of the parameters for all the passes, which is termed the test average. It is apparent from this plate that the first-pass and test-average values of pull, torque, and towed force were equal within the limits of experimental error.

51. The similarity of first-pass and test-average values suggests the possibility of using test-average tire performance values in parameterby-parameter analyses to improve the reliability of developed relations because of the possibility of soil-bed nonuniformity yielding an unrepresentative first-pass result. Also, the constant magnitude of pull, torque, and towed force, respectively, on all passes may make it possible to multiply the respective test-average values by the number of wheels on a particular vehicle to predict vehicle performance. Sinkage, of course, is not expected to follow a similar trend, since the sinkage on the first pass usually is somewhat greater than on subsequent passes.

PART IV: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

52. From the information presented in this report, the following conclusions were drawn:

- a. The basic concept of using wet clay at a high degree of saturation as a load-independent test soil is valid and useful (paragraphs 9, 10).
- b. Variation in soil strength between the soil surface and the remainder of the soil mass at the time of test can drastically affect powered-wheel performance, but does not seriously influence towed-wheel performance (paragraphs 16, 17).
- c. The towed force determined at the towed point of a programedslip test and that determined by a purely towed test are equal within the limits of experiment error (paragraph 24).
- d. For a towed wheel, increasing test speed reduces towed force and towed sinkage, the largest changes occurring in the O- to 6-fps speed range (paragraph 46).
- e. For a powered wheel, increasing speed increases torque and pull at 20 percent slip and apparently decreases sinkage slightly (paragraph 47).
- <u>f</u>. Towed force, pull, or torque, respectively, measured on the various passes of a single test do not change appreciably (paragraphs 48-50).
- g. Soil strength, load, and tire deflection affect towed force, pull, and sinkage in an orderly manner (paragraphs 25-27).
- h. A simple system to represent the forces and moments on towed or powered pneumatic tires operating in a soft clay at small sinkages is adequate as a basis for examining the relations among the test variables (paragraphs 35, 44).

Recommendations

53. On the basis of the discussion and the analyses presented in this report and the conclusions therefrom, it is recommended that:

- a. The clay-testing phase of the current program on the performance of soils under tire loads be continued, and that tires of other sizes be included as soon as possible.
- b. The parameter-by-parameter analysis of clay behavior under tire traffic be continued, and a numeric analysis be initiated.

- c. The simple force system continue to be examined, evaluated, and modified in light of new test data and better understanding of tire-soil relations.
- d. The revised test controls on clay saturation and surface strength be continued, and all test controls be reexamined constantly in order to improve test quality.
- e. Evaluation of the equivalence of test data obtained at similar dynamic states and test conditions produced by towed, constant-slip, and programed-slip tests be continued as the test schedule permits.
- \underline{f} . A detailed evaluation of the effect of speed on powered-wheel performance in clay be accomplished.

LITERATURE CITED

- U. S. Army Engineer Waterways Experiment Station, CE, Performance of Soils Under Tire Loads; Test Facilities and Techniques, by J. L. McRae C. J. Powell, and R. D. Wismer. Technical Report No. 3-666, Report 1, Vicksburg, Mississippi, January 1965.
- 2. , Performance of Soils Under Tire Loads; Analysis of Tests in Yuma Sand Through August 1962, by C. J. Powell and A. J. Green. Technical Report No. 3-666, Report 2, Vicksburg, Mississippi, August 1965.
- 3. <u>Strength-Moisture-Density Relations of Fine-Grained Soils</u> <u>in Vehicle Mobility Research</u>, by J. L. Smith. Technical Report No. 3-<u>639</u>, Vicksburg, Mississippi, January 1964.
- 4. , Soil Compaction Investigation; Compaction Studies on Silty Clay, by A. A. Maxwell and C. D. Burns. Technical Report No. 3-271, Report 2, Vicksburg, Mississippi, July 1949.
- 5. <u>Soil Compaction Investigation; Effect on Soil Compaction of</u> <u>Tire Pressure and Number of Coverages of Rubber-Tired Rollers and Foot-</u> <u>Contact Pressure of Sheepsfoot Rollers</u>, by C. D. Burns. Technical Report No. 3-271, Report 7, Vicksburg, Mississippi, June 1956.
- Greenwood, J. A., Minshall, H., and Taber, D., "Hysteresis losses in rolling and sliding friction." <u>Proceedings, Royal Society</u>, vol 259, No. 1299 (January 1961), pp 480-507.
- 7. Whitman, R. V., "Some considerations and data regarding the shear strength of clays." ASCE Research Conference on Shear Strength of Cohesive Soils (June 1960), pp 581-614.

.

Table 1

Summary of Tire Data

9.00-14.	2-PR	Smooth	Tires
<i></i>		0	

	· · · · · · · · · · · · · · · · · · ·		Unlo	Daded Dime	nsions		Loaded	Dimensions -	Contact Print Data					
Load 1b	Deflection	Inflation Pressure psi	Section Width in.	Section Height in.	Diameter in.	Section Width in.	Section Height in.	Deflection in.	Rolling Radius ft	Rolling Circumference ft	Print Width 	Print Length in.	Contact Area sq in.	Contact Pressure psi
				Ar	mstrong Se	erial No.	8A-1503,	Tests C7 Th	rough Cll	2*				
225	15	9.4	8.48	5.75	26.79	8.62	4.89	0.86	1.045	6.95	4.59	7.00	26.07	8.63
340	15	14.1	8.50	5.81	27.09	8.69	4.94	0.87	1.056	6.95	4.58	7.02	26.18	12.99
455	15	17.6	8.68	5.84	27.15	8.91	4.94	0.90	1.056	7.02	4.63	7.34	27.62	16.47
670	15	30.1	8.76	6.04	27.55	8.92	5.13	0.91	1.072	7.13	4.20	7.00	23.43	28.60
890	15	40.2	8.82	6.16	27.79	8.99	5.24	0.92	1.081	7.17	4.20	7.12	24.20	36.78
290	25	5.9	8.52	5.67	26.81	8.82	4.25	1.42	0.999	6.74	5.86	8.90	43.13	6.72
455	25	9.4	8.48	5.75	26.97	8.85	4.31	1.44	1.004	6.76	6.20	9.20	47.40	9.60
670	25	14.1	8.50	5.81	27.09	8.87	4.36	1.45	1.008	6.82	5.90	9.63	47.27	14.17
890	25	17.6	8.68	5.84	27.15	9.00	4.38	1.46	1.010	6.85	6.00	9.78	48.41	18.38
1330	25	30.1	8.76	6.04	27.55	9.10	4.53	1.51	1.022	6.98	5.69	9.71	45.85	29.01
225	35	2.4	8.70	5.15	25.77	9.40	3.35	1.80	0.924	6.36	8.20	12.00	83.22	2.70
455	35	5.6	8.50	5.65	26.77	9.20	3.67	1.98	0.950	6.53	7.30	11.80	71.58	6.36
720	35	9.4	8.48	5.75	26.97	9.23	3.74	2.01	0.956	6.57	7.40	12.00	74.55	9.66
890	35	12.5	8.49	5.79	27.05	9.15	3.76	2.03	0.958	6.61	7.19	11.80	71.24	12.49
1020	35	14.1	8.50	5.81	27.09	9.20	3.78	2.03	0.960	6.62	7.21	11.80	71.28	14.31
				Ar	mstrong Se	erial No.	9A-1503,	Tests Cl15	Through C	152				
340	15	14.1	8.51	5.88	27.23	8.78	5.00	0.88	1.065	6.98	4.28	7.07	24.25	14.02
455	15	20.0	8.57	6.00	27.47	8.80	5.10	0.90	1.070	7.05	4.18	7.28	24.39	18.66
890	15	41.6	8.80	6.30	28.07	8.86	5.36	0.94	1.091	7.23	4.00	7.14	22.97	38.80
1300	15	59.0	8.93	6.42	28.31	9.13	5.46	0.96	1.100	7.33	3.75	7.08	21.02	61.80
455	25	9.3	8.50	5.80	27.07	8.99	4.35	1.45	1.007	6.78	5.70	9.40	44.16	10.30
890	25	20.0	8.57	6.00	27.47	8.98	4.50	1.50	1.020	6.94	5.40	9.40	42.05	21,20
455 890	35 35	5.5 12.3	8.49 8.51	5.64 5.86	26.75 27.19	9.33 9.33	3.67 3.81	1.97 2.05	0.950 0.962	6.55 6.65	7.25 7.00	11.80 11.68	71.55 67.57 .	6.36 13.17

* This tire was accidently destroyed on April 2, 1962.
Table 2 Summary of Soil Data

		Mc d	isture of Dry	Content		Dry D	ensity	Cono	Trdov	İ		Mc đ	of Draw	Content		Dry D	ensity		T
		0- to	0- to	0- to	6- to	0- to	6- to	0- to	6- to			0- to	0- to	0- to	6- to	0- to	6- to	0- to	6- to
Test	Pass*	Layer	Layer	Layer	Layer	Layer	Layer	Layer	Layer	Test	Pass*	Layer	Layer	Layer	Layer	Layer	Layer	Layer	Layer
C7	1 2			45.9	45.9	72.2	72.4	18 18	21 24	C22	1 2		:47.7	48.0	47.2	71.8	72.8	19 17	24 22
	3 4							17 14	23 26		3 4							15 17	17 24
	5 A			46.2	42.3	71.8	76.2	16 16	25 29		5 A		47 . 7	48.8	48.2	70.2	69.4	.15 16	19 19
C8	1 2			45.9	46.5	72.5	72.4	17 15	23	C23	l A		47.3 47.7	47.7 48.0	47.5 49.1	71.5	70.9 70.8	18 18	23
	A			46.7	40.0	71.7	77.7	16		C24	1		47.7	47.9	48.5	71.2	70.6	19	26
C9	1			45.8	45.8	72.5	72.7	15 15	20 23		2 3		1	1.0.0	10 -	0		16 17	20 20
	3 4 5							15 14 16	24	C25	A		47.7 h7.1	47.2 h7 1	48.0	72.8 72.h	70.5	17	20
	Á			45.4	39.0	73.4	79.9	15		029	23		-1.1	41.1	-1.5	12.4	12.7	17 17 17	20 20
C10	1 2			44.6	45.0	71.8	69.0	17 16	25		ц 5							17 16	19 19
	A			45.4	41.4	73.3	70.8	17			А		46.6	46.1	46.7	74.0	72.1	18	20
Cll	1 2 3 4			46.0	46.3	73.2	71.4	17 15 15	21 21 23	C26	1 2 3 1		46.5	47.6	47.4	73.0	72.2	18 18 18	21 22 22 [.]
	5 A			45.6	42.5	73.4	76.1	15 16			5 A		45.8	47.4	46.9	72.7	71.0	17 18	21
C12	1			45.9	45.9	71.3	73.0	18	20	C27	1		45.1	45.1	46.1	73.4	72.0	19	21
	2							17 16			2 3							19 17	22 20
	4 A			46.9	40.9	71.2	79.1	18			5		16.0	16.0	1.77 1.	70 7	07.1	17 18	19 20
C13	1 2			45.4	45.3	73.2	74.0	16 16	21 24	c28	1		39.8	39.1	38.8	74.3	27.4	10 11	23 117
	3 4							15 17	21 29		2 3		5,	57	5	19.5	1010	38 39	44 46
	5 A			46.0	41.9	72.3	77.4	17 15	23 22		4 5			-0 -				39 . 39	48 42
C14	1			45.9	46.4	71.4	74.8	18	20		A		39.1	38.5	38.6	80.0	79.7	40	45
	2 3 A			46.2	43.6			10 17 17		629	2 7		40.7	39.9	30.9	10.3	01.2	41 36 39	46 46 43
C15	1			44.6	42.7	73.3	72.0	18	22		4 5							36 39	45 44 48
	2							16 17	23 23		A		40.0	39.1	39.2	79.5	79.1	38	46
	5			15 0	ho h	72.2	75.2	18 17 18		C30	1 2 2		47.2	47.7	47.8	72.3	72.4	19 18	21 23
c16	1			44.6	45.0	73.8	74.7	10			2 4 5							17	22
010	23				.,	1510		17 17			Á		46.7	47.4	48.6	72.3	71.5	17	22
	4 5			11.0	1 - 0		-1 0	17 18		C31	1 2		47.8	46.9	h7.6	73.6	72.1	19 19	21 20
017	A			44.8	43.8	73.0 70.6	74.8	16			3 A		46.9	1;7.0	48.4	72.4	70.4	(17 18	21 22
617	- 2			49.0	4).2	(6.0	74.0	19 19 18	23 23	C32	1		46.6	48.0	47.7	72.1	71.1	19 18	21
	ŭ 5							18 19			34							17 18	20 20
	A			45.6	44.4	72.8	75.5	16	17		5. A		46.7	48.0	47.6	72.5	70.3	18 19	20 21
C18	1 2 2			45.4	42.1	73.3	77.4	20 18	25 	C33	1		47.2	47.2	48.0	73.8	71.6	18	21
	2 4 4			46.1	44.7	72.9	74.1	18	19		3							19 18	20
C19	1		48.1	50.9	47.3	69.5	72.4	16	22		Ā		46.3	47.6	48.9	72.1	70.2	17	23.
-	8		r.					18 16	21 22	C34	1 2		40.8	38.9	38.9	80.7	80.9	.42 40	51 48
	4 5		he o	1.0 0	1.6 9	71.0	70 1	13 15	20 22		- 3 4	•	10 0	50 0	-0.0	0	00.1	40 40	45 46
a20	A 1		42.9 ha h	40.0 1/8 8	40.0	69.8	. 71 0	10	22	0 26	А 1		40.0 h6 p	30.9 •	30.0 17 G	81.1 7h 1	71.0	40	48
620	23		47.4 A	-0.0	-11-3	0,.0	1710	16 18	23 19	630	2 3		40.3	40.7	71.9	14.1	12.0	10 18 16	19 19 19
	й 5							15 17	22 22		Ц 5							17 16	18 21
	A		47.3	49.0	47.8	71.8	72.1	19	24		A		46.5	47.0	47.3	72.9	70.9	16	22
C21	1		49.4	47.1	48.1 16 0	74.7	71.8 73.6	10 13 17	20 20 21	C37	1 2		47.0	47.0	47.7	73.0	71.4	18 17	20 21
	А		47.6	4/.0	40.3	10.1	10.0	±1	(0	mund)	A		40.5	47.3	40.0	12.0	12.)	11	22
									(Conti	nuea)									

* Measurements were taken before passage of the wheel for the pass indicated. A indicates measurements taken after all passes were completed or after the pass indicated. (1 of 5 cheets)

Table 2 (Continued)

		Moisture	Content		Dry D	ensity cf	Cone	Index			Mo ch	of Dry	Content Weight		Dry D	ensity	Cone	Index
Test	Pass	0- to 0- to 1/4-in. 1-in. Layer Layer	0- to 6-in. Layer	6- tc 12-in. Layer	0- to 6-in. Layer	6- to 12-in. Layer	0- to 6-in. Layer	6- to 12-in. Layer	Test	Pass	0- to 1/4-in. Layer	0- to 1-in. Layer	0- to 6-in. Layer	6- to 12-in. Layer	0- to 6-in. Layer	6- to 12-in. Layer	0- to 6-in. Layer	6- to 12-in. Layer
C38	1 2	39.4	39.0	38.9	79.6	82.1	143 38	46 44	C55	1 2	•	45.2	45.8	46.9	73.6	72.2	24 23	24 23
	3 4 5				ro l	01.1	40 42 42	46 45 49	C56	1		44.7	45.5	43.7	74.3	76.0	25 25	29 29
C39	A 1	40.4 41.0	39.9 40.1	39.9 39.9	79.4 79.7	01.4 79.1	42	47 50		34							24 24 24	31 32
	2 3 4						39 41 40	49 47 45		A		46.5	44.9	43.9	74.5	73.7	24 24	30 31
	5 A	40.1	39.8	39.5	79.4	81.2	42 41	53 50	057	2		43.9	44.2	44.7	. (0.2	10.2	25 24	31 32 32
C40	1 2 3	39.0	39.4	39.2	78.6	81.3	44 43 42	50 53 50		4 5 A		44.9	44.4	43.5	74.6	75.5	24 23 27	31 31 32
	4 A5	39.1	39.2	38.9	79.8	81.8	42	53	C58	1 2		45.2	45.3	43.6	74.4	75.4	24 22	30 30
C41	1 2 3 1	40.4	39.5	39.3	79.9	80.0	45 42 42	48 51 50 56		3 4 5 A	•	46.4	44.5	43.2	74.5	76.3	23 22 23 23	32 33 34 33
	A	40.2	40.0	39.1	80.0	80.0	43	51	C59	1		45.9	45.0	43.2	74.7	75.5	25	30
C42	1 2 3 4	34.8	34.1	33.8	86.2	86.0	82 82 80 76	83 86 83 84		2 3 4 5							25 24 23 24	30 31 29 29
	5 A	34.2	34.0	34.7	84.0	85.0	82 81	88 82	c60	A 1		45.3 45.8	45.5 44.8	44.3 43.9	73.9 74.7	74.5 75.6	22 24	29 32
C43	1 2	34.9 34.9	34.0 35.0	34•3 34•7	86.4 85.8	85.9 8h h	78 75 80	83 .86 84		2 3 4		-					23 25 24	32 31 30
C144	1	39.2	38.4	38.6	81.3	79.5	42	45		5 A		45.0	44.3	43.0	75.1	75.7	25 26	32 29
	345	30 1	28 R	38.6	80.7	80.3	41 40 43 41	42 45 46 48	C61	1 2 . 3 4		46.4	46.0	47.1	73.1	71.7	23 26 25 •23	25 26 26 26
C45	1	39.8	38.9	38.3	78.3	77.4	40	46		5 A		45.2	46.7	46.4	72.7	72.6	25 23	26 25
	345	20.0	20.7	20.2	² 0.7	80.5	38 40 40	25 44 49 45 49	C62	1 2 3 4		46.9	45.4	46.3	74.8	74.0	25 23 21 23	26 23 24 25
C46	1	39.9	34.4		85.4		80	82		5 A		46.0	46.5	47.4	73.1	70.5	21 21	23 23
	2 3 4 5	-1 -	-1.1		05.0		77 72 77 · 74	81 76 81 . 72	C63	123		44.3	44.6	43.0	75.5	76.8	24 24 23	29 32 31
C47	A 1	34.3 34.0	34.4 33.7		85.5		75	03 80		5 A		42.5	44.8	43.6	75.0	75.7	25 25	33 29
	2 3 4 5						70 70 73 72	78 75 80 76	C 614	1 2 3		44.8	44.7	43.1	74.0	75.8 ,	25 24 23	31 31 30
C48	A 1	34.3	33.8 39.0	 39.2	90.1 80.9	 81.3	69 38	76 46		4 5 A		44.4	44.1	43.3	75.2	75.6	22 24 25	29 31
	2 3 4						41 41 41 41	49 43 48 50	C65	1 2 3		46.4	46.0	46.6	7 ¹ .3	73.3	24 23 21	25 24 25
	Á	39.3	39•3	39.5	78.8	79.4	42	50	066	A		47.0	46.3	45.8	73.5 71.0	74.3	21	26 25
050	2 3	33.0	33.0		01.9		77 79	90 86		2 A		43.7	43.8	46.8	74.6	71.2	23 23	24 27
C51	A 1	, 34.5	 33.7		 87.4		78 79	91 83	°C67	1 2		44.2	44.8	43.5	74.9	76.1	23 22	30 32
	2 3 4						74 83 79	83 83 88		3 4 · 5							22 23 22	29 30 30
052	A	33.3	35.4		88.7	 80.0	81 ho	87 50	C68	A		43.6	44.9 հե օ	43.2	73.6 74.4	76.1	22 24	32 31
0)2	234		30.1	39.7	80.7	79.2	38 41 41 39	45 48 45 40		12 34 5		-J.J	44.0		1	10.9	24 24 24 24	32 28 29 31
C53	1	39.5	39.4	39.9	80.2	79.5	.42	44		Á		43.9	43.9	43.0	75.6	75.7	24	27
	2 3 A	39.2	39.4	39.1	80.6	80.7	43 40 36	48 39 42	C69	1 2 3		45.5	45.7	40.3	74.4	12.8	23 24 24	22 23 24
C54	1 2 3	47.1	46.3	47.0	73.3	72.0	20 23 22 23	25 26 25 24		4 5 A		45.6	45.0	46.3	74.6	72.7	23 22 21	24 24 23
	4 5 A	46.1	46.0	46.8	73.7	72.7	22 21	23 23 (Conti	nued)								(2 of	5 sheets

(2 of 5 sheets)

Table 2 (Continued)

