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WAVES GENERATED BY A PISTON-TYPE WAVE~~KER 

by 

Ole Secher Madsen 

Research Division, U. S. Army Coastal Engineering Research Center 
Washington, D. C. 

ABSTRACT 

When a wavemaker generates a finite number of waves, it has been 
found that one of the first and one of the last waves in such a burst is 
considerably larger than the average. A mathematical model, based on 
the linearized governing equations, is used for the particular problem 
of the waves generated by a sinusoidally moving piston-type wavemaker 
starting from rest. Theoretical results for the magnitude of the large 
wave relative to the average agree fairly well with experiments; however, 
the actual wave height is smaller in the experiments than predicted by 
theory. It is shown, by extending the classical wavemaker theory to 
second order, that finite amplitude effects do not offer an explanation. 
However, pistons rarely fit the tank dimensions exactly, and an approxi-
mate evaluation indicates that the discrepancy between predicted and 
observed wave heights can be attributed to the effects of leakage around 
the piston. 

1. INTRODUCTION 

One of the major problems encountered, when performing tests in a 
wave tank, is to account for the influence of reflected waves. Within 
the framework of linear theory we can deal with this problem (see 
Ursell, et al., 1960), when the magnitude of the reflected wave is small 
compared with that of the incident wave. However, in cases where the 
reflection from the far end of the tank is large, this is no longer 
possible. To overcome this problem, some coastal engineering tests are 
performed using the "burst method", in which the wavemaker generates 
waves only so long as no significant reflection from the far end of the 
tank has yet reached the wavemaker. After the wavemaker is stopped, 
time is allowed for the reflections to die out, before a new burst is 
generated. This procedure essentially eliminates the influence of even 
large reflections, but as is often the case, eliminating one problem 
creates another. 

Figure 1 shows the surface profile recorded by a fixed gage 45 feet 
from a wavemaker, which generates a burst of 15 waves. A prominent 
feature is evident: One of the first and one of the last waves arriving 
at a particular station is considerably larger than the average. The 
effects of these large waves on test results have been of concern to 
engineers at the Coastal Engineering Research Center (CERC) where e.g., 
rip-rap stability is determined from tests employing the burst method. 
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Figure 1: Surface profile recorded 45 feet from a sinusoidal piston~ 
type wavemaker starting from rest and generating 15 waves. 
(T = 1.16 sec., h = 1.5 ft., Stroke of wavemaker = 0.33 ft. 

The study presented in the following was undertaken in an attempt to 
gain insight into the nature of these large waves and, if possible, to 
find a way to eliminate them. 

The large waves are clearly associated with the transient, i.e., 
the starting and stopping of the wavemaker, to which the classical wave-
maker theory (Havelock, 1929; Biesel and Suquet, 1951; Ursell,et al., 
1960) does not apply. However, Kennard (1949) has solved the linear-
ized governing equations based on the assumption of potential flow 
starting from rest, and we adopt his solution as the theoretical model 
for the particular problem of a sinusoidally moving piston-type wave-
maker starting from rest (Section 2.1). 

The question is: How accurately will the linear theory predict 
the development of laboratory waves, which more often thart not are 
quite nonlinear? From the theory of progressive waves we ·know that the 
second order nonlinear Stokes' wave sharpens the crest and flattens the 
trough when compared with the linear first order solution, but that the 
wave height remains unchanged. Thus focusing on wave height, rather 
than amplitude, the linear solution is likely to cover at least slightly 
nonlinear waves. This is supported by the experimental confirmation of 
the classical wavemaker theory by Ursell, et al. (1960). A much more 
serious limitation of the results from a linearized theory stems from 
the instability of sinusoidal waves, i.e., for relatively short waves 
(depth/length = h/L > 0.216) the Benjamin-Feir side-band instability 
(Benjamin, 1967), and for moderately long waves (h/L < 0.09), the 
occurrence of secondary crests (Galvin, 1968 ; Madsen et al., 1970). 
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With these limitations in mind, the theoretical results for wave 
heights are tested against experiments for three cases (h/L = 0.24 
0.197, 0.132) in Section 2.2, and it is found that the predicted and 
observed magnitudes of the large waves relative to the average agree 
reasonably well. However, the theory overestimates the actual wave 
height. This was also found by Ursell et al. (1960) for waves of fairly 
large steepness and was attributed to possible nonlinear effects. In 
Section 3 the classical (linear) wavemaker theory is advanced to second 
order, and it is found that finite amplitude effects cannot be considered 
responsible for the difference between observed and predicted wave 
heights. 

