

TP 76-17

Floating Breakwater Field Assessment Program, Friday Harbor, Washington

by

B.H. Adee, E.P. Richey, and D.R. Christensen

TECHNICAL PAPER NO. 76-17 OCTOBER 1976

Approved for public release; distribution unlimited.

Prepared for

U.S. ARMY, CORPS OF ENGINEERS COASTAL ENGINEERING RESEARCH CENTER

> Kingman Building Fort Belvoir, Va. 22060

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

> National Technical Information Service ATTN: Operations Division 5285 Port Royal Road Springfield, Virginia 22151

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
TP 76-17		
4. TITLE (and Subtitie)	· · · · · · · · · · · · · · · · · · ·	5. TYPE OF REPORT & PERIOD COVERED
FLOATING BREAKWATER FIELD ASSESSME	NT PROGRAM,	Technical Paper 6. PERFORMING ORG, REPORT NUMBER
FRIDAY HARBOR, WASHINGTON		S. FERFORMING ORG. REFORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(#)
B.H. Adee		
E.P. Richey		
D.R. Christensen 9. PERFORMING ORGANIZATION NAME AND ADDRESS		DACW72-74-C-0012 10. program element, project, task area & work unit numbers
Ocean Engineering Research Laborat	ory	AREA & WORK UNIT NUMBERS
University of Washington		
Seattle, Washington 98105		F31538
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Department of the Army Coastal Engineering Research Cente	(CEDDE OC)	September 1976
Kingman Building, Fort Belvoir, Vi		224
14. MONITORING AGENCY NAME & ADDRESS(<i>if differen</i>		15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a, DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distr	ibution unlimite	d.
		D = 0
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different ito	m Keport)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number)
Breakwaters		
Floating breakwaters	Wave attenuatio	Wave reflection On Waves
Friday Harbor, Washington		Wave transmission
Tilday Marbory Machington		
20. ABSTRACT (Continue on reverse side if necessary and	d identify by block number)	
A theoretical model for predic		
water is presented along with a report on a field experiment designed to pro-		
vide basic data for verifying the model. Additional data were taken from the		
literature and from auxiliary laboratory experiments.		
The dynamic hobewien changeter	iction investiga	tod women (a) Tatal (
The dynamic behavior characteristics investigated were: (a) Total trans- mitted and reflected waves and their components; (b) wave forces on the break-		
water; (c) motions of the breakwat		
		the mooting inco, me
DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSO	LEIE	UNCLASSIFIED

i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Then Data Entered)

prediction model was developed from two-dimensional, linearized solutions of the hydrodynamical equations formulated in terms of a boundary value problem for the velocity potential. Some nonlinear effects are considered. Results for the predicted transmission coefficients were in good agreement with laboratory and field data, and they showed how the influence of fixed-body transmission, and of sway, heave, and roll motions on the transmission coefficient changed with increasing values of the parameter, beam (width) to wavelength ratio. The shape of the curves predicting the mooring line forces as a function of the beam (width) to wavelength ratio (or of wave frequency) followed those for the measured responses, but predicted magnitudes did not agree closely with measured values.

The floating breakwater at Friday Harbor, Washington, was used as the field experimental platform; it was instrumented to record the incident and transmitted waves, mooring line forces, and the acceleration components of sway, heave, and roll. Ninety-five 17-minute records were obtained during the period 30 December 1974 to 5 May 1975. Statistical summaries of all data are presented with analyses of selected transmitted waves, transmission coefficients, and acceleration components. The summaries and analyses constitute a performance report of a particular floating breakwater as well as an input to the development of the theoretical model.

UNCLASSIFIED

PREFACE

This report is published to provide coastal engineers with a basic analytical procedure in the evaluation of certain floating breakwater types as structures for protecting particular sites against wind waves. The work was carried out under the coastal construction program of the U.S. Army Coastal Engineering Research Center (CERC).

This report was prepared by Dr. Bruce H. Adee, Assistant Professor of Mechanical Engineering, Mr. Derald R. Christensen, Research Engineer, and Dr. Eugene P. Richey, Professor of Civil Engineering, of the Ocean Engineering Research Laboratory, University of Washington, Seattle, Washington, under CERC Contract No. DACW72-74-C-0012.

Special appreciation is extended to the port of Friday Harbor, Washington, for the use of the floating breakwater for the field assessment part of the study. Mr. Robert Hovey, Port Engineer, and Mr. Jack Fairweather, Port Superintendent, provided generous assistance with the numerous logistics problems in the installation and maintenance of the measuring equipment. The sensor monitoring and recording package was adapted from a design developed in a contemporary project sponsored by the University of Washington Sea Grant Program for monitoring two other floating breakwaters of a different type. Data from these two sites were used for comparative purposes in the analyses of the Friday Harbor breakwater.

Dr. D. Lee Harris, Chief, Oceanography Branch, was the CERC contract monitor for the report under the general supervision of Mr. R.P. Savage, Chief, Research Division.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

H. COUSINS

Colonel, Corps of Engineers Commander and Director

CONTENTS

	P CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)	age 7
	SYMBOLS AND DEFINITIONS	8
, I	INTRODUCTION	9
II	THEORETICAL ANALYSIS <th< td=""><td>12 13 19 22</td></th<>	12 13 19 22
III	FIELD DATA.1. Layout.2. Instrumentation3. Wind Data4. Waves5. Cable Forces.6. Motion Package.7. Data Acquisition System8. Data Processing and Analysis.	49 49 49 49 53 53 53 54
IV	COMPARISON OF THEORY WITH FIELD DATA FOR FRIDAY HARBOR BREAKWATER	64
v	CONCLUSIONS	71
	LITERATURE CITED	72
APPENDIX		
A	HYDROSTATIC RESTORING FORCES AND SPRING CONSTANTS	74
В	MOORING ANALYSIS	79
С	LINEAR HYDRODYNAMIC COEFFICIENTS	104
D	FLOATING BREAKWATER ANALYSIS	107
Е	DERIVATION OF PRESSURE TO SECOND ORDER FOR TWO PROGRESSIVE WAVES AT DIFFERENT FREQUENCIES	148
F	PHYSICAL PROPERTIES OF SEVERAL FLOATING BREAKWATERS	156
G	DATA SUMMARY SHEETS FOR FRIDAY HARBOR FLOATING BREAKWATER	160
Н	INCIDENT AND TRANSMITTED WAVE SPECTRAL PLOTS	180

4

Ň

CONTENTS

APP	PENDIX-Continued	-
	I LOW-FREQUENCY SPECTRAL ANALYSIS OF FORCE DATA	Page 192
	J HIGH-FREQUENCY SPECTRAL ANALYSIS OF FORCE AND MOTION DATA	200
	K WAVE MEASUREMENT	218
	TABLE	
	Summary of anchor cable force statistics	61
	FIGURES	
1	Aerial view of Friday Harbor breakwater	11
2	A two-dimensional floating breakwater	14
3	Linear system representative of a floating breakwater	20
4	Filtered low-frequency seaward mooring line force, Tenakee, Alaska	21
5	Transmission coefficient for proposed Oak Harbor breakwater	24
6	Transmission coefficient for a rectangular breakwater	26
7	Transmission coefficient for a rectangular breakwater restricted to sway motion only	27
8	Transmission coefficient for a rectangular breakwater restricted to heave motion only	29
9	Transmission coefficient for a rectangular breakwater	30
10	Transmission coefficient for Alaska-type breakwater model	31
11	Transmission coefficient for rigidly fixed Alaska-type breakwater model	33
12	Transmission coefficient for Alaska-type breakwater, Tenakee, Alaska	34
13	Theoretically predicted transmission coefficient, Friday Harbor breakwater	36

CONTENTS

.

.

,

FIGURES-Continued

		Page
14	Theoretically predicted sway motion response, Friday Harbor breakwater	38
15	Theoretically predicted heave motion response, Friday Harbor breakwater	39
16	Theoretically predicted roll motion response, Friday Harbor breakwater	40
17	Seaward mooring line force for proposed Oak Harbor breakwater	42
18	Seaward mooring line mooring-force coefficient, Tenakee, Alaska	44
19	Recorded time series, Tenakee, Alaska	45
20	Theoretically predicted long-period sway response of Alaska- type breakwater, Tenakee, Alaska	46
21	Theoretically predicted seaward mooring line mooring-force coefficient, Friday Harbor breakwater	47
22	Theoretically predicted long-period sway response, Friday Harbor breakwater	48
23	General location map	50
24	Field experiment site location map	51
25	Instrumentation location plan, Friday Harbor breakwater	52
26	Instrumentation and recording package layout	55
27	Average transmission curves for Friday Harbor breakwater	59
28	Transmission coefficient for Friday Harbor breakwater	65
29	Sway acceleration response for Friday Harbor breakwater	66
30	Heave acceleration response for Friday Harbor breakwater	67
31	Roll acceleration response for Friday Harbor breakwater	68
32	Seaward mooring line mooring-force coefficient, Friday Harbor breakwater	70

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain
inches	25.4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
yards	0.9144	meters
square yards	0.836	square meters
cubic yards	0.7646	cubic meters
miles	1.6093	kilometers
square miles	259.0	hectares _
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
ounces	28.35	grams
pounds	453.6	grams
	0.4536	kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.1745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ¹

¹To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: C = (5/9) (F - 32). To obtain Kelvin (K) readings, use forumla: K = (5/9) (F - 32) + 273.15.

SYMBOLS AND DEFINITIONS

A ₁ ,A ₂	Amplitudes of two incident waves
al	Amplitude of sway, heave, or roll motion for i = 1,2,3
В	Characteristic beam of breakwater
C _O	Body contour
C _T	Transmission coefficient
F _j (t)	Sway, heave, or roll exciting forces or moment for $j = 1,2,3$
KH _{ij}	Hydrostatic restoring-force coefficient for force in the jth direction due to motion in the ith direction
КМ _{іј}	Similar to KH _{ij} but due to the mooring system
k ₁ ,k ₂	Wave numbers of two incident waves
L	Incident wavelength
^m ij	Mass or moment of inertial when $i = j$, 0 when $i \neq j$
\overrightarrow{n}	Unit interior normal to body surface
P(x,y,t)	Pressure
\overrightarrow{r}	Vector from center of gravity to a point on the body surface
a _i ,å _i ,ä _i	Sway, heave, or roll motion; speed or acceleration
δ	Phase angle
δ ₁ ,δ ₂	Phase angles for two incident waves
η(x,t)	Free-surface elevation
$\eta_{I}(x,t)$	Wave surface elevation for incident wave
$n_{\rm T}({\tt x,t})$	Wave surface elevation for transmitted wave
λ_{ij}	Damping coefficient for force in the jth direction related to velocity in the ith direction
μij	Added-mass or inertial-force coefficient for force in the jth direction related to acceleration in the ith direction
ρ	Fluid density
φ	Velocity potential
ω	Frequency
ω1, ω2	Frequencies for two incident waves

Ŋ

FLOATING BREAKWATER FIELD ASSESSMENT PROGRAM, FRIDAY HARBOR, WASHINGTON

by B.H. Adee, E.P. Richey, and D.R. Christensen

I. INTRODUCTION

Floating structures for use in the attenuation of water waves were introduced by Joly (1905). Little was done with the concept until the Bombardon floating breakwater was deployed to form a harbor during the Normandy invasion of World War II. The use of mobile harbors for potential military applications provided the incentive for extensive work during the postwar years. Representative articles from this period include those by Minikin (1948) who discussed floating breakwaters in general terms, Carr (1951) who used basic mechanics to predict transmission characteristics, and the review of the performance of the Bom-Bardon by Lochner, Faber, and Penny (1948). In 1957, the Naval Civil Engineering Laboratory, Port Hueneme, California, began a concerted exploration of the existing knowledge of transportable units that could serve as breakwaters or piers. Results of the study are summarized in Naval Civil Engineering Laboratory (1961), which was an invaluable state-of-the-art assessment with particular emphasis on military uses under the rather severe site criteria of an incident wave with a 15-foot height, 13-second period, minimum water depth of 40 feet; inshore transmitted wave height of 4 feet, and tidal range of 12 feet. A sequel to the earlier study (Naval Civil Engineering Laboratory, 1971) surveyed concepts for "transportable" breakwaters, including over 60 in the "floating" category. Although no breakwater system was disclosed which would meet the stringent military site criteria and transportability requirement, these state-of-the-art reviews sparked renewed interest in the floating breakwater for nonmilitary applications. A review of developments in floating breakwaters was summarized by Richey and Nece (1974); Seymour (1974) introduced a new and innovative concept for wave attenuation using a system of tethered floats which may have application over a wide range of wave conditions.

Continually increasing pleasure boat ownership has nearly exhausted the available supply of moorage space in many areas. The need for additional moorage space in conjunction with escalating construction costs and more stringent environmental restrictions require careful scrutiny of alternatives to the traditional fixed breakwater and excavation techniques employed in marina construction. Productive time in weatherdependent, waterborne activities such as construction, logging, and cargo handling could be increased if protective floating, transportable breakwaters were used. Other uses in the control of shoreline erosion and in the emerging mariculture industry may also be found.

The information on the performance of floating breakwaters, i.e., their wave attenuating characteristics, mooring line forces, and motions, is contained primarily in reports of laboratory scale model tests with monochromatic incident waves; the few exceptions are the early analytical work by Carr (1951) and the occasional piece of information from a fullscale test like that performed by Harris (1974). There is a need for a fundamental analytical procedure to predict the performance characteristics of floating breakwaters with arbitrary cross section when exposed to a given incident wave. This procedure could be used to systematically compare performance information available in the literature, to examine new design proposals, and either eliminate or reduce and systematize auxiliary experimental studies.

The development of the predictive procedure was the primary thrust of the project with the concommitant field assessment of a full-scale floating breakwater in operation at Friday Harbor, Washington (Fig. 1). The analytical model developed from the two-dimensional, linearized solutions of the hydrodynamical equations formulated in terms of a boundary value problem for the velocity potential. The model was refined progressively by comparisons with results already reported in the literature, by auxiliary laboratory tests, and by the results from the Friday Harbor field program, where measurements of incident and transmitted, waves, mooring line forces, and acceleration in sway, heave, and roll were measured over a 6-month period.

Figure 1. Aerial view of Friday Harbor breakwater.

#

II. THEORETICAL ANALYSIS

In the analysis of complex systems such as floating breakwaters, there is a great need for model-scale experiments to predict their performance and provide data for the application of rational engineering design principles. Full-scale measurements are also extremely valuable in verifying scaling relationships and in providing confidence that the data obtained from smaller scale experiments are reasonable.

When one considers the myriad possible breakwater configurations which have been proposed to date and the different conditions which prevail at each potential breakwater site, the number of required model tests and the attendant expense are very large. To avoid this expense and also to permit parametric studies aimed at obtaining optimum breakwater configurations, a theoretical model was developed. The goal was to theoretically predict the performance which could be measured in laboratory studies or at prototype installations.

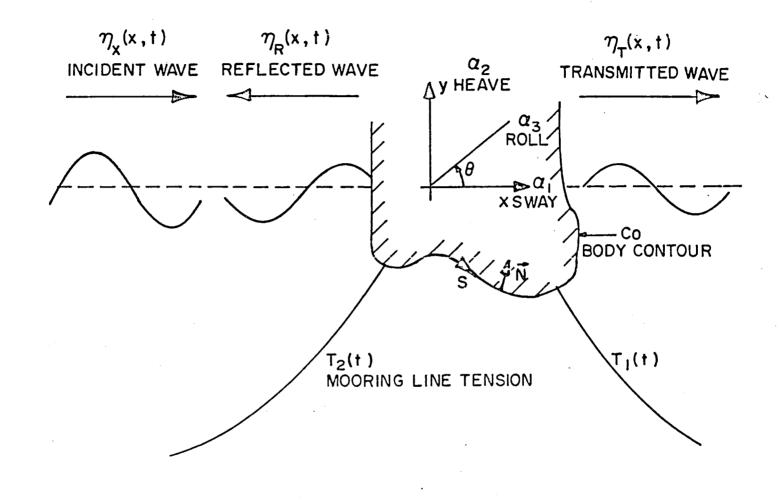
The initial restriction imposed on the theoretical model was to consider only two-dimensional conditions. Under this restriction the breakwater is assumed to be very long in one direction with long-crested waves approaching so that their crests are parallel to the long axis of the breakwater. At most breakwaters where the wave climate results from wind-generated waves, this condition would rarely be approached. However, experiments performed using a boat wake to generate incident waves on the beam and at an angle to a breakwater indicate larger breakwater motions and larger transmitted waves when the incident wave crests approach parallel to the long axis of the breakwater (Stramandi, 1975). As a design tool, a two-dimensional theory provides information on the worst conditions which might be expected to occur. In addition, the extensive two-dimensional wave-channel experiments provide the data needed to test the theoretical model.

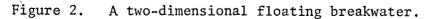
Throughout the development of the theoretical model, every attempt was made to orient the model toward providing a useful tool applicable to realistic problems. To perform the calculations the user need only know the incident wave frequencies of interest, the contour of the breakwater cross section (catamaran- or trimaran-type cross sections are permitted), and the physical properties of the breakwater (these include mass, mass moment of inertia, and the static restoring-force coefficients).

The approach used here has been to employ the techniques which naval architects have developed to deal with ship motion problems. Mathematically, the hydrodynamic equations are formulated in terms of a boundary value problem for the velocity potential. Solution of this complete problem is presently impossible because the free-surface boundary condition is nonlinear. An approximate solution may be obtained if restrictions are imposed on the boundary value problem, and the procedure of linearization is applied. The restrictions limit the applicability of the solution to cases of small incident wave amplitude and small motion response of the breakwater.

When using the linearized theory which is presented here, one must be well aware of the limits of applicability which are imposed on the results in order to permit the formulation of a tractable mathematical problem. Care must also be exercised because these restrictions may exclude phenomena which occur in nature from appearing in the mathematical analysis. For instance, field observations clearly demonstrate the occurrence of mooring line force oscillations at periods greater than those which could be attributed directly to wind-generated wave excitation. Using a linearized approach, these long-period oscillations would not appear in the analysis. A theoretical model which includes nonlinear behavior of the system is required if these long-period oscillations are to be included.

A possible nonlinear mechanism for the transfer of wave energy to lower frequencies has been postulated and is presented to supplement the linear analysis.


1. Linear Theoretical Model.


The problems involved in theoretically predicting the performance of a two-dimensional floating breakwater are illustrated in Figure 2. Here an incident wave approaches the breakwater on the beam. A part of the energy contained in the incident wave is reflected, part passes beneath the breakwater, and some is lost through dissipation. Another part of the incident wave energy excites the motions of the breakwater. These motions are restrained by the mooring system. The oscillating breakwater in turn generates waves which travel away from the breakwater in the directions of the reflected and transmitted waves. The total transmitted wave is the sum of the component which passes beneath the breakwater and the components generated by the breakwater motions. The total reflected wave is composed similarly.

In completing the calculations, the information which is of most interest to the designer includes:

- (a) Total transmitted and reflected waves including their components.
- (b) Wave forces on the breakwater.
- (c) Motions of the breakwater.
- (d) Forces on the mooring lines.

For the two-dimensional breakwater, definitions for the motions are shown in Figure 2. Sway is defined as the oscillation perpendicular to the long axis, or along the x-coordinate axis. Heave is the vertical

motion of the breakwater along the y-coordinate axis, and roll is the rotation about the long axis or the z-coordinate direction.

As long as the problem is linear, computing the performance of a floating breakwater may be separated into three parts:

(a) Formulate equations of motion,

Calculate hydrostatic forces and moments.

Evaluate hydrodynamic coefficients in equations of motion.

Compute exciting forces on breakwater.

Solve for the motions and motion-generated waves.

Compute forces in the mooring lines.

- (b) Solve for the waves diffracted by a rigidly restrained breakwater.
- (c) Sum components to obtain total reflected and total transmitted waves.

When combined, these parts of the calculation provide complete performance data for a two-dimensional breakwater.

a. <u>Breakwater Motions</u>. In deriving the equations of motion, Newton's law is used.

$$m_{ij} \ddot{\alpha}_{i} = \Sigma$$
 forces;

here:

a = motion of the breakwater in sway, heave, and roll for i = 1,2,3, respectively. The dot above indicates differentiation with respect to time.

(1)

 m_{ij} = mass or mass moment of inertia when i = j and zero when $i \neq j$. Exampling this equation to include the various forces in the summary

Expanding this equation to include the various forces in the summation yields:

$${}^{m}_{ij} \stackrel{\ddot{\alpha}_{i}}{=} F_{j}$$
 (inertial) + F_{j} (wave damping)
+ F_{j} (friction) + F_{j} (hydrostatic) + F_{j} (mooring)
+ F_{i} (wave exciting)

The inertial force (or added mass force) arises when the breakwater accelerates, which also accelerates the fluid around it. The motion-generated waves are moving away from the breakwater and result in the wavedamping term. A term representing the forces due to viscosity is included, but these forces are neglected in the analysis. Experience in ship motion analysis (Salvesen, 1970) has shown this to be acceptable for all motions but roll, where damping may make a more significant contribution than for sway and heave motions. At present, the main reason for neglecting the frictional forces is that they lead to nonlinear terms in the equations of motion, which make their solution far more complex. Hydrostatic forces arise because of changes in the displaced volume of the breakwater when it moves. In this analysis the mooring forces are modeled as simple springs with their contribution to the damping and inertial forces considered small in comparison to similar terms resulting from the breakwater motion. The wave exciting force results from the incident waves striking the breakwater.

If we neglect the nonlinear terms and assume that the fluid is inviscid, then the equations of motion describing the coupled sway, heave, and roll motions of the breakwater are of the form:

$$\sum_{i=1}^{5} \{ (m_{ij} + \mu_{ij}) \ \ddot{\alpha}_{i} + \lambda_{ij} \ \dot{\alpha}_{i} + (KH_{ij} + KM_{ij}) \ \alpha_{i} \} = F_{j} (t)$$
(2)
for j = 1,2,3.

The symbols are defined as follows:

- $\mu_{ij} = added-mass coefficient with the \mu_{ij} \alpha_{i}$ representing the added-mass force or moment in the jth direction due to acceleration in the ith direction.
- λ_{ij} = damping-force coefficient relating damping force or moment in the jth direction to velocity in the ith direction.
- KH_{ij} = hydrostatic spring constant relating the restoring force or moment in the jth direction to displacement in the ith direction.
- KM_{ii} = similar to KH_{ii} but due to the mooring system.

$$F_i$$
 = exciting force or moment in the jth direction

In order to solve these equations, the physical mass and moment of inertia, added mass and damping coefficients, static spring constants, and the exciting forces must all be known. Mass and moment of inertia are computed directly from the specifications of the breakwater section. The KH_{ij} are derived directly from hydrostatic considerations in Appendix A, while approximate values for KM_{ij} are obtained by using a discretized approximation for the mooring line as described in Appendix B. Potential theory and the principle of linear superposition permit derivations for the hydrodynamic coefficients and forcing function μ_{11} , λ_{11} and $F_1(t)$.

Steady-state solutions of the form:

$$\alpha_{i}(t) = a_{i} \sin (\omega t + \delta_{i}) \text{ for } i = 1,2,3$$
 (3)

are assumed. Substitution of the assumed solution (eq. 3) into the equations of motion (eq. 2) yields a set of linear algebraic equations which may be solved for the unknown amplitudes and phase angles a_i and δ_i . Transfer functions, H_i , are then defined by the a_i and δ_i since the incident waves are assumed to be sinusoidal.

b. <u>Hydrodynamic Coefficients and Waves</u>. Potential theory is employed in computing the reflected and transmitted waves, hydrodynamic coefficients and the exciting forces. Under the assumptions of small incident waves, small breakwater motions and an inviscid fluid, the velocity potentials may be found and the problem subdivided using the principle of linear superposition. The total velocity potential:

$$^{\phi}$$
total = $^{\phi}$ incident + $^{\phi}$ diffracted + $^{\phi}$ motion for i = 1,2,3 (4)

. . .

(5)

is the sum of the incident wave potential, the diffracted wave potential and the potential resulting from forced sway, heave, and roll motions.

The incident wave potential is well known and may be expressed directly. Obtaining the diffracted wave and breakwater motion potentials requires the solution of boundary value problems. These problems and their solutions are described in Appendix C. Appendix D provides the computer program used to calculate breakwater performance.

When the velocity potentials have been obtained, the free-surface elevation at any position is found using the linearized free-surface boundary condition:

$$\eta(x,t) = -\frac{1}{g} \phi_t(x,0,t).$$

Here:

n(x,t) = free-surface elevation measured from stillwater level (y = 0), g = acceleration of gravity, \$\overline\$_t(x,0,t) = derivative of the velocity potential with respect to time evaluated at y = 0.

$$n_{\text{total}}(x,t) = -\frac{1}{g} \{\phi_t \text{ incident } (x,0,t) + \phi_t \text{ diffracted } (x,0,t) \}$$

+
$$\phi_{t \text{ motion}}^{(i)} (x,0,t)$$
 (6)

The fluctuating component of pressure in the fluid and on the breakwater hull surface may be computed using Bernoulli's equation:

$$P(x,y,t) = -\rho \phi_{t}(x,y,t).$$
 (7)

By computing pressures on the hull surface and integrating these around the contour, the forces on the breakwater may be computed. The force per unit length acting on the breakwater is then:

$$F(t) = \int_{C_0} P \vec{n} \, ds.$$
 (8)

In this case,

F(t) =force on the breakwater,

 \dot{n} = unit interior normal vector on the hull surface,

 C_{2} = contour of breakwater cross section.

The rolling moment is:

$$M(t) = \int_{C_0} P \vec{r} \times \vec{n} \, ds,$$

where,

 \vec{r} = the vector from the center of gravity to a point on the surface.

(9)

To compute the exciting forces on the breakwater in linear theory, the pressure due to the incident and diffracted waves is integrated over the hull surface. These forces and moments become:

$$F_{1}(t) = \{ -\rho \int_{C_{0}} [\phi_{t} \text{ incident } (s,t) + \phi_{t} \text{ diffracted}(s,t)] \overrightarrow{n} ds \} \cdot \overrightarrow{i},$$

$$F_{2}(t) = \{ -\rho \int_{C_{0}} [\phi_{t} \text{ incident } (s,t) + \phi_{t} \text{ diffracted}(s,t)] \overrightarrow{n} ds \} \overrightarrow{j},$$

$$F_{3}(t) = \{ -\rho \int_{C_{0}} [\phi_{t} \text{ incident } (s,t) + \phi_{t} \text{ diffracted}(s,t)] \overrightarrow{r} \times \overrightarrow{n} ds \} \cdot k.$$
(10)

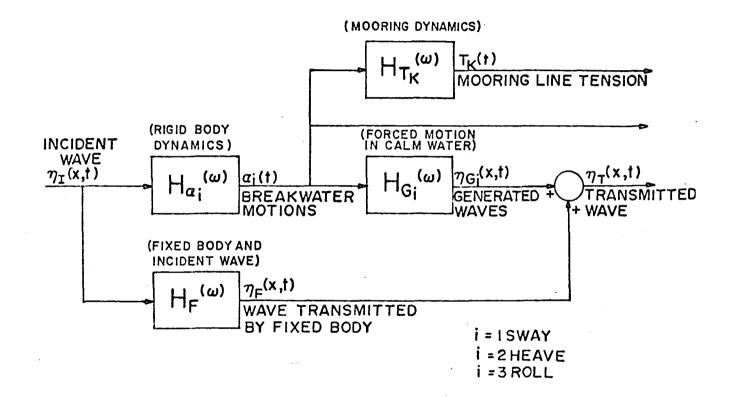
Hydrodynamic coefficients are found using the potential resulting from forced oscillation of the breakwater. In this case the pressure integrated over the surface has a component in phase with acceleration and a component in phase with velocity. The component in phase with acceleration is normally referred to as the added mass, while the component in phase with velocity is the damping.

The hydrodynamic coefficients shown in this section are derived in greater detail in Appendix C.

c. <u>Mooring Forces</u>. At the time the spring constants for the mooring lines are computed, mooring force coefficients are also calculated. These are:

 $\frac{\Delta F}{\Delta \alpha}$ = change in mooring line force per unit displacement in sway, heave, or roll when i = 1, 2, or 3, respectively.

The forces in the mooring lines may then be computed once the motions have been found.


Mooring Force = $\sum_{i=1}^{3} (\frac{\Delta F}{\Delta \alpha_{i}}) \alpha_{i}(t)$

The description of the linear system is now complete. The block diagram in Figure 3 shows the relationships among the calculations which are required.

2. Nonlinear Theoretical Model.

Measurements taken at the Tenakee, Alaska, floating breakwater before this research program was begun indicated the presence of a longperiod oscillatory motion of the breakwater. These long-period motions were manifested most clearly in the measured mooring line forces. Looking at these, one can visually observe an oscillation with a period of about 60 seconds superimposed over the expected shorter period oscillations. Figure 4 shows the results of a spectral analysis of the seaward mooring line data after a low-pass filter has been applied (the technique for performing the spectral analysis is given in Section III of this report).

The linear theoretical model permits the system to respond only at the frequency of the incident wave. In order to explain the presence of these long-period oscillations, nonlinearities must be included in the analysis. To perform a mathematically complete analysis including all nonlinear effects is beyond the present state of the art. However, in the case of the floating breakwater, one can show that if two incident waves are considered and second-order terms are retained, then an exciting force is present at the difference between the frequencies of the incident waves. The complete derivation in Appendix E shows that the nonlinear pressure may be expressed as:

Figure 3.

Linear system representative of a floating breakwater.

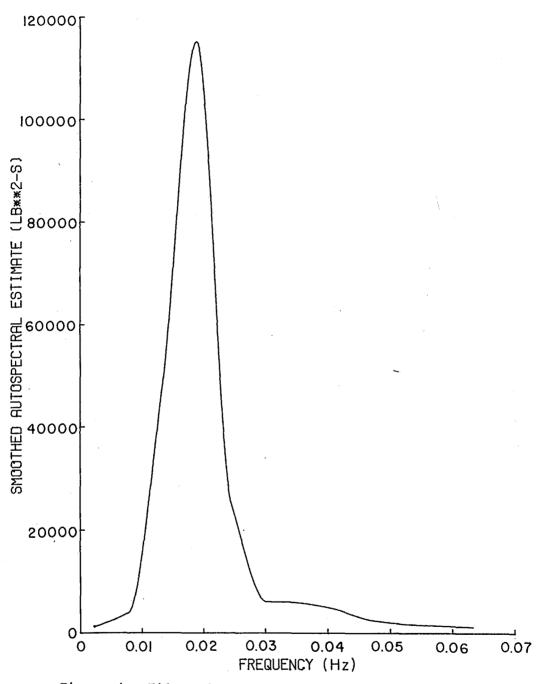


Figure 4. Filtered low-frequency seaward mooring line force, Tenakee, Alaska (record TK7-23).

$$P(t) = -\frac{\rho}{2} \{\omega_1^2 A_1^2 e^{2k_1 t} + \omega_2^2 A_2^2 e^{2k_2 y} - 2\omega_1 \omega_2 A_1 A_2 e^{(k_1 + k_2)y} \cos [(k_1 - k_2)x] - (\omega_1 - \omega_2)t + \delta_1 - \delta_2]\},$$

(11)

where.

 ρ = fluid density,

 ω_1, ω_2 = incident wave frequencies,

 A_1, A_2 = incident wave amplitudes, $\frac{2}{g}, \frac{\omega_1^2}{g}, \frac{\omega_2^2}{g}, \delta_1, \delta_2$ = incident wave phase angles.

Combining this pressure with the pressure obtained from the linear theory and integrating over the hull would provide additional exciting-force terms at zero frequency and at the difference frequency. Carrying the nonlinear exciting-force terms back through the linear response analysis should provide a quasi-linear approach. While there is no reason to expect this to provide exact correlation with measured data, the quasilinear approach would at least permit the natural phenomena to enter into the mathematical analysis.

One would expect terms to appear in the second-order pressure (eq. 11) at twice the incident wave frequency and at the sum of the incident wave frequencies. Terms at twice each of the incident wave frequencies can be derived by applying the trigonometric relationships to the terms at zero frequency. While a term at the sum of the incident wave frequencies does not appear in the second-order incident wave potential, this term may result when the second-order potentials representing diffraction or forced oscillation in calm water are included.

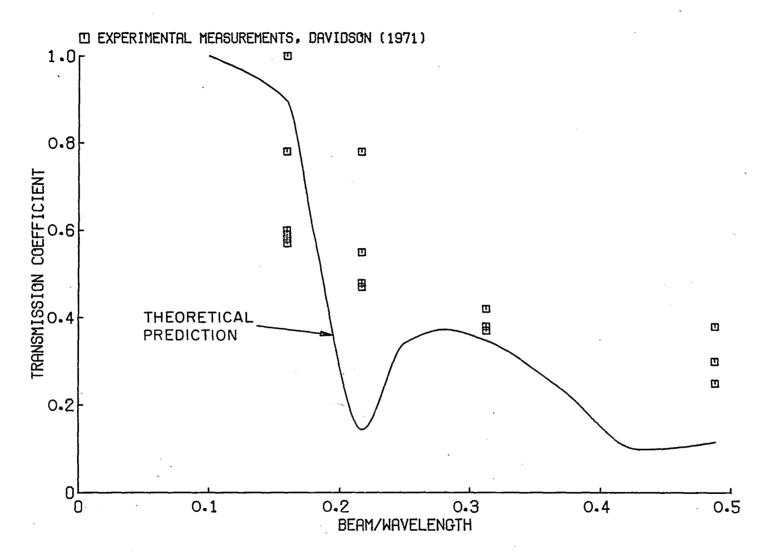
A great deal more effort is required in this area to complete the analysis. There is also one other area where a nonlinear, or quasilinear, analysis should be investigated. This is in the roll-damping coefficient. Here, viscous effects seem to be important, and while the problem has not been dealt with within the present study, investigators have included a term proportional to velocity squared in the equation for roll motion.

3. Results.

The computer program given in Appendix D has been developed to

calculate the values of hydrodynamic coefficients, breakwater motions, and the wave field. Input variables include:

- (a) The body contour, C_o, represented by a series of points on the contour.
- (b) The physical properties of the body: mass, mass moment of inertia, and position of the center of gravity.
- (c) The mooring system spring constants.
- (d) The hydrostatic restoring spring constants.
- (e) The incident wave frequency, ω .


In this program the exciting forces and moments appearing in the equations of motion and the fixed-body parts of the transmitted and reflected waves are found by computing the forces, moments, and waves which result when a rigidly fixed body is struck by a sinusoidal incident wave of frequency ω . Motions are found by computing the steady-state solution to the three equations of motion. The hydrodynamic coefficients and the waves generated by the body motions are found by computing the forces, moments, and waves which result when the body is forced to oscillate in stillwater in pure sway, pure heave, or pure roll.

The physical properties used in the performance calculations for the various breakwaters are collected in Appendix F.

a. Wave Transmission. To assess the performance of a floating breakwater, one quantity which is commonly used is the transmission coefficient. This is simply the transmitted wave amplitude divided by the incident wave amplitude, $|n_T(x,t)|/|n_I(x,t)|$ for monochromatic incident waves.

(1) Proposed Oak Harbor Breakwater. At one time the Corps of Engineers was considering a marina and floating breakwater at Oak Harbor, Washington. Model experiments were carried out by Davidson (1971) to determine transmission characteristics and mooring forces. The breakwater itself had a catamaran-type cross section. A comparison between the theoretically predicted and experimentally measured transmission coefficient is shown in Figure 5. This figure as well as the others plotted in this section and Section IV were drawn using a CALCOMP plot-The plotting program uses a parabolic fit to determine additional ter. points between the given data. Varying numbers of data points were used to describe each curve depending on its behavior. Data points were closely spaced in regions where the theoretical predictions indicated large changes in curvature. Wavelength is calculated in all the figures using the relationship between wavelength and period for waves in deep water.

In this case, the results compare reasonably well except for the

.

Figure 5. Transmission coefficient for proposed Oak Harbor breakwater.

predicted dip in transmission just above a B/L (beam/wavelength) of 0.2. There is also some difference at higher B/L ratios.

The theory predicts that the part of the transmitted wave which would result where the body is rigidly fixed is almost 1 for a B/L less than 0.1 and drops rapidly at higher B/L ratios to the point where it is of little consequence beyond 0.2. Waves generated by the breakwater motions play an increasing role for B/L ratios above 0.15. Heave motion is the major contributor to the transmitted wave in the very narrow band of B/L between 0.15 and 0.18 with a predicted heave resonance at a B/L of about 0.18. The dip occurs because the waves generated by heave and sway motions are almost 180° out of phase and cancel each other out. At B/L ratios above 0.25, sway motion assumes an increasingly dominant role. Roll motions are small throughout and generate only very small waves.

(2) <u>Rectangular Breakwater</u>. A breakwater of rectangular cross section with the same beam and draft as the proposed Oak Harbor breakwater was tested at the University of Washington by Nece and Richey (1972). Results for the water depth of 29.5 feet are shown in Figure 6.

Again the agreement is reasonable. Further experiments with this model have confirmed the existence of the trough at a B/L of 0.2. However, this phenomenon can be observed only for very small wave heights. For practical purposes, the dip may be smoothed over considerably. The major discrepancy is at the high B/L ratios where the theory shows considerably greater transmission than is actually measured in the model tests. Since the transmitted wave is almost totally a result of sway motion, the problem must lie in the wave predicted by this motion.

Over the entire range of wavelengths of interest, the predicted results follow the pattern previously discussed for the proposed Oak Harbor breakwater. The transmitted wave is almost completely a result of fixed-body transmission followed by regions of heave resonance, heave and sway cancellation, and finally, sway wave generation as the B/L increases.

It is interesting to note that there is very little difference between the open-well breakwater and the closed rectangle of the same overall dimensions.

(3) <u>Rectangular Breakwater Tested by Sutko and Haden</u>. In some recent experiments Sutko and Haden (1974) have examined the effect that restricting breakwater motions has on the transmission coefficient. They used a rectangular breakwater model with a beam-to-draft ratio of 1.5. Plexiglas end assemblies were used to restrict the breakwater motions.

Figure 7 shows the transmission coefficient when the breakwater is restricted to sway motions only. Here, the transmitted wave contains a component resulting from the fixed-body transmission and a component

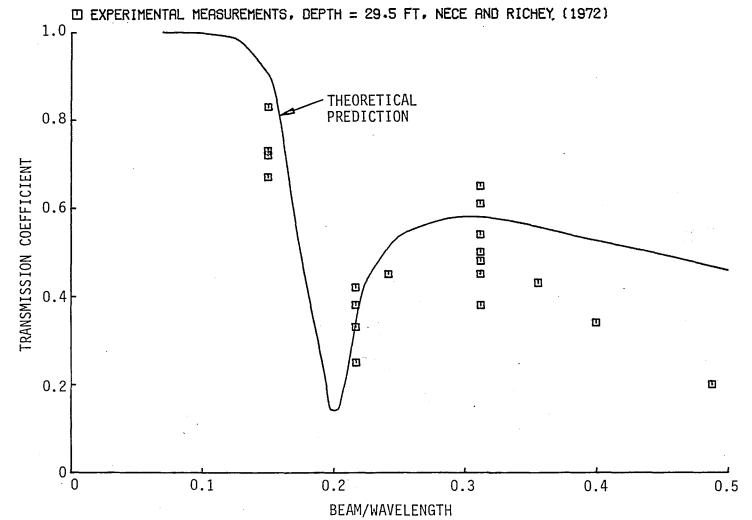
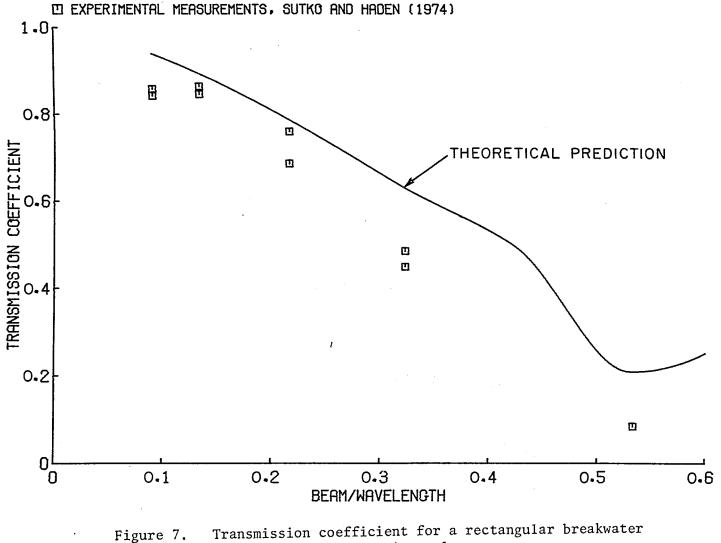



Figure 6. Transmission coefficient for a rectangular breakwater.

restricted to sway motion only.

resulting from the wave generated by the sway motion. At very low B/L ratios the fixed-body transmission is the more important component. At a B/L of about 0.1 both the fixed-body transmission and the sway-generated wave are of equal importance. At B/L ratios higher than 0.215, the wave generated by sway motion dominates. The agreement between theory and experiment is quite reasonable for this case.

A comparison when the breakwater is restricted to heave motion only is shown in Figure 8. There is clearly a discrepancy in this case between measured and theoretically predicted transmission coefficient near the B/L ratio of 0.13. As a matter of fact, the theory predicts a heave resonance in this region which does not seem to be supported by the measured data.

In examining the mechanism used to restrain the breakwater motion, it seemed possible that this apparatus was introducing damping into the system. To test this supposition, transmission coefficients were computed with the calculated hydrodynamic damping increased by an arbitrary amount. The major effect of increasing the damping was to decrease the transmission near the heave resonance region. With damping at three times the hydrodynamic value, the results were quite close to the experimental measurements. Increasing the damping beyond this had very little additional effect on the predicted transmission coefficient. The scatter which appears in the experimental data in this region is a further indication that some nonrepeatable effect may be influencing the experimental results. So long as the additional damping is included in the theoretical calculations, the results compare well with experimental measurements.

Figure 9 shows a comparison between model measurements when the model is unrestrained except by a horizontal mooring cable and the theoretically predicted results without mooring restraints. The theoretical results are characteristic of the rectangular breakwater with the dip in transmission near a B/L equal to 0.2. The pattern of interactions between motion-generated waves and fixed-body transmission is similar to the previous description. The agreement between these results indicates that the theoretical model may also yield the correct results when the model is free to heave only. At least further experimental investigation is warranted.

(4) <u>Alaska-Type Breakwater</u>. The State of Alaska has embarked on an ambitious program for constructing moorages using floating breakwaters. As part of a Sea Grant project the University of Washington has been studying the performance of this type breakwater. A theoretically predicted transmission coefficient and the transmission coefficient measured in model tests are shown in Figure 10. The model tests were conducted using very small incident waves (wave heights on the order of 0.2 to 0.3 feet at prototype scale). Results for larger wave slopes were not included in the figure but do show the same trends with lower values of transmission coefficient. Theoretical predictions without added damping and with double the hydrodynamic damping are shown in Figure 10.

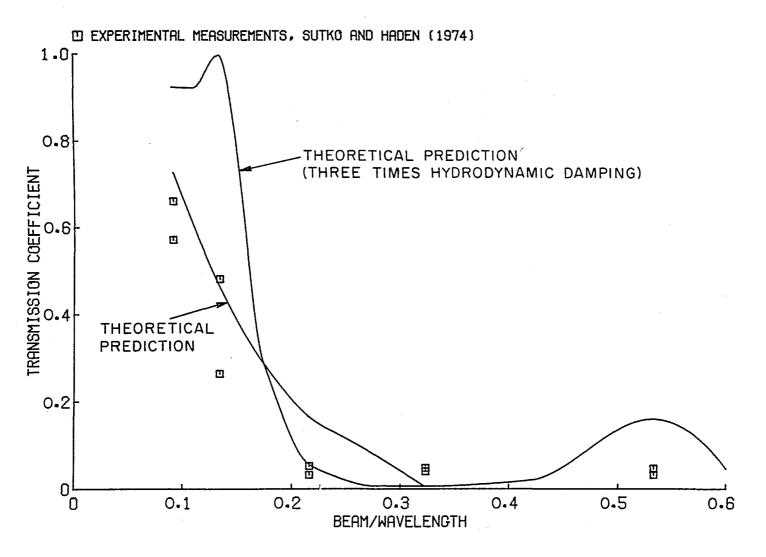


Figure 8. Transmission coefficient for a rectangular breakwater restricted to heave motion only.

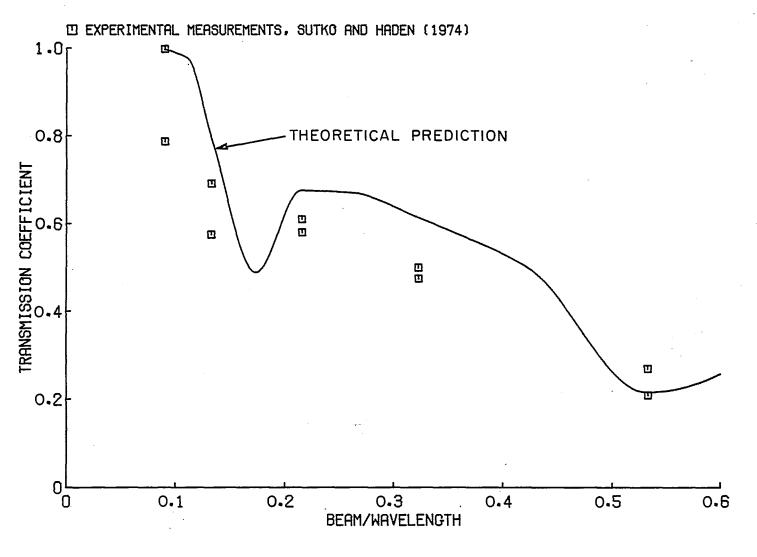
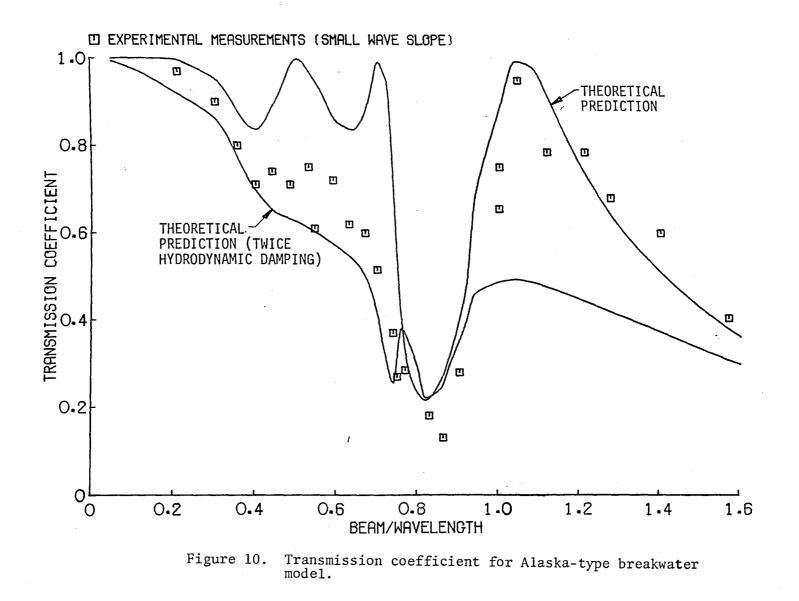
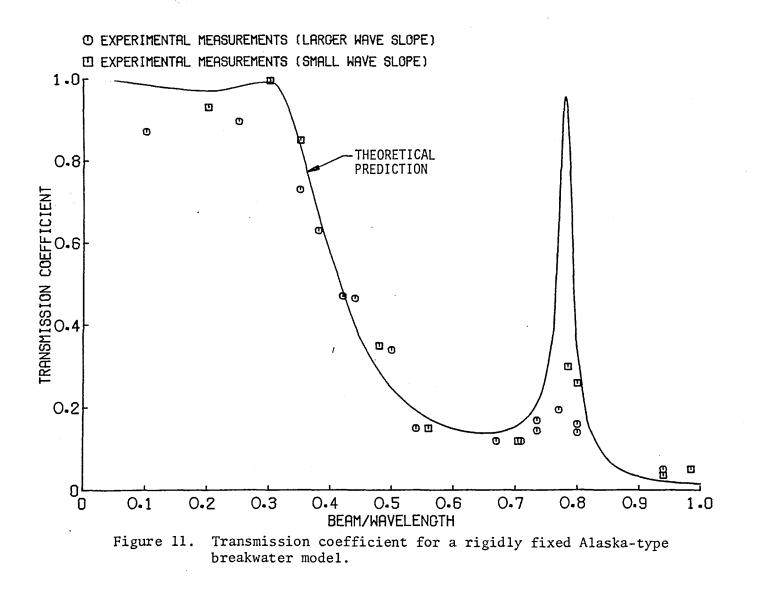
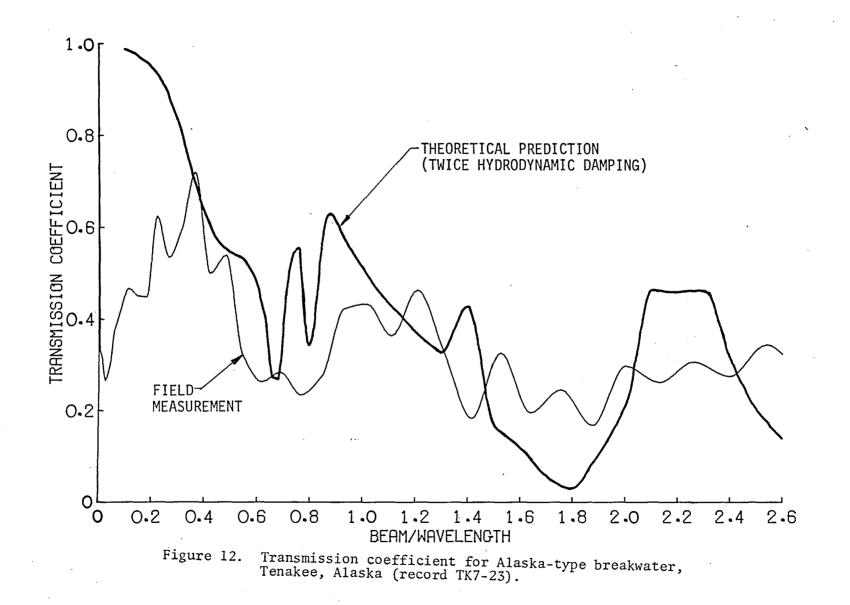



Figure 9. Transmission coefficient for a rectangular breakwater.

<u>6</u>

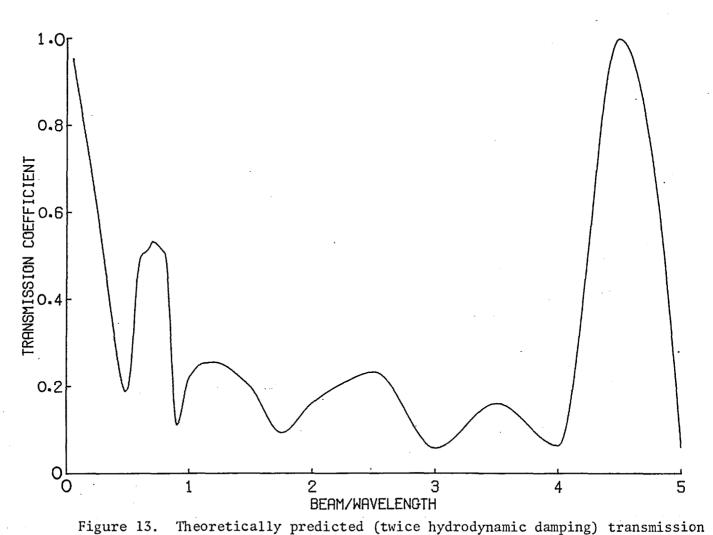

Clearly the increased damping makes a significant difference in the results.


Some insight into the performance of this breakwater may be gained by following the theoretical results as a function of B/L. At very low B/L the fixed-body transmission dominates. The trough at a B/L of 0.4 comes mainly from the interaction of the roll-generated wave and the fixed-body transmission. For the next peak at B/L of 0.5 the rollgenerated wave dominates as the roll resonant frequency is encountered. The next trough at B/L of 0.65 is a result of all three motion-generated waves interacting with the fixed-body transmission making only a relatively small contribution to the transmitted wave. The following peak at B/L of 0.7 results from interactions among the motion-generated waves which are of about equal magnitude. At a B/L of 0.86 the heave-generated wave dominates again, but as B/L increases beyond this the effect of heave and roll are rapidly decreasing while sway motion is becoming the dominant wave-generating mechanism. In the region of B/L between 0.4 and 1.0, changing the physical properties of the breakwater can have a marked effect in shifting the peaks and troughs by altering the heave and roll resonant frequencies.

Experience with linear ship motion theory has shown that the worst agreement between predicted and measured motions occurs when rolling motions are considered (Salvesen, 1970). This discrepancy is often overcome by arbitrarily increasing the computed roll damping to compensate for the viscous damping which is neglected. As indicated in Figure 10, when damping is added the theory gives a better prediction where roll motion plays a significant role. This places a significant restriction on the theory requiring careful monitoring of predicted roll motion. Where the theory predicts large roll motion, additional damping will be required to obtain results comparable to measurements.

Figure 11 shows the predicted fixed-body transmission coefficient and the results of model tests. Agreement is quite close except at B/Lof 0.78. The peak in predicted transmission may be due to a resonance of the waves within the well of the catamaran breakwater. There is another peak near B/L of 1.4 indicating the presence of higher harmonic resonances as well. Model tests show at least a slight hump in this region suggesting that the theoretical prediction clearly overestimates the effect of this phenomena, but that this probably is occurring in real life.

For the data measured in the field, the transmission coefficient is defined as the square root of the transmitted wave spectral density divided by the incident wave spectral density. Figure 12 shows the transmission coefficient derived from the data obtained at the Tenakee, Alaska breakwater. The theoretically predicted transmission coefficient with the computed hydrodynamic damping doubled is also shown for comparison. Details of the technique used in the spectral analysis of the field data may be found in Section III.


It should be noted that the model for the Alaska-type breakwater was not built to the correct scale to represent the prototype. Further investigation of the physical properties of the prototype after the model tests were complete revealed that it was heavier than originally predicted. The physical properties used in making the theoretical calculations are correct for all the comparisons made in this report. However, care must be exercised in comparing the model test results and the field measurements directly. The physical properties for all the breakwaters discussed in this section are in Appendix F.

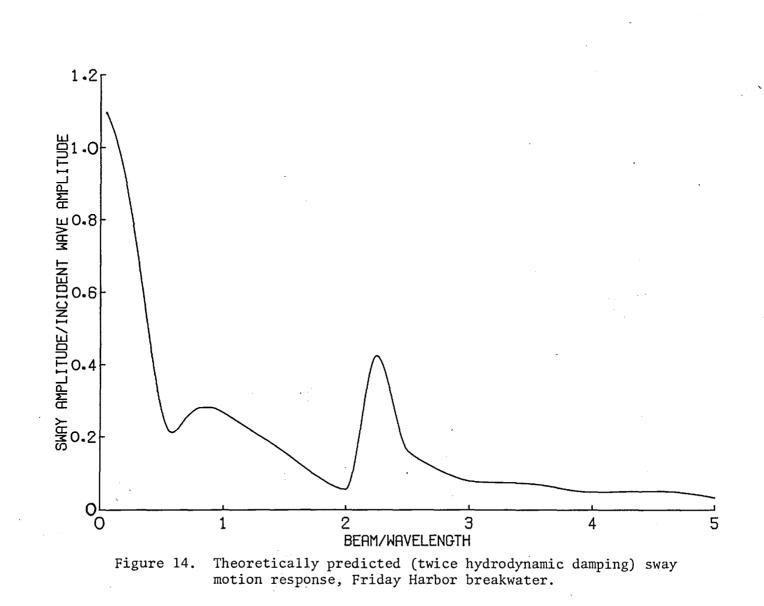
The first trough in the transmission coefficient curve results because the wave generated by roll tends to cancel the fixed-body transmission. The sway-generated wave is small but cancels a little bit of the heave-generated wave. The total transmitted wave is then almost in phase with the heave-generated wave at a slightly reduced amplitude. Complex interactions among the components of the transmitted wave continue to result in oscillations of the transmission coefficient up through a B/L of 0.9. At values of B/L above this, the transmitted wave is primarily a result of sway motion except for the peak at B/L equal to 1.4 which results from an increase in the fixed-body transmission. Considering the complexity of the breakwater response, the agreement should be considered to be reasonably good.

(5) Friday Harbor Breakwater. The computed transmission coefficient for the Friday Harbor breakwater is shown in Figure 13. As in the case of the Alaska breakwater calculations, the computations of wave-damping coefficients have been arbitrarily doubled to reduce the excessive calculated motions in the region of resonant motions. In this figure the spacing of data points varies. More points are used to specify the curve in regions of rapid change so that the plotted result accurately represents the theoretical prediction.

In Figure 13, the first trough in transmission coefficient at about B/L = 0.5 results from heave- and roll-generated waves canceling the fixed-body wave transmission. This transmission coefficient is well below the transmission coefficient which would be obtained with the breakwater rigidly restrained and only fixed-body transmission waves passing through. As B/L increases, there is a peak at about 0.7. At this point the heave-generated wave has almost vanished, and the fixed-body transmission is also small. The larger transmission coefficient is primarily the result of a roll-generated wave with a smaller component resulting from sway motion. The next trough at a B/L of 0.9 occurs as the heave motion-generated wave increases and cancels the roll and sway motion-generated components. The fixed-body transmission is very small at B/L of 0.9. As B/L increases beyond 0.9 the transmitted wave is almost totally the result of sway motion of the breakwater.

At larger B/L ratios there are several oscillations in the

Theoretically predicted (twice hydrodynamic damping) transmission coefficient, Friday Harbor breakwater.


transmission coefficient curve. In this region one must be careful of the analysis because there are certain "irregular frequencies" or "John" frequencies where the approach adopted here breaks down mathematically (John, 1950). These are described with reference to the integral equation technique by Frank (1967). It is extremely difficult to predict where the first of these irregular frequencies will occur when the breakwater cross section is as complicated as the Friday Harbor breakwater. If this cross section were rectangular with the same exterior dimensions as the Friday Harbor breakwater, then the first irregular frequency would occur at $B/L \approx 1.7$. In practice, one may watch for this mathematical phenomenon by checking the determinant of the matrix inverted to solve the system of equations. In fact, this does decrease in the region of B/L of 1.7 but does not indicate a singular matrix for the calculation in this region of B/L. Since this is beyond the frequency range of primary interest, it is best to simply view the results at B/L greater than 1.7 with extreme caution. The oscillations in the transmission coefficient in this region of B/L are probably the result of these irregular frequencies.

b. <u>Breakwater Motions</u>. In the wave channel experiments performed to date, there has been no attempt to compute the breakwater motions. While the transmission coefficient is the primary measure of breakwater performance, the motions may be very important to the designer, particularly if boats are to be tied to the breakwater. For the theoretical analysis, this is a critical intermediate step where extensive experimental measurements used for comparison would be invaluable.

Friday Harbor Breakwater. The theoretically predicted motions of the Friday Harbor breakwater are shown in Figures 14, 15, and 16. The motion response is almost the same as one would expect from an uncoupled spring, mass, dashpot linear system. The only unusual behavior is the null response in heave at B/L of about 0.75. This null occurs at a point where there is a phase shift in the "added-mass" force, a phenomenon which has been observed in experiments with catamaran-type cross sections (Lee, Jones, and Bedel, 1971), and is a result of resonant wave conditions within the open well of the catamaran.

c. <u>Mooring Line Forces</u>. In recent years a great deal of effort has been expended in understanding and predicting mooring line performance, particularly for moored ships and drilling rigs (e.g., American Society of Civil Engineers, 1971). While many of these analysis techniques could be applied to the moorings of floating breakwaters, this has not been done to date. There are also very few model-scale experiments in which mooring forces have been measured and only a few cases where good field data are available.

Two techniques for calculating the spring constants for mooring lines have been used. At first the catenary equations were applied to find the change in force per unit displacement. While this approach leads to a fairly simple algorithm for the calculation, there are a few problems. In several cases spring constants were needed when the mooring

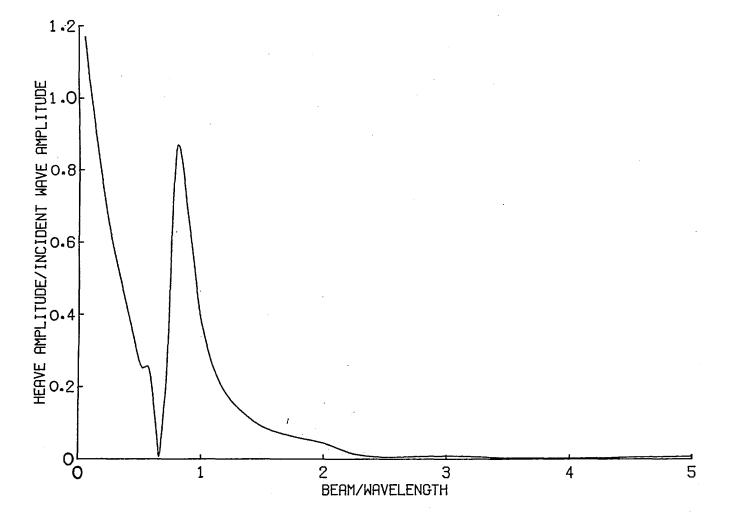
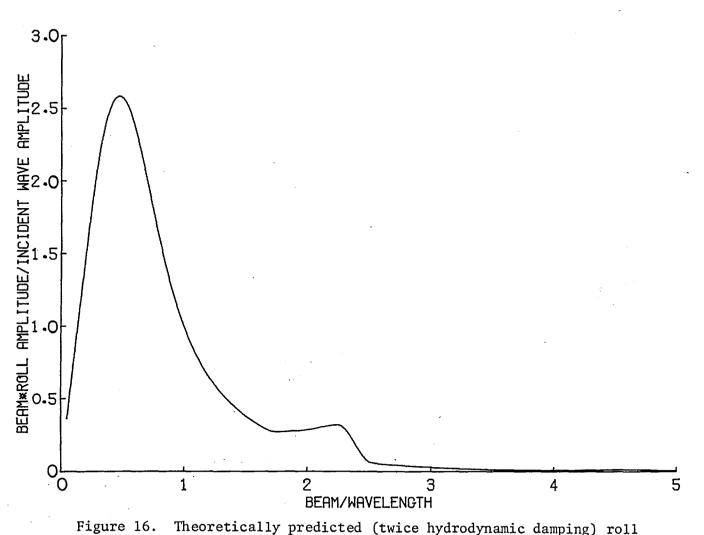
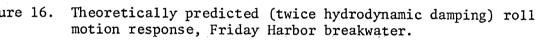
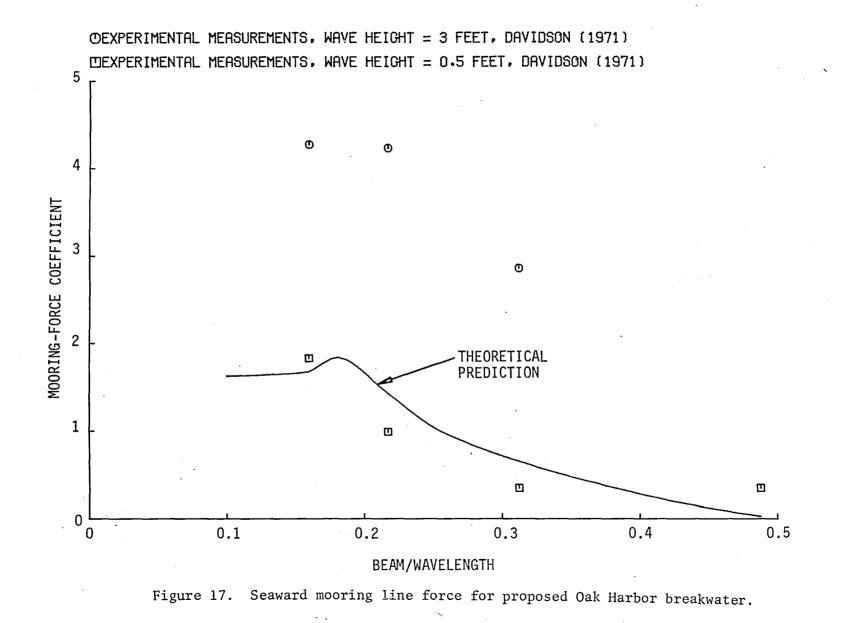




Figure 15. Theoretically predicted (twice hydrodynamic damping) heave motion response, Friday Harbor breakwater.

line was too taut to allow it to become tangent to the bottom at the anchor. If this condition occurs, or as it is approached, the catenary equations no longer apply. For many full-scale installations, a combination chain and synthetic line anchor cable is used. This combination anchor cable presents problems in attempting to use the catenary equations.