		Mo	of Dry	Content		Dry D	ensity	Cone	Index			Mc d	of Dry	Content		Dry D	ensity	Cone	Index
Test	Pass	0- to 1/4-in. Layer	0- to 1-in. Layer	0- to 6-in. Layer	6- to 12-in. Layer	0- to 6-in. Layer	6- to 12-in. Layer	0- to 6-in. Layer	6- to 12-in. Layer	Test	Pass	0- to 1/4-in. Layer	0- to 1-in. Layer	0- to 6-in. Layer	6- to 12-in. Layer	0- to 6-in. Layer	6- to 12-in. Layer	0- to 6-in. Layer	6- to 12-in. Layer
C70	1 2 3 4		45.8	45.4	46.3	74.9	73.9	22 21 21 22	22 22 24 22	` c87	1 2 3 4		42.0	40.5	39.7	78.6	80.0	40 38 38 38	48 44 46 48
	5 A		44.0	45.3	47.1	75.2	73.2	22 20	22 22		5 A		42.3	40.9	40.5	78.7	78.9	40 40	52 50
C71	1 2 3		43.9	44.2	43.2	74.2	75.8	25 25 24 26	26 31 30	c88	1 2 3		42.2	40.3	40.3	80.5	79.6	42 - 42 - 44	52 52 54
	5 A		42.3	43.7	43.2	76.7	77.4	23 24	29 31		5 A		42.0	40.5	39.8	80.0	78.3	44 42 42	40 50 52
C72	1		43.1	43.2	42.9	76.9	76.7	27	29	C89	1		47.1	47.2	45.2	72.8	73.7	21	29
	2 3		44.3	44.1	42.5	76.0	75.2	26 24 25	30 28 28		232							20 21	29 29
C73	1		45.6	45.4	46.6	74.3	73.0	25	25		A		46.8	46.0	44.8	74.0	74.4	23	29
	2 3							26 26	25 26	C90	1 2		47.5	46.7	44.3	72.5	72.8	20 20	27 31
azh	A		44.2	45.9 he h	46.9	74.5	72.5	24	29		3 A		46.6	47.0	45.2	73.5	73.0	21 21	30 30
674	2 3 4 5		40.2	47.4	40.0	(3+7	(3+3	24 24 23	26 26 28 26	C91	1 2 3		40.4	39.9	39.7	80.3	81.6	41 39 39	51 46 46
	Â		45.1	45.4	45.1	75.2	74.5	24	27		5 A		39.8	40.3	39.8	79.2	79.6	39 37	47
C75	1 2 3 4		44.6	43.6	43.3	77.0	76.4	29 27 26 27	29 34 36 38	C92	1 2 3		40.3	39.9	38.8	80.2	81.3	41 41 41	49 47 50
	5 A		43.2	43.7	43.1	76.8	76.7	27 27	37 38		4 5 4		h0.3	30.0	30 h	70.6	80 h	40 39 36	47 49 42
C76	1 2 3 4		44.3	42.9	43.3	77.2	75.8	28 29 27 25	33 33 33 30	C94	1 2 3		48.6	48.3	48.6	71.2	71.0	19 17 17	22 19 21
	5 A		44.6	43.5	43.7	77.1	76.8	26 27	32 32		4 5		10 -					16 16.	22 22
C77	1		45.9	45.2	46.7	74.3	72.4	26 24	26 26	095	A 1		48.2	47.5	48.2 38.0	72.0 81.7	70.1 80.6	17	24
	3 4 5 A		45.7	45.5	46.5	74.9	73.4	25 25 24 23	26 25 28 28	0,55	2345		51.7	50.2		01.7	00.0	48 46 48 47	49 47 50
c78	1		44.8	45.3	46.3	75.2	73.1	27	30		Â		38.3	38.3	39.3	81.4	80.l	45	48
	2 3 4 5		14.5					26 27 26 26	27 28 26 27	C96	1 2 A		38.8 38.5	38.4 38.6	39.2 39.4	80.9 81.1	79.8 79.6	48 48 48	52 52 55
070	A		46.1 11 0	44.9 ho h	48.0 h2 3	75.7	73.4	26	28	C97	1 2 2		48.6	46.4	45.5	73.6	73.6	214 23	27 28
019	2345		41.9		-2.J	10.2	10.0	29 28 29 28	39 38 35 36		3 4 5 A		47.0	46.2	45.6	73.0	73.6	23 22 21 22	26 28 25 28
	Á		42.5	43.1	42.6	77.6	77.5	29	38	C98	1 2		47.8	46.5	44.6	74.5	75.7	22	30 31
c 80	1 2 3 4		41.8	43.1	42.7	76.0	75.3	31 32 32 29	35 39 37 33		3 4 5 A		47.5	46.6	44.7	74.2	75.7	21 22 21 21	28 30 31 28
	A		41.4	42.3	42.2	78.3	77.4	29	33 35	C99	1		38.3	38.4	39.9	80.6	78.5	46 146	49
C81	1 2 3 4		43.3	41.1	40.0	78.8	79.5	41 40 41 39	48 48 49 48		3 4 5 A		38.2	38.8	40.2	80.9	77.4	40 45 45 45 45 44	52 51 55 56
	5 A		42.3	41.1	40.9	77.5	79.5	40 40	48 50	C100	1		39.2	38.6	39.8	80.4	79.2	47	53 53
C85	1 2 3 4		42.3	41.2	40.2	79.0	76.9	44 42 40 43	49 52 51 48		3 1 5	•	38.7	38.7	40.2	80.6	78.9	48 45 45	59 59 52 56
	5 A		41.8	40.5	39.3	79.1	.81.0	41 42	51 48	C102	1		47.8	46.1	45.2	73.7	74.2	22	27
C85	1 2 3		<u>4</u> 7.7	47.4	45.7	73.0	73.5	20 19 20	27 28 29		2 3 A		47.2	45.8	45.2	73.8	73.6	23 22 22	25 28 26
	4 5		1.0 -	1.77	be m	70 1.	71 (19 21	28 29	C106	1		38.9	35.0		87.2		74 64	86 85
c 86	A 1 2		48.2 48.6	47.6 47.2	45.7 46.1	72.4 73.0	71.6 73.1	21 21 21	32 29 28		3 4 5 A		37.1	35.6		86.4		67 70 73 73	88 80 89 83
	3 A		48.9	46.5	45.7	73.1	73.8	23 21	29 26 (Cont	inued)			5.02				(3	of 5 sl	hcets)

Table 2 (Continued)

		Mo	oisture	Content	;	Dry D	ensity					Me	oisture	Content		Dry D	ensity		
		0- to	0- to	0- to	6- to	0- to	6- to	0- to	6- to			0- to	0- to	0- to	6- to	0- to	6- to	0- to	6- to
Test	Pass	1/4-in. Layer	l-in. Layer	6-in. Layer	12-in. Layer	6-in. Layer	12-in. Layer	6-in. Layer	12-in. Layer	Test	Pass	1/4-in. Layer	l-in. Layer	6-in. Layer	12-in. Layer	6-in. Layer	12-in. Layer	6-in. Layer	12-in. Layer
C107	1		35.7	34.4		86.0		74	83	C130	1	41.5	41.3	43.9	44.4	74.7	73.5	24	22
	2							72 78	85 88		3			ha a	1.1. 1	RE 0	70 J	24 25	21 21
	5		26.2	21. 0		95 C		71 74	85 81	(12)	A5 1		25 5	43.2	26.2	17.4 Rh 0	/3.1	20	24 5)
710 0	A		30.3	34.9		05.0		14	04	0101	2	22.0	57.7	57.0	50.5	04.0		64 62	60 58
0108	⊥ А		37+3 36 - 9	32.3 34.8		86.3		73 67	82		АŠ	'		35.6	36.5	83.8	82.0	62	58
C109	1		35.2	33.9		88.2		74	82 83	C132	1	34.3	35.6	35.9	36.0	84.0		63 50	66 62
	3							75	80		3			26.1	26.0	85 h	81 7	54 64	53
	5		25.0	22 B		87.0		69 73	72 81	0133	1	'ho h	1.2.2	30.1 Jis 0	50.0	72 1	71.8	21	10
0110	1		36.2	35.0		85.7		55	58	0100	2 3	72.7	+j.c	4).0	44.1	10.4	11.0	21	20
0110	2 2		2012	57.0		0,.1		62 59	67 57		A5			44.3	44.7	73.7	72.2	23	21
	4							52 58	54 64	C134	1	41.4	43.4	43.2	44.9	75.8	71.9	23	21 21
	Â		36.6	35.1		85.1		57	63		3			43.9	45.7	74.9	72.0	24 24	21
C111	1		35.2	33.6		86.7		75 67	82 67	C135	,	39.9	42.8	43.9	44.8	74.5	72.4	23	20
	3 1							71 72	75 73		2			.517		1.45	1-11	22	21 20
	5		34.7	33.5		86.8		78 76	82 77		A5			44.2	44.8	74.1		21	20
C115	1	38.4	39.1	39.5	39.5	78.5	76.7	34	33	C136	1 2	41.1	41.1	43.4		75.4	72.2	24 24	22 23
c116	1	38.6	38.8	39.2	39.7	80.1	77.0	34	34		3 A5			43.2	44.6	76.2	72.1	25 24	21 22
0110	2 3	5	5	57	57-1			33 34	36 35	C138	1	42.5	44.5	44.6	44.9	73.9	71.3	24	22
	АŠ		38.9	39.0	39.6	78.4	77.0	35	35		2 3							22 22	22 23
C117	1 2	34.8	35.6	36.1	35.8	83.9	82.0	51 53	51 51		A5			43.1	44.3	75.7	73.5	23	22
	3 A5			36.4	36.3	82.4	79.9	46 47	50 52	C139	1 2		45.3	45.6	46.3	70.8	69.9	18- 18	20 21
C118	1	34.3	35.4	36.1	36.1	83.0	80.7	50	52		3 A5			46.0	47.5	72.3	69.4	17 17	21 25
	2 A2							48 38	52 38	C140	1		45.4	45.1	47.0	73.2	70.8	16	21
C119	1	34.1	38.3	39.6	39.7	76.8	77.0	39	38		2 3							16 17	20 22
	2 A5			39.5	39.7	78.3	77.4	35 39	36 40		A5		46.1	47.1	'	72.6	66.8	17	20
C120	l	33.5	38.5	39.1	39.6	77.6	76.7	37	37	C141	1 2		36.2	36.7	36.7	82.4	81.4	57 57	63 63
	2 3							35 38	35 39		3 A5			36.6	36.8	81.7	81.6	58 56	65 63
	А5			39.1	39.5	78.6	77.1	39	41	C142	1	45.1	44.9	44.8	44.4	74.1	74.0	17	21
C121	1 2	34.7	34.9	36.3	35.9	81.4	82,2	47 48	49 51		2 3							15 16	18 26
	3 A5			36.6	36.8	82.4	81.2	48 47	51 49		A5			45.5	46.7	74.0	73.1	17	25
C122	l	34.9	36.0	36.5	36.8	81.2	82.1	47	55	C144	1 2	33.1	36.1	36.3	36.7	83.2	81.1	63 64	68 67
	2 A							47 47	49 50		3 A5		35.5	36.2	36.7	83.8	82.5	63 64	66 67
C123	1	42.7		44.7	44.8	72.7	73.5	20	21	C145	1	37.7	39.4	39.9	40.3	78.7	77.6	42	42
	3			11.0	1.5.3			10	21		3			20.0	ko r	- 9 (44	45
aloby	A5	 baa		44.3	45.1	73.0	71.5	19	21	(1))6	1	27.0	20.0	20.0	40.5	80.1	78.0	40	41 16
6124*	2	43.3		44.0	42.2	74.0	/1.0	20	20	0140	2	51.9	39.1	39.2	40.2	00.1	10.2	42 41	40
	A5			44.4	45.3	73.3	71.9	22	22		A5		38.4	38.9	41.6	78.3	77.0	39	44
C125	1	34.0	35.6	37.9	39.4	79.6	79.0	47 50	37	C147	1	44.8	45.1	45.5	45.6	74.5	73.0	17 16	20 18
	3			38.6	20.2	77.2	78.0	48 51	37		A2		44.8	45.0	47.5	70.8	71.0	16	18
0126	1	27 5	38 7	30.1	30.3	79.0	70.6	36	36	C148	1	1:14.9	45.2	45.5	47.0	70.7	68.3	16	19 19
0120	2	51.5	50.7	J9•1	27.2	19.0	10.0	38	39		3	•	h5 6	h5 3	1:6 O	71.0	71.6	14	19
	45 A5			38.4	39.3	78.9	77.6	36	37	C110	1	42.2	49.0	43.2	+0.0	76.7	11.0	25	23
C127	1	32.5	35.2	36.0	36.1	87.2	82.6	62	54	011)	2		հջհ	hao		74.4		22	22
	3			25.0	26 E	82 0	81.2	57 57	60 50	C150	1	42.1	կե և	42.5	44.5	76.0	75.2	23	21
C108	1	22.0		35.6	30.0 36 h	02.9 81 7	81 1) (59	50	01,0	2 r	ـ.ر.			,	, 5.0	,,,	22 21	22
U 1 61 U	2 3	50.7	37.7	∪.رر	J 0. 4	0113	01.1	54 55	61 61		AŠ		44.4	44.7	46.5	74.4	71.9	22	22
	АŠ			36.2	36.2	82.8	81.7	57	61	C151	1 2	44.6	1;4.1;	45.3	46.7	73.6	70.8	17 16	19 22
C129	1 2	42.0	44.2	44.5	44.5	74.2	73.0	23 21	22 21		A2		44.1	45.4	45.7	74.4	72.3	19	29
	3 A5			44.4	44.2	74.0	72.6	24 21	21 21										
	/							-	(Cont.	inued)									

* New standard penetrometer adopted prior to test C124. Refer to paragraphs 19-22.

,

Table 2 (Concluded)

		Mo ef	of Dry	Content	;	Dry D	ensity	Cone	Index			i-ic cr	of Dry	Content		Dry D	ensity	Cono	Tudor
		0- to 1/4-in.	0- to 1-in.	0- to 6-in.	6- to 12-in.	0- to 6-in.	6- to 12-in.	0- to 6-in.	6- to 12-in			0- to 1/4-in.	0- to	0- to 6-in	6- to	0- to 6-in	6- to	0- to	6- to
Test	Pass	Layer	Layer	Layer	Layer	Layer	Layer	Layer	Layer	Test	Pass	Layer	Layer	Layer	Layer	Layer	Layer	Layer	Layer
C152	1 2 3	44.6	46.0	45.7	45.8	71.0	70.3	15 15 16	19 22 22	C252	1 2 3	36.4	36.8	37.0	39.1	81.5	78.9	35 38 38	33 34 21
	АŠ		45.4	46.4	43.9	70.5	72.3	15	32		A5	·	37.6	38.1	39.3	79.8	78.2	37	34 34
C209	1 2 3	36.8	36.2	36.9	36.8	81.4	82.4	40 38 38	43 41 41	C253	1 2 3	32.1	36.2	37.6	38.4	80.6	80.8	35 34 24	37 36 39
	A3		36.3	36.9	37.3	80.8	80.3	40	43	-	A5		35.8	37.5	38.3	81.9	80.3.	35	38
C210	1 2 3		36.2	36.5		82.7		46 44 43	43 44 47	C254	1 2 . 3	32.1	36.2	37.6	.38.4	80.6	80.8	35 34 34	37 36 39
	A3		35.2	36.3	37.1	82.4	80.9	46	45		A5		35.8	37.5	38.3	81.9	80.3	35	38
C211	1 2 3	35.3	36.5	37.0	37.3	81.4	82.7	36 40 40	38 41 40	C255	1 2 3	. 35.2	36.0	36.9	37.5	82.0	.81.0	35 34 33	37 39 39
	A3		37.1	30.7	37.1	· 01.0	02.2	40	42		A5 A10		35.1	36.9	38.1	82.4	81.4	39 40	42 40
C515	2	34.0	32.9	30.3	31.2	02.3	01.0	40	39 40		A15 A20		33.7	37.3	38.1	81.1	81.4	42 46	43 49
	3 A3		35.2	36.3	36.8	82.3	80.7	43 46	42 43	6236	1	33.1	35.4	36.2	36.0	82.1	81.9	38	41
C213	1 2 3	35.5	36.6	36.9	37.0	81,1	79.6	39 38 38	42 40 41		3 A5		3l+.1	36.3	35.3	82.6	84.0	40 41 43	43 42 44
	έA		36.6	36.6	37.0	82.4	81.0	40	40	C257	1	35.7	35.9	36.1	35.9	82.1	83.1	44 1) 5	-45
C214	1 2 3	35.6	36.7	36.5	37.1	82.2	80.9	41 41 42	41 42 40		3 A5		35.7	36.8	36.3	81.8	82.6	41 43	47 45 48
	A3		36.2	36.4	37.0	82.3	81.8	42	43	C258	1 2	34.6	35.5	36.6	35.2	81.8	82.8	40 45	51 52
C231	1 2 3	32.4	34.6	35.6	35.1	84.5	83.8	49 56 55	49 •54 54		3 A5		34.8	36.3	35.9	81.4	82.3	44 48	50 56
	A4		34.5	35.5	35.2	83.8	84.2	53	52	C259	1 2	34.8	36.2	36.3	35.6	81.6	82.4	42 46	49 52
C232	l Al	31.6	34.2 34.0	34.9 34.5	35.1 34.5	85.4 84.6	84.8 85.5	51 57	50 52		3 A5		35,9	35.6	35.8	83.4	83.5	39 44	51 53
C533	1 2	34.0	34.7	35.4	35.0	84.5	85.3	50 57	52 60	C260	1 2	35.2	35.6	37.0	35.9	79.3	83.1	•37 37	45 43
	A 2		33.6	35.1	35.6	85.3	86.0	55	58		A2							36	44
C234	l Al	30.7	32.9 31.7	34.7 34.0	35.0 34.8	85.1 86.2	85.2 84.8	59 70	57 63	C261	1 2 A2	35.2	35.6	37.0	35.9 _1	79.3 	. 83.1	37 37 36	45 43 44
C235	1 2 3	36.7	37.2	37.6	39.6	80.9	78.7	32 31 33	30 32 30	C262	1 2	36.4	36.0	36.9	35.9	79.8	83.3	38 38	45 47
	A5		36.9	38.1	39.7	81.2	77.5	33	32		3 A5		36.4	36.8	36.1	81.5	81.8	38 38	45 46
C236	1 2 3	36.2	37.4	37.9	39.6	80.8	79.5	30 35 32	31 33 · 34	C263	1 2	36.4	36.0	36.9	35.9	79.8	83.3	38 38	45 47
	A5		37.7	37.8	39.5	80.3	79.2	32	32		3 A5		36.4	36.8	36.1	81.5	81.8	38 38	45 46
C237	2	36.5	36.9	37.8	39+3	80.9	79.0	32 32 35	30 31 30	C264	1 2	36.4	36.0	35.8	35.1	83.2	82.6	38 39	47 47
a228	ж) 1	26.6	31.0	27.1	20.6	81 7	78.0	22	20		3 A5		35.8	36.1	36.0	82.5	83.2	38 41	45 51
6230	2 3 A5		37.6	37.6	39.2	80.8	78.7	37 36 33	33 33 33	C265	1 2 3	36.7	36.0	35.9	35.9	82.7	83.0	38 40 123	43 47 40
csha	1	36.4	37.0	37.4	39.3	81.3	78.8	33	33		A5		35.0	36.1	35.7	82.0	83.6	43 43	51
02-19	2 3 A5		36.3	38.2	39.3	79.6	78.2	34 33 32	32 32 32	C 266	1 2 3	41.6	41.0	42.2	42.8	76.5	75.4	22 21 20	22 22 20
C250	1	36.4	37.0	37.4	39.3	81.3	78.8	33	33		A5		41.5	42.1	42.7	75.9	75.3	19	24
	2 3 A5		38.3	38.2	39•3	79.6	78.2	34 33 32	32 32 32	C267	1 2 3		37.2	36.7	36.1	82.3	81.5	41 38 39	49 45 47
C251	1	36.4	36.8	37.0	39.1	81.5	78.8	35	33		АŠ		36.6	36.9	35.6	81.4	83.0 .	39	46
	2 3 A5		37.6	38.1	39.3	79.8	78.2	38 38 37	34 34 34	C268	. 1 2 3	、	37.1	36.5	35.8	82.1	81.4	39 39 37	47 47 46
											А5		37.4	37.1	35.7	82.1	83.6	39	49

~

•

				Table	3			
9.00-14,	2-PR	Smooth	Tire,	Towed	Condition,	A]1	Pulls	Negative
				Cla	4			