An approximate evaluation of the amount of leakage through the gaps 
between the piston and the tank walls and the influence of this leakage 
on the height of the generated wave is performed in Section 4. It is 
found that the discrepancy between observed and predicted wave heights 
may be attributed to leakage around the piston, which establishes con-
fidence in the wave heights predicted by the linear theoretical model 
adopted. 

Section 5 discusses the possibility of utilizing the large effect 
of leakage on the height of the generated waves to eliminate the large 
waves in a burst. 

2. LINEAR SOLUTION FOR A WAVEMAKER STARTING FROM REST 

2.1 Theory 

Assuming irrotational motion the linearized equations governing the 
motion generated by a wavemaker (see Figure 2) are 

"'2~ = ~ + ~yy 0 -h::y::o 
XX 

(2.1) 

~y 0 y -h (2.2) 

nt - ~y 0 y 0 (2.3) 

~t + gT) 0 y = 0 (2.4) 

and at the wavemaker, which is characterized by its position, ~(y,t): 

~x = ~t (y,t) = u(y,t) X = 0 (2.5) 

where subscripts indicate partial differentiation and g is the accelera-
tion of gravity. 

Assuming the motion to start from rest, 
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7J(·x,t) 

Figure 2: Definition of Symbols 

~(x,y,O) = ~t(x,y,O) = ~(y,O) = ~t(y,O) = 0 

the solution for the surface profile has been obtained 
"" t -h 

X ·-·--SWL 

(2. 6) 

by Kennard (1949) 

n(x,t) = -~ jdkjd-rjdy 
1T 0 0 0 

cos a(t--r) cos kx u(y,-r) cosh k(y+h). 
cosh kh (2.7) 

where 
2 a = gk tanh kh (2. 8) 

k being the wave number. 

For the particular case of a sinusoidal piston-type wavemaker, which 
runs for a length of time, t', we have 

u (y' t) 

0 

U sin(wt + 8) 
0 

t !i 0 

0 < t 6 t' 
t > t 1 

(2. 9) 

and inserting this in (2.7), we can perform the integration with respect 
to y and -r to obtain 

"" 2 
n(x,t,8) 2 u 

idk 
tanh kh w = 1i w k wz._ a2 

cos 

a • [ (cosat-coswt) cos8 + (sinwt - ;;sinat) sm8] 

Realizing that 

u 
w ~0 

kx 
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is the amplitude of the wavemaker motion and introducing the dimension-
less variables lindicated by asterisks) 

(x* ,y*) = h-l (x,y) 

t* = v1 t 

k* = kh 

the solution can be written 

where 

rr n (x, t, o) 
2 ~0 

I = r;k* tanhk* w*
2 

(cos lk*tanhk*t*-cosw*t*) cosk*x* 1 Jo' ~ w* 2-k*tanhk* 

and 

(2 .11) 

(2.12) 

(2.13) 

r2 = Jd~* ta~~k* 
2 

w*
2 (sinw*t*-.!1<*~~nhk* sinA*tanhk*t*) cosk*x* 

0 w* -k*tanhk* (2. 14) 

This solution as it stands is valid only so long as t < t'. However, 
we may add the solution satisfying the boundary condition at x = 0: 

~~ = u' (y,t) = 1-~ sin(w(t-t') +o') 
t" t 1 

t > t 1 (2. 15) 

and due to the linearity of the governing equations the sum of these 
solutions will satisfy the boundary condition given by (2.9) provided 

o' = o + wt' - 2 mrr 

where m is an integer. 

Thus in short we may write the solution as 

n (x, t) { 
n(x, t, o) 

n(x,t,o) -

0 < t ;;; t' 

n(x,t-t',o') t > t' 

where the right-hand sides are calculated from (2 .12). 

(2.16) 

(2. 17) 

The integrals r1 and r2 have removable singularities and are evalu-
ated by numerical integration using the trapezoidal rule with a stepsize 
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equal to 0.05 the period of the integrand and the upper limit of inte-
gration equal to 16. The results were tested for accuracy by varying 
the stepsize and the upper limit of integration. As a further check the 
numerical solution was found to approach the classical solution to the 
wavemaker problem (Biesel and Suquet, 1951) as t became large. 