Comparisons between the mooring line forces calculated using the catenary equations to predict spring constants showed poor agreement with measured results (Adee, 1975). While the general trends were reproduced, an increase in the predicted spring constants of about a factor of 4 would have been required to bring the theoretical prediction into agreement with the measured results.

To overcome the problems encountered in using the catenary equations, a system based on discretization of the mooring line and static equilibrium was developed. This method is described in Appendix B.

(1) <u>Proposed Oak Harbor Breakwater</u>. One of the few model tests in which mooring line forces were measured was performed by Davidson (1971) for the floating breakwater proposed for Oak Harbor, Washington. The model configuration with properties scaled to the prototype is included in Appendix F. The shape of this breakwater is basically an inverted bathtub with foam flotation.

Applying the theory to predict the mooring line force in the seaward anchor line at a water depth of 29.5 feet, one obtains the results shown in The mooring-force coefficient is defined as the amplitude Figure 17. of the force oscillation divided by incident wave amplitude times the weight per unit length of the breakwater. In this figure, the large range of the experimental results is directly related to incident wave amplitude. The smaller incident wave amplitudes generally produce lower measured mooring line forces per unit amplitude except at the beam to wavelength ratio of 0.49. Since the linear theory is mathematically correct only in the limit as wave amplitude tends to zero, one would expect the best correlation between theoretically predicted and measured results for small amplitude incident waves. The results shown in Figure 17 are consistent with this expectation. However, the very large difference in mooring line forces as incident wave amplitude increases indicates a highly nonlinear response.

A potential explanation for the nonlinear response observed in these experiments results from the condition of the mooring lines at the 29.5-foot water depth used for the model tests. Under these conditions, the mooring lines no longer maintain a catenary shape. When the initial tension in the mooring lines is increased to this level, they respond with very large changes in mooring line force for very small displacements of the breakwater. Consequently, small deviations in the planned positioning of the anchors will lead to large changes in forces in the mooring line. This condition clearly should be avoided in prototype installations where very large mooring line forces are to be avoided.

A second possible explanation of the nonlinearity results when the "drift force" on the breakwater is considered. If one carries the hydrodynamic analysis to second order, there are terms at zero frequency which yield a force on the breakwater in the direction in which the incident waves are traveling. This force has the same effect as increasing the initial tension in the mooring line and is proportional to wave amplitude squared. Increasing the initial tension tends to increase the spring constants of the mooring lines leading to larger oscillating forces as well.

(2) Alaska-Type Breakwater. Mooring-force coefficients theoretically predicted and measured for the Tenakee, Alaska, breakwater are shown in Figure 18. For the field data the mooring-force coefficient is obtained by taking the square root of the mooring-force spectral density divided by the incident wave spectral density and then dividing by the weight per unit length of the breakwater. Again, as with the Oak Harbor model experiments, there is good agreement, especially in predicting the peak in the curve near B/L of 0.65.

One important aspect of the mooring line problem which should not be overlooked is a comparison between the model-scale results and the field measurements. For the Alaska-type breakwater, all the measured results indicate the amplitude of oscillation in mooring line force is in the order of hundreds of pounds, not thousands of pounds, as was predicted for the Oak Harbor breakwater in the model-scale tests.

When the mooring line tension data recorded at Tenakee are plotted as a function of time as in Figure 19, one observes that there clearly are oscillations associated with the incident waves. However, there are also low-frequency oscillations which are of greater magnitude. A complete explanation of the origin of these low-frequency forces has not been developed. However, one possible explanation is that these forces are a result of breakwater oscillation at the sway resonant frequency. Since the spring constant for sway motion is very small, one would expect a long natural period. Theoretically predicted sway motion response for the breakwater is plotted in Figure 20. Predicted natural periods are 64, 37, and 29 seconds for tidal conditions of mean lower low water (MLLW), +10 and +20 feet, respectively. By applying a high-pass filter to the field data, one obtains the spectrum of force oscillation shown in Figure 4. Here, a peak is at a period of about 53 seconds (tide height = +7 feet). The predicted sway natural frequency is at 45 seconds when the tide height is +7 feet, which indicates that this explanation is plausible.

(3) Friday Harbor Breakwater. The predicted performance of a seaward mooring line on the Friday Harbor breakwater is shown in Figure 21 for a tide height of +5.33 feet. The Friday Harbor mooring lines are different than those at the other breakwaters. They are composed of a section of chain attached to the breakwater, followed by a length of nylon rope and, finally, another section of chains at the bottom. This particular tidal condition was chosen because it is the condition during record FH 7-8 used later for comparison.

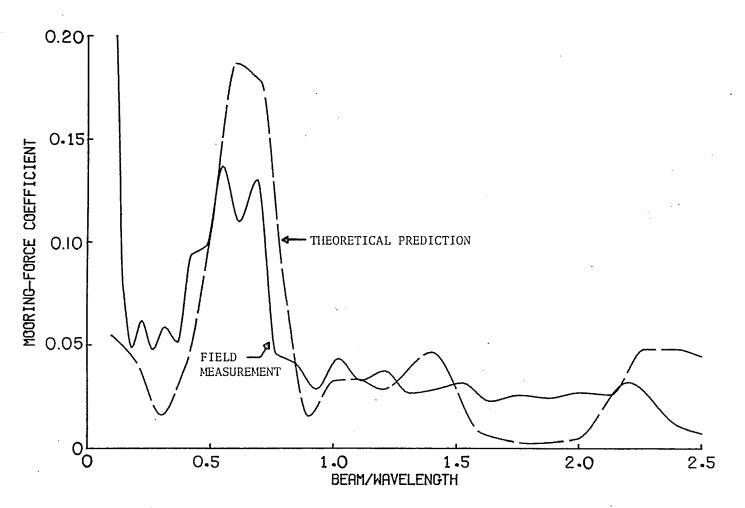
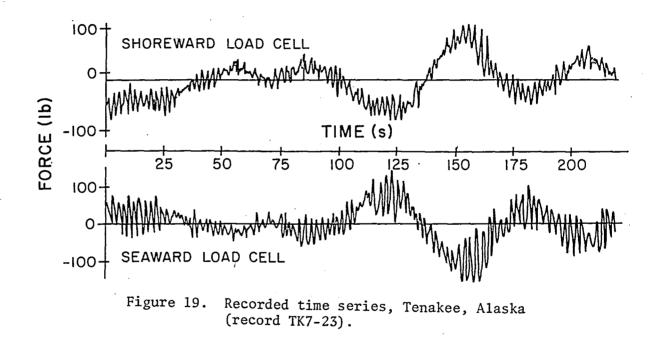
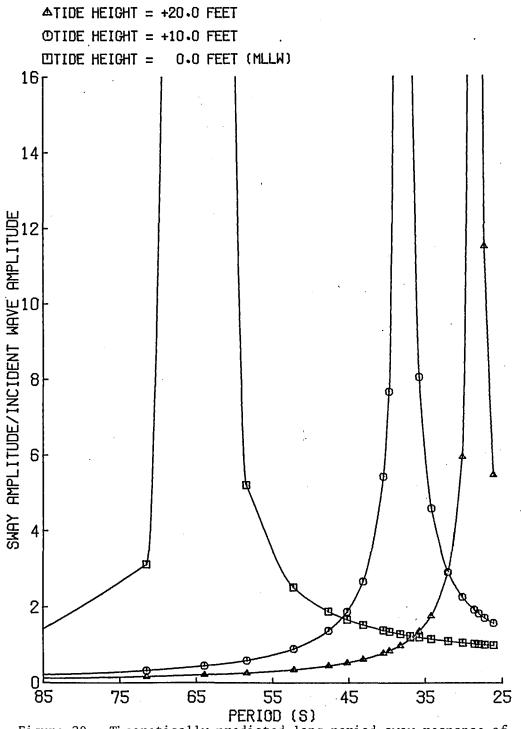




Figure 18. Seaward mooring line mooring-force coefficient, Tenakee, Alaska (record TK7-23).

.

.

PERIOD (S) Figure 20. Theoretically predicted long-period sway response of Alaska-type breakwater, Tenakee, Alaska.

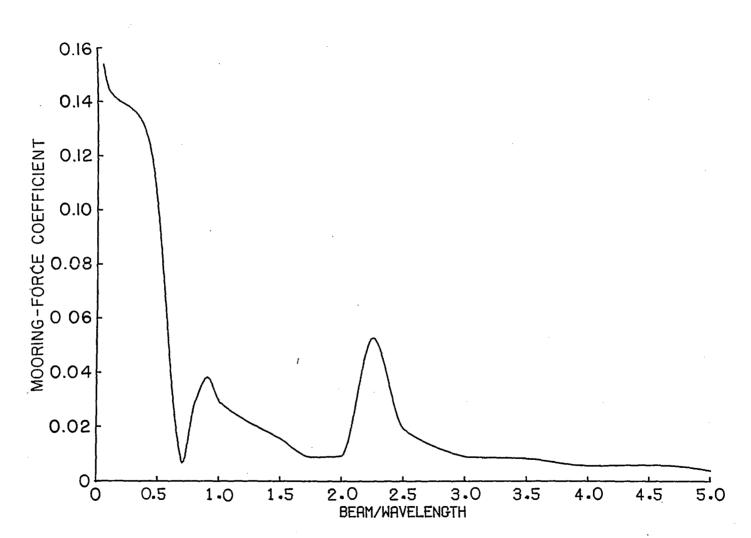


Figure 21. Theoretically predicted seaward mooring line mooring-force coefficient, Friday Harbor breakwater.

Low-frequency predicted sway motion and resonance are shown in Figure 22 for MLLW, +5.33 feet, +10 feet, and +15 feet tide heights.

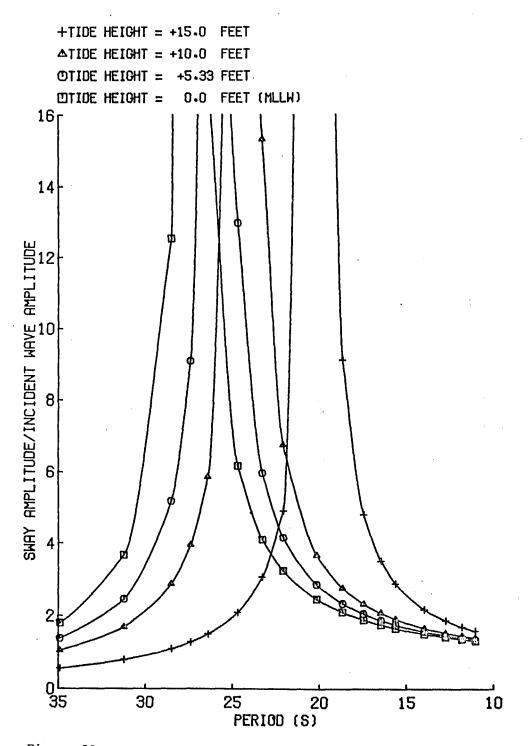


Figure 22. Theoretically predicted long-period sway response, Friday Harbor breakwater.

1. Layout.

The site of the floating breakwater instrumented in this study is located at Friday Harbor, Washington, on San Juan Island, just east of Victoria, British Columbia (Fig. 23), The breakwater is 25 feet wide, 904 feet long, anchored in approximately 40 feet of water, and was installed in October 1972. The structure is made of Polyolefin flotation tanks linked together by a matrix of large wooden timbers. It is laid out in an expanded L-shape, the inside angle being 115°, with the shorter leg (227 ft.) directed toward shore and the longer leg (627 ft.) toward magnetic north. The site itself is protected on three sides by San Juan and Brown Islands off the harbor entrance. This leaves an 0.25-mile-wide channel into the harbor with a northeasterly fetch of about 1.7 nautical miles. Southeasterly winds can also generate waves of importance parallel to the shorter leg where the fetch is about 1 nautical mile.

2. Instrumentation.

The shorter leg was instrumented in this study for two reasons: (a) the most frequent winds are out of the southeast, and (b) barges were to be tied to the longer leg during the winter months for added protection. However, the wave gages are positioned to give the proper incident and transmitted wave data for all relative wind directions (Figs. 24 and 25).

Four types of time-dependent data which are basic to describing the response of the breakwater were collected: (a) wind velocity and direction; (b) wave heights at key locations; (c) anchor cable forces; and (d) directional acceleration and angular motions of the breakwater. The locations of the measuring sensors are shown on Figure 25. Signals from the sensors were carried by underwater cable to the recording system which was located in a small building mounted near the center of the short leg.

3. Wind Data.

Windspeed and direction were measured by Weather Measure Corporation's W121 sensor. Some additional circuitry was required to record the windspeed, and the sensor was recalibrated to this circuit. The sensor was mounted on the breakwater at the intersection of the two legs at 20 feet above the water surface.

4. Waves.

Wave characteristics were measured at four locations with the second

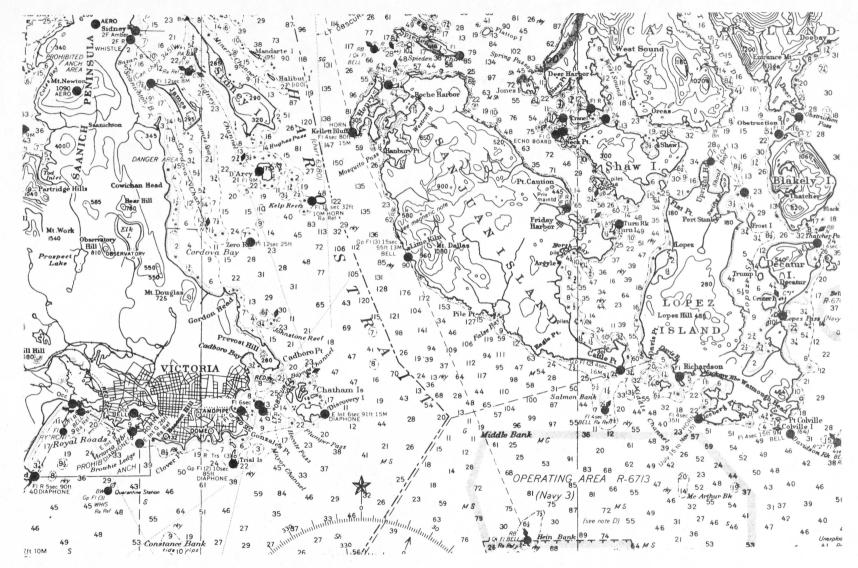


Figure 23. General Location Map

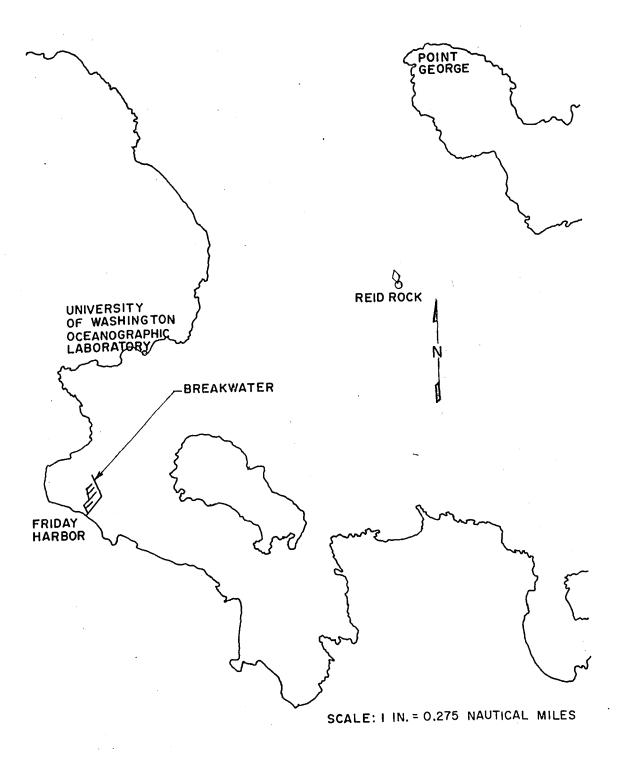


Figure 24. Field experiment site location map.

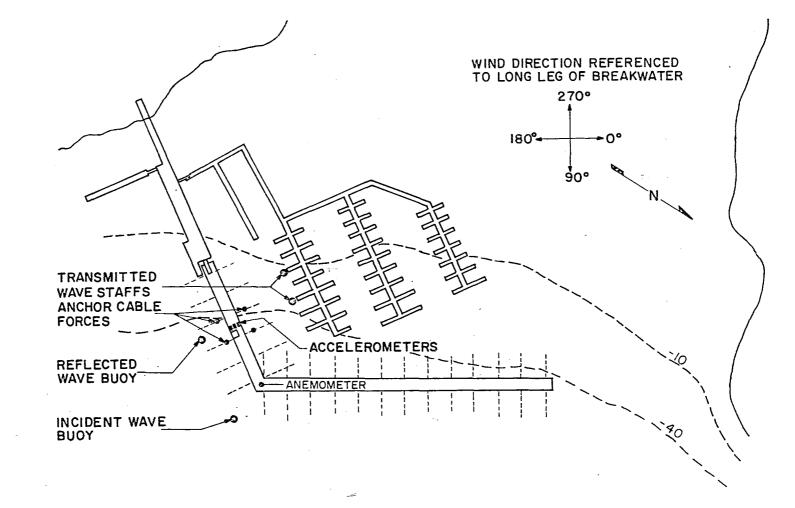


Figure 25. Instrumentation location plan, Friday Harbor breakwater.

transmitted gage being used as a backup. Two spar buoys instrumented to measure wave elevation were located outboard of the breakwater and positioned so that one measured the incident wave field, and the other measured the incident plus reflected wave field. Two stationary gages were attached to pilings behind the breakwater to measure transmitted wave height. All four gages were of the resistance type. The spar buoys were used outside the breakwater to help reduce navigation hazards and because of the costs and logistics of placing stationary piling at these locations.

The buoys were made of two sections of PVC pipe, the lower section being 6 inches in diameter and 15 feet long, and the upper section of 3-inch diameter and 12 feet in length with the upper 8 feet wound with a resistance wire. Four feet were exposed above the water surface, and a 2.5-foot-diameter disc was attached to the bottom to damp vertical motions. The natural periods in heave and roll, respectively, are 18 and 14 seconds, well above the anticipated maximum wave period of about 4 seconds. See Appendix J for a complete description of the wave staff and buoy designs.

5. Cable Forces.

Anchor cable forces were measured using a bonded strain gage-type load cell that was placed in the anchor chains beneath the water surface. These cells and the associated electronics were designed and built for this project. They have an overall system accuracy of 0.75 percent of the designed or rated total load cell capacity over a temperature range of 10° Celsius (design load 12,500 pounds). These load cells employ a fourarm wheatstone bridge circuit which has two strain gages in each leg of the bridge and are self-temperature compensating. The units are **0**-ring sealed and wired directly to the bridge amplifier circuitry mounted in the recording package.

6. Motion Package.

Breakwater accelerations were measured using three Kistler servoaccelerometers (Model 303T). One accelerometer, oriented horizontally, was mounted at the center of the breakwater to measure the sway acceleration. The other two were oriented vertically and mounted at opposite outboard edges of the breakwater to measure the vertical accelerations. The heave acceleration was obtained by taking the average of the signals from the two outboard accelerometers; the roll acceleration was obtained by taking the difference of these two signals and dividing by the distance between them. The accelerometer locations are indicated in Figure 25.

7. Data Acquisition System.

The data recording and electronic package was built around the Sea

Data Corporation's Series 610 four-track incremental digital cassette tape recorder. The complete package, which included all the electronic circuitry for the individual transducers plus the tape recorder, was housed in a watertight, 6-inch-diameter PVC cylinder 5 feet in length. The system was designed to be operated manually or in a completely automated mode, thus requiring only periodic tape changes (Fig. 26).

In its automatic mode, the system was activated when the windspeed reached or exceeded a preset value and stayed there for at least 1 minute. At this point, a single 17-minute sample of all the inputs was taken. Each 68 minutes following this, another 17-minute sample was recorded if the wind was still above its preset value; if not, the system was shutdown until the windspeed increased. Each 17-minute record consisted of 2,048 samples, taken at 0.5-second intervals, of all 13 channels plus a clock channel. Twenty-five of these records could be recorded on a single cassette tape.

8. Data Processing and Analysis.

The initial step in the data handling was to transfer the data from the individual cassettes to seven-track magnetic tape by means of the Sea Data reader. These tapes were then converted to a computer compatible format on the University of Washington's CDC 6400 computer. The histograms for all records plus the basic statistics, i.e., the minimum, maximum, mean values and standard deviations as well as the transmission coefficients based on these standard deviations, were then computed and tabulated (App. G). A digital filter, with a cutoff frequency of 0.05 hertz (Gold and Radar, 1969) was applied to the transmitted wave data prior to these tabulations to remove tidal drift. The transmission coefficients given in these summary sheets are a ratio of the standard deviations for the transmitted and the incident wave gages.

In the initial conversion, the data were checked for reader errors. These points were smoothed using a linear interpolation between the preceding and the following good data points. Following this, the data were checked for extreme values. Data points departing from the mean by more than five standard deviations were smoothed in the same manner as were the reader errors. In no case did the number of errors warrant elimination of a complete record (greater than six bad points). Record FH 11-1, however, had bad data for channels 3, 4, 5, 7, and 8. This record was run manually while calibrations were being made, and the affected channels were not connected properly at this time. The final edited data were then stored on magnetic tape.

The autospectra for all the wave data for all records were computed with a more complete analysis of the force and acceleration data applied to the more desirable events.

Digital filtering techniques were used prior to spectral analysis on all the wave and force data. The procedures used follow those given

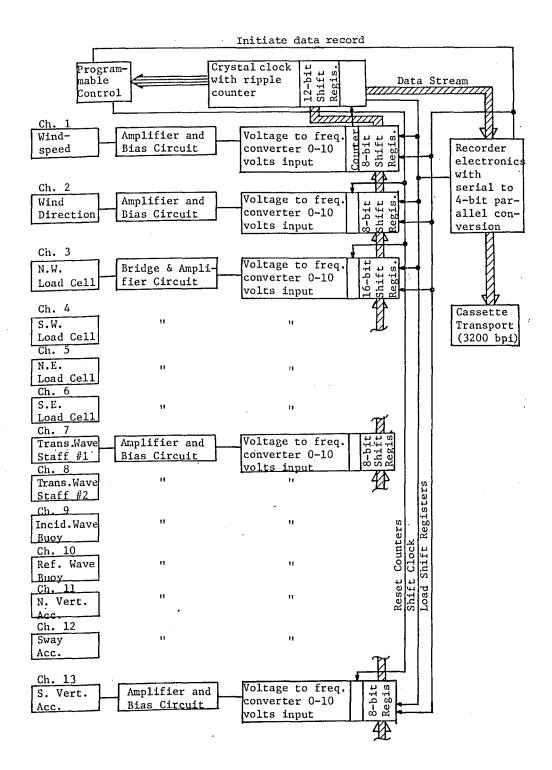


Figure 26. Instrumentation and recording package layout.

by Gold and Radar (1969). The first step in the development of this filter function is to assume an ideal filter response function.

$$F_{\ell}(f) = \begin{cases} 1 , 0 \le |f| \le f_{c} \\ 0 , f_{c} < |f| \le f_{n} \end{cases}$$
(12)
$$F_{h}(f) = \begin{cases} 0 , 0 \le |f| < f_{c} \\ 1 , f_{c} \le |f| \le f_{n} \end{cases}$$

where f_c is the cutoff frequency, f_n the Nyquist frequency, and $F_{\ell}(f)$ and $F_h(f)$ are the ideal low-pass and high-pass filter response functions.

The ideal filter response function is then Fourier-transformed to the time domain, giving the impulse response function, which is truncated by using an appropriate window function and transformed back to the frequency domain giving a complex frequency response function. The number of points used in representing the filter function is allowed to vary and the resulting convolution with the original time series is accomplished by using the overlap-add method of convolving smaller series with larger ones. This allows for more economical filtering procedures.

This gives three variables to choose from in the final filter function design: the length or number of points used in the filter, the type of window used to truncate the impulse response function, and the number of points to be truncated.

This procedure is analogous to spectral estimation techniques except for the truncation of the impulse response function. The larger the number of points used in the filter function, the better the estimate. The smoother the window function, the broader the transition band. In addition, the ripple or Gibb's phenomena is reduced. Generally speaking, the more points that are truncated (set to zero) the better the resulting approximation. In practice, the actual number is determined experimentally by comparing results for different truncation values. This results in setting approximately 20 percent of the impulse response function to zero. The hanning window function was used with 128 points in the filter response function and 38 points being set to zero in the impulse response function. That is:

 $h(n\Delta t) = w(n\Delta t) h(n\Delta t)$

and

$$w(n\Delta t) = \begin{cases} \frac{1}{2} (1 + \cos \pi \frac{n-1}{45}), & 1 \le n \le 45 \\ 0 & , 45 \le n \le 83 \\ \frac{1}{2} (1 - \cos \pi \frac{128-n}{45}), & 83 \le n \le 128, \end{cases}$$
(13)

where $h(n\Delta t)$ is the impulse response function and $w(n\Delta t)$ is the hanning window function. The final filter response function is defined as:

$$F(f_n) = \sum_{n} \beta(n\Delta t) e^{-j 2\pi n f_n \Delta t},$$

where $j = \sqrt{-1}$ and Δt is the constant time interval between samples.

The transition band or the frequency increment traversed by the cutoff of the filter function can be approximated by:

$$\lambda = \frac{10}{128} = 0.078$$

and the maximum stopband attenuation for the hanning window is 55 decibels. These values can only be achieved through proper filter design. The actual values for the filters used are $\lambda = 0.08$ and a maximum attenuation of greater than 55 decibels. The ripples in the passband for each filter used were below 0.01 percent. These values could be improved on by increasing the number of points used for the filter response function estimate. Also the stopband attenuation could be improved, at the expense of a wider transition band for a given size filter function by using the Blackman window function. However, the accuracy of the filter response functions used exceeds that of the measurements and is sufficient for this application.

After initial processing and prior to all spectral calculations a tapered cosine data window was applied to the first and last 10 percent of the data to reduce spillover of spectral energy to adjacent frequency points. For data stretching from n = 1 to n = N, the formulas for the data window are:

 $w(n\Delta t) \begin{cases} \frac{1}{2} (1 - \cos \pi \frac{n-1}{0.1N}) & \text{for } 1 \le n \le 0.1N \\ 1 & \text{for } 0.1N \le n \le 0.9N \\ \frac{1}{2} (1 - \cos \pi \frac{N-n}{0.1N}) & \text{for } 0.9N \le n \le N. \end{cases}$ (14)

The data were then transformed directly using fast Fourier transformation procedures and smoothed by averaging adjacent raw spectral components. Initial sampling was performed at 0.5-second intervals with 2,048 samples per record, and 20 adjacent points averaged together in the autospectral calculations to get the final smoothed spectral estimates. This gives a frequency resolution of 0.0195 hertz with 40 degrees of freedom per spectral estimate.

All of the wave data was high-pass filtered, using the filtering techniques previously outlined with a cutoff frequency of 0.05 hertz. This was done to remove the tidal influence on the transmit5ed wave staffs and to eliminate any possilbe buoy motion in the incident wave records. Also the anchor cable force data were separated into a low-and high frequency signal using the same filtering procedures. For the high-frequency case this was done to remove the influence of the large low-frequency spikes in the spectra. A high-pass filter with a cutoff frequency of 0.1 hertz was used.

For a closer look at the low-frequency information in the anchor cable force data, a new time series was generated from the original record by sampling every eighth data point. To reduce aliasing of the higher frequency energy in the original signal, each record was low-pass filtered prior to this sampling using the filtering techniques previously outlined with a cutoff frequency of 0.2 hertz. The sampling of every eighth point of the original time series gives a sampling interval of 4 seconds, a Nyquist frequency of 0.125 hertz and a record length of 256 points or 1,024 seconds. Five raw spectral points were averaged together to give the final smoothed spectral estimates. This results in a frequency resolution of 0.0049 hertz with 10 degrees of freedom per spectral estimate.

A total of 95 records was recorded at the site from 1330 hours on 30 December to 3 May 1975. There were no known equipment failures or breakdowns except for one of the load cells going off scale at low tide on the first tape (FH 7, NW load cell channel 3). A complete summary of > these events is given in Appendix G. Also, Figure 25 gives the relative locations of the individual transducers.

The wind direction in all cases is referred to the long leg, which has a north-south compass bearing (magnetic declination in this area is 23° east). There are two wind-direction windows of interest. For the long leg, the directions are approximately 50° to 95°; for the short leg, 130° to 160° (Figs. 24 and 25).

Two storm events were chosen for presentation and further analysis. These events cover records FH 7-6 through FH 7-12 and FH 11-8 through FH 11-14 (Apps. G and H). They were chosen because of their directions relative to the short and long legs, respectively, and because of their duration and magnitude. Both events lasted for over 7 hours with maximum windspeeds in excess of 35 miles per hour, with all the mean wind direction within or close to the desired wind-direction windows. Appendix H gives the pertinent wave spectra and transmission curves for the above two events.

The average overall response or transmission curves for the events within each wind-direction window and for all the recorded data, are given in Figure 27. These plots were obtained by averaging the square root of the ratio of the transmitted to the incident wave spectras for the records indicated for each curve. Therefore, they have the same frequency resolution of 0.0195 hertz.

A puzzling feature in all the transmission response curves calculated from field data is the rise at lower frequency to a value near one and then dropping off again. This can partially be attributed to a lack of

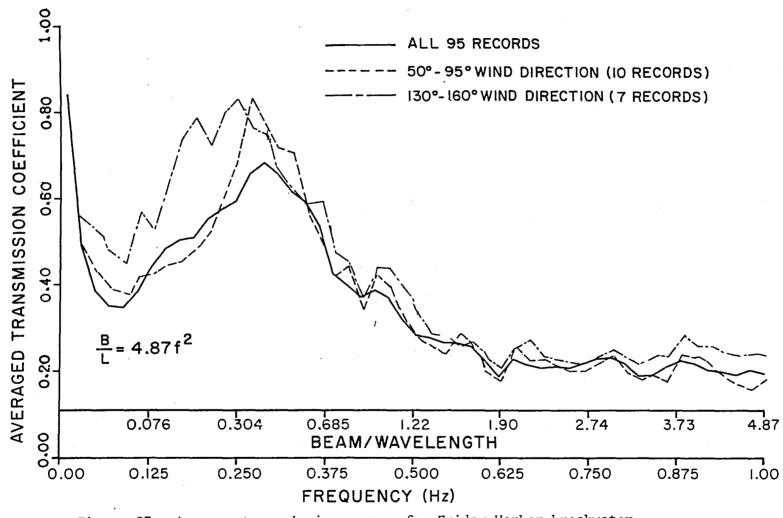


Figure 27. Average transmission curves for Friday Harbor breakwater.

energy in the incident wave spectra at lower frequencies. This possibility can be backed up in part by data from two similar projects undertaken in the past 2 years on a styrofoam-filled concrete-type breakwater (Christensen and Richey, 1974). The first is located in relatively sheltered water while the second breakwater is located near the open ocean where swell becomes an influence and results in a much broader spread of spectral energy over the frequency band in question. The first breakwater showed similar response curves to Friday Harbor while the second tended to approach one near the lower frequencies and stay there (see App. H., Figs. H-10 and H-11).

All of the anchor cable data showed a very dominant amount of energy at lower frequencies. Appendix I shows the results of the low-frequency analysis for three of the anchor cable force signals for record FH 7-8. The autospectra for the force gages show several large peaks in this lower frequency band (App. I, Figs. I-1, I-2, and I-3). The exact location of these peaks varies for different records, but in all records analyzed, the dominant amount of energy in the force spectra was contained in this lower frequency band of approximately 0.015 to 0.05 hertz. In most cases, however, a relatively dominant peak appeared in the 56to 63-second-period range. The anchor forces measured were all quite low; the largest range was only 628 pounds. The cables are spaced at 50-foot intervals.

The phase and coherency spectra for three of the force gages for record FH 7-8 are given in Appendix I (Figs. I-4 through I-7). They show a strong linear relationship between the gages on the same side of the breakwater and for the opposing gages. The forces in the two anchor lines on the same side were in phase; the two opposing were 180° out of phase. This indicates that the sway or roll motions are dominant in this frequency range. The accelerations at these lower frequencies were too small to be recorded and could not be used to help confirm which motion was involved. However, in the overall frequency range (0 to 1.0 hertz) the variances for sway and heave were two orders of magnitude greater than roll, which indicates that sway would have to be the dominant motion involved here.

The analysis of the complete frequency range for the force data for FH 7-8 is shown in Appendix J (Figs. J-2 through J-8). The data were high-pass filtered ($f_c = 0.1$) for these spectra. A comparison of the variances computed for the high- and low-frequency sections of the force spectra showed that over 90 percent of the energy in all cases analyzed was contained in the lower frequencies. A summary of the force data, without any filtering, for all the data collected in this experiment is given in a table.

The autospectra for the force gages (FH 7-8) are relatively spread out (see App. J, Figs. J-2, J-3, and J-4), with the outside force gages showing a greater response to the lower frequency incident wave energy than the inside gages. However, the outside and the opposing gages show relatively high coherency, with the outside gages being in phase and the Table. Summary of anchor cable force statistics.

Standard deviations (pounds)					Maximum values (pounds)				Variations, max. to min. (pounds)		
	NW SW	NE	SE	NW	SW	NE	SE	NW	SW	NE	SE
FH7 - 2 2 FH7 - 3 1	9.155 9.811 4.055 51.877 6.689 65.078	14.026 13.839	6.077 30.339 38.205	75.580	30.896 161.549 325.976	31.920 42.344 66.357	17.545 96.340 193.091	60.000 136.000 88.000	64.000 272.000 500.000	48.000 80.000 120.000	36.340 176.960 278.080
	.000 89.072 2.057 97.282 8.688 50.922	16.930 11.194	55.777 61.033 27.538	15.646 40.508	445.255 333.143 156.487	47.802 23.366	278.098 221.935 90.272	16.000 76.000	628.000 560.000 252.000	108.000	137.460
FH7 - 7 1 FH7 - 8 FH7 - 9	.0.657 82.997 1.003 86.332 1.128 80.256	13.652	46.791 48.214 47.411	7.844	259.791 291.235 362.348	37.668	162.782 173.786 197.821	8.000	472.000 496.000 540.000	80.000	274.920 290.720 304.940
FH7 -10	5.188 131.584 0.866 86.769	19.011	82.184	26.399	397.524	48.775	283.358	28.000	636.000	96.000	410.800
FH7 -12 3 FH7 -13 2	4.384 62.609 0.978 39.646	14.441	38.895 26.267	46.319	306.050 199.034	39.261	191.569 130.431	148.000	424.000 304.000	100.000	257.540
	1.201 40.827 4.710 54.314 6.606 82.334	14.292	24.107 31.875 49.404	108.727	173.650 195.614 328.021	57.304	116.288 109.471 193.378	176.000	260.000 344.000 516.000	96.000	172.220 188.020 300.200
FH7 -17 FH7 -18	.000 71.200	9.615	36.055	33.703	224.199		118.011 93.127	36.000	372.000	64.000	192.760 137.460
FH7 -20	2.534 16.86	20.600	20.752	23.655	157.809	35.505	78.933	24.000		116.000	105.860
FH8 - 2 2	23.966 10.42 24.306 66.479 9.813 99.539	9.749	10.748 31.996 53.237		49.370 300.522 322.562		8.724 154.788 172.246		64.000 420.000 524.000		58.460 211.720 267.020
FH8 - 4 2	2.521 141.830 7.970 67.053	13.626 8.112	76.751 32.891	48.645 44.309	660.252 223.880	26.833 20.041	382.881 119.696	120.000	860.000	72.000 44.000	477.160 175.380
FH9 - 1 1	2.001 53.054 8.110 50.773 3.179 23.756	9.177	24.474 27.526 15.784		231.713 187.160 72.692		121.875 99.722 47.053	124.000	336.000 292.000 136.000		164.320 153.260 88.480
FH9 - 3 1	4.533 36.725 9.735 50.283	8.396	19.000 23.144	36.962	132.153	25.851 21.541	81.354 79.507	88.000	216.000	56.000	121.660
FH9 - 5 1 FH9 - 6 2	7.808 45.376 1.681 51.506	7.724	22.556 27.655	54.692	142.958 173.777	18.757 28.025	70.823 91.162	124.000	284.000 292.000	56.000	116.920 150.100
FH9 - 8 1	.9.174 38.806 .9.020 40.774 .3.796 30.255	13.595	20.378 25.726 17.901		99.019 141.364 111.779	29.555 32.545 26.357	52.121 92.043 73.252	108.000	188.000 224.000 180.000	76.000	101.120 150.100 112.180
FH9 -10 1	.6.758 42.001 1.662 56.483	10.086	24.075	57.927	142.372	29.720	82.578		256.000	60.000	135.880
FH9 -12 1 FH9 -13 1	8.393 73.711 6.287 62.127	7.077	38.399 29.598	41.474	242.349 222.018	16.948	129.846		336.000	44.000	214.880 173.800
FH9 -15 2	7.753 76.333 6.975 68.463 8.338 31.378	11.023	38.727 33.782 21.074		292.927 212.446 98.716		142.024 114.642 64.331	108.000 124.000 96.000		52.000	232.260 176.960 107.440
FH9 -17 2	0.233 38.920 1.148 55.706	16,823	25.271	49.889	121.439	43.842	76.554	112.000	200.000	96.000	129.560
FH9 -19 2 FH9 -20 1	1.472 50.908 6.001 33.948	8.997 6.131	26.494 14.763	62.454 40.317	164.064 130.442	26.247 14.502	94.187 61.505	120.000 100.000	288.000 200.000	48.000 36.000	156.420 88.480
FH9 -21 1	4.684 32.971	6.941	15.069	39.140	92.387	21.002	37.499	84.000	176.000	40.000	69.520

.

Table.	Summary	of	anchor	cable	force	statistics	(continued).

ς.

	continued).				
Standard deviations	Maximum values	Variations, max. to min.			
(pounds)	(pounds)				
NW SW NE SE	NW SW NE SE	(pounds)			
FH9 -22 14.200 32.860 8.144 17.977	43.288 109.508 22.458 57.980	NW SW NE SE 88.000 220.000 48.000 110.600			
FH9 -23 24.902 62.139 14.784 36.615	59.439 237.321 45.548 150.064	148.000 384.000 92.000 230.680			
FH9 -24 21.917 54.967 13.017 32.035	56.463 222.087 32.201 136.193	144.000 356.000 76.000 200.660			
FH9 -25 18.545 46.342 10.659 27.186	61.652 135.638 36.108 80.267	108.000 268.000 64.000 151.680			
FH10-1 3.957 5.271 3.182 3.632	10.237 10.746 9.290 9.151	34.166 30.532 24.797 26.861			
FH10- 2 24.742 50.725 15.561 22.265	94.834 168.742 67.476 73.974	186.000 280.000 115.555 124.820			
FH10- 3 21.037 61.374 11.987 36.717	52.322 197.755 54.176 129.148	120.000 404.000 88.000 279.660			
FH10- 4 27.303 78.380 11.272 42.955	93.124 389.259 43.285 208.183	200.000 560.000 84.000 292.300			
FH11- 2 22.494 65.805 13.598 37.841	56.107 202.384 37.065 123.866	124.000 360.000 74.000 212.000			
FH11- 3 22.328 56.817 7.509 28.550	48.012 189.991 17.951 109.744	108.000 304.000 42.000 160.000			
FH11- 4 24.406 53.350 14.372 33.448	63.307 182.538 40.743 122.528	142.000 294.000 86.000 190.000			
FH11- 5 22.882 59.094 10.775 32.883	58.274 271.120 28.511 134.525	150.000 404.000 60.000 202.000			
FH11- 6 24.054 63.906 8.467 30.352	54.022 246.449 27.250 117.612	122.000 386.000 56.000 186.000			
FH11- 7 23.151 66.432 8.436 29.896	69.535 201.553 21.213 82.841	134.000 366.000 44.000 146.000			
FH11- 8 28.009 68.262 13.612 37.728	63.996 254.244 33.133 124.014	164.000 396.000 74.000 196.000			
FH11- 9 34.270 93.910 16.206 53.663	75.529 333.183 40.172 205.589	176.000 526.000 86.000 304.000			
FH11-10 28.525 77.068 14.429 46.228	76.095 254.254 45.259 156.353	162.000 430.000 84.000 262.000			
FH11-11 30.270 77.342 17.305 48.061	79.208 236.058 53.389 147.266	168.000 424.000 96.000 262.000			
FH11-12 35.451 87.205 20.977 53.710	114.203 290.567 72.657 187.479	228.000 490.000 136.000 310.000			
FH11-13 34.954 68.446 22.771 44.982	109.038 235.470 80.708 163.276	214.000 430.000 148.000 282.000			
FH11-14 39.062 84.688 22.362 50.437	110.991 309.132 59.975 153.687	232.000 522.000 118.000 274.000			
FH12- 1 13.971 21.354 9.562 11.443	62.201 99.147 44.326 48.563	102.000 148.000 64.000 72.000			
FH12- 2 9.098 19.909 5.368 11.137	21.490 64.585 14.199 34.845	46.000 108.000 30.000 56.000			
FH12- 3 18.660 35.685 10.805 22.129	40.248 138.962 34.395 85.847	106.000 208.000 74.000 128.000			
FH12- 4 22.653 43.195 14.695 26.162	58.226 178.015 45.467 103.876	142.000 296.000 94.000 170.000			
FH12- 5 19.137 39.018 11.795 25.009	50.916 153.139 31.666 87.406	126.000 248.000 68.000 146.000			
FH12- 6 14.011 26.324 7.753 15.326	46.851 107.505 27.827 55.024	100.000 180.000 50.000 100.000			
FH12- 7 19.667 36.519 11.697 22.201	50.547 150.864 35.346 98.391	128.000 236.000 82.000 158.000			
FH12- 8 26.255 53.094 14.696 32.887	72.426 196.275 40.011 129.161	156.000 326.000 94.000 204.000			
FH12- 9 23.462 44.187 13.576 29.269	49.645 143.406 32.260 100.631	122.000 226.000 72.000 154.000			
FH12-10 36.376 77.993 19.146 45.590	100.799 296.819 54.695 170.487	224.000 472.000 114.000 262.000			
FH12-11 29.763 83.770 17.150 48.104	-95.243 256.215 57.197 145.447	196.000 504.000 104.000 278.000			
FH12-12 25.076 69.811 12.488 41.639	67.139 250.153 38.582 168.483	150.000 440.000 78.000 276.000			
FH12-13 24.012 66.572 9.373 36.446	55.361 183.384 20.981 102.581	120.000 308.000 50.000 166.000			
FH12-14 21.781 54.227 7.195 24.182	58.399 184.949 21.444 88.238	124.000 294.000 44.000 140.000			
FH12-15 40.126 51.751 39.879 20.837	136.208 110.201 139.250 49.158	216.000 268,000 206.000 108.000			
FH12-16 51.112 54.756 26.527 16.088	233.839 218.919 109.241 80.787	346.000 356.000 166.000 124.000			
FH12-17 22.067 52.260 11.290 26.120	49.497 161.298 29.337 83.695	110.000 258.000 66.000 136.000			
FH12-18 19.434 47.133 9.794 23.689	43.586 186.820 25.805 32.684	112.000 278.000 56.000 132.000			
FH13-1 28.223 74.717 9.644 29.630	107.602 340.358 31.808 133.561	208.945 474.000 70.000 200.000			
FH13- 2 25.606 73.194 10.994 30.246	57.596 307.876 24.964 132.105	134.000 444.000 52.000 182.000			
FH13- 3 30.135 78.112 13.818 37.252	79.256 289.342 36.656 134.101	170.000 458.000 76.000 212.000			
FH13- 4 35.103 96.943 17.090 53.806	71.049 306.891 41.425 199.855	166.000 478.000 92.000 296.000			
FH13- 5 24.136 47.125 12.540 27.668 FH13- 6 24.240 40.460 13.459 24.938	76.648 186.446 36.807 107.207	158.000 310.000 78.000 176.000			
	56.828 142.378 36.660 77.077	124.000 240.000 72.000 140.000 210.000 578.000 88.000 316.000			
FH13- 7 40.252 111.057 17.216 58.518 FH13- 8 38.769 114.883 16.219 61.259	91.917 346.205 48.480 198.638 83.843 460.616 42.063 207.326	210.000 578.000 98.000 316.000 198.000 684.000 86.000 338.000			
LUT3- 0 30010A TT40003 T005TA 01053A	034073 7004010 724V03 20[4320	7400000 0040000 000000 3300000			

s

.

,

outside leading the inside gage by approximately 180° over the frequency range of 0.25 to 0.37 hertz. This indicates that the forces are relatively uninfluenced by waves above approximately 0.37 hertz. This frequency range is also where the transmission curves rise to near unity. This agrees with the low-frequency analysis and suggests that the response is similar over the complete frequency range below 0.37 hertz.

The acceleration force, autospectral and cross-spectral analysis results, are also given in Appendix J for the higher frequency range for record FH 7-8. No dominant features were observed in the motion spectra. Their peak values and spread of energy with frequency appear to follow the general character of the incident wave spectra in all records analyzed. This implies that any natural frequencies in each of the motions is outside the range of significant incident wave energy. The crossspectral analysis shows a high coherency and zero phase shift between the heave and roll accelerations. In both the sway and roll, and the sway and heave accelerations, the sway acceleration leads by approximately 180° over the range of significant incident wave energy and then tapers to near-zero phase shift at higher frequencies. Also, the coherency is high enough over the incident wave energy band to imply near linearity between all three motions.

These conclusions are based on positive sway being outward from the short leg (south), heave positive up, and the positive roll to be clockwise around a positive axis pointing westerly toward shore.

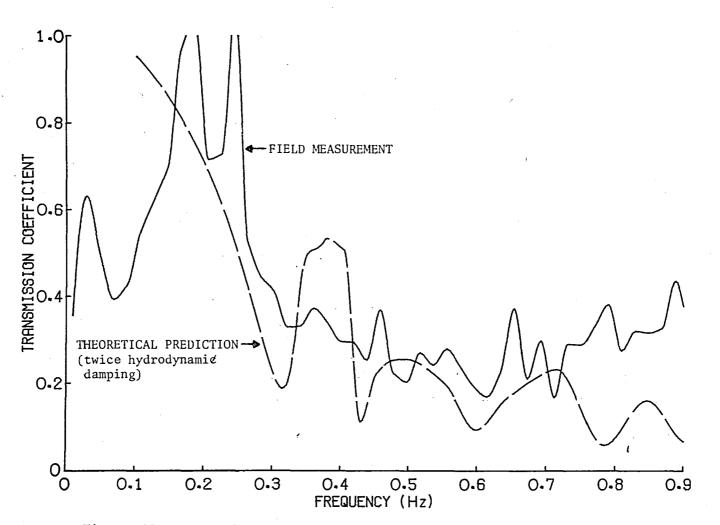
IV. COMPARISON OF THEORY WITH FIELD DATA FOR FRIDAY HARBOR BREAKWATER

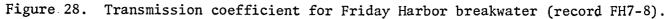
Although the Friday Harbor breakwater has a very complex geometry and does not respond as a rigid body to the incident wave excitation, it is important to draw some comparisons between the theoretical prediction of performance and the field measurements. In seeking a "typical event" from the enormous quantity of data gathered, the goal was to find a case where the wind was reasonably close to being on the beam of the short leg of the breakwater.

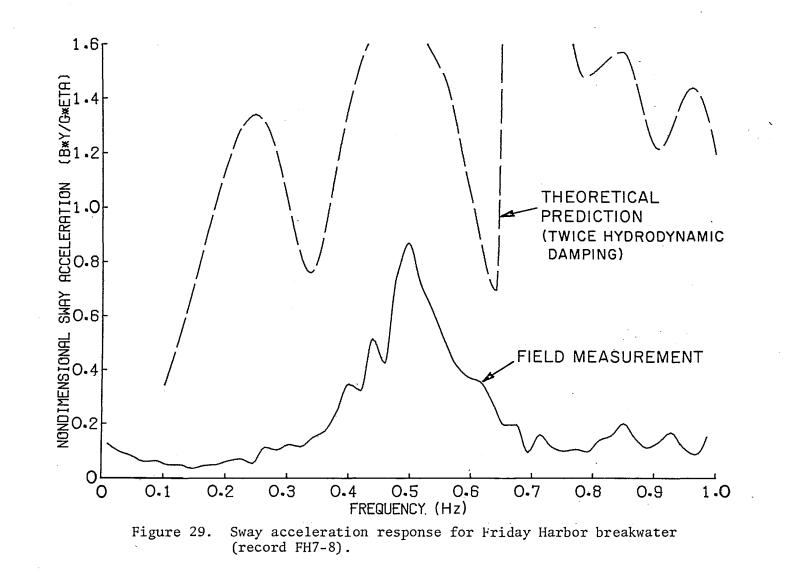
The one striking item which emerges from the data is the similarity of all the transmission coefficients examined. These curves seem identical no matter what the wind direction. This was not expected because there were barges tied to the breakwater along the entire long leg, while there were none along the shorter leg. A further investigation of the reasons for the similarity is certainly warranted.

The record selected for comparison with the theory was FH 7-8. Figure G-3 in Appendix G shows the incident and transmitted wave spectra and transmission coefficient. This record is also listed in the statistical summaries of Appendix F. The spectral analysis using a high-pass filter was performed as described in Section III.

A comparison of the theoretically predicted and measured transmission coefficient is shown in Figure 28. So long as the calculated hydrodynamic damping is doubled in the theoretical analysis, the results are quite good. As described in Section II, the peak in the transmission curve at a frequency of 0.95 hertz probably results from the "irregular frequency" phenomenon which occurs in this mathematical formulation.


Comparisons of sway, heave, and roll acceleration predictions with measurements are shown in Figures 29, 30, and 31, respectively. Here, the acceleration response has been nondimensionalized by multiplying by the beam or beam squared, as appropriate, and dividing by the acceleration of gravity times the incident wave amplitude.


In the case of sway acceleration, the theory overpredicts the values throughout the entire frequency range. The peak at 0.5 hertz appears in the correct location, but the measured values would need to be doubled to bring the curves into better agreement.


For heave acceleration the curves appear to be in closer agreement, at least above the frequency of 0.4 hertz. Below 0.4 hertz there seems to be little correlation.

Roll acceleration seems to show the worst agreement of all. Here again, the predicted accelerations are considerably higher than the measured values.

There are several possible explanations for the discrepancy between predicted and measured accelerations. In the field, even if the wind

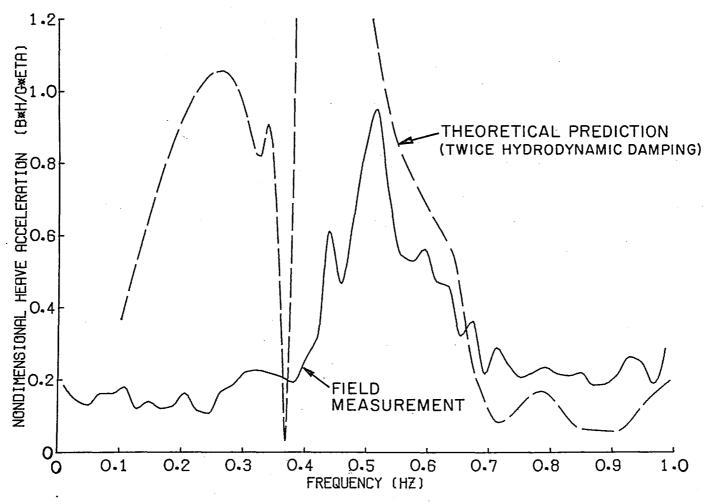


Figure 30. Heave acceleration response for Friday Harbor breakwater (record FH7-8).

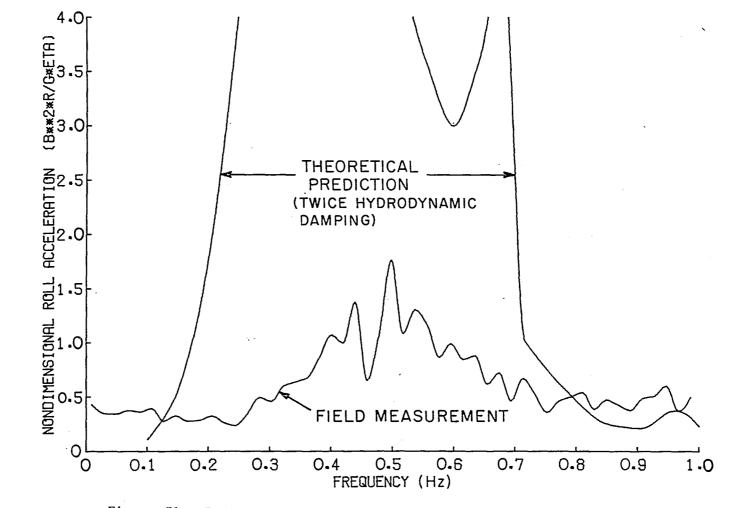


Figure 31. Roll acceleration response for Friday Harbor breakwater (record FH7-8).

were blowing directly on the beam of the breakwater, one would not find the condition of long-crested waves impinging directly on the beam of the breakwater. As a result, the breakwater is not excited uniformly along its entire length. Therefore, the breakwater itself provides restraint against motions which are excited in a local area. The construction of this particular breakwater is also quite flexible, which allows for considerable internal damping of the wave-excited motions. The barges tied to the long leg also serve to restrain the motion and provide additional damping.

There is a strong need, in this case, to provide laboratory data on the breakwater motions, which could be further correlated with the theory and the measured motions.

If one looks at the measured accelerations by themselves, a considerable resemblance in all three degrees of freedom appears. Further, if these accelerations are viewed along with the incident wave spectrum, considerable similarity appears again, suggesting that further investigation of the measurement scheme would also be welcome.

The final comparison to be made is between the theoretically predicted and measured mooring-force coefficient. The theoretical prediction and measured data for the seaward mooring line is shown in Figure 32. The correlation appears to be quite good in this case.

In looking at the time series of force on the mooring lines and the windspeed, one can observe a definite correlation between the wind gusts and increases in the mooring force. This is probably a result of the large barges tied to the structure which act almost as sails. If this is the case, the increase in tension caused by the mean wind on the barges needs to be accounted for. No attempt has been made to do this.

The most common method of presenting the spectral data obtained in the field uses a frequency scale rather than the nondimensional beam/ wavelength scale used in Section II. In this section the comparisons are made using a frequency scale. For the Friday Harbor breakwater (beam = 25 feet) the conversion is:

$$\frac{B}{L} = \frac{2\pi B f^2}{g} = 4.87 f^2$$

assuming deepwater waves.

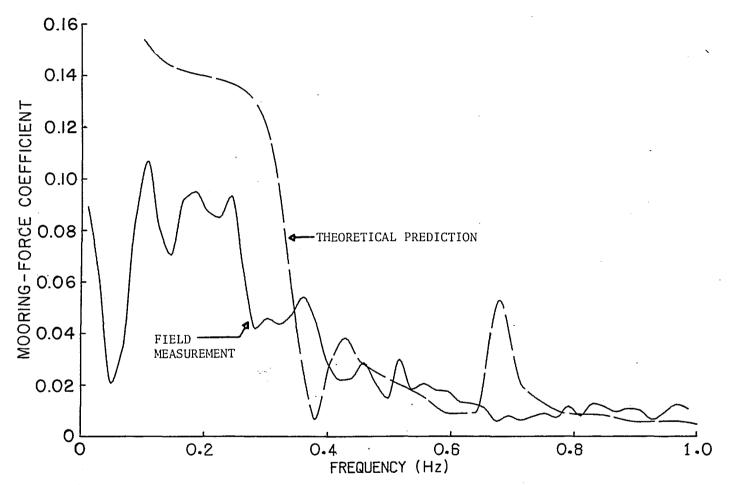


Figure 32. Seaward mooring line mooring-force coefficient, Friday Harbor breakwater (record FH7-8).

V. CONCLUSIONS

Results for the predicted transmission coefficients were in good agreement with laboratory and field data, and they showed how the influence of fixed-body transmission, and of sway, heave, and roll motions on the transmission coefficient changed with increasing values of the beam to wavelength ratio.

The curves predicting the mooring line forces as a function of the beam to wavelength ratio (or of incident wave frequency) followed those for the measured responses. Care must be exercised in the analysis of mooring line forces because there is strong evidence of nonlinear behavior.

An extreme storm event did not occur during the sampling season at Friday Harbor, nor during two winter sampling periods on the Alaskan breakwaters; however, the anchor forces measured were about an order of magnitude less than anticipated.

The barges tied to the long leg of the breakwater did not noticeably affect the transmission coefficients above a frequency of about 0.3 hertz, since the curves for all incident directions were approximately coincident above that mean frequency. Below the frequency of 0.3 hertz, it appears that the barges may have reduced the transmitted energy somewhat.

The extension of the theoretical model to include second-order terms showed the presence of additional exciting-force terms at zero frequency and at the difference frequency of the incident waves. Additional work on the basic theoretical model is needed to incorporate these terms into the calculations for mooring forces. The most appropriate means of verifying the role of the second-order terms may be in a model basin, where breakwaters of simple cross section and incident wave spectra having only two or three components could be employed under controlled conditions.

LITERATURE CITED

- ADEE, B.H., "Analysis of Floating Breakwater Mooring Forces," Ocean Engineering Mechanics, American Society of Mechanical Engineers, New York, 1975.
- AMERICAN SOCIETY OF CIVIL ENGINEERS, "Berthing and Mooring Ships," Proceedings of a Nato Advanced Study Institute, Lisbon, Portugal, July 1965.
- CARR, J.H., "Mobile Breakwaters," Proceedings of the Second Conference on Coastal Engineering, Nov. 1951, pp. 281-295.
- CHRISTENSEN, D.R., and RICHEY, E.P., "Prototype Performance Characteristics of a Floating Breakwater," Marine Technical Report Series Number 24, 1974 Floating Breakwater Conference Papers, University of Rhode Island, Kingston, R.I., Apr. 1974.
- DAVIDSON, D.D., "Wave Transmission and Mooring Force Tests of Floating Breakwater, Oak Harbor, Washington," Technical Report H-71-3, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Apr. 1971.
- FRANK, W., "Oscillations of Cylinders in or Below the Free Surface of Deep Fluids," Report 2375, Naval Ship Research and Development Center, Bethesda, Md., Oct. 1967.
- GOLD, B., and RADAR, C.M., *Digital Processing of Signals*, McGraw-Hill, New York, 1969.
- HARRIS, A.J., "The Harris Floating Breakwater," Marine Technical Report Series Number 24, 1974 Floating Breakwater Conference Papers, University of Rhode Island, Kingston, R.I., Apr. 1974.
- JOHN, F., "On the Motion of Floating Bodies," Communications on Pure and Applied Mathematics, Vol. 3, 1950.
- LEE, C.M., JONES, H., and BEDEL, J.W., "Added Mass and Damping Coefficients of Heaving Twin Cylinders in a Free Surface," Report 3695, Naval Ship Research and Development Center, Bethesda, Md., Aug. 1971.
- LOCHNER, R., FABER, O., and PENNY, W., "The Bombardon Floating Break-ater water," *The Civil Engineer in War*, The Institution of Civil Engineers, Vol. 2, London, 1948, p. 256.
- MINIKIN, R.R., "Floating and Foundationless Breakwaters," *Engineering*, Dec., 1948, pp. 557-579.
- NECE, R.E., and RICHEY, E.P., "Wave Transmission Tests on Floating Breakwater for Oak Harbor, Washington," Technical Report No. 32, University of Washington, Charles W. Harris Hydraulics Laboratory, Seattle, Wash., Apr. 1972.

- SALVESEN, N., TUCK, E., and FALTINSEN, O., "Ship Motions and Sea Loads," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 78, 1970, pp. 250-257.
- STRAMANDI, N., "Transmission Response of Floating Breakwaters to Ship Waves," Masters Thesis, University of Washington, Seattle, Wash., 1975.
- SUTKO, A.A., and HADEN, E.L., "The Effect of Surge, Heave and Pitch on the Performance of a Floating Breakwater," Marine Technical Report Series Number 24, 1974 Floating Breakwater Conference Papers, University of Rhode Island, Kwngston, R.I., Apr. 1974.
- NAVAL CIVIL ENGINEERING LABORATORY, "Mobile Piers and Breakwaters An Exploratory Study of Existing Concepts," Technical Report 127, Port Hueneme, Calif., Apr. 1961.
- NAVAL CIVIL ENGINEERING LABORATORY, "Transportable Breakwaters A Survey of Concepts," Technical Report R-727, Port Hueneme, Calif., May 1971.

APPENDIX A

HYDROSTATIC RESTORING FORCES AND SPRING CONSTANTS

Hydrostatic restoring forces and spring constants are computed for the two-dimensional analysis under the following assumptions:

- (a) The body rotates about the origin of the coordinate system and all forces and moments are computed about that point.
- (b) The body has vertical sides in the region of its waterplane.
- (c) All motions are small.