Test	Test <u>Type*</u>	Deflec- tion (%δ)	Load (W) 1b	Pull (P _t) 1b	Sinkage (z) in	Slip	$\frac{\frac{P_t}{W}}{W}$	<u></u> .	<u>Test</u>	Test Type*	Deflec- tion (% δ)	Load (W) 1b	Pull (P _t) <u>lb</u>	Sinkage (z) in	Slip g	Pt W	W CI
				First H	2255							First	Pass (C	Continued)			
C22 C60 C92 C18 C107	rs T FS FS	15 15 15 15 15	240 238 217 342 344	18 6 27 15	0.44 0.00 0.00 0.38 0.00	0.2 0.8 0.0 -0.1 -1.0	0.075 0.025 0.028 0.079 0.044	12.63 9.92 5.29 17.10 4.65	C81 C144 C145 C148 C231 C233 C233	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	35 35 35 35 35 35	456 466 461 446 471 437	12 15 16 43 8 12	0.00 0.00 0.41 0.00 0.02	0.0 -0.5 -0.2 -0.2 1.4 0.6	0.026 0.032 0.035 0.096 0.017 0.027	11,12 7.40 10.98 27.88 9.61 8.74
C14 C29 C48 C50 C51 C52	****	15 15 15 15 15	469 465 410 462 460 443	83 14 12 9 10 12	1.48 0.26 0.01 0.00 0.04 0.00	1.5 0.1 0.5 0.5 -1.1 0.1	0.177 0.030 0.029 0.019 0.022 0.027	26.06 11.34 10.00 6.00 5.82 10.55	C236 C24 C59 C76 C86 C91	PS T T PS PS	35 35 35 35 35 35 35	476 721 736 726 704 715	10 23 16 108 27	0.05 0.46 0.00 1.08 0.00	-0,5 -1.8 1.7 -3.6 -1.4	0.021 0.098 0.031 0.022 0.153 0.038	15.87 37.95 29.44 25.93 33.52 17.44
C57 C70 C97 C116 C117 C142 C147 C150 C152	7	15 15 15 15 15 15 15 15	462 441 456 462 431 428	308 389 14 86 82 43 80	0.35 0.57 0.56 0.23 0.00 1.01 1.05 0.64 1.35	1.0 0.0 -1.7 -0.8 0.6 -0.9 -0.9 -1.1 -0.5	0.065 0.086 0.111 0.031 0.017 0.195 0.187 0.098 0.187	17.77 20.05 18.33 13.35 9.08 26.00 25.82 19.17 28.53	c34 c108 c119 c119 c213 c238 c257 c259	PS PS PS T PS T T	35 35 35 35 35 35 35 35 35	906 888 908 882 884 908 877 884	47 19 30 52 60 39 15 25	0.00 0.00 0.28 0.48 0.32 0.08 0.13	-4.7 -0.7 -0.3 -0.5 -0.7 -0.5 -1.7 -1.5	0.052 0.021 0.033 0.059 0.068 0.043 0.017 0.028	21.57 12.16 18.16 22.62 22.67 27.52 19.93 21.05
C235 C99 C102	PS PS PS	15 15 15	465 694 648	20 36 122	0.39 0.40 1.21	0.0 -1.0 0.2	0.043 0.052 0.188	14.53 15.09 29.46	039 064 065 082	PS T PS PS	35 35 35 35	1010 1022 1008 1016	48 87 114 28	0.12 0.81 0.85 0.14	1.1 -1.7 -4.1 -0.3	0.048 0.085 0.113 0.028	22.95 40.88 42.00 23.09
C62 C68 C75	T PS T	15 15 15	876 890 906	198 175 126	1.72 1.81 1.26	-2.2 0.0 0.2	0.226 0.197 0.139	35.04 37.08 31.24					Second	Pass			
C78 C100 C149 C151 C209	T PS PS PS T	15 15 15 15 15	884 922 868 832 889	185 78 178 308 122	1.73 0.60 1.46 2.85 1.21	-0.5 -2.0 -0.9 -0.8 0.3	0.209 0.085 0.205 0.370 0.137	32.74 19.62 34.72 48.94 22.23	C22 C60 C92	PS T PS	15 15 15	238 239 208	22 6 6	0.70 0.04 0.00	0.6 0.9 -1.0	0.092 0.025 0.029	14.00 10.39 5.07
C237 C16	PS PS	15 25	915 301	110 7	1.15 0.31	0.8 0.9	0.120 0.023	28.59 15.84	C18 C107	PS PS	15 15	348 343	23 16	0.54 0.00	0.2 -2.0	0.066 0.047	19.33 4.76
C12 C38 C43 C44 C63 C87 C109 C120 C121	X X X X X X X X	25 25 25 25 25 25 25 25 25	462 445 464 433 450 454 466 466	61 14 0 16 8 10 19 11	0.66 0.10 0.00 0.21 0.00 0.00 0.13 0.00	-1.8 -0.5 0.0 0.5 1.0 -0.5 -0.1 -0.9	0.132 0.031 0.000 0.034 0.018 0.022 0.041 0.024	25.67 10.35 5.95 10.31 19.67 11.25 6.14 12.43 9.91	C14 C29 C48 C50 C51 C52 C53 C57 C70 C97	12 12 12 12 12 12 12 12 12 12 12 12 12 1	15 15 15 15 15 15 15 15 15 15	466 476 417 462 435 462 433 466 433 460 442	85 19 10 8 10 11 8 31 34 49	2.04 0.39 0.03 0.02 0.15 0.10 0.13 0.59 0.86 0.87	2.6 0.4 -0.5 -0.5 -0.4 -0.4 0.2 0.9 0.0	0.182 0.040 0.024 0.017 0.022 0.025 0.018 0.067 0.077 0.111	29.12 13.22 10.42 6.06 6.24 11.45 10.07 18.64 20.95 19.22
C21 C77 C88 C89 C106	K I I K K K	25 25 25 25 25 25	653 669 671 662 663 678	241 64 39 17 130 20	2.49 0.75 0.49 0.12 1.26 0.00	-2.1 -0.8 0.4 -0.5 -2.0 -1.0	0.369 0.096 0.058 0.026 0.196 0.030	40.81 25.73 21.65 15.76 31.57 12.20	C116 C117 C142 C147 C150 C152 C235	19 19 19 19 19 19 19 19 19 19 19 19 19 1	- 15 15 15 15 15 15 15	450 472 438 433 440 420 480	13 14 91 77 37 86 20	0.37 0.10 1.56 1.45 0.97 1.94 0.57	-0.3 -0.2 0.1 0.4 -0.1 2.3 0.2	0.029 0.030 0.208 0.178 0.084 0.205 0.042	13.64 8.91 29.20 27.06 20.00 28.00 15.48
C58 C67 C95	T PS PS	25 25 25	903 898 924	109 121 34	1.02 1.27 0.00	-1.7 -1.5 0.0	0.121 0.135 0.037	37.62 39.04 18.48	C99 C102	PS PS	15 15	694 640	44 111	0.49 1.69	-1.5 -0.1	0.063 0.173	15.09 27.83
C110 C122 C146 C232 C234	PS PS PS PS PS	25 25 25 25 25	888 895 900 888 848	19 34 50 48 32	0.00 0.05 0.23 0.24 0.15	-1.5 0.0 0.0 0.7 0.0	0.021 0.038 0.056 0.054 0.038	16.15 19.04 21.43 17.41 14.37	C62 C68 C75 C78 C100	T PS T T PS	15 15 15 15 15	876 886 904 886 915	191 160 138 174 58	2.18 2.44 1.98 2.54 0.77	0.5 0.0 0.9 1.6 1.42	0.218 0.181 0.153 0.196 0.063	38.09 36.92 33.48 35.08 19.47
C66	PS IN	25	1316	348	2.30	-3.1	0.264	52.64	C149 C151 C209	PS PS T	15 15 15	852 798 886	178 292 108	2.35 4.33 1.58	0.2 0.6 0.3	0.209 0.366 0.122	38.73 49.88 23.32
C25 C61 C69	PS T PS	35 35 35	221 235 222	11 8 5	0.14 0.00 0.00	-0.6 2.6 -1.0	0.050 0.034 0.023	13.00 13.00 10.22 7.65	. C16	PS PS	15 25	862 303	92 6	1.39 0.34	0.7 0.5	0.107 0.020	26.94 17.82
C85 C96	PS PS	35 35	232 248	ц́ З	0.00	-1.5 0.0	0.017 0.012	11.60 5.17	C12 C38 Ch3	PS PS	25 25 25	475 435 470	50 19	1.37	-0.3 0.1	0.105	27.94 11.45 6.27
C7 C9 C11 C13	PS PS PS PS	35 35 35 35	461 488 468 470	32 28 26 25	0.00 0.41 0.54 0.42	1.0 0.0 -1.3 -0.8	0.069 0.057 0.056 0.053	25.61 32.53 27.53 29.38	C44 C63 C87 C109 C120	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* 25 25 25 25 25	435 472 446 449 440	8 15 9 15 22	0.00 0.27 0.00 9.00 0.09	0.0 0.0 -2.0 0.0 -0.1	0.018 0.032 0.020 0.033 0.050	10.61 19.67 11.74 6.24 12.57
C15 C17 C190 C28 C42 C42 C45 C45 C55 C55 C55 C80	**************************************	35 35 35 35 35 35 35 35 35 35 35 35 35 3	456865252693631 446665252588331 4444444444444444444444444444444444	25 14 23 23 16 0 10 4 5 8 12 12 10 7	0.13 0.10 0.48 0.22 0.02 0.03 0.03 0.05 0.05 0.02 0.02 0.02 0.02 0.05 0.01	-0.1 -1.8 0.5 0.0 -1.4 -2.0 -2.0 -2.0 0.3 0.5 -1.3 -0.4 -1.6 -0.6	0.055 0.031 0.049 0.034 0.000 0.032 0.009 0.011 0.017 0.025 0.025 0.021 0.016	25.44 24.00 29.25 24.53 11.34 9.60 5.67 10.05 5.70 6.12 20.25 18.92 14.55 (Cont	C121 C21 C77 C79 C88 C89 C106	rs T T F S F S F S	25 25 25 25 25 25 25	461 645 668 663 662 658 680	9 261 77 39 25 146 21	0.00 3.84 1.25 0.78 0.00 0.21 0.00	-0.3 -1.4 -0.5 0.2 -2.0 0.1 0.0	0.020 0.405 0.115 0.059 0.038 0.222 0.031	9.60 50.62 27.83 22.86 15.76 32.90 10.62

* T, towed test; PS, programed-slip test.

.

<

Table 3 (Continued)

Test	Test Type	Deflec- tion (%δ)	Load (W) 1b	Pull (P _t)	Sinkage (z) in.	Slip	$\frac{\frac{P_t}{W}}{W}$	W CI	Test	Test Type	Deflec- tion (၄გ)	Load (W) 1b	Pull (P _t) <u>lb</u>	Sinkage (z) in.	$\frac{\text{Slip}}{\frac{\varphi}{W}} = \frac{\frac{P_{t}}{W}}{W}$	W.CI
			Second	l Pass	(Continued)						Third	Pass (Continued)		
C58 C95 C110 C122 C146 C232 C234	T 25 25 25 25 25 25 25 25 25 25 25 25 25	25 25 25 25 25 25 25 25	900 880 901 880 888 892	125 135 30 12 28 52	1.66 2.06 0.00 0.13 0.39	-1.2 -0.7 0.0 0.5 0.1 0.0	0.139 0.153 0.033 0.014 0.032 0.058	40.91 40.00 18.77 14.19 18.89 21.76	C62 C68 C75 C78 C100 C149 C151 C209	T PS T T PS PS PS T	15 15 15 15 15 15 15	876 880 900 870 916 892	197 175 118 172 76	2.84 2.97 2.30 3.17 0.88 1.83	1.4 0.225 2.5 0.199 2.8 0.131 3.2 0.198 -2.0 0.083 	41.71 36.67 34.62 32.22 19.08 23.47
C66	PS	25	1268	341	3.79	-2.4	0.269	55.13	C237	PS	15	873	98	1.76	1.4 0.112	24.94
C23 C25 C61 C69 C85	PS PS T PS PS	35 35 35 35 35	228 233 212 237	11 8 6 8	0.09 0.00 0.00	-0.9 -1.9 -2.7 -2.7	0.048 0.034 0.028 0.034	13.41 8.96 8.83 12.47	C16 C12 C38 C43 C44	PS PS PS PS	25 - 25 25 25 25	307 471 441 431	12 80 25 	1.51 0.13	-1.0 0.170 -1.4 0.057	29.44 11.03
C96 C7 C9 C11	PS PS PS PS	35 35 35 35	245 464 472 468	41 35 40	0.00 0.32 0.76 0.84	-1.3 -1.0 -1.1	0.016 0.088 0.074 0.055	5.10 25.78 31.47 31.20	C63 C87 C109 C120 C121	PS PS PS PS PS	25 25 25 25 25	473 441 451 442 462	16 10 14 18 10	0.54 0.00 0.00 0.14 0.00	-2.0 0.034 -1.5 0.023 0.6 0.031 1.1 0.041 -0.6 0.022	20.57 11.61 6.01 11.63 9.62
C13 C15 C17 C19 C20 C28 C41 Ch2	22 22 22 22 22 22 22 22 22 22 22 22 22 2	32 35 35 35 35 35 35 35	473 460 460 474 470 433	31 22 24 39 33 15 8	0.49 0.23 0.14 0.71 0.34 0.12 0.00	-1.1 -0.8 -0.3 -0.9 -0.9 -0.1 -0.5	0.000 0.018 0.052 0.085 0.070 0.032 0.018	29.56 28.75 24.32 25.56 29.63 12.37 11.19 5.67	C21 C77 C79 C88 C39 C106	PS T PS PS PS	25 25 25 25 25 25	660 669 658 670 698	75 52 15 170 20	1.59 1.02 0.27 2.67 0.04	-0.8 0.114 -0.3 0.078 -0.5 0.023 0.6 0.254 1.0 0.029	26.40 23.89 14.96 31.90 10.42
C42 C45 C46 C54 C55 C56 C80 C81	rs FS FS FS FS F F F F FS	35 35 35 35 35 35 35 35 35 35	469 462 464 490 481 485 449 458	6 4 8 10 10 8 8	0.00 0.04 0.00 0.03 0.07 0.05 0.04 0.00	-1.0 -1.0 0.5 -1.1 -0.9 -0.8 -0.7 -0.5	0.014 0.009 0.009 0.016 0.021 0.021 0.018 0.017	10.24 6.00 6.63 21.30 20.91 20.21 14.03 11.45	C58 C67 C95 C110 C122 C146 C232 C234	T 25 25 25 25 25 25 25 25 25 25 25 25 25	25 25 25 25 25 25 25 25	889 880 912 880 900	135 150 40 18 50	2.20 2.51 0.09 0.00 	-0.9 0.152 -1.5 0.170 0.0 0.044 1.0 0.020 	38.65 40.00 19.83 14.92 22.50
C144 C145	PS PS	35 35	468 460	14 17	0.00	-0.1	0.030	7.31 10.45	C 66	PS	25					
C231 C233 C233 C236	PS PS PS	35 35 35 35	434 462 432 472	30 6 13 12	0.00 0.04 0.10	-0.2 0.5 1.6 0.7	0.013 0.030 0.025	8.25 7.58 13.49	025 025 061	PS PS T	35 35 35	221 238	8	0.02	-1.4 0.036 -3.0 0.025	13.00 9.52
C24 C59 C76 C86	PS T T PS	35 35 35 35	722 737 71.8 703	101 26 19 116	1.26 0.60 0.08 1.72	-1.8 -2.4 -1.5 -5.3	0.140 0.035 0.026 0.164	45.12 29.48 25.64 33.71	C69 C85 C96	PS PS PS	35 35 35	221 239 1468	6 6 	0.00 0.00 	-2.0 0.027 -0.5 0.025 	9.21 11.95 27.53
C91 C34 C108 C118 C119 C213 C238 C257 C259	PS PS PS PS PS PS PS T PS T T	35 35 35 35 35 35 35 35 35 35	723 963 886 882 916 874 884	30 70 40 65 42 19 26	0.00 0.50 0.74 0.55 0.12 0.22	-0.7 -3.1 -1.7 -0.8 -1.6 -0.9 -1.0	0.041 0.073 0.045 0.074 0.046 0.022 0.029	18.54 24.08 25.31 23.21 24.76 19.42 19.22	c9 c11 c13 c15 c17 c19 c20 c28 c41 c42	29 29 29 29 29 29 29 29 29 29 29 29 29 2	35 35 35 35 35 35 35 35 35 35 35 35	475 466 460 465 462 470 478 429 466	34 38 49 195 39 14 8 7	0.72 1.01 0.56 0.28 0.32 0.71 0.40 0.15 0.00 0.00	1.3 0.072 -1.2 0.082 0.5 0.086 -0.7 0.052 -0.5 0.041 -0.1 0.141 -1.2 0.083 0.0 0.029 0.0 0.019	31.67 30.87 31.07 27.06 25.83 28.88 26.11 12.26 10.21 5.83
C39 C64 C65 C82	PS T PS PS	35 35 35 35	1010 1099 1000 1024	46 104 146 38	0.26 1.24 1.71 0.20	-1.8 -2.7 -2.6 -1.0	0.046 0.095 0.146 0.037	25.90 45.79 43.48 24.38	045 046 047 054 055 056	PS PS PS PS PS T	35 35 35 35 35 35	422 468 460 489 	ц 6 9 12 -7	0.00 0.16 0.00 0.01	-2.0 0.009 2.0 0.013 0.5 0.020 -0.5 0.025 -0.5 0.014	11.11 6.50 6.57 22.23 20.38
				Third]	Pass				080 081	T PS	35 35 25	459 450 1119	5 8 21	0.07	-1.1 0.011 0.3 0.018	14.34 10.98
C22 C60 C92	PS T PS	15 15 15	235 233 218	17 6 6	0.68 0.06 0.00	0.5 0.8 -1.0	0.072 0.026 0.028	15.67 9.32 5.32	0145 0148 0231 0233	rs FS FS FS FS	35 35 35 35 35	440 453 434 458	16 46 10	0.00 0.91 0.00	-0.2 0.035 -0.7 0.106 1.0 0.022	10.79 31.00 8.33
C18 C107	PS PS	15 15	348 342	31 12	0.79 0.00	0.4 -0.5	0.089 0.035	19.33 4.38	C230 C24	PS PS	35 35	713	123	1.94	-1.1 0.173	41.94
C14 C29 C48 C50	PS PS PS PS	15 15 15 15	461 478 410 464	87 16 10 12	2.34 0.40 0.10 0.01	2.3 0.9 -0.5 1.0	0.189 0.033 0.024 0.026	27.12 12.26 10.79 5.87	C59 C76 C86 C91	T T PS PS	35 35 35 35	738 726 697 714	31 20 108 23	0.70 0.18 2.14 0.00	-2.1 0.042 -1.1 0.028 -2.0 0.155 1.7 0.032	30.75 26.89 30.30 18.31
c51 c52 c53 c57 c70 c97 c116 c117 c142	*****	15 15 15 15 15 15 15 15	461 424 436 466 442 443 452 474 420	12 8 13 30 58 58 17 12 92	0.10 0.20 0.23 0.71 0.97 1.19 0.42 0.03 1.88	-0.1 -0.8 0.2 1.2 0.0 0.0 -0.5 -0.9 0.1	0.026 0.019 0.030 0.064 0.026 0.131 0.039 0.025 0.219	5.55 10.34 10.90 19.42 21.05 19.26 13.29 10.30 26.25	c34 c108 c118 c119 c213 c238 c257 c259	PS PS PS T PS T T	* 35 35 35 35 35 35 35 35 35	963 	47 42 70 43 22 24	0.09; 	-3.1 0.049 	24.20 22.87 22.51 24.78 21.51 22.69
C147 C150 C152 C235	PS PS PS PS	15 15 15 15	434 412 446	42 89 18	1.5 2.32 0.63	-0.1 4.0 0.6	0.097 0.216 0.040	20.67 25.75 13.52	039 064 065 082	PS T PS PS	35 35 35 35	1004 1024 988 1020	49 122 151 38	0.32 1.80 2.33 0.21	-1.0 0.049 -2.9 0.119 -3.6 0.153 -1.0 0.037	24.49 44.52 47.05 25.50
C99 C102	PS PS	15 15	698 637	36 106	0.52 2.30	-1.0 3.4	0.052 0.166	15.51 28.95								

(Continued)

(2 of 4 sheets) ·

<

.

•

•

Table 3 (Continued)

