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Abstract 

The U.S. Department of Defense has characterized the current approach to 
corrosion maintenance, which is based on simply finding and fixing dam-
age before it becomes a concern, as inadequate to maintain mission-
critical equipment and facilities to support stationing decisions. There is a 
need to go beyond corrosion prediction and management approaches to 
consider the impact of climate change on stationing decisions. To address 
this concern, there is a need to develop defensible, accurate approaches to 
project how certain installation metrics involving materials degradation 
are likely to change in the near future. The first step in creating a tool to 
meet this need is to determine how selected quantitative data, or chosen 
installation “metrics,” will change over some specified period. This work 
developed and tested a corrosivity model capable of predicting corrosivity 
at specific sites. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Unit Conversion Factors 

Multiply By To Obtain 

degrees Fahrenheit (F-32)/1.8 degrees Celsius 

feet 0.3048 meters 

gallons (U.S. liquid) 3.785412 E-03 cubic meters 

inches 0.0254 meters 

mils 0.0254 millimeters 

square feet 0.09290304 square meters 
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1 Introduction 

1.1 Background 

Historically, the Department of Defense (DoD) has not made long-term 
planning and stationing decisions based on climate change. However, the 
Center for Army Analysis (CAA) has recently expressed its concern regard-
ing how climate change may impact facility operations and maintenance 
(O&M), and how the military can make smarter stationing decisions that 
allay those impacts. One important part of facility O&M is the prevention 
and treatment of corrosion.  

In the past, corrosion maintenance has commonly been based on simply 
finding and fixing damage before it becomes a structural or safety concern. 
DoD has identified this approach as inadequate to maintain mission-
critical equipment and facilities to support stationing decisions involving 
deployment, training, and readiness. In other words, concerns for corro-
sion, which have previously focused primarily on maintenance costs, have 
shifted to include structural integrity and safety. This shift has dictated a 
change to prediction and management approaches that go beyond finding 
and fixing corrosion faults, and minimizing the associated costs. More 
specifically, there is now both an interest and directives to consider the 
impact of climate change on stationing decisions. 

To address this concern, there is a need to develop defensible, accurate 
approaches to project how certain installation metrics involving materials 
degradation are likely to change in the near future (i.e., over the next 4 
decades). To date, there has been little emphasis on developing the engi-
neering tools needed to manage corrosion and its associated maintenance 
and repair actions. The tools that are available do not consider how cli-
mate change may impact facility maintenance and operations. The first 
step in creating such a tool is to determine how selected quantitative data, 
or chosen installation “metrics,” will change over some specified period. 

1.1 Objective 

The objective of this work was to develop defensible, accurate approaches 
to project how the chosen installation metrics are likely to change over the 
next 4 decades.  
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1.2 Approach 

1. ERDC-CERL developed the corrosivity model used in this project jointly 
with the Office of the Secretary of Defense (OSD), Installation Manage-
ment Agency (IMA), and Air Force Office of Aging Aircraft and Battelle 
(Chapter 2). 

2. Datasets were identified and obtained to make an atmospheric corrosivity 
model that was capable of predicting the corrosivity of the sites not includ-
ed in the exposure data project (Chapter 3). 

3. Software implementation environments (coding language, application 
components, and method) were compiled into an executable program that 
uses mathematical models of materials degradation, and statistical calcula-
tions that rely on the identification of results of Army selected global circu-
lation model (GCM) results after running Army selected greenhouse gas 
emission scenarios. These changes are expressed in terms of percent in-
creases or decreases in the value of currently accepted cost metrics. 

4. Model output was generated, analyzed, and compared with previous at-
mospheric models (Chapters 3 and 4). 

5. Supplementary information includes: 
a. Appendix A, which describes the general framework and a more de-

tailed model development, as well as a statistical analysis (Chapter 2) 
b. Appendix B, which details how the atmospheric and weather data were 

clustered and processed 
c. Appendix C, which  gives a graphical representation of how the weath-

er data were partitioned around medoids 
d. Appendix D, which  details the specific code used to create the model 
e. Appendix E, which presents select outputs of the model, may be used 

to compare the predicted corrosion loss with the observed corrosion 
data for selected sites and metals with regression plot. 

1.3 Scope 

Although the primary purpose of this work is to support CAA stationing 
questions, other Army professional groups may benefit from this work, 
e.g., Facility Engineers benefit from having good information in making 
appropriate material selection choices and Facility Planners benefit from 
accurate severity factors to make economic decisions for maintenance. 
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1.4 Mode of technology transfer 

It is anticipated that the results of this work will provide a foundation for 
follow-on research in support of CAA Army stationing analyses (restruc-
turing and realignment analysis). It is anticipated that the results of this 
work, when combined with CAA feedback, will support CAA subject matter 
experts in Comprehensive Omnibus Budget Reconciliation Act (COBRA) 
and Optimal Stationing of Army Forces (OSAF) models. Further Collabo-
ration with the U.S. Army Materiel Systems Analysis Activity (AMSAA) 
will continue to share model improvements and datasets. 
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2 The Corrosivity Model 

ERDC-CERL developed the corrosivity model used in this project jointly 
with OSD, IMA, and the Air Force Office of Aging Aircraft and Battelle. The 
corrosivity model consists of a series of data partitions and regressions built 
on empirical measurements taken from over 2 decades of coupon rack 
placement, at weapons platforms and facilities, using sheltered and unshel-
tered racks. Weather data were incorporated from Air Force Combat Clima-
tology Center (AFCCC) and state sources. This research uses climate models 
of record provided by researchers at the Engineer Research and Develop-
ment Center, Cold Regions Research and Engineering Laboratory (ERDC-
CRREL). Estimated climate variables from those models will serve as inputs 
into the corrosivity model to estimate future corrosivity at a given location. 

AMSAA recently worked with the corrosivity model and made several im-
provements to it. They updated the model with several new corrosivity factors 
including airborne particulate, sulfides, and nitrate compounds. They also 
integrated the improved model into a Geographic Information System (GIS) 
framework and developed an algorithm to interpolate corrosivity for regions 
in between coupon sampling locations. AMSAA partnered with ERDC-CERL 
and has expressed its willingness to share its updated data framework, which 
this project will use as the basis for the corrosivity projection model. 

However, the baseline and projected corrosivity calculations still need to 
be translated into a cost impact factor. To meet this need, the Army Inte-
grated Facilities System (IFS) database will provide information on facility 
type, area, cost, and (where available) baseline condition for each installa-
tion under study. Current maintenance costs will be mapped to the present 
corrosivity calculation. Future maintenance costs are estimated to scale 
with the projected corrosivity values. The ratio of current cost factors and 
current corrosivity rates are treated as linearly proportional to future cor-
rosivity rates and cost factors. 

The corrosivity model quantifies the severity of atmospheric corrosion that 
takes into account different geographic locations, local weather conditions, and 
distance from a sea coast. The model allows the corrosion index to be queried 
for a particular location included in the survey. The model can also predict the 
corrosivity of other new locations not included in the surveyed locations. 
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The model was created from several different data sources. The raw at-
mospheric corrosion data came from a previously funded project AR-F-311 
“Measuring the Rates and Impact of Corrosion on DoD on Equipment and 
Installations” (Drozdz, Abbot, and Jackson 2007). Additional atmospheric 
corrosion data came from other DoD projects that used the same sample 
form factor that made the data integration transparent. Local weather data 
were incorporated from open sources such as the AFCCC and from reliable 
state and private sources.  

Statistical data analysis methods, expressed in concise and plain language, 
were used to examine worldwide coupon data. The same statistical analy-
sis methods were used to examine weather and location data and the raw 
data collected from the earlier project. The atmospheric corrosion data 
collected from analyzed samples were empirically correlated against the 
weather severity aggregated data collected from the site.  

A complete set of 12-month cumulative weather data for the 160 sites were 
subjected to a classification algorithm known as Partitioning Around Me-
doids (PAM). This methodology selects a number of desired data sub-
groups and calculates the routine that evaluates the quality of that choice 
for a specific number of partitions. The weather data parameters examined 
included relative humidity, precipitation, and atmospheric deposition of 
chlorides. The analysis conducted on the available weather data examined 
the consequences of choosing two, three, and four groupings. It was found 
that the 12-month weather data were optimally clustered into three dis-
tinct groupings: dry, wet, and severe. 

