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SUMMARY

The distribution of temperature throughout an idealized ice cap
is studied. The idealized ice cap is considered as one with a constant
growth rate, without internal movement, subject to a linear climatic
change and to a constant geothermal influx. The problem is treated
as a Stefan-type problem and the solution is obtained by the principle
of superposition.

The results indicate that the temperature at the base of the ice
cap rises with time and eventually would reach the melting point of
the ice. Under such conditions, it is concluded that the ice cap is
not resting on a permafrost base as suggested by previous investiga
tion.



TEMPERATURE DISTRIBUTION OF AN IDEALIZED ICE CAP

by

j Chi Tien

Introduction

The problem of temperature distribution through an ice cap has been a subject of
study for many years. Previous works (Benfield, 1951; Brockamp, 1951) include the
study of the effect of geothermal influx as well as internal friction on the temperature
of an ice sheet. Robin (1955) deals with the case of a stable ice cap and obtains
analytical expressions for both temperature and ice movement. Although Robin's
results are quite good, their application seems to be somewhat restricted since:
(1) the model of his "stable ice sheet" is unlikely to approximate physical reality and
(2) the effect of climatic change has been neglected. This problem has also been
studied by Wexler (1959) with the ice cap approximated as a semi-infinite solid.

The object of" our work is to obtain the temperature distribution throughout the
ice cap using a different model which takes the climatic effect into consideration. This
work consists of (a) development of mathematical equations describing the physical
problem, (b) solution of the differential equation, (c) discussion of results, and (d)
numerical computation and comparison with evidence.

Mathematical development

The following conditions are assumed for an idealized ice cap:

(a) The ice has constant physical properties.
(b) The ice cap grows at a constant rate and the initial thickness is zero.
(c) A constant heat influx, geothermal in nature, is provided at the base of

the ice cap.
(d) Surface temperature changes linearly with time.

The one-dimensional heat transfer equation can be used to describe the physical
situation.

dzT = _1_ dT_ (1)
9x2 a2 at

for 0 < x < X (t) and cf>(x) < t

with a2 = thermal diffusity of ice

T = temperature

t = time

x = distance from base

X (t) = thickness of ice cap at any time.

The base of the ice cap is taken as the zero coordinate and X (t) refers to the

upper boundary. If the accumulation is constant as assumed, Xg (t) = Ut, where U

is the linear rate of growth. <£>(x) is the inverse function of X (t) and in this case is
simply x/U.

The boundary conditions are:

= -q/k . . ' (2)9T

9x
x=0

where q is the geothermal influx and k is the thermal conductivity of ice. At

x = X (t), T = T0 + a-t (3)

here T0 is the temperature at t = 0 and a is the annual increase in temperaturew
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Let 6 = T - T0, eq 1 becomes

82G _ 1 d6
3^ ~ ^2 "9T • (4)

The free-boundary value problem is solved by the principle of superposition as
outlined in the following section.

Method of solution

Assuming that 6 = 0X + 9Z, it is obvious that both 0X and 6Z would satisfy a differential
equation of the form of eq 4.

For Qx, we impose the following conditions:

^l• = J_ Ml ,,,
3x2 a2 9t \b>

for 0 < x < Ut

and -^
8x

= -(q/k + a/U) (6)
x=0

0X = 0 at t < cj>(x) (7)

0X = 0 at x = X (t) (8)

-^ = 0 at t ^ <|>(x) and x > 0. (9)

The condition set by eq 9 is purely arbitrary; its sole purpose is to make the solution
possible. It implies that no thermal energy escapes from the ice cap. This is rather
unlikely during the earlier period of growth; however, the situation might be approxi
mately correct after the ice cap reaches a certain thickness.

For the second part, we have

9^1 = _L Ml il0)
8x2 a2 at - <iU>

and 02 = 0 at x = 0 (11)

02 = a-1 at x = X (t) . (12)

It can be verified very easily that the combined boundary conditions of 6X and 6Z
are equivalent to those postulated for 6.

The solution of eq 5 is obtained through the use of Laplace transforms. The
transform of 01(x,t) is defined as (Evans, et al. , 1950):'

— r <x> |
G^x, s) = J 0i(x,t) exp(-st)dt.