C19 C28 C28 C42 C42 C44 C44 C54 C55 C56 C80	C7 C9 C11 C13 C15 C17	C25 C61 C69 C85 C96	C66 C23	0232 0234	C67 C95 C110 C122	C106 C58	C21 C77 C79 C88 C89	C44 C63 C87 C109 C120 C121	C16 C12 C38 C43	C209 C237	C68 C75 C78 C100 C149 C151	C99 C102 C62	C152 C235	C70 C97 C116 C117 C142 C142 C147 C150	C51 C52 C53 C57	C14 C29 C48 C50	C18 C107	C22 C60 C92		Test
17 17 17 17 17 17 17 17 17 17 17 17 17 1	25 25 25 25 25 25 25 25 25 25 25 25 25 2	PS T PS PS PS	PS PS	PS PS	PS PS PS PS	PS T	PS T T PS PS	22 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	PS PS PS	PS	75 T T F F F F F F F F F F F F F F F F F	PS PS T	PS PS	PS PS PS PS PS PS	PS PS T	PS PS PS PS	PS PS	PS T PS		Test Type
35 35 35 35 35 35 35 35 35 35 35	35 35 35 35 35 35	35 35 35 35 35 35	25 35	25 25 25	25 25 25 25	25 25	25 25 25 25 25	25 25 25 25 25 25	25 25 25	15	15 15 15 15 15 15	15 15 15	15 15	15 15 15 15 15 15	15 15 15	15 15 15 15	15 15	15 15 15		Deflec- tion (%δ)
465 499 4733 466 414 460 458 484	464 485 462 477 465	232 237 215 234 			858 910 888	694 880	670 670 663 658	428 478 439 446 452 460	299 474 446	876	872 900 850 924 	692 875	396 458	434 443 448 474 421 435	429	482 406	350 349	236 236 220		Load (W)
64 49 12 7 4 6 9 5 18	49 40 44 42 28	7 5 8 4			149 24 18	14 142	81 52 22 178	9 25 10 12 18 13	76 22	103	171 136 171 79	32 196	85 22	37 50 18 10 96 	12 31	12 9	34 11	22 5 5	Fourth	Pull (P _t) 1b
1.49 0.57 0.00 0.00 0.00 0.13 0.00 0.00	0.58 0.86 1.17 0.69 0.22	0.15 0.00 0.00			2.98 0.09 0.00	0.00 2.69	1.92 1.16 0.32 3.17	0.00 0.51 0.00 0.00 0.10 0.00	1.93 0.06	2.13	3.46 2.67 3.67 1.04 	0.61 3.45	2.67 0.65	1.15 1.44 0.54 0.12 2.24	0.20	0.39 0.10	0.90 0.00	0.82 0.14 0.00	Pass	Sinkage (z) in
-0.8 0.1 0.4 0.0 -0.6 0.0 -0.5 0.0 -0.3 0.0 -1.7 0.0 2.4 0.0 0.5 0.0 -1.6	-1.3 '0.1 0.8 0.0 -1.2 0.0 -1.4 0.0 0.1 0.0	-1.3 0.0 -3.1 0.0 -2.4 0.0 0.0 0.0			-2.0 0.1	-0.5 0.0	-0.5 0.1 -1.5 0.0 -0.9 0.0 -1.4 0.2	1.0 0.0 -0.7 0.0 0.5 0.0 0.0 0.0 -0.1 0.0	-0.7 0.1	2.1 0.1	2.9 0.1 2.0 0.1 3.6 0.2 -0.3 0.0	2.3 0.2	4.7 0.2 0.9 0.0	-0.5 0.1 -0.1 0.0 -1.0 0.0 1.7 0.2	-0.2 0.0	0.5 0.0	1.1 0.0 -1.5 0.0	1.2 0.0 0.5 0.0 -2.0 0.0		Slip I
8 29.06 8 31.19 6 12.05 6 9.84 9 5.63 4 10.35 0 6.22 1 6.54 22.00 	6 29.00 2 30.31 5 28.88 8 29.81 0 25.83	13.65 1 9.88 7 9.77 7 11.14			4 39.00 26 19.78 20 15.31	9.51 51 38.26	1 27.92 8 23.93 3 15.79 1 28.61	10.70 19.12 10.98 10.98 7 6.28 10.159 8 9.79	5 17.59 50 26.33 59 10.62	23 28.26	6 36.33 1 34.33 1 32.69 5 20.09 	15.73 	5 26.40 8 13.88	20.67 3 20.14 0 12.80 1 10.09 2 24.76 	8 11.00 7 18.60	25 12.68 22 9.67	97 19.44 32 4.78	23 14.75 21 9.08 23 5.79		<u>w</u>
C21 C77 C79 C88 C89 C106 C58 C67 C75	Cli4 C63 C87 C109 C120 C121	C16 C12 C38 Ch3	C209 C237	C78 C100 C149 C151	C102 C62 C68 C75	C235	C116 C117 C142 C147 C150 C152	C51 C52 C53 C57 C70 C97	C14 C29 C48 C50	C18 C107	C22 C60 C92	C65 C82	C 39 C 64	C108 C118 C119 C213 C238 C257 C259	C34	C24. C59 C76	C148 C231 C233 C236	C81 C144 C145		Test
R F F R R F	PS PS PS PS PS PS PS	PS PS PS PS	T PS	T PS PS PS	PS T PS T	PS PS	P3 P3 P3 P3 P3 P3 P3 P3	PS PS T PS PS	PS PS PS PS	PS PS	PS T PS	PS PS	PS T	PS PS T T T	PS PS	PS T T	PS PS PS PS	PS PS PS		Test Type
25 25 25 25 25 25 25 25	25 25 25 25 25 25	25 25 25	15 15	15 15 15 15	15 15 15 15	15 15	15 15 15 15 15 15	15 15 15 15 15 15	15 15 15 15	15 15	15 15 15	35 35	. 35 35	35 35 35 35 35 35	· 35	35 35 35	35 35 35 35	35 35 35		Deflec- tion (% δ)
654 668 658 668 876 846	428 469 448 449 444 462	299 445	883	844 927	 855 848 960	485 695	444 478 402 433 401	 466 435 450	482 410	343	232 241 218	1020	1015 1013	 892 900 869 883	718 964	 732 726	438 463 473	456 461 460	Four	Load (W) 1b
79 53 20 	10 21 10 10 20 10	11 22	108	174 74	183 168 148	20 40	19 12 92 48 79	 27 38 56	16 12	 16	17 14 14	36 Bifth	60 120	48 48 22 25	33 46	34 21	9 16	6 16 18	th Pass	Pull (P _t) 1b
2.17 1.40 0.35 0.01 3.10 3.41	0.00 0.63 0.07 0.00 0.22 0.00	0.41	2.39	4.24 1.15	4.02 3.75 3.16	0.75 0.65	0.61 0.12 2.57 1.37 2.95	0.92 1.24 1.69	0.42	0.00	0.71 0.16 0.00	0.25	0.35	0.71 0.71 0.34 0.27	0.00	0.85	0.00	0.00	(Continue	Sinkage (z) in.
1.1 0.5 -0.3 	1.5 -0.5 -1.0 -0.5 -0.1 1.0	-1.0	2.8	3.2 0.5 	 2.7 4.8 2.9	0.0 -3.6	-0.8 -0.3 3.3 1.6 3.9	 1.4 2.9 1.0	1.7 2.9	-1.0	0.6 0.6 1.0	-1.0	-2.3 -2.4	-0.2 -2.2 -0.5 -1.0	-1.0 3.3	-2.1 -1.9	-1.2 1.0 	-0.3 0.5 -0.2	<u>d)</u>	Slip %
0.121 0.079 0.030 	0.023 0.045 0.022 0.022 0.045 0.022	0.037	. <u>:</u> 0.122	0.206 0.080	 0.244 0.198 0.154	0.041 0.058	0.043 0.025 0.229 0.111 0.197	0.058 0.087 0.124	0.033 . 0.029	0.047	0.073 0.017 0.018	0.035	0.059 0.118	0.054	0.046 0.048	0.046 0.029	0.019	0.013 0.035 0.039		$\frac{P_t}{W}$
27.25 23.86 15.67 9.15 38.09 38.45	10.70 18.76 11.20 6.31 11.38 9.83	17.59	28.48	32.46 20.15	 40.71 35.33 35.56	14.70 15.80	12.69 10.17 23.65 19.68 26.73	18.64 20.71 20.45	12.68 9.76	4.70	14.50 9.27 5.74	24.29	25.38 42.21	22.87 26.47 20.21 20.07	18.89 24.10	31.83 27.92	31.29 8.74 14.78	11.40 7.20 11.50		<u>W</u>

(Continued)

Table 3 (Concluded)

Test	Test Type	Deflec- tion (% 8)	Load (W) lb	Pull (P _t)	Sinkage (Z) in.	Slip	Pt W	W CI	Test	Test Type	Deflec- tion (% ຽ)	Load (W) 1b	Pull (P _t) 1b	Sinkage (Z) in.	Slip	$\frac{P_t}{W}$	M CI
			Fifth	h Pass I	(Continued	2		•				Fifth	Pass (Continued	2		
C66 C23 C25 C61 C69 C85 C96	PS PS T PS PS PS	25 35 35 35 35 35 35 35	230 235 213 237	16 8 6	 0.11 0.00 0.00	-1.5 -1.7 -3.6 -2.0	 0.070 0.034 0.028 0.025	 13.53 9.79 9.68 11.29	C24 C59 C76 C86 C91 C34 C108	PS T T PS PS	35 35 35 35 35 35	731 718 716	39 24 18	1.07 0.24 0.03	-2.4 -1.4 -0.5	0.053 0.033 6.025	31.78 27.62 18.84
C7 C9 C11 C13	PS PS PS PS	35 35 35 35	467 478 468 483	63 42 53 44	0.78 1.05 1.45 0.86	-0.9 -0.1 -1.0 -1.6	0.135 0.038 0.113 0.091	29.19 29.88 29.25 30.19	C118 C119 C213 C238 C257 C259	PS PS T PS T	35 35 35 35 35	920 888 875 876	47 40 22 26	0.85 0.80 0.27 0.34	-0.1 -0.4 -1.8	0.051	23.59 26.12 20.35
C15 C17908 C281 C2281 C4455 C4455 C5560 C14458 C14458 C14458 C14458 C14458 C14458 C14458 C14458 C14458 C14458 C1458 C1458 C1458 C2233 C23	ĸĸĸĸĸĸĸĸĸĸĸĸ _{ĔĔ} ĸĸĸĸĸĸ	35 35 35 35 35 35 35 35 35 35 35 35 35 3	471 470 467 522 485 471 471 471 472 485 471 471 472 461 493 462 462 462 462 455 424 475 425 425 425 425 425 425 425 42	28 27 64 17 5 6 4 6 20 - 13 2 6 2 15 9 - 10	0, 46 0, 31 1, 86 0, 95 0, 03 0, 10 0, 00 0, 0	-1.6 -0.4 0.5 -1.1 -1.5 2.0 0.0 0.0 -1.6 1.0 -1.6 1.0 -0.1 -0.9 -0.9 -1.4 -0.9	0.059 0.158 0.123 0.035 0.011 0.014 0.004 0.013 0.041 0.027 0.041 0.027 0.041 0.027 0.033 0.113 0.033 0.13 0.033 0.13 0.033	26.17 29.19 32.62 12.12 5.74 10.95 6.59 22.41 20.38 5.59 22.41 11.55 7.22 11.55 7.22 11.38 30.29	C39 C64 C65 C82	RS T FS FS FS	35 35 35 35 35	1005 1005 	1,3 1,32 	0.38 2.66 0.36	-1.6 -2.6 -2.0	0.043 0.131 0.053	25.13 41.88
																•	

Table 4 9.00-14, 2-PR Smooth Tire, Constant-Slip Test Conditions

Clay

		Deflec- tion	Load	Pull	Torque	Sinkage						Deflec- tion	Load	Pull	Torque	Sinkage			
Test	Nom. Slip	(% 8) %	(W) <u>lb</u>	(P) 1b	(M) <u>ft-1b</u>	(z) in	Slip <u>%</u>	<u>P</u> W	<u><u><u></u></u></u>	Test	Nom. Slip	(% 8) 	(W) 1b	(P) 1b	(M) <u>ft-lb</u>	(2) in	Slip _%	W	W CI
				Fir	st Pass								Thi	rd Pas	s (Conti	nued)			
C26 C27 C27 C30 C30 C31 C32 C32	0 20 30 10 20 0	35 35 35 35 35 35 35 35	449 448 445 445 713 722 710 443 445	13 93 71 155 -32 47 95 -78 -42	28 113 95 209 17 112 184 -22	0.13 0.26 0.26 0.50 0.69 0.61 0.09 0.91	1.9 8.8 19.8 28.3 0.4 8.8 16.9 -0.2	0.029 0.208 0.156 0.341 -0.045 0.065 0.134 -0.176 0.094	24.94 24.89 23.42 37.53 30.00 37.37 23.32 23.42	C210 C212 C214 C255 C256 C258 C266	20 20 20 20 20 20 20	15 25 35 35 35 35 15	900 884 885 882 878 865 345	205 329 402 375 396 419 112	365 487 511 466 483 514 164	1.60 1.65 1.12 0.90 0.74 0.59 1.22	10.2 18.7 14.6 16.6 16.2 20.0 19.5	0.228 0.372 0.454 0.425 0.451 0.484 0.325	20.93 20.56 21.07 26.73 21.41 19.66 17.25
C33 C36	20	15 25	435	59 122	153 20	1.19	18.5	0.136 -0.182	24.17					Fou	rth Pass				
036 037 037 090 094 094 094 098 098	10 20 30 10 20 10 20 10 20	25 25 25 35 35 15 15	679 665 674 679 726 722 438 435	-20 -85 -36 -95 28 49 -14 14 65	188 274 83 180 172 237 78 150	2.29 2.20 1.43 1.27 1.12 2.07 0.81 0.87	20.0 26.7 7.4 16.0 9.7 20.6 7.0 19.7	-0.125 -0.054 -0.141 0.041 0.067 -0.019 0.032 0.149	37.72 36.94 33.70 33.95 38.21 38.00 19.91 19.77	026 027 037 030 030 032 032 033	0 10 20 30 0 10 10 20	35 35 35 35 35 35 15 15	460 457 445 438 710 702 437 451 451	-21 95 135 135 -75 82 -79 29	8 126 185 215 4 170 - 18 91 153	0.26 0.50 0.86 1.91 1.96 1.75 1.88 2.15	-0.3 7.4 18.0 27.1 1.0 14.6 0.8 10.8 19.2	-0.046 0.208 0.303 0.308 -0.105 0.117 -0.181 0.064 0.087	27.06 26.88 26.18 25.76 41.76 41.29 24.28 25.06 25.65
C210 C212 C214 C255 C256	20 20 20 20 20	15 25 35 35 35	890 896 884 876 905	288 392 368 393	344 467 504 450 475	1.18 1.12 0.87 0.65 0.54	13.5 19.7 15.4 15.8 15.4	0.209 0.321 0.443 0.420 0.434	19.35 22.40 21.56 25.03 23.82	036 094 098 098	10 10 10 20	25 25 35 15 15	675 713 451 450	-185 -63 -28 19 65	98 136 97 160	3.23 3.17 3.30 1.70 1.63	10.6 9.7 11.4 20.1	-0.246 -0.101 -0.039 0.042 0.144	39.47 39.71 44.56 20.50 20.45
0258 0266	20 20	35 15	877 346	429 119 <u>Sec</u>	523 178 ond Pass	0.54 0.70	19.3 19.6	0.489 0.344	21.92 -15.73	C255 C256 C258 C266	20 20 20 20	35 35 35 15	884 879 861 334	376 393 418 116	460 478 512 168	0.96 0.84 0.75 1.42	16.6 15.4 20.4 19.9	0.425 0.447 0.485 0.347	24.56 20.93 18.72 16.70
C26	0	35	hh7	-3	21	0.20	0.0	-0.007	24.83					Fif	th Pass				
C26 C27 C30 C30 C32 C32 C32 C32 C32 C33 C33 C33 C33 C33	10 20 30 10 20 0 10 20 10 20 10 20 10 20 10 20	35 35 35 35 35 35 35 15 25 25 25 35 55 15	449 448 714 704 459 670 660 6714 458 670 660 314 458 6714 458 6714 458 6714 458	99 115 137 -35 66 113 -73 33 64 -126 -123 -123 -123 -123 -123 -123 -123 -123 -123 -132 -65 31	122 149 21 129 213 -19 26 28 172 14 157 228 104 156	0.46 0.56 0.87 1.08 1.21 1.33 1.52 1.64 1.73 3.40 2.20 1.95 1.95 1.95 1.16 1.16	8.3 19.1 26.3 11.1 21.0 9.5 19.5 19.5 19.5 19.5 7.4 19.2 7.1 15.8 9.6 20.4 10.8 19.7	0.221 0.256 0.306 -0.049 0.092 0.159 -0.163 -0.060 -0.186 -0.0169 -0.186 -0.0169 -0.186 -0.019 0.003 -0.091 0.0058 0.157	24.89 23.63 23.58 39.44 39.67 324.83 25.50 23.42 37.52 33.65 33.65 33.55 20.73 20.55	C26 C26 C27 C30 C32 C32 C36 C98 C98 C98 C98 C255 C256 C256 C258	0 10 20 0 10 0 10 10 10 20 20 20 20 20	35 35 35 15 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	452 442 703 452 670 453 886 888 888 888 888 888 888 888 888 88	-23 95 122 -81 9 -102 -165 -98 -27 0 55 376 392 122	7 131 93 -28 83 155 83 155 463 474 517 178	0.41 0.61 2.01 2.31 1.08 2.04 3.75 3.77 1.89 1.94 1.02 0.93 0.63 1.39	-0.2 8.3 18.0 0.6 7.3 0.6 10.0 2.7 9.8 11.4 18.7 16.2 14.9 19.9 20.0	- -0.051 0.208 0.276 -0.114 0.013 -0.225 0.017 -0.246 -0.145 -0.039 0.000 -0.121 0.424 0.443 0.494 0.357	26.59 26.82 24.56 41.65 25.17 25.67 41.85 42.31 43.81 21.52 21.57 24.61 21.05 18.89
C210 C212 C214 C255 C256 C258 C266	20 20 20 20 20 20 20 20	15 25 35 35 35 35 35 15	898 892 895 881 878 878 342	200 313 401 372 389 420 123	370 480 515 469 468 517 158	1.40 1.45 1.07 0.82 0.76 0.67 0.99	12.9 19.2 15.1 16.1 15.4 20.0 19.6	0.223 0.351 0.448 0.422 0.443 0.443 0.476 0.350	20.41 21.24 21.83 25.91 21.95 19.60 16.29								ſ		
				<u>Thi</u>	rd Pass													,	
026 027 0230 0332 0332 0336 0336 0336 0336 0336	0 10 20 30 10 20 0 10 20 10 10 20 10 20 10 20 20 20 20 20 20 20 20 20 2	35 35 35 35 35 35 35 15 25 25 25 35 15 15	451 445 445 712 445 714 473 4473 673 665 6775 450 450	-5 101 133 -60 92 -62 -66 -69 -161 -69 -161 -25 -22 69	15 128 174 216 136 215 0 75 143 14 86 84 165 135 100 149	0.27 0.51 0.97 1.428 1.577 1.460 1.844 2.366 2.935 2.633 1.383 1.43	-0.4 8.5 18.0 27.5 0.4 9.7 21.0 3.0 8.8 18.1 -0.3 7.7 9.3 15.4 10.5 12.1 19.4	-0.011 0.223 0.300 0.306 0.084 0.084 0.013 0.103 -0.241 -0.103 -0.242 -0.052 -0.052 0.049 0.153	$\begin{array}{c} 25.06\\ 25.11\\ 26.06\\ 41.88\\ 42.00\\ 26.41\\ 42.00\\ 26.41\\ 42.00\\ 24.83\\ 44.20\\ 21.83\\ 44.20\\ 21.48\\ 31.67\\ 342.06\\ 21.48\\ 21.43\end{array}$						~				

.

.