1. Sway Motion.

In the horizontal plane the body is in neutral equilibrium. Therefore, there are no hydrostatic restoring forces and

$$KH_{11} = KH_{12} = KH_{13} = 0.$$
 (A-1)

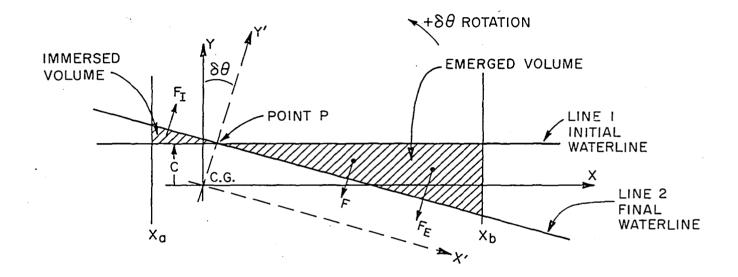
2. Heave Motion.

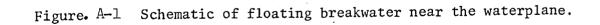
Vertical displacement of the body results in a change in the buoyant volume of the body and consequently a change in the buoyant force on the body. Since this force must be perpendicular to the waterline, there is no change in the horizontal force as a result of vertical displacement and

 $KH_{21} = 0.$ (A-2)

If one considers a small vertical displacement, δy , there is a resulting change in volume:

 $\delta V = - \delta y A_{w}$ (for $\delta y + upwards$).


Here, A_{μ} is the waterplane area. The vertical force then is:


$$F = KH_{22}\delta y = -\rho gA_w \delta y,$$

or

$$KH_{22} = \rho gA_{w} = \rho g[x_{h} - x_{a}].$$
 (A-3)

In this equation x_a and x_b denote the sides of the body as shown in the Figure in this appendix. Since the vertical force may be regarded as acting at the centroid of the waterplane area, x_c , the moment may be expressed.

$$M = K_{23} \delta y = -\rho g A_w x_c \delta y.$$

Substituting for x_{c} and A_{w} yields:

$$KH_{23} = -\rho gA_w x_c = -\rho gA_w \frac{1}{2} [x_a + x_b] = \frac{1}{2} \rho g[x_a^2 - x_b^2]. \qquad (A-4)$$

3. Roll Motion.

The analysis of roll motion-induced forces and moments is complicated by the fact that the body is assumed to rotate about the origin of the coordinate system and not the centroid of the waterplane.

The problem is illustrated in the figure. Here, line 2, the waterline after rotation through and angle $\delta\theta$ must pass through the intersection of the y' coordinate axis and the initial waterline. Equations for lines 1 and 2 may then be obtained.

Line 1: y = c.

Line 2: y = mx + b.

The slope of line 2 is:

$$m = \frac{\Delta y}{\Delta x} = - \tan \delta \theta.$$

Line 2 must also pass through the point P so that:

$$x_p = + c \tan \delta \theta$$

and

$$y_p = c$$

These equations yield the relationship:

 $b = c(1 + \tan^2 \delta \theta).$

To find the force acting on the body as a result of the rotation, the net lost or gained volume is needed.

$$\delta V = \int_{x_a}^{x_b} (mx + b - c) dx$$
$$= \int_{x_a}^{x_b} [(-x \tan \delta\theta + c(1 + \tan^2 \delta\theta) - c] dx$$

$$= -\frac{1}{2} [x_b^2 - x_a^2] \tan \delta\theta + c[x_b - x_a] \tan^2 \delta\theta.$$

By applying the "small angle" approximation and neglecting terms of the order of $\delta\theta^2.$ Then,

$$\delta V \approx \frac{1}{2} \left[x_a^2 - x_b^2 \right] \delta \theta$$

and the force is:

$$F \approx \frac{1}{2} \rho g [x_a^2 - x_b^2] \delta \theta.$$

The x and y components of the force are:

$$F_x = F \cos \delta\theta \approx \frac{1}{2} \rho g [x_a^2 - x_b^2] \delta\theta \cos \delta\theta$$

and

$$F_y = F \sin \delta \theta \approx \frac{1}{2} \rho g [x_a^2 - x_b^2] \delta \theta \sin \delta \theta.$$

Again applying the small angle approximation one finds:

$$F_{x} \approx \frac{1}{2} \rho g[x_{a}^{2} - x_{b}^{2}] \delta \theta$$

and

 $F_y \approx 0.$

The hydrostatic spring constants coupling roll to sway and heave are then:

$$(A-5)$$

and

$$KH_{32} = \frac{1}{2} \rho g [x_a^2 - x_b^2].$$
 (A-6)

To obtain the moment induced by roll motion compute:

Moment of Gained Volume = $-\left(\frac{1}{2}x_a^2 \tan \delta\theta\right)\left(\frac{2}{3}x_a\right) \approx \frac{1}{3}x_a^3 \delta\theta$, Moment of Lost Volume $\approx \frac{1}{3}x_b^3 \delta\theta$

and

Moment of Original Volume =
$$Wy_b \delta \theta$$
.

In this formula,

W = weight per unit length

and

The total moment then is:

$$M = \frac{\rho g}{3} (x_b^3 - x_a^3) \delta \theta + W y_b \delta \theta,$$

and the spring constant becomes:

$$KH_{33} = \frac{\rho g}{3} (x_b^3 - x_a^3) + Wy_b.$$
 (A-7)

Expressed in traditional naval architecture terminology, this reduces to:

$$KH_{33} = WGM, \qquad (A-8)$$

where

4.

GM = metacentric height.

Collected Results. $KH_{11} = KH_{12} = KH_{13} = KH_{21} = KH_{31} = 0$ $KH_{22} = \rho g[x_b - x_a]$ $KH_{23} = KH_{32} = \frac{1}{2} \rho g[x_a^2 - x_b^2]$ $KH_{33} = \frac{\rho g}{3} [x_b^3 - x_a^2] + Wy_b .$

ų.

(A-9)

APPENDIX B

MOORING ANALYSIS

1. Purpose of the Program.

Computer program BRKMOOR computes the forces and moments imparted by a pair of mooring cables on a floating breakwater section. BRKMOOR also computes the changes in the mooring cable tensions and the springconstant values for the moorings as the breakwater moves in sway, heave, or roll.

2. Program Description.

Program BRKMOOR is written primarily in FORTRAN IV although FORTRAN II print statements are used.

The program consists of the main program BRKMOOR and the subroutines LINE2, CHAIN, NYLON, EQULIB, SPRING, and LTERPS.

BRKMOOR calculates the forces in a mooring cable by using a discretized approximation to the cable. The cable is divided into the number of segments specified in the input data. Each segment may be of a different material or size. Each segment is in turn divided into a specified number of sections. The cable is considered to be made of these sections with the weight of each section concentrated at the node at the bottom of the section. Connecting each node is a straight but elastic section.

The main part of the program specifies 15 different angles at the attachment, ranging from nearly vertical to nearly straight to the farthest reasonable anchor position. A first guess at a top tension is made.

LINE2 then sums down the cable computing forces and coordinates of each node starting with the initial angle and initial tension. The position of the end of the cable is compared with the specified water depth at the anchor. The initial tension is adjusted and the summation repeated until the cable ends at the proper depth. Control then returns to the main program.

LINE2 calls the subroutines NYLON or CHAIN to compute the strain of the cable section of the appropriate material. If other materials are used new subroutines should be written for strain computation, along with the appropriate calling expression in LINE2.

At each angle the cable forces at the attachment and the anchor position are stored in arrays. EQULIB then computes the breakwater equilibrium position for the specified conditions.

SPRING is called by EQULIB. SPRING computes the change in mooring

cable tensions with breakwater displacement in sway, heave, and roll and the spring constants of the moorings on the breakwater.

LTERPS is a linear interpolation subroutine which computes the slop, $\frac{\Delta Y}{S}$, and the interpolated value of Y for a given X and an array of X vs. Y values. LTERPS is called by EQULIB and SPRING.

3. Type of Computer and Peripherals.

BRKMOOR was written for use on the CDC 6400 computer. It uses about 40,000g words of memory. No peripherals other than the card reader and line printer are required.

4. Input Data.

The input to BRKMOOR is as follows:

Card #1 - Title card, Format (8A10).

80 alphanumeric characters max.

- Card #2 Breakwater geometry card, Format (5F10.0). YCG = Vertical location of breakwater CG relative to water surface.
 - XCAB(1) = x coordinate of cable #1 attachment to breakwater (the CG is at X = 0 and cable #1 is defined as the cable with its anchor in the +x direction).
 - YCAB(1) = y coordinate of cable #1 attachment to breakwater. XCAB(2) = x coordinate of cable #2 attachment to
 - breakwater.
 - YCAB(2) = y coordinate of cable #1 attachment to breakwater.

Card #3 - Number of desired conditions Format (12).

(Also number of condition cards to follow)

Card #4 - Condition cards, Format (4F10.0).

(One card for each condition)

FEXT = Force applied to the breakwater not due to moorings in x direction (could be due to wave action, tide, wind, etc. force in pounds).

SEP = Anchor separation in horizontal direction (feet). TENS1 = Nominal tension in cable #1 (1b.).

TENS2 = Nominal tension in cable #2 (1b.).

It should be noted that only the following condition combinations are possible:

SEP SEP+FEXT TENS1 TENS1+FEXT TENS2 TENS2+FEXT TENS1+TENS2 Card #5 - Tide Card, Format (11,9X,5F10.0).

NTIDE = Number of tide values to follow (max = 5).

TIDE = Tide position in feet relative to that at which the anchor depths are given.

- Card #6 Cable #1 Parameters, Format (12,8X,2F10.0). NSEG = Number of different segments (types of cable materials) from which the cable is constructed. DEPTH = Depth of water at the anchor (feet).
 - BSLOPE = Slope of bottom in region of anchor (feet/feet).
- Card #7 Cable segment properties Format (I5,5X,2F10.0,A10,F10.0). One card for each of the number of segments listed in card 6 parameter NSEG.
 - NSECT = Number of sections into which it is desired to divide the cable segment.
 - ALSEG = The length of this cable segment.
 - WPF = Weight per foot in water of the cable material in this segment.
 - MATL = Material name (as the program now stands this must be CHAIN or NYLON (Name must begin in column 31).
 - DIAM = Diameter of the nylon rope or of the chain link in inches.

Card #8 and #9 - Same as cards #6 and #7 only as applies to cable. #2.

Table B-1 illustrates the input cards for a test case. All the read statements for the program are in the main program along with comments and explanations of input requirements.

5. Mathematical Procedures and Program Limitations.

The basic cable computations which take place in LINE2 require some explanation. As was stated previously, the weight of each cable section is considered to be concentrated at the bottom of the section. In order to find the shape of the cable, summations of forces are computed for static equilibrium at each node. At each node we know the tension in the cable section above the node as well as the angle of that section with the horizontal. Figure B-1 illustrates the cable about the ith node.

If the angle ϕ_i is taken to be the angle from the horizontal, then the angle ϕ_{i+1} can be computed as follows:

$$\phi_{i+1} = \tan^{-1} \left[\frac{T_i \sin \phi_i + W_i}{T_i \cos \phi_i} \right], \qquad (B-1)$$

where

 $T_1 = tension in section i,$

 W_i = weight of section i concentrated at node i.

TEST	CASE I	IEASURED C	HAIN TEST	3/11/76
0.	1.	· 0.	-1.	0.
06				
0.	58.0	2		
	5862	L		
		36.		
		42.	,	
	54.			
		36.	30.	
1				
01	7.16	7	1	
00030	29.3	•722	CHAI	N •25
01	7.16	7		
00030	29.3	.722	CHAI	N .25

Table B-1. Example input for program BRKMOOR.

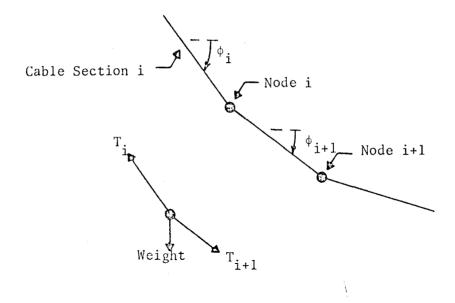


Figure B-1. Cable sections about node i and free body diagram of node i.

This new angle is then used to compute the tension in the next section:

$$T_{i+1} = \frac{T_i \cos \phi_i}{\cos \phi_{i+1}} . \tag{B-2}$$

LINE2 computes the angle and tension of each section starting from the top. At each section the angle is compared with the slope of the bottom. When the angle ϕ is parallel or more positive than the bottom then ϕ is set to the slope of the bottom.

The x and y coordinates of each node are computed.

$$X_{i+1} = X_i + L_{EXT_{i+1}} \cos \phi_{i+1}$$
(B-3)

$$Y_{i+1} = Y_i + L_{EXT_{i+1}} \sin \phi_{i+1} ,$$
(B-4)
where $X_i = x$ coordinate of node i
 $Y_i = y$ coordinate of node i
 $L_{EXT} = 1$ ength of section when under tension.

At the last node the y-coordinate is compared with the depth of the anchor. If there is a difference the initial tension value is adjusted. Guesses at the first and second tensions are made. From then on a secant (discrete form of Newton Raphson) iteration method is used to compute the subsequent initial tension values. An error of 0.0001*depth is allowed. In most cases 4 or 5 iterations yield the desired accuracy. Some important values are printed for each iteration to aid in troubleshooting.

Within EQULIB and SPRING interpolation is required to find the values of tension forces and x coordinates which are between the points computed by BRKMOOR and LINE². The linear interpolation routing LTERPS was chosen over higher-order interpolation schemes because of the asymptotic nature of the tension versus λ values. If values are requested beyond the ends of the computer arrays, they can be extrapolated, but a warning message will be printed by EQUILIB.

An iterative procedure is required within EQULIB if the anchor separation condition is selected. Again the secant iteration method is used. EQULIB prints out values at each interation which can aid in troubleshooting but which can normally be ignored.

Subroutine CHAIN computes the strain in a chain using the basic elastic properties of a steel bar with a total area equal to the area of both parts of the links, and a factor of 6 to allow for the deformation characteristics of the links. This factor of 6 came from a finite element computation.

h,

Subroutine NYLON computes the strain in a nylon rope using a powerfunction fit of the form:

$$\varepsilon = AX^{\beta}$$
,

where

 $\varepsilon = Strain, A = 0.02052, B = 0.2237, Control Representation (2007) (20$

 $X = \frac{T}{1}$

$$\frac{1}{D^2}$$
,

T = Tension (pound), D = Diameter of rope (inches).

This function was determined using a least-squares power-function fit of experimental data provided by Sampson Cordage Works for their 2-in-1 nylon braided rope.

An experimental verification test was conducted as a check of the program. A chain was suspended from a spring scale. Measurements were made of the length of the chain, its weight and the tension in two geometrical configurations. The program gave computed values of the tension very close to those measured.

6. Flow Chart.

Figure B-2 illustrates the flow chart of BRKMOOR and its subroutines.

7. Program Comments and Glossary of Terms.

The program listing contains many comments which aid in following the logic of the program. The important variable names are explained as well as the input requirements.

8. Run Time and Memory Size.

BRKMOOR requires about 40 seconds on the CDC 6400 to compile and compute results for one value of the tide parameter. Each additional tide value requires about 30 seconds additional time. These values are for cables divided into 50 sections each. Time should be somewhat proportional to the total number of cable sections. The number of test conditions has much less effect on time than does the tide. As stated previously, a central memory of about 40,000 octal is required.

9. Run and Card Deck Setup Procedures and Special Operation Instructions.

In order to run the FORTRAN source program deck on the University of Washington CDC 6400, the following deck is required:

BMOOR, T40.	Job card
ACCOUNT FORTRAN	(Account no., password)
LGO (LC=6000)	LC = line count value; depends on how many tides and conditions are run
7/8/9 FORTRAN DECK	
7/8/9	

DATA DECK 6/7/8/9

10. Sample Output Data.

Example output from program BRKMOOR is shown in Table B-2; a listing of program BRKMOOR is shown in Table B-3.

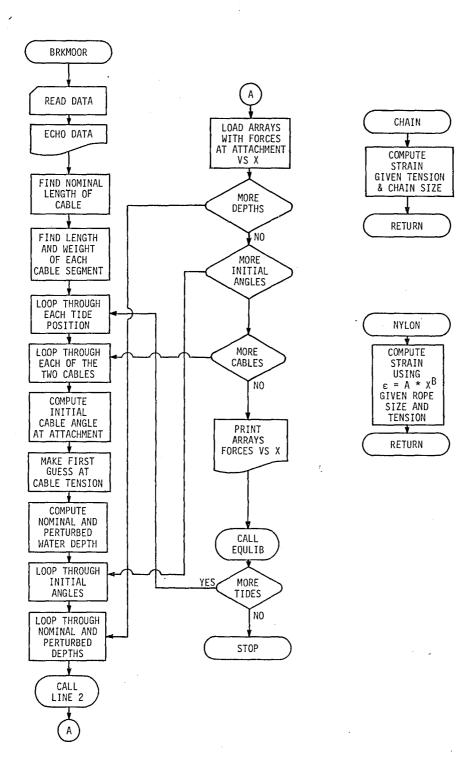


Figure B-2. Flow chart for program BRKMOOR.

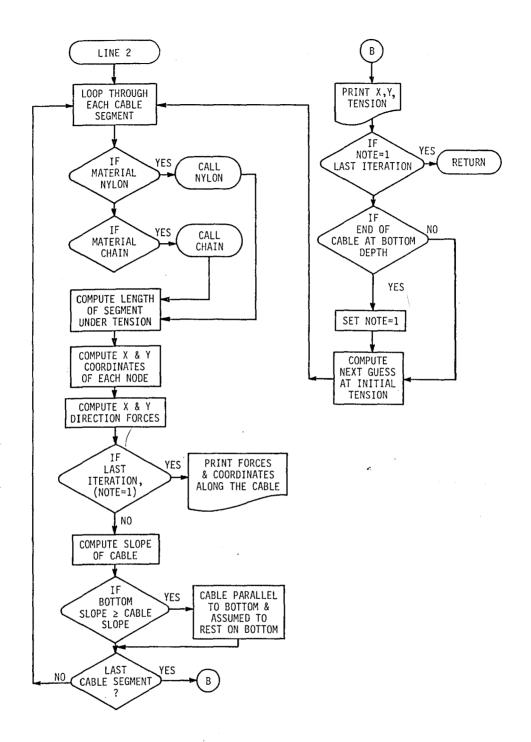
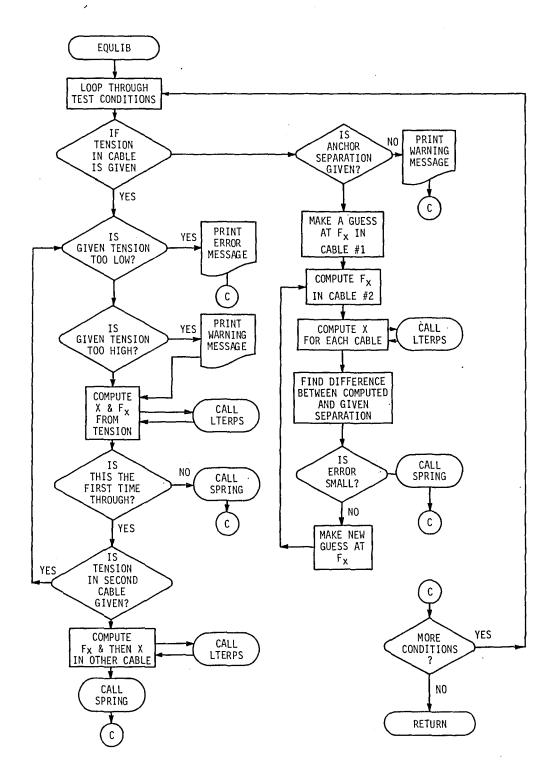
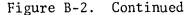




Figure B-2. Continued

Ą

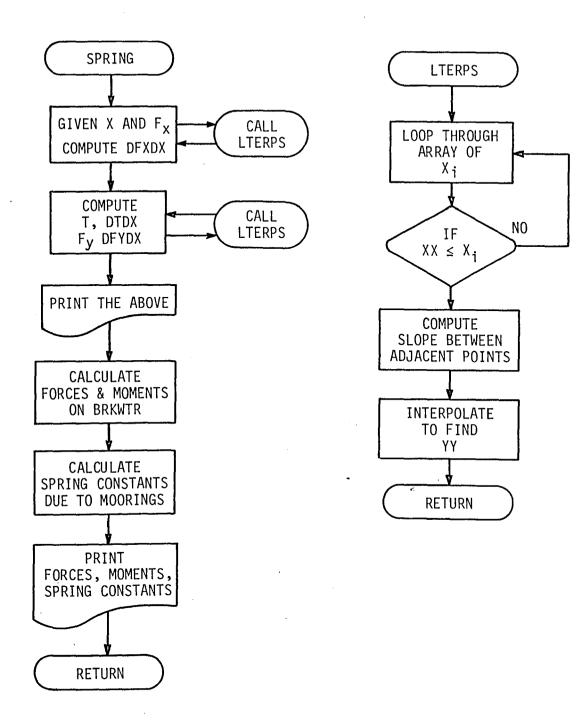


Figure B-2. Continued

TEST CASE -- MEASURED CHAIN TEST 3/11/76

MOORING LINE NUMBER= 1 TIDE= -.000

,

Y	x	τορ	TENSION	FORCEX	FORCEY
-7.167	24.605		5.202	.430	-5.184
-7.167	25.294		5.802	• 956	-5.722
-7.167	25.893		6.407	1.574	-6.211
-7.167	26.387		7.158	2.326	-6.770
-7.167	26.804		8.101	3.257	-7.417
-7.167	27.174		9.278	4.419	-8.158
-7.167	27.507		10.776	5.899	-9.019
-7.167	27.814		12.704	7.809	-10.021
-7.167	28.099		15.254	10.338	-11.216
-7,167	28.366		18.714	13.777	-12.664
-7.167	28.619		23.557	18,601	-14.454
-7.167	28.859		30.675	25.695	-16.755
-7.167	29.089		41.694	36.687	-19.809
-7.167	29.290		61.608	56.444	-24.690
-7.167	29.410		121.346	114.814	-39.276
-7.239	24.544		5.251	.434	-5.233
-7.239	25.258		5.848	.963	-5.768
-7.239	25.839		6.494	1.595	-6.295
-7.239	26.346		7.240	2.353	-6.847
-7.239	26.769		8.190	3.292	-7.499
-7.239	27.142		9.380	4.468	-8.248
-7.239	27.477		10.900	5.967	-9.122
-7.239	27.790		12.833	7.888	-10.122
-7.239	28.077		15.417	10.449	-11.336
-7.239	28.347	-	18,906	13.919	-12.795
-7.239	28.602		23.805	18.797	-14.606
-7.239	28.844		31.005	25.971	-16.935
-7.239	29.077		42.115	37.058	-20.010
-7.239	29.277		62.505	57.266	-25.050
-7.239	29.395		125.036	118.305	-40.470
-7.095	24.658		5.160	.426	-5.142
-7.095	25.328		5.757	.948	-5.678
-7.095	25.945		6.327	1.555	-6.133
-7.095	26.427		7.080	2.301	-6.696
-7.095	26.839		8.016	3.223	-7.339
-7.095	27.205		9.179	4.372	-8.071
-7.095	27.536		10.657	5.833	-8,918
-7.095	27.837		12.578	7.732	-9.922
-7.095	28.122		15.085	10.224	-11.092
-7.095	28.386		18.508	13.626	-12.525
-7.095	28.636		23.314	18.410	-14.305
-7.095	28.874		30.353	25.425	-16.579
-7.095	29.102		41.256	36.302	-19.601
-7.095	29.303		60.738	55.647	-24.341
-7.095	29.426		117.875	111.530	-38.152
			-		

١

Table B-2. Example output from program BRKMOOR.

TEST CASE -- MEASURED CHAIN TEST 3/11/76

MOORING LINE NUMBER= 2 TIDE= -.000

Y	x	TOP TENSION	FORCEX	FORCEY
-7.167	-24.605	5.202	430	-5.184
-7.167	-25.294	5.802	956	-5.722
-7.167	-25.893	6.407	-1.574	-6.211
-7.167	-26.387	7.158	-2.326	-6.770
-7.167	-26.804	8.101	-3.257	-7.417
-7.167	-27.174	9.278	-4.419	-8.158
-7.167	-27.507	10.776	-5.899	-9.019
-7.167	-27.814	12.704	-7.809	-10.021
-7.167	-28.099	15.254	-10.338	-11.216
-7.167	-28.366	18.714	-13,777	-12.664
-7.167	-28.619	23.557	-18.601	-14.454
-7.167	-28.859	30.675	-25.695	-16.755
-7.167	-29.089	41.694	-36.687	-19.809
-7.167	-29.290	61.608	-56.444	-24.690
-7.167	-29.410	121.346	-114.814	-39.276
-7.239	-24.544	5.251	434	-5.233
-7.239	-25.258	5.848	963	-5.768
-7.239	-25.839	6.494	-1.595	-6.295
-7.239	-26.346	7.240	-2.353	-6.847
-7.239	-26.769	8.190	-3.292	-7.499
-7.239	-27.142	9.380	-4.468	-8.248
-7.239	-27.477	10.900	-5.967	
-7.239	-27.790	12.833	-7.888	-9.122
-7.239	-28.077	15.417	-10.449	-10.122
-7.239	-28.347	18.906	-13.919	-11.336
-7.239	-28.602	23.805	-18.797	-12.795
-7.239	-28.844	31.005	-25.971	-14.606
-7.239	-29.077	42.115	-37.058	-16.935
-7.239	-29.277	62.505	-57.266	-20.010
-7.239	-29.395	125.036	-118.305	-25.050
-7.095	-24.658	5.160		-40.470
-7.095	-25.328	5.757	-•426 -•948	-5.142
-7.095	-25.945	6.327		-5.678
-7.095	-26.427	7.080	-1.555	-6.133
	-26.839	8.016	-2.301	-6.696
-7.095	-27.205	9.179	-3.223	-7.339
-7.095	-27.536	10.657	-4.372	-8.071
-7.095	-27.837	12.578	-5.833	-8.918
-7.095	-28.122	15.085	-7.732	-9.922
-7.095			-10.224	-11.092
-7.095	-28.386	18.508	-13.626	-12.525
-7.095		23.314	-18.410	-14.305
-7.095	-28.874	30.353	-25.425	-16.579
-7.095	-29.102	41.256	-36.302	-19.601
-7.095	-29.303	60.738	-55.647	-24.341
-7.095	-29.426	117.875	-111.530	-38,152

Table B-2. Continued

TEST CASE -- MEASURED CHAIN TEST 3/11/76

1.5

FOR	HOPIZON Nominal	00 LLY AP TAL AN TENSI	PLIED Chor On In	HORIZONTAL SEPERATION CABLE 1 = CABLE 2 =	SEP= 000		000LB	•		· .		
	CABLE N	0. F	x	FY	x	Y		DFXDX	DFXDY	DFYDX	DFYDY	TENSION
	1 2		•933 •933	-18.766 -18.766	29.0 -29.0	11 -7. 11 -7.	167 167	-4.781E+01 -4.781E+01	1.328E+01 -1.328E+01	1.346E+01 -1.346E+01	-5.134E+00 -5.134E+00	3.793E+01 3.793E+01
	CABLE N	0. DT	DX	DTDY	DTDR							
)				1.4203E+01 1.4203E+01								
	FORCES FS FH MR	2	•0 -37•5	000	TER AT ECU	LIBRIUM DUE	TC M	CORING LINE	S			
	КМ КМ	CONSTAN 11 = 4 12 = 13 =-2	9.561 .0		ON	·.	** .					
	КР КР	CONSTA 21 = 22 = 23 =	.0 1.026	EAVE DIRECT	ION							
	КМ КР	CONSTAL 31 = -: 32 = 33 = 1	2.691 .0		ON							
						Table B-2	2. C	ontinued				

RUNT VERSION FEB 74 B 13:04 04/09/76

PROGRAM PRKMOOR(INPUT, OUTPUT, PUNCH, TAPE5=INPUT, TAPE6=GUTPUT) С PROGRAM BRKMOOR COMPUTES THE FORCES AND SPRING CONSTANTS THAT A PAIR C OF MOORING CABLES IMPART ON A FLOATING BREAKWATER SECTION INPUT Ĉ C FIRST CARD--TITLE - 80 ALPHANUMERIC CHARACTERS C BREAKWATER GEOMETRY--C NUMBER OF TEST CONDITIONS TEST CONDITIONS--ONE CARD FOR EACH SET C TIDE CARD--NUMBER OF TIDE CONDITIONS AND THE CONDITIONS С FOR FIRST CABLE--NUMBER OF SEGMENTS ANCHOR DEPTH AND BOTTOM SLOPE C FOR EACH OF ABOVE CABLE SEGMENTS -- CARD WITH SEGMENT PROPERTIES C 🕓 REPEAT --- NUMBER OF SEGMENTS AND THEIR PROPERTIES FOR SECOND CABLE С ******************* C* * * С COMMON/ONE/NSEG(2), NSECT(2,5), WSECT(2,5), MATL(2,5), DIAM(2,5), 3 2 ALSECT(2,5) COMMON/TWO/WY(2,3), EX(2,3,20), FX(2,3,20), FY(2,3,20), TENS(2,3,20), 3 2 FEXT(9), SEP(9), TENS1(9), TENS2(9), NANGLE, NCOND, TITLE(8) COMMON/FOUR/YCG, XCAB(2), YCAB(2), TTDE(5), ITIDE 3 DIMENSION WPF(2,5),ALSEG(2,5), DEPTH(2),BSLOPE(2),ALNOM(2) 3 PI=3.1415926535 3 C***READ & TITLE CARD -- 80 CHARACTERS MAX READ 3, TITLE 5 FORMAT(8A10) 12 3 PRINT 16, TITLE 12 FORMAT(1H1,5X,8A10///) 20 16 C***READ AND ECHO THE BREAKWATER GEOMETRY READ 5,YCG, XCAB(1), YCAB(1), XCAB(2), YCAB(2) 20 2 YCG=Y COORDINATE OF CG RELATIVE TO WATER SURFACE С FORMAT(5F10.0) 5 42 OUTPUT, YCG, XCAB(1), YCAB(1), XCAB(2), YCAB(2) 42 XCAB(I)=X COORD OF CABLE I ATTACHMENT RELATIVE TO CG YCAB(I)=Y COORD OF CABLE I ATTACHMENT RELATIVE TO WATER SURFACE С С NOTE--CABLE NUMBER 1 IS THE CABLE WITH ITS ANCHOR IN THE +X DIRECTION C C***INPUT THE NUMBER OF DESIRED CONDITION CARDS MAX NUMBER=9 72 PEAD 10,NCOND FORMAT(12) 100 10 C***READ AND ECHO DESIRED CONDITIONS DO 17 ICOND=1, NCOND 100 READ 15, FEXT(ICOND), SEP(ICOND), TENS1(ICOND), TENS2(ICOND) 102 FORMAT(4F10.0) 15 121 OUTPUT, FEXT(ICOND), SEP(ICOND), TENS1(ICOND), TENS2(ICOND) 121 17 FEXT-EXTERNALLY APPLIED FORCE (HORIZONTAL DIRECTION) LB. C SEP #ANCHOR SEPERATION IN THE X DIRECTION FT. C TENS1=TENSION IN CABLE 1 LB. С TENS2=TENSION IN CABLE 2 LB. С INPUT SEP, OR TENSI OR TENS2 CR BOTH TENSI AND TENS2 C C***READ AND ECHO TIDE CONDITIONS NTIDE=NUMBER OF TIDE CONDITIONS MAX=5 C TIDE=TIDE POSITION RELATIVE TO NOMINAL DEPTH MEASUREMENTS C FT. READ 20, NTIDE, (TIDE(I), I=1, NTIDE) 151 20 FORMAT(11,9X,5F10.0) 166

Table B-3. Listing of program BRKMOOR.

PUNT VERSIEN FEB 74 B 13:04 04/09/76 DUTPUT, NTIDE, TIDE 166 C LOOP THROUGH THE TWO CABLES 201 DO 65 I=1,2 C+++INPUT THE CABLE PROPERTIES AND BOTTOM DEPTH AND SLOPE READ 22, NSEG(I), DEPTH(I), BSLDPE(I) 203 FORMAT(12,8X,2F10.0) 217 22 NSEG= NUMBER OF CABLE SEGMENTS OR MATERIALS С DEPTH= DEPTH OF THE WATER AT THE ANCHOR FT. С BSLOPE= SLOPE OF THE BOTTOM (FT RISE/FT) 217 PRINT 25 FORMAT(///5X,+I NUMBER SECTIONS SEGMENT LENGTH WT PER FOOT* 25 223 MATERIAL 2 4X* DIAMETER*/) 223 NS=NSEG(I) 226 DD 30 J=1,NS C***FOR EACH CABLE SEGMENT INPUT NSECT(I) = NUMBER OF SECTIONS INTO WHICH CABLE SEGMENT I IS DIVIDED C ALSEG(I)=LENGTH OF CABLE SEGMENT I FT. С WPF(I) = WEIGHT PER FOOT IN WATER OF CABLE SEGMENT I Ć LB/FT MATL=MATERIAL OF CABLE SEGMENT C EITHER NYLON OR CHAIN MUST BE LEFT JUSTIFIED IN DATA FIELD C DIAM=DIAMETER OF ROPE OR CHAIN LINK INCHES READ 40, NSECT(I, J) , ALSEG(I, J), WPF(I, J), MATL(I, J), DIAM(I, J) 230 264 40 FCRMAT(15,5X,2F10.0,A10,F10.0) 30 PRINT 50, J, NSECT(I, J), ALSEG(I, J), WPF(I, J), MATL(I, J), DIAM(I, J) 264 £0 326 FORMAT(X, 15, 8X, 15, 8X, F10, 2, 4X, F10, 2, 9X, A10, 5X, F6, 3) C+++FIND THE NUMINAL LENGTH OF THE CABLE, LENGTH AND WEIGHT OF SECTIONS 326 ALNOM(I)=0. 331 DO 60 J=1,NS ALNOM(I)=ALNOM(I)+ALSEG(I,J) 332 343 ALSECT(I,J)=ALSEG(I,J)/NSECT(I,J) 357 60 WSECT(I,J)=WPF(I,J)+ALSECT(I,J) 375 CONTINUE 65 377 BSLOPE(2) = -BSLOPE(2)C***LOOP THROUGH THE TIDE POSITIONS 403 DO 400 ITIDE=1,NTIDE C***LOOP THROUGH THE CABLES 405 DO 150 I=1,2 406 PRINT 70 411 FORMAT(1H1,5X*NOTE--IN THE FOLLOWING TABLES X AND Y ARE MEASURED 70 **2RELATIVE TO THE CABLE ATTACHMENT#//)** D=Y DIRECTION SEPERATION BETWEEN ANCHOR AND ATTACHMENT 411 D=DEPTH(I)+TIDE(ITIDE)+YCAB(I) C***COMPUTE INITIAL ANGLES TO BE USED C NANGLE=NUMBER OF ANGLES USED MAX=20 421 NANGLE=15 423 PHIMIN=ASIN(D/ALNOM(I)) 431 DELPHI=(PI/2.-PHIMIN)/FLOAT(NANGLE+1) 443 PHIONE=-PI/2. C***COMPUTE A FIRST GUESS FOR THE INITIAL TENSION FOR STEEPEST ANGLE 444 ALSUM=0. 445 TZERO=0. DAF=D+(ALNOM(I)-D)*BSLOPE(I) 446 456 NS=NSEG(I) DD 90 J=1,NS 461 NSS=NSECT(I, J) 463 470 DO 90 K=1,NSS

ų

RUNT VER	SICN FEB 74 B 13:04 04/09/76
471	ALSUM=ALSUM+ALSECT(I,J)
477	IF(ALSUM .GT. DAF) GD TD 95
502	90 TZERO=TZERO+WSECT(I,J)
515	95 CONTINUE
	C COMPUTE THE NOMINAL AND PERTURBED DEPTHS
515	DREF=D
517	DELD=DREF/100.
521	DPLUS=DREF+DELD
522	DMINUS=DPFF-DELD
	C+++LOOP THROUGH THE INITIAL ANGLES
524	DD 100 K=1,NANGLE
525	PRINT 97, I, K, NANGLE, TIDE (ITIDE)
541	97 FORMAT(/X+CABLE NUMBER *II+ INITIAL ANGLE ND. *I2* OF *I2
	2 * TIDE = *F5+2/)
541	PHIONE=PHIONE+DELPHI
	C***LOOP THROUGH THE NOMINAL DEPTH AND PEPTURBED DEPTHS
543	DC 100 J=1,3
545	IPRINT=0
	C+++++++TO SKIP THE PRINTING OF EACH CATINAPY - INSERT A GO TO 1111
546	IF(J .EO. 1) IPRINT=1
551	1111 IF(J •EQ• 1) D=DREF
555	IF(J .EQ. 2) D=DPLUS
561	IF(J .EQ. 3) D≖DMINUS
565	WY(I,J)=YCAB(I)-D
575	DUTPUTøJøKøDøYCAB(I)øWY(IøJ)øPHIDNE
627	CALL LINE2(I, PHIONE, TZERO, C, BSLOPE(I), X, Y, FORCEX, FORCEY, IPRINT)
642	EX(I,J,K)=XCAB(I)-X*(-1)**1
660	FX(I,J,K)=FDRCEX*(-(-1)**I)
674	FY(I,J,K)=FORCEY
703	TENS(I)JK)=TZERO
	C WY(I,J)=Y COORD OF THE ANCHOR TO NO. 1 CABLEWATER SURFACE=ORIGIN
	C EX(I,J,K)=X COCRD OF ANCHOR RELATIVE TO CG OF BREAKWATER
	C TENSTENSION AT ATTACHMENT
	C FX=FORCE AT ATTACHMENT IN X DIRECTION
	C FY=FORCE AT ATTACHMENT IN Y DIRECTION
712	100 CONTINUE
	C END OF CABLE LOOP
716	150 CONTINUE
720	PRINT 102
724	102 FORMAT(1H1,5X*IN THE FOLLOWING TABLES - X REL. TO CG, Y REL. TO WA
	2TER SURFACE+//)
724	DO 160 I=1,2
726	PRINT 103,TITLE
733	103 FORMAT(5X,8A10)
733	PRINT 105, I, TIDE(ITIDE)
744	105 FORMAT(///5X*MOORING LINE NUMBER= *I1,* TIDE=*F6.3//
	2 10X;+Y+14X;1HX;8X;+TOP TENSION+7X+FORCEX+7X+FORCEY+/)
744	DO 120 J=1,3
746	DD 120 K=1,NANGLE
747	PRINT 110,WY(I,J),EX(I,J,K),TENS(I,J,K),FX(I,J,K),FY(I,J,K)
1013	110 FORMAT(5X,5(F11.3,4X))
1013	120 CONTINUE
1020	PRINT 125
1023	125 FORMAT(1H1)
1023	160 CONTINUE
1025	CALL EQULIB

RUNT VERSIEN FEB 74 8 13:04 04/09/76

	C END OF TID	E LOOP
1026	400 CONTINUE	
1031	STOP	
1033	END	

i

Į,

	SUBROUTINE LINE2(K, PHIONE, TZERD, DEPTH, BSLOPE, X, Y, FORCEX, FOR	CEY, IP)
15	COMMON/ONE/NSEG(2), NSECT(2,5), WSECT(2,5), MATL(2,5), DIAM(2, 2 ALSECT(2,5)	5),
	C**THE INPUT TO SUBROUTINE LINE	
	C PHIONE=INITIAL ANGLE OF CABLE	
	C TZERD-INITIAL GUESS OF TENSION AT TOP OF CABLE	•
	C**SUBRDUTINE LINE COMPUTES	
	C TZERD TENSION AT CABLE TOP	
	C FORCEX=FORCE IN X DIRECTION AT CABLE TOP	
	C FORCEY=FORCE IN Y DIRECTION AT CABLE TOP	
	C X-HORIZONTAL SEPERATION BETWEEN TOP AND BOTTOM OF CABLE C Y-VERTICAL SEPERATION BETWEEN TOP AND BOTTOM OF CABLE	
	C+++GO DOWN THE CABLE SECTION BY SECTION COMPUTE TENSION, ANGLE,	
	C EXTENDED LENGTH, X AND Y COURDINATES	
15	PI=3.14159	
16	NITER=0	
17	MNITER=25	
21	NDTE=0	
22	T=TZERO	
23 25	152 NITER=NITER+1	
29	IF(IP •EQ• 0) GD TO 153 IF(NOTE •EQ• 0) GD TO 153	
31	PRINT 155	
35	155 FORMAT(//5X+I J X Y TENSION LSECT*	
	2 6X, +LEXT PHI-DEGREES FERCEY FERCEX+/)	
35	153 Y=0.	
37	X=0.	
43	PHI=PHIONE	
44	NSS=NSEG(K)	
47 51	158 DO 200 I=1,NSS NS=NSECT(K,I)	
56	DO 200 J=1.0S	
57	PHID=PHI+180./PI	
61	IF(MATL(K,I) .EQ. 5HNYLON)GD TD 165	
67	IF(MATL(K)I) .EQ. 5HCHAIN)GD TO 160	
75	160 CALL CHAIN(DIAH(K,I),T,STRAIN)	
105	GO TO 170	
111 121	165 CALL NYLON(DIAM(K,I),T,STRAIN) 170 ALEXT=ALSECT(K,I)+(1.+STRAIN)	
134	170 ALEXT=ALSECT(K,I)*(1.+STRAIN) X=X+ALEXT*COS(PHI)	
145	Y=Y+ALEXT+SIN(PHI)	
152	TCOS=T+COS(PHI)	
156	TSIN=T*SIN(PHI)	
162	IF(IP .EQ. 0) GO TO 185	
170	IF(NOTE .EQ. O) GO TO 185	
172	PRINT 180, I, J, X, Y, T, ALSECT(K, I), ALEXT, PHID, TSIN, TCOS	
231	180 FORMAT(X,215,8F10.3)	
231	185 IF(I .EQ. NSS .AND. J .EQ. NS) GO TO 200 SLOPE=(TSIN+WSECT(K,I))/TCOS	
247 257	IF(SLOPE •GE• BSLOPE) SLOPE=BSLOPE	
262	PHI=ATAN(SLOPE)	
266	T=TCOS/COS(PHI)	
271	200 CONTINUE	
302	FORCEX#TZERD#COS(PHIONE)	
311	FORCEY=TZERD+SIN(PHIONE)	

RUNT VERSION FEB 74 B 13:04 04/09/76

.

,

320	С# * *Т	DUTPUT,NITER,Y,X,TZERD HE SECOND GUESS OF INITIAL TENSION IS COMPUTED
350	•	IF (NITER .GT. 1) GO TO 220
353		TZOLD=TZERO
354		TZERO=TZERO+ABS(DEPTH/Y)
365		YOLD=Y
367		T=TZERO
370		GO TO 152
•••	C***T	HE SUBSEQUENT INITIAL TENSIONS ARE COMPUTED USING SECANT ITERATIC
370	220	RELER=ABS(1.+Y/DEPTH)
402		IF(NOTE .EQ. 1) GU TO 300
405		IF(NITER .GE. MNITER .OR. RELER .LF0001) NOTE=1
424		DEROLD=DEPTH+YOLD
426		DERR=DEPTH+Y
430		T=TZQLD-DEROLD+(TZERO-TZQLC)/(DERR-DFROLD)
437		IF(T .LE. 0.) T=TZER0/2.
443		YOLD=Y
445		TZOLD=TZERD
446		TZERO=T
447		G0 T0 152
447	300	RETURN
	200	
450		END

Ą

UNT VERSION FEB 74 B 13:04 04/09/76

		SUBROUTINE CHAIN(D, T, STRAIN)	
6		PI=3.14159	
7		E=30.E6	- E
11		AREA=D+D+PI/2.	
	С	C-ELONGATION FACTOR C=6 FCR OVAL	CHAIN
14		C=6.	
15		STRAIN=C+T/(AREA+E)	
21		RETURN	
22		END	

UNT VERSION FEB 74 B 13:04 04/09/76

6	SUBROUTINE NYLON(D,T,STRAIN) X=T/(D+D)
10	A=.02052
12	B=+2237
13	STRAIN=A+X++B
20	RETURN
21	END

		SUBROUTINE EQULIB
2		COMMON/TWO/WY(2,3), EX(2,3,20), FX(2,3,20), FY(2,3,20), TENS(2,3,20),
٤		
•		2 FEXT(9), SEP(9), TENS1(9), TENS2(9), NANGLE, NCOND, TITLE(8)
2		COMMON/THREE/X(2),F(2)
2		DIMENSION SEPDIF(3), FO(3)
		*EQULIB FINDS THE BREAKWATER EQUILIBRIUM POSITION
	C***	LOOP THROUGT THE TEST CONDITIONS
2		DO 100 IC=1,NCOND
4		TF(SEP(IC) .NE. 0.) GO TO 20
7		IF(TENS1(IC) •NE•0•)GO TO 10
13		IF(TENS2(IC) •NE•0•)GO TO 12
17		PRINT 155
23	155	FORMAT(//X+ND INITIAL CONDITIONS SPECIFIED*)
23		G0 T0 100
	C+++	FOR THE CASES WHERE INITIAL TENSION IS GIVEN THE FOLLOWING IS USED
24	10	T-TENSI(IC)
27		I=1
31		J=2
32		
-	1 2	GO TO 14
33	32	T=TENS2(IC)
36 40		I=2
	• /	j=1
41	14	DUTPUT, I, NANGLE, T
57		IF(T .GE. TENS(I,1,1)) GO TO 18
70		PRINT 16
74		GD TG 100
75	18	IF(T .GE. TENS(I,1,NANGLE)) PRINT 17
111	16	FORMAT(//5X*GIVEN TENSION CLOSE TO OP LESS THAN WEIGHT OF VERTICAL
		2 MOORING LINE*/5×*NO FURTHER EVALUATION ATTEMPTED *//)
111	17	FORMAT(//5X*GIVEN TENSION TOO GREAT FOR EVALUATION WITHOUT*
		2 *EXTRAPOLATION*/5X*USE RESULTS WITH CAUTION*//)
111		CALL LTERPS (I,),NANGLE, TENS, EX, T, X(I), DUMMY)
123		DUTPUT, X(I), T
137		CALL LTERPS (I))ANGLE, TENS, FX, T, F(I), DUMMY)
151		OUTPUT ₉ F(I)
162		IF(I •EQ• 1 •AND• TENS2(IC) •NE• 0) GO TO 12
177		IF(TENS1(IC) .NE. O .AND. TENS2(IC) .NE. 0) GO TO 40
214		F(J) = -F(I) - FEXT(IC)
224		OUTPUT, F(J)
234		CALL LTERPS (J,1,NANGLE,FX,EX,F(J),X(J),DUMMY)
250		$OUTPUT_{\mathbf{y}} \mathbf{X}(\mathbf{J})$
	С	NOTE F(I)=X DIRECTION FORCE ON CABLE I , X(I)=X COORD OF ANCHOR
261	÷	GO TO 40
201	C+++	FOR THE CASE WHERE ANCHOR SEPERATION IS GIVEN
	č	MAKE A FIRST AND SECOND GUESS AT FORCE
262	20	TA=(NANGLE+1)/2
270		EPS+SEP(IC)+.0001
		DO 30 II=1,2
274		X(1)=EX(1,1,1A)
275		
305		F(1)=FX(1,1,1A)
315		OUTPUT,F(1),II,FEXT(IC),SEP(IC),IA
344		FO(II)=F(1)
351		F(2)=-F(1)-FEXT(IC)
361		DUTPUT,F(2)
371		CALL LTERPS (2,1,NANGLE,FX,EX,F(2),X(2),DUMMY)

RUNT VERSION FEB 74 B 13:04 04/09/76

405		ASEP=X(1)-X(2)
413		SEPDIF(II)=SEP(IC)-ASEP
421		OUTPUT,II,IA,X(1),X(2),F(1),F(2),SEP(IC),ASEP,SEPDIF(II)
466		IF(ABS(SEPDIF(II)) .GT. EPS) GO TO 24
476		GD TD 40
477	24	IF(SEPDIF(II) .GE. 0.) GO TO 26
503		IA=1
505		GD TO 30
505	26	IA=NANGLE
507	30	CONTINUE
,	C+++	USE SECANT INTERPOLATION FOR THE SUBSEQUENT FORCE TRIALS
511		MN=20
513		DO 34 K=1,MN
514		FO(3)=FO(1)-SEPDIF(1)*(FO(2)-FO(1))/(SEPDIF(2)-SEPDIF(1))
540		IF(F0(3) .LE. 0.) F0(3)=F0(2)/2.
552		F(1)=FO(3)
557		F(2)=-F(1)-FEXT(IC)
56 7		DO 32 I=1,2
570	32	CALL LTERPS (I,1,NANGLE,FX,EX,F(I),X(I),DUMMY)
605		ASEP=X(1)-X(2)
613		SEPDIF(3)=SEP(IC)-ASEP
621		OUTPUT,K,X(1),X(2),F(1),F(2),ASEP,SEPDIF(3)
65 7		IF(ABS(SEPDIF(3)) +LE+ EPS) GO TO 30
667		IF(K •EQ• MN) GD TO 36
672		FO(1)=FO(2)
677		FO(2)=FO(3)
704		SEPDIF(1)=SEPDIF(2)
711		SEPDIF(2)=SEPDIF(3)
716	34	CONTINUE
720	36	PRINT 37
724	37	FORMAT(/5X+HAX NUMBER OF ITERATIONS REACHED+/)
724	38	DO 39 I=1,2
726		IF(ABS(F(I)) .GT. ABS(FX(I,1,NANGLE))) PRINT 42
750	39	IF(ABS(F(I)) .LT. ABS(FX(I,1,1))) PRINT 43
775	42	FORMAT(//5X+ANCHOR SEPERATION TOO GREAT FOR EVALUATION WITHOUT EXT
		2RAPOLATINGUSE RESULTS WITH CAUTION+//)
775	43	FORMAT(//5X+ANCHOR SEPERATION TOO LITTLE FOR EVALUATION WITHOUT EX
		2TRAPOLATIONUSE RESULTS WITH CAUTION*//)
775		CALL SPRING(IC)
777	100	CONTINUE
1002		RETURN
1002		END

Table B-3. Continued

RUNT VERSION FEB 74 B 13:04 04/09/76

	SUBROUTINE SPRING(IC)
6	COMMON/TWO/WY(2,3),EX(2,3,20),FX(2,3,20),FY(2,3,20),TENS(2,3,20),
	2 FEXT(9), SEP(9), TENS1(9), TENS2(9), NANGLE, NCOND, TITLE(8)
6	COMMON/THREE/X(2),F(2)
6	COMMON/FOUR/YCG, XCAB(2), YCAB(2), TIDE(5), ITIDE
ĕ	DIMENSION DFXDX(2),DFYDX(2),DFXDY(2),DFYDY(2),D(3),FXX(2,3),
v	2 FYX(2,3),FV(2),DTDX(2),DTDY(2),DTDR(2),T(2,3)
6	REAL KM11,KM12,KM13,KM21,KM22,KM23,KM31,KM32,KM33
0	C++++SUBROUTINE SPRING COMPUTES THE BREAKWATER SPRING CONSTANTS
	C+++COMPUTE THE SPRING CONSTANTS FOR EACH CABLE
	CATTCHTOTE THE SPRING CUNSTANTS FUR EACH CABLE
	C HORIZONTAL FORCE AT EQUILIBRIUM=F(I) FOR CABLE I C VERT FORCE AT FOUTITBRIUM=EV(I) FOR CABLE I
,	
6	DO 14 I=1,2
. 7	DO 12 J=1,3
10	CALL LTERPS (I, J, NANGLE, EX, FX, X(I), FXX(I, J), DF)
27	IF(J .EQ. 1) DFXDX(I)=-DF
35	CALL LTERPS (I,J,NANGLE,EX,TENS,X(I),T(I,J),DT)
54	$IF(J \cdot EQ \cdot 1) DTDX(I) = -DT$
62	12 CALL LTERPS (I,J,NANGLE,EX,FY,X(I),FYX(I,J),D(J))
107	DTDY(I)=(T(I,3)-T(I,2))/(WY(I,2)-WY(I,3))
133	DFYDX(I)=-D(I)
140	FV(I)=FYX(I,1)
147	DFYDY(I)=(FYX(I,2)-FYX(I,3))/(WY(I,2)-WY(I,3))*(-1.)
174	DFXDY(I)=(FXX(I,2)-FXX(I,3))/(WY(I,2)-WY(I,3))*(-1.)
221	14 CONTINUE
223	PRINT 16,TITLE
230	16 FORMAT(1H1, 6A10)
230	PRINT 15, TIDE(ITIDE), FEXT(IC), SEP(IC), TENS1(IC), TENS2(IC)
261	15 FORMAT(///X*FOR THE CONDITIONS+/
	$1 5 x + T I D E = + F 5 \cdot 2 / 2 $
	2 5X*EXTERNALLY APPLIED HORIZONTAL FORCE, FEXT= *F1C.3*LB.*/
	3 5X*HORIZONTAL ANCHOR SEPERATION, SEP= *F10.3*FEET*/
	4 5X*NOMINAL TENSION IN CABLE 1 =+F10.3* LB.*/
	5 5X*NOMINAL TENSION IN CABLE 2 =*F10.3* LB.*//)
261	PRINT 18
265	18 FORMAT(/5X*CABLE NO. FX*10X*FY*11X,1HX,11X*Y*9X*DFXDX*7X,
	2 *DFXDY*7X*DFYDX*7X*DFYDY*,5X,*TENSION*//)
265	
270	20 PRINT 25, I, F(I), FV(I), X(I), WY(I,1), DFXDX(I), DFXDX(I), DFXDY(I),
	2 DFYDY(I), T(I,1)
337	25 FORMAT(9X,11,4(2X,F10.3),5(X,E11.3))
551	C***NOW CALCULATE FORCES AND SPRING CONSTANTS FOR THE BREAKWATER
	C S=SWAY MOTION +X DIRECTION FEFT
	C H=HEAVE MOTION +Y DIRECTION
	C R=ROLL MOTION COUNTERCLOCKWISE RADIANS
	C ESTERCES CAUSING SWAY DUE TO THE MODRING LINES
	C FH=FORCES CAUSING HEAVE DUE TO MOORING LINES C EMR=MOMENTS CAUSING ROLL DUE TO MOORING LINES
227	C CHANGE YCAB TO BE DIST TO CG IN Y DIRECTION
337	YCAB(1)=YCAB(1)-YCG
345	YCAB(2)=YCAB(2)-YCG
352	FS=F(1)+F(2)
360	FH=FV(1)+FV(2)
365 [.]	EHR=FV(1) *XCAB(1)+FV(2) * XCAB(2)-F(1) * YCAB(1)-F(2) * YCAB(2)
	C***CALCULATE CHANGE IN TENSIONS WITH BREAKWATER MOTIONS

RUNT	VERSI	GN	FE	B 74	в	13:04	04/0	9/7	6							
41	3		1	D D 2	6 I-	1.2										
41		26		DTDR	(1)•	DTDY(I) * X C A	BII)-OTDX	(I)+YC	AB(I)					
43	2			PRIN				-								
43	5	27		FORM	ATC	/5X*CA	BLE N	0.	DTDX+	6X+DTD	Y*8X*	DTDR*/	())			
43	5			00 2	e I:	1,2										
44	0	28				,I,DTD				TDR(I)						
46	1 3	29		FORM	AT(S	X,I1,3	(XE11	•4)) -							
	-	1				TANTS										
46						XDX(1)				• •						
47	-					YDX(1)				-						
50	0							(1)	+DFYDX	(2)*XC	AB(2)	-DFXD)	X(1)*Y	CAB(1	.)-DFXD)	X(2)*
						?))*(-1										
	-					TANTS										
53						XDY(1)										
53	-					YDY(1)										
54	6					YDY(1)										
						((1)+YC					2))*(- <u>i</u> ej				
e	•					STANTS										
57	0					XDY(1) ((2)+YC				(2)+X	, AB(2)	-0-202	X(1)#1	CABLI	.)	
						YDY(1)				101440						
62	0					((1) * YC										
65	4		_	-		(1)+(1)+							•			
00	0					1)**2*							,			
						1) + Y CA						161				
			_		÷ · · · · ·	2) * Y CA						*(-1-))			
75	6		-			FS.FH										
76		30							0 MOME	NTS ON	RRFA	KWATER	R AT E	OULIB	RIUM D	
	•														R= *F1	
76	7		-	PRIN	T 32		KM12,	KM1	3							
100	1	32		FORM	AT (/	/5X+SP	RING	CON	STANTS	SWAY	DIREC	TION*	/10X*K	M11 =	*E12.	51
			2	10	X*K*	12 = *	£12.5	/10	X*KM13	=*E12	2.5)					
100	1			PRIN	T 34	,KM21,	KM22,	KM2	3							
101	3 3	34	1	FORM	AT(/	5X*SPR	ING C	ONS	TANTS	HEAVE	DIREC	TION*/	/10X*K	M21 =	+E12.	57
			2	10	X *K	122 = +	E12.5	/10	X*KM23	=*E12	2 . 5)				,	
101						,KM31,										
102	5	36											LOX*KM	131 =	*E12.5	<i>i</i>
			-			132 = *	E12.5	/10	X*KM33	=*E12	2.5//)					
102				PRIN												
103		38		FORM		.H1)										
103				RETU	RN											
103	2		1	END												

ų

RUNT VERSIEN FEB 74 B 13:04 04/09/76

.

		SUBROUTINE LTERPS (I,J,N,X,Y,XX,YY,DYOX)
13		DIMENSION X(2,3,20),Y(2,3,20)
13		NMO=N-1
15		DO 10 K=1,NMO
16		L=K+1
20		IF(XX .EQ. X(I,J,L)) GD TD 30
27		IF(ABS(XX) .LT. ABS(X(I,J,L))) GD TD 20
55	10	CONTINUE
60	20	DYDX=(Y(I,J,L)-Y(I,J,K))/(X(I,J,L)-X(I,J,K))
111		YY=Y(I,J,K}+(XX-X(I,J,K))*DYDX
131		RETURN
132	30	IF(L .EQ. N) GO TO 20
134		M=L+1
136		DYDX=(Y(I,J,H)-Y(I,J,K))/(X(I,J,H)-X(I,J,K))
167		YY=Y(I,J,L)
176		RETURN
176		END

Table B-3. Continued

APPENDIX C

LINEAR HYDRODYNAMIC COEFFICIENTS

The linear theoretical model used in solving the floating breakwater problem has been discussed extensively by Frank (1967). He developed the approach to solving the boundary value problem which has come to be known as the "Frank close-fit method". The reader is referred to the original reference for a complete presentation of the method.

In this approach, the classical linear boundary value problem requires that Laplace's equation be satisfied throughout the fluid domain:

$$\nabla^2 \Phi(\mathbf{x}, \mathbf{y}, \mathbf{t}) = 0 \quad \text{for } \mathbf{y} < 0.$$
 (C-1)

The free-surface boundary condition is applied on the undisturbed free surface:

$$\Phi_{t+1}(x,0,t) + g\Phi_{y} = 0 \quad \text{for } y = 0. \tag{C-2}$$

The body-surface boundary condition requires that no fluid flow through the body surface:

$$\nabla \Phi(\mathbf{x},\mathbf{y},\mathbf{t}) \cdot \vec{\mathbf{n}} \bigg|_{C_0} = \vec{V}_1(\mathbf{s}) \cdot \vec{\mathbf{n}}(\mathbf{s}).$$
 (C-3)

The bottom boundary condition for infinite depth is of the form:

$$\lim_{y \to -\infty} \Phi_y(x, y, t) = 0.$$
(C-4)

In addition there is a radiation condition specifying that the waves travel away from the body.

Because the problem is assumed to be linear, the velocity potential may be decomposed and several boundary value problems considered. If this is done the total potential becomes:

$$\Phi = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 + \Phi_5.$$
 (C-5)

Here,

2

 Φ_1 = potential representing pure sway motion in calm water, Φ_2 = potential representing pure heave motion in calm water, Φ_3 = potential representing pure roll motion in calm water, Φ_4 = potential representing the waves diffracted by a fixed body,

 Φ_{r} = incident wave potential.

Another velocity potential may be defined:

 Φ_6 = potential for total fixed-body problem,

so that

 $\Phi_6 = \Phi_4 + \Phi_5$.

Using this decomposition of the velocity potential, the boundary value problems may be expressed as:

$$\nabla^{2} \Phi_{i}(x,y,t) = 0 \quad \text{for } y < 0,$$

$$\Phi_{i}(x,0,t) + g \Phi_{i} = 0 \quad \text{for } y = 0,$$

$$\lim_{y \to -\infty} \Phi_{i_{y}}(x,y,t) = 0,$$

(C-6)

and

$$\nabla \Phi_{i} \cdot \vec{n} \Big|_{C_{o}} = \vec{V}_{i}(s) \cdot \vec{n}(s) \text{ for } i = 1,2,3$$

or

$$\nabla \Phi_{\mathbf{i}} \cdot \vec{\mathbf{n}} \Big|_{\mathbf{C}_{\mathbf{0}}} = 0 \quad \text{for } \mathbf{i} = 4, 6.$$

These boundary value problems are solved directly using the Frank method which distributes singularities over the hull surface. These singularities satisfy the radiation condition, Laplace's equation, the freesurface boundary condition and the bottom boundary condition. To satisfy the body boundary condition requires the formulation of a set of linear equations whose solution reveals the strength of each singularity distributed on the body.

Once the velocity potential is found the pressure may be found from Bernoulli's equation:

$$P(x,y,t) = -\rho \Phi_{+}(x,y,t).$$
 (C-7)

The force on the body surface is:

$$\vec{F} = \int_{C_0} P(s) \vec{n}(s) ds,$$
 (C-8)

and the moment is:

 $\int_{C_{o}} P(s)[\vec{r} \times \vec{n}] ds.$

The added-mass and damping coefficients are found by considering the cases i = 1,2,3. The forces and moments computed using these potentials may be separated into components in phase with acceleration and velocity. The component in phase with acceleration yields the added-mass coefficients and the component in phase with velocity yields the damping coefficients. Exciting forces and moments are computed when the case i = 6 is considered.

Special Symbols for Appendix C.

 $\vec{n}(s)$ = unit interior normal vector to the body surface

s = indicates arc length along body contour

 $C_{o} = body contour$

P(s) = pressure on body surface

 $\vec{V}(s)$ = velocity of body surface

APPENDIX D

FLOATING BREAKWATER ANALYSIS

1. Purpose of the Program.

Computer program BRK2D performs a performance analysis for twodimensional floating breakwaters of arbitrary cross section. This analysis includes predictions of the hydrodynamic coefficients, the dynamics and mooring line forces.