An algorithm development method for the atmospheric corrosion model 
was developed using empirical regression. The measured corrosion rate 
for each metal type was correlated to the weather data from its location. 
The resulting empirical fit parameters constitute the model. The corro-
sivity model was developed using commonly accessible software imple-
mentation environments, coding language, application components, and 
methods and/or tools to compile the components into an executable pro-
gram. The clustered weather data and atmospheric corrosion data are 
stored in an Excel spreadsheet. The software interface is built around an 
MS Access® database, which has been tested under a number of versions 
of Windows. 
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3 Technical Investigation 

3.1 Project overview 

Datasets from several other variables were needed to make an atmospheric 
corrosivity model that was capable of predicting the corrosivity of the sites 
not included in the exposure data project. Specifically, historic data from 
weather stations were collected from the weather agency closest to the 
sample exposure rack was collected. The distance from the weather station 
to the exposure rack was also noted. Variables including humidity, precipi-
tation, temperature, and humidity were all acquired for the period of rack 
exposure. Weather data were obtained from open sources such as the 
AFCCC and from state, local, and private sources. 

The atmospheric corrosion rate database was assembled to begin the statisti-
cal analysis. The model and database are constructed to allow new data to be 
added as they become available. However, given the magnitude of data al-
ready incorporated, additional data should have little impact on the model.  

The statistical analyses of the weather data consisted of partitioning along 
medoids. This analysis aggregates the weather into groups that display co-
herency. Appendix E includes additional detail. The models were devel-
oped and implemented as a computer application. 

3.2 Model development 

The corrosion indices and predictive algorithms were developed for appli-
cation to metals exposed to the open atmosphere, unsheltered.  

3.2.1 Statistical data analysis methods 

Statistical data analysis methods were used to correlate weather and loca-
tion data with worldwide coupon data. The atmospheric corrosion data 
collected from analyzed samples were empirically correlated against the 
weather severity aggregated data collected from the site.  

A complete set of 12-month cumulative weather data for the 160 sites was 
subjected to the classification algorithm known as PAM. In this methodol-
ogy, a number of desired data subgroups are selected; the routine calcu-
lates how good a choice that number of partitions is. The weather data pa-
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rameters examined included relative humidity, precipitation, and atmos-
pheric deposition of chlorides. The analysis conducted on the available 
weather data examined the consequences of choosing two, three, and four 
groupings. It was found that the 12-month weather data were optimally 
clustered into three distinct groupings: dry, wet, and severe. 

3.2.2 Algorithm development method 

The algorithm development method was designed for simplicity, i.e., to be 
concise and plain enough for an experienced Excel user to understand. The 
atmospheric corrosion model was developed by means of empirical regres-
sion. The measured corrosion rate for each metal type was correlated to 
the weather data from its location. The resulting empirical fit parameters 
constitute the model.  

3.2.3 Software implementation 

The software implementation environments, coding language, application 
components (files and databases), and method and/or tool were compiled 
into an executable program. The clustered weather data and atmospheric 
corrosion data are stored in an Excel spreadsheet. The software interface is 
based on an MS Access® database, which was tested under several ver-
sions of Windows. 

Data analyses have shown that the environments worldwide can be parti-
tioned into three broad categories depending on the combinations of hu-
midity and atmospheric chlorides. For descriptive purposes, these will be 
termed “Extreme,” “Wet,” and “Dry.” The categories are derived from a 
weighted average of humidity, rainfall, and chlorides for a location. Ap-
pendix B expands on the quantitative definitions of these categories.  

Algorithms were developed for each of these categories to give more precise 
predictions. Although the algorithms are described explicitly in this report, 
the processes in the executable program will be transparent to the end user. 
Correlation coefficients have been calculated for each metal and weather 
grouping; these appear to be in the range of 0.75. This is considered quite 
good for work of this type and represents a significant advance over prior 
published work such as the PACER LIME model (Summitt and Fink 1980) 
and others, which have achieved coefficients no better than 0.5. 
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3.3 Model output examples 

Figures 3-1 to 3-4 show examples of graphical output for each of four metals 
at a single site. The model had to be run separately for each of the metals. In 
these cases the agreements between actual and predicted corrosion is rela-
tively good. Generally, most data fall within the 95% confidence intervals.  

Note that cases will be found in which the agreement is not as good and 
where actual values lie above the upper limits. The reasons for this have 
often been resolved; in the most general case, the discrepancy may be at-
tributed to the (external) source of the available weather data, i.e., they 
were recorded by other parties. There is a fundamental assump-
tion/requirement in any work of this type in which the weather and corro-
sion data are coincident in time (usually not a problem) and location. In 
the event that the locations are not identical/very close, it would be a 
judgment call whether the weather data should be applicable to the moni-
tored location. This problem is most likely to occur in coastal regions 
where monitoring is occurring within the first ½ mile or so of the coast. 
Often, the weather station will be somewhat further inland and not near 
the corrosion samples. In these cases, the measured corrosion rates are 
likely to be much higher than predicted values, since it has been shown 
that corrosion rates may vary almost exponentially with distance from 
ocean within at least the first half-mile. 

Figures 3-5 to 3-7 show the results of such plots for 7075 T6 aluminum ac-
cording to the site data currently in the embedded MS Access® database. A 
“perfect” correlation would be for all data to cluster around a 45 degree 
line for each condition. In reality the results are quite good, particularly in 
consideration of the fact that these are real field data. A few outliers are 
shown for each case. The reasons for most of these outliers are generally 
known. However, for information purposes, this investigation examined 
whether there is a simple way for the user to identify these sites by simply 
indicating a specific plotted point, as one might do in an Excel plot. 

Figure 3-8 shows output of corrosion kinetics for four Coast Guard sta-
tions. Predicted cumulative corrosion is plotted at 3-month intervals. (One 
3-month interval equals one sequence for this plot.) The slope of the line 
indicates the corrosion rate for that material and location. Higher slopes 
indicate a greater corrosivity. 
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Figure 3-1.  Screen output example for corrosion of 6061 Al at Langley. 

 

Figure 3-2.  Screen output example for corrosion of 7075 Al at Langley. 
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Figure 3-3.  Screen output example for corrosion of copper at Langley. 

 

Figure 3-4.  Screen output example for corrosion of steel at Langley. 
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Figure 3-5.  Predicted vs. actual graphing screen showing summary of current results for all 
7075 T6 data in “dry” locations. 

 

Figure 3-6.  Predicted vs. actual graphing screen showing summary of current results for all 
7075 T6 data in “wet” locations. 
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Figure 3-7.  Predicted vs. actual graphing screen showing summary of current results for all 
7075 T6 data in “extreme” locations. 

 

Figure 3-8.  Plotting routine example for four Coast Guard stations and corrosion of 7075 T6 
aluminum. 
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4 Discussion 

4.1 Metrics 

The corrosion severity model is based on quantitative data on environ-
mental corrosivity collected through atmospheric exposure of standard-
ized metallic corrosion specimen sets and statistically correlated with their 
corresponding climate and geospatial data. The reference metrics em-
ployed in this work were: 

• The corrosion test racks provided a consistent atmospheric test meth-
odology to gather the data used in the model. The specific panel meth-
odology is also described in Drozdz, Abbott, and Jackson (2007). 

• Alloy composition standards for the sample metals are as published by 
American Society for Testing and Materials (ASTM) International 
ASTM B308/B308M-02 (2010), ASTM A108 (2013a), and ASTM B152 
(2013b) for Aluminum, Steel, and Copper samples respectively. The 
specific alloys used were copper, 6061 T6 aluminum, 7075 T6 alumi-
num, and a low carbon (1010) steel. 

• Weather data compiled from the AFCCC, and state weather organiza-
tions. 

The primary metric used to validate the model was statistical analysis of its 
application to specific geospatial locations, comparing the severity index 
with the observed data. A comparison of the actual cumulative corrosion 
levels to the 95% prediction intervals associated with the models demon-
strates that the actual cumulative corrosion levels are contained within 
them 83.7% of the time. Overall, this agreement indicates that this model 
surpasses previous atmospheric models such as the PACER LIME in that it 
is more accurate, and more comprehensive in scope. Appendix E details 
this “internal challenge” method more fully.  