 Table 5

 9.00-14, 2-PR Smooth Tire, 20 Percent Slip Condition

Clay

Test	Test <u>Type*</u>	Deflec- tion (%δ)	Load (W) 1b	Pull (P ₂₀) 1b	Torque (M ₂₀) ft-1b	Sinkage (z) in.	Slip	P ₂₀ W	W/CI	Test	Test Type*	Deflec- tion (% δ)	Load (W) 1b	Pull (P ₂₀) 1b	Torque (M ₂₀) ft-1b	Sinkage (z) in.	Slip	P20 W	<u>W</u>
				Firs	st Pass								Fi	rst Pas	s (Conti	nued)			
C22 C92	PS PS	15 15	217 222	38 159	63 171	0.47 0.07	20.2 20.2	0.175 0.716	11.42 5.41	C148 C231 C236	PS PS PS	35 35 35	444 472 475	114 483 343	173 510 374	0.74 0.00 0.51	20.1 20.0 20.3	0.257 1.023 0.722	27.75 9.63 15.83
C18 C107 C266	PS PS CS	15 15 15	338 346 346	67 260 119 15	117 282 168	0.81 0.00 0.70	20.2 20.0 19.6	0.198 0.751 0.344	16.90 4.68 15.73 24.17	024 031 086 091	PS CS PS PS	35 35 35 35	700 710 708 719	106 95 52 346	202 174 178 400	1.25 0.09 0.98 0.15	20.7 16.9 20.4 20.0	0.151 0.134 0.073 0.481	36.84 37.37 33.71 17.54
C29 C33 C48 C50 C51 C52 C53 C70 C97 C98 C111	1 K S K K K K K K K K K K K K K K K K K	15 15 15 15 15 15 15 15 15 15 15	464 435 421 457 452 448 438 441 442 438 441 448	101 59 204 288 207 187 109 86 46 65 310	126 143 234 310 238 210 119 160 108 140 342	0.29 1.19 0.13 0.04 0.16 0.00 0.10 0.97 0.80 0.87 0.05	20.0 18.5 19.7 20.0 20.2 20.0 19.8 20.0 20.0 19.7 20.0	0.218 0.136 0.485 0.630 0.458 0.417 0.249 0.195 0.104 0.148 0.692	11.32 24.17 10.27 5.94 5.72 10.67 10.43 20.04 18.42 19.91 5.97	C94 C10 C34 C108 C108 C118 C119 C238 C255	CS P2 P2 P	35 35 35 35 35 35 35 35 35 35 35 35 35 3	722 870 895 900 868 892 876 882 876 876 876	-14 -374 -304 128 315 451 530 446 314 368	227 240 270 201 343 493 610 541 406 440	2.07 4.67 4.34 0.00 0.00 0.27 0.28 0.75 0.65	20.6 20.0 19.4 20.0 19.7 20.1 19.8 19.7 20.5 15.8	-0.019 -0.430 -0.340 0.142 0.363 0.506 0.605 0.506 0.358 0.420	38.00 51.18 52.65 21.43 19.73 12.22 17.52 22.62 26.54 25.03
C116 C117 C142 C147 C150 C152	PS PS PS PS PS PS	15 15 15 15 15	450 446 442 440 444 438	220 290 31 40 93	254 328 152 144 161 138	0.43 0.10 1.46 1.50 0.95	19.7 20.2 20.5 19.6 20.4	0.489 0.650 0.070 0.091 0.209 0.130	13.24 8.92 26.00 25.88 19.30 29.20	C256 C258 C39 C65 C82	CS CS PS PS PS	35 35 35 35 35	905 877 1008 1008 1023	393 429 312 62 300	465 513 343 216 359	0.54 0.54 0.00 1.26 0.23	15.4 19.3 19.7 20.0 19.8	0.434 0.489 0.309 0.062 0.293	23.82 21.92 . 22.91 42.00 23.25
C235 C99	PS PS	15 15	458 683	160 214	224 291	0.68 0.48	19.9 20.0	0.349 0.313	14.31 14.85					Seco	ond Pass				
C102 C68	PS PS	15 15	653 880	21 47 182	181 268 288	53 2.02 0.68	20.3	0.032	29.68 · 36.67 19.17	C22 C92	PS PS	15 15	219 211	40 161	71 172	0.70	20.3 20.0	0.183	12.88 5.15
C149 C151 C237	PS PS PS	15 15 15	897 852 898	46 -142 136	244 234 312	1.82 3.67 1.54	20.0 20.3 20.0	0.051 -0.167 0.151	35.88 50.12 28.06	C18 C107 C266	PS PS CS	15 15 15	.339 344 342	63 245 123	118 262 148	1.22 0.00 0.99	20.0 20.0 19.6	0.186 0.712 0.360	18.83 4.78 16.28
C16	PS PS	25 25	287 441	78 60	93 166	0.45 1.28	19.9 19.8	0.272 0.136	15.10 24.50	014 - 029	PS PS	15 15	435 470	49 101	143 119	2.40 0.42	20.2 20.4	0.113	27.19 13.06
C38	PS	25 25	433 452	194 251	230 248	0.18 0.06	19.7 20.3	c.448 0.555	10.07 5.79	.033 048 050	CS PS PS	15 15 15	445 420 460	64 206 313	150 228 338	1.55 0.22 0.14	19.3 20.0 20.0	0.144 0.490 0.680	23,42 10,50 5,97
C44 C63 C87 C109 C120 C121	PS PS PS PS PS PS PS PS	25 25 25 25 25 25 25	437 450 453 452 454 462	268 183 164 417 350 426	265 303 170 437 392 458	0.04 0.52 0.00 0.00 0.41 0.06	19.7 19.7 20.0 20.2 19.9 19.8	0.613 0.407 0.362 0.922 0.771 0.922	10.40 18.75 11.32 6.11 12.27 9.83	C51 C52 C53 C70 C97 C98 C111	PS PS PS PS CS PS	15 15 15 15 15 15	455 435 440 444 445 452 450	247 180 164 90 56 71 320	270 209 187 148 114 146 341	0.12 0.29 0.19 1.09 1.12 1.16 0.02	20.5 20.4 19.8 20.3 20.2 19.7 20.0	0.543 0.414 0.373 0.203 0.126 0.157 0.711	6.15 11.45 10.23 21.14 19.35 20.54 6.72
C21 C37 C88 C89 C106	PS CS PS PS PS	25 25 25 25 25	639 679 662 660 677	-135 -85 208 27 103	186 178 248 163 122	2.86 2:29 0.24 1.39 0.00	20.4 20.0 19.7 19.9 20.0	-0.211 -0.125 -0.314 -0.041 -0.154	39.94 37.72 15.76 31.43 9.15	C116 C117 C142 C147 C150 C152	PS PS PS PS PS PS	15 15 15 15 15 15	447 456 440 450 430	216 286 30 102 49	259 324 152 153 138	0.56 0.29 1.96 1.28 2.08	19.4 20.0 19.8 19.9 19.5	0.483 0.627 0.068 0.227 0.112	13.54 8.60 29.33 20.45 28.67
C67 C95 C110 C122 C146	PS PS PS PS PS PS	25 25 25 25 25	879 902 900 880	118 386 400 248	288 453 460 344	1.71 0.08 0.08 0.52	20.0 20.4 19.8	0.134 0.428 0.444 0.282	18.04 16.36 20.95	C235 C99 C102	PS PS	15 15	686 651	232 38	231 298 168	0.99	20.0 20.1	0.393 0.338 0.058	19.42 14.91 28.30
C212 C66	CS PS	25 25	896 1316	288 -230	⁻⁴⁵⁷ 370	1.12 3.43	19.7 20.0	0.321 -0.175	22.40 52.64	C68 C100 C149	PS PS PS PS	15 15 15	884 900 862 820	43 205 44	240 298 228 182	2.63 0.88 2.95 5.18	20.0 19.9 20.4	0.049 0.228 0.051	36.83 19.15 39.18
C23 C25 C69 C85	PS PS PS	35 35 35 35	220 213 220 224	170 181 180 194	185 195 188 216	0.26 0.41 0.04 0.00	19.4 19.8 19.7 19.8	0.773 0.850 0.818 0.866	12.22 11.21 9.56 11.20	C237 C16	PS PS	15 25	868 291	162 73	302 93	1.93 0.55	19.8 19.7	0.187	27.12
C96 C7 C9 C11 C13 C15 C17 C19 C20 C27	2 X X X X X X X X X X X X X X X X X X X	35 35 35 35 35 35 35 35 35 35 35 35	230 440 449 436 440 437 442 430 446 445	302 72 117 114 119 142 148 99 101 .71	321 166 162 157 162 165 162 160 162 85	0.00 0.72 0.95 1.11 0.72 0.34 0.36 1.10 0.76 0.26	19.5 20.0 19.7 19.3 19.8 20.3 20.0 20.0 19.8	1.313 0.164 0.260 0.251 0.270 0.325 0.335 0.230 0.226 0.160	4.79 24.44 29.93 25.65 27.50 24.28 23.26 26.88 23.47 23.42	C12 C38 C43 C43 C63 C87 C109 C120 C121 C21	*****	25 25 25 25 25 25 25 25 25 25 25 25 25 2	435 437 466 442 455 458 458 439 456	63 157 278 243 180 175 417 342 422	157 204 292 246 285 186 440 380 450	2.00 0.22 0.08 0.06 0.59 0.00 0.00 0.41 0.06	20.1 20.4 20.3 20.3 20.3 19.8 20.3 20.0 19.8	 0.145 0.359 0.596 0.550 0.396 0.382 0.918 0.779 0.925 	25.59 11.50 6.21 10.78 18.96 12.05 6.30 12.54 9.50
C28 C41 C42	PS PS	35 35 35	452 437 460	187 222 299	210 223 298	0,20 0.06 0.00	20.0 20.0 20.0	0.414 0.508 0.650	11.02 9.71 5.61	C37 C88 C89 C106	CS PS PS PS	25 25 25 25	661 664 654 678	-112 200 6 167	162 250 168 202	3.40 0.39 2.10 0.00	19.2 20.0 20.2 20.0	-0.169 0.301 0.009 0.246	38.88 15.81 32.70 10.59
C45 C46 C47 C54 C55 C81 C144 C145	R R R R R R R	35 35 35 35 35 35 35 35 35	423 440 448 451 459 457 441 434	330 510 215 198 234 486 383	325 518 524 237 218 230 516 410	0.00 0.18 0.00 0.37 0.20 0.00 0.00 0.16	20.2 20.2 20.2 20.1 20.3 19.7 20.2 20.2	1.159 1.125 0.477 0.431 0.512 1.102 0.882	10.07 5.50 5.97 22.55 19.12 11.15 7.00 10.33	C67 C95 C110 C122 C146 C212	FS FS FS FS FS FS	25 25 25 25 25 25	880 892 881 890 872 892	114 342 396 414 240 313	276 410 426 498 336 470	2.41 0.23 0.10 0.46 0.74 1.45	20.0 20.0 19.8 19.5 19.6 19.2	0.130 0.383 0.449 0.465 0.275 0.351	40.00 18.58 14.21 18.94 21.27 21.24

* PS, programed-slip test; CS, constant-slip test.

,

(1 of 4 sheets)

<

ı,

•

Table 5 (Continued)

Test	Test Type	Deflec- tion (%δ) %	Load (W) 1b	Pull (P ₂₀) 1b	Torque (M ₂₀) ft-1b	Sinkage (z) in,	Slip	P20 W	W	Test	Test Type	Deflec- tion (ເຮັຽ)	Load (W) 1b	Pull (P ₂₀) <u>1b</u>	Torque (M ₂₀) <u>ft-lb</u>	Sinkage (z) in.	Slip	<u>P20</u>	U CI
			Se	cond Pa	ss (Cont	inued)			•				Th	ird Pas	s (Conti	nued)			
C 66	PS	25				·				C16	PS	25	289	83	103	0.87	19.9	0.287	17.00
023 025	PS PS	35 35	 217	 158	176	0.40	20.1	0.728	12.76	012 038	PS PS	25 25	439 432	61 175	164 218	2.36 0.25	19.8 20.0	0.139 0.405	27.44 10.80
069 085	PS PS	35 35	210 229	146 169 285	151 182 207	0.00	19.7 20.3	0,695 0.738	8.75 12.05 1.69	C43 C44 C63	PS PS PS	25 25 25	 433 456	241 177	250 284	0.10	19.7 20.0	0.556	10.82
C90	PS	35	434	58	154	1.18	19.5	0.134	18.08	C87 C109	PS PS	25 25	451 458	182 411	192 435	0.03	20.3	0.404	11.87 6.11
C9 C11 C13	PS PS PS	35 35 35	440 442 449	104 93 103	184 155 167	1.44 1.62 0.97	20.1 19.4 19.5	0.236	29.33 29.47 28.06	C120	PS PS	25	441 454	346 410	381 440	0.04	20.2 19.8	0.784 0.903	9.46
C15 C17	PS PS	35 35	եկե եեղ հշխ	123 140 26	161 175 128	0.61 0.53 1.78	19.8 20.1	0.277 0.313 0.085	27.75 23.53 23.56	C21 C37 C88	PS CS PS	25 25 25		 226	 264	·		0 343	 11_08
C20 C27	PS CS	35 35	450 449	56 115	140 139	1.19	20.0 19.1	0.124	28.12 23.63	C89 C106	PS PS	25 25	664 690	-16 216	172 260	2.66 0.01	19.8 20.0	-0.024 0.313	31.62 10.30
C28 C41 C42	PS PS PS	35 35 35	460 434 456	177 262 365	193 263 360	0.13 0.01 0.00	20.5 20.0 20.6	0.305 0.604 0.800	12.10 10.33 5.56	C67 C95	PS PS	25 25	875 900	101 352	274 432	2.97 0.26	20.2 19.8	0.115 0.391	39.77 19.56
C45 C46	PS PS	35 35	419 442 555	296 536 502	300 554 502	0.00	20.0 20.0	0.706 1.213	10.22 5.74 6.34	0.10 0122 0146	PS PS PS	25 25 25	892 880	390 244	423	0.10	19.8	0.437	
C54 C55	PS PS	35 35	461 458	209 197	216 221	0.55	20.1 19.5	0.453	20.04 19.91	C212	CS .	25	884	329	477	1.65	18.7	0.372	20.56
C81 C144 C145	PS PS PS	35 35 35	454 445 436	254 471 338	256 497 370	0.00 0.00 0.00	20.0 19.9 19.9	0.559 1.058 0.775	6.95 9.91	C66	PS PS	35							
C148 C231	PS PS	35 35	436 469	93 473	158 520	1.09 0.00	19.8 20.0	0.213 1.008	29.07 8.38	C25 C69 C25	PS PS PS	35 35 35	217 218 226	163 162 164	178 165 164	0.33 0.00	20.8 20.0	0.751 0.743 0.726	12.76 9.08
C230	PS	35	713	51) 44	186	1.81	20.0	0.062	44.56	C 96	PS	35							
C31 C86 C91	CS PS PS	35 35 35	709 718 726	113 28 336	203 168 382	0.90 1.72 0.28	21.0 20.0 20.0	0.159 0.039 0.463	37.32 34.19 18.62	C9 C11	PS PS PS PS	35 35 35	430 448 432	65 89 94	157 174 160	1.64 1.80 2.13	20.5 20.2 20.7	0.149 0.199 0.218	25.65 29.87 28.80
C94	CS	35	714 86b	-65	218 270	3.36	20.4	-0.091	42.00	C13 C15	PS PS PS	35 35 35	441 435 450	95 117 138	166 165 186	1.67 0.84 0.93	19.8 20.0	0.215 0.269	29.40 25.59 25.00
C10 C34	PS PS	35 35	 928		 213	0.03	19.7	0.153	23.20	019 020	PS PS	35 35	410 453	33 33	137 11:1	2.33 1.51	20.3 20.1	0.080	25.62 25.17
C108	PS PS PS	35 35 35	876 	336 	378	0.14	19.4	0.384 	20.37	C27 C28 C41	CS PS PS	35 35 35	443 461 436	133 175 288	193 290	0.65 0.05 0.09	18.0 20.3 20.4	0.300 0.380 0.660	26.06 11.82 10.38
C119 C238	PS PS	35 35	884 882	468 294	552 380	0.92	19.8 20.2	0.529	25.26 23.84	C42 C45	PS PS	35 35	461 421	370 312	386 309 500	0.01	20.3	0.803 0.741	5.76 11.08
C255 C256 C258	CS CS CS	35 35 35	831 878 882	372 389 420	459 458 507	0.02 0.76 0.67	15.1 15.4 20.0	0.422 0.443 0.476	29.91 21.95 19.60	C40 C47 C54	PS PS	35 35 35	490 424 459	520 189	550 216	0.02 0.52	20.4 20.0 20.1	1.226	6.06 20.86
C39	PS PS	35	996 1016	281 24	353 248	0.56	19.5	0.282	25.54 44.52	C55 C81 C144	PS PS PS	35 35 35	454 434	277 465	 282 504	0.00	20.0 20.2	0.610 1.071	11.07 6.89
c 82	PS	35	1024	300	366	0.43	20.2	0.293	24.38	C145 C148	PS PS	35	433 438	333 92	359 149	0.03 1.51	20.3 20.0	0.769 0.210	10.31 31.28
				Thir	d Pass					C236	PS	35	466	320	352	0.40	20.4	0.687	14.56
C22 C92	PS PS	15 15	228 219	54 165	81 175	0.91	20.0 19.7	0.237 0.753	15.20	031 086	PS CS PS	35 35 35	706 714 704	35 92 48	205 178	2.88 1.57 2.15	20.3 21.0 20.4	0.050 0.129 0.068	41.53 42.00 30.61
C18	PS PS	15	336 336	69 239	120 276	1.34	20.3	0.205	18.67 8.36	C91 C94	PS CS	35 35	714	335 	378	0.25	20.0	0.469	18.31
C266	cs	15	345	112	154	1.22	19.5	0.325	17.25	C8 C10	PS PS	35 35 25							
C14 C29 C33	PS PS CS	15 15 15	446 467 447	48 108 46	147 133 133	2.69 0.47 1.84	20.4 20.4 18.1	0.100 0.231 0.103	26.24 11.97 24.83	C40 C108	PS PS	35 35	856 	338 	386 	0.24	19.7	0.395	20.38
C48 C50	PS PS PS	15 15	409 444 461	210 358 270	242 372 282	0.26	20.2	0.513 0.806 0.586	10.76 5.62	C118 C119 C238	PS PS PS	35 35 35	 872 868	486 288	 568 376	1.04	20.0	0.557 0.332	22.36 24.11
C52 C53	PS PS	15 15	428 440	186 184	221 209	0.40	20.4 19.5	0.434	10.44 11.00	C255 C256	CS CS	35 35	882 878	375 396	456 473	0.90 0.74	16.6 16.2	0.425	26.73 21.41
C70 C97 C98	PS PS CS	15 15 15	439 442 450	96 •52 69	144 118 149	1.31 1.39 1.43	20.3 20.3 19.4	0.219 0.118 0.153	20.90 19.22 21.43	C39	PS	32 35	990	419 285	362	0.61	19.7	0.288	24.15
C111 C116	PS PS	15 15	447 441	304 230	334 262	0.06	19.7 20.4	0.680 0.522 0.633	6.30 12.97	C65 C82	PS PS	35 35	995 1016	16 310	240 381	3.22 0.54	20.0 19.8	0.016 0.305	66.33 25.40
C142 C147	PS PS PS	15 15	420	32 	144 	2.30	20.4	0.076	26.25					Four	th Pass	i /			
C150 C152 C235	PS PS PS	15 15 15	434 436 450	102 47 188	166 133 236	1.31 2.49 1.08	20.3 19.7 19.7	0.235 0.108 0.418	20.67 27.25 13.64	C22	PS	15	227	57	105	1.28	20.4	0.251	14.19
C99	PS PS	15 15	688 639	238 34	310 155	0.76	20.0	0.346	- 15.29	C92	PS pe	15 15	221 336	175 73	184	0.10	19.8 20.7	0.792 0.217	5.82 18.67
C68	PS	15	871	16	210	3.20	19.8	0.018	36.29	C107 C266	PS CS	15 15	351 334	246 116	274 158	0.03 1.42	19.4 19.9	0.701 0.347	4.68 16.70
C100 C149 C151	FS PS PS	15 15 15	900 		 	1.07	20.0 	0.236	18.75 										
C237	PS	15	871	170	310	2.32	20.4	0.195	24.88	1									

(Continued)

(2 of 4 sheets)

,

Table 5 (Continued)

Test	Test Type	Deflec- tion (၄ გ)	Load (W) 1b	Pull (P ₂₀) 1b	Torque (M ₂₀) <u>ft-lb</u>	Sinkage (z) in.	Slip %	P ₂₀ W	W	Test	Test Type	Deflec- tion (% ຽ)	Load (W) lb	Pull (P ₂₀) 1b	Torque (M ₂₀) ft-1b	Sinkage (z) in.	Slip <u>%</u>	P20 W	WCI
			Fo	urth Pa	uss (Cont	inued)							F	ourth P	ass (Con	tinued)			
C14 C29 C33 C48 C50 C51 C52 C53 C70 C97 C98 C111 C116 C116 C117 C142 C147 C150	*******	15555555555555555555555555555555555555	736 4309 440-38 -44506 440000000000	120 38 209 94 55 65 309 241 301 31 		0.42 2.15 0.26 0.26 1.58 1.59 1.58 1.59 1.58 0.02 0.73 0.74 2.74	20.4 19.2 20.7 20.7 20.2 19.6 20.3 20.3 20.3 20.3	0.254 0.087 0.511 0.572 0.448 0.214 0.124 0.124 0.548 0.548 0.548 0.657 0.073	12.45 24.22 10.22 5.52 10.70 22.00 20.09 21.43 6.03 12.94 9.96 26.62 20.04	C8 C10 C34 C108 C118 C119 C238 C255 C256 C258 C258 C39 C65 C22	R R R R R R R C C S R R R R	35 35 35 35 35 35 35 35 35 35 35 35 35	928 872 883 880 884 879 861 1000 1012	 157 370 283 376 393 418 293 311	 230 400 545 378 450 468 502 390 377	0.45 0.33 1.13 1.43 0.96 0.84 0.75 0.78 0.78	19.7 20.0 19.8 16.6 15.4 20.4 20.0	0.169 0.424 0.525 0.322 0.425 0.447 0.485 0.293 0.293	23.20 20.28 23.86 25.14 24.58 20.93 18.72 24.39 24.58
C152 C235	PS PS	15 15	420 460	43 186	132 240	2.81 1.09	19.8 19.8	0.102 0.404	26.25 13.94					Fif	th Pass				
C99 C102	PS PS	15 15	678 	262 	327 	0.83	20.0	0.386 	15.41	C22 C92	PS PS	15 15	221 220	65 172	99 183	1.23 0.09	19.7 20.0	0.294 0.782	13.81 5.79
C68 C100 C149 C151	PS SS PS PS	15 15 15 15	864 900 	26 226 	220 329	3.80	20.0 20.6 	0.030	36.00 19.15	C18 C107 C266	PS PS CS	15 15 15	343 339	234 121	264 168	0.00 1.39	19.4 20.0	0.682 0.357	4.57 16.95
C237 C16	PS PS	15 25	872 275	158 85	296 109	2.63 0.77	19.5 19.9	0.180 0.309	26.42 17.19	C14 C29 C33	PS PS CS	15 15 15	466	130	150	0.54	20.4	0.279	12.26
C12 C38 C43 C44 C63 C87 C109 C120 C121	$\overset{\times}{\sim}{\sim}\overset{\times}$	25 25 25 25 25 25 25 25 25 25	435 440 429 458 446 453 446 450	52 185 198 181 430 362 402	166 223 248 301 194 451 396 434	2.37 0.40 0.15 0.87 0.04 0.00 0.46 0.00	19.7 20.3 19.7 19.7 20.0 20.2 20.2 20.0	0.120 0.420 0.564 0.432 0.406 0.949 0.812 0.893	25.59 10.73 10.72 19.08 11.44 6.12 11.74 9.38	C48 C50 C51 C52 C53 C70 C97 C98 C111 C116 C117	PS PS PS PS PS PS PS PS PS PS	15 15 15 15 15 15 15 15 15 15	415 436 448 453 450 444 452	213 98 54 55 310 241 306	235 150 118 145 336 281 338	0.40 1.74 1.85 1.94 0.03 0.73 0.26	20.0 19.7 20.0 18.7 20.0 20.1 20.2	0.513 0.225 0.120 0.121 0.689 .0.543 0.662	10.38 21.80 20.36 21.57 6.08 13.06 10.04
C21 C37 C88 C89 C106	PS CS PS PS PS	25 25 25 25 25	 663 686	 232 -22 241	278 183 292	0.58 3.11 0.00	19.7 19.8 20.0	0.350 -0.033 0.351	15.42 30.01 9.80	C142 C147 C150 C152 C235	PS PS PS PS PS	15 15 15 15 15	416 439 428 484	25 98 41 210	136 152 132 256	3.13 1.72 3.17 1.28	20.2 19.7 20.3 19.7	0.060 0.223 0.096 0.434	26.00 19.95 26.75 14.67
C67 C95	PS PS PS	25 25 25	863 893 888	83 363 370	266 449 429	3.49 0.36 0.07	20.0 20.2 19.7	0.096 0.406 0.417	39.23 19.41 15.31	C99 C102	PS PS	15 15	690 	261 	336 	1.00	20.0	0.384 	15.45
C122 C146 C212	PS PS CS	25 25 25	876	252	354 	1.22	20.0	0.288	21.90	C68 C100 C149 C151	PS PS PS PS	15 15 15 15	855 902 	0 236 	191 329	4.12 1.31	19.6 20.4	0.000	35.62 19.19
C66	PS PS	25 35								0237	PS	15	872	168	308	2.97	20.3	0.193	26.42
C25 C69 C85 C96	PS PS PS PS PS PS PS PS	35 35 35 35 35	220 210 224 	163 162 162 	175 165 162 	0.38 0.00 0.00	20.3 19.7 20.3	0.741 0.771 0.723	12.22 9.54 11.20	C12 C38 C43 C44	PS PS PS PS	25 25 25 25	438 428	95 178 252	 234 252	0.93	19:6 19.7	0.330	10.68
C9 C11 C13 C15 C17	17 F2	35 35 35 35 35 35	435 435 441 434 461	70 83 93 117 136	171 182 158 176 166	2.21 2.53 1.76 1.13 1.18	20.1 20.0 20.2 20.2 19.9 19.8	0.142 0.161 0.191 0.211 0.270 0.295	29.00 29.00 27.19 29.40 24.11 27.12	C63 C87 C109 C120 C121	PS PS PS PS PS	25 25 25 25 25	450 454 454 442 458	209 175 442 360 395	300 196 458 382 425	1.00 0.10 0.47 0.00	20.3 20.3 19.9 20.2 19.8	0.464 0.385 0.974 0.814 0.862	18.75 11.64 6.14 11.63 9.54
C19 C20 C27 C28 C41 C42	12 12 12 12 12 12 12 12 12 12 12 12 12 1	35 35 35 35 35 35	423 462 445 461 434 456	24 18 135 184 296 396	115 126 175 193 299 389	3.24 1.92 0.86 0.10 0.10 0.00	20.0 20.1 18.0 20.0 20:2 20:2	0.057 0.039 0.303 0.399 0.682 0.868	26.44 25.67 24.72 11.52 10.33 5.70	C21 C37 C88 C89 C106	PS CS PS PS PS	25 25 25 25 25	649 662	230 246	276 300	0.58	20.0 20.3	ó. 354 0. 372	15.09 9.46
C45 C46 C47 C54 C55 C81	20 20 20 20 20 20 20 20 20 20 20 20 20 2	35 35 35 35 35 35 35 35	416 444 456 455	336 526 530 188 289	333 528 552 209 291	0.00 0.24 0.05 0.50	20.2 20.0 20.0 19.8	0.806 1.185 1.194 0.412	10.67 6.00 6.34 20.73	C67 C95 C110 C122 C146 C212	PS PS PS PS CS	25 25 25 25 25 25	848 900 895 872	86 380 401 256	258 458 446 351	3.95 0.52 0.00 1.33	20.0 20.0 20.0 	0.101 0.422 0.448 0.294	38.54 19.56 15.43 21.80
C145 C148	rs PS	35 35 -35	449 446 436	330 86	360 148	0.07	19.9 19.9	0.740	10.88 31.14	C66	PS	25			/				
C231 C236 C24 C31 C86 C91 C94	12 12 12 12 12 12 12 12 12 12 12 12 12 1	35 35 35 35 35 35 35 35	480 718	312 336	346 386 	0.58 0.28	20.2	0.650 0.468 	14.12 18.89	C23 C25 C69 C85 C96	23 25 25 25 25 25 25 25 25 25 25 25 25 25	35 35 35 35 35	224 209 218	157 160 162	170 165 168	0.38 0.02 0.18	19.8 20.2 20.0	0.701 0.766 0.743	12.44 9.50 10.90