2. Program Description.

Program BRK2D is written using both FORTRAN II and FORTRAN IV statements.

The program consists of the main program BRK2D and the subroutines COEFF, COMP, PHYSCL, POTOUT, DYNAMC, MORTEN, CPV, LNEQF.

The subroutines COEFF and COMP calculate the quantities needed to formulate the linear equations for the velocity potential. COMP calls on LNEQF to solve these linear simultaneous equations.

Subroutine PHYSCL calculates the physical quantities including added-mass and damping coefficients and surface elevations per unit amplitude of motion.

CPV is a subroutine which evaluates the Cauchy principal value integral in the Green function.

LNEQF is a packaged subroutine to solve simultaneous linear equations using the Gaussian reduction method.

3. Type of Computer and Peripherals.

BRK2D was written for use on the CDC 6400 computer. It uses about 55000_8 words of memory. No peripherals other than the card reader, line printer and card punch are required.

4. Input Data.

The first cards in the data deck are label cards for the output. These are shown in the example input in Table D-1 for the example and are not included here. Following these cards, the input for BRK2D is:

Card #1 - Title card, Format (8A10). 80 alphanumeric characters. Card #2 - Logical control card, Format (5I10,6I5). N = Number of straight line segments used to fit the hull. NW = Number of points on the free surface where wave height is to be computed.

- NWAVEL = Number of wavelengths at which computations are to be performed. ISYM = 1 for symmetric section. = Anything else for non-symmetric section. ISKIP = 1 Do not solve equations of motion,
 - 2 Do not solve potential problem (read in coefficients from data),
 - = Anything else solve potential problem and equations of motion.
 - LC = Number of body segments which represent spaces between multiple hull configurations (1 to 5).
 - JC = Designates the segment number for segments representing spaces between multiple hulls.

Card #3 - Parameter card, Format (5F10.3,3A10).

- AREA = Crossectional area of immersed body.
- B = Characteristic beam as specified by BTITLE.
- D = Distance below free surface to origin of users coordinate system (all motions are referred to that point).
- ROE = Fluid density.
- GEE = Acceleration of gravity.
- BTITLE = Specifies B.
- Card #4 Beam/wavelength specification, Format (10F8.5).
 - BOL = Beam/wavelength ratios for computation (up to 10 different ratios may be used).
- Card #5 Offset cards, Format (2F10.3).
 There must be N+1 cards giving the offset points. In the
 version of the program used here, N must be less than or
 equal to 23 because of dimension statements.
 R(1,I) = X-coordinate of offset point.
 - R(2,I) = Y-coordinate of offset point.
- Card #6 Hydrostatic spring constants, Format (9F8.3). This is read in subroutine DYNAMC.

RKHYD	(1,1)	=	КН ₁₁ .
RKHYD	(1, 2)		KH_{12} .
RKHYD	(1, 3)	=	KH ₁₃ .
RKHYD	(2,1)		KH_{21} .
RKHYD	(2,2)	=	KH_{22}^{-} .
RKHYD	(2,3)	=	$KH_{23}^{}$.
RKHYD	(3,1)	=	KH ₃₁ .
RKHYD	(3,2)	=	KH32.
RKHYD	(3,3)	=	KH ₃₃ .

Card #7 - Physical properties, Format (6F10.3,3F5.2,15).
This is read in subroutine DYNAMC.
AREA = Crossectional area.
B = Characteristic beam.
XG = X-coordinate of the center of gravity.
YG = Y-coordinate of the center of gravity.
RMASS = Mass per unit length of breakwater.
RINERT = Mass moment of inertia per unit length of
breakwater.

<pre>DAMP(1) = Added damping in sway. In the equations of motion sway damping will be 1+DAMP(1) times the computed hydrodynamic damping. DAMP(2) = Added damping in heave. DAMP(3) = Added damping in roll. NPUNCH = 0, punch data cards containing computed trans- mission coefficient, motion response and mooring- force coefficient.</pre>
= Anything else, do not punch data cards.
Card #8 - Mooring spring constants, Format (9F8.3).
This is read in subroutine DYNAMC.
$RKMOR(1,1) = KM_{11}.$
$RKMOR(1,2) = KM_{12}.$
$RKMOR(1,3) = KM_{13}.$
$\begin{array}{l} \text{RKMOR}(2,1) \ = \ \text{KM}_{21}^{1}, \\ \text{RKMOR}(2,2) \ = \ \text{KM}_{22}^{2}. \end{array}$
$RKMOR(2,2) = KM_{22}.$
$RKMOR(2,3) = KM_{23}$.
$RKMOR(2,3) = KM_{23}.$ $RKMOR(3,1) = KM_{31}.$ $RKMOR(3,2) = KM_{32}.$
$RKMOR(3,2) = KM_{32}$. RKMOR(3,3) = KM_{33}.
Card #9 - Mooring-line response parameters, Format (6F10.2).
This card is read in subroutine MORTEN.
DELT(1,1) = $\Delta F/\Delta \alpha_1$ for shoreward mooring line. This is
the change in mooring line force per unit
displacement in sway.
DELT(1,2) = $\Delta F/\Delta \alpha_2$ for shoreware mooring line.
DELT(1,3) = $\Delta F / \Delta \alpha_3$ for seaward mooring line.
DELT(2,1) = $\Delta F / \Delta \alpha_1$ for seaward mooring line
DELT(2,2) = $\Delta F / \Delta \alpha_2$ for seaward mooring line.
DELT(2,3) = $\Delta F / \Delta \alpha_3$ for seaward mooring line.
Note: The last 3 cards (#7, #8, and #9) provide the information
needed for the dynamic analysis. If it is desirable to
perform calculations varying the data, these cards may be
repeated with different input data. There is a limit of
25 different sets of data. In the example data shown in
Table D-1, there are 3 different conditions used.

5. Mathematical Procedures and Program Limitations.

The mathematics has been described in the report and Appendix C.

The main limitations are that at most 23 offset points may be used to describe the shape. This has been found to be very adequate for the configurations considered thus far. Little change in the results occurs when more than 15 points are used. Computer time increases about as the square of the number of points.

A listing of the program is given in Table D-2.

6. Flow Chart.

A flow chart is given in a figure of this appendix.

MU11/QM MU12/0M MU13/(QM+8) MU21/QM MU23/(QM+B) MU22/0M MU32/(QM*B) MU31/(04+8) MU33/(QM*8*8) LAMBDA12/QD LAMBDA11/QD LAMODAI3/(QD+B) LAMBDA21/QD LAMBDA23/(0D+B) LAMBDA22/QD LAMBDA31/(QD+B) LAMBDA32/(QD+B) LAMBDA33/(QD+B+B) FY/QF FX/QF MZ/(2F*8) GEN BY SWAY/SWAY GEN BY ROLL/ROLL(RAD)*B GEN BY HEAVE/HEAVE REFLECTED BY FXD 8DY/"TA INCIDENT/ETA REFLECTED + INCIDENT/ETA TRANS BY FXD BDY/ETA BEAM/WAVELENGTH DIMENSIONAL FREQUENCY - HZ ADDED MASS OM . AREA*RUE DAMPING QD = AREA*POE*W WAVE FORCES OF=AREA*ROE*ETA*W2PHASE REL TO ETA AT X=0 - DFG PHASE REL TO BODY MOTION - DEGNAVE FIELD - AMPLITUDE RATION POSITION - X/WAVELENGTH DIMENSIONAL POSITION - X SWAY AMPLITUDE/ETA HEAVE AMPLITUDE/ETA ROLL AMPLITUDE(RAD)+B/ETA GEN BY RESULTANT SWAY/ETA GEN BY RESULTANT HEAVE/ETA GEN BY RESULTANT ROLL/ETA TOTAL TRANSMITTED/ETA TOTAL REFLECTED/ETA MOTION RESPONSE DAK HARBOR BREAKWATER - CORPS OF ENGINEERS TESTS 17 MAY 1975 0 1 12 32.2FULL BEAM 10 0 23 0 10.0 0.0 1.9905 12.6 .1 .159290 .180 .216311 .280 .312208 .371 .250 .429 .487825 0.0 -5.0 -5.0 -1.25 -2.50 -5.0 -5.0 -3.75 -5.0 -5.60 -4.583 -5.00 -4.583 -3.75 -3.223 -3.75 -3.223 -2.50 -3.223 -1.25 -4.583 -1.25 -4.583 0.00 4.583 0.00 4.583 -1.25 -1.25 3.223 . -2.50 3.223 3.223 -3.75 4.383 -3.75 4.583 -5.00 5.0 -5.00 -3.75 5.0 5.0 -2.50 5.0 -1.25 5.0 0.0 0.0 0.0 0.0 0.0 64.5 0.0 0.0 0.0 1165. с. 12.6 10.0 0.0 -2.34 25.1 621. 0. 0. 1 Ō. ů. ٥. ô. 0. ٥. э. 0. 0. -2.34 25.1 -5.732 13.21 -3.372 159.9 07- 1172. 200.9 1713 10.0 6?1. ۶. 12.6 0. 0. -5.24 166.2 2.063 116.8 281.8 -1607. 1172. 280.9 1713 0 0.0 -2.34 25.1 6.2 -5.732 10.21 -3.372 159.9 -1376. 410.6 1713. 10.0 166.2 12.6 621. 1. 1. 1. 118.8 -5.24 2.053 281.8 -1607. 1172. 280.9 -1376. 410.6 1713.

η

Table D-1. Example input for program BRK2D (Oak Harbor breakwater).

RUNT VERSION FEB 74 B 17:12 04/23/76

```
PROGRAM BRK2D (INPUT, OUTPUT, PUNCH, TAPE5= INPUT, TAPE6=OUTPUT)
      C***LATEST REVISION ***** 27 AUGUST 1975
      C***PROGRAM BRK2D COMPUTES THE FIRST-ORDER RESPONSE OF AN OSCILLATING
            CYLINDER ON OR NEAR THE FREE SURFACE OF AN IDEAL FLUID OF
      С
      C
            INFINITE DEPTH
  3
            COMMON RI12(26,25), RK56(25,25), POT(25,25), HOW(25,25), FF(25,6),
           1FI(25,6),
                        RI(25,25), RJ(25,25), RK(25,4), RL(25,4),
           2RMU(3,3,10), RLAM(3,3,10), FB(3,10), DFLFR(3,10), HWB(25,6,10),
           3 DELW(25,6,10) , XOL(25,10)
            COMMON/ONE/X(25), Y(25), X9(25), YB(25), ANG(25), DEL(25), VV(25)
  3
           1, FEIN(25), FIIN(25), RNURM(25,3), JC(5)
            COMMON/ONE2/CC3(25), $$3(25)
  3
            COMMON /TWO/ N+NNW, NWAVEL, ISYM+ TSKTP+ NC+ PIE+GAMMA+M+TK+TP
  3
  3
            COMMON/THREE/ WAVEL(10), WN(10), BOL(10), TL
            COMMON/SIX/XN(5), CN(5)
  3
            COMMON /SEVEN/ AREA, B, D, RDE, GEE, BTTTLE(3), TITLE(8)
  3
            COMMON / EIGHT/LBLMU(3,3,3), LBLAM(3,3,3), LBLFB(3,3), LBLHW9(7,3),
  3
           1LBL(10,3), DEG(3,10)
            COMMON /NINE/ LBLRAR(3,3), LBLHWR(5,3), LBLR(5,3)
  3
            COMMON/TEN/DELT(2,3), FOR(2,10), PHAS(2,10), FORND(2,10), PHASD(2,10)
  3
  3
            REAL K
  3
            DATA XN/.263560319718,1.413403059107,3.59542577104),
                 7.035810005859,12.640800844276/
           3
            DATA CN/.521755610563,.398666811083..0759424496817,
           1
                 ·00361175867992. ·00002336997239/
  3
            PIE=ATAN2(0, j-2, )
            TP=2.*PIE
  7
 10
            GAMMA=0.57721566
      C***BEGIN READING INPUT DATA AND PRINTING ECHD CHECK
 12
       3000 FORMAT (6410)
      C*****READ LABLES FOR PRINT OUT
12
            PEAD 3000, (((LBLMU(I,J,L), L = 1,3), J = 1,3), I = 1,3)
36
            READ 3000+ (((LBLAM(I+J+L)+L = 1+3)+ J_{-} = 1+3)+ T = 1+3)
63
            READ 3000,
                           ((LBLFB(J_{J}L)) = 1 + 3) + J' = 1 + 3)
            READ 3000,
103
                          ((LBLHWB(J_{2}L)) L = 1,3), J = 1,7)
123
            READ 3000.
                          ((
                               LBL(J_{J}U) + L = 1,3) + J = 1,10)
            READ 3000,
143
                          ((LBLRAR(J,L), L = 1,3), J = 1,3)
            READ 3000,
                          ((LBLHAR(J_{2}L)) L = 1,3) J = 1,5)
163
            READ 3000, (LBLR(1,L), L = 1,3)
203
220
            READ 20, TITLE
         20 FORMAT (8A10)
226
            PRINT 30. TITLE
226
         30 FORMAT (141, 8410///)
234
            READ 50, N, NW, NWAVEL, ISYM, ISKIP, LC, JC
234
      : 50
            FORMAT (5110, 615)
256
                 N = NUMBER OF STRAIGHT LINE SEGMENTS TO BE USED TO FTT
      С
                     THE HULL .... NOTE. THERE MUST BE NHI DEESET POINTS
      ¢
                 NW - NUMBER OF POINTS ON FREE SURFACE WHERE WAVE HEIGHT IS
      Ċ
                     TO BE COMPUTED. THIS IS IN ADDITION TO THE COMPUTATION OF
      C
      Ċ
                     WAVE HEIGHT 4.3 WAVELENGTHS ON EITHER SIDE OF THE BODY
      C
                     WHICH IS PERFORMED AUTOMATICALLY
                 NWAVEL = NUMBER OF WAVELENGTHS AT WHICH COMPUTATIONS ARE TO
      C
C
                     BE PERFORMED
      C
                 ISYM = 1 FOR SYMMETRIC SECTION
      С
                       ANYTHING FLSE FOR NON-SYMMETRIC SECTION
```

Table D-2. Listing of program BRK2D

	<u>^</u>	ISTA - 1 DO NUT SOLVE FULLTIONS OF MOTION
	с с	ISKIP = 1 DO NOT SOLVE EQUATIONS OF MOTION = 2 DU NOT SULVE POTENTIAL PROBLEM (READ IN COFFS)
	č	= ANYTHING ELSE SOLVE FOR COEFFICIENTS AND DYNAMICA
	C	NUMBER OF BODY SEGMENTS WHICH REPRESENT FREE SURFACE BETWEEL
	C	CATAMAARAN HULS. SEGMENT NUMBERS SPECIFIED BY JC(5
255 200		NKW = NW + 2 NC = N - LC
262		N = N - 2
264		$IF (NW \bullet LT \bullet O) NW = 0$
267		IF (NW .GT. NWI) NW = NW1
273		PRINT 60, N, NW, NWAVEL, ISYM, ISKTP, LC, JC
315	60) FORMAT (1)X+NUMBER OF SEGMENTS =+, T4//
		1 LUX*NUMBER OF FREE-SURFACE STATIONS =*+ I4//
		2 IOX*NUMBER OF WAVELENGTHS =** I4//
		3 10X*1SYM =*,i4// 10X*ISKIP =*, T4// 4 10X*NC = *I5, *JC =* 5I5 /)
315		READ 70, AREA, B, D, ROE, GEE, (BTITLE(T), $T = 1,3$)
342	70	FORMAT (5F10.3, 3A10)
	C	AREA = CROSSECTIONAL AREA OF THMERSED BODY
	С	B = CHARACTERISTIC LENGTH AS SPECIFIED BY BTITLE
	C	D = DISTANCE BENEATH SURFACE OF OROGIN OF USERS COORDINATE
	C	SYSTEM (+). ALL MOTIONS REFERED TO THAT POINT AND BODY
	с С	SHAPE SPECIFIED IN THAT SYSTEM
	č	ROE = FLUID DENSITY GFE = ACCELERATION OF GRAVITY
342	·	PRINT 60, AREA, B. (STITLE(I), I = 1.3). D. RDE, GEE
367	80	FORMAT(10X #AREA = *, F10.3 //, 10X *B = *F10.3 .5X, 3410
		2 //10X *D = * F10.3 // 10X *FLUID DENSITY =* F10.5//
_		3 LUX*ACCELERATION OF GRAVITY =*, F12.3/)
367		1F(ISKIP .E2. 2) GO TO 303
372 406	100	READ 100, (BOL(I), [= 1, NWAVEL) Format (10F8.5)
400	C 100	BOL = BEAM/WAVELENGTH RATIO FOR COMPUTATIONS
406	•	DD GOC I = $1, \text{NWAVEL}$
410	600	WAVEL(I) = B/BOL(I)
	С	WAVEL(I) = DIMENSIONAL WAVELENGTH OF INCIDENT WAVES
417	•• •	PRINT 110, (BOL(I), $I = 1$, NWAVEL)
433	115	FORMAT (10X*BEAM/WAVELENGTH RATIOS OF INCIDENTWAVES*//(20X10FU1.5 1))
	C****	*INITIALIZE OUTPUT VARIABLES
433	•	DO 113 IL = $1 \cdot 13$
435		WN(IL) = 0.0
437		BOL(IL) = 0.0
442	•	$DC \ 114 \ I = 1,3$
444		FB(1,1L) = 0.0
450		DELFB(I)IL) = 0.0
455 456		DD 114 J = 1,3 RMU(1, J, IL) = 0.0
465		RLAM(I, J, IL) = 0.0
474	114	CONTINUE
500		DO 112 I = 1, 25
501		XOL(I,IL) = 0.0
505		DD 112 J = $1,6$
507		HWB(I,J,IL) = 0.0
516 525	112	DELW(I,J,IL) =0.0 CONTINUE

```
RUNT VERSION FEB 74 B
                         17:12 04/23/76
          113 CONTINUE
   531
         C****COMPUTE (B/WAVEL) AND NONDIMENSIONAL WAVE NO.
               DO 115 IL = 1. NAAVEL
   533
   534
               BUL(IL) = B/WAVEL(IL)
   541
          115
               WN(IL) = TP * B/ WAVEL(IL)
         C***READ IN OFFSETS OF CYLINDER
               NUP = N + 1
   551
               NUPP = NUP + 2
   うう3
               NTOP = NUPP + NW - 1
   555
               N1 = N + 1 + NW
   557
   561
               PEAD 130, (RI(1,I),RI(2,I),I=1,NUP)
   603
           130 FORMAT (2F10.5)
         С
                     RI(1,1), RI(2,1) = DIMENSIONAL X, Y COORDINATE OF OFFSET
                        POINTS, RESPECTIVELY
         С
               IF (NW .LT. 1) GO TO 185
   603
         C***READ IN ADDITIONAL POINTS ON THE FREE SURFACE WHERE WAVE HETGHTS
               ARE TO BE COMPUTED. THU STORAGE LOCATIONS MUST BE LEFT BLANK
         С
         Ç
               FOR THE POSITION 4 WAVELENGTHS FROM THE BODY
   606
               READ 130, (R1(1,1),R1(2,1),I=NUPP,NTOP)
         С
                     RI(1,I),RI(2,I) = COORDINATES OF POINTS ON FREE SURFACE WHERE
               WAVE HEIGHT IS TO BE COMPUTED.
                                                  THIS IS TRUE FOR I .GT. N + 3
         С
         C***NON-DIMENSIONALIZE OFFSETS
               DO 180 I = NUPP,NTOP
   631
               -X(I) = RI(1+I)/B
   633
          180
               Y(I) = -1.0E - 08
  642
   647
           185 CONTINUE
               DU 190 I = 1,NUP
   547
               XB(I) = RI(1,1)/B
   651
   660
          190
               YB(I) = RI(2,I)/9
               COMPUTE MIDPDINT, ANGLE AND LENGTH OF STRATGHT-LINE SEGMENTS.
         C . . .
         C*****AND COMPONENTS OF NORAAL TO BODY
               JF = 0
  671
               DD 200 J=1.N
  672
   674
               X(J) = 0.5 + (XB(J) + XB(J+1))
               Y(J)=0.5*(YA(J)+Y3(J+1))
                                                              •
   705
   717
               T1 = YB(J+1) - YB(J)
   725
               T2=XB(J+1)-XB(J)
   732
               ANG(J) = ATAN2(T1, T2)
  740
               CC3(J) = CDS(ANG(J))
   747
               SS3(J)=SIN(ANG(J))
               VV(J)=X(J)*CC3(J)+Y(J)*SS3(J)
   756
  772
               DEL(J ) = SQRT(T2**2 + T1**2)
               RNDRM(J , 1) = -SS3(J)
RNDRM(J , 2) = CC3(J)
  1007
  1015
               RNORM(J,3) = VV(J)
  1023
           200 CONTINUE
  1031
               PRINT 30, TITLE
  1034
               PRINT 250
  1641
           250 FORMAT (COX*CYLINDER GEOMETRY*///19X*DIMENSIONAL OFFSETS*.
  1045
                     11X*NON-DIMENSIONAL OFFSETS*, 5X*MTOPOTNTS OF SEGMENTC*//
              1
              2
                     6X*I*, 16X*X*, 9X*Y*, 19X*X*, 0X*Y*, 19X*X*, 9X*Y*,
                     18X*SLOPE*, 4X*LENGTH*/)
              3
               PRINT 270, (I,RI(1,I),RI(2,I),X8(T),YR(T),X(T),Y(I),ANG(T),
  1045
                    DEL(I), I=1, N)
              1
           270 FURMAT (X, 16, 4(10X2F10.3))
  1113
               NL = N + 1
  1113
```

```
PRINT 270, NL, RI(1, NL), RI(2, NL), X9(NL), Y9(NL)
1115
             PRINT 281
1143
1147
        281 FORMAT (//10X, *PUSITIONS FOR WAVE HETGHT CALCULATIONS*/)
1147
         280 FORMAT (//)
             IF (NW .LT. 1) GD TD 290
1147
             PRINT 271, (I,RI(1,I),RI(2,I),X(I),Y(T),T=NUPP,NTOP)
1152
1204
        271
             FORMAT(X, 16, 2(10X, 2F10.3))
1204
             PRINT 280
         290 M = N + Nw + 2
1210
       C****TRANSFER TO CUORDINATE SYSTEM IN FREE SURFACE
1213
             DO 285 I = 1,N
             YB(I) = YB(I) - D/B
1214
             Y(I) = Y(I) - D/B
1222
        285
1233
             YB(NUP) = Y3(NUP) = U/B
           COMPUTE FACTORS OF I AND K INDEPENDANT OF FREQUENCY
       C
1242
             CALL COEFF
1243
             YSURF = -1.0E + 08 * B
             START FREQUENCY ITERATION.
       C...
1245
             DO 301 1L = 1, NWAVEL
1247
             K = WN(IL)
             ALL POTENTIALS INITIALIZED TO ZERT.
       C*****FE(I,J) = NONDIMENSIONAL AMPLITUDE OF POTENTIAL AT POINT T DUE TO
       C++++MODE J. (ASSOSIATED WITH COS(WT) ). FT(I,J) IS SIMILAR TO FE(I,J)
       C*****BUT ASSOSIATED WITH SIN(WT). J = 1,2,3,4,5,6 IMPLY RESPECTIVELY
       C*****SWAY, HEAVE, ROLL, DIFRACTED, INCIDENT AND DIFRACTED + INCIDENT
             00 1 I=1,25
1252
             DD 1 J = 1,6
1253
             FE(I,J)=0.
1254
1261
             FI(I,J)=0.
           1 CONTINUE
1265
       C***ADD POINTS TO THE OFFSET ARRAY FOUR WAVELENGTHS FROM THE ORIGIN
       С
             DN THE FREE SURFACE
             X(N+1) = 4.0 * WAVEL(JL)/B
1271
             X(N+2) = -4.0 * WAVEL(11)/B
1300
1307
             Y(N+1) = YSURF
             Y(N+2) = YSURF
1312
       C***COMPUTE INCIDENT WAVE POTENTIALS AND NORMAL VELOCITIES
             DO 402 I = 1,M
1316
1317
             D0404 IC = 1,5
             IF(I .EQ. JC(IC)) GD TO 402
        404
1320
             EY = EXP(K*Y(T))
1326
1335
             CKX = CDS(K * X(I))
             SKX = SIN(K*X(I))
1344
             IF(I .GT. N) GD TO 403
1353
1356
             FEIN(I) = EY*(SS3(I)*SKX + CC3(I)*^KX)
             FIIN(I) =-EY*(SS3(L)*CKX - CC3(I)*SKX)
1370
            FE(1,5) = EY*CKX*(1./K)
1403
        403
             FI(1,5) = EY*SKX*(1./K)
1414
1424
             CONTINUE
        402
1427
             AK = K/B
             WRF = SQRT(GEE*AK)
1431
1436
             WF = WRF/TP
1440
             WT = 1.0/WF
1441
             PRINT 300, K, WRF, WF, WT, WAVEL(TL)
         300 FORMAT (//, * WAVE NUMBER = K =*, F9.5, 5X*CTRCULAR FREQUENCY =*,
1460
                  F9.5, 5X*FREQUENCY =*, F9.5, 5X*PFRTOD =*, F10.5,
            1
```

		2 5X*WAVELENGTH =+, Fl(.4)
1460		TK=2.0/K
	С	FIRST-ORDER POTENTIALS ON CYLINDER ARE FIRST CALCULATED.
1462		CALL COMP(K)
	C	FIRST-ORDER PHYSICAL QUANTITIES ARE CALCULATED.
1464		CALL PHYSCL(K)
1465	301	CONTINUE
1471	1009	FORMAT (10F8.5)
1471		ISKIPI = 2
	C****	*PUNCH RESULTS OF POTENTIAL SOLUTION ON CARDS
1472		PUNCH 20, TITLE
1500		PUNCH 50; N; NW; NWAVEL; ISYM; ISKTPI; LC; JC
1522		PUNCH 709 AREA, B, D, RUE, GEE, BTTTLE
1542		PUNCH 1009, (WN(IL),IE = 1,10), (BOL(TL), TE = 1,10)
1564		DG 310 I = 1,3
1566		PUNCH 1009 / (FB(I)IL)/ IL = 1/IC)/ (DFLFB(T/IL)/ IL = 1/18)
1613		DO 310 J = 1,3
1615	310	PUNCH 1009, (RMU(I,J,IL), IL= 1,10), (RLAM(I,J,IL), IL = 1,10)
1652		DD 320 I = 1, NNV
1654		PUNCH 1009, (XOL(I,IL),IL = 1,10)
1673		DO 320 J = 1,6
1672	320	PUNCH 1009; (HWB(I;J;IL); IL = 1:10); (DELW(I;J;IL); IL = 1;10)
1730	303	CONTINUE
1730	116	CONTINUE
1730		CALL DYNAMC
1731		CONTINUE
1731		STOP
1733		END

~`

Table D-2. Continued

115

.

	SUBROUTINE DYNAMC
2	COMMEN RIL2(25,25), RK56(25,25), POT(25,25), HOW(25,25), FE(25,6),
۲	
	1FI(25,6), RI(25,25), RJ(25,25), RK(25,4), RL(25,4),
	2RMU(3,3,10), RLAM(3,3,10), FB(3,10), DELFR(3,10), HWB(25,6,10),
-	3 DELW(25,6,10) , XOL(25,10)
2	COMMON/ONE/X(25),Y(25),XB(25),YB(25),ANG(25),DEL(25),VV(25)
	1,FEIN(25), FIIN(25), RNURM(25,3), JC(5)
2	COMMON /TWO/ N,NNW, NWAVEL, ISYM, TSKIP, NC, PIE,GAMMA,M,TK,TP
2	COMMON/THREE/ WAVEL(10), WN(10), BOL(, ``.TL
2	COMMON/FOUR/RAR(3,10),OELR(3,10), HWR(25,3,10), DELWR(25,3,10),
	2 HWT(25,10),DELWT(25,10),RKHYD(3,3), RKMOR(3,3), RKTB(3,3),
	3 XG, YG, RMASS, RINERT, DAMP(3)
2	COMMON /SEVEN/ AREA, B, D, POE, GFE, PTITLE(3), TITLE(8)
2	COMMON/TEN/DELT(2,3),FOR(2,10),PHAS(2,10),FORND(2,10),PHASD(2,10)
2	DIMENSION A(6,6), C(6), ERASE(6)
2	IF (ISKIP .NE. 2) GO TO 100
	C****READ POTENTIAL CUEFS IF ISKIP = 2
5	READ 1009, (WN(IL),IL = 1,10), (BOL(TL), TL = 1,10)
27	1009 FDRMAT(10F8.3)
27	DO 110 I = 1,3
31	READ 1009, (FB(I,IL), IL = 1,10), (DFLFB(T,IL), IL = 1,10)
56	DO 110 J * 1,3
60	110 READ 1009, (RMU(I,J,IL), IL= 1,10), (RLAM(I,J,IL), IL = 1,10)
115	DO 120 I = 1 , NNW
117	READ 1009, (XOL(I, IL), IL = 1,10)
133	DD 120 J = 1,6
135	120 READ 1039, (HWB(I,J,IL), IL = 1,10) +(DFLW(I,J,IL), IL = 1,10)
173	
1 7 9	C*****OUTPUT POTENTIAL COEFS
173	CALL POTOUT
174	IF(ISKIP .EO. 1) GO TO 140
	C*****READ DIMENSIONAL JYDROSTATIC SPRING CONSTANTS
177	READ 1008, ((RKHYD(I,J),J=1,3),I=1.3)
	C*****START LOOPING THROUGH DIFFERENT DYNAMIC CONFIGURATIONS
217	DO 140 K1 = 1,50
221	READ 1010, AREA, B, XG, YG, RMASS, PINERT,DAMP(1),DAMP(2),DAMP(3),
	1 NPUNCH
253	1010 FORMAT (6F10.3, 3F5.2, 15)
253	IF (EOF,5) 121, 122
256	121 STOP
260	122 CONTINUE
260	DU 5 K2 = 1,3
262	5 IF(DAMP(K2) \bullet Eq. $-C_{\bullet 0}$) DAMP(K2) = 0.0
	C XG,YG = COORDINATES OF THE CENTER OF GRAVITY OF THE BODY
	CNOTE. MOMENTS AND MOMENTS OF INERTIA ARE COMPUTED
	C ABDUT THE CENTER OF GRAVITY
	C DAMP ADDS CORRECTION FOR VISCOUS OP NONLINEAR DAMPING
	C****READ DIMENSIONAL MODRING SPRING CONSTANTS
272	READ 1008, ((RKMOR(I,J), $J=1,3$), $I=1,3$)
312	1008 FORMAT (9F6.3)
	C*****NONDIMENTIONALIZE SPRING CONSTANTS ,MASS, MOMINT OF INERTIA
	C*****AND CG COORDINATES
312	Q = AREA + ROE + GEE/B
316	u = AREAT RDET GEEZA
317	DO 130 J = $1,3$
271	

```
RUNT VERSION FEB 74 B
                        17:12 04/23/76
               IF(RKMOR(I,J) .EQ. -0.0) RKMOR(I,J) = 0.0
   320
               RKTB(I_{J}) = (RKHYD(I_{J}) + RKMOR(I_{J}))/Q
   331
               IF(I.EQ. 3 .OR. J .EQ. 3)RKTB(I,J) =RKTR(I,J)/B
   346
          130
               RKTB(3,3) = RKTB(3,3)/B
   372
               RMASSB = RMASS/(AREA*ROE)
   402
               RINERB = RINERT/(AREA*ROE*8*8)
   406
               XGB = XG/B
   412
   413
               YGB * YG/B
         C*****START WAVELENGTH LOOP
               DD 150 IL = 1,10
   415
               IF (IL .GT. NWAVEL) GO TO 160
   416
         C*****SET VALUES IN NONDIMENTIONALIZED ALGEBRAIC EQUATIONS OF MOTION
               A(1,1) = RKTB(1,1) - WN(IL) + (RMASSB + RMU(1,1,1L))
   421
               A(2,2) = RKTB(2,2) - WN(IL) * (RMASSR + RMU(2,2,IL))
   445
               A(3,3) = RKTB(3,3) -YGB*RMASSB -WN(TL) * (RTNERB + RMU(3,3,TL) +
   471
              1 (XGB**2 +YGB**2) * RMASSB)
               A(1,2) = RKTB(1,2) - WN(TL) * RMU(1,7,TL)
   531
               A(1,3) = RKTB(1,3) - WN(IL) + (RMU(1,3,TL) -YGB*RMASSB)
   552
   576
               A(2,3) = RKTB(2,3) - WN(IL) + (RMU(2,3,1L) +XGB*RMASSB)
               A(2_{9}1) = A(1_{9}2)
   623
               A(3,1) = A(1,3)
   633
               A(3,2) = A(2,3)
   643
               00 20 I = 1.3
   652
               DD 10 J = 1,3
   654
               A(I+3, J+3) = A(I,J)
   655
   666
               A(I,J+3) =RLAM(I,J,IL)*SQRT(WN(IL))
          ADD CORRECTION FOR VISCOUS DAMPING
         Ĉ
               IF (I .EQ. J) A(I_{J}+3) = (1.0 + DAMP(I))*A(I_{J}+3)
   705
               A(I+3,J) = - A(I,J+3)
          10
   723
   736
               C(I) = FB(I,IL) * SIN(DELFB(I,IL))
               C(I+3) = FB(I,IL) * COS(DELFB(I,IL))
          20
   753
               SCALE = 1.
   771
   773
               NN = 6
         C*****SOLVE ALGEBRAIC EQS OF MOTION. B(1), B(2), B(3) = AMPLITUDES
         C*****OF COS(WT), 5(4), 5(5), 5(6) = AMPLITUDES OF SIN(WT) FOR SWAY, HEA
         C*****AND ROLL AT CENTER FO USERS COORDINATE SYSTEM.
               LL = LNEQF(6,NN.1,A,C,SCALE,ERASE)
   774
               D0 30 I = 1.3
  1005
         C****AMPLITUDE AND PHASE OF RESPONSE
               RAR(I,IL) = SORT(C(I)**2 + C(I+3)**2)
 1006
               DELR(I_{J}IL) = ATAN2(C(I)_{J}C(I+3))
          30
 1032
               DG 40 I = 1, NNW
  1047
               AW = 0.
  1050
               BW = 0.
  1051
               DO 50 J = 1+3
 1052
          90
         C++++RESULTANT WAVE AMPLITUDE AND PHASE FOR SWAY, HEAVE ROLL.
               HWR(I,J,IL) = HWB(I,J,IL) + RAR(J,TL)
 1054
  1072
               DELWR(I)JIL) = DELW(I)JIL) + DELR(J)TL)
               AW = AW + HWR(I,J, IL) + SIN(DELWR(T,J,TL))
 1111
               BW = BW + HWR(I,J,IL) * CDS(DELWR(I,J,IL) )
          50
  1132
               IF(XOL(I,IL).LT. 0.) GO TO 70
  1155
         C****TOTAL REFLECTED WAVE (VECTOR ADDITION)
               AW = AW + HWB(I,6,1L) * SIN(DELW(I,4.TL))
 1163
               BW = BW + HWB(I,6,IL) + COS(DELW(I,6,TL))
  1204
               GO TO 45
  1225
         C****TOTAL TRANSMITTED WAVE(VECTOR ADDITION)
```

RUNT	VERSION	FEB 74 B 17:12 04/23/75
122	25 76	AW = AW + HWB(I,4,IL) + SIN(DELW(I,4,IL))
124	6	BW = BW + HWB(I+4+IL) * CDS(DELW(I+4+IL))
126	7 45	HWT(I,IL) = SQRT(AW * * 2 + BW * * 2)
130	7	DELWT(I,IL)=ATAN2(AW,RW)
131	40	CONTINUE
132	21	GD TO 150
	C+++	(**SET DUTPUTS FOR IL .GT. NWAVEL
132	2 160	DO 170 I = 1,3
132	24	RAR(I)IL) = 0.0
133	30 17 0) DELR(1,1L) = 0.0
133	37	DD 180 I = 1,25
134	0	$HWT(I > IL) = G \cdot O$
134		$DELWT(\mathbf{I},\mathbf{IL}) = 0_{\bullet}0$
135	-	00 180 J = 1,3
135		$HWR(I \neq J \neq IL) = 0.0$
136		$DELWR(I_{J}J_{J}L) = 0.0$
137		CONTINUE
	-	*** OUT PUT DYNAMIC RESULTS
137	-	CALL DYNOUT
137		NMOR = 0
140		DD 139 IP = $1,3$
140		DO 139 IQ = 1.3
140		IF (RKMDR(IP,IQ) .EO, G.O) GD TO 139
141		NMOR = NMOR + 1
141		DA CONTINUE
141		1F (NMOR .NE. O) CALL MORTEN
142		IF (NPUNCH .NE. 0) GO TO 140
142		PUNCH 2000
142		00 FORMAT (*111111111)
142	27	PUNCH 2005, (SOL(IO), HWT(1,IO), RAR(1,IO), RAR(2,IO), RAR(3,IO).
		1 I0 = 1,10
146)5 FORMAT (5F10.4)
146		PUNCH 2000
147		PUNCH 2010, (BOL(IQ), FORND(1, IQ), FORND(2, TQ), IQ=1,10)
151		0 FORMAT (F10.4,2E20.4)
151		CONTINUE
152	-	RETURN
152	2	END

	SUBROUTINE MORTEN
	C***SUBROUTINE MORTEN COMPUTES FORCES IN THE MODRING LINES
2	COMMON/FOUR/RAR(3,10), DELR(3,10), HWR(25,3,17), DELWR(25,3,10),
-	2 HWT(25,10) DELWT(25,10) RKHYD(3,3), PKMDP(3,3), RKTB(3,3),
	3 XG, YG, RMASS, RINERT, DAMP(3)
2	COMMON /SEVEN/ AREA, 3, D, RDE, GFE, BTITLE(3), TITLE(8)
2	COMMON/TEN/DELT(2,3),FJR(2,10),PHAS(2,10),FJRND(2,10),PHASD(2,10)
2	READ 10, $((DELT(I_{j})_{j}=1,3), I=1,2)$
22	10 FORMAT (6F10.2)
	C DELT(1,I),I=1,3 = CHANGE IN FORCE IN SHOREWARD MODRING LINE
	C PER UNIT DISPLACEMENT IN SWAY, HEAVE AND ROLL
	C DELT(2,I),I=1,3 = CHANGE IN FORCE IN SEAWARD MOORING LINE C PER UNIT DISPLACEMENT IN SWAY, HEAVE AND ROLL
	C PER UNIT DISPLACEMENT IN SWAY, HEAVE AND ROLL
22	CAB = 1.0/(RDE*GEE*AREA)
26	CONS = 180.0/ACOS(-1.0)
32	DO 100 J = 1.2
34	PRINT 20
37	20 FORMAT (////20X*MOORING LINE MODEL RESULTS*/)
37	IF (J .EQ. 1) PRINT 18
45	IF (J .EQ. 2) PRINT 19
53	18 FORMAT (30X*SHOREWARD MOORING LINE*/)
53	19 FORMAT (30X*SEAWARD MOORING LINE*/)
53	PRINT 30, (DELT(J,K),K=1,3)
70	BU FURMAT (* CHANGE IN FORCE PER UNIT DISPLACEMENT IN SWAY, HEAVE*
	1 * AND ROLL, RESPECTIVELY =+, 3F19.4//)
	C***COMPUTE FORCES IN MOORING LINES AND PHASE
70	DD 50 I = $1,10$
72	AA = RAR(1,1)+DELT(J,1)
103	AB = RAR(2, I) + DELT(J, 2)
114	AC = RAR(3,I) * DELT(J,3) / B
126	TS = AA*SIN(DELR(1,I)) + AB*SIN(DELR(2,T)) + AC*SIN(DELR(3,T))
154	TC = AA*COS(DELR(1+I)) + AB*COS(DELR(2+I)) + AC*COS(DELR(3+I))
203	$FOR(J_JI) = SORT(TS*TS + TC*TC)$
215	PHAS(J,I) = ATAN2(TC,TS) FORND(J,I) = CAB*FOR(J,I)
225	PHASD(J,I) = CONS*PHAS(J,I)
236	50 CONTINUE
246	C4++PRINT RESULTS
250	PRINT 80, (FOR(J,I), [=1,10), (PHASD(J,T), [=1,10),
250	$1 \qquad (FORND(J_{j}I_{j}), I_{z}I_{j}))$
	BO FORMAT (3X+MOORING LINE RESPONSE+/5X+FORCE AMPLITUDE/ETA+, 11X,
306	
	1 10E10.3/5X*PHASE REL TO ETA AT X=7 - DEG *, 10E10.4// 2 5X30HFORCE AMPLITUDE/RDE*G*ARE4*ET4, 10E10.3)
204	1JO CONTINUE
306	RETURN
310	END
311	642

Table D-2. Continued

		SUBROUTINE COEFF
	С	THIS SUBRUUTINE CALCULATES THE PARTS OF I(T,J) AND K(I,J)
	č	WHICH ARE INDEPENDENT OF FREQUENCY NUMBER K.
•	L.	
2		COMMON RI12(25,25), RK56(25,25), PDT(25,25), HOW(25,25), FE(25,6),
		1FI(25,6), RI(25,25), RJ(25,25), RK(25,4), RL(25,4),
		2RMU(3,3,10), RLAM(3,3,10), FB(3,10), DELFB(3,10), HWB(25,6,10),
		3 DELW(25,6,10) , XOL(25,10)
2		COMMON/ONE/X(25),Y(25),XB(25),YB(25),ANG(75),DEL(25),VV(25)
		1, FEIN(25), FIIN(25), RNORM(25,3), JC(5)
2		COMMON /TWO/ NONWO NWAVEL, ISYMO TSKIP, NCO PIEDGAMMADMOTKOTP
2		CDMMDN/ONE2/CC3(25), SS3(25)
ž		N2 = N/2
6		$DO \perp I = 1_{P}M$
10		IF(I .GT. N) GO TO 7
13		IF(ISYM .EQ. 1 .AND. I .GT. N2) GD TO 7
26		X11 = X(I) - XB(I)
34		Y11=Y(I)-Y9(I)
41		X21 = X11 + XB(1)
45		Y21=Y(I)+Y3(1)
53		PP1=ALOG(X11**2+Y11**2)
66		PQ1=ALOG(X11++2+Y21++2)
101		TP1=ATAN2(Y11,X11)
105		TO1=ATAN2(Y21,X11)
111		
		DO 1 J = 1, N
112		X12=X(I)-XB(J+1)
120		Y12=Y(I)-YB(J+1)
124		¥22=Y(I)+YB(J+1)
131		PP2*ALOG(X12**2+Y12**2)
144		PQ2=ALDG(X12**2+Y22**2)
157		TP2=ATAN2(Y12,X12)
163		TQ2 = ATAN2(Y22, X12)
	С	CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE
167	•	IF(X11 .GT. 0OR. X12 .GT. 0.) GD TO 6
201	·	IF(TP2 .GT. DAND. TP1 .LT. D.) TP1 = TP1 + TP
214		IF(TP2 \bullet LT \bullet \bullet \bullet AND \bullet TP1 \bullet GT \bullet \bullet \bullet) TP1 \bullet TP1 \bullet TP
	4	C3 = CC3(J)
227	Ó	
232		S3=SS3(J)
235		Al=PIE
237		1F(I-J)2,3,2
241		2 A1=TP1-TP2
243		3, A2=T02-TG1
245		A5=C3+(-XB(J+1)+XB(J)-X12+0.5+PP2+X11+0.5+PP1
		1+Y12*TP2-Y11*TP1)+S3*(YB(J)-Y8(J+1)-X12*TP2
		1-Y12*0.5*PP2+X11*TP1+Y11*0.5*PP1)
307		A6=C3+(-XB(J+1)+XB(J)-X12+0.5+P02+X11+0.5+P01
		1+Y22*TQ2-Y21*TQ1)-S3*(-YB(J)+YB(J+1)-X12*TQ2
•		1-Y22*0.5*P02+X11*T01+Y21*C.5*P01)
351		4 X11=X12
353		Y11=Y12
354		Y21=Y22
356		PP1=PP2
357		PQ1=PQ2
361		TP1=TP2
362		T01=T02
364		RI12(I,J) = A1 - A2

COEFF

•

s.

 RUNT VERSIGN FEB 74 B
 15:19 03/18/76

 372
 RK56(I,J) = A5 - A6

 377
 GO TO 1

 400
 7 DD 200 L = 1,N

 402
 RI12(1,L) = 0.0

 407
 200 RK56(L,L) = 0.0

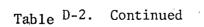
 416
 1 CONTINUE

 423
 RETURN

 424
 END

Table D-2. Continued

.


.

		SUBROUTINÉ COMP(K)
	C	THIS SUBROUTINE COMPUTES THE COEFFICIENTS DEPENDENT ON K
	С	AND CALLS ON LNEOF TO SOLVE THE SIMULTANEOUS EQUATIONS
	č	FOR THE VELOCITY POTENTIALS FE(I,JJ) AND FI(T,JJ), FOR FE2
6	•	COMMON RI12(25,25), RK56(25,25), POT(25,25), HOW(25,25), FE(25,6),
0		1FI(25,6), RI(25,25), RJ(25,25), RK(25,4), RL(25,4),
		2RMU(3,3,10), RLAM(3,3,10), FB(3,10), DELFB(3,10), HWB(25,6,10),
		3 DELW(25,6,10) , XOL(25,10)
6		COMMON/ONE/X(25),Y(25),XB(25),YB(25),ANG(25),DEL(25),VV(25)
		1,FEIN(25), FIIN(25), RNORM(25,3), JC(5)
6		CUMMON/ONE2/CC3(25), SS3(25)
6		COMMON /TWO/ N,NNW, NWAVEL, ISYM, ISKIP, NC, PIE,GAMMA,M,TK,TP
6		DIMENSION A(50,50),8(50,4),ERASE(57)
6		REAL K
6		$N2 \approx N/2$
-		DO 1 I=1,M
12		
13		DD 6 12= 1,4
14		RK(I,I2) = 0.0
21	6	RL(1,12) = 0.0
27		DO 4 IC = 1,5
31	4	IF (I •EQ• JC(IC)) GO TO 1
37		IF(ISYM .NE. 1) GO TO B
42		IF(I .GT. NZ .AND. I .LE. N) GU TO 9
55	8	X11 = X(I) - XS(1)
63 -	Ŭ	X21 = X11 +XB(1)
-		
66		Y21=Y(1)+YB(1)
74		PQ1=ALOG(X11++2+Y21++2)
107		T01=ATAN2(Y21,X11)
113		CALL CPV(X11,Y21,E21,C11,S11,A911,A1011,K)
124		C21=C11
126		S21=S11
127		A921=A911
131		A1021=A1011
132		DO 7 J=1,N
135		X12 = X(1) - XB(J+1)
143		Y22=Y(I)+YB(J+1)
147		
		PQ2=ALDG(X12++2+Y22++2)
163		TQ2=ATAN2(Y22,X12)
167		(L) E22=E2
172		C3=CC3(J)
175		CALL CPV(X12,Y22,E22,C12,S12,A912,A1012,K)
206		DO 13 IC = 1,5
211	13	IF(J .EQ. JC(IC)) GO TO 41
217		A3=A1011-A1012
221		A4=E21+S11-E22+S12
225		A7=S3+(0.5+(PQ1-PQ2)+A912-A911)+C3+(TQ1-TQ2+41011-A1012)
243		AB = E21 + SIN(K + X11 - ANG(J)) - E22 + SIN(K + X12 - ANG(J))
266	5	$RI(I_{J}J) = 2. * A3 + RI12(I_{J}J)$
300		IF (I .NE. J) GO TO 3
303		RI(I,J) = RI(I,J) - TP
314	3	RJ(I,J) = -TP*A4
322		Pût(I,J) = TK*A7 + RK56(I,J)
334		HDW(I) = -TK*PIE*AG
342		DD 10 L = 1.3
344		RK(I)_) = RK(I) + POT(I)) + RNJRM(J))

```
RUNT VERSION FEB 74 B
                         17:12 04/23/75
                RL(I_{J}L) = RL(I_{J}L) + HOW(I_{J}J) + RNORM(J_{J}L)
          10
   365
                RK(1,4) = RK(1,4) - FEIN(J)*POT(I,J) + FITN(J)*HOW(I,J)
   410
                RL(I,4) = RL(I,4) - FEIN(J)+HOW(I,J) - FITN(J)+POT(I,J)
   436
            41 IF(J-N)2,7,7
   463
   466
             2 X11=×12
                Y21=Y22
   470
                PQ1=PQ2
   471
                T01=T02
   473
                A911=A912
   474
   476
                A1011=A1012
                C11=C12
   477
                $11=$12
   501
                E21=E22
   502
             7 CONTINUE
   504
                GO TO 1
   507
                IS = N - I + 1
   507
          9
                UO 12 L = 1,3
   512
                RK(I_{1}L) = RK(IS_{1}L) + (-1_{0})**L
   513
                RL(I,L) = RL(IS,L)*(-1.0)**L
   527
          12
                DO 11 J = 1,N
   545
                DO 16 IC = 1,5
   546
                IF (J .EQ. JC(IC)) GD TO 11
          16
   547
                JS = N - J + 1
   555
                RI(I_{J}) = RI(IS_{J})
   560
                570
                RK(I,4) = RK(I,4) - FEIN(J)*POT(IS,JS) + FTIN(J)*HOW(IS,JS)
   601
                RL(I_{1}4) = RL(I_{1}4) - FEIN(J)*HOW(IS,JS) - FIIN(J)*POT(IS,JS)
   627
                  CONTINUE
   655
          11
                 CONTINUE
   660
          1
                12 = 0
   663
   664
            32 CO 22 I=1,N
                DO 14 IC = 1,5
   666
                IF(I .EQ. JC(IC)) GD TD 22
   667
          -14
         .
                I2 = I2 + 1
   675
   677
                II = I2 + NC
                                                          e`
                00 31 L = 1,4
   701
                B(I2_{J}L) = RK(I_{J}L)
   702
   712
          31
                B(II_{j}L) = RL(I_{j}L)
   725
                J2 = Ú
                DD 22 J=1+N
   726
                00 \ 15 \ IC = 1,5
   730
          15
                IF (J .EQ. JC(IC)) GD TD 22
   731
                J2 = J2 + 1
   737
                JN = J2 + NC
   741
                A(12, J2) = R1(1, J)
   743
                A(I2,JN) = -RJ(I,J)
   754
                A(II,J2) = RJ(I,J)
   765
                A(II,JN) = RI(I,J)
   776
            22 CONTINUE
  1007
                SCALE=1.
  1014
                NN = 2 + NC
  1015
                LL=LNEQF(50,NN,4,A,8,SCALE,ERASE)
  1017
                PRINT 27, SCALE
  1030
            27 FORMAT(//,5X,*DETERMINANT= *,1PE12.4)
  1035
                12 = 0
  1035
                DO 26 I = 1.N
  1035
```

Table D-2. Continued

1041		DO 17 IC = 1,5
1042	17	IF(I .E4. JC(IC)) GD TD 26
1050		12 = 12 + 1
1052		II = I2 + NC
1054		DD 35 L = 1,4
1055		FE(I,L) = B(I2,L)
1065	35	FI(I,L) = B(II,L) -
1100	26	CONTINUE
1103	29	RETURN
1104		END

•

4

.

.

	SUBROUTINE PHYSCL(K)
6	COMMON RI12(25,25);RK56(25,25); POT(25,25); HOW(25,25);FE(25,6);
•	1FI(25,6), RI(25,25), RJ(25,25), RK(25,4), RL(25,4),
	2RMU(3,3,10), RLAM(3,3,10), FB(3,10), DELF9(3,10), HWB(25,6,10),
	3 DELW(25,6,10) , XOL(25,10)
4	CGMMON/ONE/X(25),Y(25),XB(25),YB(25),ANG(25),DEL(25),VV(25)
6	1, FEIN(25), FIIN(25), RNORM(25,3), JC(5)
,	
6	COMMON /TWO/ N,NNW, NWAVEL, ISYM, ISKIP, NC, PIE,GAMMA,H,TK,TP
6	COMMON/THREE/ WAVEL(10), WN(10), BOL(10),TL
6	COMMON /SEVEN/ AREA, B, D, ROE, GEE, BTITLE(3), TITLE(8)
6	REAL K
5	DO 3 I = 1, N
	C*****MODE 6 = INCIDENT + DIFRACTED POTENTIALS
7	FE(I)6) = FE(I)4) + FE(I)5)
23	$3 = FI(I_{9}6) = FI(I_{9}4) + FI(I_{9}5)$
42	FACM = (B**2)/AREA
47	FACL = FACM*SORT(K)
53	FACE $*$ FACM $*$ K
55	DO 1 L = 1,3
	DO1 ML = 1,6
56	
57	RA = 0.0
60	RM ≠ 0.0
61	IF(M1 .E0. 4) GO TO 1 IF(M1 .E0. 5) GO TO 1
63	
	C*****INTIGRATE PRESSURE COMPONENTS OVER BODY
66	DD 5 I = 1, N
70	RM = RM + FE(I,M1) + RNORM(I,L) + DEL(T)
104	5 RA = RA + FI(I,M1) * RNORM(I,L) * DEL(T)
123	IF(M1 .GT. 4) GO TO 8
120	C*****ADDED MASS AND DAMPING IN DIRECTION L DUE TO MOTION M1 AT
	C*****WAVELENGTH IL.
126 ·	$RMU(L_9M1_9 IL) = RM*FACM$
136	RLAM(L,MI, IL) = RA*FACL
	GO TO 1
145	
•	C+++++WAVE FORCE AMPLITUDE AND PHASE IN DIRECTION M1 DUE TO
	C*****INCIDENT WAVE AT WAVELENGTH IL
146	8 FB(L) IL) = SQRT(RM**2 + RA**2) + FACF
166	DELFB(L,IL) = ATAN2(-RA,RM)
200	1 CONTINUE
205	. IW = N + 1
207	IMAX = N + NNW
211	DO 30 I = IW,IMAX
213	DO 6 L = 1,4
	C*****COMPUTE POTENTIAL AT FREE SURFACE POINTS USING GREENS THEORUM
214	DO 4 J = 19 N
215	DO 10 IC = $1,5$
216	10 IF(J .EQ. JC(IC)) GO TO 4
	$FE(I_{j}L) = FE(I_{j}L) + FE(J_{j}L) + RI(I_{j}J) \longrightarrow FI(J_{j}L) + RJ(I_{j}J)$
224	FI(I) = FI(I) + FE(J) + FE(J) + FT(J) + FT(J) + FT(J)
255	
306	4 CONTINUE
311	FE(I,L) = (FE(I,L) - RK(I,L))/TP
326	6 FI(I,L) = (FI(I,L)) - RL(I,L))/TP
	C*****MODE 6 = INCIDENT + DIFRACTED POTENTIALS
344	FE(I)6) = FE(I)4) + FE(I)5)
361	$F_{I}(I_{9}6) = FI(I_{9}4) + FI(I_{9}5)$

Table D-2. Continued

·

,

375		II = I - N
	C * * * *	*NON DIMENTIONALIZE FREE SURFACE POSTTION WITH WAVELENGTH
377		XOL(II,IL) = X(I) * B/ WAVEL(IL)
410		DD 2 M1 = 1,6
	C****	*WAVE AMPLITUDE AND PHASE AT POINT II DUE TO MODE MI AT WAVELENGTH 🔅
412		HWB(II,M1,IL) = SQRT(FE(I,M1)**2 + FT(T,M1)**2) * K
443	2	DELW(II;M1;IL) = ATAN2(-FI(I;M1); FE(I;M1))
470	30	CONTINUE
472	7	RETURN
473		END

٠,

	SUBROUTINE POTOUT
2	COMMON RI12(25,25), RK56(25,25), POT(25,25), HOW(25,25), FE(25,6),
***	1FI(25,6), RI(25,25), RJ(25,25), RK(25,4), RL(25,4),
	2RMU(3,3,10), RLAM(3,3,10), FB(3,10), DELF9(3,10), HWB(25,6,10),
	3 DELW(25,6,10) , XOL(25,10)
2	COMMON /TWO/ N;NNW; NWAVEL; ISYM; ISKIP; NC; PIE;GAMMA;M;TK;TP
2	COMMON/THREE/ WAVEL(10), WN(10), BOL(10),IL
2	COMMON /SEVEN/ AREA, B, D, ROE, GFE, BTITLE(3), TITLE(8)
2	COMMON / EIGHT/LBLMU(3,3,3), LBLAM(3,3,3), LBLFB(3,3),LBLHWR(7,3),
	1LBL(10,3), DEG(3,10)
2	1001 FORMAT(//3X, 3A10, / (5X, 3A10, 10F10.4))
2	1002 FORMAT (//3X, 3A10, / (5X, 3A10, 10F10.4 /5X, 3A10, 10F10.4/)) 1003 FORMAT(5X, 3A10, 10F10.4 / 5X, 3A19, 10F10.4 /)
2 2	1005 FORMAT(//3X, 3A10, 2X, 10F10.4/ 3X, 3A10, 2X, 10F10.4)
2	PRINT 2000, BTITLE
10	2000 FORMAT (1H1, 20X, *NONDIMENSIONAL POTENTIAL COEFFICIENTS* /// 25X
10	1 * W = SORT(G/B), W2 = G/B* / 25X*8 = *, 3410 /
	1 25X+G = ACCELERATION OF GRAVITY*/
	1 25X*RDE = MASS DENSITY OF FLUID*/
	225X *ETA = INCIDENT WAVE AMPLITUDE */25X,*WAVEL = INCIDENT OR GENE
	3RATED WAVE LENGTH*//)
10	. DO 9 IL = 1,10
12	9 DEG(1,IL) = SQRT((GEE*BOL(IL)) /(TP*B))
32	PRINT 1004, (LBL(1,K), $K = 1,3$), (BOL(IL), IL = 1,10),
	1 (LBL(2,K), $K = 1,3$), (DEG(1,IL), $IL = 1,10$)
77	PRINT 1001, (LBL(3,K),K= 1,3), (((LBLMU(I,J,K),K= 1,3),
150	1(RMU(I)J,IL), IL = 1,10), J = 1,3), I = 1,3) PRINT 1CO1 ,(LBL(4,K),K = 1,3), (((LBLAM(I)J,K),K = 1,3),
150	$1(RLAM(I_2J_2IL)_2 L= 1_20)_2 = 1_20_2 ((LSLAM(I_2J_2K)_2K) = 1_20)_2$
221	DO 1 I = $1/3$
223	DO 1 IL = 1,10
224	1 DEG(I,IL) = 57.298 * DELFB(I,IL)
241	PRINT 1002, (LBL(5,K), K = 1,3), ((LBL=B(I,K),K= 1,3),
	1(FB(I,IL),IL = 1,10), (LBL(5,K), K = 1,3),(DEG(I,IL),IL=1,10)
	2 , I = 1, 3
324	DO 2 f = 1, NNW
326	$DD \ 8 \ IL = 1,10$
327	DEG(1, IL) = 0.C
334	IF(IL .GT. NWAVEL) GO TO 8
337	DEG(1,IL) =XOL(I,IL)*B/BOL(IL)
353	
355	PRINT 1002; (LBL(8;K); K = 1;3); (LBL(9;K); K = 1;3); 1 (XOL(1;IL); IL = 1;10); (LBL(10;K); K=1;3); (DEG(1;IL);TL=1;10)
436	DO 3 J = 1,3
440	DO 3 IL = 1,10
441	3 = DEG(J, IL) = 57.298 * DELW(I, J, IL)
460	PRINT 1003, ((LBLHWB(J,K), K = 1,3), (HWB(T,J,IL), IL = 1,10),
100	1 (LBL(7,K), $K = 1,3$), (DEG(J,TL), IL = 1,10), $J = 1,3$)
534	IF (XOL(I,1) .LTO.) GO TO 4
542	DO 5 IL = 1.10
544	5 DEG(1,IL) = 57.298 * DELW(I,6,IL)
561	PRINT 1003, (LBLHW8(7,K), K=1,3), (HWB(I,5,IL), IL = 1,10),
	1 (LBL(6,K),K=1,3), (DEG(1,IL), IL = 1,17)
632 -	GD TO 2
633	4 DD 7 J = 1,3

635		DO 7 IL = 1,10
636	7	DEG(j,IL) = 57.298 * DELW(I,J+3, TL)
655		PRINT 1603,((LBLHWB(J,K), K = 1,3), (HWR(T,J,IL), IL = 1,10), 1(LBL(6,K), K=1,3), (DEG(J-3,IL), TL = 1,10), J= 4,6)
732	2	CONTINUE
735		RETURN
735		END

	FUNCTION LNEQF(M,N,N1,A,8,DTRMNT,Z) C Solves simultaneous linear equations by gausstan reduction.
	C FORTRAN IV EQUIVALENT OF LNEQS.
12	REAL A(M,M)+B(M,M) >Z(M)+DTRMNT+RMAX+RNEXT+W+DOV
12	NMI=N-I
14	DO 40 J=1,NM1 J1=J+1
15	C FIND ELEMENT OF COL J, ROWS J-N, WHICH HAS MAX ABSOLUTE VALUE.
17	LMAX*J
20	$RMAX = ABS(A(J_J))$
34	DD 8 K=J1,N
36	RNEXT=ABS(A(K,J))
52	IF (RMAX .GE. RNEXT) GO TO 8
55	S RMAX=RNEXT
57	
60 63	CONTINUE
05	IF (LMAX •NE• J) GD TO 10 C•• MAX ELEMENT IN COLUMN IS ON DIAGONAL
65	IF (A(J,J)) 20,94,20
	C MAX ELEMENT IS NOT UN DIAGONAL. EXCHANGE ROWS J AND LMAX.
73	10 DO 12 L=J+N
75	(_ e L) A≍W
102	$A(J_{p}L) = A(LMAX_{p}L)$
113	12 A(LMAX)L) = W
124	DO 14 L=1+N1
125	₩=B(J)L)
132 143	B(J∍L)⇒B(LMAX∍L) 14 B(LMAX∍L)=w
154	DTRMNT = -DTRMNT
	C ZERD COLUMN J BELOJ THE DIAGONAL.
155	C ZERD COLUMN J BELDJ THE DIAGONAL. 20 Z(J)=1./A(J,J)
165	DD 30 K=J1, N
167	IF (A(K,J)) 22,30,22
175	22 W = -Z(J) * A(K, J)
205	DO 24 L=J1,N
207	$24 A(K_{p}L) = W + A(J_{p}L) + A(K_{p}L)$
230 231	DU-26 L=1,N1 26 B(K,L)=W*B(J,L)+B(K,L)
252	30 CONTINUE
255	40 CONTINUE
257	IF (A(N,N)) 42,94,42
265	42 Z(N)=1./A(N)N)
	C OBTAIN SOLUTION BY BACK SUBSTITUTION.
275	DO 50 L=1,N1
277	$50 \ B(N_{2}L) = Z(N) + B(N_{2}L)$
315 316	. DO 60 K=1,NM1 j=N-K
317	J=N-K J]=J+1
321	DD 58 L=1,N1
322	W=0.
323	DO 56 I=J1,N
325 .	
342	58 B(J,L)=(B(J,L)-W)*Z(J)
362	60 CONTINUE