4.2 Results 

The change in corrosion for a given metal at a given site from the end of the 
preceding observation period to the end of the current observation period 
was regressed on the concomitant variables given in Table A-9 for each 
metal and weather group. This yielded a total of 15 regression models (de-
scribed in Appendix E). Appendix E includes the regression coefficients, t-
tests, adjusted R2, and other model details. The data in Table A-10 describe 
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the properties of these models, and indicate that 11 of the 15 models have 
excellent adjusted R2 values (greater than 72.3% in all cases). The predomi-
nance of the good explanatory power of the variables listed in Table A-9 
suggests that the variable selection method worked (see Section A.3.2.2).  
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5 Conclusion 

This work has produced an operational corrosion rate predictive model 
based on indices developed through statistical analysis of a large database of 
empirical corrosion and weather records. Software implementations of the 
model are available for the metals included on the Battelle corrosion meas-
urement specimens described in Chapter 1, specifically, copper, 6061 T6 
aluminum, 7075 T6 aluminum, and a low carbon (1010) steel. The large da-
tabases compiled for this project are available to researchers and other par-
ties interested in developing refinements or further applications based on 
the corrosion indices and predictive model. 

The corrosion indices and predictive models may be used to estimate cor-
rosion rates for the subject metals at field sites worldwide. This has proved 
to be important for new bases where there has been no prior history of op-
erations or corrosion monitoring. All that is normally required is a mini-
mal amount of weather data, which is almost always available wherever 
there are maneuver training and flight operations. 
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Appendix A: Detailed Model Development and 
Statistical Analysis 

A.1 Introduction 

Bare metal coupons —Aluminum 2024, Aluminum 6061, Aluminum 7075, 
Steel, and Copper— have been placed in widely varied locations around the 
globe. At regular intervals the cumulative corrosion in these metals has 
been measured, along with time of measurement. In addition, data have 
been obtained from public sources for other concomitant variables. These 
include percent time that relative humidity exceeded 70%, 80%, and 90% 
between the end of the previous time interval and the end of the current 
time interval; and cumulative precipitation through the end of current 
time interval. A measure of cumulative atmospheric chloride exposure 
through the end of the current time interval was also obtained from expo-
sure of silver sensors. These data have been stored in a previously devel-
oped MS Access® database application and are available for querying. 

The goal of this study is to develop a regression analysis of the corrosion 
levels of the various metals as a function of the critical environmental vari-
ables as defined in earlier analyses. As a first step, natural clusterings of 
overall weather type will be determined so that the regression models for 
corrosion change can be optimized to take fundamental weather “types” 
into account. A linear discriminant analysis will be used to build classifica-
tion rules for these weather types so that, as new locations are added to the 
database, they may be appropriately classified according to the weather 
that predominates at those locations. The latter will be predominantly mil-
itary bases worldwide. 

The regression strategy is to build a model for the change in corrosion, of a 
given metal at a site having a known weather type, from the end of one 
time interval to the end of the subsequent time interval. The form of this 
model is linear and its structure is motivated by previous work conducted 
in 2003. This metal- and weather-specific model may then be used to iter-
atively compute predictions for the cumulative corrosion in the given met-
al, over time, for a given site and specific concomitant variable values. The 
associated prediction intervals may also be built. It is desirable to obtain a 
tractable set of regression models, ideally having the same structure. 
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A.2 Data handling 

A.2.1 Data transfer 

Data were extracted by employees of Battelle Memorial Institute, from a 
MS Access® database application via table queries. The data were trans-
ferred via unsecured email by Bill Abbott (abbott@battelle.org) to David 
Paul, Ph.D. (david_alan_paul@yahoo.com) in the files listed in Table A-1. 

Table A-1.  Data files and brief descriptions. 

File Name Description 

All_AL2024_Data_1207.xls AL2024 corrosion data only 

qry_BaseResponsealldata_rev307.xls Contains corrosion data, except for AL2024 

qry_BaseExplanatory_alldata.xls Concomitant variables 

A.2.2 Data processing and variable definitions 

All data processing and statistical analyses were performed on a computer 
running WinXP Professional, SP2. The data were converted to comma-
delimited format (*.txt) and imported into an electronic database suitable 
for manipulation and statistical analysis. A substantial amount of data 
processing was required to build a database suitable for the statistical 
analysis. The details of these efforts are included in Appendix C. Table A-2 
lists the variables included in the final database that are vital to the statis-
tical analysis described in the next section, 

Table A-2.  Description of key variables. 

Variable Name Definition 

AFBASE Name of geographic location/military base. 

ID The ID (identification) value of the Air Force base. Valid values 
are from 1 to 243 by the software at time of data import. 

METAL The type of metal being considered – AL2024, AL6061, 
AL7075, Steel, and Cu are the valid values for this variable. 

TIMECHG 
Denotes the length of time, in months, between the end of the 
preceding observation period and the end of the current 
observation period. TIMECHG is typically 3.0 months. 

TIME The cumulative elapsed time, in months, between TIME = 0 
and the end of the current observation period. 

RH70CHG /  
RH80CHG /  
RH90CHG 

RHxCHG is defined to be the percentage of time the relative 
humidity exceeded x% from the end of the preceding 
observation period to the end of the current observation 
period. 

RH70 / RH80 / RH90 RHx is the percentage of time the relative humidity exceeded 
x% from TIME = 0 to the end of the current observation period. 

mailto:david_alan_paul@yahoo.com
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Variable Name Definition 

PRECIPCHG 
The precipitation, in inches, from the end of the preceding 
observation period to the end of the current observation 
period. 

PRECIP The cumulative precipitation, in inches, from TIME = 0 to the 
end of the current observation period. 

CHLORIDECHG 

The atmospheric chloride exposure, measured in Å of silver 
chloride accumulated on silver sensors, from the end of the 
preceding observation period to the end of the current 
observation period. 

CHLORIDE 
The cumulative chloride exposure, measured in Å of silver 
chloride accumulated on silver sensors, from TIME = 0 to the 
end of the current observation period. 

CORROSION_LAG The cumulative corrosion for a given metal at a given site from 
TIME = 0 to the end of the preceding observation period. 

CORROSION The cumulative corrosion for a given metal at a given site from 
TIME = 0 to the end of the current observation period. 

CORRCHG 
The change in corrosion for a given metal at a given site from 
the end of the preceding observation period to the end of the 
current observation period. 

DATTYPE1 Indicates if the data came from the older method of 
observation (prior to 2004) or the newer method.† 

† Older method refers to practice of starting exposures of four sample sets at the same time in a test rack with planned 
removals at 3-month intervals over a 1-year period. Newer method refers to practice of exposing only one sample set 
at a time and exchanging every 3 months. These procedures may result in subtle differences in corrosion rates. 
Sample sets with ID<150 represent the older method. 

A.3 Statistical analysis 

A.3.1 Weather clusters and linear discriminant analysis 

The humidity, precipitation, and chloride exposure at a particular location 
may be summarized using the 12-month cumulative humidity, precipita-
tion, and chloride exposure at the site. This eliminates seasonal effects in 
the weather data. 

Of the 177 total locations in the database, 12-month cumulative weather 
data are available in some form for 160 of these sites. This implies that 17 
sites will remain unclassified according to weather type, and will not con-
tribute to the subsequent regression modeling. Of the 160 sites having 12-
month weather data (Table A-3), AL6061 records are predominant (not all 
metals were observed at equal time intervals). 
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Table A-3.  Amount of 12-month weather data 
available, by metal. 

Metal Proportion of Sites Having 12-Month  
Cumulative Weather Data 

AL2024 62 / 160 

AL6061 156 / 160 

AL7075 137 / 160 

Steel 139 / 160 

Cu 99 / 160 

The four sites not represented by AL6061 12-month cumulative weather 
measurements were “New Orleans 03 (208),” “Amberley02 (103),” “Stir-
ling 02 (130),” and “Williamtown02 (132).” Table A-4 lists the metals for 
which weather data are available for these sites. 

Table A-4.  Metal-records providing 12-month cumulative weather data for 
those sites not represented by AL6061. 

Site Name 
Metals for Which 12-month Cumulative 

Weather Data are Available 

New Orleans 03 (208) AL2024 

Amberley02 (103) AL7075, Steel 

Stirling 02 (130) AL7075, Steel 

Williamtown02 (132) AL7075, Steel 

Therefore, 12-month cumulative weather data from AL6061 records were 
augmented with records from AL2024 and AL7075 to form a complete set 
of available 12-month cumulative weather data for the 160 sites actually 
contributing such data. These data were subjected to the classification al-
gorithm known as PAM. In this methodology, the user specifies the num-
ber of desired groupings, and the method then derives the optimal alloca-
tion of these groupings to the various Air Force bases. The analysis 
conducted on the available weather data examined the consequences of 
choosing two, three, and four groupings. Table A-5 lists the variables used 
in this classification analysis. 