(Continued)

,

(3 of 4 sheets)

<

•

Table 5 (Concluded)

Test	Test Type	Deflec- tion (% 8)	Load (W) 1b	Pull (P ₂₀) 1b	Torque (M ₂₀) <u>ft-lb</u>	Sinkage (z) in	Slip g		<u> </u>	Test	Test Type	Deflec- tion (රු හ) ර	Load (W) 1b	Pull (P ₂₀) 1b	Torque (M ₂₀) ft-1b	Sinkage (3) in.	Slip g	P_20 W	W CI
			Fi	fth Pas	ss (Conti	nued)							<u> P1</u>	fth Pac	s (Conti	nued)			
C7 C11 C13 C15 C17 C19 C20 C27 C28	12 12 12 12 12 12 12 12 12 12 12 12 12 1	35 35 35 35 35 35 35 35 35 35 35	424 422 445 447 445 445 445 445 445 445 445	35 53 75 87 135 19 122 190	170 171 168 166 188 115 128 175 201	2.19 2.53 2.84 2.39 1.10 3.66 3.49 1.01 0.04	19.8 20.2 19.8 19.6 	0.032 0.137 0.168 0.195 	26.50 28.13 27.81 29.80 26.18 25.81 25.81 25.89 24.56 11.70	C24 C31 C85 C91 C94 C34 C10 C34 C40	PS ES PS PS PS PS PS	35 35 35 35 35 35 35 35 35 35	 716 864	 349 373	 394 403	 0.26 0.32	20.3	0.487 0.432	 18.84 20.01
C412 C42 C45 C45 C47 C551 C145 C145 C145 C236 C236	N N N N N N N N N N N N N N N N N N N	35 35 35 35 35 35 35 35 35 35 35 35	464 433 4486 452 4552 443 430 478	408 336 531 522 462 336 83 226	h12 333 538 203 292 492 354 158 551	0.00 0.32 0.00 0.87 0.00 0.00 0.06 1.99 0.61	20.0 20.0 20.0 19.6 20.3 20.2 20.2 20.2 20.0 20.5	0.379 0.775 1.155 1.211 0.425 0.531 1.028 0.758 0.193 0.258	5.50 11.10 5.05 6.25 20.54 7.06 10.60 30.71 11.06	C 108 C119 C235 C255 C255 C256 C258 C39 C65 C12	R R R R C C C C C C C C C C C C C C C C	35 35 35 35 35 35 35 35 35	912 265 226 824 863 988 988 	 1.63 296 376 302 1.26 296 300	 396 453 164 507 409 271	1.22 1.58 1.02 0.93 0.83 0.91	20.3 20.4 16.2 14.9 19.7 20.2 20.0	0.513 0.341 0.424 0.425 0.491 0.300 0.296	24.65 24.60 24.61 21.05 18.87 24.10 24.68
																	,		
			٢																·
			~																

		2	[able	6	
9.00-14,	2-PR	Smooth	Tire,	Self-Propelled	Condition
			0 1		

Clay

	Deflec- tion	Load	Torque (M)	Sinkage		M _{cp} *			Deflec- tion	Load	Torque (M)	Sinkage		M [*] _{SD}	
Test	(%) %	(W) 1b	ft-lb	(2) in	<u>%</u>	$\frac{W(r_u - \delta_{MS})}{MS}$		Test	(% 8) %	(w) _1b	ft-lb	(z) in	<u>%</u>	$W(r_u - \delta_{NS})$	<u> </u>
			F	irst Pass							First I	Pass (Cont	inued)		
C22 C92	15 15	238 217	18 6	0.35 0.00	1.2 1.0	0.071 0.028	12.53 5.29	C34 C108 C118	35 35 35	906 889 905	47 19 31	0.00 0.00 0.05	0.0 0.8 1.5	0.054 0.022 0.035	21.57 12.18 18.10
C18 C107	15 15	341 344	28 14	0.46 0.00	2.7 0.0	0.076 0.038	17.05 4.65	C119 C39	35	882 1010	49 50	0.29 0.18	0.5 0.3	0.056	22.62
C14 C29 C48 C50	15 15 15	458 465 410 462	84 14 11 9	1.73 0.27 0.00 0.00	12.0 1.1 0.5 0.3	0.168 0.028 0.02 ¹ + 0.019	25.44 11.34 10.00 6.00	065 082	35 35	1008 1020	138 31	1.24 0.14	10.2 0.0	0.132 0.031	42.00 23.18
C51 C52	15 15	460 443	11 12	0.04	1.1 0.6	0.022	5.82 10.55				<u>S</u> .	cond Pass			
053 070 097	15 15 15	436 441 439	39 53	0.03 0.65 0.68	2.0 6.9	0.082 0.112	20.04 18.29	C22 C92	15 15 :	234 209	23 6	0.63 0.00	1.5 0.0	0.091 0.027	13.76 5.10
C116 C117 C142	15 15 15	454 460 443	16 12 96	0.23 0.00 1.34	0.5 0.6 10.8	0.033 0.024 0.194	13.35 9.20 26.06	C18 C107	15 15	347 343	24 18	0.72 0.00	1.6 1.5	0.063 0.050	19.28 4.76
C147 C150	15 15	439 444 1/21/	83 44 80	1.22 0.68	10.2 1.8	0.171 0.090	25.82 19.30 28 93	C14	15	449 475	93 20	2.45	13.0	0.188 0.040	28.06
C235	15	465	20	0.46	0.3	0.039	14.53	C48 C50	15 15	417 467	8 8	0.03	0.5	0.018 0.016	10.42 6.06
C99 C102	15 15	694 657	137	0.37 1.41	0.0 12.9	0.053	29.86	051 052 053	15 15	435	10 11 8	0.10 0.13	0.4 0.4 0.2	0.020	11.45
C68 C100 C149 C237	15 15 15 15	884 912 884 908	179 85 188 132	1.81 0.56 1.68 1.31	11.9 0.5 13.7 3.1	0.181 0.084 0.187 0.129	36.83 19.40 35.36 28.38	C70 C97 C116 C117	15 15 15 15	440 443 450 472	36 56 12 12	0.90 0.98 0.37 0.10	1.0 7.4 0.7 0.9	0.075 0.116 0.024 0.024	20.95 19.26 13.64 8.90
C16	25	301	8	0.30	1.0	0.027	15.84	C142 C147 C150	15 15 15	436 440	100 34	1.08	1.9	0.204	29.07
C12 C38 C43	25 25 25	465 445 464	62 14	0.61 0.10 0.00	2.8 0.5 0.0	0.129 0.031 0.004	25.83 10.35 5.95	C152 C235	15 15	432 478	86 20	2.04 0.60	11.4 0.6	0.177 0.038	28.80 15.42
с44 С63	25 25	433 472	0 19	0.00 0.22	0.0 0.7	0.000 0.040	10.31 19.67	C99 C102	15 15	692 650	40 121	0.47 1.96	1.0 14.8	0.053 0.166	15.04 28.26
C87 C109 C120 C121	25 25 25 25	450 454 460 466	6 8 18 11	0.00 0.00 0.13 0.00	1.0 0.6 0.4 0.9	0.013 0.018 0.039 0.024	11.25 6.14 12.43 9.91	C68 C100 C149 C237	15 15 15 15	888 916 881 864	170 70 186 108	2.60 0.72 2.43 1.60	14.5 1.0 16.2 4.8	0.169 0.069 0.184 0.110	37.00 19.49 40.04 27.00
C88 C89	25 25	662 661	17 130	0.15	0.5 14.9	0.026	15.26 31.48	C16	25	304	ú	0.38	1.2	0.019	17.88
C106	25	678 892	20 128	0.00 1.46	1.0 6.0	0.029	9.16 38.78	C12 C38 C43	25 25 25	469 435 470	50 20 6	1.31 0.07 0.00	2.6 0.1 0.0	0.101 0.045 0.013	27.59 11.45 6.02
C95 C110	25 25	923 888	33 17 21	0.00	1.5	0.036 0.019	18.46 16.15	С44 С63	25 25	436 472	11 15	0.00 0.29	0.0 0.0	0.025 0.031	10.63 19.67
C122 C146 C232 C234	25 25 25 25	900 892 848	52 52 34	0.20 0.24 0.18	0.0 0.1 0.7	0.056 0.056 0.039	21.43 17.49 14.37	C87 C109 C120 C121	25 25 25 25	446 449 440 461	8 12 19 8	0.00 0.00 0.08 0.00	2.0 0.0 0.1 1.5	0.017 0.026 0.040 0.017	11.74 6.24 12.57 9.60
C23 C25	35 35	235 221	7 13	0.00	2.1 0.3	0.030 0.059	13.06	C88 C89	25 25	662 654	25 162	0.24	0.1 19.4	0.037 0.231	15.76
C85 C96	35 35	232 248	у 4 б	0.00	1.4	0.023 0.017 0.024	11.60 5.17	C106	25	680 880	20 150	0.00	1.0	0.029	10.62
C7 C9	35 35	465 478	32 28	0.11 0.42	2.4 0.4	0.073 0.061	25.83 31.87	C95 C110	25 25	900 880	30 12	0.00	1.0	0.033 0.014	18.75 14.19
C11 C13 C15	35 35 35	461 470 454	26 26 24	0.54 0.56 0.20	0.4 1.1 2.1	0.056 0.055 0.055	27.12 29.38 25.22	C146 C232	25 25	896 	51	0.41	0.5	0.054	21.85
C17 C19 C20	35 35	458 463 465	14 25 23	0.13 0.49 0.27	1.4 0.0	0.031 0.054 0.052	24.11 28.94 24.47	C234 C23	25 35						
C28 C41	35 35	462 432	18 0	0.03	1.5	0.041	11.27 9.60 5.66	- C25 C69 C85	35 35 35	228 212 237	13 6 9	0.06 0.00 0.00	0.1 1.0 1.0	0.061 0.030 .0.041	13.41 8.83 12.47
C45 C46	35 35	404 422 456	54	0.00	1.0 0.3	0.013	10.05 5.70	C96	35 25	245	7 10	0.00	0.0	0.031	5.10
C47 C54 C55	35 35 35	459 483 484	6 12 12	0.00 0.02 0.03	0.5 1.3 0.4	0.013 0.025 0.025	6.12 24.15 20.17	C9 C11	32 35 35	473 465	37 40	0.69	2.1	0.095 0.079 0.086	31.53 31.00
C81	35 . 35	456 ~ 466	12 14	0.00	1:0 0.8	0.026	7,40	C13 C15 C17	35 35 35	471 459 462	31 24 24	0.41 0.27 0.27	0.5 0.5 2.0	0.054 0.053	29.44 28.69 24.32
C145 C148	35 35	461 450	20 41	0.00	0.9	0.046	10.98 28.12	C19 C20 C28	35 35 35	458 471 470	42 34 16	0.59 0.43 0.20	1.9 0.4 0.6	0.092 0.074 0.035	25.44 29.44 12.37
C231 C233 C236	32 35 35	471 438 476	9 10	0.02	0.0	0.021	8.76 15.87	C41 C42	35 35	433 465	7 7	0.00	0.5	0.017 0.016	10.31 5.67
C24 C86	35 35	719 706	72 110	0.70 0.84	3.8 8.3	0.104 0.156	37.84 33.62	C45 C46 C47	37 35 35	420 462 464	4 4 5 9	0.04	0.3	0.009	6.00 6.63
C91	35	715	27	0.00	0.5	0.039	17.44 (Contin	ued) C55	35 35	481 458	10	0.08	0.3 0.5	0.022	20.91 11.45

* r_u , undeflected radius.

.

(1 of 3 sheets)

~

.

•

Table 6 (Continued)

	Deflec- tion (% ຽ)	Load (W)	Torque (M _{SP})	Sinkage (z)	Slip	M _{sp}	W		Deflec- tion (ຊິຣ)	Load (W)	Torque (M _{SD})	Sinkage (2)	Slip	M _{sp}	W
Test	<u>q</u>	<u>lb</u>	ft-lb		5	$\frac{W(r_u - \delta_{MS})}{MS}$	CI	Test		<u>1b</u>	<u>ft-lb</u>	<u>in.</u>	<u>-%</u>	$\frac{W(r_u - \delta_{MS})}{MS}$	CI
			Second	Pass (Con	tinued)						Third I	ass (Conti	inued)		
C144 C145 C148 C231 C233 C236	35 35 35 35 35 35 35	468 460 438 462 432 472	14 18 40 12 12	0.00 0.00 0.78 0.00 0.04 0.11	1.5 0.4 1.3 0.5 1.4 1.8	0.032 0.041 0.091 0.014 0.029 0.027	7.31 10.45 29.20 8.25 2.58 13.49	C41 C42 C45 C46 C47 C54 C55	35 35 35 35 35 35 35	428 466 422 468 460 - 489	7 4 5 10 12	0.00 0.00 0.16 0.00 0.01	0.0 0.5 1.4 2.0 0.5 0.2	0.017 0.016 0.010 0.011 0.023 0.026	10.19 5.82 11.11 6.50 6.57 22.23
C24 C86 C91	35 35 35	715 716 723	106 114 30	1.71 1.48 0.00	7.7 10.4 0.5	0.143 0.157 0.043	44.69 34.10 18.54	C81	35	450 448	6 20	0.00 0.00	0.5	0.014	10.98 7.11
C34 C108 C118 C119	35 35 35 35	956 889	71 1 ₄₀	0.00	0.2 ,1.3	0.076 0.045	23.90	C145 C148 C231 C233 C236	35 35 35 35 35 35	453 438 458 466	17 46 8 17	0.00 0.98 0.00 0.15	0.9 2.8 1.0 1.3	0.039 0.103 0.018	10.79 31.29 8.33 14.56
C39 C65 C82	35 35 35	1009 1012 1022	49 219 40	0.27 2.27 0.20	0.2 17.0 0.0	0.049 0.206 0.040	25.85 44.00 24.33	C24 C86 C91	35 35 35	711 712 · 714	137 106 22	2.45 1.91 0.00	12.4 9.5 0.5	0.185 0.146 0.031	41.82 30.96 18.31
			T	hird Pass				C34 C108 C118	35 35 35	967 	47 	0.10	1.7	0.051	24.18
C22 C92	15 15	23l; 218	18. 6	0.67 0.00	2.2 0.7	0.071 0.026	15.60 5.32	C119 C39	35	1003	53	0.29	0.4	0.053	24.05 24.46
C18 C107	15 15	343 342	33 15	0.81 0.00	3.8 1.0	0.088 0.042	19.06 4.38	C82	32 35	1020	42	0.24	0.5	0.209	25.50
C14 C29	15 15	452 476	90 18	2.93 0.43	13.3 0.5	0.181 0.036	26.59 12.20				Ē	ourth_Pas	<u>s</u>		
C50 C51	15 15 15	410 464 461	12 12	0.10	0.0	0.020	5.87 5.55	022 092	15 15	235 220	22 5	0.71 0.00	3.2 0.5	0.087 0.021	13.82 5.50
C53 C70	15 15 15	424 436 438	13 38	0.20	0.2	0.018 0.028 0.079	10.90	C18 C107	15 15	345 349	36 11	0.81 0.00	4.7 1.5	0.095 0.030	19.17 4.92
C97 C116 C117 C142 C142 C147 C150	15 15 15 15 15	440 451 474 422 436	59 22 10 110 	0.42 0.04 2.27	0.3 0.7 0.4 15.0 4.0	0.122 0.045 0.019 0.232 0.039	19.13 13.26 10.30 26.38 20.76	014 029 048 050 051	15 15 15 15	482 406	12 8 	0.41	0.5 0.0	0.024	13.39 9.90
C152 C235	15 15	429 448	87 1.4	2.45 0.66	14.8 2.0	0.180 0.028	26.81 13.58	052 053 070	15 15	428 1.31	12	0.42	0.2	0.026	10.44
C99 C102	15 15	693 641	40 115	0.52 2.48	0.0 14.5	0.052 0.160	15.51 29.14	C97 C116	15 15	442 448 h7h	60 20 18	1.52	8.2 1.2 0.8	0.124 0.041 0.035	20.09 13.18
C68 C100 C149 C237	15 15 15 15	871 912 873	184 75 118	3.20 0.86 1.95	17.6 1.0 6.9	0.187 0.07 ¹ ; 0.118	36.29 19.00 21;.91;	C142 C147 C150 C152 C235	15 15 15 15	436 412 458	110 44 85	2.73 1.28 2.74 0.68	14.9 4.7 15.7	0.230 0.090 0.183 0.032	26.50 19.82 25.75 13.88
C16	25	306 NG2	14	0.42	1.5	0.045	18.00	C99	15	690	32	0.60	1.5	0.042	15.33
C38 C43 C44 C63	25 25 25 25 25	440 431 473	03 28 6 20	0.12 0.00 0.54	0.0	0.062	10.78 20.56	c68 c100 c149	15 15 15	868 920	189 80	3.73 0.99	18.2	0.192 0.078	36.17 20.44
C87 C109	25 25	441 451	10 14	0.00 0.00	0.3 1.0	0.022 0.031	11.61 6.01	C237 C16	15 25	879 298	120	2.28 0.36	8.0 0.5	0.119 0.026	25.11 17.53
C120 C121	25 25	442 462	16 10	0.14	1.1 0.2	0.035 0.021	11.63 9.62	C12 C38	25 25	455 445	80 22	2.48 0.05	10.0 0.0	0.164 0.048	30.33 10.60
C88 C89 C106	25 25 25	658 662 698	16 186 18	0.26 2.71 0.04	0.2 21.3 1.5	0.024 0.262 0.025	14.95 31.52 10.42	043 044 063	25 25 25	427 477	9 24	0.00 0.49	0.5 0.5	0.021 0.048,	9.93 19.88
C67 C95 C110 C122 C122	25 25 25 25	880 912 880	164 40 18	2.84 0.10 0.00	12.7 1.0 1.5	0.172 0.043 0.020	40.00 19.83 14.92	C87 C109 C120 C121	25 25 25 25	439 446 454 460	8 10 18 10	0.04 0.00 0.11 0.00	0.7 1.6 0.9 0.1	0.018 0.022 0.039 0.022	11.55 7.19 11.95 9.58
C232 C234	25 25							089 0106	25. 25	663 662 601	22 213	0.31 3.15	0.2	0.032 0.300	15.07 28.78
C23 C25 C69 C85 C96	35 35 35 35 35	221 221 239	9 6 4	0.02 0.00 0.00	1.4 2.6 0.7	0.044 0.029 0.018	13.00 9.21 11.95	C105 C67 C95 C110 C122	25 25 25 25	863 910 888	166 24 18	3.33 0.09 0.00	12.7 1.0 1.0	0.177 0.027 0.021	37.52 18.96 17.08
C7 C9	35 35	468 471	46 35	0.52	1.5	0.099	27.53 31.40	c146 c232 c234	25 25 25	900 	63 	0.61	1.0 	0.066 	22.50
C11 C13 C15 C17 C19 C20 C28	35 35 35 35 35 35 35 35	457 461 458 464 448 467 473	38 40 28 20 71 42 15	0.98 0.66 0.33 0.21 0.81 0.32 0.16	0.3 2.0 0.9 0.7 5.4 0.6 0.1	0.082 0.087 0.062 0.044 0.155 0.093 0.033	30.47 30.73 26.94 25.78 28.00 25.94 12.13	C23 C25 C69 C85 C96	35 35 35 35 35	232 215 234 	8 8 14	0.16 0.00 0.00	1.3 2.6 0.0	0.038 0.040 0.018	13.65 9.35 12.32

(Continued)

,

(2 of 3 sheets)

•

ς.