Table D-2. Continued

LNEOF

	C EVALUATE DETERMINANT.
364	IF (DTRMNT) 70,74,70
366	70 DD 72 J=1,N
370	72 DTRMNT=DTPMNT*A(J,J)
377	74 LNEOF=1
401	RETURN
	C SINGULAR MATRIX, SET ERROR FLAG.
401	94 LNEOF = 2
403	DTRMNT=0.
404	RETURN

405 END

Table D-2. Continued

7

ij

CCAUCHY PRINCIPAL VALUE INTEGRAL. 13 COMMON/SIX/XN(5),CN(5) 13 REAL K 13 IF (Y .GE. 0.0) Y = -1.0E-09 15 IT-ATANAY(7,X) 24 CFOR NEGATIVE X,CORRECTION TO RANGE OF ATAM2. 27 IF(X,LT-0.)TH=TH=TH=TP 28 AA*K*Y 34 E=EXP(AA) 43 BB*K*X 45 Cl=COS(5B) 54 Sl=SIN(3B) 54 Sl=SIN(3B) 55 Cl=COS(5B) 54 Sl=SIN(3B) 56 Cl=COS(5B) 57 SLM1=0. 103 SLM1=0. 104 IF(R,GE.10.160 TO 13 107 SLM1=0. 105 SLM1=0. 106 Cl=C. 116 Cl=C. 117 ASSIGN 3 TO LDC 120 IF(X,E0.0.1ASSIGN 8 TO LDC 122 FL=1.0 124 DO 1 L=1,100 124 DO 1 L=1,100 125 DL=L 126 FAC=FAC*0L 130 RL=R*RL 132 DLFAC=FAC*0L 131 SLM1=0. 133 DLTH=0. 134 SLM1=0. 135 Al=RL/DLFAC 137 IF(ABS(CL)TH).EL.LE=0. 138 SLM1=ABS(SLTH).EL.LE=0. 139 SLM1=ABS(SLTH).EL.LE=0. 130 SLM1=ABS(SLTH).EL.LE=0. 131 SLM1=ABS(SLTH).EL.LE=0. 132 SLM1=ABS(SLTH).EL.LE=0. 133 SLM1=ABS(SLTH).EL.LE=0. 134 SLM1=ABS(SLTH).EL.LE=0. 135 SLM1=ABS(SLTH).EL.LE=0. 136 SLM2=0. 137 SLM1=ABS(SLTH).EL.LE=0. 138 SLM2=0. 139 SLM2=0. 141 T SLM1=AL*(DLFAC 151 SLM1=ABS(SLTH).EL.LE=0. 152 SLM1=ABS(SLTH).EL.LE=0. 153 SLM1=ABS(SLTH).EL.LE=0. 154 SLM1=ABS(SLTH).EL.LE=0. 155 SLM1=ABS(SLTH).EL.LE=0. 156 CONTINUE 157 SLM2=AL*SLM2 158 SLM2=AL*SLM2 159 SLM2=AL*SLM2 150 SLM1=ABS(SLTH).EL.LE=0. 151 SLM1=ABS(SLTH).EL.LE=0. 152 SLM1=ABS(SLTH).EL.LE=0. 153 SLM1=ABS(SLTH).EL.LE=0. 154 SLM2=AL*SLM2 155 SLM1=ABS(SLTH).EL.LE=0. 156 SLM1=ABS(SLTH).EL.LE=0. 157 SLM2=ABS(SLTH).EL.LE=0. 158 SLM2=0. 159 SLM2=AL*SLM2 150 SLM2=ABS(SLTH).EL.LE=0. 151 SLM2=AL*SLM2 152 SLM2=SLM2=SLM2 153 SLM2=AL*SLM2 154 SLM2=AL*SLM2 155 SLM2=AL*SLM2 156 SLM2 157 SLM2=AL*SLM2 158 SLM2=ABS(SLTH).EL.LE=0. 159 SLM2=SLM2 150 SLM2=AL*SLM2 151 SLM2=AL*SLM2 151 SLM2=AL*SLM2 152 SLM2=SLM2 154 SLM2=AL*SLM2 155 SLM2 156 SLM2 157 SLM2=AL*SLM2 158 SLM2 158 SLM2		SUBROUTINE CPV(X,Y)E,CI,S1,A9,A10,K)
<pre>13</pre>		
<pre>13</pre>	13	COMMON /TWO/ N;NNW; NWAVEL; ISYM; TSKIP; NC; PIE;GAMMA;M,TK;TP
<pre>13 IF (Y.GE. 0.0) Y = -1.0E-08 15 IT-ATAN2(Y,X) 24 TH-PIE/2.+TT 27 IF(X.LT.0.)TH-TH+TP 32 AA-K*Y 34 E=EXP(AA) 43 BB-K*X 45 C1-C0S(BB) 54 S1-SIN(BB) 63 R*KSQRT(X*2.+Y**2) 102 SUM1-0. 103 SUM2-0. 104 IF(R.GE.10.)GO TO 13 107 SUM11-0. 103 SUM2-0. 104 IF(R.GE.10.)GO TO 13 107 SUM11-0. 103 SUM2-0. 104 IF(R.GE.10.)GO TO 13 107 SUM12-0. 103 SUM2-0. 104 IF(R.GE.10.)GO TO 13 107 SUM11-0. 105 SUM2-0. 106 CDLTH-0. 107 SUM12-0. 108 SUM2-0. 109 SUM2-0. 110 SUM22-0. 111 FAC-1.0 113 SUM2C-1. 115 SDLTH-0. 116 CDLTH-0. 116 CDLTH-0. 117 ASSIGN 3 TO LDC 120 IF(X.F0.0.)ASSIGN 8 TO LDC 122 PI-1.0 124 DO 1 L=.,100 125 DL-L 126 FAC-FAC+DL 130 RL-R*RL 132 DLFAC-FAC+DL 133 DLTH-0L+TH 135 ALREXCLE.1.E=O7)GO TO 2 151 SUM1C-ABS(AL)/SUM1) 157 IF(ABS(CDLTH).LE.1.E=C7)GO TO 2 151 SUM1C-ABS(AL)/SUM1] 157 IF(ABS(CDLTH).LE.1.E=C7)GO TO 2 151 SUM1C-ABS(AL)/SUM1] 157 IF(ABS(SDLTH).LE.1.E=C7)GO TO 2 151 SUM1C-ABS(AL)/SUM1] 157 IF(ABS(SDLTH).LE.1.E=C7)GO TO 2 151 SUM1C-ABS(AL)/SUM1] 157 IF(ABS(SDLTH).LE.1.E=C7)GO TO 2 151 SUM1C-ABS(AL)/SUM2] 253 A SUM2C+0. 264 GO TO 5 255 3 IF(ABS(SDLTH).LE.1.E=C7)GO TO 4 255 JF(SUM2C.LE.1.E=C9)GO TO 5 255 3 IF(ABS(SDLTH).LE.1.E=C7)GO TO 4 256 JF(SUM2C.LE.1.E=C9)GO TO 5 257 3 IF(ABS(SDLTH).LE.1.E=C7)GO TO 5 258 4 SDLTH-SUM2C.LE.1.E=C9)GO TO 5 259 3 IF(ABS(SDLTH).LE.1.E=C7)GO TO 5 250 4 SDUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SUM2C+ABS(AL)/SU</pre>	13	
15 TT-ATAN2(Y,X) 24 TH-PTPCZ.+TT CFOR NEGATIVE X,CORRECTION TO RANGE OF ATAN2. 27 IF(X.LT.0.)TH=TH+TP 32 AA*K*Y 34 E=EXP(AA) 35 BB*K*X 45 C1=COS(BB) 54 S1=SIN(BB) 63 R=K*SQRT(X**2+Y**2) 102 SUM1=0. 103 SUM2=0. 104 IF(R.GE.10.)GO TO 13 107 SUM1=0. 110 SUM22=0. 111 FAC=1.0 112 SUM22=0. 113 SUM2C=1. 114 SUM2C=1. 115 SDLT+0. 116 CDLTH=0. 127 ASIGN 3 TO LDC 128 PL=1.0 124 DO 1 L=1.10 125 DL=1.0 126 FAC=FAC*0L 130 RL=R*RL 132 DLFAC=FAC*0L 133 SUT+0. 134 SUM1CLE.1.E=07)GO TO 2 151 SUM1CASSCIDTH.LE.1.E=07)GO TO 2	13	REAL K
24 TH=PTE/Ze.+TT C+FGR NEGATIVE X,CORRECTION TO RANGE OF ATAM2. 27 IF(X.LT.0.)TH=TH=TH=TP 32 AA=K4*Y 34 E=EFV(AA) 43 BB=K4X 45 C1=COS(BB) 54 S1=SIN(BB) 63 R=K=SORT(X*+2+Y*+2) 102 SUM1=0. 103 SUM2=0. 104 IF(K.GC.10.)SO TO 13 107 SUM1=0. 103 SUM2=0. 111 FAC=1.0 113 SUM1c=1. 114 SUM2=0. 115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LOC 120 If (K.Go.0.)ASSIGN 6 TO LDC 121 PL=1.0 122 PL=1.0 123 DLT=4.0 124 DO I L=4.100 125 DL=1 133 DLTH=0. 134 SUM10. 135 AL=RV[DLFAC 136 CLTH=0.	13	IF (Y .GE. 0.0) Y = -1.0E-08
C FOR NEGATIVE X,CORRECTION TO RANGE OF ATAN2. 1 F(X,LT.O.)TH=TH+TP 2 AA=K+Y 34 E=EXP(AA) 43 BB=K+XA 45 C1=COS(BB) 54 S1=SIN(BB) 63 R=K*SQRT(X*+2+Y**2) 102 SUM1=0. 103 SUM2=0. 104 IF(R,GE,10,)GO TO 13 107 SUM1=0. 103 SUM22=0. 114 FAC=1.0 115 SDLTH=0. 116 CDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 122 FL=1.0 124 DO 1 L=1,100 125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*DL 133 DLTH=0. 134 SUM1C=1. 135 A1=RL/DLFAC 136 AL=R*RL 137 IF(ABS(CDLTH).LE,1.E=C7)GO TO 2 151 SUM1C=ABS(A1/SUM1) 157 JF(ASSIGN) ALE.1.E=C7)GO TO 4 203 SUM2=0. 204 GO TO LDC,(3,P) 205 JL=L 205 JL=L 20	15	TT=ATAN2(Y,X)
27 IF(X,LT.0.)TH+TH+TP 32 AA:K*Y 34 E=EXP(AA) 43 BB=K*X 45 C1=COS(BB) 54 S1=SIN(BB) 53 R=K*SQRT(X*2*Y**2) 102 SUM1=0. 103 SUM2=0. 104 IF(R.6E.10.)GO TO 13 105 SUM2=0. 116 FAC=1.0 117 SUM2=0. 118 SUM2=0. 119 SUM2=0. 111 FAC=1.0 112 SUM2=0. 113 SUM1=0. 114 SUM2=0. 115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 120 IF(X,FG.0.)ASSIGN 6 TO LDC 122 PL=1.0 124 DO 1 L=4.100 125 DL=4 130 RL=R*RL 132 DLFAC=FAC*0L 133 DLTH=0. 134 DLTH=0. 135 A1=RL/DLFAC 136 SUM2:SUDENTH	24	TH=PIE/2.+TT
32 $A = K + Y$ 34 $E \in EXP(AA)$ 33 $BB = K + X$ 45 $C1 = COS(BB)$ 54 $S1 = S1N(BB)$ 63 $P = K + SQRT(X + + 2 + Y + + 2)$ 102 $SUM1 = 0$. 103 $SUM2 = 0$. 114 $I = K + SQRT(X + + 2 + Y + + 2)$ 103 $SUM2 = 0$. 114 $I = K + SQRT(X + + 2 + Y + + 2)$ 104 $I = F(R, GE - 10 + 10)$ 107 $SUM1 = 0$. 111 $F(R, GE - 10, G)$ 113 $SUM2 = 0$. 114 $SUM2 = 0$. 115 $SULT = 0$. 116 $CDLT = 0$. 117 $ASISIGN = 3 TO LDC$ 120 $I = (X + E0, 0) + ASISIGN = 8 TO LDC$ 124 $DO I = 1 = 100$ 125 $D = 1 = 10$ 126 $F A \in F A C + 0L$ 130 $R I = R + RL$ 132 $D I = A = F A C + 0L$ 133 $D I = A + 100$ 134 $D I = L + 100$ 125 $D = 1$		CFOR NEGATIVE X,CORRECTION TO RANGE OF ATAN2.
34 E=EXP(AA) 43 BB=K+X 45 C1=COS(BB) 54 S1=SIN(BB) 63 R=K+SURT(X*+2+Y*+2) 102 SUM1=0. 103 SUM2=0. 104 IF(R.66±.10.160 TO 13 107 SUM1=0. 113 SUM2=0. 114 FAC=1.0 115 SUM2=0. 116 CD(T+0. 117 ASSIGN 3 TO LDC 118 SUM2C=1. 116 CD(T+0.) 117 ASSIGN 3 TO LDC 128 PL=1.0 129 F(X.E0x0.)ASSIGN 8 TO LDC 120 I F(X.E0x0.)ASSIGN 8 TO LDC 121 ASSIGN 3 TO LDC 122 R = 1.0 124 DO 1 L = 1.100 125 DL=4 130 RL=R*RL 1313 DLTH=0L*TH 132 DLFAC+FAC*DL 133 DLTH=0L*TH 134 SUM1C+ABS(AL/SUM1) 157 IF(ABS(CDLTH).LE.1.E=07)60 TO 7 165 2 CDLTH=COS(DLTH)	27	IF(X.LT.0.)TH=TH+TP
43 BB=K*X 45 C1=C05(BB) 54 S1=S1N(BR) 63 P <k*sqrt(x**2+y**2)< td=""> 102 SUM1=0. 103 SUM2=0. 104 If(R.6E.10.160 TO 13 107 SUM1=0. 103 SUM2=0. 114 FAC=1.0 113 SUM22=0. 114 SUM22=0. 115 SUM1=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 128 PL=1.0 129 I=1.0 120 I=(X,E=0.0,)ASSIGN 8 TO LDC 121 PL=1.0 122 PL=1.0 123 DLFAC=FAC*DL 134 SUM1=0.+TH 135 A1=RL/DLFAC 136 A1=RL/DLFAC 137 I=(ABS(A1/SUM1)) 157 I=(SUM1C.4E.1.E=-05)GO TO 7 165 2 CDLTH=COS(IDLTH).LE.1.E=07)GO TO 2 158 SUM2=0 159 SUM1=SUM1+SUM11 174 7 GO TD LDC.(3.P.) 175 SUM2=0</k*sqrt(x**2+y**2)<>	32	A A = K ★ A
45 C1=COS(BB) 54 S1*SIN(3B) 63 R=K*SQRT(X**2+Y**2) 102 SUM1=0. 103 SUM2=0. 104 If(R,GE,I))GO TO 13 107 SUM1=0. 113 SUM2=0. 114 FAC=1.0 113 SUM1=1. 114 SUM2=0. 115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 120 IF(X:E0.0.)ASSIGN 8 TO LDC 121 PL=1.0 122 PL=1.0 124 D0 1 L=1,100 125 DL=4 126 FAC=FAC*0L 133 DLTH=0.+TH 134 DLTA=LPLFAC 135 A1=Rt/DLFAC 136 A1=Rt/DLFAC 137 IF(ABS(CDLTH).LE.1.E=C7)GO TO 2 138 DLTH=C0S(DLTH) 139 SUM2C=0. 130 RL=RRL 131 SUM1=SUM1 135 A1=Rt/DLFAC 137 IF(ABS(CDLTH).LE.1.E=C7)GO TO 2 <	34	E=EXP(AA)
54 S1=SIN(5B) 63 R=K*SQRT(X**2+Y**2) 102 SUM1=0. 103 SUM2=0. 104 IF(R,GE,10.)GO TO 13 107 SUM1=0. 110 SUM2=0. 111 FAC=1.0 112 SUM2=0. 113 SUM2=0. 114 SUM2=0. 115 SDIT=0. 116 CDIT=0. 117 ASSIGN 3 TO LDC 120 IF(X.F0.0.)ASSIGN 8 TO LDC 121 PL=1.0 122 RL=1.0 123 DLF4.54C*DL 124 DO 1 L=1.100 125 DL=1 126 FAC=FAC*DL 133 DLTH=0.4X*RL 134 SUM2C+AC*UL 135 A1=RL/DLFAC 136 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=07)GO TO 2 151 SUM1=0.14ASUM1 157 IF(SUM1C.LE.1.E=05)GO TO 7 165 2 CDLTH=COS(DTH) 174 7 G TO LDC.(3.PA) 203 8 SUM2C=0.	43	BB≠K★X
63 R=K*SORT(X**2+Y**2) 102 SUM1=0. 103 SUM2=0. 104 IF(R,6E,10.)GO TO 13 107 SUM1=0. 113 SUM2=0. 114 FAC=1.0 113 SUM2=0. 114 SUM2=0. 115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 122 RL=1.0 124 DO 1 L=1.100 125 DL=1. 130 RL=R*RL 132 DLFAC=FAC+DL 133 DLT+=0.+TH 134 SUM1C=AC=FAC+DL 135 A1=RL/OLFAC 136 RL=R*RL 137 IF(ABSICALTH).LE.1.E=O7)GO TO 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1(LE.1.E=O5)GO TO 7 158 A1=RL/OLFAC 159 SUM2=0. 151 SUM1=A1*CDLTH 152 SUM1=SUM1 174 GO TO LDC.(3.R) 175 IF(SUM2C.LE.1.E=O7)GO TO 4 150 SUM2E=0.	45	Cl=COS(BB)
<pre>102 SUM1=0. 103 SUM2=0. 104 IF(R.GE.10.)GO TO 13 107 SUM1=0. 113 SUM2=0. 114 FAC=1.0 113 SUM2=1. 114 SUM2C=1. 115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 120 IF(X.F0.0.)ASSIGN 8 TO LDC 122 PL=1.0 124 CO I L=1.100 125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*DL 133 DLTH=0L*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=07)GO TO 2 151 SUM1C=A6S(A1/SUM1) 157 IF(SUM1C.LE.1.E=05)GO TO 7 158 2 CDLTH=COS(DLTH) 159 SUM1=SUM1+SUM11 174 7 GO TO LDC.(3.P) 203 8 SUM2C=0. 204 GO TO 5 205 SI IF(ABS(SDLTH).LE.1.E=07)GO TO 4 207 SUM2=ABS(A1/SUM2) 208 A SUM2C=0. 209 A SUM2C=0. 209 A SUM2C=0. 200 SUM2C=ABS(A1/SUM2) 201 F(SUM2C.LE.1.E=05)GO TO 5 203 A SUM2C=0. 204 GO TO 5 205 SI IF(ABS(SDLTH).LE.1.E=07)GO TO 4 207 SUM2C=ABS(A1/SUM2) 208 A SUM2C=0. 209 SUM2C=0. 209 SUM2C=0. 200 SUM2C=0. 201 CONTINUE 202 SIF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GO TO 6 203 A SUM2C=0. 204 SUM2=SUM2SUM2C.LE.1.E=05)GO TO 6 205 SI IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GO TO 6 204 SUM2=SUM2SUM2C.LE.1.E=05)GO TO 5 205 SI IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GO TO 6 204 SUM2=SUM2SUM2C.LE.1.E=05)GO TO 6 205 SI IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GO TO 6 205 SI IF(SUM1C.LE.1.E=05.AND</pre>	54	S1=SIN(BB)
<pre>103 SUM2=0. 104 IF(R.GE.10.)GD TO 13 107 SUM1=0. 110 SUM22=0. 111 FAC=1.0 113 SUM1C=1. 114 SUM2C=1. 115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 120 IF(X.FQ.0.)ASSIGN 8 TO LDC 122 RL=1.0 124 DO 1 L=1.100 125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*DL 133 DLTH=0L=TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=07)GD TO 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C.LE.1.E=05)GD TO 7 155 Z CDLTH=CDS(UTH) 171 SUM1=A1*CDLTH 172 SUM1=SUM1SUM1 174 7 GD TD LDC.(3.A) 203 8 SUM2C=0. 204 GD TD 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GD TO 4 217 SUM2C=ABS(A1/SUM2) 223 4 SDLTH=SIN(DLTH) 225 IF(SUM2C.E.1.E=05)GD TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 237 SUM22=A1*SDLTH 236 6 C=GAMMA+ALJG(R)+SUM1</pre>	63	R≠K*SQRT(X**2+Y**2)
<pre>104</pre>	102	SUM1=0.
107 SUM1=0. 110 SUM22=0. 111 FAC=1.0 113 SUM2=0. 114 FAC=1.0 115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 120 IF(X.EQ.0.)ASSIGN 8 TO LDC 121 PL=1.0 122 PL=1.0 123 DUTAC=1. 124 DO 1 L=1,100 125 DL=L 126 FAC=FAC+DL 130 RL=R*RL 132 DLFAC=FAC+DL 133 DLTH=0L*TH 134 DLTH=0L*TH 135 A1=RL/DLFAC 136 SUMIC=A8S(A1/SUM1) 157 IF(SUM1C=LE=1.E=05)GO TO 7 158 SUMIC=0. 159 OT D LDC.(3, R) 171 SUM1=AA*CDLTH 172 SUM1=SUM1+SUM1 174 7 GO TO LDC.(3, R) 203 8 SUM2C=0. 204 GO TO LDC.(3, R) 225 IF(ABS(SDLTH).LE=1.E=05)GO TO 5 233 4 SDLTH=SIN(0LTH)<	103	
<pre>113 SUM22=0. 114 FAC=1.0 113 SUM1C=1. 114 SUM2C=1. 115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 120 IF(X.F0.0.)ASSIGN 8 TO LDC 122 RL=1.0 124 DO 1 L=1,100 125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*DL 133 DLTH=DL+TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=07)GO TO 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C.LE.1.E=05)GO TO 7 165 2 CDLTH=COLTH 171 SUM1=AL*CDLTH 172 SUM1=SUM1+SUM11 174 7 GO TO LDC.(3,R) 203 8 SUM2C=0. 205 3 IF(ABS(SDLTH).LE.1.E=07)GO TO 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GO TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM2C=ABS(A1/SUM2) 244 GO TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM2C=ABS(A1/SUM2) 245 IF(SUM2C.LE.1.E=05)GO TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM2C=ABS(A1/SUM2) 244 GO TO S 255 IF(SUM2C.LE.1.E=05)GO TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM2C=ABS(A1/SUM2) 242 5 IF(SUM2C.LE.1.E=05)GO TO 6 244 GO TO 5 255 IF(SUM2C.LE.1.E=05)GO TO 6 253 4 SDLTH=SIN(DLTH) 254 CDLTH=CONCONCONCONCONCONCONCONCONCONCONCONCONC</pre>	104	IF(R.GE.10.)GD TO 13
111 FAC=1.0 113 SUM1C=1. 114 SUM2C=1. 115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 120 IF(X:EQ.0.)ASSIGN 8 TO LDC 122 PL=1.0 124 DO 1 L=1.100 125 DL=L 126 FAC=FAC*0L 130 RL=R*RL 132 DLFAC=FAC*0L 133 DLTH=0.*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=07)GO TO 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C.LE.1.E=05)GO TO 7 165 2 CDLTH=COS(DLTH) 171 SUM1=SUM1+SUM1 172 SUM1=SUM1+SUM1 174 7 GO TO LDC, (3, R) 203 8 SUM2C=0. 204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GO TO 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GO TO 5 233 4 SDLTH=SIN(OLTH) 237 SUM2=A1*SOLTH 240 SUM2=A1*SOLTH<	107	SUM11=0.
<pre>113 SUMIC=1. 114 SUM2C=1. 115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 120 IF(X.EQ.0.)ASSIGN 8 TO LDC 122 PL=1.0 124 DO 1 L=1,100 125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*DL 133 DLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=-C7)GO TO 2 151 SUMIC=ABS(A1/SUM1) 157 IF(SUMIC.LE.1.E=-O5)GO TO 7 165 2 CDLTH=COS(DLTH) 171 SUM1=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GO TO LDC.(3,P) 203 8 SUM2C=0. 204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=-C7)GO TO 4 217 SUM2C=LE.1.E=-O5)GO TO 5 233 4 SDLTH=SUM1+SUM2 244 SUM1=SUM1+SUM2 255 IF(SUM2C.LE.1.E=-O5)GO TO 5 233 4 SDLTH=SUM1+SUM2 245 IF(SUM2C.LE.1.E=-O5)GO TO 5 233 4 SDLTH=SUM2 242 5 IF(SUM2C.LE.1.E=-O5)GO TO 5 233 4 SDLTH=SUM2 244 SUM2=SUM2 245 IF(SUM2C.LE.1.E=-O5)GO TO 5 234 SUM2=ABS(L1/SUM2) 235 IF(SUM2C.LE.1.E=-O5)GO TO 5 235 IF(SUM2C.LE.1.E=-O5)GO TO 5 236 SUM2=SUM2=SUM2 247 SUM2=ABS(L1/SUM2) 248 SUM2=SUM2=SUM2 249 SUM2=SUM2=SUM2 249 SUM2=SUM2=SUM2 240 SUM2=SUM2=SUM2 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 241 SUM2=ABS(LE.1.E=-O5)GO TO 6 242 SUM2=SUM2=SUM2 243 SUM2=SUM2=SUM2 244 SUM2=SUM2=SUM2 244 SUM2=SUM2=SUM2 245 SUM2=SUM2=SUM2 245 SUM2=SUM2=SUM2 246 SUM2=SUM2=SUM2 247 SUM2=SUM2=SUM2 248 SUM2=SUM2=SUM2 249 SUM2=SUM2=SUM2 249 SUM2=SUM2=SUM2 240 SUM2=SUM2=SUM2 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 242 SUM2=SUM2=SUM2 242 SUM2=SUM2=SUM2 243 SUM2=SUM2=SUM2 244 SUM2=SUM2=SUM2 244 SUM1=ALDG(R)+SUM1 245 SUM2=SUM2=SUM2 246 SUM2=SUM2=SUM2 247 SUM2=SUM2=SUM2 248 SUM2=SUM2=SUM2 248 SUM2 249 SUM2=SUM2 240 SUM2=SUM2 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 241 SUM1=ALDG(R)+SUM1 242 SUM2 243 SUM2=SUM2 244 SUM2 244 SUM2 245 SUM2 245 SUM2 246 SUM2 247 SUM2 248 SUM2 248</pre>	110	SUM22=0.
<pre>114 SUM2C=1. 115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 120 IF(X.EQ.0.)ASSIGN 8 TO LDC 122 PL=1.0 124 DO 1 L=1,100 125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*UL 133 DLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=C7)GO TO 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C.LE.1.E=C7)GO TO 7 165 2 CDLTH=COS(DLTH) 171 SUM1=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GO TO LDC,(3, A) 203 8 SUM2C=0. 204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=C7)GO TO 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=C9)GO TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM2=SUM2+SUM22 242 5 IF(SUM1C.LE.1.E=C9:AND.SUM2C.LE.1.E=C9)GO TO 6 261 1 CONTINUE 263 6 C=GAMMA+ALOG(R)+SUM1</pre>	111	FAC=1.0
<pre>115 SDLTH=0. 116 CDLTH=0. 117 ASSIGN 3 TO LDC 120 IF(X.EQ.0.)ASSIGN 8 TO LDC 122 PL=1.0 124 DO 1 L=1,100 125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*DL 133 OLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=G7)GO TO 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C=LE.1.E=G7)GO TO 7 165 2 CDLTH=COS(DLTH) 171 SUM1=A1*CDLTH 172 SUM1=SUM1SUM11 174 7 GO TO LDC,(3.P) 203 8 SUM2C=0. 204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=G7)GO TO 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=G5)GO TO 5 233 4 SDLTH=SUM(DLTH) 237 SUM2C=ABS(A1/SUM2) 238 4 SDLTH=SUM(DLTH) 239 4 SDLTH=SUM(DLTH) 240 SUM2C=ABS(A1/SUM2) 242 5 IF(SUM2C.LE.1.E=G5)GO TO 5 233 4 SDLTH=SUM(DLTH) 237 SUM2C=ABS(A1/SUM2) 246 5 IF(SUM2C=LE.1.E=G5)GO TO 6 247 SUM2C=ABS(A1/SUM2) 248 5 ITT=SUM2C=D5.AND.SUM2C.LE.1.E=O5)GO TO 6 249 5 IF(SUM2C=D5.AND.SUM2C.LE.1.E=O5)GO TO 6 240 5 IF(SUM2C=D5.AND.SUM2C.LE.1.E=O5)GO TO 6 241 C CONTINUE 243 6 C=GAMMA+ALOG(R)+SUM1</pre>	113	SUM1C=1.
<pre>116 CDLTH=0. 117 ASSIGN 3 TO LDC 120 IF(X.EQ.0.)ASSIGN 8 TO LDC 122 RL=1.0 124 DO 1 L=1,106 125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*OL 133 DLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=G7)GO TO 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C.LE.1.E=O5)GO TO 7 165 2 CDLTH=COS(DLTH) 171 SUM1=A1*COLTH 172 SUM1=SUM1+SUM11 174 7 GO TO LDC,(3,R) 203 8 SUM2C=0. 204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=C7)GO TO 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=O5)GO TO 5 233 4 SDLTH=SIN(DTH) 237 SUM2=SUM2+SUM22 242 5 IF(SUM2C.LE.1.E=O5.GO TO 6 264 CO TO 5 275 IF(SUM2C.LE.1.E=O5.GO TO 5 275 IF(SUM2C.LE.1.E=O5.GO TO 6 276 SUM22=A1*SDLTH 277 SUM22=A1*SDLTH 277 SUM22=A1*SDLTH 278 SUM2=SUM2+SUM22 279 IF(SUM2C.LE.1.E=O5.GO TO 6 209 CO TO 5 209 CO TO 5 200 CO TO</pre>	114	SUM2C=1.
117 ASSIGN 3 TD LDC 120 IF(X.FQ.0.)ASSIGN 8 TO LDC 122 PL=1.0 124 DO 1 L=1,100 125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 133 DLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=07)60 TO 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C.LE.1.E=05)60 TO 7 165 2 CDLTH=COS(OLTH) 171 SUM1=SUM1+SUM11 172 SUM1=SUM1+SUM11 174 7 GO TO LDC, (3, R) 203 8 SUM2C=0. 204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GO TO 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=0.05)GO TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM2.LE.1.E=0.05.AND.SUM2C.LE.1.E=0.5)GO TO 6 242 5 IF(SUM1C.LE.1.E=0.05.AND.SUM2C.LE.1.E=0.5)GO TO 6 241 SUM2=SUM2+SUM22 242 5 IF(SUM1C.LE.1.E=0.05.AND.SUM2C.LE.1	115	SDLTH=0.
120 IF(X.F0.0.)ASSIGN & TO LDC 122 RL=1.0 124 DO 1 L=1,100 125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*DL 133 DLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=C7)GD TD 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C.LE.1.E=O5)GD TD 7 165 2 CDLTH=COS(DLTH) 171 SUM1=A1*CDLTH 172 SUM=SUM1+SUM11 174 7 GO TD LDC, (3, R) 203 8 SUM2C=0. 204 GO TD 5 205 3 IF(ABS(SDLTH).LE.1.E=C7)GT TD 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=O5)GD TD 5 233 4 SDLTH=SIN(DLTH) 237 SUM2=SUM2+SUM22 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C.LE.1.E=O5.AND.SUM2C.LE.1.E=D5)GT TT 6 261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1	116	CDLTH=0.
<pre>122</pre>	117	ASSIGN 3 TO LDC
124 D0 1 L=1,100 125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*UL 133 DLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=07)GD TO 2 151 SUMIC.ABS(A1/SUM1) 157 IF(SUMIC.LE.1.E=05)GD TO 7 165 2 CDLTH=COS(DLTH) 171 SUM1=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GD TD LDC,(3,8) 203 8 SUM2C=0. 204 GD TD 5 205 3 IF(ABS(SDLTH).LE.1.E=C7)GT TO 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GD TD 5 233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM2C.LE.1.E=05)AND.SUM2C.LE.1.E=05)GT TT 6 261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1	120	IF(X.EQ.O.)ASSIGN 8 TO LDC
125 DL=L 126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*DL 133 DLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=07)GO TO 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C.LE.1.E=05)GO TO 7 165 2 CDLTH=COS(DLTH) 171 SUM11=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GO TO LDC,(3, R) 203 8 SUM2C=0. 204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GO TO 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GD TO 5 233 4 SDLTH=SINIOLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GO TO 6 243 6 C=GAMMA+ALDG(R)+SUM1	122	PL=1.0
126 FAC=FAC*DL 130 RL=R*RL 132 DLFAC=FAC*DL 133 DLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=G7)GO TO 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C=LE.1.E=O5)GO TO 7 165 2 CDLTH=COS(DLTH) 171 SUM1=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GO TO LDC, (3, R) 203 8 SUM2C=0. 204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=O7)GO TO 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=O5)GO TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C.LE.1.E=O5.AND.SUM2C.LE.1.E=O5)GO TO 6 263 6 C=GAMMA+ALDG(R)+SUM1	124	DO 1 L=1,100
130 RL=R*RL 132 DLFAC=FAC*DL 133 DLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=07)GD TD 2 151 SUMIC=ABS(A1/SUM1) 157 IF(SUMIC.LE.1.E=05)GD TD 7 165 2 CDLTH=COS(DLTH) 171 SUM1=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GD TD LDC,(3, R) 203 8 SUM2C=0. 204 GD TD 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GD TD 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GD TD 5 233 4 SDLTH=SIN(DLTH) 240 SUM2=A1*SDLTH 240 SUM2=SUM22 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GD TD 6 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GD TD 6 243 6 C=GAMMA+ALDG(R)+SUM1	125	DL ≠L
130 RL=R*RL 132 DLFAC=FAC*UL 133 DLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=07)GD TD 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C.LE.1.E=05)GD TD 7 165 2 CDLTH=COS(DLTH) 171 SUM1=SUM1+SUM11 172 SUM1=SUM1+SUM11 174 7 GD TD LDC, (3, R) 203 8 SUM2C=0. 204 GD TD 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GD TD 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GD TD 5 233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM22 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GD TD 6 263 6 C=GAMMA+ALDG(R)+SUM1	126	FAC=FAC+DL
133 DLTH=DL*TH 135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=G7)GD TD 2 151 SUMIC=ABS(A1/SUM1) 157 IF(SUMIC.LE.1.E=O5)GD TD 7 165 2 CDLTH=COS(DLTH) 171 SUM11=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GD TD LDC, (3, 8) 203 8 SUM2C=0. 204 GD TD 5 205 3 IF(ABS(SDLTH).LE.1.E=O7)GD TD 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=O5)GD TD 5 233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM22 242 5 IF(SUM1C.LE.1.E=O:05.AND.SUM2C.LE.1.E=O5)GD TD 6 242 5 IF(SUM1C.LE.1.E=O:05.AND.SUM2C.LE.1.E=O.5)GD TD 6 243 6 C=GAMMA+ALDG(R)+SUM1		RL=R*RL
135 A1=RL/DLFAC 137 IF(ABS(CDLTH).LE.1.E=07)GD TD 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C.LE.1.E=05)GD TD 7 165 2 CDLTH=COS(DLTH) 171 SUM1=SUM1+SUM11 172 SUM1=SUM1+SUM11 174 7 GD TD LDC, (3, A) 203 8 SUM2C*0. 204 GD TD 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GD TD 4 217 SUM2C*0. 205 3 IF(ABS(SDLTH).LE.1.E=07)GD TD 4 217 SUM2C*0.E.1.E=05)GD TD 5 205 3 IF(ABS(SDLTH).LE.1.E=05)GD TD 5 205 3 IF(SUM2C.LE.1.E=05)GD TD 5 206 IF(SUM2C.LE.1.E=05)GD TD 5 207 SUM2=A1*SDLTH 208 SUM2=SUM22 209 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GD TD 6 209 SUM2=SUM22 201 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GD TD 6 202 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GD TD 6 203 6 C=GAMMA+ALDG(R)+SUM1	132	DLFAC=FAC*UL
137 IF(ABS(CDLTH).LE.1.E=07)GO TO 2 151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C=LE.1.E=05)GO TO 7 165 2 CDLTH=COS(DLTH) 171 SUM1=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GO TO LDC, (3, R) 203 8 SUM2C*0. 204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GO TO 4 217 SUM2C*ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GO TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GO TO 6 243 6 C=GAMMA+ALOG(R)+SUM1		
151 SUM1C=ABS(A1/SUM1) 157 IF(SUM1C=LE=1.E=05)GD TO 7 165 2 CDLTH=COS(DLTH) 171 SUM1=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GD TD LDC,(3,R) 203 8 SUM2C*0. 204 GD TD 5 205 3 IF(ABS(SDLTH)*LE*1*E=07)GD TO 4 217 SUM2C*ABS(A1/SUM2) 225 IF(SUM2C*LE*1*E=05)GD TO 5 233 4 SDLTH=SIN(DLTH) 240 SUM2=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C*LE*1*E=05*AND*SUM2C*LE*1*E=05)GD TO 6 242 5 IF(SUM1C*LE*1*E=05*AND*SUM2C*LE*1*E=05)GD TO 6 242 5 IF(SUM1C*LE*1*E=05*AND*SUM2C*LE*1*E=05)GD TO 6 242 5 IF(SUM1C*LE*1*E=05*AND*SUM2C*LE*1*E=05)GO TO 6 242 5 IF(SUM1C*LE*1*E=05*AND*SUM2C*LE*1*E=05)GO TO 6 243 6 C=GAMMA*ALOG(R)*SUM1		
157 IF(SUM1C.LE.1.E-05)GD TD 7 165 2 CDLTH=COS(DLTH) 171 SUM1=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GD TD LDC,(3,8) 203 8 SUM2C*0. 204 GD TD 5 205 3 IF(ABS(SDLTH).LE.1.E=C7)GD TD 4 217 SUM2C*ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GD TD 5 233 4 SDLTH=SIN(DLTH) 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GD TD 6 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GD TD 6 261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1		
<pre>165 2 CDLTH=COS(DLTH) 171 SUM11=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GO TO LDC,(3,8) 203 8 SUM2C*0. 204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=C7)GO TO 4 217 SUM2C*ABS(A1/SUM2) 225 IF(SUM2C*LE.1.E=O5)GO TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM22*A1*SDLTH 240 SUM2=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C*LE.1.E=O5*AND*SUM2C*LE.1*E=O5)GO TO 6 261 1 CONTINUE 263 6 C=GAMMA+ALOG(R)+SUM1</pre>		
171 SUM11=A1*CDLTH 172 SUM1=SUM1+SUM11 174 7 GD TD LDC,(3,8) 203 8 SUM2C=0. 204 GD TD 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GD TD 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GD TD 5 233 4 SDLTH=SIN(DLTH) 237 SUM2=A1*SDLTH 240 SUM2=SUM22 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GD TD 6 261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1		
172 SUM1=SUM1+SUM11 174 7 GD TD LDC,(3,8) 203 8 SUM2C=0. 204 GD TD 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GD TD 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GD TD 5 233 4 SDLTH=SIN(DLTH) 237 SUM2=A1*SDLTH 240 SUM2=SUM22 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GD TD 6 261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1		
174 7 GO TO LDC, (3, R) 203 8 SUM2C*0. 204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GO TO 4 217 SUM2C*ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GO TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM22*A1*SDLTH 240 SUM2*SUM2*SUM22 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GO TO 6 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GO TO 6 261 1 CONTINUE 263 6 C=GAMMA+ALOG(R)+SUM1		
203 8 SUM2C*0. 204 GD TD 5 205 3 IF(ABS(SDLTH).LE.1.E-07)GD TD 4 217 SUM2C*ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E-05)GD TD 5 233 4 SDLTH=SIN(DLTH) 237 SUM2*A1*SDLTH 240 SUM2*SUM2*SUM22 242 5 IF(SUM1C.LE.1.E-05.AND.SUM2C.LE.1.E-05)GD TD 6 263 6 C=GAMMA+ALDG(R)+SUM1		
204 GO TO 5 205 3 IF(ABS(SDLTH).LE.1.E=07)GD TO 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E=05)GD TO 5 233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM22 242 5 IF(SUM1C.LE.1.E=05.AND.SUM2C.LE.1.E=05)GD TO 6 263 6 C=GAMMA+ALOG(R)+SUM1		
205 3 IF(ABS(SDLTH).LE.1.E-07)GD TD 4 217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C.LE.1.E-05)GD TD 5 233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C.LE.1.E-05.AND.SUM2C.LE.1.E-05)GD TD 6 261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1		
217 SUM2C=ABS(A1/SUM2) 225 IF(SUM2C+LE+1.E=05)GD TD 5 233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C+LE+1.E=05.AND.SUM2C+LE+1.E=05)GD TD 6 261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1		
225 IF(SUM2C.LE.1.E-05)GD TD 5 233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C.LE.1.E-05.AND.SUM2C.LE.1.E-05)GD TD 6 261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1		
233 4 SDLTH=SIN(DLTH) 237 SUM22=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C+LE+1+E=05+AND+SUM2C+LE+1+E=05):00 TO 6 261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1		
237 SUM22=A1*SDLTH 240 SUM2=SUM2+SUM22 242 5 IF(SUM1C+LE+1+E=05+AND+SUM2C+LE+1+E=05)60 TO 6 261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1		
240 SUM2=SUM2+SUM22 242 5 IF(SUM1C.LE.1.E-05.AND.SUM2C.LE.1.E-05)50 TO 6 261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1		
242 5 IF(SUM1C.LE.1.E-05.AND.SUM2C.LE.1.E-05)50 TO 6 261 1 CONTINUE 263 6 C=GAMMA+ALOG(R)+SUM1		
261 1 CONTINUE 263 6 C=GAMMA+ALDG(R)+SUM1		
263 6 C=GAMMA+ALDG(R)+SUM1		
	-	
CDISCONTINUITY OF 2PIE IF X NEGATIVE IN EI FUNCTION.	263	
		CDISCUNTINUITY OF 2PIE IF X NEGATIVE IN EI FUNCTION.

271		IF(X.LT.C.)TH=TH=TP
300		S=TH+SUM2
302		A9=E*(C1*C+S1*S)
306		Alu=E*(-C1*S+S1*C)
313		GD TO 9
	C	LAGUERRE QUADRATURE-FIVE POINT.
314	13	DO 14 I=1,5
316		A=XN(I)+AA
321		TERM=CN(I)/(A+A+BB+BB)
330		SUM1=TERM*A+SUM1
333	14	SUM2=TERM+SUM2
337		F=1.
340		IF(X.LT.0.)F=-1.
343		A9=F*PIE*S1*E-SUM1
347		A10=-F*PIE*C1*E+BB*SUM2
353	9	RETURN
354		END

Table D-2. Continued

	SUBROUTINE DYNOUT
2	COMMON RI12(25,25), RK56(25,25), POT(25,25), HOW(25,25), FE(25,6),
	1FI(25,6), RI(25,25), RJ(25,25), RK(25,4), RL(25,4).
	2RMU(3,3,10), RLAM(3,3,10), FB(3,10), DELFB(3,10), HWB(25,6,10).
	3 DELW(25,6,10) , XOL(25,10)
2	COMMON /TWO/ NONNOO NWAVELD ISYMO ISKIPO NCO PIEOGAMMAOMOTKOTP
2	COMMON/THREE/ WAVEL(10), WN(10), BOL(10),TL
2	COMMON/FOUR/RAR(3,13), DELR(3,10), HWR(25,3,13), DELWR(25,3,10),
	2 HWT(25,10), DELWT(25,10), RKHYD(3,3), R(MOR(3,3), RKTB(3,3),
2	3 XG, YG, RMASS, RINERT, DAMP(3)
2 2	COMMON /SEVEN/ AREA, B, D, RDE, GEE, BTITLE(3), TITLE(8)
2	COMMON /NINE/ LBLRAR(3,3), LBLHWR(5,3), LBLR(5,3) COMMON / EIGHT/LBLMU(3,3,3), LBLAM(3,3,3), LBLFB(3,3),LBLHWB(7,3),
	1LBL(10,3), DEG(3,10)
2	1001 FORMAT(//3X, 3A10, / (5X, 3A10, 10F10.4))
2	1002 FORMAT (//3x, 3A10, / (5x, 3A10, 10F10.4// 5x, 3A10, 10F10.4/))
Ž	1003 FORMAT(5X, 3A10, 1JF10.4 / 5X, 3A10, 1JF10.4 /)
2	1004 FORMAT(//3X, 3A10, 2X, 10F10.4/ 3X, 3A10, 2X, 10F10.4)
2	PRINT 2000, AREA, B, XG, YG, RMASS, RINERT, DAMP(1), DAMP(2), DAMP(3)
33	20J0 FORMAT(1H1, 20X+DYNAMIC MODEL RESULTS+//+ AREA=+F10.3,5X+R=+F10.3,
	1 5X *XG=+F10.3.5X+YG=+F10.3.5X+MASS=+F10.3.5X+INERTIA=+F10.3//
	3* ADDITIONAL DAMPING ADDED- IN SWAY-*F6.2* LAMDA11 IN HEAVF-
	3*F6.2* LAMDA22 IN ROLL-+F6.2* LAMDA33* //)
33	PRINT 2001, ((RKHYD(I,J), J=1,3), I=1,3), ((RKMOR(I,J), J=1,3), I=1,3)
67	2001 FURMAT(* SPRING CONSTANTS K11 K12 K13 K21
	1 K22 K23 K31 K32 K33*/
4 7	2* HYDROSTATIC*7X,9F10.3 / * MCORING*11X,9F10.3///)
67 71	$\frac{1}{10} = 1 + 10$
71 111	9 DEG(1,IL) = SQRT((GEE+BDL(IL)) /(TP+B))
71	9
71 111 156	9 DEG(1,IL) = SQRT((GEE+BDL(IL)) /(TP+B))
71 111 156 160	<pre>9 DEG(1,IL) = SQRT((GEE+BDL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BPL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DD 1 I = 1,3 DD 1 IL = 1,10</pre>
71 111 156 160 161	<pre>9 DEG(1,IL) = SQRT((GEE+BDL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BPL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DD 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL)</pre>
71 111 156 160	<pre>9 DEG(1,IL) = SQRT((GEE+BDL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DD 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3),</pre>
71 111 156 160 161	<pre>9 DEG(1,IL) = SQRT((GEE+BDL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BPL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DD 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I</pre>
71 111 156 160 161 176	<pre>9 DEG(1,IL) = SQRT((GEE+BDL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DD 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3)</pre>
71 111 156 160 161 176 261	<pre>9 DEG(1,IL) = SQRT((GEE+BOL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DD 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DD 2 I = 1,NNW</pre>
71 111 156 160 161 176 261 263	<pre>9 DEG(1,IL) = SQRT((GEE+BOL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DD 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DD 2 I = 1,NNW DD 8 IL = 1,10</pre>
71 111 156 160 161 176 261 263 264	<pre>9 DEG(1,IL) = SQRT((GEE+BDL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DO 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DO 2 I = 1,NNW DD 8 IL = 1,10 8 DEG(1,IL) = XQL(I,IL)+B/BOL(IL)</pre>
71 111 156 160 161 176 261 263	<pre>9 DEG(1,IL) = SQRT((GEE+BOL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DO 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DO 2 I = 1,NNW DD 8 IL = 1,10 8 DEG(1,IL) = XOL(I,IL)+B/BOL(IL) PRINT 1002, (LBL(3,K), K = 1,3), (LBL(9,K), K = 1,3).</pre>
71 111 156 160 161 176 261 263 264	<pre>9 DEG(1,IL) = SQRT((GEE+BDL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DO 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DO 2 I = 1,NNW DD 8 IL = 1,10 8 DEG(1,IL) = XQL(I,IL)+B/BOL(IL)</pre>
71 111 156 160 161 176 261 263 264 301	<pre>9 DEG(1,IL) = SQRT((GEE+BOL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DO 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 * DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DD 2 I = 1,NNW DD 8 IL = 1,10 8 DEG(1,IL) = XOL(I,IL)+B/BOL(IL) PRINT 1002, (LBL(3,K), K = 1,3), (LRL(9,K), K = 1,3), 1 (XOL(I,IL), IL = 1,10), (LBL(10,K), K=1,3), (DFG(1,IL),IL=1,10) DD 3 J = 1,3 DD 3 IL = 1,10</pre>
71 111 156 160 161 176 261 263 264 301 362 364 365	<pre>9 DEG(1,IL) = SQRT((GEE+BOL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DO 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LRLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DO 2 I = 1,NNW DD 8 IL = 1,10 8 DEG(1,IL) = XOL(I,IL)+B/BOL(IL) PRINT 1002, (LBL(3,K), K = 1,3), (LAL(9,K), K = 1,3), 1 (XOL(I,IL), IL = 1,10), (LBL(10,K), K=1,3), (DEG(1,IL),IL=1,10) DO 3 J = 1,3 DO 3 IL = 1,10 3 DEG(J,IL) = 57.298 +DELWR(I,J,IL)</pre>
71 111 156 160 161 176 261 263 264 301 362 364	<pre>9 DEG(1,IL) = SQRT((GEE+BOL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DO 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 * DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DO 2 I = 1,NNW DO 8 IL = 1,10 8 DEG(1,IL) = XOL(I,IL)+B/BOL(IL) PRINT 1002, (LBL(3,K), K = 1,3), (LAL(9,K), K = 1,3), 1 (XOL(I,IL), IL = 1,10), (LBL(10,K), K=1,3), (DFG(1,IL),IL=1,10) OO 3 J = 1,3 DO 3 IL = 1,10 3 DEG(J,IL) = 57.298 *DELWR(I,J,IL) PRINT 1003, ((LBLHWR(J,K), K = 1,3), (HWR(I,J,IL), IL = 1,10), I PRINT 1003, ((LBLHWR(J,K), K = 1,3), (HWR(I,J,IL), IL = 1,10), I PRINT 1003, ((LBLHWR(J,K), K = 1,3), (HWR(I,J,IL), I) = 1,10).</pre>
71 111 156 160 161 176 261 263 264 301 362 364 365 404	<pre>9 DEG(1,IL) = SQRT((GEE+BOL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DO 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LRLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DO 2 I = 1,NNW DD 8 IL = 1,10 8 DEG(1,IL) = XQL(I,IL)+B/BOL(IL) PRINT 1002, (LBL(3,K), K = 1,3), (LAL(9,K), K = 1,3), 1 (XQL(I,IL), IL = 1,10), (LBL(10,K), K=1,3), (DEG(1,IL),IL=1,10) OO 3 J = 1,3 DO 3 IL = 1,10 3 DEG(J,IL) = 57.298 +DELWR(I,J,IL) PRINT 1003, ((LBLHWR(J,K), K = 1,3), (HWR(T,J,IL), IL = 1,10), 1 (LBL(6,K), K = 1,3), (DEG(J,IL)+ IL = 1,10), J = 1,3)</pre>
71 111 156 160 161 176 261 263 264 301 362 364 365 404 460	<pre>9 DEG(1,IL) = SQRT((GEE+BOL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DO 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 * DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DO 2 I = 1,NNW DO 8 IL = 1,10 8 DEG(1,IL) = XOL(I,IL)+B/BOL(IL) PRINT 1002, (LBL(3,K), K = 1,3), (LAL(9,K), K = 1,3), 1 (XOL(I,IL), IL = 1,10), (LBL(10,K), K=1,3), (DFG(1,IL),IL=1,10) 0 3 J = 1,3 DO 3 IL = 1,10 3 DEG(J,IL) = 57.298 *DELWR(I,J,IL) PRINT 1003, ((LBLHWR(J,K), K = 1,3), (HWR(I,J,IL), IL = 1,10), 1 (LBL(6,K), K = 1,3), (DEG(J,IL), IL = 1,10), 1 (LBL(6,K), K = 1,3), (DEG(J,IL), IL = 1,10), 1 F (XOL(I,1), LT, 0,) GO TO 4</pre>
71 111 156 160 161 176 261 263 264 301 362 364 365 404 460 465	<pre>9 DEG(1,IL) = SQRT((GEE+BOL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) D0 1 I = 1,3 D0 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) D0 2 I = 1,NNW D0 8 IL = 1,10 8 DEG(1,IL) = XOL(I,IL)*B/BOL(IL) PRINT 1002, (LBL(3,K), K = 1,3), (LAL(9,K), K = 1,3), 1 (XOL(I,IL), IL = 1,10), (LBL(10,K), K=1,3), (DEG(1,IL),IL=1,10)) D0 3 J = 1,3 D0 3 IL = 1,10 3 DEG(J,IL) = 57.298 *DELWR(I,J,IL) PRINT 1003, ((LBLHWR(J,K), K = 1,3), (HWR(T,J,IL), IL = 1,10), 1 (LBL(6,K), K = 1,3), (DEG(J,IL), IL = 1,10), J = 1,3) IF (XOL(I,1) + LT. 0,) GO TO 4 U0 5 IL = 1,10</pre>
71 111 156 160 161 176 261 263 264 301 362 364 365 404 460 465 470	<pre>9 DEG(1,IL) = SQRT((GEE+BDL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BPL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DD 1 I = 1,3 DD 1 IL = 1,10 1 DEG(I,IL) = 57.298 * DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DD 2 I = 1,NNW DD 8 IL = 1,10 8 DEG(1,IL) = XOL(I,IL)+B/BOL(IL) PRINT 1002, (LBL(3,K), K = 1,3), (LRL(9,K), K = 1,3), 1 (XOL(I,IL), IL = 1,10), (LBL(10,K), K=1,3), (DFG(1,IL),IL=1,10) DO 3 J = 1,3 DO 3 IL = 1,10 9 DEG(J,IL) = 57.298 *DELWR(I,J,IL) PRINT 1003, ((L3LHWR(J,K), K = 1,3), (HWR(T,J,IL), IL = 1,10), 1 (LBL(6,K), K = 1,3), (DEG(J,IL)+ IL = 1,10), J = 1,3) IF (XOL(I,I) + 1, T, 0,) GD TO 4 DD 5 IL = 1,10 DEG(2,IL) = 57.298 * DELWT(I,IL)</pre>
71 111 156 160 161 176 261 263 264 301 362 364 365 404 460 465 470 501	<pre>9 DEG(1,IL) = SQRT((GEE+BOL(IL)) /(TP+B)) PRINT 1004,(LBL(1,K),K = 1,3), (BOL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) DO 1 I = 1,3 DO 1 IL = 1,10 1 DEG(I,IL) = 57.298 * DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),(LBLCAR(I,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) DO 2 I = 1,NNW DO 8 IL = 1,10 8 DEG(1,IL) = XOL(I,IL)*B/BOL(IL) PRINT 1002, (LBL(8,K), K = 1,3), (LRL(9,K), K = 1,3), 1 (XOL(I,IL), IL = 1,16), (LBL(10,K), K=1,3), (DFG(1,IL),IL=1,10) DO 3 J = 1,3 DO 3 IL = 1,10 3 DEG(J,IL) = 57.298 *DELWR(I,J,IL) PRINT 1003, (LBLHWR(J,K), K = 1,3), (HWR(I,J,IL), IL = 1,10), 1 (LBL(6,K), K = 1,3), (DEG(J,IL), IL = 1,10), J = 1,3) IF (XOL(I,I) .LT. 0,) GO TO 4 DO 5 IL = 1,10 DEG(2,IL) = 57.298 * DELWT(I,IL) 5 DEG(1,IL) = 57.298 * DELWT(I,IL)</pre>
71 111 156 160 161 176 261 263 264 301 362 364 365 404 460 465 470	<pre>9 DEG(1,IL) = SQRT((GEE*BOL(IL)) /(TP*B)) PRINT 1006,(LBL(1,K),K = 1,3), (BPL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 7,10) D0 1 I = 1,3 D0 1 IL = 1,10 1 DEG(I,IL) = 57.298 * DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) D0 2 I = 1,NNW D0 8 IL = 1,10 8 DEG(1,IL) = XOL(I,IL)*B/BOL(IL) PRINT 1002, (LBL(8,K), K = 1,3), (LRL(9,K), K = 1,3), 1 (XOL(I,IL), IL = 1,10), (LBL(10,K), K=1,3), (DFG(1,IL),IL=1,10) D0 3 J = 1,3 D0 3 IL = 1,10 3 UEG(J,IL) = 57.298 *DELWR(I,J,IL) PRINT 1003, ((LBLHWR(J,K), K = 1,3), (HWR(T,J,IL), IL = 1,10), 1 (LBL(6,K), K = 1,3), (DEG(J,IL), IL = 1,10), J = 1,3) IF (XOL(I,I) = 57.298 * DELWR(I,G,IL) D6 5 IL = 1,10 D6 5 IL = 1,10 D6 6 (2,IL) = 57.298 * DELWT(I,G,IL) PRINT 1003, (LBLHWR(7,K), K=1,3), (HWB(T,6,IL), IL = 1,10), 1 (LBLHWB(7,K), K=1,3), (HWB(T,6,IL), IL = 1,10), 1 (LBLHWB(7,K), K=1,3), (HWB(T,6,IL), IL = 1,10), 1 (LBLHWB(7,K), K=1,3), (HWB(T,6,IL), IL = 1,10), 1 (LBLWB(7,K), K=1,3), (HWB(T,6,IL), IL = 1,10), 1 (LBLWB(T,K), K=1,3), (HWB(T,6,IL), IL = 1,1</pre>
71 111 156 160 161 176 261 263 264 301 362 364 365 404 466 404 466 470 501 516	<pre>9 DEG(1,IL) = SQRT((GEE*BOL(IL)) /(TP*B)) PRINT 1004,(LBL(1,K),K = 1,3), (BPL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 1,10) D0 1 I = 1,3 D0 1 IL = 1,10 1 DEG(I,IL) = 57.298 + DELR(I,IL) PRINT 1002,(LRLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) D0 2 I = 1,NNW D0 8 IL = 1,10 8 DEG(1,IL) = XOL(I,IL)*B/BOL(IL) PRINT 1002, (LBL(3,K), K = 1,3), (LRL(9,K), K = 1,3), 1 (XOL(I,IL), IL = 1,10), (LBL(10,K), K=1,3), (DEG(1,IL),IL=1,10) D0 3 J = 1,3 D0 3 IL = 1,10 3 DEG(J,IL) = 57.298 *DELWR(I,J,IL) PRINT 1003, ((LBLHWR(J,K), K = 1,3), (HWR(I,J,IL), IL = 1,10), 1 (LBL(6,K), K = 1,3), (DEG(J,IL), IL = 1,10), J = 1,3) IF (XOL(I,I) .LT. 0,) GD TO 4 D0 5 IL = 1,10 5 DEG(2,IL) = 57.298 * DELWT(I,IL) PRINT 1003, (LBLHWR(7,K), K=1,3), (HWB(T,6,IL), IL = 1,10), 1 (LBL(6,K),K=1,3), (DEG(1,IL), IL = 1,10), IL = 1,10),</pre>
71 111 156 160 161 176 261 263 264 301 362 364 365 404 460 465 470 501	<pre>9 DEG(1,IL) = SQRT((GEE*BOL(IL)) /(TP*B)) PRINT 1006,(LBL(1,K),K = 1,3), (BPL(IL), IL = 1,10), 1 (LBL(2,K), K = 1,3), (DEG(1,IL), IL = 7,10) D0 1 I = 1,3 D0 1 IL = 1,10 1 DEG(I,IL) = 57.298 * DELR(I,IL) PRINT 1002,(LBLR(1,K), K = 1,3),((LBLRAR(T,K), K = 1,3), 1 (RAK(I,IL),IL = 1,10), (LBL(6,K),K = 1,3), (DEG(I,IL),IL=1,10), I 2 = 1,3) D0 2 I = 1,NNW D0 8 IL = 1,10 8 DEG(1,IL) = XOL(I,IL)*B/BOL(IL) PRINT 1002, (LBL(8,K), K = 1,3), (LRL(9,K), K = 1,3), 1 (XOL(I,IL), IL = 1,10), (LBL(10,K), K=1,3), (DFG(1,IL),IL=1,10) D0 3 J = 1,3 D0 3 IL = 1,10 3 UEG(J,IL) = 57.298 *DELWR(I,J,IL) PRINT 1003, ((LBLHWR(J,K), K = 1,3), (HWR(T,J,IL), IL = 1,10), 1 (LBL(6,K), K = 1,3), (DEG(J,IL), IL = 1,10), J = 1,3) IF (XOL(I,I) = 57.298 * DELWR(I,G,IL) D6 5 IL = 1,10 D6 5 IL = 1,10 D6 6 (2,IL) = 57.298 * DELWT(I,G,IL) PRINT 1003, (LBLHWR(7,K), K=1,3), (HWB(T,6,IL), IL = 1,10), 1 (LBLHWB(7,K), K=1,3), (HWB(T,6,IL), IL = 1,10), 1 (LBLHWB(7,K), K=1,3), (HWB(T,6,IL), IL = 1,10), 1 (LBLHWB(7,K), K=1,3), (HWB(T,6,IL), IL = 1,10), 1 (LBLWB(7,K), K=1,3), (HWB(T,6,IL), IL = 1,10), 1 (LBLWB(T,K), K=1,3), (HWB(T,6,IL), IL = 1,1</pre>

Table D-2. Continued

.

DYNOUT

/

RUNT VERSION FEB 74 B 17:12 04/23/76

637		GO TO 2
640	4	00 7 IL = 1,17
642		DEG(1,IL) = 57.298 * DELW(I,4,IL)
655	7	DEG(2,1L) = 57.293 + DELWT(I,1L)
670		PRINT 1003, (LBLHWB(4,K),K = 1,3), (4WA(I,4,IL),IL= 1,10),
		1(LBL(6,K), K = 1,3), (DEG(1,IL), IL = 1,19),(LBL4WR(5,K),K=1,3),
		2(HWT(I,IL), IL = 1,10),(LBL(6,K),K = 1,3),(DFG(2,IL),IL=1,10)
1005	2	CONTINUE
1010		RETURN
1010		END

4

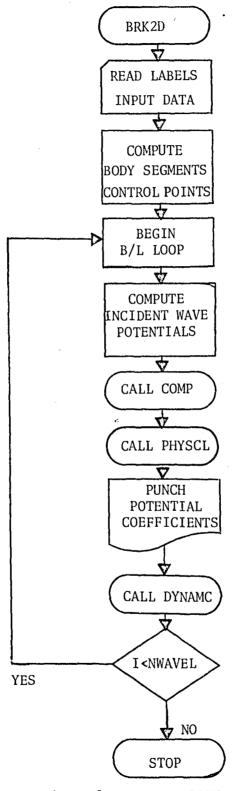


Figure. Flow chart for program BRK2D.