It was found that the 12-month weather data were optimally clustered into 
three distinct groupings. Graphical analyses and text supporting this claim 
may be found in Appendix D. Table A-6 lists the distributions of key varia-
bles within these three groupings. Weather Group 1 may be considered 
“extreme” with respect to chloride exposure; Weather Group 2 may be 
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considered “wet” because it exhibits the highest RH70 and PRECIP medi-
an values; and Weather Group 3 may be considered “dry” since it has the 
lowest RH70 and second lowest PRECIP median values.  

It is of interest to note that the distribution of the DATTYPE1 variable is not 
uniform across the three groupings of weather data. A DATTYPE1 value of 
one (1) indicates that the data were collected using the newer method of 
sampling, while a value of zero (0) indicates that the data were collected us-
ing an older method. This detail is presented for information purposes, but 
in the final software available to users this distinction will be transparent.  

Table A-5.  Variables used to classify sites according to 12-month weather data 

Variable Name Definition 

ID The ID value of the location. 

METAL Data restricted to AL6061, AL2024, and AL7075 records. 

TIME Data restricted to TIME = 12 records. 

RH70 RH70 is the percentage of time the relative humidity 
exceeded 70% from TIME = 0 to TIME = 12. 

PRECIP The cumulative precipitation, in inches, from TIME = 0 to 
TIME = 12. 

CHLORIDE 
The cumulative chloride exposure, measured in Å of silver 
chloride accumulated on silver sensors, from TIME = 0 to 
TIME = 12. 

Table A-6.  Summary statistics for key weather variables in the different weather groupings. 

Grouping N = 
RH70 

Median † 
RH80 

Median † 
RH90 

Median † 
PRECIP 

Median ‡ 
CHLORIDE 
Median * 

DATTYPE1 
Mean ** 

None  
(all data) 

160 (100%) 59.07 42.250 20.853 39.840 5,501 0.4063 
(65 sites using 
new collection 
method) 

1 (“extreme”) 22 (14%) 62.78 38.000 11.5000 31.495 24,147 0.5455 
(12 sites using 
new collection 
method) 

2 (“wet”) 47 (29%) 62.94 45.75 22.25 48.25 10,876 0.4043 
(19 sites using 
new collection 
method) 

3 (“dry”) 91 (57%) 54.75 41.50 21.75 37.47 2,859 0.3736  
(34 sites using 
new collection 
method) 

† The RHx values represent the median percentage of time that the relative humidity exceeded x% from TIME = 0 through 
the end of the 12th month (TIME = 12). 
‡ Precipitation is measured in inches of rainfall. 
* Chloride ion exposure is measured in Å of silver chloride accumulated on silver sensors. 
** DATTYPE takes the value zero (0) for those sites whose measurements were collected using an older method. DATTYPE 
takes the value one (1) for sites whose measurements were collected using a newer method. 
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Once the 160 sites having 12-month cumulative weather measurements 
were classified into one of three weather groupings, a linear discriminant 
rule was constructed, assuming proportional priors. The data in Table A-7 
summarize the rule and may be used to classify new sites into one of the 
three weather groupings. 

Table A-7.  Linear discriminant functions developed from the three weather groupings. 

Grouping Intercept RH70 Coefficient PRECIP Coefficient CHLORIDE Coefficient 

1 
(“extreme”) 

 
-27.53927 

 
0.24527 

 
0.01993 

 
0.00125 

2 
(“wet”) 

 
-11.60465 

 
0.20943 

 
0.03930 

 
0.00056 

3 
(“dry”) 

 
-6.02955 

 
0.17848 

 
0.02111 

 
0.00022 

Given the relevant 12-month cumulative weather data (i.e., RH70, 
PRECIP, and CHLORIDE), a new site is classified into Group j if the linear 
discri function for Group j is larger than either of the other two discrimi-
nant functions. For example, if the 12-month cumulative weather values 
for a new site are: 

 {RH70 = 55.0, PRECIP = 41.5, CHLORIDE = 12,000} 

then the three discriminant functions are: 

 Group 1: -27.53927 + 0.24527(55.0) + 0.01993(41.5) + 0.00125(12000) = 1.03329 

 Group 2: -11.60465 + 0.20943(55.0) + 0.03930(41.5) + 0.00056(12000) = 8.26495 

 Group 3: -6.02955 + 0.17848(55.0) + 0.02111(41.5) + 0.00022(12000) = 7.30292 

which implies that the new site would be classified into Group 2 since this 
discriminant function yields the largest value. Again, these distinctions 
will be transparent to the user of the software. The effect will be for the 
software to use the best algorithm to predict the response of the metal-
weather combination. 

A.3.2 Regression models for change in corrosion 

Table A-8 lists the amount of corrosion change data available for each type 
of metal, broken down by weather type and method of data collection (i.e., 
whether or not the data were collected using the older or newer methods 
listed at the bottom of Table A-2). 
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Table A-8.  Number of records corresponding to corrosion change for a given metal, by 
weather grouping and method of data collection. 

Metal 

Weather Group 1 (“extreme”) Weather Group 2 (“wet”) Weather Group 3 (“dry”) 

All Data 
Older Data  
(ID < 150) 

Newer Data  
(ID ≥ 150) All Data 

Older Data 
(ID < 150) 

Newer Data  
(ID ≥ 150) All Data 

Older Data  
(ID < 150) 

Newer Data  
(ID ≥ 150) 

AL2024 58 0† 58 93 0† 93 172 0† 172 

AL6061‡ 113 50 63 223 130 93 448 271** 177 

AL7075 93 30 63 198 105 93 409 235 174 

Steel 88 30 58 207 114 93 414 245 169 

Copper 63 35 28* 124 70 54 324 195 129 
†Indicates that the method of data collection cannot be used as a regression covariate for AL2024. 
‡More data are available for AL6061, both overall and in each subcategory, than for any other metal. 
*Fewest number of records in any cell in the table, among those subcategory cells having nonzero counts. 
**Most number of records in any cell in the table, among those subcategory cells having nonzero counts. 

Following the regression modeling strategy described in Harrell, it is de-
sirable that the linear models that are developed not exhibit over-fitting or 
regression to the mean. From the guidelines in this text, it was determined 
that each regression model should consume no more than approximately 
10 degrees of freedom. Ideally each model should also have the same 
structure so that differences between metals and weather groupings with 
respect to corrosion can be more easily determined. 

A.3.2.1 Assessment of data collection method 

The first step in the model-building process was to determine the statistical 
significance of DATTYPE1. If this concomitant variable is statistically signif-
icant, it implies that the method of data collection significantly impacts the 
measured corrosion levels, an undesirable result. Weather Groups 2 and 3 
had the most sites where the data collection was performed using the newer 
method (19 and 34, respectively) and AL6061 data are the most abundant of 
any metal. Any significant impact from DATTYPE1 with respect to R2 is 
most likely to be seen with these AL6061 data.  

Therefore, an initial set of models for corrosion change in AL6061 for 
Weather Groups 2 and 3 was built. One set of models included RH70CHG, 
PRECIPCHG, CHLORIDECHG, CORROSION_LAG, and all possible two-
way interactions between RH70CHG, PRECIPCHG, CHLORIDECHG, and 
CORROSION_LAG, for a total of 10 degrees of freedom each. Another set 
of models included the same predictor variables, with the addition of 
DATTYPE1, for a total of 11 degrees of freedom each.  
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The adjusted R2 for the AL6061 models excluding DATTYPE1, and associ-
ated with Weather Groups 2 and 3, were 72.9% and 72.4%, respectively. 
The adjusted R2 for the AL6061 models including DATTYPE1, and associ-
ated with Weather Groups 2 and 3, were 75.1% and 74.1%, respectively. 
The increase in R2 due to the inclusion of DATTYPE1 is marginal; there-
fore, DATTYPE1 was dropped from further consideration in all model 
building for all metals. 

A.3.2.2 Variable selection 

The base model used in Section 3.2.1 to evaluate the influence of the 
method of data collection may include variables that do not contribute im-
portant information to the understanding of corrosion change, and may 
exclude important predictors. Therefore, the following variable selection 
method was adopted: 

1. Approximately 10 total degrees of freedom will be allocated to each model, 
and the structure of the models will be the same. 