Taking x =constant in (2.12) we can compute the surface elevation 
at a particular station along the tank as a function of time, which cor-
responds to the surface profile recorded by a fixed gage. If we define 
the wave height as the difference in surface elevation between a trough 
and the preceding crest, we may describe the development taking place 
some distance from the wavemaker in terms of the sequence of wave heights 
as the waves arrive at this station. Por a station 30 times the depth 
from the wavcmaker, the computed variation in wave heights relative to 
the wave height in the final periodic state, H/Hp, is shown in Pigure 3 
for three depth-to~length ratios. 

Relative Wave Height 
H/Hp 

+ h/L = 0.132 
X h/L = 0.197 

• h/L = 0.24 

5 10 

Pigure 3: Computed variation in relative wave height of waves generated 
by a piston-type wavemaker starting from rest, as they reach 
a station 30 x depth from the generator. 

It shows that after the disturbance arrives, the wave height in-
creases, overshoots but finally attains the constant value corresponding 
to the final periodic state. This type of behavior, which predicts a 
large first wave, is analogous to the response of a slightly damped me-
chanical system to an exciting force. 
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2.2 Comparison with Experiments 

The large waves in a burst had previously been studied experimentally 
in CERC' s 72-foot tank by John Ahrens, Hydraulic Engineer at CERC, and 
records of the surface profile obtained 16 and 45 feet from the wavemaker 
serve for a detailed comparison with the result computed from (2.12). 

The wavemaker, piston type, is electronically controlled and was set 
to start from its mean position going backwards, i.e., corresponding to 
a = - ~12 in (2.9). The wavemaker was stopped manually, and if it was 
stopped off its mean position it would abruptly take this position. 
Since it is very difficult to avoid this final impulse, which will in-
fluence the last part of the burst, the camparison is o~ly carried out 
for the first waves in a burst. The depth, h, was 1.5 feet and for each 
period the experiment was repeated three times, giving practically iden-
tical results for the part of the burst used for the comparison. 

The experiments show second order effects (wave steepness = H/L = 
0.03 - 0.06) in that crest amplitudes are larger than trough amplitudes; 
however, as was indicated previously and in view of the results obtained 
in Section 3, this effect is essentially eliminated by comparing wave 
heights rather than amplitudes. The comparison is presented in Table 1 
as the variation in wave heights as the waves arrive at the particular 
stations, and it is obvious from the results that the actual wave heights 
differ considerably. However, if we compare the variation in wave heights 
relative to the wave height in the final periodic state, which for the 
experiments is taken as the average wave height in a burst excluding the 
large waves, the agreement between computed and experimental wave heights 
in this sense seems good. The larger discrepancy for the shortest wave, 
h/L = 0.24, may be attributed to the Benjamin-Feir side-band instability. 

3. APPROXIMATE SECOND ORDER WAVn1AKER THEORY 

The application of a linear theory as a predictor of the motion 
generated by a wavemaker starting from rest was found to be relatively 
successful. The large difference between the actual computed and experi-
mental wave heights noted in Table 1 is naturally of minor importance 
once a particular wavemaker has been calibrated. However, if the ob-
served discrepancy can be explained as other than the inadequacy of the 
linear solution, an understanding of the responsible mechanism will not 
only help us in designing more efficient wavemakers and maybe eliminate 
the need for calibrations, but it will give us confidence in the results 
obtained from the linearized governing equations, also for problems 
different from the one treated here. We therefore proceed to investigate 
if the large difference in wave heights can be attributed to finite am-
plitude effects as Ursell et al. (1960) suggested. 

Based on a Lagrangian formulation Fontanet (1961) derived the com-
plete second order solution to the wavemaker problem. His solution, 
however, is extremely difficult to evaluate, and for this reason we out-
line an approach using the more familiar Eulerian description. Due to 
the nonlinear instabilities mentioned previously (Benjamin-Feir in-
stability for short waves, secondary waves for long waves), we need 



596 COASTAL ENGINEERING 

16 feet from Wavemaker 45 feet from Wavemaker 
Wave H/H H/H No. H feet p H feet p 

Exp. Comp. Exp. Comp. EE:. Comp. EE:. Comp. 