7. Program Comments and Glossary of Terms.

The program listing contains many comments which aid in following the logic of the program. Descriptions of variables also appear where they are read into the program.

8. Run Time and Memory Size.

BRK2D requires about 70 seconds of central processor time on the CDC 6400 computer to compile and compute results for 10 different beam wavelength ratios. A central memory of about 55,000 octal is required.

9. <u>Run and Card Deck Setup Procedures and Special Operation Instruc-</u> tions.

In order to run the FORTRAN source program deck on the University of Washington CDC 6400, the following deck is required:

BRK2D,CM55000,T100. ACCOUNT Job card (Account No., password) FORTRAN LGO(LC=6000) FORTRAN DECK 7/8/9 DATA DECK 6/7/8/9

10. Sample Output Data.

Table D-3 is the output for the Oak Harbor breakwater. The input is given in Table D-1.

12.600 AREA = FULL BEAM 10.000 8 = .000 D = FLUID DENSITY = 1.99050 ACCELERATION OF GRAVITY = 32.200 BEAM/WAVELENGTH RATIOS OF INCIDENTWAVES .28000 .31221 .37100 .18000 .21681 .25000 .10000 .15929

٨

OAK HARBOR BREAKWATER - CORPS OF ENGINEEPS TESTS

NUMBER OF FREE-SURFACE STATIONS = 0

 $1_{JC} = 12 - 0 - 0 - 0 - 0$

NUMBER OF SEGMENTS = 23

ISYM = 0 ISKIP = 0 NC = 1J

NUMBER OF WAVELENGTHS = 10

17 MAY 1975

-

.48733

.42900

DAK HARBOR BREAKWATER - CORPS OF ENGINEERS TESTS

CYLINDER GEOMETRY

	DIMENSIONA	L JFFSETS	NON-DIMENSI	INAL OFFSETS	MIDPOINTS OF	SEGMENTS		
I	x	Y	¥	Y	¥	Y	SLOP2	LENGTH
1	-5.000	.000	500	.000	500	603	-1.071	.125
Z	-5.000	-1.250	-,500	125	500	168	-1.571	.125
3	-5.000	-2.530	-,500	250	500	313	-1.5/1	.125
4	-5.000	-3.750	500	375	500	438	-1.571	•125
5	-5.000	->.300	500	506	479	500	•ພິບປີ	•U42
6	-4.533	-5.000	458	-,500	458	438	1.571	•125
7	-4.583	-3.750	458	375	390	375	.000	.lst
8	-3.223	-3.75C	- 122	375	322	313	1.571	.125
9	-3.223	-2.500	3?2	250	122	138	1.571	.125.
10	-3.223	-1.230	322	125	390	12>	3.142	.136
11	-4.583	-1.250		1?5	458	063	1.571	.125
12	-4.583	• 113	÷.459	·100	.000	.000	.000	.917
13	4,583	.000	.458	.000	.458	063	-1.571	.125
14	4.593	-1.250	.459	125	•390	125	3.142	.136
15	3.223	-1.250	.322	125	.322	108	-1.571	•12 5
16	3.223	-2.500	• 3?2	250	.322	313	-1.571	.125
17	3.223	-3.750	•372	375	• 3 9 3	375	• 40-)	• 136
18	4.583	-3.750	.458	375	.458	438	-1.571	•152
19	4.583	-3.000	.458		.479		.00)	•u42
20	5.000	-5.000	.500	500	.500	435	1.571	.125
21	5.000	-3.750	•500	375	.560	313	1.571	.175
22	5.000	-2.500	.500	250	.500	186	1.571	• 122
23	5.000	-1.250	.500	125	.500	053	1.571	.120
24	5.000	.000	.500	.00C				

POSITIONS FOR WAVE HEIGHT CALCULATIONS

WAVE NUMBER = K = .62832 CIRCULAR FREQUENCY = 1.47237 FREQUENCY = .22639 PERIOD = 4.41735 #AVELENGTH = 100.0000

DETERMINANT= 37.1372E+14

DETERMINANT= ' 45.2450E+14

DETERMINANT= 15.0907E+15

WAVE NUMBER = K = 1.60085 CIRCULAR FREQUENCY = 1.79527 FREQUENCY = .28571 PFRIOD = 3.50000 WAVELENGTH = 52.7786

DETERMINANT= 19.61212+14

WAVE NUMBER = K = 1.13097 CIRCULAR FREQUENCY = 1.97833 FREQUENCY = .30372 PERI 10 = 3.29250 WAVELeNGTH = 55.5556

WAVELENGTH = 40.1231

Table D-3. Continued

WAVE NUMBER = K = 1.36226 CIRCULAR FREQUENCY = 2.09439 FREQUENCY = .33333 PLRIOD = 3.00000

WAVE NUMBER = K = 1.57083 CIRCULAR FREQUENCY = 2.24899 FREQUENCY = .35794 PERIOD = 2.79378 #AVELENGTH = 40.0300 DETERMINANT= 30.58585+15

.

WAVE NUMBER = K = 1.75929 CIRCULAR FREQUENCY = 2.33011 FREQUENCY = .37891 PERIOD = 2.63957 WAVELENGTH = 35.7143 Determinant= 45.3555E+15

WAVE NUMBER = K = 1.96166 CIRCULAR FREQUENCY = 2.51327 FREQUENCY = .49006 PERIOD = 2.50000 WAVELENGTH = 32.0299 Determinant= 54.4151E+15

WAVE NUMBER = K = 2.33136 CIKCULAR FREQUENCY = 2.73971 FREQUENCY = .43604 PERIOD = 2.29337 #AVELENGTH = 26.4542 Determinant= 32.0082E+15

WAVE NUMBER # K = 2.69549 CIRCULAR FREQUENCY = 2.94609 FREQUENCY = .46889 PERIOD = 2.13272 #AVELENGTH = 23.3100

DETERMINANT= 12.9867E+14

WAVE NUMBER = K = 3.06500 CIRCULAR FREQUENCY = 3.14159 FREQUENCY = .50000 PERIOD = 2.00000 WAVELENGTH = 20.4992 DETERMINANT= 19.1494E+16

Table D-3. Continued

×.

WAVE FIELD - AMPLITUDE RATIOS Position - X/WAVELENGTH DIMENSIONAL POSITION - X	4.0000 400.0000	4.0000 251.1143	4.0000 222.2222	4.0000 184.4925	4.0000 160.0009	4.0000 142.8571	4.0000 128.1197	4.0000 107.8167		4.0070 81.9966
GEN BY SWAY/SWAY	•3497	.5873	•7688	,8919	.9729	1.0247	1.0543	.9433	4.4957	1.8878
Phase rel to body motion - deg	162•8661	150.7298	148•7587	147,8852	149.2450	151.6560	155.0695	162.2626	-175.4311	-175.9364
GEN BY HEAVE/HEAVE	•0929	•3838	.3258	-2499	.2120	.1680	.1688	.1399	.1154	•0919
Phase rel to body motion - deg	79•2908	••3982	-19,5930		-30.2551	-28.1815	-24.6664	-16.4918	-7.2745	2•7097

DAMPING QD = AREA+ROE+W										
LAMBDA11/QD	2.0190	3.7933	4.0288	4.0948	3.9270	3.6660	3.2821	1.9813	39.5124	5.5165
LAMBDA12/QD	.0400	. 2000	.0000	.0000	.0000	.0000	• 0000	0000	.0000	.3000
LAMBDA13/(QD+B)	.3504	.6782	.7279	.7550	.7407	.7113	.6676	•5239	.1058	.6507
LAMBDA21/QD	.6000	0003	0000	0000	0000	0COu	0000	.0000	0000	0000
LAMBDA22/QD	.1598	1.3091	.7819	.3464	.2012	•1342	.0915	.1486	.0268	.3141
LAMBDA23/(QD*B)	.0000	0003	0000	0000	0000	0000	0000	0000	6000	0000
LAMBDA31/(QD+B)	•3491	•6786	•7295	.7594	.7482	•7224	.6842	•5629	7141	.600Z
LAMBDA32/(QD+B)	.0000	.0000	.0000	•0000	.0000	.0000	.0600	.0000	0000	.0000
LAMBDA33/(QD+8+B)	•0606	.1213	.1318	.1400	.1411	.1402	.1392	.1489	0019	.0738
WAVE FORCES QF=AREA*RDE*ETA*W2										
FX/QF	4.4250	5.4147	5.4209	5.2373	4.9783	4.7161	4.4149	3.6704	5.9774	4.2994
PHASE REL TO ETA AT X=O - DEG	72.8793	60.8041	59.8750	59.1117	59.6297	62.2586	66.0442	75.1616	86.5835	92.3458
FY/QF	1.2106	3.1797	2.4019	1.5443	1.1456	.9150	.7381	.5158	.3661	.2555
PHASE REL TO ETA AT X=0 - DEG	159.0771	89.0067	69.6025	53.9553	57.9583	59.5246	62.4899	69.8752	79.1007	90.8790
4Z/(QF*8)	•7530	.9455	•9536	.9325	. 9963	.6578	.8222	.7784	.1632	.5379
PHASE REL TO ETA AT X=O - DEG	72.5953	60.0131	57.8515	56.6160	57.6501	59.7944	62.9679	59.9328	93.0317	92.4742

ADDED MASS OM = AREA+ROE			·							
MUII/OM	7.3700	5.9465	5.4755	4.9561	4.8480	5.0504	5.5805	9.7945	-53.1777	-4.7733
MU12/0M	.0000	.0003	.0000	.0000	.0000	.0000	.0000	.0000	0000	6030
MU13/(QM*8)	1,2305	.9193	.8019	.6315	.5123	.4185	.3137	0480	4.7716	.9614
HU21/QM	.0000	0000	0000	.0000	0000	0000	0000	0000	.0000	.0000
MU22/QM	1.5889	•4458	.2118	.3495	•4699	.5476	.6100	.6927	.7546	.8097
MU23/(QM+B)	0000	0007	.0000	.0000	.0000	.0000	.0000	.0000	0000	0000
MU31/(QM+B)	1.2048	.8983	.7692	• 5920	.4636	.3578	.2328	2308	6.0540	1.1125
MU32/(QM+8)	.0000	.0000	.0000	-,0000	.0000	0000	0000	.0000	.0000	.0000
MU33/(QM+B+B)	•4844	.4377	.4201	.3959	.3821	.3750	.3727	.3917	0644	.2917

•2168 •3333 .2500 .3579 .2800 .3788 .3122

.3710

.4360

.4290

4689

.1800 .3037 -

.4878 .5000 ~

W = SQRT(G/8), W2 = G/8 B = FULL BEAM G = ACCELERATION OF GRAVITY RDE = MASS DENSITY OF FLUID ETA = INCIDENT WAVE AMPLITUDE WAVEL = INCIDENT OR GENEPATED WAVE LENGTH

.1593

.2857

.1000 .2264

¥

BEAM/WAVELENGTH DIMENSIONAL FREQUENCY - HZ

.1216 .1389 .1644 .1835 .1988 .2494 .0607 GEN BY ROLL/ROLL(RAD)*8 .2144 .0121 .2227 PHASE REL TO BODY MOTION - DEG 162.8661 150.7288 148.7588 147.8853 149.2451 151.6552 155.0697 152.2624 -175.4425 -175.9368 .0399 TRANS BY EXD BDY/ETA .9870 .4392 .1626 .0349 .0426 .0448 .0429 .0386 .1027 PHASE REL TO ETA AT X=0 - DEG -26.3043 -111.8988 -124.4512 -63.8978 -22.2265 -16.4142 -17.2571 -31.5947 53.4327 -4.31J2

.

WAVE FIELD - AMPLITUDE RATIOS POSITION - X/WAVELENGTH -4.0000 -4.0007 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 DIMENSIONAL POSITION - X -400.0000 -251.1143 -222.2222 -184.4925 -160.0000 -142.8571 -128.1197 -107.8157 -93.2401 -81.9956 GEN BY SWAY/SWAY .3497 .6803 .7688 .8919 .9729 1.0247 1.0543 4.4957 1.8978 -9433 PHASE REL TO BODY MOTION - DEG -17.1409 -29.2782 -31.2483 -32.1218 -30.7620 -28.3509 -24.9375 -17.7444 4.5758 4.0706 GEN BY HEAVE/HEAVE .0929 .3838 .3258 .2499 .2120 .1886 .1688 .1399 .1154 . 3919 -7.2745 PHASE REL TO BODY MOTION - DEG 79.2908 -. 3987 -19.5930 -29.7700 -30.2551 -28.1815 -24.5664 -16.4918 2.7097 .1?15 .1644 .1535 .1988 .2494 .0121 .2227 GEN BY ROLL/ROLL(RAD) +B .0607 .1389 .2144 PHASE REL TO BODY MOTION - DEG -17.1409 -29.2782 -31.2482 -32.1217 -30.7619 -28.3507 -24.9373 -17.7445 4.5644 4.0701 .1190 .9491 .9529 .9551 .9576 .9582 REFLECTED BY FXD BDY/ETA .8163 .9230 .9543 -9546 63.7635 149.0775 128.1707 117.3206 118.2930 122.8550 129.8806 145.6856 170.5966 -174.8329 PHASE REL TO ETA AT X=0 - DEG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 INCIDENT/ETA -.0000 PHASE REL TO ETA AT X=0 - DEG -.0000 -.0000 -.0000 -.0000 -.0000 -.0000 -.6000 -.0000 -.0000 .0977 1.0024 REFLECTED + INCIDENT/ETA 1.0580 .5155 .8433 1.0148 .9356 .8292 .5783 .1660 70.5503 -62.1498 5.7907 59.3719 56.2053 56.8324 PHASE REL TO ETA AT X=0 - DEG 54.4562 58.9699 52.1284 68.5420

Table D-3. Continued

5

DYNAMIC MODEL RESULTS

*

AREA= 12.600	8 =	10.000	XG=	.000	¥G* -2	•340 M	\$\$= 25	.100 []	NERTIA=	621.000		
ADDITIONAL DAMPING	ADDED-	IN SI	AY00 L	AMDA11	IN HEAVE-	.00 LAM	DA22 I	N ROLL-	.00 LAMDA3	3		
SPRING CONSTANTS HYDROSTATIC MODRING		1 000 000	.000	.000	.000 64	.500	.000	.000	.000 1165	33 •000 •000		
BEAM/WAVELENG DIMENSIONAL F		¥ — нz	•1000 •2264									.4878 .5000
MOTION RESPONSE Sway Amplitude/ Phase rel to et		=0 - DEC	•7219 • -90•2310								.0011 -35.8354	
HEAVE ANPLITUDE Phase Rel to E1		-0 - DEG	1.4444 -2.2345							.1638 -108.7807		•U538 -88•8296
ROLL AMPLITUDE Phase rel to ei				.2050 -97.8493						- 5503 -92.2407		.7232 -93.9513
WAVE FIELD - AMPL POSITION - X/W DIMENSIONAL PO	VEL ENG	тн	4.0000 400.0000		4.0000 222.2222							4.0000 81.9966
GEN BY RESULTAN Phase rel to et			•2524 72•6350				.4115 58.2637			.1251 70.7171	0049. 211.2665-	•2626 -90•2859
GEN BY RESULTAN Phase rel to et			•1341 77 •0 563	.8349 -27.7520							.0107 -107.5406	.0049 -86.1198
GEN BY RESULTAN Phase rel to et			.0288 72.7756					.0856 60.1376			.0081 -267.0723	.1611 -269.8881
TRANS BY FXD BD Phase rel to et		•0 - DEG	.9870 -26.3343									.3399 -4.8132
TOTAL TRANSMITT Phase rel to et												•1164 -70•7104

WAVE FIELD - AMPLITUDE RATIOS Position - X/Wavelength Dimensional Position + X	-4.0000 -4.000) -400.0000 -251.1143		-4.0000 -4.0000 -4.0000 160.0000 -142.8571 -128.1197	
	•2524 •4415 -107•3719 -119•74?2		•4115 •3586 •2870 121•7433 -119•5075 -116•2666	.1251 .0C49 .2626 -109.2899 -31.2595 89.7210
GEN BY RESULTANT HEAVE/ETA Phase rel to eta at X=0 - deg	•1341 • •9349 77.0563 -27.7620	.7750 .3456 -74.5537 -129.5904 -	.1585 .0892 .0527 142.8329 -143.3819 -139.0781	.0229 .0167 .3049 -125.2726 -107.5406 -86.1198
GEN BY RESULTANT ROLL/ETA	.0288 .0249	.0363 .0549	.0710 .0856 .1018	.1373 .0081 .1611

Table D-3. Continued

Ň

 PHASE REL TO ETA AT X=0 - DEG
 -107.2314 -129.1274 -122.1374 -123.2092 -122.0699 -119.8693 -116.6869 -109.9853 -87.0653 -89.8911

 REFLECTED BY FXD BDY/ETA PHASE REL TO ETA AT X=0 - DEG
 .1190 .8163 .9230 .9491 .9529 .9543 .9551 .9546 .9576 .3582 .9491 .9529 .122.8550 122.8550 122.8550 124.8806 145.6856 170.5966 -174.8329

 TJTAL REFLECTED/ETA PHASE REL TO ETA AT X=0 - DEG
 .0310 .4211 .7647 .9427 .8963 .8859 .8961 .9306 .9551 .9564 .9554 .9576 .170.8076 .162.9862 .171.8175 .179.3936

Table D-3. Continued

Δ

DYNAMIC MODEL RESULTS

AREA= 12.600	8= 10.000	XG=	.000	YG= -2	.340 M	ASS= 25	.100 I	NERTIA= (521.000			
				-								
ADDITIONAL DAMPING	ADDED- IN SW	AY00 LA	HDA11	IN HEAVE-	.00 LAM	0425 II	N ROLL-	.00 LANDA3	3			
· SPRING CONSTANTS	к11	к12 К]	L3 K	21 K	22 K	23 K	31 к	32 K	33			
HYDROSTATIC	.000	.000	000	.000 64	.500	. 202	.000	.300 1165.	000			
MOORING	118.800 -	5.240 166.	200 -5	.732 10	-210 -3	.372 159	.900 2	•063 281.	.800			
BEAM/WAVELENG1		.1005	.1593									
DIMENSIONAL FR	REQUENCY - HZ	•2264	.2857	.3037	• 33 33	.3579	.3788	.4000	•4360	•4689	.5000	
MOTION RESPONSE												
SWAY AMPLITUDE		.8185		.7043								
PHASE REL TO ET	FA AT X≠3 — DEG	-92.8642	-87.266?	-97.2183	-85.1074	-86.7460	-87.7094	-88.8630	-90.5595	-71.1733	85.8405	
HEAVE AMPLITUDE	E/ETA	1.6748	2.21R)	2.4999	1.5130	.7948	.4934	.3212	.1669	.0954	.0565	
PHASE REL TO ET	TA AT X=0 - DEG	2.0115	-22 . 8265	-49.0770	-98.0382	-112.7051	-115.7896	-115.0728	-109.1711	-100.3317	-99.9394	
ROLL AMPLITUDE	(RAD)+8/ETA	1.4487	.1117	.2186	.3219	.3922	.4499	.5035	.5618	.6917	.7152	
PHASE REL TO ET	TA AT X=0 - DEG	-95.3538	-21.0151	-71.8097	-85.7725	-86.5531	-87.4561	-88.6553	-90.8574	-91.2293	-93.7687	
					•							
WAVE FIELD - AMPL	ITUDE RATIOS							•				
POSITION - X/WA	VELENGTH	4.0000	4.0000									
DIMENSIONAL POS	SITION - X	400.0000	251.1193	222.2222	184.4975	150.0000	142.8571	123.1197	107.8167	93.2401	81.9966	
GEN BY RESULTAN	IT SWAY/ETA	.2862	.5487			.4688	.4053	.3206	.1360	.0091	.2583	
PHASE REL TO ET	FA AT X=0 - DEG	89.0019	63.4625	41.5404	61.7778	67.4990	63.9466	66.2665	71.7031	-240.0044	-90.0959	
GEN BY RESULTAN	T HEAVE/ETA	.1555	.8512	.8145	.3781	.1685	. 3930	.0542	.0234	.0110	.0052	
PHASE REL TO ET	TA AT X=0 - DEG	81.3023	-23.2247	-68,6701	-127.8082	-142.9603	-143.9711	-139.7392		-1,7.6362	-55.2295	
GEN BY RESULTAN	AT ROLL/ETA	.0879	.0135	.0304	.0529	.0720	.0895	.1080	.1451	.0083	.1593	
PHASE REL TO ET					62.1128						-269.7055	
TRANE AV EVO DE		9876	63.97	1676	0369	0426	0448	0420	0380	1.127	13 20	

ς.

.0399 TRANS BY FXD BDY/ETA .9870 .4382 .1626 .0349 .0425 .0448 .0429 .0380 .1027 PHASE REL TO ETA AT X=0 - DEG -26.3343 -111.9988 -124.4512 -63.8978 -22.2265 -16.4142 -17.2571 -31.5947 53.4327 -4.8102 TOTAL TRANSMITTED/ETA .9949 .8985 .6083 .1794 .3937 .4200 .3852 .2519 .1144 .1038 PHASE REL TO ETA AT X=0 - DEG 4.5843 -15.7336 -39.5304 73.0441 66.9047 63.9223 63.5057 64.5531 58.7840 -70.1549

WAVE FIELD - AMPLITUDE RATIOS -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 POSITION - X/WAVELENGTH DIMENSIONAL POSITION - X -400.0000 -251.1143 -222.2222 -184.4925 -160.0000 -142.8571 -129.1197 -107.8167 -+33.2401 -+34.9966 .2583 .5487 .5414 GEN BY RESULTANT SWAY/ETA .2862 .5152 .4688 .4353 .3206 .1360 .0091 PHASE REL TO ETA AT X=0 - DEG -100.3050 -115.5444 -118.4666 -113.2292 -117.5080 -116.0603 -113.7405 -108.3039 -56.5974 89.7110 GEN BY RESULTANT HEAVE/ETA .1555 . 8512 .8145 .3781 .1685 .0930 .3542 .0234 .0110 .0352 PHASE REL TO ETA AT X=0 - DEG 81.3023 -23.2247 -68.6701 -127.8082 -142.9603 -143.9711 -139.7392 -125.6629 -107.6062 -86.2296 GEN BY RESULTANT ROLL/ETA .0879 .0135 .0304 .0579 .0720 . 3895 .1080 .1451 .0083 .1593

 \sim

Table D-3. Continued

.

Table D-3. Continued

FORCE AMPLITUDE/RUE#6#AREA#ETA 1.623E+00 1.674E+00 1.895E+00 1.426E+00 1.038E+00 8.247E-01 6.502E-01 3.962E-01 1.823E-01 2.744E-02

HOORING LINE RESPONSE FORCE AMPLITUDE/ETA 1.311E+03 1.3525+03 1.482E+03 1.151E+03 8.384E+C2 6.6660E+J2 5.251E+02 3.135E+U2 1.472E+02 2.216E+U1 PHASE REL TO ETA AT X=0 - DEG 154.4105 151.9842 159.7943 -179.5353 -176.5792 -176.7023 -176.3630 -176.6128 -177.4415 10.1138

CHANGE IN FORCE PER UNIT DISPLACEMENT IN SWAY, HEAVE AND ROLL, RESPECTIVELY = 1172.0000 280.9000 1713.0000

8. j

SEAWARD MOORING LINE

MOORING LINE MODEL RESULTS

FORCE AMPLITUDE/RDE#G#ARE4#ETA 1.841E+00 1.341E+00 8.105E-01 3.358E-01 5.643E-01 5.548E-01 4.775E-01 2.823E-01 9.341E-02 1.194E-01

MORRING LINE RESPONSE FORCE AMPLITUDE/ETA 1.487E+03 1.083E+03 6.545E+02 2.712E+02 4.557E+02 4.481E+02 3.856E+02 2.279E+02 7.544E+01 9.646E+01 PMASE REL TO ETA AT X=0 - DEG 22.5037 45.3005 69.8203 -32.2325 -21.5524 -14.6238 -9.9398 -4.8284 -4.2163 -176.6191

CHANGE IN FORCE PER UNIT DISPLACEMENT IN SWAY, HEAVE AND ROLL, RESPECTIVELY =-1376.0000 410.6000-1607.0000

SHOREWARD MOORING LINE

MOORING LINE MODEL RESULTS

PHASE REL TO ETA AT X=0 - DEG -112.4946 -50.2947 -103.0579 -117.8941 -117.3149 -115.8069 -113.5926 -108.6019 -86.6649 -89.6985 .1190 .8163 .9230 .9491 REFLECTED BY FXD BDY/ETA .9579 .9543 .9551 .9546 .9576 .9592 63.7635 149.0773 128.1707 117.3206 118.2930 122.8550 129.8806 145.6856 170.5966 -174.6329 PHASE REL TO ETA AT X=0 - DEG .1029 . .9367 TOTAL REFLECTED/ETA .4451 .7619 .8745 .8645 .8807 .9261 .9527 .9528 PHASE REL TO ETA AT X=0 - DEG -94.0142 -110.3085 -135.0236 177.3225 162.8662 159.5332 159.7122 164.1800 172.2029 179.5602

DYNAMIC MODEL RESULTS

AREA= 12.600	8= 10.000	XG= •0)00 YG≠	-2.340	MASS= 25	.100 IM	NERTIA= 62	21.000		
ADDITIONAL DAMPING	ADDED- IN SW	AY- 1.00 LAMD	11 IN HE	EAVE- 1.00 L	NDA22 I	N ROLL- 1.	OU LAMDA33			
SPRING CONSTANTS Hydrostatic Mooring	.000	K12 K13 •000 •000 5•24J 166•200		K22 6 4.50 5 10.210	.000	.000	32 K33 .000 1165.0 .063 281.8	000		
BEAM/WAVELENG Dimensional f		•1000 •2264		.1800 .21 3037 .33			•3122 •4000	• 3710 • 4360	•4290 •4689	•4878 •5000
MOTION RESPONSE Sway Amplitude Phase rel to e	/ETA TA AT X=0 - DEG	•5857 -34•6025 -		4106 .37 5115 -59.67	6 .3400 7 -62.4719			.1337 -84.5311	.0019 -78.6415	•1119 61•0574
HEAVE AMPLITUD Phase rel to e	E/ETA TA AT X=0 - DEG			3829 1.25 9320 -80.37				.1671 107.8320	.0954 -99.6718	.0561 -89:2259
ROLL AMPLITUDE Phase rel to e	(RAD)*8/ETA TA AT X=0 - DEG			1093 .60 0633 -113.15				•5468 -31•7364	•6908 -90•7043	.6026 -98.0733

WAVE FIELD - AMPLITUDE RATIOS POSTTION - X/WAVELENGTH 4.6000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 DIMENSIONAL POSITION - X 400.0000 251.1143 222.2222 184.4925 169.0000 142.8571 128.1197 107.8167 93.2401 81.9966 .2939 GEN BY RESULTANT SWAY/ETA .2048 .2112 .3157 .3315 .3309 .3132 .2728 .1308 .0388 PHASE REL TO ETA AT X=0 - DEG 78.2636 94.4078 91.2472 88.2055 86.7731 85.4107 83.4260 77.7315 -254.0727 -114.8790 .4529 .1629 .0544 GEN BY RESULTANT HEAVE/ETA .1436 .4506 .3131 .0927 .0234 .0110 .0052 PHASE REL TO ETA AT X=0 - DEG 90.3359 -12.9391 -55.5251 -110.1407 -133.2884 -138.5365 -136.6656 -124.3738 -106.9463 -86.5162 .1489 GEN BY RESULTANT ROLL/ETA .1664 .1541 .1374 .1148 .1050 .1053 .1364 .0083 .1342 41.5189 34.7319 39.5275 80.5261 -266.1468 -274.0101 PHASE REL TO ETA AT X=0 - DEG 101.9318 35.6955 49.2759 62.8379 TRANS BY EXD BDY/ETA .9870 .4392 .1626 .0349 .0426 .0448 .0429 .0386 .1027 .0399 PHASE REL TO ETA AT X=9 - DEG -4.8102 -26.3043 -111.3988 -124.4512 -63.8978 -22.2265 -16.4142 -17.2571 -31.5947 53.4327 .0857 .2709 .0771 TOTAL TRANSMITTED/ETA .8970 .3937 .2964 .3248 .3248 •233ó .1044 3.6729 -15.3732 -19.2820 72.5741 PHASE REL TO ETA AT X=0 - DEG 71.7761 82.5810 78.0874 75.6150 58.1883 -120.7654

WAVE FIELD - AMPLITUDE RATIOS POSITION - X/WAVELENGTH -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -400.0000 -251.1143 -222.2222 -194.4925 -160.0000 -142.8571 -128.1197 -107.8167 -93.2401 -81.9966 DIMENSIONAL POSITION - X .2939 .3308 .2728 .1308 GEN BY RESULTANT SWAY/ETA .2048 .3157 .3315 .3132 .0088 • Z112 PHASE REL TO ETA AT X=0 - DEG -101.7434 -85.5992 -88.7597 -91.8015 -93.2339 -94.5963 -95.5810 -102.2755 -74.0657 65.1280 .4529 .1629 .0544 .0234 .0110 .005Z GEN BY RESULTANT HEAVE/ETA .1496 .0927 .4506 .3131 PHASE REL TO ETA AT X=0 - DEG 90.3359 -12,9391 -55.5251 -110.1437 -133.2884 -138.5365 -130.6656 -124.3738 -106.9463 -86.5162 GEN BY RESULTANT ROLL/ETA .1489 .1564 .1374 .1148 .1653 .1364 .0083 .1342 .1541 .1050

 $\hat{\sim}$

Table D-3. Continued

PHASE REL TO ETA AT X=0 - DEG -78.1752 -138.3980 -143.3115 -145.2750 -140.4794 -13(.7280 -117.1690 -99.4609 -86.1399 -94.0032 .1190 REFLECTED BY FXD BDY/ETA .8163 .9230 .9491 .9529 .9543 .9551 .9546 .9576 .9582 63.7635 149.0770 128.1707 117.3206 118.2930 122.8550 129.8806 145.6856 170.5966 -174.8329 PHASE REL TO ETA AT X=0 - DEG .4353 .6777 .6697 TOTAL REFLECTED/ETA .0996 .3707 .7417 .7647 .8026 .9538 • 9752 PHASE REL TO ETA AT X=0 - DEG -65.9434 -166.6868 -172.9573 167.8642 154.6875 152.8944 155.6557 163.2463 172.2152 -177.7925

MOORING LINE MODEL RESULTS

SHOREWARD MOORING LINE

CHANGE IN FORCE PER UNIT DISPLACEMENT IN SWAY, HEAVE AND ROLL, RESPECTIVELY =-1376.0000 410.6000-1607.0000

MODRING LINE RESPONSE

HUDKING LINE KESEUNSE FORCE AMPLITUDE/ETA 1.328E+03 6.348E+02 3.809E+02 1.324F+02 3.242E+02 3.559E+02 3.342E+02 2.179E+u2 7.524E+01 8.660E+01 PHASE REL TO ETA AT X=0 - DEG 16.5361 10.4163 35.8873 -66.3177 -51.4041 -38.4782 -28.3381 -13.7787 -4.3807 -135.5908

FURCE AMPLITUDE/RDE+6*AREA*ETA 1.644E+00 7.859E-01 4.716E-01 1.639E-01 4.015E-01 4.407E-01 4.138E-01 2.698E-01 9.317E-02 1.072E-01

MODRING LINE MODEL RESULTS

SEAWARD MOORING LINE

SEAWARD HOUKING LINE

CHANGE IN FORCE PER UNIT DISPLACEMENT IN SWAY, HEAVE AND ROLL, RESPECTIVELY = 1172.0000 280.9000 1713.0000

MOORING LINE RESPONSE

FORCE AMPLITUDE/ETA 1.197E+U3 8.884E+02 9.529E+02 8.790E+02 6.718E+02 5.511E+02 4.595E+02 2.995E+02 1.471E+02 4.929E+01 PHASE REL TO ETA AT X=0 - DEG 143.6852 143.5674 148.2268 155.1982 171.4938 171.9765 172.7051 177.2141 -177.8580 93.7362

FORCE AMPLITUDE/ROE+G*AREA+ETA 1.483E+00 1.100E+00 1.180E+00 1.098E+00 8.319E-01 6.824E-01 5.690E-01 3.7J9E-01 1.821E-01 6.103E-02

Table D-3. Continued

Δ.

APPENDIX E

DERIVATION OF PRESSURE TO SECOND ORDER FOR TWO PROGRESSIVE WAVES AT DIFFERENT FREQUENCIES

Consider the problem of the nonlinear interactions of waves at two distinct frequencies traveling in the same direction. The complete boundary value problem is well known.

The Laplace equation,

$$\nabla^2 \phi = 0, \tag{E-1}$$

applies throughout the fluid below the free surface.

The boundary condition,

2

$$\frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial y} + 2\nabla \phi \cdot \nabla \frac{\partial \phi}{\partial t} + \frac{1}{2} \nabla \phi \cdot \nabla (\nabla \phi \cdot \nabla \phi) = 0, \qquad (E-2)$$

must be satisfied on the free surface, y = n. The boundary condition on the bottom is:

$$\lim_{y \to -\infty} \frac{\partial \phi}{\partial y} = 0$$
 (E-3)

for an infinitely deep fluid. In addition a radiation condition requiring the generated waves to travel away from the body is needed to ensure uniqueness of the solution.

In this formulation the x axis lies in the direction of incident wave propagation.

The difficulty in solving this boundary value problem stems from the nonlinearity of the free-surface boundary condition.

In order to "linearize" the free-surface boundary condition, expand the velocity potential, ϕ , in a Taylor series about the undisturbed free surface:

$$\phi(\mathbf{x},\mathbf{n},\mathbf{t}) = \phi(\mathbf{x},0,\mathbf{t}) + \eta \left[\frac{\partial \phi(\mathbf{x},\mathbf{y},\mathbf{t})}{\partial y}\right]_{y=0} + \frac{1}{2} \eta^2 \left[\frac{\partial \phi(\mathbf{x},\mathbf{y},\mathbf{t})}{\partial y}\right]_{y=0} + 0(\eta^3). \quad (E-4)$$

Also expand η and ϕ in power series:

$$n(x,t) = \epsilon \eta^{(1)}(x,t) + \epsilon^2 \eta^{(2)}(x,t) + 0(\epsilon^3),$$

$$\phi(x,y,t) = \epsilon \phi^{(1)}(x,y,t) + \epsilon^2 \phi^{(2)}(x,y,t) + 0(\epsilon^3). \quad (E-5)$$

Substituing the expansion for $\boldsymbol{\varphi}$ into the free-surface boundary condition:

$$\varepsilon \frac{\partial^{2} \phi^{(1)}(\mathbf{x},\mathbf{y},\mathbf{t})}{\partial t^{2}} + \varepsilon^{2} \frac{\partial^{2} \phi^{(2)}}{\partial t^{2}} + g\varepsilon \frac{\partial \phi^{(1)}}{\partial y} + g\varepsilon^{2} \frac{\partial \phi^{(2)}}{\partial y}$$

$$+ 2\left[\varepsilon \left\{\frac{\partial \phi^{(1)}}{\partial x} \overrightarrow{1} + \frac{\partial \phi^{(1)}}{\partial y} \overrightarrow{j}\right\} + \varepsilon^{2} \left\{\frac{\partial \phi^{(2)}}{\partial x} \overrightarrow{1} + \frac{\partial \phi^{(2)}}{\partial y} \overrightarrow{j}\right\}\right] \cdot$$

$$\left[\overrightarrow{1} \quad \frac{\partial}{\partial x} + \overrightarrow{j} \quad \frac{\partial}{\partial y}\right] \left[\varepsilon \frac{\partial \phi^{(1)}}{\partial t} + \varepsilon^{2} \frac{\partial \phi^{(2)}}{\partial t} \overrightarrow{1} + \frac{\partial \phi^{(2)}}{\partial y} \overrightarrow{j}\right] \cdot$$

$$\left[\overrightarrow{1} \quad \frac{\partial}{\partial x} + \overrightarrow{j} \quad \frac{\partial}{\partial y}\right] \left[\varepsilon \left\{\frac{\partial \phi^{(1)}}{\partial x} + \varepsilon^{2} \left\{\frac{\partial \phi^{(1)}}{\partial y} + \varepsilon^{2} \left\{\frac{\partial \phi^{(2)}}{\partial x} + \varepsilon^{2} \left\{\frac{\partial \phi^{(2)}}{\partial x} + \varepsilon^{2} \left\{\frac{\partial \phi^{(2)}}{\partial y} + \varepsilon^{2} \right\}\right\}\right] + 0 (\varepsilon^{3}) = 0 \quad (E-6)$$

on $y = \eta$.

Now use the Taylor expansion for $\phi(x,\eta,t)$ and neglect terms of order ϵ^3 in the boundary condition:

$$\varepsilon \left\{ \frac{\partial^{2} \phi^{(1)}(\mathbf{x}, 0, \mathbf{t})}{\partial t^{2}} + \varepsilon \eta^{(1)}(\mathbf{x}, \mathbf{t}) \frac{\partial^{3} \phi^{(1)}}{\partial y \partial t^{2}} \right\} + \varepsilon^{2} \frac{\partial^{2} \phi^{(2)}}{\partial t^{2}}$$

$$+ g \varepsilon \left\{ \frac{\partial \phi^{(1)}}{\partial y} + \varepsilon \eta^{(1)}(\mathbf{x}, \mathbf{t}) \frac{\partial^{2} \phi^{(1)}}{\partial y^{2}} \right\} + g \varepsilon^{2} \frac{\partial \phi^{(2)}}{\partial y}$$

$$+ 2 \varepsilon^{2} \left[\frac{\partial \phi^{(1)}}{\partial \mathbf{x}} \frac{\partial^{2} \phi^{(1)}}{\partial t \partial \mathbf{x}} + \frac{\partial \phi^{(1)}}{\partial y} \frac{\partial^{2} \phi^{(1)}}{\partial t \partial y} \right] + 0 (\varepsilon^{3}) = 0. \quad (E-7)$$

Grouping terms by order:

First Order ε:

$$\frac{\partial^2 \phi^{(1)}}{\partial t^2} + g \frac{\partial \phi^{(1)}}{\partial y} = 0 \quad \text{on } y = 0.$$
 (E-8)

Second Order ε^2 :

$$\frac{\partial^{2} \phi^{(2)}}{\partial t^{2}} + g \frac{\partial \phi^{(2)}}{\partial y} + \eta^{(1)} \frac{\partial}{\partial y} \left\{ \frac{\partial^{2} \phi^{(1)}}{\partial t^{2}} + g \frac{\partial \phi^{(1)}}{\partial y} \right\} + 2 \frac{\partial \phi^{(1)}}{\partial x} \frac{\partial^{2} \phi^{(1)}}{\partial x \partial t} + 2 \frac{\partial \phi^{(1)}}{\partial y \partial t} \frac{\partial \phi^{(1)}}{\partial y \partial t} = 0 \quad \text{on } y = 0.$$
(E-9)

Using the dynamic boundary condition on the free surface, one finds:

$$\eta(\mathbf{x}, \mathbf{t}) = -\frac{1}{g} \left\{ \frac{\partial \phi}{\partial \mathbf{t}} + \frac{1}{2} \nabla \phi \cdot \nabla \phi \right\} \quad \text{on } \mathbf{y} = \eta.$$
 (E-10)

Substituting the expansions into this equation yields:

$$\varepsilon \eta^{(1)}(\mathbf{x}, \mathbf{t}) + \varepsilon^2 \eta^{(2)} + 0(\varepsilon^3) = -\frac{1}{g} \left\{ \frac{\partial \phi}{\partial \mathbf{t}} + \frac{1}{2} \nabla \phi \cdot \nabla \phi \right\}$$

$$= 0$$

$$-\frac{\eta}{g} \frac{\partial}{\partial y} \left\{ \frac{\partial \phi}{\partial \mathbf{t}} + \frac{1}{2} \nabla \phi \cdot \nabla \phi \right\} + 0(\eta^2).$$

$$(E-11)$$

Substituting for ϕ , the right-hand side becomes:

$$= -\frac{1}{g} \left\{ \varepsilon \frac{\partial \phi^{(1)}}{\partial t} + \varepsilon^2 \frac{\partial \phi^{(2)}}{\partial t} + \frac{\varepsilon^2}{2} \left[\left(\frac{\partial \phi^{(1)}}{\partial x} \right)^2 + \left(\frac{\partial \phi^{(1)}}{\partial y} \right)^2 \right] \right\}$$
$$- \frac{\varepsilon^2 \eta^{(1)}}{g} \left\{ \frac{\partial^2 \phi^{(1)}}{\partial y \partial t} \right\} + 0(\varepsilon^3), \text{ on } y = 0.$$

First Order ε :

$$\eta^{(1)}(x,t) = -\frac{1}{g} \frac{\partial \phi^{(1)}(x,0,t)}{\partial t} . \qquad (E-12)$$

Second Order
$$\varepsilon^2$$
:
 $\eta^{(2)}(x,t) = -\frac{1}{g} \{\eta^{(1)} \frac{\partial \phi^{(1)}}{\partial y \partial t} + \frac{\partial \phi^{(1)}}{\partial t} \} - \frac{1}{2g} \{(\frac{\partial \phi^{(1)}}{\partial x})^2 + (\frac{\partial \phi^{(1)}}{\partial y})^2\}$
on $y = 0$

or

$$\eta^{(2)}(\mathbf{x},\mathbf{t}) = -\frac{1}{g} \left\{ -\frac{1}{g} \frac{\partial \phi^{(1)}}{\partial \mathbf{t}} \frac{\partial^2 \phi^{(1)}}{\partial y \partial t} + \frac{\partial \phi^{(2)}}{\partial t} \right\} - \frac{1}{2g} \left\{ \left(\frac{\partial \phi^{(1)}}{\partial \mathbf{x}} \right)^2 + \left(\frac{\partial \phi^{(1)}}{\partial y} \right)^2 \right\} \text{ on } \mathbf{y} = 0.$$
(E-13)

Using the first-order relationship above in the second-order boundary condition on the free surface (E-9), one finds:

$$\frac{\partial^{2} \phi^{(2)}}{\partial t^{2}} + g \frac{\partial \phi^{(2)}}{\partial y} = + \frac{1}{g} \frac{\partial \phi^{(1)}}{\partial t} \frac{\partial}{\partial y} \left\{ \frac{\partial^{2} \phi^{(1)}}{\partial t^{2}} + g \frac{\partial \phi^{(1)}}{\partial y} \right\}$$
$$- 2 \frac{\partial \phi^{(1)}}{\partial x} - \frac{\partial^{2} \phi^{(1)}}{\partial x \partial t} - 2 \frac{\partial \phi^{(1)}}{\partial y} \frac{\partial^{2} \phi^{(1)}}{\partial y \partial t} \qquad (E-14)$$

1. First-Order Solution of the Boundary Value Problem.

.

This solution results from the superposition of the velocity potentials for individual waves:

$$\phi^{(1)}(x,y,t) = \frac{gA_1}{\omega_1} e^{k_1 y} \cos (k_1 x - \omega_1 t + \delta_1) + \frac{gA_2}{\omega_2} e^{k_2 y} \cos (k_2 x - \omega_2 t + \delta_2).$$
(E-15)

Check the solution:

$$\begin{aligned} \nabla^{2} \phi^{(1)} &= 0. \\ \lim_{y \to -\infty} \frac{\partial \phi^{(1)}}{\partial y} \to 0 \quad \text{because of exponential function.} \\ \frac{\partial^{2} \phi^{(1)}}{\partial t^{2}} + g \frac{\partial \phi^{(1)}}{\partial y} &= -g \omega_{1} A_{1} e^{k_{1} y} \cos (k_{1} x - \omega_{1} t + \delta_{1}) \\ -g \omega_{2} A_{2} e^{k_{2} y} \cos (k_{2} x - \omega_{2} t + \delta_{2}) \\ + g \{\omega_{1} A_{1} e^{k_{1} t} \cos(k_{1} x - \omega_{1} t + \delta_{1}) \\ + \omega_{2} A_{2} e^{k_{2} y} \cos(k_{2} x - \omega_{2} t + \delta_{2})\} = 0. \end{aligned}$$

Therefore, this is a solution.

Surface elevation then becomes:

$$\eta^{(1)}(x,t) = -\frac{1}{g} \frac{\partial \phi^{(1)}(x,0,t)}{\partial t} = -A_1 \sin(k_1 x - \omega_1 t + \delta_1)$$

- $A_2 \sin(k_2 x - \omega_2 t + \delta_2).$ (E-16)

To prepare for the second-order solution, construct the right-hand side of the free-surface boundary condition (E-14):

$$\begin{bmatrix} \frac{1}{2} & \frac{\partial \phi^{(1)}}{\partial t} & \frac{\partial}{\partial y} & \{ \frac{\partial^2 \phi^{(1)}}{\partial t^2} + g & \frac{\partial \phi^{(1)}}{\partial y} \} - 2 & \frac{\partial \phi^{(1)}}{\partial x} & \frac{\partial^2 \phi^{(1)}}{\partial x \partial t} \end{bmatrix}$$

- 2 $\frac{\partial \phi^{(1)}}{\partial y} & \frac{\partial^2 \phi^{(1)}}{\partial y \partial t} \end{bmatrix}_{y=0} = \frac{1}{g} \{ gA_1 \sin(k_1 x - \omega_1 t + \delta_1) \}$
+ $gA_2 \sin(k_2 x - \omega_2 t + \delta_2) \} \{ 0 \} - 2 \{ -\omega_1 A_1 \sin(k_1 x - \omega_1 t + \delta_1) \}$ (E-17)

$$- \omega_2 A_2 \sin(k_2 x - \omega_2 t + \delta_2) \right\} \times \{ \omega_1^2 A_1 \cos(k_1 x - \omega_1 t + \delta_1)$$

$$+ \omega_2^2 A_2 \cos(k_2 x - \omega_2 t + \delta_2) \right\} - 2\{ \omega_1 A_1 \cos(k_1 x - \omega_1 t + \delta_1)$$

$$+ \omega_2 A_2 \cos(k_2 x - \omega_2 t + \delta_2) \right\} \times \{ \omega_1^2 A_1 \sin(k_1 x - \omega_1 t + \delta_1)$$

$$+ \omega_2^2 A_2 \sin(k_2 x - \omega_2 t + \delta_2) \right\} = 0.$$

Since this condition is homogeneous, the first-order potential is the solution to the second-order problem.

2. Second-Order Results.

The free-surface elevation will be modified when terms of second order are included:

$$n^{(2)}(x,t) = \frac{1}{g^2} \left\{ \frac{\partial \phi^{(1)}}{\partial t} \frac{\partial^2 \phi^{(1)}}{\partial y \partial t} \right\} - \frac{1}{2g} \left\{ \left(\frac{\partial \phi^{(1)}}{\partial x} \right)^2 + \left(\frac{\partial \phi^{(1)}}{\partial y} \right)^2 \right\} \Big|_{y=0}$$

$$= + \frac{1}{g^2} \left\{ gA_1 \sin(k_1 x - \omega_1 t + \delta_1) + gA_2 \sin(k_2 x - \omega_2 t + \delta_2) \right\} \times \left\{ A_1 \omega_1^2 \sin(k_1 x - \omega_1 t + \delta_1) + A_2 \omega_2^2 \sin(k_2 x - \omega_2 t + \delta_2) \right\}$$

$$= \frac{1}{2g} \left\{ \left[-\omega_1 A_1 \sin(k_1 x - \omega_1 t + \delta_1) - \omega_2 A_2 \sin(k_2 x - \omega_2 t + \delta_2) \right]^2 + \left[\omega_1 A_1 \cos(k_1 x - \omega_1 t + \delta_1) + \omega_2 A_2 \cos(k_2 x - \omega_2 t + \delta_2) \right]^2 \right\}$$

ł.

or

$$gn^{(2)}(x,t) = \omega_1^{2}A_1^{2} \sin^{2}(k_1x - \omega_1t + \delta_1) + \omega_1^{2}A_1A_2 \sin(k_2x - \omega_2t + \delta_2) \sin(k_1x - \omega_1t + \delta_1) + \omega_2^{2}A_1A_2 \sin(k_1x - \omega_1t + \delta_1) \sin(k_2x - \omega_2t + \delta_2) + \omega_2^{2}A_2^{2} \sin^{2}(k_2x - \omega_2t + \delta_2) \frac{1}{2} \{\omega_1^{2}A_1^{2} \sin^{2}(k_1x - \omega_1t + \delta_1) \\+ 2\omega_1\omega_2^{A}A_1^{A} \sin(k_1x - \omega_1t + \delta_1) \sin(k_2x - \omega_2t + \delta_2)\}$$

$$+ \omega_{2}^{2}A_{2}^{2} \sin^{2}(k_{2}x - \omega_{2}t + \delta_{2})$$

$$+ \omega_{1}^{2}A_{1}^{2} \cos^{2}(k_{1}x_{1} - \omega_{1}t + \delta_{1})$$

$$+ 2\omega_{1}\omega_{2}A_{1}A_{2} \cos(k_{1}x - \omega_{1}t + \delta_{1})\cos(k_{2}x - \omega_{2}t + \delta_{2})$$

$$+ \omega_{2}^{2}A_{2}^{2} \cos^{2}(k_{2}x - \omega_{2}t + \delta_{2}).$$

Using the trigonometric relationships:

$$gn^{2}(x,t) = \omega_{1}^{2}A_{1}^{2} \sin^{2}(k_{1}x - \omega_{1}t + \delta_{1}) + \omega_{2}^{2}A_{2}^{2} \sin^{2}(k_{2}x - \omega_{2}t + \delta_{2})$$

$$+ \frac{1}{2} \omega_{1}^{2}A_{1}A_{2} \left\{ \cos[(k_{1} - k_{2})x - (\omega_{1} - \omega_{2})t + \delta_{1} - \delta_{2}] \right\}$$

$$- \cos[(k_{1} + k_{2})x - (\omega_{1} + \omega_{2})t + \delta_{1} + \delta_{2}] \right\}$$

$$+ \frac{1}{2} \omega_{2}^{2}A_{1}A_{2} \left\{ \cos[(k_{1} - k_{2})x - (\omega_{1} - \omega_{2})t + \delta_{1} - \delta_{2}] \right\}$$

$$- \cos[(k_{1} + k_{2})x - (\omega_{1} + \omega_{2})t + \delta_{1} + \delta_{2}] \right\}$$

$$- \frac{1}{2} \left\{ \omega_{1}^{2}A_{1}^{2} + \omega_{2}^{2}A_{2}^{2} \right\} - \omega_{1}\omega_{2} A_{1}A_{2} \cos[(k_{1} - k_{2})x - (\omega_{1} - \omega_{2})t + \delta_{1} - \delta_{2}] \right\}$$

$$- (\omega_{1} - \omega_{2})t + \delta_{1} - \delta_{2}].$$

Combining further:

.

$$gn^{(2)}(x,t) = -\frac{1}{2}\omega_1^2 A_1^2 \cos[2\{k_1x - \omega_1t + \delta_1\}]$$

$$-\frac{1}{2}\omega_2^2 A_2^2 \cos[2\{k_2x - \omega_2t + \delta_2\}] \qquad (E-18)$$

$$-\frac{1}{2}(\omega_1^2 + \omega_2^2) A_1 A_2 \cos[(k_1 + k_2)x - (\omega_1 + \omega_2)t + \delta_1 + \delta_2]$$

$$+\frac{1}{2}(\omega_1^2 - 2\omega_1\omega_2 + \omega_2^2) A_1 A_2 \cos[(k_1 - k_2)x - (\omega_1 - \omega_2)t + \delta_1 - \delta_2],$$

which is the final form for the second-order term for free-surface ele-vation.

Now, turn to the equation for pressure which is necessary to compute the force on the body.

Take the pressure to be zero at the free surface. Then Bernoulli's equation may be written:

$$P = -\rho \frac{\partial \phi}{\partial t} - \frac{1}{2} \rho \nabla \phi \cdot \nabla \phi - \rho g y. \qquad (E-19)$$

Substituting the expansion for ϕ :

$$P = -\rho \{ \varepsilon \frac{\partial \phi^{(1)}}{\partial t} + \varepsilon^2 \frac{\partial \phi^{(2)}}{\partial t} + \frac{1}{2} [\varepsilon^2 (\frac{\partial \phi^{(1)}}{\partial x})^2 + \varepsilon^2 (\frac{\partial \phi^{(1)}}{\partial y})^2 + gy \} + 0 (\varepsilon^3).$$

Since $\phi^{(2)} = 0$, we can drop this term and proceed to separate the equation by order:

$$P^{(1)} = -\rho \frac{\partial \phi^{(1)}}{\partial t} - \rho gy \qquad (E-20)$$

and

$$P^{(2)} = -\frac{\rho}{2} \left[\left(\frac{\partial \phi^{(1)}}{\partial x} \right)^2 + \left(\frac{\partial \phi^{(1)}}{\partial y} \right)^2 \right].$$
 (E-21)

Substituting the velocity potential into the equation, one finds: $P^{(1)} = -\rho g\{A_1 e^{k_1 y} \sin(k_1 x - \omega_1 t + \delta_1) + A_2 e^{k_2 y} \sin(k_2 x - \omega_2 t + \delta_2) + y\} \qquad (E-22)$

for the first order, and

$$P^{(2)} = -\frac{\rho}{2} \{ [-\omega_1 A_1 e^{k_1 y} \sin(k_1 x - \omega_1 t + \delta_1) \\ -\omega_2 A_2 e^{k_2 y} \sin(k_2 x - \omega_2 t + \delta_2)]^2 \\ + [\omega_1 A_1 e^{k_1 y} \cos(k_1 x - \omega_1 t + \delta_1) \\ + \omega_2 A_2 e^{k_2 y} \cos(k_2 x - \omega_2 t + \delta_2)]^2 \}$$

for the second order. Note that this is identical to part of the

equation for surface elevation. The second-order pressure may be reduced to:

$$P^{(2)} = -\frac{\rho}{2} \{\omega_1^{2} A_1^{2} e^{2k_1 y} + \omega_2^{2} A_2^{2} e^{2k_2} - 2\omega_1 \omega_2 A_1 A_2 e^{(k_1 + k_2)y} \cos[(k_1 - k_2)x - (\omega_1 - \omega_2)t + \delta_1 - \delta_2]\} \quad (E-23)$$

which indicates that the second-order pressure is composed of a component independent of time and at the "difference frequency".

This is surprising since the equation for the free-surface elevation (eq. 18) includes terms at twice the incident wave frequencies and at the sum of these two frequencies. Using trigonometric relationships the first two terms in equation (E-23) could be expanded to yield terms at twice the incident wave frequency. A term at the sum of the two incident wave frequencies may appear in the pressure computed using the velocity potentials representing wave diffraction or forced oscillation. It might also appear if the present analysis were carried to the third order. The derivation included here was intended to reveal the presence of a low-frequency component in the exciting force and has not been used to determine the other velocity potentials or carried beyond the second order.

3.	List of S	pec	ial Symbols for Appendix E.
	A ₁ ,A ₂	=	Wave amplitudes
	g	8	Acceleration of gravity 2
	^k 1, ^k 2	=	Acceleration of gravity Wave numbers, $\frac{\omega_1^2}{g}$, $\frac{\omega_2^2}{g}$, respectively
	х,у	=	Cartesian coordinates (x-directed parallel to the direction of wave propagation, y-directed vertically upward)
	^δ 1, ^δ 2	H	Wave phase angles
	η(x,t)	=	Free-surface elevation
	¢(x,y,t)	=	Velocity potential
	^ω 1, ^ω 2	H	Wave circular frequencies
	δ_1, δ_2 n(x,t) $\phi(x,y,t)$		direction of wave propagation, y-directed vertical: upward) Wave phase angles Free-surface elevation Velocity potential

APPENDIX F

PHYSICAL PROPERTIES OF SEVERAL FLOATING BREAKWATERS

1. Proposed Oak Harbor Floating Breakwater (Davidson, 1971).
a. Physical Properties.
m = mass per unit length = 25.1 slug/ft
I = mass moment of inertia = 621 slug-ft²/ft
x_g = x-coordinate of center of gravity = 0.0 ft.
(on centerline)
y_g = y-coordinate of center of gravity = -2.34 ft (below WL)
KH₂₂ = 64.5 lb/ft/ft
KH₃₃ = 1,165 ft-lb/ft
All other KH_{1j} = 0
b. Mooring Line Tension Response (change per unit displacement).

$$\frac{\Delta T}{\Delta x} = 1,170 \text{ lb/ft}$$

 $\frac{\Delta T}{\Delta y} = 281 \text{ lb/ft}$
 $\frac{\Delta T}{\Delta \theta} = 1,710 \text{ lb}$
c. Computed Mooring Spring Constants (depth = 29.5 feet)

 $KM_{11} = 119 \quad 1b/ft/ft$ $KM_{12} = -5.24 \quad 1b/ft/ft$ $KM_{13} = 166 \quad 1b/ft$ $KM_{21} = -5.73 \quad 1b/ft/ft$ $KM_{22} = 10.2 \quad 1b/ft/ft$ $KM_{23} = -3.37 \quad 1b/ft$ $KM_{31} = 160 \quad 1b/ft$ $KM_{32} = 2.06 \quad 1b/ft$

$$KM_{33} = 282. \text{ ft-lb/ft}$$

Rectangular Breakwater Tested by Nece and Richey (1972).

Physical Properties (at prototype scale). The cross section is a rectangle of beam 10 feet and draft 5 feet.

m = 100 slugs/ft

 $I = 2,740 \text{ slug-ft}^2/\text{ft}$

 $x_g = 0.0$ ft (on centerline)

 $y_g = -1.0$ ft (below WL)

 $KH_{22} = 640 \ 1b/ft/ft$

 $KH_{33} = 5,340 \, \text{ft-lb/ft}$

All other $KH_{ij} = 0$

All
$$KM_{ij} = 0$$
.

Rectangular Breakwater Tested by Sutko and Haden (1974).

Physical Properties of Model. The cross section is a rectangle of beam 0.333 feet and draft 0.222 feet. = 0.143 slug/ft m = $0.023 \text{ slug-ft}^2/\text{ft}$ Т = 0.0 ft (on centerline) xg = -0.123 ft (below WL) У_σ $KH_{22} = 20.7 \ lb/ft/ft$ $KH_{33} = 0.244 \text{ ft-lb/ft}$ All other $KH_{ij} = 0$ A11 $KM_{ii} = 0$ Alaska-Type Breakwater. Physical Properties. a. = 62.3 slug/ft m

I = 4,234 slug-ft/ft

$$x_g$$
 = 0.0 ft
 y_g = -1.3 ft (below WL)
 KH_{22} = 528 lb/ft/ft
 KH_{33} = 32,885 ft-lb/ft
All other KH_{ij} = 0

b. Mooring Line Tension Response (change per unit displacement).

 $\frac{\Delta T}{\Delta x} = 97.0 \text{ lb/ft}$ $\frac{\Delta T}{\Delta y} = 90.5 \text{ lb/ft}$ $\frac{\Delta T}{\Delta \theta} = -572 \text{ lb}$

c. <u>Computed Mooring Spring Constants</u> (tide = +7.0 feet).

 $KM_{11} = 3.0 \ lb/ft/ft$ $KM_{12} = 0.245 \ lb/ft/ft$ $KM_{13} = -9.23 \ lb/ft$ $KM_{21} = 0.302 \ lb/ft/ft$ $KM_{22} = 1.91 \ lb/ft/ft$ $KM_{23} = -2.68 \ lb/ft$ $KM_{31} = -9.52 \ lb/ft$ $KM_{32} = -2.82 \ lb/ft$ $KM_{33} = 88.9 \ ft-lb/ft$

- 5. Friday Harbor Breakwater.
 - a. <u>Physical Properties</u>.
 m = 61.02 slugs/ft

$$I = 4,160 \text{ slugs-ft}^3/\text{ft}$$

 $x_{\sigma} = 0.0$ ft (on centerline) $y_{g} = -0.49$ ft (below WL) $KH_{22} = 884 \ lb/ft/ft$ KH₃₃ = 55,610 ft-1b/ft All other $KH_{ij} = 0$ Mooring Line Tension Response. b. $\frac{\Delta T}{\Delta x} = 222$ lb/ft $\frac{\Delta T}{\Delta y} = 25.0 \ lb/ft$ $\frac{\Delta T}{\Delta \theta} = 657$ 1b Computed Mooring Spring Constants (tide = +5.33 feet). с. $KM_{11} = 6.46 \ lb/ft/ft$ $KM_{12} = 0.510 \ lb/ft/ft$ $KM_{13} = 18.5 \, ft-lb/ft/ft$ $KM_{21} = 0.510 \ lb/ft/ft$ $KM_{22} = 0.390 \ lb/ft/ft$ $KM_{23} = 1.71 \, ft - lb/ft/ft$ $KM_{31} = 18.6 \ lb/ft$ $KM_{32} = 1.71 \ lb/ft$ $KM_{33} = 64.6 \text{ ft-lb/ft}$

159

APPENDIX G

DATA SUMMARY SHEETS FOR FRIDAY HARBOR FLOATING BREAKWATER (WINTER 1975)

Appendix G contains a summary of all the data recorded at the Friday Harbor breakwater during the winter season of 1975. Seven tapes were recorded during this period, with a total of 95 records. The tapes are numbered in sequence from FH7-1 through FH13-8. The date of each tape is given along with the pertinent statistical data for each record in the tapes. The number of days and hours given for each record begins with the day and hour given for that particular tape.

All minimum and maximum values are measured from zero mean. The transmitted wave data were digitally high-pass filtered (cutoff frequency was 0.05 hertz) before these calculations to remove tidal draft.