2. Initial models for all metals except AL2024, and only for Weather Groups 2 
and 3, will include the variables RH70CHG, PRECIPCHG, CHLORIDECHG, 
CORROSION_LAG, and all possible two- , three-, and four-way interactions 
between them. These models will be used to determine the interaction terms 
that should be kept in the final set of models used for all metals and all 
weather groups. There are a total of eight initial models. 

3. When a choice exists, preference is given to interaction terms of lesser order. 
4. Two-, three- and four-way interaction terms will only be kept if they are 

statistically significant at α = 0.10 across at least three of the eight models 
being considered 

5. All main effects involving RH70CHG, PRECIPCHG, CHLORIDECHG, and 
CORROSION_LAG will be kept no matter what. 

Application of this methodology yielded the eight concomitant variables to 
be used in all the models for corrosion change listed in Table A-9. 
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Table A-9.  Concomitant variables (including interaction terms) 
selected for use in all regression models. 

Variable Name 

CHLORIDECHG 
CORROSION_LAG 
PRECIPCHG 
RH70CHG 
RH70CHG : CHLORIDECHG 
RH70CHG : CORROSION_LAG 
RH70CHG : CHLORIDECHG : PRECIPCHG 
RH70CHG : CHLORIDECHG : CORROSION_LAG : PRECIPCHG 

A.3.2.3 Modeling results 

The response variable CORRCHG (for a definition, see Table A-2) was re-
gressed on the concomitant variables given in Table A-9, for each metal 
and weather group. This yielded a total of 15 regression models, which are 
described in Appendix D. From this appendix, the regression coefficients, 
t-tests, adjusted R2, and other model details may be found. Table A-10 de-
scribes the properties of these models. From this table, it is seen that 11 of 
the 15 models have excellent adjusted R2 values (greater than 72.3% in all 
cases). The predominance of the good explanatory power of the variables 
in Table A-9 suggests that the variable selection method described in Sec-
tion 3.2.2 worked.  

In the process of forecasting the total corrosion at the end of time k, the 
forecasted total corrosion at the end of time k-1 is treated as fixed and sub-
stituted for CORROSION_LAG in the regression models. This has the ef-
fect of producing prediction intervals that are narrower than nominal. 

Table A-10.  Summary of regression model characteristics. 

 Weather Group 1 (“extreme”) Weather Group 2 (“wet”) Weather Group 3 (“dry”) 

Metal 
Model 

 
R2 

Adjusted 
R2 

p-value 
 

 
R2 

Adjusted 
R2 

p-value 
 

 
R2 

Adjusted 
R2 

p-value 
 

AL2024 59.3% 50.9% < 0.0001 78.5% 75.9% < 0.0001 52.1% 49.2% < 0.0001 

AL6061 78.8% 76.8% < 0.0001 74.5% 73.3% < 0.0001 72.9% 72.3% < 0.0001 

AL7075 79.6% 77.1% < 0.0001 54.1% 51.6% < 0.0001 52.5% 51.3% < 0.0001 

Steel 83.5% 81.4% < 0.0001 75.4% 74.2% < 0.0001 73.5% 72.8% < 0.0001 

Copper 83.4% 80.4% < 0.0001 75.6% 73.4% < 0.0001 75.6% 74.8% < 0.0001 
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A.4 Conclusions 

The regression models for corrosion change were successfully used to build 
forecasts for total corrosion, over time, for five types of bare metal coupons 
over three distinct types of cumulative weather. There were a total of 15 dif-
ferent regression models, each using the same set of predictor variables. 

This methodology is inherently an approximation to a true repeated-
measures statistical model. Furthermore, the regression methodology 
adopted in this analysis (and the previous analysis from 2003) explicitly 
assumed that the amount of corrosion change was linearly related not only 
to the weather exposure in a particular time interval, but also to the previ-
ous time interval’s cumulative corrosion levels. 

Table A-11 lists the %relative error in predicted cumulative corrosion levels 
versus actual cumulative corrosion levels. The formula used to compute 
%relative error is: 

 
Actual Cumulative Corrosion - Predicted Cumulative Corrosion *100

Actual Cumulative Corrosion  (A-1) 

Therefore, negative values listed in Table A-11 imply that the predicted 
cumulative corrosion levels generally exceed the actual cumulative corro-
sion levels. Positive values in Table A-11 have the opposite interpretation. 

Inspection of the data in Table A-11 clarifies that there is generally a sys-
tematic bias such that predicted values at early time points (3 or 6 months) 
are generally less than the measured cumulative corrosion values. It is also 
clear that, at later time points (9 or 12 months), there is a systematic bias 
such that predicted cumulative corrosion values are generally larger than 
the measured cumulative corrosion values. Those models having higher ad-
justed R2 values tended to perform better than those having smaller adjust-
ed R2 values; nevertheless, with the exception of AL7075 in the “extreme” 
weather environment, the described systematic bias is apparent.  

The appearance of a systematic bias calls into question the optimality of 
the assumption that corrosion change is linearly related to the predictor 
variables that are available. This suggests that future corrosion modeling 
efforts be undertaken to determine what, if any, nonlinear relationships 
exist between corrosion change and the available predictor variables (i.e., 
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CORROSION_LAG, RH70CHG, etc.). Exponential models may be indicat-
ed as a first step in any such effort. 

Despite the appearance of biases in the predicted cumulative corrosion 
levels, the models developed in this work should continue to be useful. A 
comparison of the actual cumulative corrosion levels to the 95% prediction 
intervals associated with the models demonstrates that the actual cumula-
tive corrosion levels are contained within them 83.7% of the time. This is 
very similar to the results obtained in 2003, and therefore represents a 
moderate and historically tolerable departure from the nominal 95%. Fur-
thermore, the models developed in this work are better capable of han-
dling a wider variety of weather patterns and types of metal. (No models 
had previously been developed for AL2024.) 

Table A-11.  Median % relative error of predictions from the regression models 

 Weather Group 1 
(“extreme”) 

Weather Group 2 
(“wet”) 

Weather Group 3 
(“dry”) 

Metal Model %Relative Error  
(TIME = 3, 6, 9, 12) 

%Relative Error  
(TIME = 3, 6, 9, 12) 

%Relative Error  
(TIME = 3, 6, 9, 12) 

AL2024 (-49%,-29%,-19%,-13%)† (17%, -3%, -6%, -38%) (22%, -1%, -10%, -14%)† 

AL6061 (20%, 10%, 1%, -1%) (20%, 7%, -8%, -14%) (18%, -2%, -9%, -9%) 

AL7075 (-7%, 8%, 4%, 12%) (14%, -19%, -42%, -
42%)† 

(23%, 7%, -6%, -26%)† 

Steel (9%, -1%, -1%, -13%) (33%, 16%, 3%, -20%) (17%, 8%, -2%, -11%) 

Copper (11%, 4%, -1%, -8%) (20%, -3%, -10%, -19%) (45%, 14%, -35%, -45%) 
† The regression models for these metal x weather group combinations have adjusted R2 values that are significantly lower 

than the rest of the models. See Table A-10. 
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Appendix B: Data Processing 

B.1 Modifications prior to data merging 

The file “qry_BaseResponsealldata_rev307.txt” was modified according to 
the following list of changes and saved as “Response.txt”: 

1. Deleted all records corresponding to AL2024 or missing corrosion levels. 
2. Set the predicted, upper bound, and lower bound corrosion values to 0 at 

time = 0. 
3. Dropped HISTORYID, STARTDATE. 
4. Renamed several variables: 

a. BASENAME = AFBASE  
b. RECORDDATEMONTH = MONTH  
c. RECORDDATEYEAR = YEAR 
d. QUARTERINSEQUENCE = TIME. 

The file “qry_BaseExplanatory_alldata.txt” was modified according to the 
following list of changes and saved as “Explanatory.txt”: 

1. Dropped HISTORYID. 
2. Renamed several variables: 

a. ASSIGNEDID = ID  
b. RECORDDATEYEAR = YEAR 
c. CHLORINE = CHLORIDE 
d. BASENAME = AFBASE 
e. RECORDDATEMONTH = MONTH. 