The transform of eq 5 becomes

92 TT , , s9x2 -i(x, s) = —z 0!(x, s). (13)

The solution of eq 13 is of the form:

0i(x,s) =¥Lx(s) exp(-^x) +K2(s) exp(^x) . (14)
Applying the boundary conditions as expressed in eq .6 and 8 in their transformed

forms, we have:

a sinh^L[Xs(t) - xj
0i(x,s) = (| +^)a * S . (15)

s[\fs cosh ^~X (t)]
L a s
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By the use of the inversion integral theorem 6>i(x,t) is given by (Churchill, 1944):

;inh ^X [X (t) _x]v + 100 s:

(£ + it) ah(x,t) = y-r
Ztti k U r , \/lT n

y - I* \ [\/T cosh — X (t) 1
L a s

exp (\t) d\ . (16)

The integrand is analytic everywhere over the half plane of the complex domain
a2 1 2

(n + -^-) it2; n = 0, 1, 2, 3 The residueexcept at points \ = 0, and \ =

of X = 0 is simply

xeHt)

(| +§)aI[Xs(t) -x] = (a+i)[X8(t)-x].
The residues at the other points are given by the expression

(k + u)a-d
sinh — [X (t) - x]

a L sv ' J

\J\±-[\\T\ cosh — X (t)]
dk L a s J v=xt(F)(n +i)2lT2 •

s x '

The final expression results in the form:

Xs(t) v t l)n+l

(2n+ 1) Xs(t) -X
Sm| 2 X7(t) *

The solution of 6Z is simply

9 = -x

n=0

exp
2 ^2W22n + 1 Y a tt
Xsz(t)

U7)

:i8)

:i9)

(20)

Combining 6X and 02, the temperature distribution throughout the ice cap is found
to be

T = T0 + ^x + (^ +^H Xjt) - x +

(2n + 1) Xs(t)
xs(t) exp

X (t)
V (-D

n + 1

tt2 £_, (2n + 1)2
n=0

2n + 1 a2!?2

xtw (2i;

and X (t) = Ut for x< X (t).

Discussion of results

Base temperature. One question of interest is to find the temperature history at
the lower boundary of the ice cap. Because of the effect of geothermal influx and,
to a much less degree, of climatic change, it is reasonable to believe that the base
temperature would increase with time and eventually reach the melting point of ice
corresponding to existing conditions,"5 and that any further introduction of geothermal
heat will cause the base ice to melt. The temperature distribution given by eq 21
will not be applicable when the base ice is melting, as both boundaries of the ice cap
are moving; different boundary conditions should be incorporated in eq 1 to obtain the
proper solution. From eq 21 the expression for base temperature, T, , is given by

Considering the decrease in melting point due to hydrostatic pressure.
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'2n + A2 a2ir2

n=0

To +<|.+ %) [Xs(t)]{l -f2[exp(- I^t) +| exp(

T0 + Xs(t)
k U

, - , 1 a2 it21 -?^-?FI

XsHt)

, 1 a27r2 ^ , 1 ( 9 a27r2 ,1- ~ v ?.^t j + q exp ( - ^ x 2(t)t

(22)

(22a)

Figure 1 gives the estimated base temperature history of the ice cap at Byrd Station,
Antarctica.

Minimum temperature. From eq 2 1, it can be shown that for a fairly large value
of Xs(t), the temperature gradient is positive at the upper part and negative near the
base. This naturally leads to the conclusion that a minimum temperature exists' some
where in between. By differentiating eq 21 with respect to x, for a given thickness,
the location of the minimum temperature points are given by:

a +<a +ft){- 1 +

xs(t) V (-l)n+1 (2n.+-l) (-1)
Z, (2n+ l)2 2 - "**u u;

cos

n=0

(2n + 1) Xs(t) - X •
2 X~(t) ^ exp

xs(t)

2n + 1V a2TT2
2 / X 2(t)

s

= 0

4 Y (-Dn
7 Z z^n COi

x Xg(t) - x
(n +2} "xjltl—* I exp

2n + lV a2*2 '

n=0

= 1
(a/U) (q/k)

(a/U) + (q/k) (a/U) + (q/k)

Since

, X (t) - x - . ,
, , 1 . s , ,n . , 1. xtt
(n + •=•) v /•> tt = (-1) sm(n+T-)2' X (t)

s

by substitution we have

4 V (-l)2n . ,.. , 1.
7 L (2n-TT) sin(n-2)

n=0

(q/k)
(a/U)-+ (q/k)

XTT

ma exp
s

2' Xg(t) '

2n + l\2 a2!!2
2 / X 2(t)'

s

(23)

(23a)

(24)

The "expression may or may not yield a realistic solution, depending on the
magnitude of the exponential term. This can be shown very easily, for since X (t) = Ut,

the exponent equals _( 2n + 1j a tt _ For a certain physical situation with all the
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constants a, U, given at the beginning stage of growth, it is possible that

'in + A2a2-ir2"
exp

Wt
is too small to satisfy the condition as given by eq 24. However,

when the minimum temperature does exist, the following expression gives an approxi
mate location for it:

Xg(t) eXP A
1 a2 it2

4 X 2(t)
s

(25)

This expression is obtained by taking only the first term of the infinite series and
also noting q/k » a/U which makes the right side approximately equal to unity.