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH7 - 1330 - 12/30/74) (MAX. AND MIN. VALUES MEASURED FROM ZERU MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

	TIME IN	TRANS. CDEF.															
	DAYS			WIND	WIND		LOAD CE	LLS			WAVE GA	GES		ACCE	LEROMETI	ERS	
	AND Hours			SP.	DIR.	NW	SW	NE	SE	TRAN 1	TRAN 2	INC.	REF.	N.VER.	HOR.	S.VER.	
				MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT	/SEC/SE	;)	
_			MAX,		58.1	39.10	30.90	31.92	17.55	•113	.110	.297	•209				
1	0	•45			-57.4	-20.90	-33.10	-16.08	-18.79	137	133	317	226		109		
	0		MEAN		109.9	.00	981.12	856.26	959.38	6.938	7.226	4.118			13.399		
			SIDEA	1.00	27.87	. 9.155	9.811	7.016	6.077	.0385	•0367	•0848	• 05 05	• 0445	•0218	•0574	
_	_				60.7	57.90	161.55	42.34	96.34	.167		•742	.695	.317			
2		• 35			-65.3	-78.10	-110.45	-37.66	-80.62		296	487			246		
	20				180.3	.00	1181.83		11370.02		7.509	4.058			13.698		
			SIDEA	3.02	14.27	24.055	51.877	14.026	. 30.339	.0534	•0558	.1519	•1622	•0869	• 0666	.1127	
					93.2	75.58	325.98	66.36	193.09	.135	.128	.766	.806	.386			
3	2	•27			-95.8	-12.42	-174.02	-53.64	-84.99		162	540			299		
	21				178.5	55.01	1161.24	867.82			5.834	4.034			13.680		
			STDEV	3.27	19.63	16.689	65.078	13.839	38.205	.0444	•0469	.1626	.1842	.0788	.0734	.1156	
			MAX,		51.7	75.58	445.25	43.05	278.10	.205	.205	.823	.997	.334	•273	.507	
4	3	•39	MIN.		-116.3	-12.42	-182.75	-40.95	-112.16	196		-,559	539	338		593	
	0				178.7	1.63	1075.80	759.38	1027.13	5.174	4.994	4.080			13.548		
			STDEV	3.93	24.09	.000	89.072	14.051	55.777	•0663	.0673	.1715	.2035	.0920	•0806	.1317	
			MAX	14.1	61.9	15.65	333.14	47.80	221.93	.183	.204	.778	.831		• 204	.423	
5	3	•34	MIN.		-95.6	35	-226.86	-60.20	-128.83	172	-,156	502	500		181		
	1		MEAN		189.5	3.08	1069.49	719.23	952.01	5.093	4.908	4.150			13.681		
			STDEV	3.91	19.78	2.057	97.282	16.930	61.033	.0567	•0598	.1687	.1721	.0701	•0626	.1032	
			MAX	8.2	57.2	40.51	156.49	23.37	90.27	•093	.137	.802	.856	.342	.297	.571	
6	5	.19	MIN.		-68.B	-35.49	-95.51	-36.63	-47.19	113	107	452	501	330		444	
	9		MEAN		172.9	120.45	990.82	874.81	904.88	5.526	5.300	4.024			13.743		
			STDEV	2.89	14.72	18.688	50.922	11.194	27.538	.0328	.0334	.1743	•179 7	•0986	•0743	.1170	
																	-

.....

5

6

FRIDAY HARBUR FLOATING BREAKWATER (FH7 - 1330 - 12/30/74) SUNNARY OF STATISTICAL DATA FOR (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = >00 MS NUMBER OF SAMPLES = 2047

1

	TIME IN	TRANS. CDEF.														
	DAYS			WIND			LDAD CEL				WAVE GA				EROMETE.	
	AND HOURS			SP.	DIR.	NW	SW	NE	SE	TRAN 1	TRAN 2	INC.	RÉF.	N.VER.	HOR .	S.VER.
				MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT/	SEC /SEC)
						1										
			HAX.	12.7	70.3	51.65	259.79	50.95	162.78	.134	.181	1.047	1.182	.768	.731	1.587
7	5	.18	MIN.		-150.2	-4.35	-212.21	-49.05	-112.14	138	140	+.643			917	-1.290
•	10	•••			150.2	.00	1181.21	810.04	1104.56	5.670	5.452	4.035			13.720	
					37.11	10.657	82.997	14.872	46.791		•0422	.2216	.2427		.1959	
			MAX	6.8	27.0	7.84	291.23	37.67	173.79	.157	.137	1.188	1.457	.769	.660	1.925
8	5	.16	MIN.	-6.1	-67.5	16	-204.77	-42.33	-116.93	186	199	732	847	743	667	-1.797
Ŭ	11				160.9	.00	1143.02	733.83	1147.23	5.440	5.220	4.047			13.910	12.964
					14.06	1.003	86.332	13.652	48.214	.0411	.0446	.2521	• 2939	.1984	.1875	.3902
			MAX,	12.4	47.8	7.79	362.35	34.46	197.82	.161	.142		1.043	.498	•542	.747
9	5	•20	MIN.	-8.1	-109.7	21	-177.65	-33.54	-107.12	159	170	550	-,596	636	357	860
	12		MEAN	22.3	161.4	.00	1094.26	804.04	1087.69	5.279	5.062	4.044	4.655	13.274	13.822	12.957
			STDEV	3.27	23.39	1.128	80.256	12.471	47.411	•0428	.0433	.2111	•2186	•1412	.1118	•1840
					62.5	26.40	397.52	48.77	283.36	• 248	.221	.962	1.086	•474		. 662
10	5	•24	MIN.		-126.5	-1.60	-238.48	-47.23		167	170	626	604			
	13				167.7	•00	1196.93	732.67	1176.63		5.305	4.094			13.836	
			STDEV	4.83	24.85	5.188	131.584	19.011	82.184	, •0481	.0510	.2037	.2414	.1242	.1006	.1763
			HAX,	13.4	58.3	88.55	305.94	43.06	195.54	.163	.148	.904	.931	• 322	.306	.656
11	5	.26	MIN.	-11.0	-88.7	-19.45	-214.06	-44.94	-110.98	183	155	504	529	308	272	444
	14		MEAN	20.3	171.6	.00	1143.02	808.64	1102.61	3.196	6.015	4.102	4.689	13.257	13.767	12.965
			STDEV	4.24	17.36	20.866	86.769	15.340	52.033	•0483	•0486	.1891	.2138	.1000	.0821	.1344
			MAX,	13.1	54.1	72.79	306.05	41.58	191.57	.189	.186	.636	.603	.280	•266	•318
12	5.	.44	MIN.		-82.4	-99.21	-117.95	-86.42	-70.71	169	163	439	-,549	245	162	274
	15				175.7	175.31	1036.93	826.09	1015.94	7.264	7.108	4.062	4.683	13.227	13.729	12.965
					16.70	34.384	62.609	19,570	38.895	.0639	.0638	.1440	•1499	.0708	.0608	.0940

.

.

~

თ

.

N

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBUR FLOATING BREAKWATER (FH7 - 1330 - 12/30/74) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

	TIME IN DAYS	TRANS. COEF.		WIND		e e e e e e e e e e e e e e e e e e e	LOAD CE				MANE CA	~ = =		1005		
	AND			SP.	WIND Dir.	NW	SW	NE	SE	TRAN 1	WAVE GA Tran 2	INC.	REF.	N.VER.	LEROMETE Hor.	S.VER.
	HOURS			MPH	DEG.	LBS	LBS	LBS	ΓR2	FT.	FT.	FT.	FT.	(FT.	SEC/SEC	:)
13	7 21	•21	MAX, MIN. MEAN STDEV	-6.3 17.5	43.2 -61.8 156.1 13.55	46.32 -101.68 287.74 20.978	199.03 -104.97 1299.86 39.646	39.26 -60.74 983.14 14.441	130.43 -127.11 1305.05 26.267	•111 -•122 9•195 •0320	•117 -•128 9•069 •0335	.663 437 4.060 .1494	•733 -•496 4•656 •1655		248 13.836	.454 477 12.913 .1114
14	7 22	•30		-5.5 18.3	41.6 -84.4 147.0 18.08	66.11 -77.89 200.76 21.201	173.65 -86.35 1209.88 40.827	37.35 -50.65 844.27 12.534	116.29 -55.93 1185.52 24.107	•150 -•378 8•776 •0493	•151 -•434 8•652 •0520	.768 512 4.160 .1670	.864 544 4.730 .1955	13.316		
15	8 0	•44	MAX, MIN. MEAN STDEV	-4.4	54.2 -103.3 124.3 27.92	108.73 -67.27 .00 24.710	195.61 -148.39 1192.50 54.314	57.30 -38.70 822.80 14.292	109.47 -78.55 1022.38 31.875	.183 205 7.214 .0714	•231 -•223 7•056 •0759	.747 456 7.027 .1630	4.643	.373 383 13.274 .1051	13.617	.456 390 12.911 .1330
16	8 1	•51	MAX; MIN. MEAN STDEV	-7.0 20.5	39.2 -86.8 149.1 18.73	33.70 -2.30 .00 6.606	328.02 -187.98 1084.30 82.334	44.49 -47.51 801.94 15.615	193.38 -106.82 1070.00 49.404	.213 233 5.437 .0868	•233 -•233 5•227 •0903	.845 461 4.057 .1713	.877 454 4.640 .1993		•396 -•417 13•868 •1025	
17	8 3	• 44	MAX; MIN. MEAN STDEV	-6.8 20.0	34.8 -59.7 164.1 12.01	33.70 -2.30 .00 .000	224.20 -147.80 1082.30 71.200	38.81 -25.19 748.74 9.615	118.01 -74.75 918.50 36.055	.197 206 3.663 .0692	•171 -•208 3•397 •0717	.666 435 4.006 .1587			•334 -•372 13•649 •0795	
18	8 4	•31	MAX, MIN. MEAN STDEV	-7.2 14.5	56.8 -79.7 183.5 15.83	33.70 -2.30 .00 .000	162.23 -117.77 913.56 47.441	20.87 -27.13 721.19 7.594	93.13 -44.33 697.64 21.849	•177 -•123 2•339 •0429	•139 -•115 2•040 •0434	.634 390 4.013 .1401		.199 179 13.342 .0462	13.626	

163

•

~

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH7 - 1330 - 12/30/74) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

	TIME IN DAYS	TRANS. COEF.		WIND SP.		NW	LOAU CEI Sw	LLS	55	TRAN 1	WAVE GA Tran 2				EROMETE	
	AND HOURS			35.	DIK.	жл.	3#	NE	35	IKAN I	IKAN Z	INC.	KEF.	No VCK o	HOR.	J. VEK.
	HOUKJ			MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT/	SEC / SEC	
			MAX,		51.0	54.07	157.81	35.50	78.93	.262	•234	•644	.660	.283	.241	.488
19	8	• 5 5	MIN.	-6.7	-64.5	-49.93	-182.19	-68.50	-66.43	176		~. 405	440		209	
	- 8		MEAN	14.7	179.4	117.10	956.60	848.57	789.76	5.050	4.829	4.105	4.677	13.361	13.744	12.879
			STDEV	3.01	13.88	21.840	41.588	14.847	20.752	•0837	•0845	.1515	.1669	•0908	.0640	1067
			MAX,	1.4	38.4	23.66	216.09	98.24	69.67	.083	.380	.179	.162	.184	.111	.177
20	0	•46	MIN.	-1.8	-245.1	34	-15.91	-17.76	-36.19	070	140	128	171	488	061	246
	0		MEAN	2.9	245.1	•00	799.53	787.14	581.92	1.881	1.619	3.860	4.511	13.546	13.820	12.939
			STDEV	•64	57.29	2.534	16.865	20.600	11,112	.0170	•0303	.0369	.0475	•1152	•0143	.0511

<u>|64</u>

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH8 - 2400 - 1/8/75) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

	TIME IN	TRANS. CDEF.						· .								
	DAYS			WIND	WIND		LOAD CE	LLS			WAVE GA	GES		ACCE	LEROMETE	ERS
	AND HOURS			SP.	DIR.	NA	S M	NE	SE	TRAN 1	TRAN 2	INC.	REF.	N.VER.	HOR.	S.VER.
				MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT)	SEC /SEC	:)
			MAX,		32.9	24.96	49.37	80.24	8.72	.113	.109	.146	.078	.250		.181
1	0	.19	MIN.		-325.1	-107.04	-14.63	-15.76	-44.74	109	099	110		087		
	0		MEAN		325.1	5099.04	761.01	794.73	4646.24	4.054	4.194	4.116			13.410	
			STDEV	•79	65.65	23.966	10.425	16.246	10.748	.0075	.0073	.0407	•0235	.0963	•0446	•0535
			HAX,	8.9	37.3	55.20	300.52	24.71	154.79	.102	.086	.607	.751	.357	.311	.363
2	2	.17	MIN.	-6.8	-66.7	-76.80	-119.48	-27.29	-56.93	199	183	366		316	283	399
	18		MEAN	18.0	157.3	676.80	911.50	695.29	920.16	2.412	2.611	4.091	4.536	13.209	13.527	12.835
			STDEV	3.12	15.47	24.306	66.479	9.749	31.996	.0236	.0235	.1361	•1536	.1107	•0815	•0950
			MAX,		38.1	50.88	322.56	29.33	172.25	.097	.106	.701	.879	•358	•391	.619
3		.17	MIN.		-70.8	-57.12	-201.44	-30.67	-94.77	093	097	451	606			-
	.19		MĘAN		165.3	625.12	917.44	666.67	987.93	• 579	• 326	4.049			13.532	
			STDEV	3.17	13.98	19.813	99.539	11.028	53.237	.0266	•0269	.1607	.2025	.1411	.1017	.1393
					48.1	48.64	660.25	26.83	382.88	.130	.094	•634	.903	•359	•374	.453
4		•19	MIN.			-71.36	-199.75	-45.17	-94.28	090	092	416			305	
	20				177.5	607.36	859.75	657.17	910.68	555	252	3.936			13.549	
			STDEV	4.75	14.76	22.521	141.836	13.626	76.751	.0277	.0256	.1428	.1856	.1157	.0867	.1095
			MAX	8.9	35.9	44.31	223.88	20.04	119.70	.078	.061	.576	.548	.362	.186	.284
5	2	.16	MIN.		-77.9	-55.69	-124.12	-23.96	-55.68	062	060	-,448	476	311	154	223
-	22				171.8	623.69	808.12	675.96	812.97	073	.219	3.942	4.405	13.206	13.568	12.829
			STDEV	2.95	15.10	17.970	67.053	× 8.112	32.891	•0196	•0188	.1237	•1343	.1005	.0680	.0734
			MAX,	11.7	103.1	67.31	231.71	33.52	121.87	.174	.159	.618	.733	.372	.571	•794
· 6	2	•24	HIN.	-8.2	-94.0	-56.69	-104.29	-34.48	-42.45	245	239	534	650			
-	23		ME-AN	15.6	191.5	704.69	804.29	726.48	779.40	2.223	2.427	4.105	4.426	13.201	13.522	12.826
			STDEV	3.08	20.09	22.001	53.054	11.192	24.474	•0400	•0367	.1676	.1853	.1398	.1212	•1848

165

•

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH9 - 2400 - 1/8/75) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

	TINE- IN	TRANS. COEF.														
	DAYS			WIND			LOAD CE				WAVE GA				LEROMETE	
	AND Hours			SP.	DIR.	NW	SW	NE	\$ E	TRAN 1	TRAN 2	INC.	REF.	N.VER.	HOR .	S.VER.
	HUERU			MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT)	SEC /SEC	:)
			HAX,	9.0	55.8	51.01	187.16	28.92	99.72	.136	.134	.637	.688	•427	.178	.278
1	13	.18	MIN.	-7.7	-71.2	-72.99	-104.84	-31.08	-53.54	134	142	361	387	246	162	314
	23		NEAN	16.7	191.3	832.60	935.54	758.91	820.28	5.236	5.378	4.034	5.033	13.174	13.831	12.834
			STDEV	3.49	14.92	18.110	50.773	9.177	27.526	.0245	•0246	•1348	•1455	.1042	.0650	.0824
			MAX,		52.9	36.08	72.69	35.36	47.05	.069	.062	.622	.569	.471	.286	.448
2	21	.15	MIN.		-148.4	-39.92	-63.31	-28,64	-41.43	080	071	376			308	
	7		MEAN		148.4	1031.91	1215.33	896.63	1292.90		9.141	4.204			13.892	
			STDEV	2.37	40.81	13.179	23.756	10.432	15.784	.0207	.0197	•1364	•1379	.1301	•0907	.1158
			MAX		148.8	36.96	132.15	25.85	81.35	•073	.063	.632	.571	.311	.201	.280
3		•15	MIN.		-44.2	-51.04	-83.85	-30.15	-40.31	059	075	366			224	
	10				44.2	855.13	1027.85		10180.04	6.147	6.223.				13.893	
			STDEV	2.64	44.14	14.533	36.725	8.396	19.000	.0202	.0192	.1358	.1366	.1077	.0711	•0836
			HA X,		194.1	48.88	159.88	21.54	79.51	•058	.057	•692	.691	.312		.286
- 4		•12	MIN.		-36.9	-59.12	-112.12	-22.46	-51.63	069	063	383	461		235	
	11		MEAN		36.9	767.12	1012.12	730.46	958.72		4.634	4.108			13.904	
			STDEV	2.94	45.71	19.735	50.283	7.926	23.144	.0176	.0174	.1429	.1657	.1036	.0753	• 08 50
			MAX,		167.7	55.14	.142.96	18.76	70.82	• 094		1.054	.641			
5		•10	MIN.		-23.7	-56.86	-141.04	-21.24	-46.10		063	533	357		239	
	14				23.7	788.86	1009.04	737.24			4.841	4.207			13.908	
			STDEV	2.57	34.64	17.808	45.376	7.724	22.556	.0205	.0190	.2137	•1405	.1021	•0753	.0795
					172.1	54.69	173.78	28.03	91.16			.735	•604			
6		.15	MIN.		-24.2	-69.31	-118,22	-27.97	-58.94			468			330	
	15				24.2	813.31	1062.22	747.97	1045.21		5.553	4.091			13.914	
			STDEV	3.13	38.42	21.681	51.506	10.536	27.655	0225	.0225	•1540	.1765	.1166	.0881	.1058

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH9 - 2400 - 1/8/75) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

:

.

	TIME	TRANS. CDEF.													
	DAYS		WIN SP.		NW	LOAD CE Sw	NE	SE	TRAN 1	WAVE GA Tran 2	INC.	REF.	N.VER.	ERONETE HOR.	S.VER.
	HOURS		MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT)	SECISE	:)
7	21	,14 P		9 165.3 3 -31.1	45.00 -51.00	99.02 -88.98	29.56 -30.44	52.12 -49.00	.087 077	•106 -•078	.769 511	•781 -•499	•477 -•534	•441 -•408	542 - 474 -
-	16	1		2 31.1	895.00 19.174	1072.98 38.806	798.44 10.916	1058.05 20.378	6.728 .0242	6.784 .0236	4.083 .1680		13.318		12.910
8	21	.16 H	4IN6.	0 169.6 7 -23.4	45.43 -62.57	14⊥.36 -82.64	32.55 -43.45	92.04 -58.00	.112 097	•099 - •133	•944 -•592	.866 618	•646 -•533	•441 -•408	•713 -•725
-	17		MEAN 18. STDEV 3.0	6 23.4 8 35.43	938.57 19.02ů	1164.64 40.774	827.45 13.595	1170.98 25.726	7.614 .0303	7.642 .0301	4.291 .1949	5.162 .2155	13.317 .1575	13,907	
9	21 18	.16 M	MIN5.	5 163.9 4 -20.9 3 20.9 8 33.17	38.76 -41.24 929.24 13.796	111.78 -68.22 1168.22 30.255	26.36 -33.64 817.64 8.942	73.25 -38.93 1138.55 17.901	7.364		.805 450 4.098 .1631	•726 -•554 5•072 •1744	13.320	.361 488 13.902 .1134	
10	21 19	.17 H	1AX, 5. 1IN6.	9 162.8 0 -25.3 2 25.3	57.93 -50.07 870.87 16.768	142.37 -113.63 1073.65 42.001	29.72 -30.28 782.28	82.58 -53.30 1086.94 24.075	•104 -•096 6•436 •0293	.094 105 6.510 .0305	•695 -•508 4•054 •1716	•914 -•571	.639 539 13.321	•444 -•575 13•904	.878 814
11	21 21	19 M	1AX, 6. 1IN5.	9 143.6 7 -16.5 7 17.2	55.55 -64.45 772.45	198.81 -141.19 1093.19	27.28 -24.72 724.72	105.90 -71.06 1107.90	•0293 •111 -•120 4•855	•138 -•107 4•993	•1716 •909 474 4.096	1.104 688	.1683 .814 870 13.317	.603 671	1.048
		н	TDEV 2.6	2 111.7	21.662	50.483 242.35	9.020 20.76	32.725 129.85	•0349 •115	•0358 •098	•1829 •926	•2278 •863	•1860 •647	•1549 •438	.708
12	21 22	M	IIN10. IEAN 22. ITDEV 3.3	3 13.9	-62.51 714.51 18.393	-193.65 1017.65 73.711	-31.24 699.24 8.438	-85.03 1015.28 38.399	118 3.187 .0309	099 3.383 .0306	585 4.131 .1899	750 4.987 .2173	532 13.317 .1530		

•

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH9 - 2400 - 1/8/75) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

	TIME IN DAYS	TRANS. CDEF.			MIND									1005		
				WIND			LOAD CE	NE		TO 411 1	HAVE GA				LEROMETE	
	AND HOURS			SP.	DIR.	NW	SW	NE	35	TRAN 1	IKAN Z	INC.	KEP.	N.VER.	HUK .	S.VER.
				MPH	DEG.	LBS	LBS	LBS	LB>	FT.	FT.	FT.	FI.	(FT)	SEC / SEC	;)
			MAX,	9.0	110.6	41.47	222.02	1,6 . 95	119.11	• 090	.101	.725	•949	•474	.359	.627
13	21	•16	MIN.		-11.5	-54.53	-113.98	-27.05	-54.69	100	100	478	536	536	320	473
	23		MEAN		13.0	702.53	929.98	687.05	. 898.45	2.111	2.348	4.024	4.952	13.319	13.904	12.909
			STDEV	2.77	20.10	16.287	62.127	7.077	29.598	• 0269	•0259	.1707	•1959	.1262	.1071	.1322
			HAX,	10.6	158.9	41.79	292.93	23.93	142.02	.116	.095	.900	•746	•475	• 356	.539
14	21	.15	MIN.	-6.4	-19.3	-66.21	-103.07	-28.07	-90.24	089	092	610	687	307	323	561
	24		MEAN	21.2	19.3	698.21	967.07	680.07	952.44	2.240	2.473	4.054	4.951	13.319	13.907	12.912
			STDEV	3.59	33.11	17.753	76.333	8.323	38.727	.0281	•0282	.1822	.1940	.1358	. 1112	.1399
			MAX,	7.9	47.9	65.96	212.45	22.99	114.64	.073	.102	.756	.697	.473	.271	.370
15	22	.16	MIN.	-7.5	-4.9	-58.04	-139.55	-29.01	-62.32	113	103	447	455	369	238	391
	1		MEAN	20.1	6.6	742.04	947.55	709.01	921.77	3.034	3.242	4.054	4.973	13.320	13.907	12.912
			STDEV	3.27	8.58	26.975	68.463	11.023	33.782	.0258	.0260	•1579	•1685	.1125	0824	.0997
			MAX	8.6	170.7	38.09	98.72	35.68	64.33	.074	.064	.456	• 5 5 9	.306	. 280	.452
16	22	.15	MIN.	-6.2	-25.6	-57.91	-65.28	-44.32	-43.11	081	056	363	388			394
	7		MEAN	14.2	25.6	1105.91	1241.28	936.32	1305.14	9.807	9.745	4.113	5.060	13.319	13.898	12.915
			STDEV	3.12	47.24	18.338	31.378	16.039	21.074	.0182	.0181	.1228	•1336	.1086	.0791	•1032
			HAX,	8.3	189.4	49.89	121.44	43.84	76.55	.080	.062	.629	.703	.302	.264	.279
17	22	.16	MIN.	-6.4	-18.5	-62.11	-78.56	-52.16	-53.01	079	076	369	500	372	245	313
	8		MEAN	17.4	18.5	1074.11	1266.56	904.16	1358.19	9.711	9.656	4.095	5.044	13.321	13.914	12.918
		*	STDEV	3.14	38.72	20.233	38.920	16.823	25.271	.0213	.0206	.1298	•1511	•1143	.0757	.0920
			MAX	10.5	187.0	47.56	240.43	27.45	148.56	.064	.069	.631	•644	•472	.257	.370
18	22	.15	MIN.		-25.8	-88.44	-99.57	-36.55	-53.60	083	090	393	431	202		307
	10		MEAN		25.8	880.44	1067.57	756.55	1047.89	6.175	6.272	4.093			13.922	
					43.71	21.148	55.706	11.080	32.035	.0206	.0209	.1412	.1585	.1090		.0927

- 27

891

SUNMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH9 - 2400 - 1/8/75) (MAX. AND MIN. VALUES MEASURED FROM ZERU MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

	TIME IN	TRANS. CUEF.								÷						
	DAYS			WIND	WIND		LOAD CE	LLS			WAVE GA	GES		ACCEI	EROMETE	RS
	AND HOURS			SP.	DIR.	NA	SW	NE	SE	TRAN 1	TRAN 2	INC.	REF.	N.VER.	HOR .	S.VER.
				MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT)	SEC/SEC	;)
			HAX,		148.8	62.45	164.06	26.25	94.19	•077	.075	•779	•693	.488	•342	• 460
19		•14	MIN.		-14.6	-57.55	-123.94	-21.75	-62.23	074	083	398	485		252	
	13		HEAN		15.7	813.55	999.94	729.75	953.55	4.658	4.816	4.072		13.312		
			STDEV	2.77	28.91	21.472	50.908	8.997	26.494	.0227	.0220	.1583	.1758	.1145	•0856	.1067
			MAX,		173.6	40.32	130.44	14.50	61.50	• 048	.053	.553	•524	.315	.182	·205
20		•14	MIN.		-16.1	-59.68	-69.56	-21.50	-26.98	053	058	318	346	190	243	218
	14				16.3	819.68	921.56	733.50	856.29	4.129	4.298	4.017		13.315		
			STDEV	2.87	36.97	16.001	33.948	6.131	14.703	.0169	.0158	.1181	.1200	.0960	.0641	.0711
			NAX,		170.3	39.14	92.39	21.00	37.50	.070	.067	.434	.583	• 300	.261	.200
21	22	.15	MIN.		-26.0	-44.86	-83.61	-19.00	-32.02	057	059	334	339	205	248	307
	16		HEAN		26.0	860.86	971.61	755.00	921:06	2.022	5.165	4.033		13.322		
			STDEV	2.33	40.57	14.684	32.971	6.941	15.069	.0166	.0157	.1082	.1203	.0874	•0672	.0675
			NAX.		171.5	43.29	109.51	22.46	57.98	• 096	.080	•690	.743	.634	• 429	• 538
22	22	.15	MIN.		-23.2	-44.71	-110.49	-25.54	-52.02	094	069	411	614		250	478
	17		HEAN		23.2	904.71	1058.49	785.54	1049.22	6.298	6.388	4.058		13.323		
			STDEV	2.47	40.66	14.200	32.860	8.144	17.977	•0240	.0228	.1588	.1750	.1368	•0874	.1169
			HAXJ		139.6	59.44	237.32	45.55	150.06	.093	.106	.861	1.029	.632	.423	•537
23	22	.15	MIN.		-81.5	-88.56	-146.68	-46.45	-80.62	104	092	444		715	426	732
	18		MEAN		81.5	924.56	1130.88	790.45	1144.09	7.105	7.168	4.143		13.324		= .
			STDEV	3.32	65.59	24.902	62.139	14.784	36.615	.0282	•0299	.1943	•2164	•1493	•1134	.1532
			MAX,	9.7	57.9	56.46	222.09	32.20	136.19		.123	.904	1.126	.629	.432	.960
24	22	.15	MIN.		-159.9	-87.54	-133.91	-43.80	-64.47	118	128	606	922			901
	19		MEAN	18.9	159.9	939.54	1125.91	795.80	1151.21	7.261	7.309	4.101		13.326		
			STDEV	3.46	41.48	21.917	54.967	13.017	32.035	.0341	.0360	.2233	.2373	.1563	•1303	.2024

69

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH9 - 2400 - 1/8/75) (Max. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

REC. NO.	TIME IN DAYS AND HOURS	TRANS. COEF.	WIND SP.	WIND DIR.	NW	LOAD CE Sw	LLS NE	Se	TRAN 1	WAVE GA Tran 2	GES INC.	REF.	ACCEL N.VER.	EROMETERS Hor. S.VER.
	HUUKS		МРН	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT/	SEC/SEC)
25	22 20	MAX •11 MIN MEA STD	6.8	31.9 -103.4 160.3 20.23	61.65 -46.35 918.35 18.545	135.64 -132.36 1120.36 46.342	36.11 -27.89 783.89 10.659	80.27 -71.41 1140.79 27.186	060 6.934	6.990		5.082	13.327	.775 1.210 838 -1.159 13.913 12.918 .1984 .2825

تمندر

- .

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH10 - 1345 - 2/9/75) (MAX. AND MIN. VALUES MEASURED FROM ZERG MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

	TIME IN	TRANS. COEF.														
	DAYS			WIND	WIND		LOAD CE	LLS			WAVE GA	GFS		ACCE	LEROMETE	RS
	AND HOURS			SP.	DIR.	NW	SW	NE	SË	TRAN 1			REF.		HOR .	
			i	MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FŢ.	(FT)	/SEC/SEC	;)
			MAX,		54.4	10.24	10.75	9.29	9.15				.115			
1	0	•52			-176.6	-23.93	-19.79	-15.51	-17.71			152	130		197	
	0		MEAN		184.9	1132.65	1100.29	930.21	1035.99		8.653	3.980			13.848	
			STDEV	•86	37.62	3.957	5.271	3.182	3.632	.0174	•0148	•0333	•0266	.0778	0417	•0443
					63.6	94.83	168.74	67.48	73.97			.835	.753			
2		•25	MIN			-91.17	-111.26	-48.08	-50.85	301	213	-,547		450		561
	11		MEAN			995.47	951.26	816.33	848.72	5.722		4.425			13.933	
			STDEV	3.72	19.53	24.742	-50.725	15.561	22.265	•0485	.0460	.1912	.1939	.1360	•1119	•1480
			MAX		47.9	52.32		54.18	129.15	.137	.128	.799	.907	.448	• 325	.500
3		•24			-61.0	-67.68	-206.25		-150.51		329	379			351	
	19				181.0	892.12	1102.25	789.82	1161.04	6.747	6.819	4.078			13.935	
			STDEV	2.54	12.26	21.037	61.374	11.987	36.717	.0386	.0398	.1621	.1884	.1355	• • 0974	•1139
			MAX.			93.12	389.26	43.28	208.18	.124	.113	.717	.880	.453	•239	.420
4		•23	MIN			-106.88	-170.74	-40.72	-84.12	112	113	358		389		342
	21		MEAN :			739.13	1039.06	791.55	973.00	4.355	4.606	3.981	4.969	13.414	13.939	13.032
			STDEV	3.30	12.02	27.303	78.380	11.272	42.955	•0350	•0363	.1519	•2194	.1165	.0855	,1063
								N								
	···· ·															

SAN	(MAX. / Pling Per	STATISTICA AND MIN. V RIUD = 500 AMPLES = 2	ALUES MS				BOR FLOAT: An)	ING BREAK	WATER	(FH11	- 0900	- 3/1/7	5)			
	TIME IN DAYS AND	TRANS. CDEF.		WIND SP.	WIND DIR.	ัทส	LOAD CEL SW	LLS NE	SE	TRAN 1	WAVE GA Tran 2			ACCEL N.VER.	EROMETE Hor.	RS S.VER.
	HOURS			NPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT/	SEC / SEC	.)
1	0 0	5.09	MAX, MIN. MEAN STDEV	-3.1 3.1	128.3 -53.2 139.2 28.78	4325.99 -36.01 1669.67 187.585	8340.80 -71.09 2156.21 361.436	120.04 -22.68 962.04 8.115		-5.417-7.584	7.637 -25.254 4.338 1.0975	•274 -•213 3•993 •0462	•309 -•213 5•063 •0441	314	•087 -•339 5•259 •0269	•166 -•292 5•069 •0306
			HAX,	8.9	55.4	56.11	202.38	37.07	123.87	.055	.064	.831	1.049	.611	.459	.853

2	0 25	•10		-5.8- 19.0	55.4 -150.8 150.8 42.43	56.11 -67.89 903.89 22.494	202.38 -157.62 1129.62 65.805	37.07 -36.93 808.93 13.598	123.87 -88.13 1124.13 37.841	.055 125 0.992 .0169	.064 146 7.209 .0177	.831 296 3.868 .1680	1.049 615 4.980 .2166	.611 598 5.201 .1235	.459 490 5.405 .1094	.853 736 5.198 .1707
3	4 16	.16		-7.8- 19.6	98.0 -105.0 105.0 62.24	48.01 -59.99 721.99 22.328	189.99 -114.01 1002.01 56.817	17.95 -24.05 716.05 7.509	109.74 -50.26 1046.26 28.550	.068 084 4.111 .0227	.091 079 4.540 .0236	•563 -•308 4•135 •1399	•628 -•293 5•119 •1339	•230 -•274 5•247 •0677	•365 -•279 5•364 •0831	•345 -•365 5•230 •0874
4	7 12	•25	HIN. MEAN	-8.6- 18.2	103.8 115.7 115.7 55.66	63.31 -78.69 920.69 24.406	182.54 -111.46 1125.46 53.350	40.74 -45.26 827.26 14.372	122.53 -67.47 1137.47 33.448	.148 150 7.847 .0400	.147 128 8.100 .0406	.770 254 4.107 .1620	.759 368 5.219 .1781	•422 -•452 5•290 •1337	•420 -•427 5•377 •1113	•629 -•757 5•252 •1605
5	7 14	•26	HIN. MEAN	-7.5 20.3	148.9 -52.4 52.4 48.10	58.27 -91.73 797.73 22.882	271.12 -132.88 1032.88 59.094	28.51 -31.49 755.49 10.775	134.52 -67.48 1087.48 32.883	.119 176 5.684 .0354	.118 155 6.041 .0366	4.043	.862 393 5.168 .1753	•425 -•482 5•287 •1217	•516 -•331 5•382 •1047	•634 -•549 5•248 •1496
6	7 15	₀25	MIN. MEAN	-7.3	151.0 -38.8 38.8 41.15	54.02 -67.98 727.98 24.054	246•45 -139•55 965•55 63•906	27.25 -28.75 724.75 8.467	117:61 -68:39 1054:39 30:352	.123 169 4.167 .0343	•121 -•149 4•596 •0332	.594 251 4.002 .1395	.694 330 5.106 .1549	•435 -•372 5•277 •0988	•309 -•267 5•386 •0937	•407 -•471 5•237 •1172

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKHATER (FH11 - 0900 - 3/1/75) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

	TIME IN DAYS	TRANS. CDEF.	WI	D WIND		LOAD CE				WAVE GA	655		ACCEI	.EROMETE	20
	AND		SP		ИМ	SW	NE	SE	TRAN 1		INC.	REF.	N.VER.		S.VER.
	HOURS		MPi	I DEG.	LBS	LBS	LBS	LBS	FŤ.	FT.	FT.	FT.	(FT/	SEC/SEC	:)
7	7 16	• 23	MIN9	0 103.7 2 -13.4 4 15.4 58 18.97	69.54 -64.46 688.46 23.151	201.55 -164.45 898.45 66.432	21.21 -22.79 710.79 8.436	82.84 -63.16 1u29.16 29.896	.118 116 2.907 .0311	.084 101 3.413 .0279	.643 2u2 3.953 .1338	•734 -•341 5•065 •1495	•386 -•320 5•259 •0956	•333 -•378 5•396 •0888	.427 418 5.218 .1092
8	9 5	• 23	MAX, 10. MIN10. MEAN 18. STDEV 4.3	9 -47.4	64.00 -100.00 803.99 28.009	254.24 -141.76 1023.79 68.262	33.13 -40.87 762.86 13.612	124.01 -71.99 1078.01 37.728	.118 119 5.602 .0347	•116 -•122 5•977 •0341	•728 -•270 •4•020 •1539	•728 -•398 5•123 •1648	•432 -•543 5•314 •1153	•375 -•405 5•388 •0965	•666 -•585 5•248 •1368
9	9 7	•22	MIN8	5 172.1 7 -50.7 8 50.7 6 48.49	75.53 -100.47 786.47 34.270	333.18 -192.82 1088.82 93.910	40.17 -45.83 749.83 16.206	205.59 -98.41 1122.41 53.663	•127 -•153 5•745 •0401	.192 143 6.118 .0409	•906 -•323 4•101 •1823	•781 -•396 5•120 •1583	.433 407 5.312 .1316	•362 -•384 5•401 •1041	•699 -•686 5•249 •1445
10	9 8	•25	MIN8	0 173.3 0 -46.1 4 46.1 59 44.60	76.09 -85.91 868.75 28.525	254.25 -175.75 1145.72 77.068	45.26 -38.74 774.24 14.429	156.35 -105.05 1147.39 46.228	.195 148 6.072 .0432	•184 -•172 6•385 •0442	.852 325 4.101 .1709	.857 371 5.171 .1821	.469 472 5.311 .1212	•361 -•384 5•402 •1104	.631 754 5.250 .1518
11	9 9	•36	MIN7	9 112.1 4 -90.8 8 90.8 9 59.15	79.21 -88.79 912.49 30.270	236.06 -187.94 1206.49 77.342	53.39 -42.61 800.65 17.305	147.27 -114.73 1217.61 48.061	.645 259 7.101 .0630	•598 -•233 7•388 •0625	.824 328 4.079 .1744	.948 435 5.158 .1911	•600 -•543 5•314 •1464	•528 -•387 5•404 •1324	•934 -•655 5•251 •1894
12	9 10	•40		6 -91.7 0 91.7	114.20 -113.80 930.52 35.451	290.57 -199.43 1234.76 87.205	72.66 -63.34 827.45 20.977	187.48 -122.52 1206.81 53.710	.640 364 8.011 .0857	.632 266 8.353 .0812	1.006 350 4.050 .2137	1.195 495 5.193 .2437	.835 912 5.314 .2267	-1.052	5.249

.

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH11 - 0900 - 3/1/75) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

REC. NO.	TIME IN DAYS AND HOURS	TRANS. COEF.	WIND SP.	WIND DIR.	NW	LOAD CEI SW	LLS	SE	TRAN 1	WAVE GA Tran 2	GFS Inc.	REF.	ACCEL N.VER.	ERONETE Hor.	RS S•VER•
	HUUKS		MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT/	SECISEC) (
13	9 11	•41	MIN7.5	128.1 -79.8 79.8 54.05	109.04 -104.96 981.86 34.954	235.47 -194.53 1241.07 68.446	80.71 -67.29 903.97 22.771	163.28 -118.72 1192.33 44.982	389 3.837	393 8.995	•985 -•398 4•122 •2449	1.191 525 5.248 .2493	812 5.314	892 5.367	1.474 -1.568 5.255 .3181
14	9 12	•40	MAX, 14.4 MIN11.9 MEAN 21.6 STDEV 4.70	57.2	110.99 -121.01 970.40 39.062	309.13 -212.87 1215.72 84.688	59.98 -58.02 862.61 22.362	153.69 -120.31 1214.26 50.437	317 8.609	349 8.708	4.113	5.241	840	•985 -1•049 5•353 •2117	1.542 -1.331 5.253 .3334

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBUR FLOATING BREAKWATER (FH12 - 2230 - 3/20/75) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

.

	TIME IN	TRANS. COEF.								~						
	DAYS	0.000		WIND	WIND		LOAD CE	LLS			WAVE GA	GES		ACCEL	EROMETE	RS
	AND			SP.	DIR.	NW	SW	NÉ	SE	TRAN 1		INC.	REF.	N.VER.		S.VER.
				MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT/	SEC/SEC	:)
			HAXJ		140.0	62.20	99.15	44.33	48.56	.074		.496	.501	•215	• 19,3	.208
1		•17	MIN.		-99.2	-39.80	-48.85	-19.67	-23.44		076		241	222	146	197
	0		MEAN		99.2	871.85	937.28	832.65	1007.27	5.990	5.305	4.201	5.220	5.329	5.333	5.234
			STDEV	2.62	69.47	13.971	21.354	9,562	11.443	.0179	•0194	.1084	.1173	.0585	• 0503	.0653
			MAX,		135.4	21.49	64.59	14.20	34.85	.057	.046	•545	.488	.189	.183	.261
2		•14	MIN.		-115.4	-24.51	-43.41	-15.80	-21.15	051	056	-,275	-,229	214	156	314
	0				115.4	884.51	949.42	827.80	1013.15	6.513	6.799	4.179	5.183	5.321	5.343	5.215
			STDEV	2.76	65.96	9.098	19.909	5.368	11.137	.0159	.0156	.1130	.1069	.0545	• 0508	.0681
			HAX,		94.7	40.25	138.96	34.40	85.85	.112	.144	• 636	.780	.483	.462	.782
3	0	.21	MIN.		-104.9	-65.75	-69.04	-39.60	-42.15	093	114	260	321	525	352	874
	1		MEAN		104.9	923.75	1111.04	843.60	1114.15	7.924	8.157	4.036	5.172	5.330	5.369	5.234
			SIDEV	2.73	60.15	18.660	35.685	10.805	22.129	•0301	.0327	•1449	•1649	.1431	•1226	.1788
			MAX.		95.2	58.23	178.02	45.47	103.88	.156	.163	.827	.955	.615		1.360
4		•24	MIN.		-104.5	-83.77	-117.98	-48.53	-66.12	147	194	350	401	661		-1.175
	2		MEAN		104.5	941.77	1179.99	850.53	1158,12	8.542	8.746	4.152	5.227	5.332	5.369	
			STDEV	3.20	58.38	22.653	43.195	14.695	26.162	• 0460	•0484	.1957	.2147	.1900	.1898	•2938.
			MAX+	7.6	151.9	50.92	153.14	31.67	87.41	.093	. 122	•738	•796	•484	.364	.748
5	0	.19	MIN.	-6.5	-34.6	-75.08	-94.86	-36.33	-58.59	102	094	286	330	491	517	705
	3		HEAN		34.6	935.08	1174.86	846.33	1156.59	8.516	8.718	4.087	5.207	5.329	5.365	5.235
			STDEV	2.93	41.42	19.137	39.018	11.795	25.009	•0288	.0280	.1513	.1705	.1370	.1097	.1568
\$			MAX,		115.9	46.85	107.50	27.83	55.02		.114	•668	.813	.319	.272	.549
6	0	•19	MIN.		-14.4	-53.15	-72.50	-22.17	-44.98	080	094	279	339	353	270	431
	7				16.2	911.15	1116.50	836.17	1120.98	7.988	8.207	4.107	5.216	5.326	5.355	5.231
			STDEV	2.13	22.31	14.011	26.324	7.753	15.326	•0264	.0270	.1363	•1646	.1143	•0971	.1315

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH12 - 2230 - 3/20/75) (MAX. AND MIN. VALUES MEASURED FROM ZERU MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

.

	TIME IN	TRANS. CDEF.														
	DAYS			WIND	WIND		LOAD CE	LLS			WAVE GA	GES		ACCEL	EROMETE	RS
	AND HOURS			SP.	DIR.	NW	SW	NE	SE	TRAN 1	TRAN 2	INC.	REF.	N.VER.	HOR .	S.VER.
				NPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT <i>)</i>	SEC/SEC	;}
7	•		HAX,		138.0 -17.1	50.55 -77.45	150.86 -85.14	35.35 -46.65	98.39 -59.61	•073 -•069	.079	•532	.703	•287	• 339 - • 272	.381 328
'	0 9	+ 1 f	MIN. MEAN		18.2	931.45	1107.14	840.65	1117.61	8.087	080 8.306	236 4.115	270 5.223	284 5.324	5.357	5.229
	4				27.26	19.667	36.519	11.697	22.201		.0226	1285		.0876	.0816	.1025
					114.0	72.43	196.27	40.01	129.16	.125	.120	.703	.833	•422	•457	.757
8	-	•20	MIN.		-16.3	-83.57	-129.73	-53.99	-74-84	098		270	319	552	390	663
	10		MEAN		16.8 22.59	907.57	1159.72	823.99	1152.84	8.224	8.439	4.148	5.248	5.323	5.373	5.226
			SIDEV	3.33	22.09	26.255	53.094	14.696	32.887	•0288	.0285	•1447	.1750	.1282	.1153	.1603
			MAX,		108.0	49.65	143.41	32.26	100.63	.105	.115	•671	.741	• 324	• 334	.554
9		•20	MIN.		-88.3	-72.35	-82.59	-39.74	-53.37	103	096	251	309	416	344	426
	11				88.3	936.35	1138.59	841.74	1133.37	8.376	8.581	4.105	5.237	5.321	5.361	5.226
			SIDEA	3.48	61.75	23.462	44.187	13.576	29.269	•0282	.0306	.1395	•1522	.1040	•0886	.1147
					140.5	100.80	296.82	54.69	170.49	•129	.148	.844	•993		.550	.841
10		•22	MIN.			-123.20	-175.18	-59.31	-91.51	127	142	283	338	603	636	849
	13				18.8	893.20	1187.18	809.31	1177.51		8.365	4.085	5.216	5.607	5.382	5.210
			STDEV	3.94	28.18	36.376	77.993	19.146	45.590	.0376	•0349	. 1709	•2003	•1388	.1285	.1790
					146.0	95.24	256.21	57.20	145.45	.204	.246	.909	.922		1.112	
11	0	•27	MIN.			-100.76	-247.79	-46.80	-132.55	178	219	320	409		-1.160	
	14				53.6	810.76	1205.79	772.80	1192.55	7.398	7.656	4.097	5.158	5.292		5.203
			STDEV	4.37	52.33	29.763	83.770	17.150	48.104	•0569	•0599	.2077	•2283	.2424	.2613	.4286
	•		MAX,	10.8	103.5	67.14	250.15	38.58	168.48	•171	.198	.860	.960	.724	.896	1.747
12	0	•26	MIN.	-8.5	-13.6	-82.86	-189.85	-39.42	-107.52	150	180	318	397	822	-1.036	-1.667
	15		MEAN		14.9	770.86	1121.85	751.42	1141.52			4.068	5.146	5.291		5.181
			STDEV	3.95	19.45	25.076	69.811	12.488	41.639	•0492	.0527	.1874	.2182	•2228	•2191	.3833

S.

2

ς.

SUHMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH12 - 2230 - 3/20/75) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

	TIME IN	TRANS. COEF.						_								
	DAYS			WIND			LOAD CE				WAVE GA	GES			EROMETE	RS
	AND HOURS			SP.	DIR.	NW	SW	NE	SE	TRAN 1	TRAN 2	INC.	REF.	N.VER.	HOR .	S.VER.
				HPH	DEG.	L3S	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT/	SEC/SEC)
			HAX.	12.0		55.36	183.38	20,98	102.58		•122	•638	•843	• 466	.467	.803
13		•23	MIN.	-7.3		-64.64	-124.62	-29.02	-63.42		118	233	-+309	475	448	718
	16		MEAN	20.8		726.64	960.62	727.02	1045.42		5.046	3.958	5.085	5.280	5.364	5.180
	1		SIDEV	4.36	11.27	24.012	66.572	9.373	36.446	.0328	₽ 0364	•1416	.1707	•1370	•1225	.1779
			MAX,	10.4	64.4	58.40	184.95	21.44	88.24	.095	.094	.625	.622	.404	•339	.604
14	0	.20	HIN.	-8.5	-8.2	-65.60	-109.05	-22.56	-51.76	085	102	194	300	402	305	545
	17		MEAN	20.1	9.3	693.60	867.05	704.56	1007.76	3.202	3.672	3.945	5.050	5.274	5.356	5.176
			STDEV	3.75	12.01	21.781	54.227	7.195	24.182	•0264	.0291	.1316	.1453	.1061	.0896	.1237
					80.8	136.21	110.20	139.25	49.16	.135	.131	.367	.397	.278	.169	.190
15	6.	•36	MIN.			-79.79	-157.80	-66.75	-58.84	116	126	-,273	243	260	170	216
	14				318.5	1011.89	851.69	964.82	960.82	7.768	7.985	4.254	5.274	5.401	5.357	5.218
			STDEV	5.06	103.60	40.125	51.751	39.879	20.837	.0371	.0357	.1018	.0852	.0579	.0486	.0585
					110.9	233.84	218.92	109.24	80.79	• 504	•468	•293	.286	.177	.182	.183
25	6	•63			-290.0	-112.16	-137.08	-56.76	-43.21	181	155	142	149	192	157	188
	18				290.0	833.51	642.61	795.57	919.64	2.661	3.097	3.922	5.054	5.328	5.338	5.152
			STDEV	4.62	107.69	51.112	54.756	26.527	16.088	.0389	.0338	.0613	.0657	.0539	. 3444	.0550
			MAXs	8.7	109.1	49.20	161.30	29.34	83.70	.114	•092	.529	.615	.239	.185	.284
17	10	.20	MIN.	-7.7.	-143.4	-00.50	-96.70	-36.66	-52.30	093	077	214	255	265	187	257
	6		MEAN	15.7	143.4	782.50	1040.70	788.66	1078.31	6.362	6.644	4.143	5.185	5.406	5.408	5.226
			STDEV	3.35	59.27	22.067	52.260	11.290	26.120	.0232	.0245	.1189	.1312	.0678	.0557	.0783
			HAX,	8.1	120.5	43.59	106.82	25.81	82.68	.089	.089	.349	.525	.171	.153	.183
18	10	.23	HIN.	-5.1-	-143.5	-68.41	-91.18	-30.19	-49.32	081	075	163	217	198	152	256
	8		HEAN	15.7	143.5	778.41	1027.18	784.19	1071.32	6.106	6.399	4.094	5.145	5.406	5.407	5.225
			STDEV	2.64	53.90	19.434	47.133	9.794	23.689	.0208	.0242	.0824	.1136	.0441	.0467	.0545

.

.

•

SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH13 - 2230 - 3/20/75) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

	TIME IN	TRANS. CDEF.											•			
	DAYS			WIND	WIND		LOAD CE	LLS			WAVE GA	GES		ACCEL	ERONETE	RS
	AND HOURS			SP.	DIR.	Nw	SW	NE	SE	TRAN 1	TRAN 2	INC.	REF.	N.VER.	HOR.	S.VER.
	HUUKJ			MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.	(FT/	SEC/SEC)
1	23	. 37	MAX, MIN.		59.3	107.60 -101.34	340.36 -133.64	31.81 -38.19	133.56 -66.44	•170 -•377	•209 -•255	•675 -•272	.812 366	• 429 - • 479	•578 -•507	•799 -•790
-	23	• 57	MEAN	20.8	171.0	705.89	1141.38	794.16 9.644	1147.37	3.519	4.586	4.177	5.243	5.516	5.490 .1251	5.015
					76.4	57.60	307.88	24.96	132.10	.124	.118	.500	.651	•386	.353	.441
2		.35	MIN.	-9.0	-136.5	-76.40	-136.12	-37.04	-49.90	113	113	166	322	387	291	404
	6		MEAN Stdev		136.5 49.30	476.40 25.606	888.12 73.194	727.04	985.90 30.246	2.434 .3389	3.055 .0346	4.122 .1088	5.173 ,1428	5.494 .1093	5.477 .0916	5.001 .1298
			HAX,		76.1	79.26	289.34	36.66	134.10	.191	.176	.745	•936	•624	.880	•912
3	24 7	•32	MIN. Mean	20.7	-136.8 136.8	-90.74 520.74	-160.66 1042.66	-39.34 743.34	-77.90 1063.90	178 4.157	147 4.686	279 4.236	446 5.246	620 5.492	951 5.493	642 5.003
			STDEV	3.69	46.94	30.135	78.112	13.818	37.252	•0549	•0515	.1707	•2079	.1816	.1923	.1914
4	24	• 30	MAX, MIN.		86.0 -121.9	71.05 -94.95	306.89 -171.11	41.42 -50.58	199.86 -96.14	•250, -•228	•250 -•211	.932 348	1.105 559	•793 -•820	1.001	1.119
	8				121.9 49.11	578.95 35.103	1157.11 96.943	770.58 17.090	1124.14 53.806	2.926 .0645	6.361 .0641	4.303 .2117	5.360 .2435	5.490 .2229	5.506 .2187	5.000 .2349
		-	MAX,	9.0	127.2	76.65	186.45	36.81	107.21	•183	•173	.694	•923	.525	.684	•570
5	24 9	•32	MIN. Mean		-80.7	-81.35 685.35	-123.55 1171.55	-41.19 823.19	-68.79 1160.79	159 7.735	192 8.070	253 4.260	433 5.361	483 5.490	672 5.485	512 5.007
			STDEV	3.03	48.88	24.136	47.125	12.540	27.668	.0504	•0457	.1575	•1972	.1405	•1492	.1574
6	24	. 32	MAX) MIN.		56.5 -151.4	56.83 -67.17	142.38 -97.62	36.66 -35.34	77.08 -62.92	•171 -•165	•165 -•165	•754 -•244	•972 -•462	•595 -•715	•919 -•912	•577 -•640
Ŭ	10	• 3 5	MÉAN	19.6	151.4	787.17	1245.62	873.34 13.459	1204.92	9.161 .0507	9.407	4.200	5.338 .2124	5.487 .1767	5.486	5.000
			SIDEN	2.01	30.42	670690	101100	130439	270930	10501		11000	****			

 \sim

÷

Ň

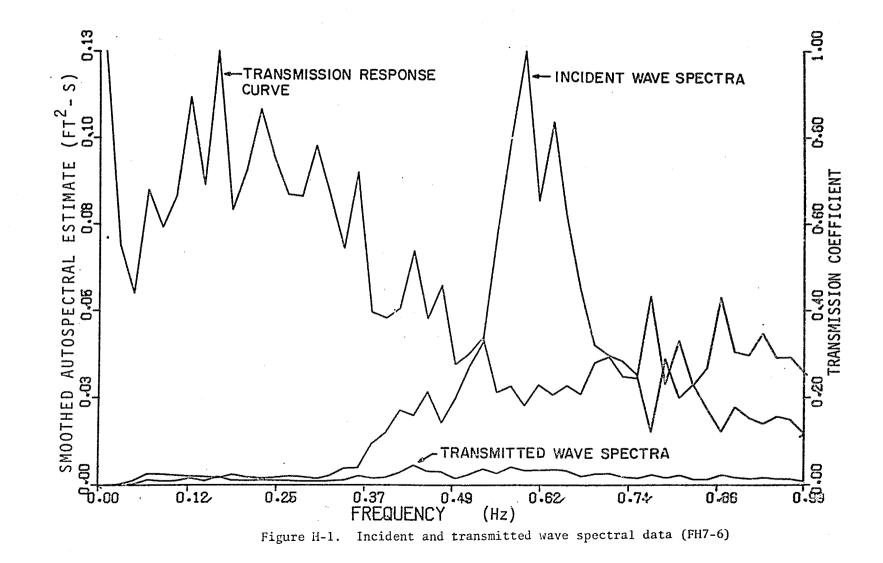
SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (FH13 - 2230 - 3/20/75) (MAX. AND MIN. VALUES MEASURED FROM ZERO MEAN) SAMPLING PERIOD = 500 MS NUMBER OF SAMPLES = 2047

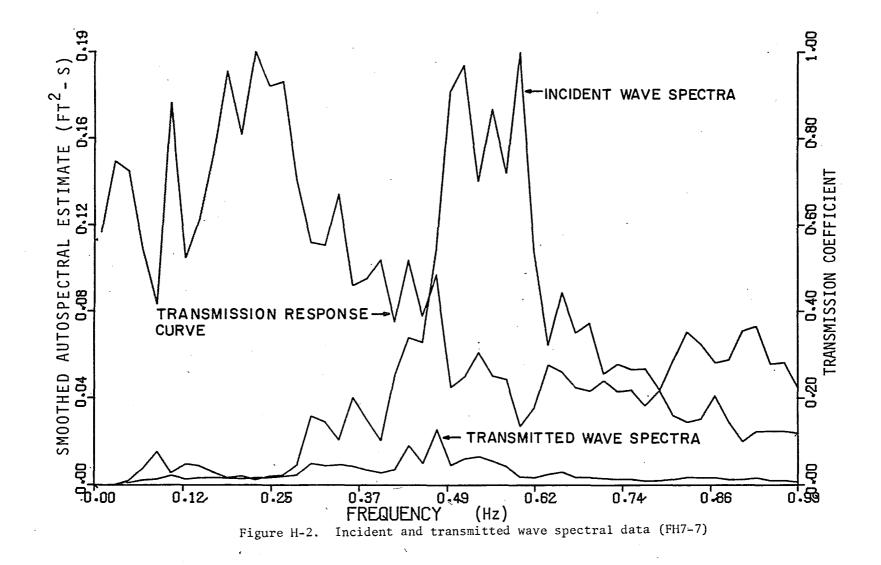
REC. ND.	TIME IN DAYS AND	TRANS. COEF.	HIND WIND SP. DIR.		LUAD CELLS NW SW NE			۲ Ε	WAVE GAGES Se iran 1 tran 2 inc.				ACCELERDMETERS Ref. N.Ver. Hor. S.Ver.			
	HOURS		MPH	DEG.	LBS	LBS	LBS	LBS	FT.	FT.	FT.	FT.		SEC/SEC		
7	24 17	• 32	MAX, 13.8 MIN10.3 MEAN 22.8 STDEV 4.74	-123.6 123.6	91.92 -118.08 596.09 40.252	346.20 -231.80 1135.77 111.057	48.48 -49.52 767.51 17.216	198.64 -117.30 1137.36 58.518	.198 167 6.385 .0551	183 6.800	.811 264 4.271 .1696		454 5.494	5.486	•551 -•463 5•026 •1383	
8	24 18	.14	HAX; 10.4 HIN10.1- MEAN 24.9 STDEV 4.00	-125.7 125.7		460.62 -223.38 1193.38 114.883	42.06 -43.94 741.94 16.219	207.33 -130.67 1168.67 61.259	•089 -•073 5•945 •0235	6.388	.765 259 4.240 .1644	.891 415 5.267 .2069	918	1.370 -1.308 5.512 .2559	-1.192 5.010	

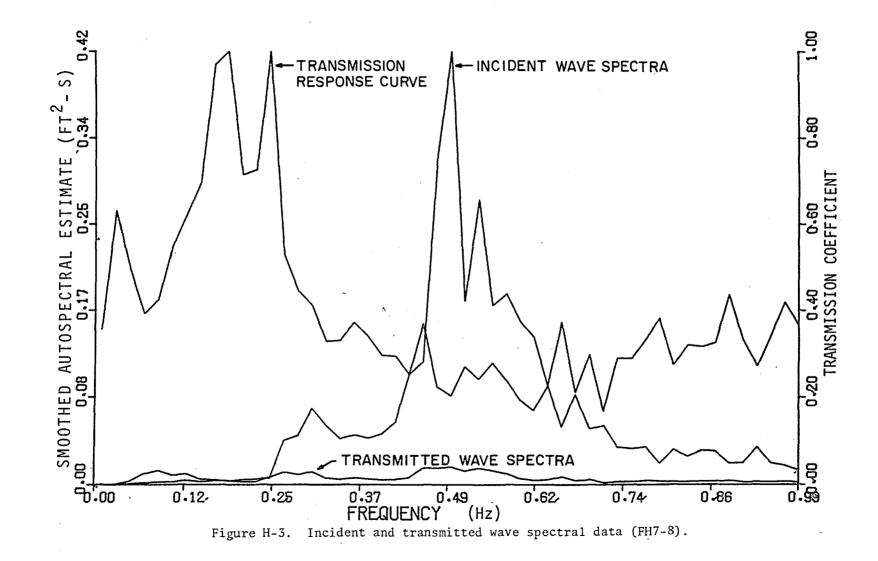
Δ.

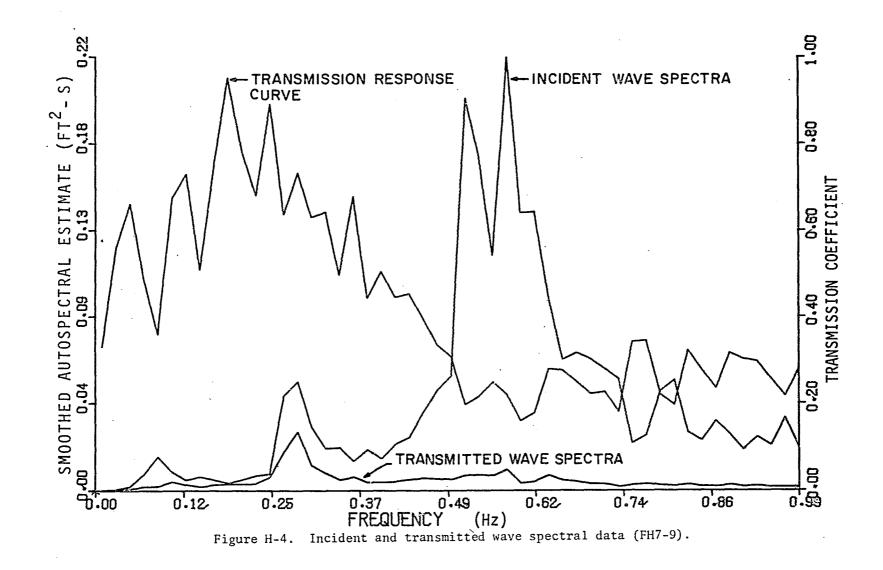
.