The file “All_AL2024_Data_1207.txt” was modified according to the fol-
lowing list of changes and saved as “AL2024.txt”: 

1. Dropped BASE, START, RECORDDATEMONTH, RECORDDATEYEAR, 
MONTH, YEAR, STARTDATE. 

2. Renamed several variables:  
a. BASENAME = AFBASE 
b. QUARTERINSEQUENCE = TIME 
c. ASSIGNEDID = ID. 

3. Converted the inputted Base ID numbers from the default character for-
mat to a numeric format. 
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B.2 Merging the data, and modifications after data merging 

First, the Response.txt and Explanatory.txt datasets were merged accord-
ing to unique combinations of AFBASE, YEAR, MONTH. The resultant da-
taset was then modified according to the following list of changes and 
saved as “Corrosion.txt”: 

1. Dropped observations where the METAL variable was missing. 
2. Fixed a variety of METAL labeling mistakes: 

a. “AL6062” changed to “AL6061” 
b. “Copper” changed to “Cu” 
c. “AL7076” changed to “AL7075.” 

3. Added the AL2024.txt records to the Corrosion.txt data – this is the first 
point at which the variables in the AL2024.txt data match up with the var-
iables in Corrosion.txt. 

4. For those records where MONTH, YEAR are available (i.e., for non-
AL2024 records), created a unifying DATE variable. 

5. Modified the data to make sure that at time = 0, all of the weather varia-
bles (RH70, RH80, RH90, PRECIP, CHLORIDE) are also 0. 

6. Ensured that the Base ID variable was well-defined across all records for a 
given Base, when the ID existed. This consistency was not necessarily 
found in the raw data. 

7. Some of the Bases did not have an ID. The following were fixed: 
a. “Wheeler (229)” → ID = 229 
b. “Whidbey (230)” → ID = 230 
c. “Williamtown02 (132)” → ID = 132 
d. “Winnipeg (231)” → ID = 231 
e. “Amberley02 (103)” → ID = 103 
f. “Knoxville (198)” → ID = 198. 

8. Created an indicator variable to denote observations that were collected 
using a “new” method vs. the older method in the original database: 
a. Base ID > 150 → “New Method,” otherwise → “Old Method.” 

9. There were a handful of sites that had only one record for a given metal. 
These records were dropped since they are not helpful in model building. 

The Corrosion.txt data were saved as “Corrosion.xls” and sent to Bill Abbot 
for examination. Two problems surfaced: some of the TIME variables did 
not match up with the DATE variable ordering, and some sites had miss-
ing weather data for one or more types of metal. This initiated a back-and-
forth process taking several weeks. The final result of this iterative data-
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cleaning was the new MS Excel file “Corrosion3.xls.” This file was then 
subjected to the following modifications and saved as “Corrosion3.txt”: 

1. There were a few sites that had duplicate records for the same METAL and 
DATE (but possibly different corrosion values). These duplicates were 
eliminated by creating a single record whose corrosion value corresponded 
to the mean of the corrosion values in the duplicate records. 

2. A few of the corrosion values were not strictly non-decreasing, meaning 
that the measured corrosion levels in successive time periods would actu-
ally decrease. As this is nonsensical, these records were fixed using the fol-
lowing logic: 
a. If AFBASE = “Daytona 75 (180)” and METAL = “AL2024” and TIME = 

12 → CORROSION = 6159 
b. If AFBASE = “KSC 1/4 (199)” and METAL = “AL7075” and TIME = 6 

→ CORROSION = 1475 
c. If AFBASE = “KSC 1/4 (199)” and METAL = “AL7075” and TIME = 9 

→ CORROSION = 1657 
d. If AFBASE = “West Jefferson (227)” and METAL = “AL7075” and 

TIME = 3 → CORROSION = 52 
e. If AFBASE = “MSP 02 (124)” and METAL = “Steel” and TIME = 9 → 

CORROSION = 7969. 
3. Renamed several variables to indicate the fact that they correspond strictly 

to the weather exposure of the metals in a particular time interval (i.e., do 
NOT represent cumulative weather exposure levels): 
a. RH70 = RH70CHG  
b. RH80 = RH80CHG 
c. RH90 = RH90CHG  
d. PRECIP = PRECIPCHG. 

4. Created several variables: 
a. CORROSION_LAG — This is the cumulative corrosion in the previous 

time period. 
b. CORRCHG — The change in corrosion from previous time period to 

the end of the current time period. 
c. TIME_LAG — The cumulative time of exposure up through the previ-

ous time period. 
d. TIMECHG — The change in cumulative time from the previous period 

to the end of the current period, i.e., how long the current period is. 
e. CHLORIDE_LAG — The cumulative chloride exposure through the 

end of the previous time period. 
f. CHLORIDECHG — The chloride exposure only in the current time pe-

riod. 
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g. RH70, RH80, RH90 — These are the CUMULATIVE percentages of 
time where the relative humidity has exceeded 70%, 80%, and 90%. 
These values take into account the length of time from time = 0 to the 
end of the current period. 

h. PRECIP — Cumulative precipitation to the end of the current period. 
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Appendix C: Plots of Partitioning Around 
Medoids Clustering 

Based on the graphical representations of the two, three, and four cluster 
solutions (Figures C-1, C-2, and C-3), the k = 3 cluster solution is clearly 
better. The k = 2 cluster solution shows that Group 1 has a great many sites 
that are poorly classified (the negative silhouette width values on the left 
side of the graph). These sites do not classify easily into either Group 1 or 
2. The k = 4 solution shows that one of the groups only has two sites: 
Group 4. It is difficult to imagine defining a weather cluster on the basis of 
only two observed sites, and this solution is therefore not recommended.  

The k = 3 solution demonstrates excellent properties. There are a reasona-
ble number of sites classed into each weather grouping – Groups 1, 2, and 
3 have 22, 47, and 91 sites, respectively. The average silhouette width is 
0.65, implying that there are sharp distinctions between the weather 
groups with respect to 12-month weather averages. Finally, there is little to 
suggest that sites are being improperly classified as evidenced by the vir-
tual lack of negative silhouette values. Table A-6 summarizes the cumula-
tive weather variables for these three groupings. 
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Figure C-1.  Average silhouette width and sample sizes for k = 2 clusters. 

 

Figure C-2.  Average silhouette width and sample sizes for k = 3 clusters. 
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Figure C-3.  Average silhouette width and sample sizes for k = 4 clusters. 
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Appendix D: Regression Models 

This appendix details the code used in the creation of the model. 

D.1 Linear models for CORRCHG in AL2024 

D.1.1  “Extreme” weather model (Group 1) 

> summary(AL2024.gp1.lm1) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + H70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “AL2024” & 
Corrosion.Data2$Group == 1, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

-1261.9 -183.4 -38.1 72.3 3046.9  

Coefficients: 

Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG -5.36e-01 4.25e-01 -1.26 0.215  

RH70CHG 8.24e+00 4.51e+00 1.83 0.075 . 

PRECIPCHG -1.53e+01 3.80e+01 -0.40 0.690  

CHLORIDECHG 4.54e-03 2.23e-02 0.20 0.840  

CORROSION_LAG:RH70CHG 9.81e-03 6.44e-03 1.52 0.136  

RH70CHG:CHLORIDECHG 7.34e-05 7.26e-04 0.10 0.920  

RH70CHG:PRECIPCHG:CHLORIDECHG 4.53e-05 8.23e-05 0.55 0.585  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG -2.85e-08 1.96e-08 -
1.46 0.153  

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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Residual standard error: 593 on 39 degrees of freedom 

Multiple R-Squared: 0.593, Adjusted R-squared: 0.509  

F-statistic: 7.1 on 8 and 39 DF, p-value: 9.35e-06  

D.1.2 “Wet” weather model (Group 2) 

> summary(AL2024.gp2.lm1) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “AL2024” & 
Corrosion.Data2$Group == 2, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

-565.9 -129.2 -34.4 31.9 991.2  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG -7.21e-02 1.94e-01 -0.37 0.7109  

RH70CHG 4.63e+00 1.74e+00 2.66 0.0098 ** 

PRECIPCHG -9.58e+00 1.12e+01 -0.86 0.3946  

CHLORIDECHG 2.09e-02 2.85e-02 0.74 0.4649  

CORROSION_LAG:RH70CHG 7.77e-03 2.48e-03 3.14 0.0025 ** 

RH70CHG:CHLORIDECHG -1.60e-03 8.58e-04 -1.86 0.0674 .  

RH70CHG:PRECIPCHG:CHLORIDECHG 1.09e-04 5.69e-05 1.91 0.0600 .  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG -5.08e-08 2.74e-08 -
1.85 0.0684 .  