Effect of rate of growth: From eq 21 it is obvious that a slower rate of growth
would tend to give a higher temperature for the upper part of the ice cap; however,
the increase due to the second term will be more than compensated by the first term
(negative) of the finite series.

Effect of geothermal influx. A large value of geothermal heat q, tends to increase
the ice cap temperature as observed from eq 21. But this effect will diminish with
decrease in depth for a given thickness (or increase in x since depth is equal to
X (t) - x). This is demonstrated in Figure 2.

Comparison with observed results

Recent field work conducted by USA SIPRE (Langway, 1958) in Greenland gives
limited information on temperature distribution throughout an ice cap. The temperature
readings were taken to a depth of 1400 ft out of a total thickness of approximately
7000 ft. The other pertinent information is estimated as follows:
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Figure 1. Estimated base
temperature vs time at Byrd Station.
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influx on temperature

distribution.
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distribution at Byrd Station,
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Figure 3. Comparison between predicted
and observed temperature - depth results

for ice cap at Site 2, Greenland.

Rate of growth: 41. 5 g of water equivalent per yr. >••> 2 y

Mean annual temperature (1957): -25C.

Geothermal influx: 3. 16 x 105 cal /m2-yr. ' ®: ,

Temperature increases at a rate of 4. 5C/10, 000 yr.

With this information, temperature distribution is computed from eq 21 and
compared with the observed readings (Figure 3). The deviation for the first several
hundred feet is understandable. In this analysis it is assumed that we have an annual
ice accumulation and all the physical properties throughout the ice cap are constant,
while in reality growth takes place as snowfall with a consolidation process in sub
sequent years. The physical properties vary appreciably in the first several hundred
feet, as reported by recent investigation (Langway, 1958).

For greater depths, predicted results agree with the observed ones fairly well,
especially if we make certain adjustments of the value of the surface temperature
(for example, if we make T = -25. 2C instead of T = -25C). However, it should be
pointed out that agreement or lack of it does not prove or disprove the validity of this
work since it is only the lower part of the ice cap that is closely approximated by
the model.

This hypothesis is at least partially verified by the results obtained from a deep
hole drilled in the Ross Ice Shelf, Antarctica (Ragle, £t_al. , I960). The temperature
readings were taken down to a depth of 300 m. The other information is estimated as
follows:

U = 30 cm/yr

•5C/yr

V
3

Complete temperature profiles at 1000, 2000, 4000, 6000, 8000, and 10, 000 yr
after the formation of the ice cap have been estimated and,presented in Figure 4 and
Table I. The temperature profile at 10,000 yr (corresponding to the present time)
is compared with observed results as shown in Figure 5.

GPO 803984—4
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Table I. Estimated temperature distribution
of the ice cap, Ross Ice Shelf, Antarctica.

T - T0 (C)

X (t)-x X (t)=3.000m X (t) =2400m X (t) = 1800m X (t) = 1200 m X (t) =600m X (t)=300m
s s

t'= 10, 000 yr
s

t=8000 yr
s

t = 6000 yr
s

t = 4000 yr
s

t = 2000 yr
s

xs(t) t = 1000 yr

0. 1 4.05 3. 24 - - 1.07 0.735

0.2 3.6 2. 88 2. 16 1. 7 1. 323 1. 05

0. 3 3.21 2. 52 1. 85 1.-61 1. 365

0.4 2. 96 2. 57 2. 24 2.06 1. 95. 1. 71

0.6 3.08 2.98 3. 3. 11 2.94 2.47

0. 8 6. 03 5. 95 5. 73 5. 36 4.43 3. 39

1.0 14.43 13. 08 11. 28 9-4 7.06 4.49

TEMPERATURE (C)

-285 -28

1

jo

-100 / G

200 \A

300 p
-

400
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o

1
1
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f J -
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(BASED ON 1957 AVERAGE AIR

TEMPERATURE)
<? / -
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1 1
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800

qnn i

6
1

-

Figure 5. Comparison between predicted and
observed temperature vs depth results, Byrd

Station, Antarctica.

Although both comparisons seem to indicate favorable agreement with observed
results, the proof is far from conclusive for the reason stated before. It is hoped
that the current deep drilling project undertaken by USA SIPRE will yield a complete
temperature profile and thus give a better basis for comparison.
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