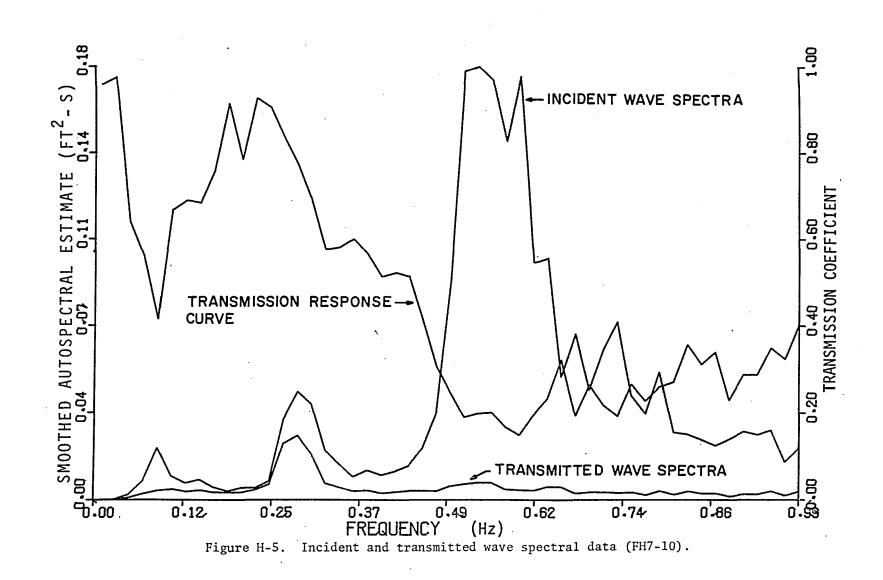
•

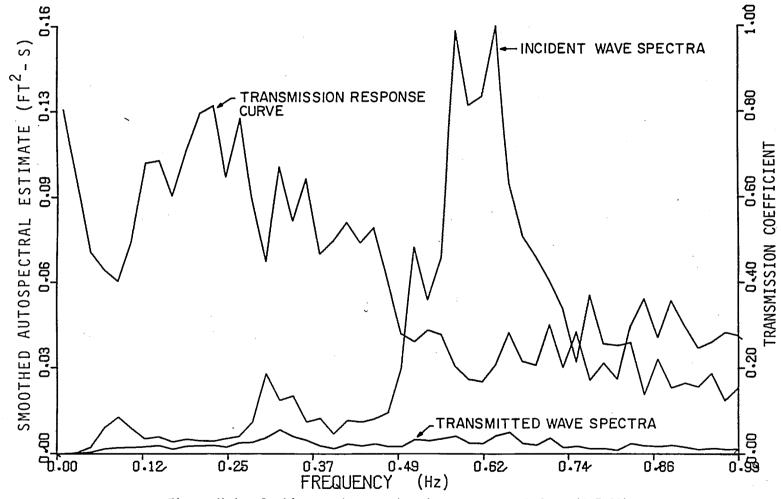

APPENDIX H

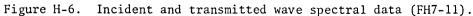

INCIDENT AND TRANSMITTED WAVE SPECTRAL PLOTS

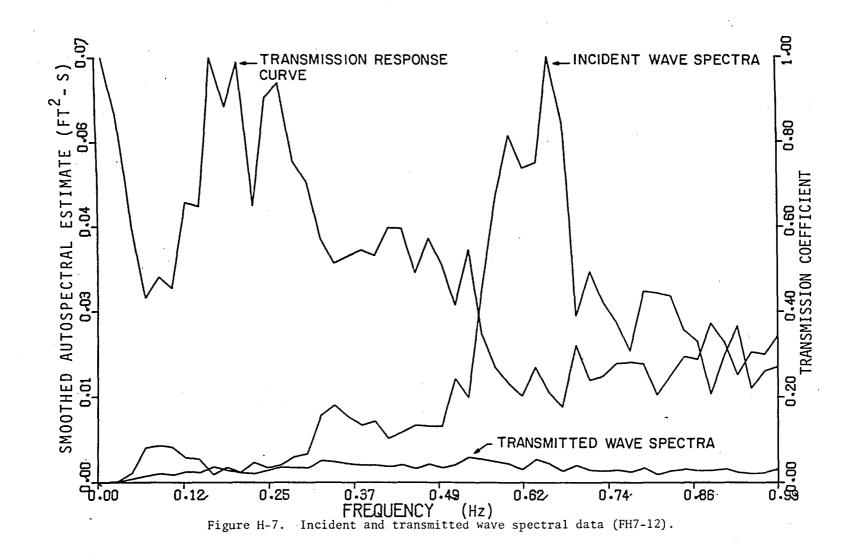

Appendix H contains the incident and transmitted wave spectral plots along with the corresponding transmission response curve for 11 representative records. The data for the first nine were recorded at Friday Harbor, Washington, during the winter of 1975. Figures H-11 and H-12 were computed from similar data collected in Alaska during the winters of 1974 and 1975.

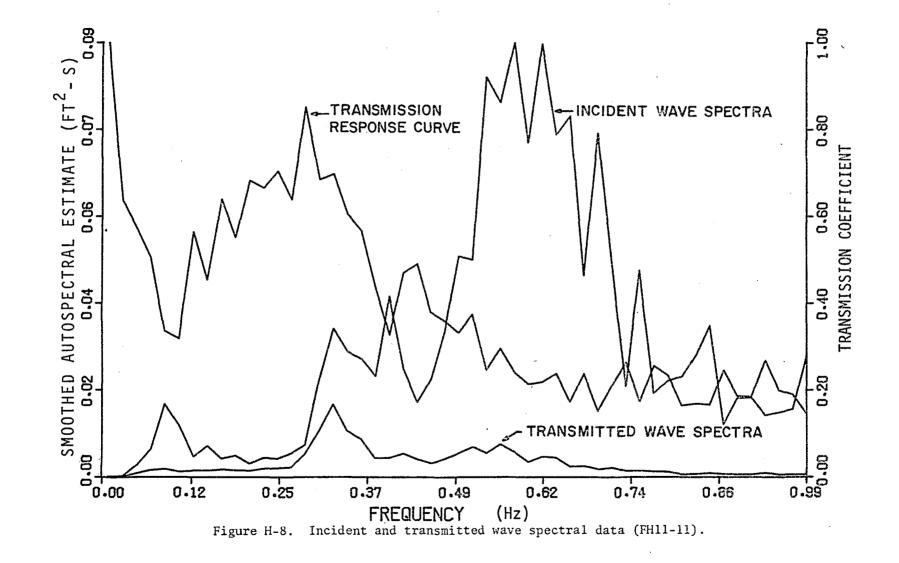

The original time series were high-pass filtered at a cutoff frequency of 0.05 hertz to remove tidal drift. Each series consisted of 2,048 data samples and were sampled at a period of 0.5 second for the Friday Harbor data and 0.44 second for the Alaska data.

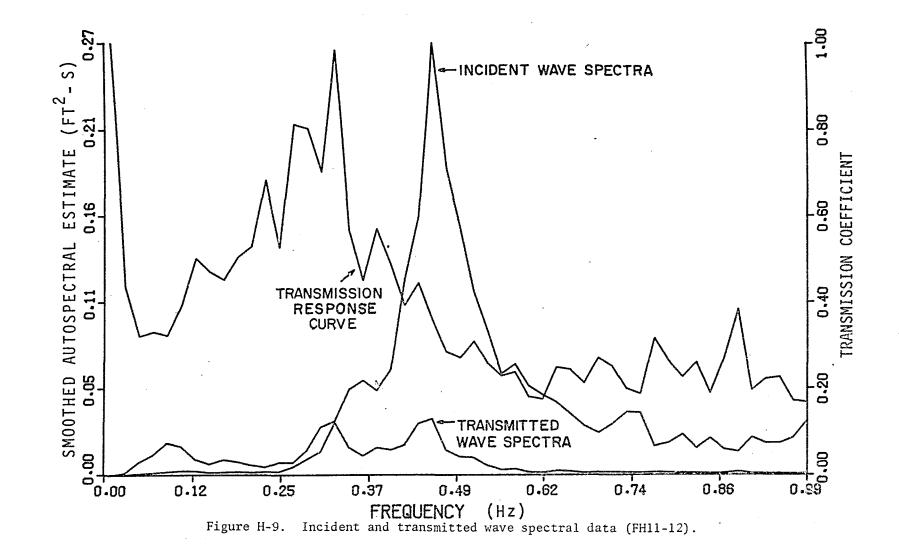

The standard deviations and corresponding overall transmission coefficients for each of the Friday Harbor plots are given in Appendix G.











· 189

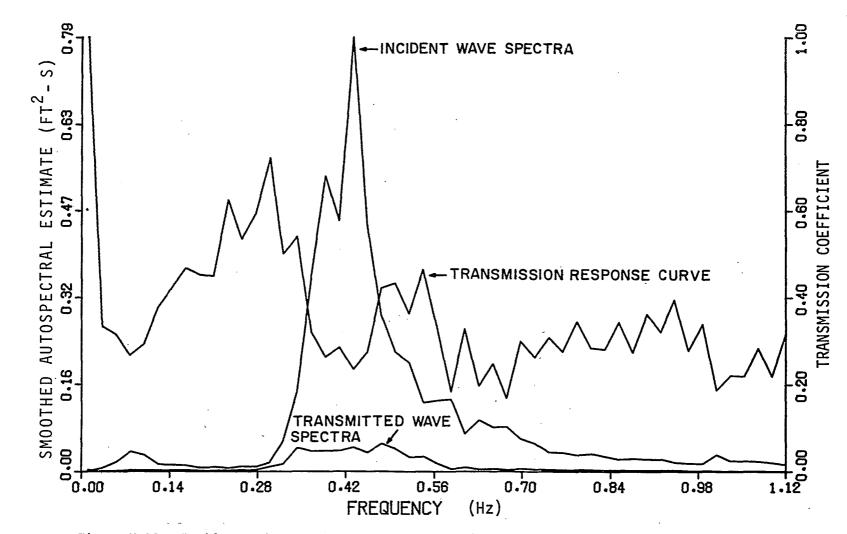
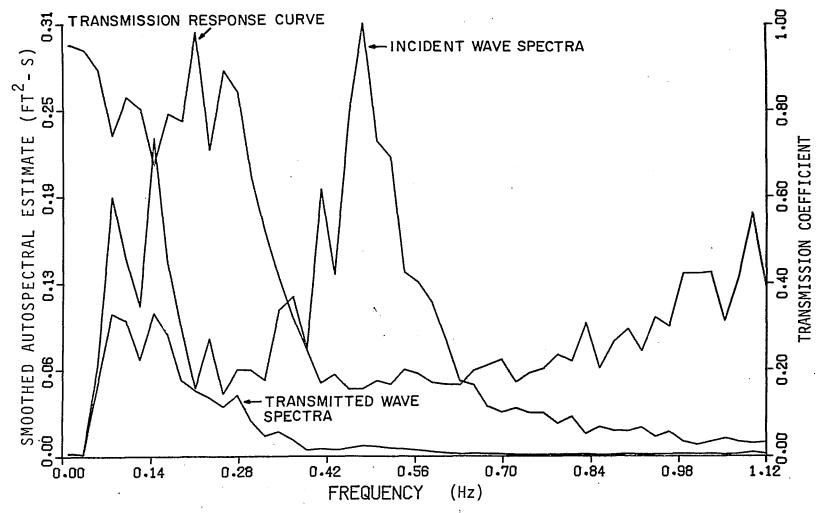
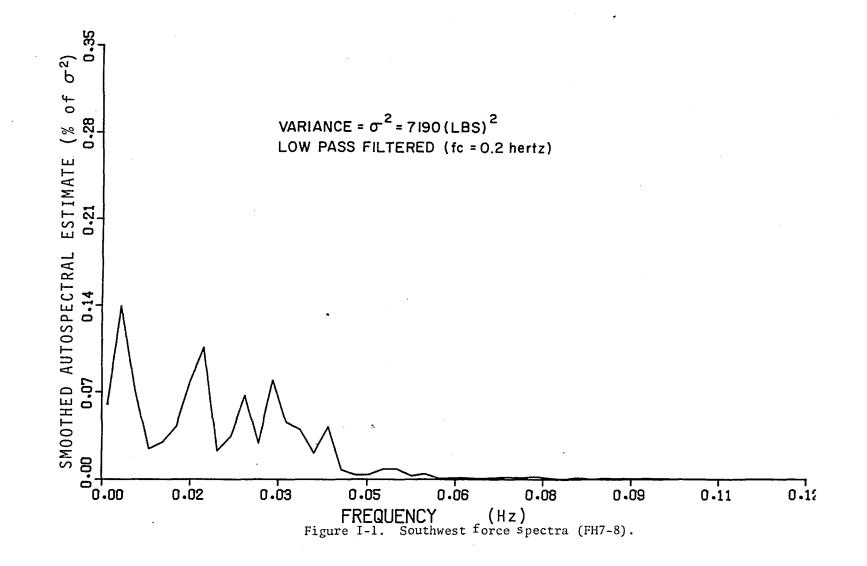
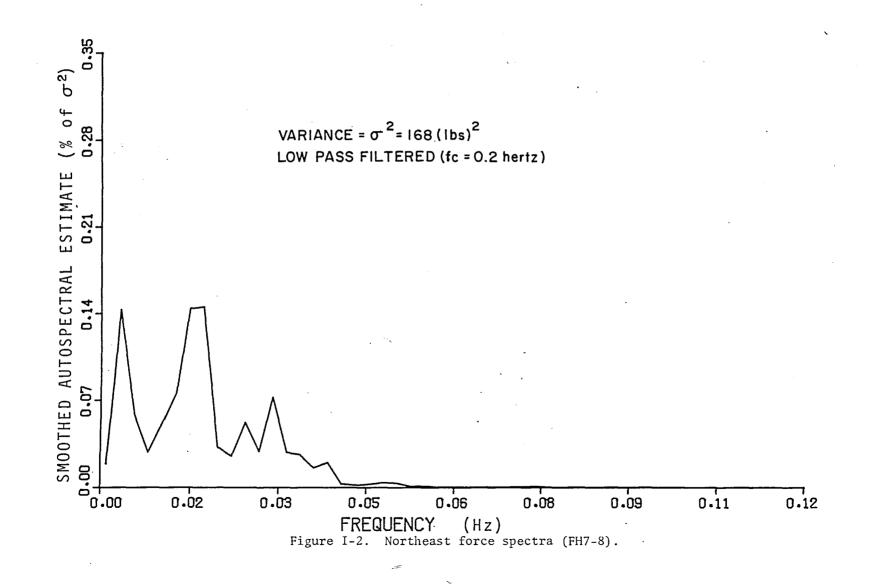
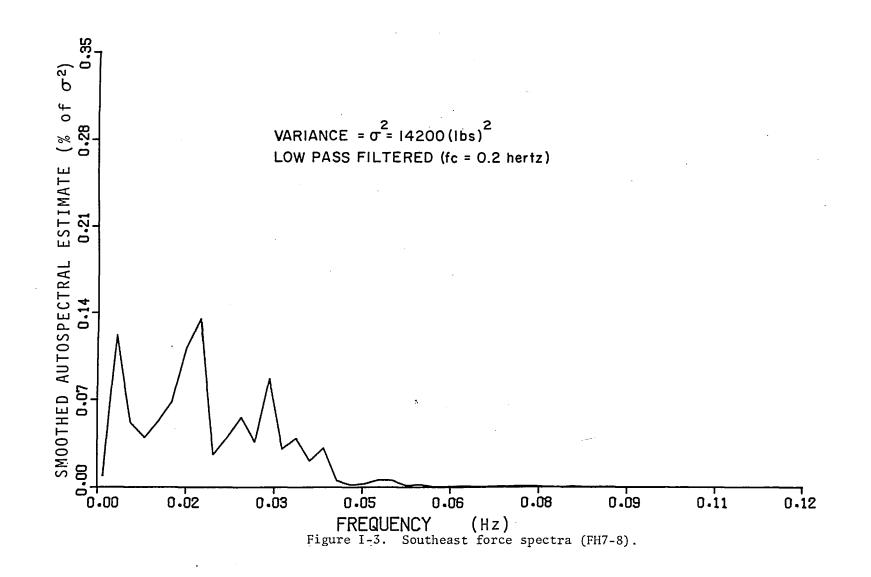


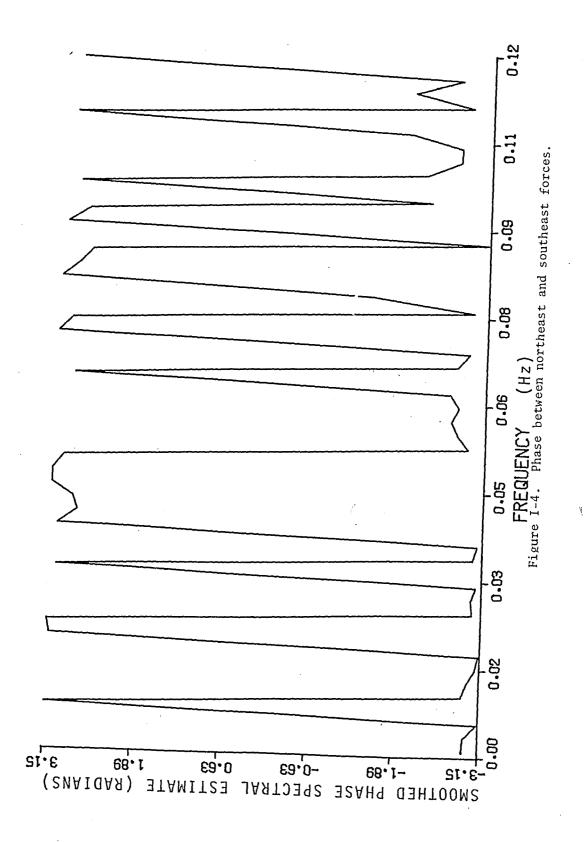
Figure H-10. Incident and transmitted wave spectral data (TK7-1), Tenakee Springs, Alaska.

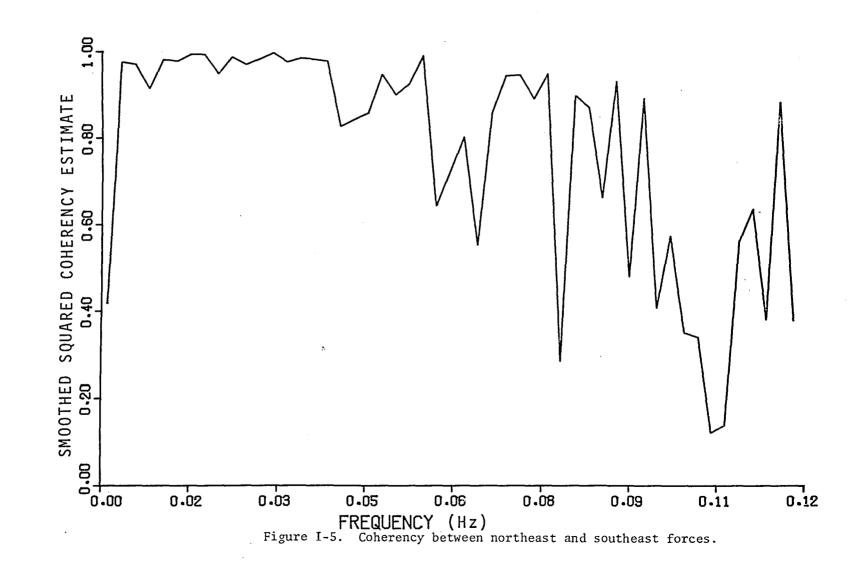


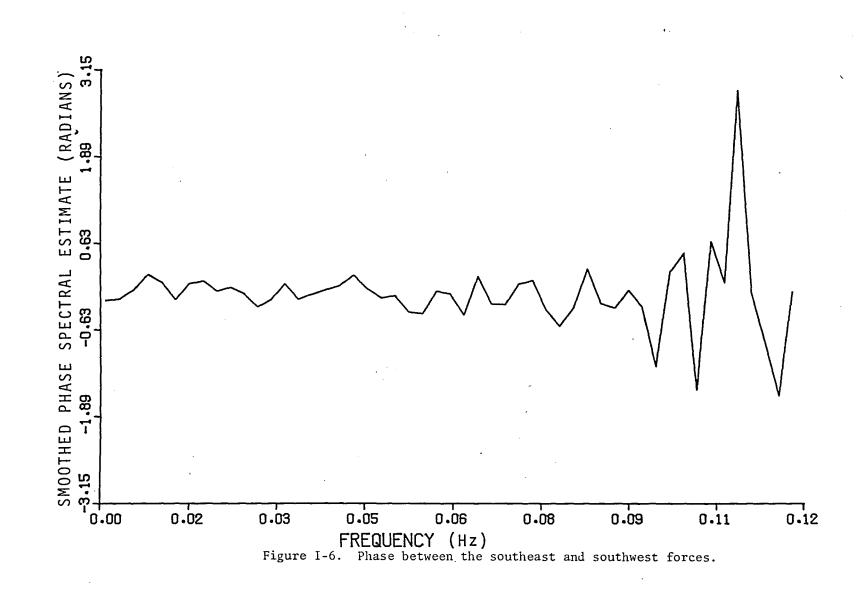

Figure H-11. Incident and transmitted wave spectral data (SK4-10), Sitka, Alaska.

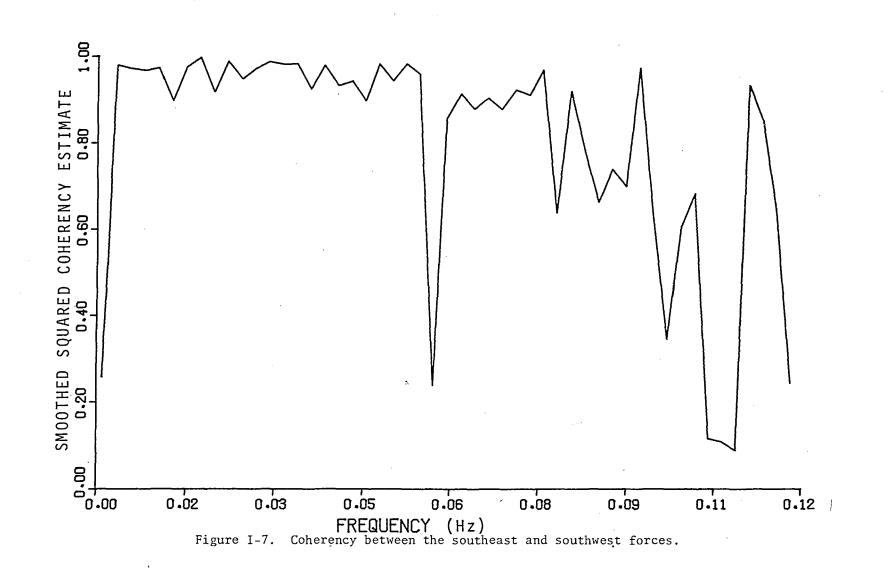

APPENDIX I


LOW-FREQUENCY SPECTRAL ANALYSIS OF FORCE DATA


Appendix I contains the low-frequency autospectral and cross-spectral plots for record FH7-8. The data were recorded at Friday Harbor, Washington, on 6 January 1975 at 0030 hours.


The original time series were low-pass filtered at a cutoff frequency of 0.2 hertz and every eighth data point used to generate a new time series. This gives 256 points with a sampling period of 4 seconds.





APPENDIX J

HIGH-FREQUENCY SPECTRAL ANALYSIS OF FORCE AND MOTION DATA

Appendix J contains the incident wave spectral plot along with the autospectral and cross-spectral plots for the force and motion data for record FH7-8. The data was recorded at Friday Harbor, Washington, on 6 January 1975 at 0030 hours.

The incident wave spectra was unfiltered. All the force and motion spectral data were digitally high-pass filtered at a cutoff frequency of 0.1 hertz. The autospectral data is plotted as a percent of the variance, i.e.,the total area under the spectra. Wave heights, forces, and motions were measured in feet, pounds, and feet per second square, respectively.

All spectra were computed from 2,048 data points sampled at 0.5-second intervals.

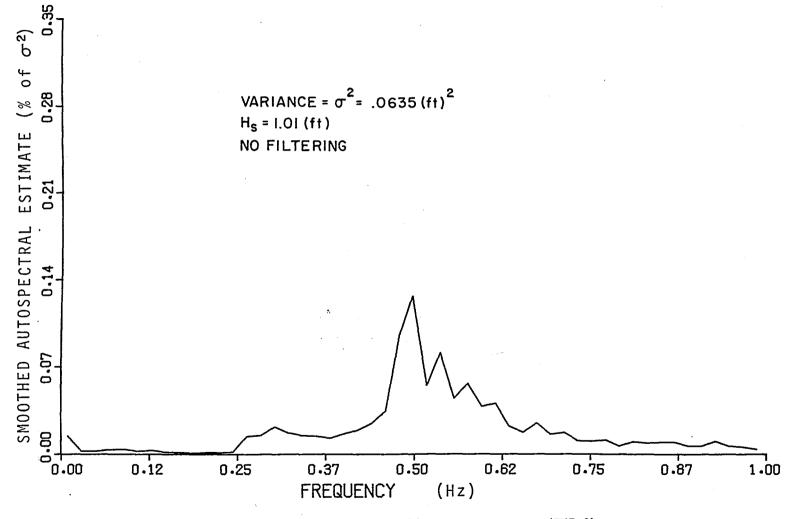
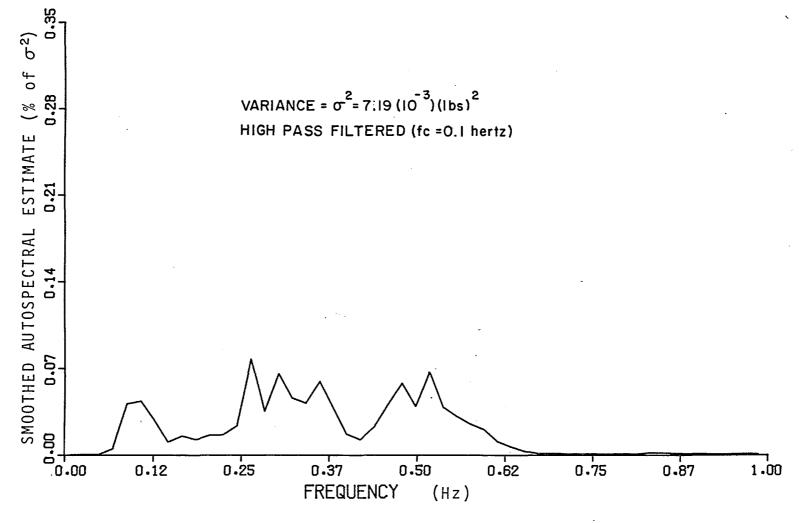
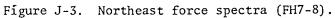
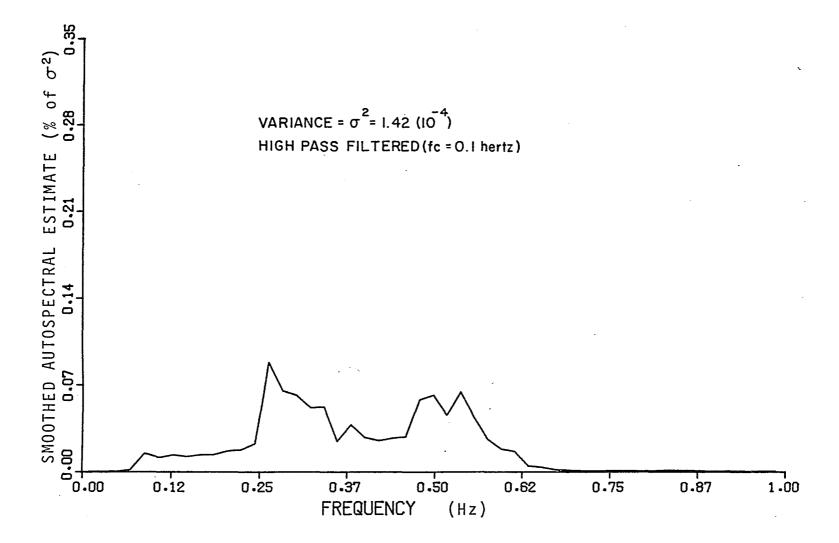
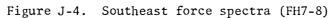
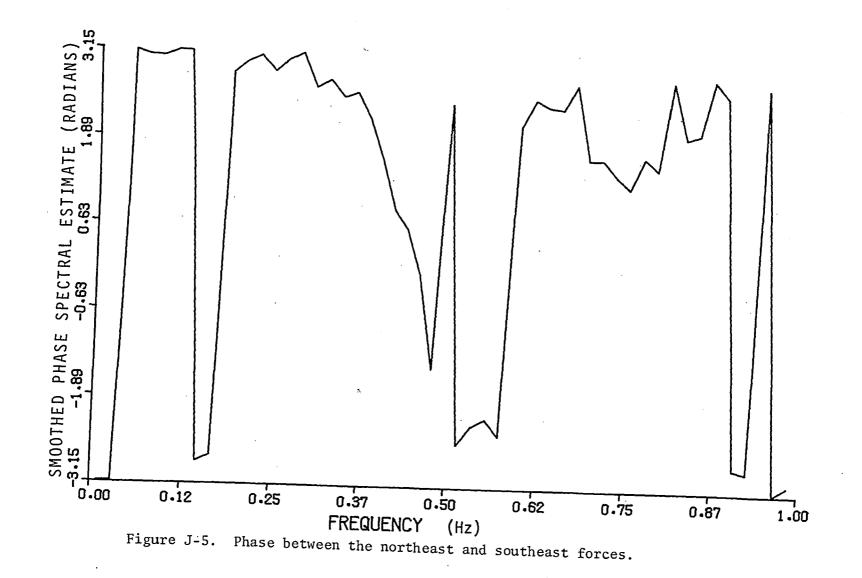
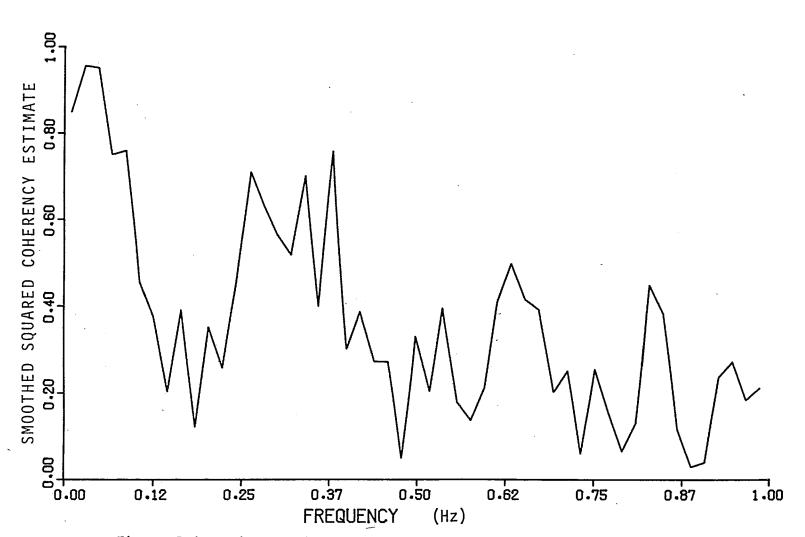
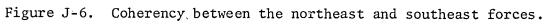


Figure J-1. Incident wave spectra (FH7-8).


Figure J-2. Southeast force spectra (FH7-8).





·206

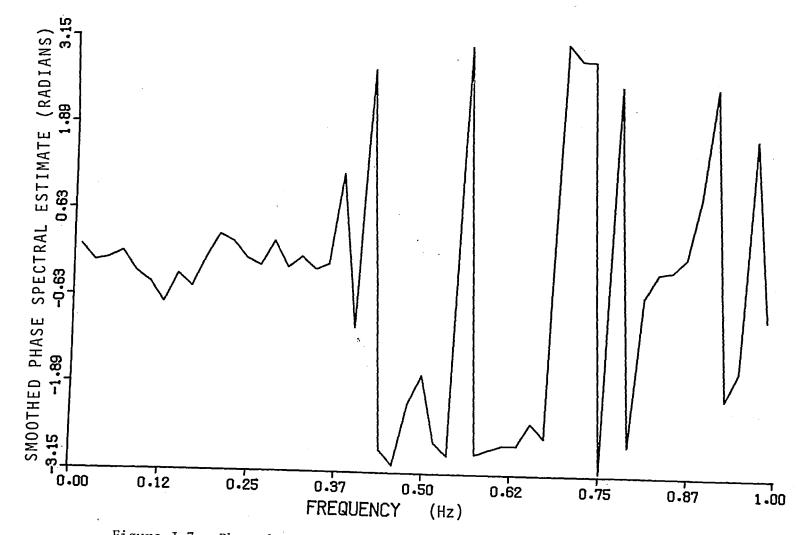


Figure J-7. Phase between the southeast and southwest forces.

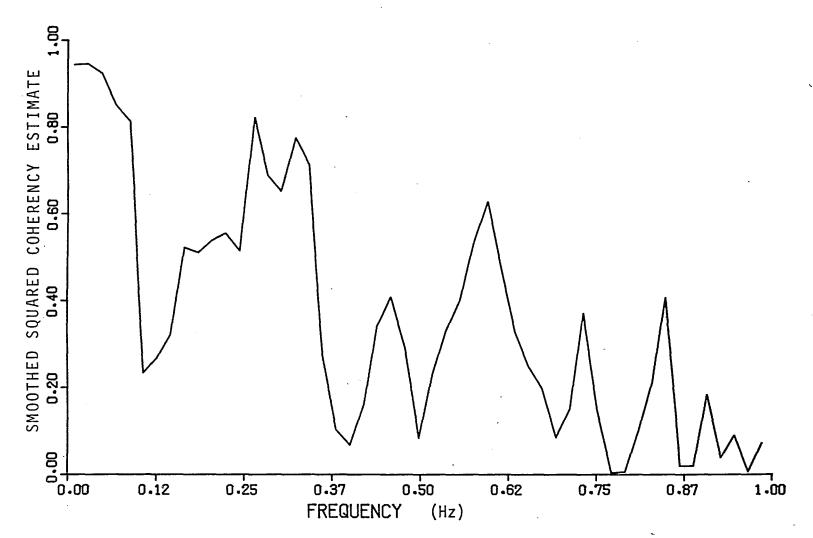


Figure J-8. Coherency between the southeast and southwest forces.

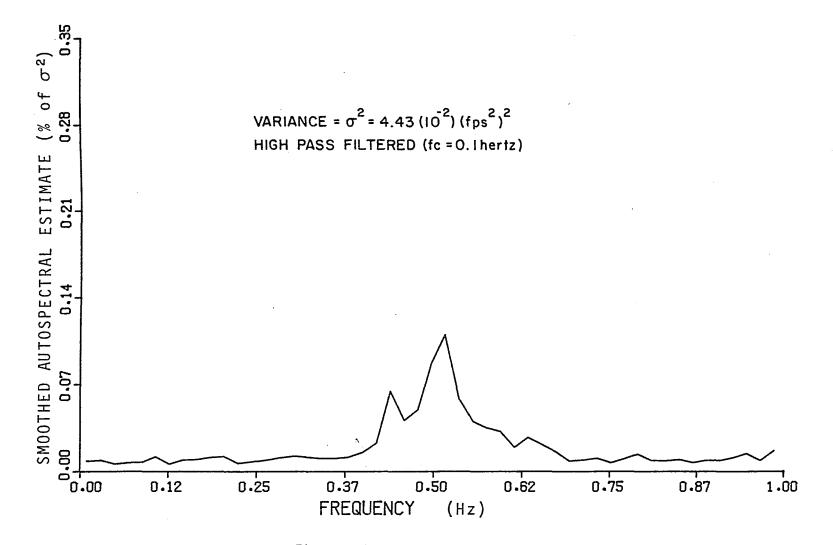
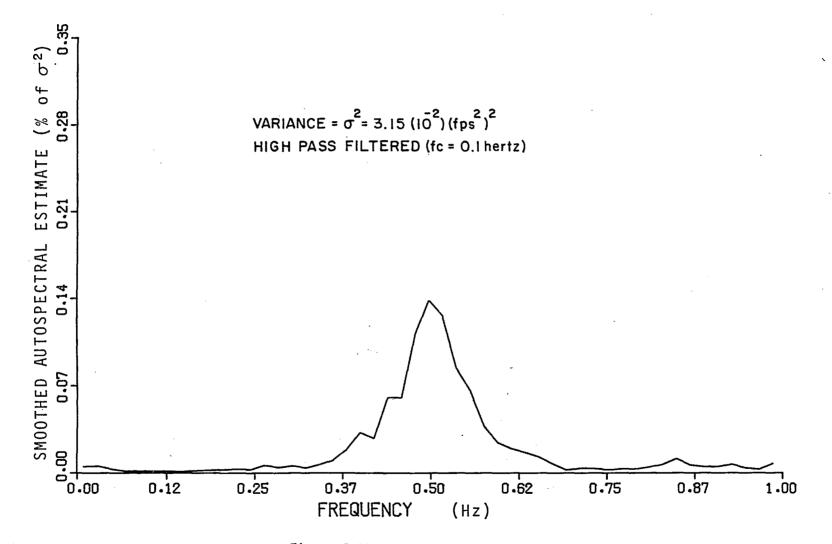
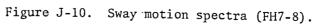
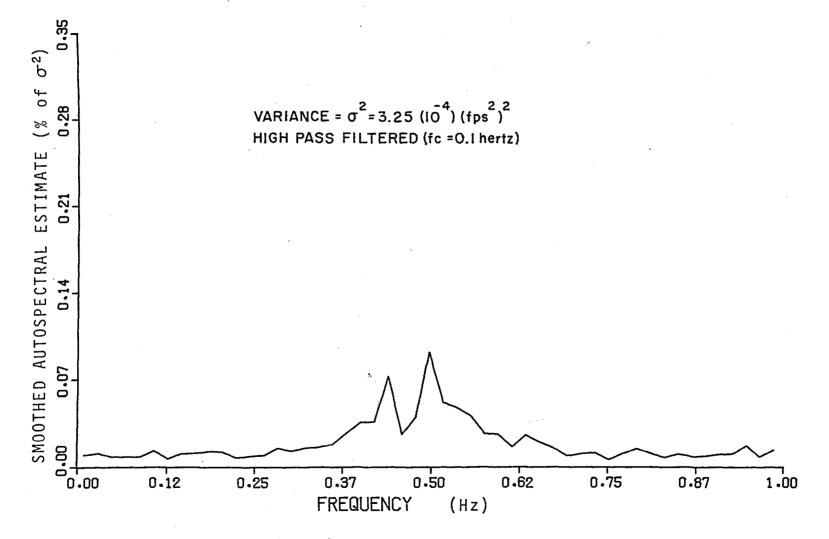
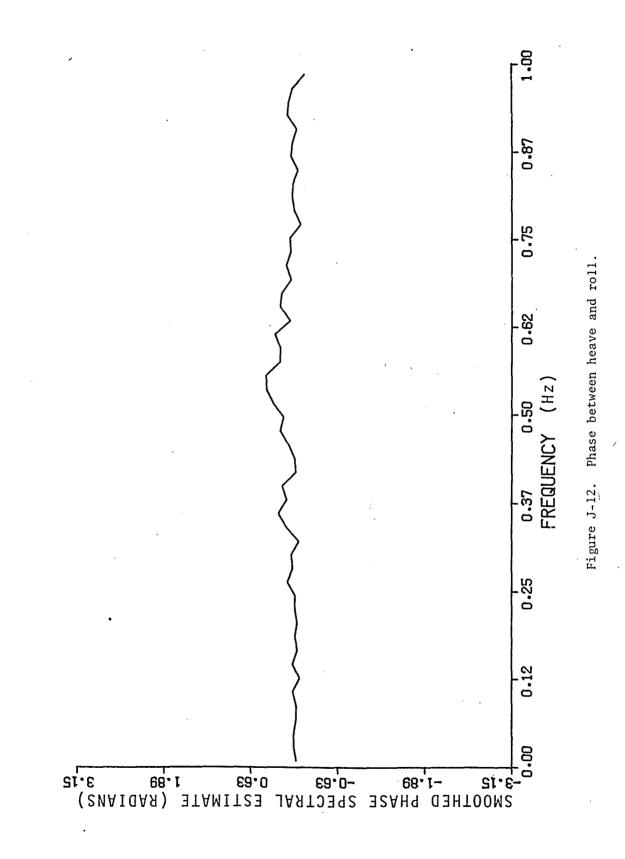
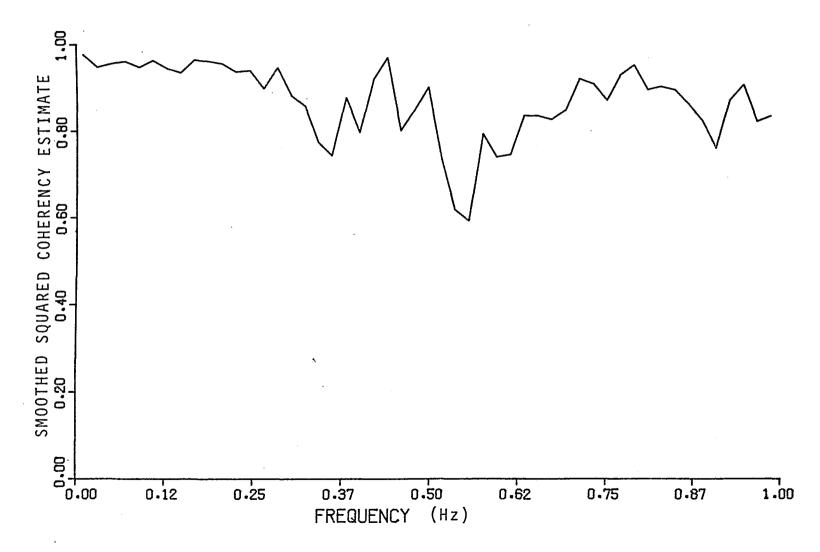
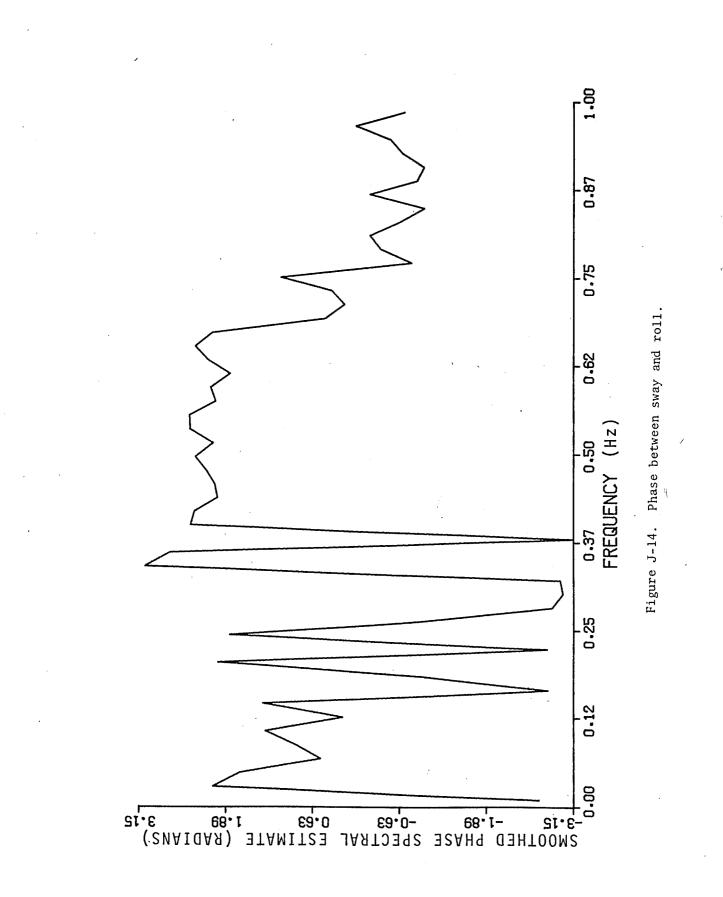




Figure J-9. Heave motion spectra (FH7-8).


Figure J-11. Roll motion spectra (FH7-8).

÷

Figure J-13. Coherency between heave and roll.

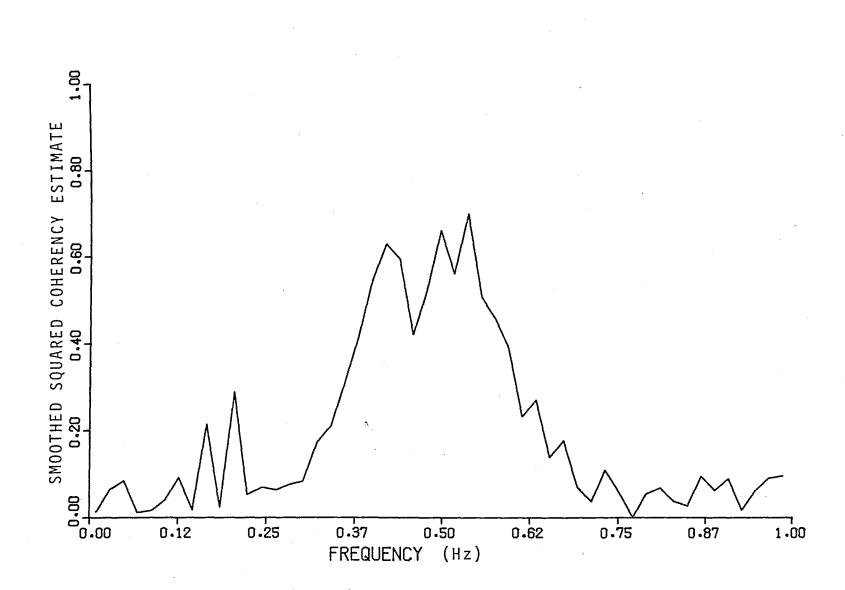
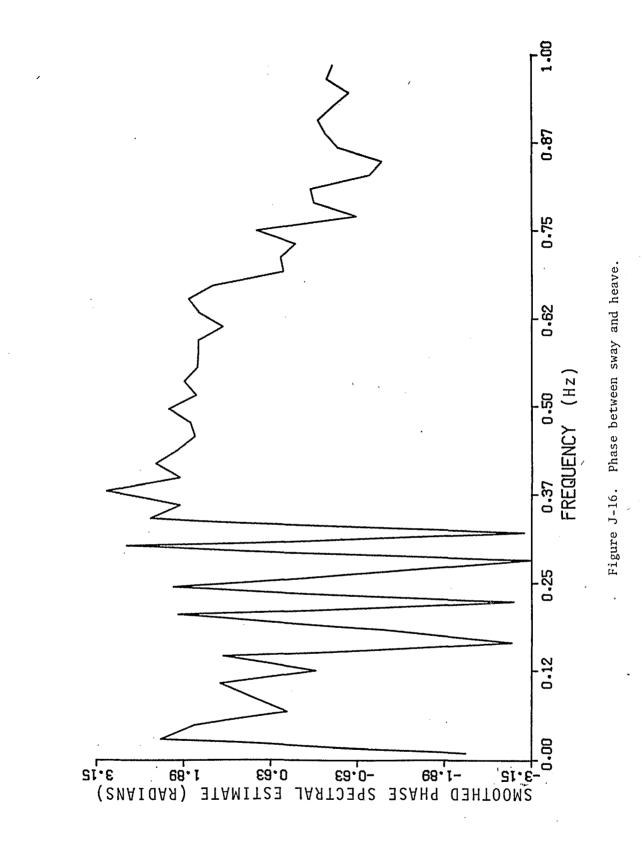



Figure J-15. Coherency between sway and roll.

2|5

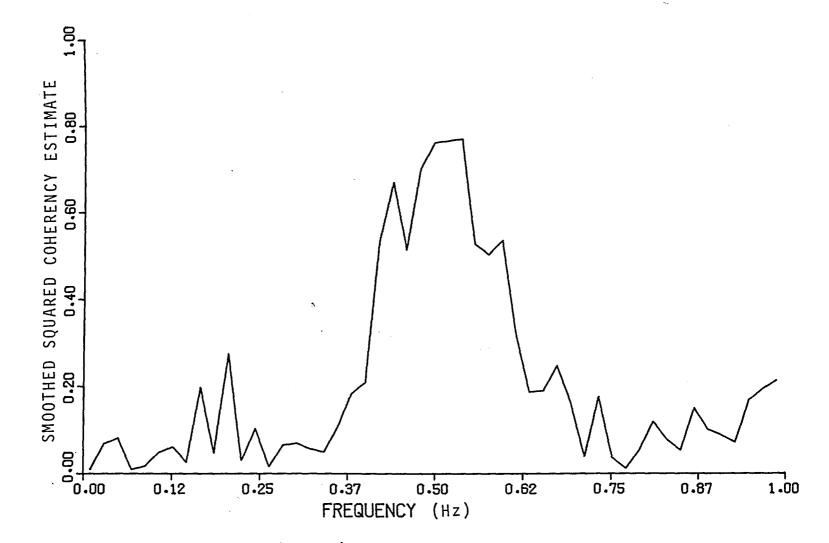
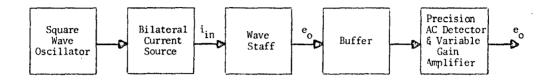


Figure J-17. Coherency between sway and heave.


217

APPENDIX K

WAVE MEASUREMENT

1. Wave Staff Design.

A block diagram of the wave staff and associated electronic circuits is shown below:

The wave staff itself consists of a length of PVC tubing which is spirally wound with a resistance wire, such that when it is immersed in seawater, the electrical resistance varies in direct proportion to the length of the exposed staff.

The electronic circuits driving the wave staff consist of a fixed frequency square wave oscillator (having a precisely controlled output amplitude) driving a precision bilateral current source with an output current directly proportional to the input voltage. Thus, the wave staff is driven by a current source of constant magnitude, but one which changes direction with each one-half cycle of the square wave oscilla-The output of the wave staff then is a square wave voltage with a tor. magnitude (peak to peak) that is directly proportional to the length of the exposed wave staff. This output is fed to a high input impedance voltage follower circuit which serves as a buffer between the wave staff and the ac detector circuit. The precision ac detector circuit uses two operational amplifiers in conjunction with two diodes to form a precision full-wave rectifier circuit that is capable of operating at very low input voltages. Ordinary diode detector circuits cannot operate on ac signals of peak magnitude less than the forward voltage drop of the diodes and produce large conversion errors unless the signal magnitude is large with respect to the diode voltage drop. A gain control has been incorporated in the detector circuit so that full-scale output can be set at any positive value up to +10 volts with a wave staff resistance of 300 ohms up to 3,000 ohms.

Alternating current is used to drive the wave staff to avoid both the corrosion effects that would occur if direct current were used and the dc offset which occurs as a result of the use of dissimilar metals in a conducting solution. The latter is eliminated by use of ac coupling in the output from the wave staff.

Bench tests of the wave staff electronic circuits were made using a 1,000-ohm variable precision resistor in place of the wave staff. The circuit was adjusted to produce an output range of 0 to 10 volts with the resistor varied from 0 to 1,000 ohms. Linearity was determined to be 0.1 percent of full scale over this range.

Tests were also made to determine the effect of temperature on sensitivity and zero drift. A decrease in sensitivity was noted with decreasing temperature of about 0.03 percent of reading per °Celsius over the temperature range of 0 to 24°Celsius. A zero drift of 2 millivolts was also noted over the same temperature range. A ± 10 percent change in supply voltage from the nominal ± 15 volts produced no observable change in output. If we assume an operating temperature range of $\pm 5^{\circ}$ Celsius, the maximum error in the wave staff electronics due to the combined effects of nonlinearity and sensitivity variations with temperature is ± 0.2 percent of reading. Since the primary interest is in a dynamic measurement of waves, the zero drift noted will have negligible effect on the experiment since temperature variations of any appreciable magnitude will only occur over long periods of time compared to the wave periods.

Further calibration tests were conducted using actual wave staffs of 1-inch diameter and 20-foot lengths, and 3.5-inch diameter and 8-foot lengths at various depths of immersion in saltwater. These tests were conducted from a dock at Shilshole Bay on Puget Sound. Because of ripples and waves on the water of the order of 1 inch (peak-to-valley) it was difficult to obtain a highly precise measurement. The output was recorded on a strip chart recorder and it was therefore possible to average these variations to some degree. The readout resolution of the strip chart (and accuracy) is about +1/4 of a minor division. Ful1 scale across the chart is 50 minor divisions and, thus, the resolution is about 0.5 percent of full scale. Some nonlinearity is noted near full immersion (see calibration curve). Some offset was expected because of the finite resistance of the saltwater path in the ground return which is not taken into account during initial calibration of the wave staff The initial calibration is made with the wave staff on the dock unit. where full scale and zero are set by making actual contact between the ground wire and the wave staff resistance element at the corresponding ends. However, measurements were made of the resistance of the saltwater path to ground in the same location where the wave staffs were immersed and the value of resistance measured (on the order of 10 ohms) does not account for the offset observed at full immersion. In addition, the offset should occur at all readings and it does not. Therefore, it is believed that the nonlinearity observed is a result of some other phenomenon as yet undetermined. Both units produced highest accuracy near center scale with decreasing accuracy toward either end. Overall accuracy including end points is about +3 percent. If the range of operation is reduced so as not to use the last 1 foot on each end of the wave staff, the accuracy is improved to about +1 percent.

The output from the wave staff electronic circuit is fed directly into a voltage to frequency converter; the frequency output is then counted and stored on separate storage registers, once every 50 milliseconds. If an 8-bit register is used for the wave staff measurement, the maximum count that can be stored is 255; therefore, the sample time must be on the order of 25.5 milliseconds (maximum count divided by maximum frequency output from voltage to frequency converter). The wave buoys use an 8-bit register with a 32.5-millisecond sample time while the wave staffs use a 16-bit register with a 250-millisecond sample time.

The error due to gain instability and nonlinearity of the voltage to frequency converter is of such low magnitude that it can be neglected and the overall accuracy of the recording is essentially the same as given for the wave staff unit by itself (i.e., between <u>+1</u> and <u>+3</u> percent depending on the range of operation on wave staff).

2. Spar Buoy Design.

Spar buoys were used at two of the sites because of their advantage in handling and transport and because they minimized the placement difficulties due to navigational hazards, water depth, and tidal conditions. The spar buoys were made of two PVC pipes coupled together near the center of the buoy. The lower section is a 15 foot by 6 inch pipe filled with styrofoam. The top section is 12 feet by 3 inches wherein the upper 8 feet is wound with a resistance wire which measures wave elevation. The wave staff electronics are mounted inside the top section, above the waterline, with the remainder being filled with a wood core to add stiff-The buoys also have a 2.5-foot diameter damping plate mounted ness. on the bottom and are anchored using a dual point mooring system with the anchor lines attached at the center of drag on the buoy to prevent it from being pulled underwater in strong currents. One of these buoys was tested in the Puget Sound just north of Seattle. Its performance exceeded expectations both in terms of minimized response to the waves and accuracy of wave height measurement. Figure K-1 gives a sample of the output from the buoy's wave staff in saltwater for a plus and minus 1 foot excitation of the buoy in heave. This was accomplished by pushing the buoy up and down by hand. Some distortion results from this approach which shows up in the output of the accelerometer mounted at the center of the response of the buoy in heave and roll in calm water. The natural periods for heave and roll taken from these plots are approximately 18 and 14 seconds, respectively. These are well out of the range of the 3-to-4-second wave periods expected at the site. Visual observations of the buoy in waves in excess of 1.5 feet indicated no observable heave or roll motion, but some yaw about the anchor line caused by the current and wind. This motion resulted in less than a 1 foot variation from the buoy's horizontal position in calm water and appeared to have periods in excess of 30 to 60 seconds. For comparative measurements, the buoy was located about 30 feet from an existing four-gage array of 1-inch diameter Oceanographic Services, Inc. resistance wire wave staffs. A comparison of simultaneous output from the two wave staffs (buoy mounted and stationary) is shown in Figure K-4. The autospectras computed from data obtained from one of the stationary wave staffs and from the spar buoy, in a 25-miles per hour storm with

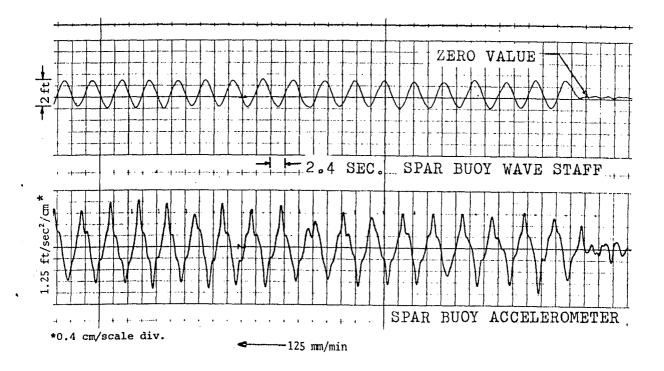


Figure K-1. Wave and acceleration data for par uoy.

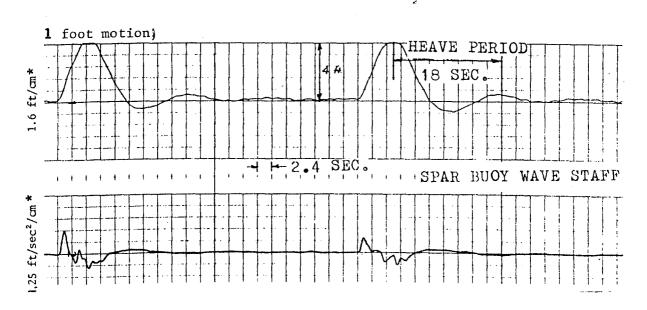
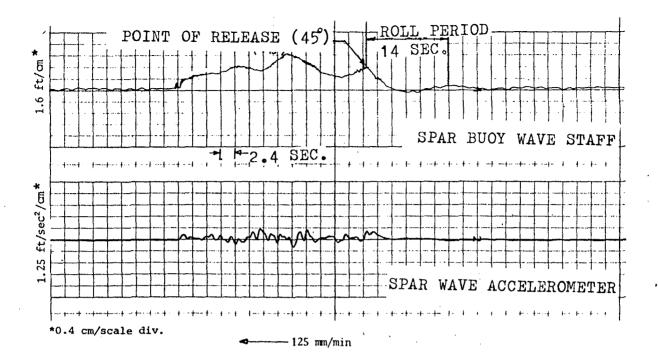
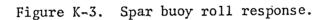
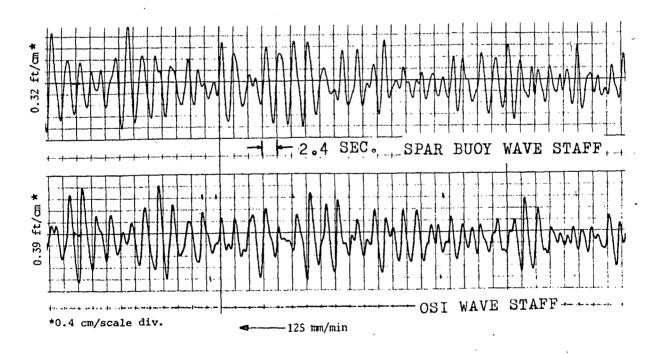
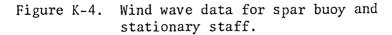






Figure K-2. Spar buoy heave response.

maximum wave heights in excess of 1.5 feet are shown in Figure K-5. These spectra were computed from simultaneous records of 20 minutes in length.

i,

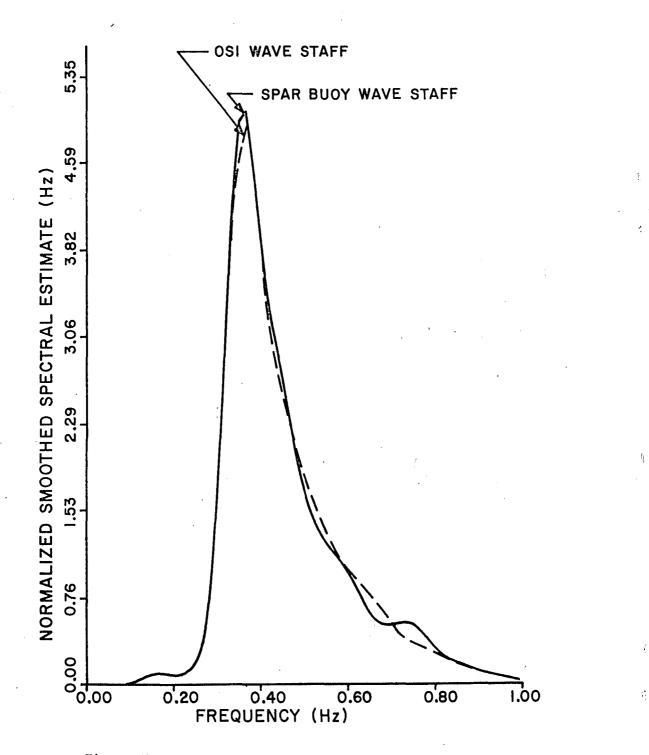


Figure K-5. Wave spectra from spar buoy and stationary staff.

Adee, B. H.

Floating breakwater field assessment program, Friday Harbor, Washington / by B. H. Adee, E. P. Richey...[et al.]. -- Fort Belvoir, Va. : U.S. Coastal Engineering Research Center, 1976.

224 p. : ill. (Technical paper - U.S. Coastal Engineering Research Center ; no. 76-17) Also (Contract - U.S. Coastal Engineering Research Center ; DACW72-74-C-0012)

Bibliography : p. 72.

This study presents a theoretical model for predicting the dynamic behavior of a floating breakwater, and a report on a field experiment designed to provide basic data for verifying the model.

1. Floating breakwaters. 2. Friday Harbor, Wash. 3. Wave attenuation. 4. Wave reflection. 5. Wave transmission. I. Title. II. Richey, E. P., Joint author. III' Series : U.S. Coastal Engineering Research Center. Technical paper no. 76-17. IV. U.S. Coastal Engineering Research Center. Contract DACW72-74-C-0012.

Adee, B. H.

Floating breakwater field assessment program, Friday Harbor, Washington / by B. H. Adee, E. P. Richey...[et al.]. -- Fort Belvoir, Va. ; U.S. Coastal Engineering Research Center, 1976.

224 p. : ill. (Technical paper - U.S. Coastal Engineering Research Center ; no. 76-17) Also (Contract - U.S. Coastal Engineering Research Center ; DACW72-74-C-0012)

Bibliography : p. 72.

This study presents a theoretical model for predicting the dynamic behavior of a floating breakwater, and a report on a field experiment designed to provide basic data for verifying the model.

1. Floating breakwaters. 2. Friday Harbor, Wash. 3. Wave attenuation. 4. Wave reflection. 5. Wave transmission. I. Title. II. Richey, E. P., Joint author. III' Series : U.S. Coastal Engineering Research Center. Technical paper no. 76-17. IV. U.S. Coastal Engineering Research Center. Contract DACW72-74-C-0012.

TC203	.U581tp	no. 76-17	627	.U581tp	TC203	.U581tp	no. 76-17	627	.U581tp

Adee, B. H.

Floating breakwater field assessment program, Friday Harbor, Washington / by B. H. Adee, E. P. Richey...[et al.]. -- Fort Belvoir, Wa. : U.S. Coastal Engineering Research Center, 1976.

224 p. : ill. (Technical paper - U.S. Coastal Engineering Research Center ; no. 76-17) Also (Contract - U.S. Coastal Engineering Research Center ; DACW72-74-C-0012)

Bibliography : p. 72.

This study presents a theoretical model for predicting the dynamic behavior of a floating breakwater, and a report on a field experiment designed to provide basic data for verifying the model.

1. Floating breakwaters. 2. Friday Harbor, Wash. 3. Wave attenuation. 4. Wave reflection. 5. Wave transmission. I. Title. II. Richey, E. P., Joint author. III' Series : U.S. Coastal Engineering Research Center. Technical paper no. 76-17. IV. U.S. Coastal Engineering Research Center. Contract DACW72-74-C-0012.

TC203	.U581tp	no. 76-17	627	.U581tp

Adee, B. H.

Floating breakwater field assessment program, Friday Harbor, Washington / by B. H. Adee, E. P. Richey...[et al.]. -- Fort Belvoir, Va. : U.S. Coastal Engineering Research Center, 1976.

224 p. : i11. (Technical paper - U.S. Coastal Engineering Research Center ; no. 76-17) Also (Contract - U.S. Coastal Engineering Research Center ; DACW72-74-C-0012)

Bibliography : p. 72.

This study presents a theoretical model for predicting the dynamic behavior of a floating breakwater, and a report on a field experiment designed to provide basic data for verifying the model.

1. Floating breakwaters. 2. Friday Harbor, Wash. 3. Wave attenuation. 4. Wave reflection. 5. Wave transmission. I. Title. II. Richey, E. P., Joint author. III' Series : U.S. Coastal Engineering Research Center. Technical paper no. 76-17. IV. U.S. Coastal Engineering Research Center. Contract DACW72-74-C-0012.

TC203	.U581tp	no. 76-17	627	.U581tp
-------	---------	-----------	-----	---------