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 254 on 67 degrees of freedom 

Multiple R-Squared: 0.785, Adjusted R-squared: 0.759  
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F-statistic: 30.5 on 8 and 67 DF, p-value: <2e-16  

D.1.3  “Dry” weather model (Group 3) 

> summary(AL2024.gp3.lm1) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “AL2024” & 
Corrosion.Data2$Group == 3, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

-324.10 -31.48 -4.71 13.88 628.17  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG 2.60e-01 1.72e-01 1.51 0.133  

RH70CHG 5.03e-01 4.12e-01 1.22 0.224  

PRECIPCHG -1.60e+00 2.85e+00 -0.56 0.575  

CHLORIDECHG 6.73e-03 1.75e-02 0.38 0.702  

CORROSION_LAG:RH70CHG -2.98e-03 2.69e-03 -1.11 0.270  

RH70CHG:CHLORIDECHG 9.52e-04 5.14e-04 1.85 0.066 . 

RH70CHG:PRECIPCHG:CHLORIDECHG -3.18e-05 3.82e-05 -0.83 0.407  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG 1.90e-07 7.69e-08 
2.47 0.015 * 

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 91.1 on 131 degrees of freedom 

Multiple R-Squared: 0.521, Adjusted R-squared: 0.492  

F-statistic: 17.8 on 8 and 131 DF, p-value: <2e-16 
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D.2 Linear models for CORRCHG in AL6061 

D.2.1  “Extreme” weather model (Group 1) 

> summary(AL6061.gp1.lm2) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “AL6061” & 
Corrosion.Data2$Group == 1, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

-128.87 -42.50 -5.69 31.29 169.29  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG 7.49e-02 1.73e-01 0.43 0.667  

RH70CHG 8.52e-01 3.14e-01 2.72 0.008 ** 

PRECIPCHG 2.15e+00 1.53e+00 1.41 0.163  

CHLORIDECHG -2.29e-04 2.38e-03 -0.10 0.924  

CORROSION_LAG:RH70CHG 4.39e-04 2.93e-03 0.15 0.881  

RH70CHG:CHLORIDECHG 1.37e-04 5.74e-05 2.39 0.019 *  

RH70CHG:PRECIPCHG:CHLORIDECHG -9.37e-06 4.66e-06 -2.01 0.048 *  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG 2.76e-09 1.41e-08 
0.20 0.845  

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 60.9 on 83 degrees of freedom 

Multiple R-Squared: 0.788, Adjusted R-squared: 0.768  

F-statistic: 38.6 on 8 and 83 DF, p-value: <2e-16 
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D.2.2  “Wet” weather model (Group 2) 

> summary(AL6061.gp2.lm2) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “AL6061” & 
Corrosion.Data2$Group == 2, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

-106.65 -31.66 -6.09 20.93 236.70  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG -6.02e-02 1.14e-01 -0.53 0.599  

RH70CHG 8.82e-01 2.21e-01 3.99 9.8e-05 *** 

PRECIPCHG -6.28e-01 8.53e-01 -0.74 0.462  

CHLORIDECHG 1.02e-02 4.98e-03 2.05 0.042 *  

CORROSION_LAG:RH70CHG 3.13e-03 1.63e-03 1.93 0.056 .  

RH70CHG:CHLORIDECHG -6.18e-05 1.11e-04 -0.56 0.579  

RH70CHG:PRECIPCHG:CHLORIDECHG 1.68e-06 3.45e-06 0.49 0.627  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG -1.41e-08 1.32e-08 -
1.07 0.286  

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 52 on 171 degrees of freedom 

Multiple R-Squared: 0.745, Adjusted R-squared: 0.733  

F-statistic: 62.5 on 8 and 171 DF, p-value: <2e-16 

D.2.3 “Dry” weather model (Group 3) 

> summary(AL6061.gp3.lm2) 
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Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “AL6061” & 
Corrosion.Data2$Group == 3, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

-45.75 -14.31 -0.63 12.57 95.47  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG 2.66e-01 5.19e-02 5.12 5.0e-07 *** 

RH70CHG 3.78e-01 5.41e-02 7.00 1.3e-11 *** 

PRECIPCHG 1.31e-01 2.74e-01 0.48 0.632  

CHLORIDECHG 3.63e-03 3.11e-03 1.17 0.244  

CORROSION_LAG:RH70CHG -4.33e-03 9.78e-04 -4.42 1.3e-05 *** 

RH70CHG:CHLORIDECHG 1.86e-04 8.15e-05 2.28 0.023 *  

RH70CHG:PRECIPCHG:CHLORIDECHG -6.22e-06 5.81e-06 -1.07 0.285  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG 2.98e-08 3.95e-08 
0.76 0.450  

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 20.4 on 350 degrees of freedom 

Multiple R-Squared: 0.729, Adjusted R-squared: 0.723  

F-statistic: 118 on 8 and 350 DF, p-value: <2e-16 

D.3 Linear models for CORRCHG in AL7075 

D.3.1  “Extreme” weather model (Group 1) 

> summary(AL7075.gp1.lm1) 

Call: 
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lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “AL7075” & 
Corrosion.Data2$Group == 1, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

-409.6 -133.2 -46.3 42.7 758.2  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG -4.38e-01 1.77e-01 -2.48 0.01581 *  

RH70CHG 4.59e+00 1.44e+00 3.19 0.00214 **  

PRECIPCHG -4.80e+00 7.83e+00 -0.61 0.54177  

CHLORIDECHG 4.53e-03 8.40e-03 0.54 0.59102  

CORROSION_LAG:RH70CHG 1.01e-02 2.49e-03 4.06 0.00013 *** 

RH70CHG:CHLORIDECHG 4.00e-05 2.41e-04 0.17 0.86887  

RH70CHG:PRECIPCHG:CHLORIDECHG 6.11e-07 1.84e-05 0.03 0.97370  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG -2.00e-08 6.67e-09 -
3.00 0.00381 **  

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 239 on 67 degrees of freedom 

Multiple R-Squared: 0.796, Adjusted R-squared: 0.771  

F-statistic: 32.6 on 8 and 67 DF, p-value: <2e-16 

D.3.2 “Wet” weather model (Group 2) 

> summary(AL7075.gp2.lm1) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
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CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “AL7075” & 
Corrosion.Data2$Group == 2, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

-504.3 -117.1 -50.0 16.5 1558.5  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG 2.67e-01 1.72e-01 1.56 0.122  

RH70CHG 2.45e+00 1.27e+00 1.94 0.054 . 

PRECIPCHG 3.43e-01 6.09e+00 0.06 0.955  

CHLORIDECHG 4.43e-03 2.38e-02 0.19 0.853  

CORROSION_LAG:RH70CHG -1.58e-03 2.27e-03 -0.70 0.488  

RH70CHG:CHLORIDECHG -3.96e-05 6.29e-04 -0.06 0.950  

RH70CHG:PRECIPCHG:CHLORIDECHG 2.65e-07 2.98e-05 0.01 0.993  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG 2.37e-08 1.71e-08 
1.39 0.167  

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 259 on 151 degrees of freedom 

Multiple R-Squared: 0.541, Adjusted R-squared: 0.516  

F-statistic: 22.2 on 8 and 151 DF, p-value: <2e-16 

D.3.3  “Dry” weather model (Group 3) 

> summary(AL7075.gp3.lm1) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “AL7075” & 
Corrosion.Data2$Group == 3, ]) 
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Residuals: 

 Min 1Q Median 3Q Max  

-284.80 -26.53 -5.91 13.06 840.36  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG 2.04e-01 7.24e-02 2.81 0.0052 **  

RH70CHG 3.93e-01 2.19e-01 1.79 0.0745 .  

PRECIPCHG -4.71e-01 1.21e+00 -0.39 0.6971  

CHLORIDECHG 5.11e-03 1.21e-02 0.42 0.6727  

CORROSION_LAG:RH70CHG -2.10e-03 1.23e-03 -1.70 0.0903 .  