Table 6 (Concluded)

Test	Deflec- tion (% 8)	Load (W) 1b	Torque (M _{cp}) ft-lb	Sinkage (z) in.	Slip <u>#</u>	$\frac{M_{sp}}{W(r_u - \delta_{MS})}$	<u>W</u> CI	Test	Deflec- tion (% ຽ)	Load (W) 1b	Torque (M _{sp}) ft-lb	Sinkage (z) in.	Slip_%	$\frac{M_{Sp}}{W(r_{u} - \delta_{MS})}$	W
			Fourth	Pass (Con	tinued)						Fifth]	Pass (Cont	inued)		
C7 C1 C1 C1 C1 C1 C1 C1 C1 C1 C2 C2 C1 C1 C2 C2 C2 C1 C1 C2 C2 C2 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	355 355 355 355 355 355 355 355 355 355	46437 4571 46737 46737 4673 4673 4673 4673 4673 46	58 41 44 30 -72 52 5 8 7 3 - 4 16 7 5 9 - 12 - - 5 49 - - 49 60	0.68 0.95 1.27 0.28 0.29 0.26 2.28 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.8938 1.938 1.0734 2.860 0.0354 2.00 0.0354 2.00 1.7 0.5522 1.6 1.6 1.6 1.6	0.126 0.087 0.095 0.092 0.067 0.155 0.109 0.029 0.015 0.016 0.029 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.039 0.111 0.021 0.026 0.050 0.053 0.054 0.059	33.14 33.79 30.47 27.71 25.61 	C37 C109 C120 C121 C68 C59 C100 C121 C67 C95 C100 C122 C122 C234 C23 C23 C23 C23 C23 C25 C95 C96 C7 C9 C11 C13 C15 C17 C19 C20 C28 C41 C44 C44	25555 5555555555 3355555555555555555555	449 445 65 846 846 89 89 89 89 89 89 89 89 89 89 89 89 89	9 10 20 19 168 41 13 58 18 6 897 53 42 20 84 897 53 42 20 84 86 87 53 42 20 87 20 87 20 87 20 20 20 20 20 20 20 20 20 20	0.07 0.00 0.22 0.00 0.35 0.18 0.00 0.14 0.00 1.43 1.04 1.53 1.09 0.286 1.28 0.00 0.00	0.0 1.2 1.0 0.3 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.020 0.022 0.044 0.017 0.029 0.028 0.183 0.044 0.015 0.061 0.086 0.030 0.027 0.192 0.099 0.192 0.099 0.112 0.100 0.043 0.180 0.139 0.039 0.013 0.012	11.20 6.51 11.71 9.67 9.15 38.45 19.66 15.29 22.40 14.31 9.1.29 29.25 20.67 28.25 29.67 28.67 29.67 29.67 29.67 29.67 29.67 29.67 29.67 29.67 29.67 29.67 29.67 29.74 10.95
C82	35	1012	39	0.24	1.0	0.040	23.53	C46 C47 C54 C55	35 35 35 35	472 460 492	7 21.	0.00	0.3	0.009 0.016 0.045	6.30 6.39 22.36
d 00	25	0.32	<u>Fi</u>	fth Pass	1.0	0.070	ale hite	C81 C144	35 35	462 462	7 22	0.00	1.0 0.6	0.190	11.55 7.22
C92 C92	15 15 15	231	10 4	0.00	1.0	0.017	5.45	0145 0148 0231 0233	35 35 35	457 426 	54 	1.38	4.2	0.123	30.43
C107 C14	15 15	343 	15	0.00	0.0 	0.01:1	4.76	C236 C24	35 35	476 	10	0.36 	1.6	0.022	14.88
c29 c48 c50 c51 c52 c70 c97 c116 c147 c142 c147 c15c c152 c235	15 15 15 15 15 15 15 15 15 15 15 15 15 1	480 410 435 448 414 434 434 434	16 12 38 60 18 16 104 46 80 18	0.41 0.15 1.35 1.80 0.62 0.11 3.06 1.42 3.07 0.82	1.9 0.5 2.3 10.7 2.6 0.3 16.4 16.4 14.1 1.0	0.022 0.027 0.080 0.122 0.037 0.031 0.223 0.095 0.172 0.034	12.63 10.00 19.77 20.36 13.59 10.35 25.88 19.73 25.88 14.67	C26 C91 C103 C118 C119 C39 C65 C82	85 35 35 35 35 35 35 35 35 35 35	716 920 1003 1015	16 48 47 52	0.03 0.85 0.37 0.39	0.0 2.4 0.5 	0.023 0.052 0.047 0.052	18.36 24.86 23.88 24.76
C99 C102	15 15	692 	41	0.65	0.7	0.054	15.73								
c68 c100 c149 c237 c16	15 15 15 15 25	855 928 	191 76 120 12	4.12 1.12 2.58 0.45	19.6 1.0 9.2 0.1	0.197 0.073 0.120 0.039	35.62 20.17 26.60 16.56							· .	
C12 C33 C43 C24 C24 C24 C63	25 25 25 25 25	445 	24 10 21	0.16 0.00 0.64	1.5 1.0 0.0	0.023 0.023 0.043	10.85 10.70 19.54								

(3 of 3 sheets)

,

			Tab]	Le 7		
9.00-14, 2	2-PR	Smooth	Tire,	Nonstandard	Speed	Conditions

Clay

Test	Test Type*	Deflection (% 8)	Load (W) 1b	Pull (P) lb	Torque (M) ft-lb	Sinkage (z) in.	Slip g	Speed fps	$\frac{P}{W}$	W** Wr _d	<u>W</u> CI	Test	Test Type*	Deflection (% 8)	Load (W) 1b	Pull (P) lb	Torque (M) ft-lb	Sinkage (z) in.	Slip _%	Speed fps	<u>F</u>	Wrd	W
					First Pa	155										Firs	t Pass (C:	ontinued)					
					Towed Po	oint										20% S1	ip Point	(Continued)					
C71 C72 C73 C123 C124 C125 C126 C127 C128 C129 C130 C131 C132	****	15 25 15 35 15 15 15 15 35 35 35 35 15	467 912 908 475 495 493 895 459 897 897 130	-26 -92 -7 -170 -19 -12 -16 -29 -73 -61 -22 -19 -52 -136		0.27 0.96 0.00 1.48 0.00 1.10 0.18 0.39 0.43 0.14 0.24 0.24 0.24	0.3 3.8 0.5 -1.5 0.7 -0.8 -0.7 -0.8 -0.9 -0.6 -0.1 -0.2 -0.5	2.98 2.884 3.03 4.255 4.455 4.457 6.205 6.205 6.155 17.955 17.955	0.055 0.101 0.015 0.187 0.040 0.124 0.035 0.065 0.065 0.068 0.068 0.048 0.041 0.058 0.106		18.70 33.80 18.47 36.30 23.75 39.30 9.65 12.42 14.40 15.40 19.10 19.10 14.90 20.75	C249 C250 C251 C252 C253 C254 C260 C261 C262 C263 C264 C264 C268	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15 15 15 15 15 15 15 15 15 15 15 15 15 1	454 458 434 434 434 434 451 439 4439 4439 4439 44394 4394	136 155 195 198 184 161 150 151 170 222 176	186 213 241 259 246 260 215 206 203 224 206 203 224 222 264 231	0.46 0.44 0.64 0.55 0.55 0.55 0.55 0.45 0.45 0.34 0.45 0.37	14.2 14.0 20.6 19.8 17.3 17.3 18.3 17.6 17.7 19.9 	$\begin{array}{c} 1.02\\ 2.03\\ 3.25\\ 4.818\\ 3.58\\ 1.60\\ 2.18\\ 1.60\\ 2.18\\ 6.98\\ 1.60\\ 2.18\\ 6.98\\ 1.60\\ 2.18\\ 6.98\\ 1.60\\ 2.18\\ 6.98\\ 1.60$	0.300 0.338 0.444 0.443 0.444 0.444 0.444 0.353 0.352 0.388 0.388 0.566 0.388		13.76 13.88 12.54 12.77 12.46 12.32 12.19 11.55 11.76 11.55 11.64
C134 C135	Ť	15	407 464 442	-60 -44		0.89	-0.6	6.26 17.80	0.129		20.15				-		Second Pa	ASS	_ ·				
C136 C138	T PS	35 15	444 458	-24 -48		0.00 0.66	-1.8 -1.2	17.60 3.41	0.054 0.105		18.50 19.10						Towed Po:	int					
C139 C140 C141 C264 C265 C267	17 II	15 35 15 15 15 15	450 462 910 438 450 439	-66 -24 -61 -12 0 -14		0.79 0.08 0.29 0.17 0.11 0.30	-1.0 -2.0 0.0 -1.3 0.8 -1.2	3.36 3.15 3.45 2.70 11.44 8.80	0.147 0.052 0.067 0.027 0.000 0.032		25.00 19.25 15.95 11.52 11.82 10.70	C71 C72 C73 C74 C123 C124 C125	r r r r r r	15 25 35 15 35 35	463 896 468 900 464 908	-28 -102 -12 -170 -18 -124		0.46 1.55 0.00 2.31 0.00 1.84	1.0 0.0 -1.5 1.0 -0.4 -3.9	3.00 2.89 2.70 3.02 4.12 4.50	0.060 0.114 0.026 0.189 0.039 0.137		18.50 34.45 18.00 37.45 25.80 45.40
				Sel	f-Propelle	ed Point						C125 C126 C127	PS T	15	449 442 916	-23 -74		0.52	-0.1	4.40	0.052		0.99
C71 C72 C73 C124 C123 C124 C125 C126 C126 C139 C140 C141 C264 C265 C267	* * * * * * * * * * * * * * * * *	15 25 35 15 35 15 15 15 15 15 15 15 15 15 15	468 9462 94927 4552 4552 4668 94350 94350 94350 94350 94350 94350 94350 94350 94350 94350 94350 94350 94350 94350 94350 94552 945552 945552 945552 945552 945552 945555555555		26 114 7 268 22 16 28 48 73 26 62 13 0 14	0.28 1.10 0.00 1.94 0.00 1.28 0.17 0.40 0.68 0.95 0.13 0.25 0.18 0.11 0.31	1.0 6.1 0.0 27.8 0.0 2.7 -0.2 0.8 8.5 9.4 1.3 0.2 0.8 0.0	2.92 2.75 2.806 4.07 4.040 4.38 3.11 3.04 3.04 3.05 2.66 11.44 8.80		0.053 0.124 0.016 0.276 0.049 0.137 0.033 0.058 0.097 0.151 0.063 0.063 0.027 0.000 0.030	18.54 33.60 13.47 34.75 23.58 39.00 9.65 12.52 19.52 19.52 15.90 11.52 11.82 10.70	c128 c129 c130 c131 c132 c133 c134 c135 c136 c136 c138 c140 c141 c264 c267	· 는 는 는 는 는 는 는 K K K K K	25 35 15 15 15 35 35 15 35 15 35 15 15	8958844 958844365358664 13455358664 1454458684 1458864 1458864 1458864 145886 145866 145866 145866 145866 145866 145866 145866 145866 145866 145866 145866 145866 145866 145866 145866 145866 1458666 145866 145866 145866 145866	-58 -23 -18 -54 -53 -72 -53 -39 -28 -60 -17		0.52 0.26 0.15 0.35 0.57 1.22 0.79 0.00 0.97 1.23 0.97 1.23 0.97 0.42 0.39 0.36	-1.2 -1.8 -0.4 -1.5 -1.0 -0.5 -2.4 -0.5 -2.4 -0.5 -2.4 -0.5 -2.4 -0.5 -0.5 -2.4 -0.5 -0.5 -0.5 -0.4 -0.5 -0.4 -0.5 -0.4 -0.5 -0.4 -0.5 -0.5 -0.6 -0.5 -0.6 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	6.12 0.52 6.12 18.00 17.40 0.54 6.19 17.60 17.60 17.60 17.60 3.25 3.22 3.50 2.78 8.75	0.065 0.050 0.038 0.060 0.102 0.156 0.114 0.120 0.052 0.083 0.132 0.065 0.039 0.043		16.60 21.85 19.50 22.05 19.82 20.15 18.85 20.55 20.85 24.80 28.35 16.12 11.25 11.41
					20% Slip H	Point										Self	-Propelled	l Point					
C71 C72 C73 C74 C123 C124 C126 C138 C139 C141	X X X X X X X X X X X	15 25 35 15 35 35 15 15 15	4592 4894 4894 4895 4892 462 4556 880	122 169 -13 206 148 218 29 37 240	178 270 282 239 308 280 86 132 342	0.50 1.36 0.00 1.84 0.29 1.77 0.50 0.71 1.08 0.38	19.7 20.3 19.7 20.2 19.8 19.7 20.0 19.6 19.8	2.59 2.33 2.36 2.34 3.29 3.49 3.49 2.75 2.75 2.75	0.269 0.137 0.381 0.014 0.454 0.456 0.472 0.063 0.081 0.273		18.15 33.05 17.75 34.50 22.72 38.75 12.81 19.05 25.30 15.43 (Cont:	C71 C72 C73 C74 C123 C124 C125 C126 C138 C139 C140 inued)	x x x x x x x x x x x x	15 25 35 15 35 15 15 15 15 35	4888 4888 49646 4480 4480 4480 4454 4454		29 110 12 205 18 144 26 23 38 62 29	0.47 1.74 0.00 2.46 0.00 2.12 0.55 0.55 0.99 1.35 0.26	1.0 4.8 -0.7 19.7 1.6 7.7 -0.3 -0.2 3.9 10.8 0.0	2.98 2.69 2.70 2.54 4.05 3.85 4.40 4.41 3.30 3.10	-	0.059 0.123 0.027 0.206 0.041 0.167 0.054 0.049 0.077 0.132 0.067	16.52 34.15 18.02 37.45 25.80 44.80 8.99 11.60 20.90 24.45 28.35

.

* PS, programed-slip test; T, towed test; CS, constant-slip test.
** r_d, deflected radius.

(1 of 3 sheets)

Table 7 (Continued)

Test	Test Type	Deflection (%δ)	Load (W) lb	Pull (P) lb	Torque (M) ft-lb	Sinkage (z) in.	Slip <u>%</u>	Speed fps	P W	Mr _d	W CI	Test	Test Type	Deflection (%δ) %	Load (W) 1b	Pull (P) lb	Torque (M) ft-lb	Sinkage (z) in.	Slip ¢	Speed fps	<u>P</u> W	Mr _d	W CI
		-	· · · · · · · · ·	Seco	ond Pass (Sontinued)										Thir	d Pass (Co	ontinued)					
			2	elf-Pro	pelled Poir	nt (Contin	ued)									Sel	f-Propelle	ed Point					
C141 C264 C267	PS PS PS	15 15 15	908 438 434	20	63 17 9 0% Slip Po:	0.34 0.39 0.36 int	2.1 1.7 0.4	3.35 2.68 8.75		0.064 0.036 0.019	15.91 11.25 11.41	C71 C72 C73 C74 C123	25 25 25 25 25 25 25 25 25 25 25 25 25 2	15 25 35 15 35	468 896 471 903 462		30 138 17 206 14	9.60 2.34 0.00 3.10 0.00	2.9 10.3 0.0 19.0 -0.2	3.00 2.63 2.70 2.56 4.08		0.061 0.152 0.038 0.212 0.032	19.52 37.30 18.10 37.65 24.30
C71 C72 C73 C74 C123 C124 C126 C138 C139	****	15 25 35 15 35 35 15 15	456 888 450 904 443 892 458 458 458 458	138 112 176 5 174 123 220 97 47	186 270 192 213 207 298 269 162 134	0.66 2.05 0.04 2.47 0.27 2.73 0.65 1.17 1.57	19.6 20.0 20.3 20.2 19.8 19.5 19.6 20.4	2.58 2.32 2.53 3.28 3.17 3.49 2.79 2.71	0.303 0.126 0.391 0.005 0.393 0.138 0.485 0.212 0.107		18.25 34.15 17.30 37.60 24.60 45.10 19.30 20.85 24.45	C125 C126 C138 C139 C140 C141 C164 C167	R R R R R R R R	32 15 15 15 15 35 15 15 15	448 447 460 428 457 892 443 ,		154 20 42 78 25 58 12 12	0.31 0.63 1.24 1.81 0.48 0.51 0.37 0.48	-0.1 -0.2 4.9 13.4 0.4 1.3 0.8 0.1	3.77 4.39 4.41 3.23 2.93 3.10 3.32 2.68 8.61		0.031 0.042 0.085 0.170 0.058 0.060 0.025 0.029	40.70 9.34 12.09 20.90 25.75 26.90 15.39 11.67 11.52
C141 C249	PS CS	15 15	880 456	272 133	362 179	0.54 0.70	19.7 10.7	2.72	0.309 0.292		15.43 13.41						20% Slip H	Point					
0250 0251 0252 0253 0254 0260 0261 0262 0263 0264 0263 0264 0268	CS C	15 15 15 15 15 15 15 15 15 15 15 15	462 439 4452 445 460 444 460 444 431 431 454	51 226 245 196 215 180 175 160 178 182 234 180	245 279 307 247 278 235 227 210 228 234 234 256	0.77 0.67 0.81 0.71 0.75 0.78 0.63 0.64 0.60 0.56 0.56 0.50	20.6 27.2 27.8 17.9 18.0 23.3 19.9 19.3 17.9 20.3 19.2	2.10 3.26 4.62 4.80 3.06 1.48 .79 1.59 81 2.12 6.49 6.92	0.110 0.516 0.542 0.443 0.483 0.483 0.380 0.380 0.380 0.400 0.400 0.417 0.543 0.396		13.59 11.53 11.89 13.00 13.09 12.43 12.43 12.43 11.68 11.71 11.18 11.95 11.64	C71 C72 C73 C74 C123 C124 C126 C136 C136 C139 C141 C250 C251 C252	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	15 25 35 35 15 15 15 15 15 15 15	452 892 9046 453 452 4376 452 43760 443 450	128 98 187 5 178 72 220 112 35 284 145 225 233	192 260 212 204 272 272 176 126 366 190 274 296	0.84 2.59 0.01 3.10 0.43 3.50 0.67 1.45 1.89 0.64 0.76 0.73 0.97	19.6 20.6 20.0 19.9 20.4 19.7 19.7 19.7 19.7 19.7 11.3 23.3 22.6	2.58 2.30 2.29 2.52 3.23 3.52 2.71 2.67 2.09 3.19 4.45	0.283 0.100 0.398 0.005 0.399 0.082 0.486 0.248 0.081 0.324 0.315 0.508 0.518		18.80 37.15 17.37 37.65 23.70 39.70 12.22 20.52 25.50 15.10 13.94 11.66 11.84
			-		Third Pas	s	-					C253 C254	CS CS	15 15	442 448 288	201 214	265 276	0.78	18.3 17.8	4.79	0.455		13.00 13.18
C71 C72 C73	PS PS PS	15 25 35	470 900 470	-29 -114 -17	Towed Port	0.57 2.03 0.00 2.89	1.0 -0.5 -1.5 1.2	3.08 2.90 2.72 3.00	0.062 0.127 0.036 0.207		19.50 37.50 18.07 37.50	0263 0264 0267 0268	CS PS PS CS	15 15 15 15	448 438 449 451	181 190 222 181	234 234 258 233	0.73 0.71 0.60 0.59	16.5 20.4 16.8	0.82 2.12 6.58 6.91	0.404 0.423 0.492 0.401		11.79 11.81 11.52 12.19
C123 C124	Ps PS	35 35	462 889	-14 -154		0.00	-0.2 -3.4	4.10	0.030 0.173		24.30 40.40						Fourth	Pass					
C125 C126	· PS PS	15 15	447 442 908	-15 -19 -69		0.32 0.62 0.85	-0.1 -0.7 -1.2	4.43	0.034 0.043 0.076		11.93 15.15						Towed	Point					
c128 c129 c130 c131 c132 c133 c134 c135 c138 c139 c140 c141 c264 c267	T T T S S S S S S S S S S S S S S S S S	-15 355 15 15 15 15 15 15 35 15 15 15 15 15	899 459 464 1301 462 432 450 422 450 422 458 443 459 443 449	-58 -26 -19 -55 -123 -56 -47 -24 -69 -258 -12 -14		0.65 0.45 0.22 0.40 1.18 2.10 1.46 1.02 0.08 1.23 1.61 0.40 0.48 0.48	-0.4 -2.6 -0.6 -0.6 1.0 0.1 -1.4 -0.5 -2.0 0.0 -0.2 -0.1	6.10 0.51 12.00 17.40 15.60 14.10 17.60 3.26 3.15 3.45 3.45 3.45 8.61	0.065 0.057 0.041 0.062 0.055 0.156 0.156 0.121 0.053 0.053 0.055 0.055 0.065 0.027 0.031		$\begin{array}{c} 16.32\\ 17.65\\ 18.55\\ 14.40\\ 23.15\\ 19.25\\ 19.26\\ 19.65\\ 18.00\\ 24.80\\ 26.95\\ 11.67\\ 11.52 \end{array}$	· C71 C74, C123 C124 C125 C127 C128 C127 C128 C129 C130 C131 C134 C136 C138 C139 C140 C141 C257	彩彩彩彩的中于中中中中中东彩彩彩彩彩	15 15 35 15 15 15 35 35 15 15 15 15 35 15 15 35 15 15 15 15 15 15 15	481 900 896 441 916 892 461 463 872 1304 463 442 454 454 452 900 452 900 444	-27 -186 -19 -152 -23 -69 -57 -27 -27 -28 -55 -25 -25 -25 -25 -25 -28 -72 -28 -55 -15 -11		0.75 3.62 0.001 2.61 1.000 0.57 0.57 0.571 1.316 1.62 1.310 0.433 0.435	$\begin{array}{c} 1.0\\ \cdot 1.5\\ -0.9\\ +.5\\ -0.3\\ -1.1\\ -0.4\\ -2.2\\ -0.3\\ -0.1\\ 1.0\\ 2.3\\ -0.1\\ -1.1\\ -0.4\\ -2.4\\ -1.3\\ -0.2\\ -0.6\\ 0.0\\ \end{array}$	$\begin{array}{c} 3.09\\ 3.03\\ 4.30\\ 4.30\\ 0.58\\ 0.58\\ 0.52\\ 17.45\\ 0.58\\ 0.52\\ 17.45\\ 0.58\\ 3.18\\ 3.18\\ 3.17\\ 3.38\\ 3.17\\ 3.38\\ 8.63\\ \end{array}$	$\begin{array}{c} 0.056\\ 0.207\\ 0.040\\ 0.170\\ 0.052\\ 0.075\\ 0.064\\ 0.059\\ 0.043\\ 0.067\\ 0.097\\ 0.161\\ 0.119\\ 0.057\\ 0.167\\ 0.062\\ 0.067\\ 0.062\\ 0.067\\ 0.031\\ 0.025\\ \end{array}$		18.50 39.15 24.72 40.70 8.91 15.63 15.90 20.50 18.12 14.07 23.80 21.40 72.380 21.40 19.30 18.05 20.20 26.60 15.80 11.38

(Continued)

.

(2 of 3 sheets)

Table 7 (Concluded)

Test	Type	Deflection (% 8) ダ	Load (W) 1b	Pull (P) 1b	Torque (M) ft-lb	Sinkage (z) in.	Slip %	Speed fps	P W	$\frac{M}{Wr_{d}}$	<u>W</u> CI	Test	Test Type	Deflection (ຈູ່ຽ)	Load (W) lb	Pull (P) lb	Torque (M) ft-lb	Sinkage (z) in.	Slip _%	Speed fps	<u><u>P</u> W</u>	M Wr _d	U CI
				Fou	urth Pass	(Continued)	_								Fif	th Pass (C	ontinued)					
	-			Sel	f-Propell	ed Point										Se	lf-Propel	ed Point					
C71 C74 C123 C124 C125 C138 C139 C140 C141 C264 C267	****	15 15 35 15 15 15 35 15 15 15	480 470 888 439 450 452 900 444 444		27 201 18 80 23 48 82 28 63 14 14	0.77 3.78 0.01 3.66 0.39 1.38 2.03 0.44 0.67 0.44 0.45	2.0 19.7 0.1 11.6 1.5 3.9 15.1 1.8 2.2 1.0 0.5	3.04 2.54 4.05 3.67 4.02 3.15 2.82 3.05 3.28 2.76 8.63		0.055 0.209 0.040 0.211 0.049 0.098 0.174 0.065 0.064 0.029 0.030	18.48 38.95 24.72 40.40 8.87 20.25 25.85 26.60 15.80 11.30 11.38	C71 C74 C123 C124 C125 C138 C139 C140 C141 C264 C267	*****	15 15 35 15 15 15 35 15 15	464 865 465 465 460 460 460 444 460 4446		29 215 18 178 19 58 96 36 52 17 12	0.77 4.39 0.02 4.16 0.44 1.58 2.29 0.83 0.68 0.51 0.47	2.0 19.7 -0.4 9.8 1.1 6.9 17.0 0.0 2.2 0.9 -0.7	3.05 2.56 4.02 3.62 4.37 3.12 2.82 3.01 3.28 2.64 8.74		0.059 0.224 0.040 0.216 0.039 0.118 0.200 0.082 0.053 0.036 0.025	20.15 38.80 24.60 38.85 9.09 20.40 26.30 27.05 15.67 11.30 11.40
					20% Slip	Point									1	-1 -	20% Slip	Point					
C71 C74 C123 C124 C138 C139 C141 C250 C251 C252 C253 C253 C254 C264 C264 C267 C268	X X X X X X X X X X X X X X X X X X X	15 15 35 35 35 35 35 35 35 35 35 35 35 35 35	460 895 4572 4408 4539 4397 4440 4395 4455	146 0 182 62 121 250 242 256 207 220 163 168 208 220 198	202 201 208 276 192 118 358 206 295 323 267 281 209 214 256 254 247	1.09 3.78 0.53 4.07 1.67 2.05 0.80 0.83 1.04 0.83 0.91 0.80 0.75 0.78 0.74 0.61	20.4 19.7 20.4 19.8 20.0 19.7 20.4 11.8 25.1 26.5 16.6 15.8 12.4 19.6 .1 8.1	2 664232703 3 2 2 7 0 3 9 2 0 2 1 6 3 5 1 2 2 3 3 2 2 2 2 2 2 3 5 0 5 1 2 3 1 6 3 5 5 1 2 2 6 6 5 1 2 2 6 6 5 1 2 2 6 6 6 5 1 2 6 6 6 6 5 1 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	$\begin{array}{c} 0.324\\ 0.000\\ 0.401\\ 0.071\\ 0.268\\ 0.057\\ 0.347\\ 0.551\\ 0.573\\ 0.474\\ 0.493\\ 0.377\\ 0.474\\ 0.484\\ 0.435\\ \end{array}$		$\begin{array}{c} 17.70\\ 38.95\\ 23.92\\ 39.62\\ 20.05\\ 25.85\\ 15.57\\ 14.31\\ 11.55\\ 11.76\\ 12.85\\ 13.15\\ 11.82\\ 11.74\\ 11.12\\ 11.25\\ 11.97\\ \end{array}$	C71 C74 C123 C124 C139 C141 C253 C253 C254 C253 C254 C253 C254 C254 C253 C254 C253 C254 C253 C254 C253 C254	***************************************	15 35 35 35 35 35 35 35 35 35 35 35 35 35	451338 454454 454454 4554 4437 4440 4434 4440 4440 4440 4440 444	140 -2 182 57 122 292 143 209 172 181 209 232 198	199 215 209 270 200 118 370 197 273 289 215 227 266 215 227 266 270 245	1.02 4.39 0.47 4.75 1.96 2.32 0.92 0.93 0.96 0.80 0.80 0.77 0.74	19.7 19.7 20.2 20.2 19.7 19.7 20.5 11.0 17.6 16.5 13.6 13.6 19.9 	2.52 2.520 3.28 2.709 2.699 4.84 3.09 1.64 85 2.00 6.94	0.310 0.002 0.406 0.269 0.326 0.326 0.323 0.470 0.494 0.394 0.411 0.470 0.515 0.446		19.60 38.860 38.45 20.20 26.40 15.23 14.31 13.00 11.50 11.50 11.51 11.68
					Fifth P	ass																	
					Towed P	oint																	
C74 C74 C123 C124 C125 C127 C128 C129 C130 C131 C132 C133 C134 C136 C138 C139 C140 C138 C139 C140 C1264 C264 C267	KO KO KO KO EN EN EN EN EN EN EN EN KO KO KO KO KO	15 15 35 15 15 15 35 35 15 15 15 15 15 15 15 15 15 15 15 15 15	463 8936 4675 91882 4675 8882 4631 4655 4661 3936 4653 4661 3946 4461 3946 4461 4461 4461 4461 4461	-29 -191 -159 -565 -565 -198 -527 -704 -211 -444 -359 -498 -127 -704 -15		0.77 4.19 0.00 3.21 1.14 0.87 0.62 1.60 0.46 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.6	2.4 2.0 -0.4 -0.8 -0.8 -0.4 -0.4 -0.4 -0.1 -0.2 2.0 2.4 -0.2 2.0 2.4 -1.8 -0.1 -0.1 -1.3	$\begin{array}{c} 3.106\\ 3.069\\ 4.290\\ 4.290\\ 0.611\\ 0.533\\ 6.100\\ 17.55\\ 6.180\\ 0.611\\ 3.25\\ 3.151\\ 3.358\\ 8.76\\ 8.76\end{array}$	0.063 0.214 0.041 0.178 0.074 0.063 0.054 0.053 0.051 0.046 0.095 0.117 0.046 0.095 0.1951 0.046 0.095 0.046 0.095 0.046		20.10 38.80 9.09 15.63 15.86 20.55 18.30 14.35 21.70 19.20 21.70 19.20 21.70 19.20 21.70 19.20 21.70 11.40												

(3 of 3 sheets)

, PLATE 2

LEGEND

▼ 15 % DEFLECTION
 □ 25% DEFLECTION
 ○ 35% DEFLECTION

OPEN SYMBOLS - VALUES AT 25 CONE INDEX CLOSED SYMBOLS - VALUES AT 40 CONE INDEX

LOAD VS TOWED FORCE

9.00-14, 2-PR SMOOTH TIRE FIRST PASS, CLAY

PLATE II

U. S. ARMY ENGINEER WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS OFFICE OF THE DIRECTOR VICKSBURG. MISSISSIPPI 39181

21 April 1966

Errata Sheet

Technical Report No. 3-666

PERFORMANCE OF SOILS UNDER TIRE LOADS

Report 3

TESTS IN CLAY THROUGH NOVEMBER 1962

February 1966

Plate 13, fig. d: Change label on top curve, which reads "15% deflection," to read "35% deflection," and change label on bottom curve, which reads "35% deflection," to read "15% deflection."

• •

Р ATE ភ

DISTRIBUTION LIST

с, ·

Address	No. of Copies
Commanding General, U. S. Army Materiel Command ATTN: AMCRD-DM ATTN: AMCRD-RV-E Washington, D. C.	2
Commanding Officer, USACRREL ATTN: Library Hanover, N. H.	l
Commanding Officer, USA Engineer Research and Development Laboratories ATTN: Technical Document Center Fort Belvoir, Va.	2
Commanding Officer, USA Electronics Research and Development Activity, Ariz. ATTN: SELHU-M Fort Huachuca, Ariz.	l
Commanding Officer, USA Electronics Research and Development Laboratories ATTN: SELRA/ADT Fort Monmouth, N. J.	l
Chief of Research and Development ATTN: Chief, Combat Materiel Division Department of the Army Washington, D. C.	l
Chief of Research and Development ATTN: CRD/M, Department of the Army Washington, D. C.	1.
Chief of Research and Development Headquarters, Department of the Army ATTN: Director of Army Technical Information Washington, D. C.	3 copies of Form 1473
Defense Intelligence Agency ATTN: Special Warfare Office Washington, D. C.	l

Address	No. of Copies
Commanding Officer, U. S. Army Tropic Test Center Fort Clayton, Canal Zone	1
Commanding Officer, U. S. Army Arctic Test Center APO Seattle, Wash.	l
Chief of Engineers ATTN: ENGTE-E ATTN: ENGAS-I ATTN: ENGMC-ER Department of the Army Washington, D. C.	1 2 2
OCE (ENGTE) (for Engineer Standardization Program)	4
War Plans Division, Engineer Strategic Studies Group Office, Chief of Engineers, U. S. Army Erskine Hall, Army Map Service Washington, D. C.	1
Commander, U. S. Army Combat Development Command ENGINEER AGENCY ATTN: CAGEN-SC Fort Belvoir, Va.	l
The Librarian, U. S. Army Engineer School Library Thayer Hall Fort Belvoir, Va.	2
USA Engr School ATTN: Heavy Construction Section, Department of Engineering Pavements and Materials Group Fort Belvoir, Va.	l
Commanding General, XVIII Airborne Corps ATTN: Corps Engineer Fort Bragg, N. C.	2
Commanding Officer 326th Engineer Battalion Fort Campbell, Ky.	. l

Address	No. of Copies
Office of the AC of S, G2 ATTN: Engineer Intelligence, Hqs, Fourth U. S. Army Fort Sam Houston, Tex.	l
Senior Engineer Instructor Office of Military Instruction, United States Corps of Cadets West Point, N. Y.	1
President U. S. Army Armor Board Fort Knox, Ky.	l
President U. S. Army Artillery Board Fort Sill, Okla.	l
President U. S. Army Infantry Board Fort Benning, Ga.	l
Commanding General, U. S. Army Weapons Command ATTN: AMSWE-RDR Rock Island, Ill.	l
Commanding General, U. S. Army Tank-Automotive Command ATTN: SMOTA-RCL Warren, Mich.	l
Commander, U. S. Army Forces Southern Command ATTN: Engineer Fort Amador, Canal Zone	l
Commanding General, U. S. Continental Army Command Engineer Division, DCSLOG ATIN: ATLOG-E-MB Fort Monroe, Va.	2
Commanding General, U. S. Continental Army Command ATIN: ATUTR-AVN Fort Monroe, Va.	· 1
Commandant, Command and General Staff College ATTN: Archives Fort Leavenworth, Kans.	l

Address	No. of <u>Copies</u>
Commanding Officer, U. S. Army Rock Island Arsenal ATTN: SWERI-RDD-TS Rock Island, Ill.	1
Commander, U. S. Army Picatinny Arsenal ATTN: SMUPA-VCl, Mr. D. Sen Dover, N. J.	l
Commanding Officer, Yuma Proving Ground ATTN: STEYT-TGM Yuma, Ariz.	l
Technical Library, Branch No. 4 U. S. Army Limited War Laboratory Aberdeen Proving Ground, Md.	l
Automotive Engineering Laboratory ATTN: STEAP-DP-LU Aberdeen Proving Ground, Md.	1
Commanding General, USA Test and Evaluation Command ATIN: Director, USA Development and Proof Services (Automotive Division) Aberdeen Proving Ground, Md.	l
Commanding General, USA Test and Evaluation Command ATTN: Tech Library Aberdeen Proving Ground, Md.	2
Commanding Officer, U. S. Army General Equipment Test Activity Fort Lee, Va.	l
Chief, Crops Division U. S. Army Biological Laboratories Fort Detrick, Ma.	l
Commanding Officer, U. S. Army Combat Developments Command Transportation Agency ATTN: Mr. Earl S. Brown Fort Eustis, Va.	l

•

· •

Address	No. of Copies
Asst. Chief of Staff for Force Development Hqs, Department of the Army, ATTN: FOR DS SSS Washington, D. C.	1
United States Army Attaché, American Embassy U. S. Navy 100, Box 36 Fleet Post Office New York, N. Y.	2
Office of Naval Research ATTN: Geography Branch Department of the Navy Washington, D. C.	l
Office of Naval Research, Navy Department ATTN: Mr. Irv. Schiff (Code 493) Washington, D. C.	l
Commanding Officer, PHIBCB Two U. S. Naval Amphibious Base Little Creek, Norfolk, Va.	l
Commanding Officer, PHIBCB One U. S. Naval Amphibious Base Coronado, San Diego, Calif.	l
Commanding Officer and Director Naval Civil Engineering Laboratory Port Hueneme, Calif.	l
Director, Naval Warfare Research Center Stanford Research Institute Menlo Park, Calif.	l
Chief, Bureau of Yards and Docks ATTN: Code 42, Department of the Navy Washington, D. C.	2
Commanding Officer, U. S. Naval Photographic Interpretation Center Washington, D. C.	· 1
•	•

•

.

Address	No. of Copies
Chief, Combat Service Support Division Marine Corps Landing Force Development Center Marine Corps Schools Quantico, Va.	1
Commander, 3800th AB Wing, AU ATTN: BDCE-ED Maxwell AFB, Ala.	l
Headquarters, USAF (AFRSTC) Astronautics Division DCS/Research and Development Washington, D. C.	l
Commander, U. S. Strike Command ATTN: J ¹ 4-E McDill AFB, Fla.	l
Commander, Air Proving Ground Command ATTN: PGABAP-1 Eglin AFB, Fla.	l
Headquarters, Tactical Air Command ATIN: DEDSA Langley AFB, Va.	2
Headquarters, U. S. Air Force Director of Civil Engineering (AFOCE-KA) Washington, D. C.	2
Headquarters, USAF Base Structures Branch, Directorate of Civil Engineering ATTN: AFOCE-GC Washington, D. C.	1.
Commander, Hqs, Military Air Transport Service ATTN: MAMCE/FS Scott AFB, Ill.	l
Commander SEG (SEHB). Wright-Patterson AFB, Ohio	l
Systems Engineering Group, Deputy for Systems Engineering Directorate of Technical Publications and Specifications (SEPRR) Wright-Patterson AFB, Ohio	l

Address	No. of Copies
Air Force Weapons Laboratory ATTN: Civil Engineering Branch Kirtland AFB, N. Mex.	1
Terrestrial Sciences Lab (CRJT) Air Force Cambridge Res Lab, L. G. Hanscom Field Bedford, Mass.	1
Library, Division of Public Documents U. S. Government Printing Office Washington, D. C.	l
Library of Congress Documents Expediting Project Washington, D. C.	3
Defense Documentation Center, ATIN: Mr. Myer Kahn Cameron Station Alexandria, Va.	20
National Tillage Machinery Laboratory U. J. Department of Agriculture Auburn, Ala.	l
Mr. A. C. Orvedal, Chief, World Soil Geography Unit Soil Conservation Service Hyattsville, Md.	l
Chief, Crops Protection Branch Crops Research Division, Agricultural Research Service Beltsville, Md.	l
Director, Pacific Southwest Forest and Range Experiment Station, ATTN: Henry W. Anderson Berkeley, Calif.	l
U. S. Geological Survey Chief, Source Material Unit, Branch of Military Geology Washington, D. C.	2
Coastal Studies Institute Louisiana State University Baton Rouge, La.	ľ

.

Address	No. of Copies
New York University, School of Engineering and Science Research Division, University Heights New York, N. Y.	l
Ohio University Engineering Experiment Station ATIN: Mr. Seth Bonder Columbus, Ohio	1.
Professor L. C. Stuart University of Michigan Ann Arbor, Mich.	l
University of Arkansas, College of Engineering ATTN: Mr. Henry H. Hicks, Jr. Fayetteville, Ark.	1
Dr. Clark N. Crain, Director Project DUTY Department of Geography, University of Denver Denver, Colo.	l
Stanford Research Institute ATIN: Mr. Gordon S. Wiley Menlo Park, Calif.	1
Engineering Societies Library New York, N. Y.	l
Highway Research Board Washington, D. C.	l
Research Analysis Corporation ATTN: Library Bethesda, Md.	1.
Davidson Laboratory, Stevens Institute of Technology ATIN: Dr. I. R. Ehrlich Hoboken, N. J.	l
	•

•

Address	No. of Copies
Wilson, Nuttall, Raimond Engineers, Inc. ATTN: Library Chestertown, Md.	l
Battelle Memorial Institute, ATIN: RACIC Columbus, Ohio	. 1
Consultants	
Dr. A. A. Warlam	1

l

1

1

l

1

l

1

1

Dr. A. A. Warlam Prof. K. B. Woods Mr. Robert Horonjeff Mr. C. J. Nuttall Mr. R. E. Fadum Dr. N. M. Newmark Dr. Gerald Pickett Dr. M. J. Hvorslev Dr. Arthur Casagrande Unclassified

DOCUMENT CO	ONTROL DATA - R	3D	
(Security classification of title, body of abstract and index	ing annotation must be o	entered when	the overall report is classified)
ORIGINATIN & ACTIVITY (Corporate author)		RT SECURITY CLASSIFICATION	
U. S. Army Engineer waterways Experim	ient Station	Ur	nclassified
Vicksburg, Mississippi		20 GROU	P
	· · · · · · ·		
PERFORMANCE OF SOTLS UNDER TTRE LOADS	• TESTS IN CLA	Y THROUG	H NOVEMBER 1962
THE OTHER OF BOTTO ONDER THE DOED	, 11010 11 010	.1 1111000	
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Report 3 of a series			
5. AUTHOR(S) (Last name, first name, initial)			
Wismer, Robert D.			
	•		
6. REPORT DATE	78 TOTAL NO. OF	PAGES	7b. NO. OF REFS
February 1966	73		7
Sa. CONTRACT OR GRANT NO.	94. ORIGINATOR'S P	EPORT NUM	IBER(S)
			2 (((
5. PROJECT NO.	Tecnnical Re	port No.	3-666
	Report 3		
c .	95. OTHER REPORT	NO(S) (Any	other numbers that may be assigned
	this report)		
d			
10. A VAILABILITY/LIMITATION NOTICES			
11. SUPPLEMENTARY NOTES	12. SPONSORING MIL U. S. Army Washington,	Materiel D. C.	Command
	<u>.l</u>		
13. ABSTRACT	,		
smooth, pneumatic tire (9.00-14, 2-PR tion. These tests were performed usi flections, and soil strengths. Some influence of speed on performance. E versus one independent variable with constant) show the relative effect of performance. Scatter of the pull and large for the early tests. An examin in soil strength between the soil sur was the probable cause of the scatter niques subsequently produced more uni inated this scatter in the later test adequate to represent the forces and tire operating at small sinkages in a	(1) in a fat cla ng a wide rang of the tests w basic plots of all other inde each independ torque data p ation of the d face and the r form soil cond s. A simple s moments on a t soft clay.	y at a h e of tir ere cond the data pendent ent test oints wa ata show emainder in soil itions a tatic an owed or	tigh degree of satura- e loads, tire de- ucted to study the (one dependent variables held variable on tire s found to be quite red that a difference of the soil mass processing tech- nd virtually elim- alysis was found powered pneumatic
DD 1508M 1473	1	Inclassi	fied

۰.

Unclassified Security Classification

Unclassified		
Security Classification	٠.	

14.			LINK A		LINKB		LINKC	
		ROLE,	wт	ROLE	wT	ROLE	WΤ	
	Clay							
	Mobility							
	Soils							
	Tires							
	Trafficability							
	۶.							
	·							

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (*corporate author*) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

> Unclassified Security Classification