RH70CHG:CHLORIDECHG 1.10e-03 3.33e-04 3.31 0.0010 **  

RH70CHG:PRECIPCHG:CHLORIDECHG -6.36e-05 2.09e-05 -3.05 0.0025 **  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG 2.28e-07 4.96e-08 
4.60 6.2e-06 *** 

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 79.5 on 321 degrees of freedom 

Multiple R-Squared: 0.525, Adjusted R-squared: 0.513  

F-statistic: 44.3 on 8 and 321 DF, p-value: <2e-16 

D.4 Linear models for CORRCHG in Steel 

D.4.1  “Extreme” weather model (Group 1) 

> summary(Steel.gp1.lm1) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “Steel” & 
Corrosion.Data2$Group == 1, ]) 

Residuals: 
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 Min 1Q Median 3Q Max  

-23361 -4699 162 3545 34705  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|) 

CORROSION_LAG -6.56e-02 1.74e-01 -0.38 0.71 

RH70CHG 8.87e+01 6.55e+01 1.35 0.18 

PRECIPCHG 4.16e+02 3.94e+02 1.06 0.30 

CHLORIDECHG 3.15e-01 4.14e-01 0.76 0.45 

CORROSION_LAG:RH70CHG 3.54e-03 2.93e-03 1.21 0.23 

RH70CHG:CHLORIDECHG 1.86e-02 1.12e-02 1.66 0.10 

RH70CHG:PRECIPCHG:CHLORIDECHG -3.33e-04 1.01e-03 -0.33 0.74 

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG -7.78e-09 1.03e-08 -
0.76 0.45 

Residual standard error: 10700 on 63 degrees of freedom 

Multiple R-Squared: 0.835, Adjusted R-squared: 0.814  

F-statistic: 39.9 on 8 and 63 DF, p-value: <2e-16 

D.4.2  “Wet” weather model (Group 2) 

> summary(Steel.gp2.lm1) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “Steel” & 
Corrosion.Data2$Group == 2, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

-22332 -4648 -694 3833 56121  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  
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CORROSION_LAG -1.89e-01 1.27e-01 -1.49 0.137  

RH70CHG 6.43e+01 4.08e+01 1.57 0.117  

PRECIPCHG 2.19e+01 2.00e+02 0.11 0.913  

CHLORIDECHG 1.43e+00 8.03e-01 1.78 0.076 .  

CORROSION_LAG:RH70CHG 7.56e-03 1.69e-03 4.47 1.5e-05 *** 

RH70CHG:CHLORIDECHG -1.10e-02 2.02e-02 -0.55 0.586  

RH70CHG:PRECIPCHG:CHLORIDECHG 1.13e-03 1.03e-03 1.10 0.272  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG -4.05e-08 1.59e-08 -
2.54 0.012 *  

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 8720 on 158 degrees of freedom 

Multiple R-Squared: 0.754, Adjusted R-squared: 0.742  

F-statistic: 60.7 on 8 and 158 DF, p-value: <2e-16 

D.4.3  “Dry” weather model (Group 3) 

> summary(Steel.gp3.lm1) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG -1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “Steel” & 
Corrosion.Data2$Group == 3, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

 -9677 -2374 -556 2027 15976  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG 2.45e-01 5.85e-02 4.18 3.7e-05 *** 

RH70CHG 4.77e+01 1.08e+01 4.44 1.2e-05 *** 
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PRECIPCHG 1.49e+02 6.03e+01 2.47 0.01394 *  

CHLORIDECHG 8.50e-01 5.68e-01 1.50 0.13565  

CORROSION_LAG:RH70CHG -3.99e-03 1.13e-03 -3.54 0.00046 *** 

RH70CHG:CHLORIDECHG 4.99e-02 1.62e-02 3.07 0.00228 **  

RH70CHG:PRECIPCHG:CHLORIDECHG -4.82e-03 1.17e-03 -4.13 4.6e-05 
*** 

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG 1.73e-07 2.77e-08 
6.24 1.3e-09 *** 

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 3750 on 325 degrees of freedom 

Multiple R-Squared: 0.735, Adjusted R-squared: 0.728  

F-statistic: 112 on 8 and 325 DF, p-value: <2e-16 

D.5 Linear models for CORRCHG in Copper 

D.5.1 “Extreme” weather model (Group 1) 

> summary(Cu.gp1.lm1) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “Cu” & 
Corrosion.Data2$Group == 1, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

-2564.1 -969.7 -47.7 849.6 3159.6  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG 1.50e-01 2.57e-01 0.58 0.562  

RH70CHG 3.32e+01 1.31e+01 2.54 0.015 * 
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PRECIPCHG 2.35e+01 6.85e+01 0.34 0.733  

CHLORIDECHG 3.57e-01 3.77e-01 0.95 0.349  

CORROSION_LAG:RH70CHG 4.89e-05 4.50e-03 0.01 0.991  

RH70CHG:CHLORIDECHG -4.89e-03 6.43e-03 -0.76 0.451  

RH70CHG:PRECIPCHG:CHLORIDECHG -1.95e-04 2.06e-04 -0.95 0.347  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG 2.04e-08 1.66e-08 
1.23 0.227  

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 1490 on 43 degrees of freedom 

Multiple R-Squared: 0.834, Adjusted R-squared: 0.804  

F-statistic: 27.1 on 8 and 43 DF, p-value: 2.09e-14 

D.5.2  “Wet” weather model (Group 2) 

> summary(Cu.gp2.lm1) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “Cu” & 
Corrosion.Data2$Group == 2, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

 -2600 -852 -128 539 4588  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG 2.68e-01 1.11e-01 2.42 0.018 * 

RH70CHG 5.55e+00 7.88e+00 0.70 0.483  

PRECIPCHG 2.99e+01 4.33e+01 0.69 0.491  

CHLORIDECHG -1.22e-02 2.09e-01 -0.06 0.954  
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CORROSION_LAG:RH70CHG -8.87e-04 1.77e-03 -0.50 0.617  

RH70CHG:CHLORIDECHG 7.22e-03 4.55e-03 1.59 0.116  

RH70CHG:PRECIPCHG:CHLORIDECHG -3.16e-04 2.08e-04 -1.52 0.132  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG -1.48e-09 1.04e-08 -
0.14 0.887  

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 1290 on 92 degrees of freedom 

Multiple R-Squared: 0.756, Adjusted R-squared: 0.734  

F-statistic: 35.6 on 8 and 92 DF, p-value: <2e-16 

D.5.3  “Dry” weather model (Group 3) 

> summary(Cu.gp3.lm1) 

Call: 

lm(formula = CORRCHG ~ CORROSION_LAG + RH70CHG + PRECIPCHG + 
CHLORIDECHG + CORROSION_LAG:RH70CHG + RH70CHG:CHLORIDECHG + 
RH70CHG:PRECIPCHG:CHLORIDECHG + 
CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG - 1, data = 
Corrosion.Data2[Corrosion.Data2$Metal == “Cu” & 
Corrosion.Data2$Group == 3, ]) 

Residuals: 

 Min 1Q Median 3Q Max  

 -1397 -486 -135 347 3026  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

CORROSION_LAG 5.31e-01 5.62e-02 9.45 < 2e-16 *** 

RH70CHG 9.11e+00 2.30e+00 3.97 9.5e-05 *** 

PRECIPCHG -1.80e+01 1.29e+01 -1.39 0.165  

CHLORIDECHG 2.90e-01 1.15e-01 2.52 0.012 *  

CORROSION_LAG:RH70CHG -2.59e-03 1.11e-03 -2.34 0.020 *  

RH70CHG:CHLORIDECHG -5.57e-03 3.57e-03 -1.56 0.121  



ERDC/CERL TR-17-31 48 

 

RH70CHG:PRECIPCHG:CHLORIDECHG 7.83e-05 2.53e-04 0.31 0.757  

CORROSION_LAG:RH70CHG:PRECIPCHG:CHLORIDECHG 7.92e-08 8.29e-08 
0.96 0.340  

— 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Residual standard error: 711 on 253 degrees of freedom 

Multiple R-Squared: 0.756, Adjusted R-squared: 0.748  

F-statistic: 98 on 8 and 253 DF, p-value: <2e-16 
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Appendix E: Plots of Regression Models for 
Selected Sites and Metals 

Figure E-1.  Depiction of modeled results vs. actual results for Guam (Anderson), AL7075. 

 

Figure E-2.  Depiction of modeled results vs. actual results for Eareckson, Cu. 
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Figure E-3.  Depiction of modeled results vs. actual results for Balad (164), AL2024. 

 

Figure E-4.  Depiction of modeled results vs. actual results for DAB Arpt,* AL6061. 

 

                                                                 
* Daytona Beach International Airport (DAB). 
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Figure E-5.  Depiction of modeled results vs. actual results for Athens, AL6061. 

 

Figure E-6.  Depiction of modeled results vs. actual results for Dover, Steel. 
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