1 0.305 0.370 0.85 0.9 0.155 0.183 0.43 0.44 
N 

2 0.368 0.412 1. 02 1.0 0.305 0.405 0.85 0.98 !<') ...... 
3 0.387 0.424 1. 08 l. 03 0.387 0.456 1. 08 1.11 0 

II 
4 0.345 0.408 0.96 0.99 0.354 0.387 0.98 0.94 ....:! ....... 
5 0.357 0.418 0.99 l. 02 0.360 0.424 l. 00 1.03 ,.c: 

6 0.362 0.396 1. 01 0.96 0.361 0.404 1. 00 0.98 

1 0.142 0.181 0.42 0.44 0.061 0.068 0.19 0.16 
2 0.331 0.393 0.99 0.95 0.112 0.138 0.34 0.34 
3 0.352 0.457 1. 05 1.11 0.194 0.236 0.59 0.57 r--

Ol ...... 
4 0.341 0.384 1. 02 0.93 0.296 0.363 0.91 0.88 0 
5 0.334 0.408 1. 00 0.99 0.369 0.468 1.13 1.13 II 

....:! 
6 0.343 0.412 1. 02 1. 00 0.315 0.442 0.96 1. 07 ....... ,.c: 

7 0.330 0.391 0.98 0.95 0.318 0.366 0.97 0.89 
8 0.333 0.419 0.99 l. 02 0.337 0.444 1. 03 1. 08 
9 0.339 0.416 1. 01 1. 01 0.327 0.384 1. 00 0.93 

1 0.110 0.130 0.30 0.28 0. 045 0.049 0.15 0.11 
2 0.254 0.287 0. 71 0.62 0.068 0.085 0.20 0.18 
3 0.420 0.479 1.17 1. 03 0.117 0.136 0.35 0.29 
4 0.366 0.512 1. 02 1.10 0.170 0.209 0.51 0.45 
5 0.369 0.437 1. 02 0.94 0.275 0.318 0.82 0.68 '<l" 

N 
6 0.368 0.459 1. 02 0.99 0.403 0.441 1. 21 0.95 0 
7 0.359 0.465 0.99 1.00 0.372 0.524 1.12 1.13 II 

....:! 
8 0.364 0.472 1. 01 1. 02 0.300 0.519 0.90 1.12 ....... ,.c: 

9 0.359 0.466 0.99 1. 00 0.363 0.427 1. 09 0.92 
10 0.310 0.446 0.93 0.96 
11 0.347 0.474 1.04 1. 02 

Table l. Comparison Between Computed and Experimental Wave Heights 
(Depth = 1.5 feet) 

(Underlined values correspond to the largest wave) 
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only consider intermediate waves, i.e., 0.21 ~ h/1 f 0.09. For large t 
the solution to the first order llinear) equations given in Section 2 is 
the classical wave-maker theory (see e.g., Bi()sel and Suquet, 1951). For 
a piston-type wavemaker, 

u(y,t) = ~t = U sinWt; ~ = -~0coswt 

and denoting the first order solution by a superscript, 
solution reads: 

~(l) = C
0 

cosh k
0

(y+h) cos(k
0
x-wt) -

\' -k X sinwt L C cos kn(y+h) e n 
n=l n 

and 

+(1) (1) p p + pgy = pressure due to the wave c 

(3 .1) 

(1) , the classical 

(3 .2) 

(3.3) 

cosh k
0

(y+h) -k x cos k (y+h) 
- pg[n0 cosh k h sin(k0 x-wt) + coswt L nne n cos k\ ] (3.4) 

where 

c 
0 

o n=l n 

2 U sinh k
0
h 1 

k h + sinh k h cosh k h k 
0 0 0 0 

gk tanh k h = w2 
0 0 

2 U sin knh 1 
knh + sin knh cos knh kn (n " 1) 

gk tan k h 2 
(n-~)rr<knh < nrr -w n n 

tanh k h 2k h 
0 

~0 ~2[1 + 0 
no nl nl sinh 2k h 

0 

(3. 5) 

(3. 6) 

(3. 7) 

(3.8) 

The first terms in (3.2), (3.3) and (3.4) represent a progressive 
wave, whereas the summations (inertia terms) express the correction 
necessary to account for the wavemaker motion not being exactly that 
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of the particles in a progressive wave with the given period and depth. 
For long progressive waves, we know that the horizontal particle velocity 
is practically independent of y, and this suggests that the necessary 
correction, i.e., the sum of the inertia terms, is small when a piston-
type wavemaker generates long waves. Similarly, large corrections are 
needed when short waves are generated by a piston-type wavemaker. This 
was clearly demonstrated in calculations by Bi6sel and Suquet (1951). 
We also note, (3.2) combined with (3.6), that the exponential behavior of 
the inertia terms means·that their importance becomes negligible within 
a small distance, of the order 3h, from the wavemaker. 

In advancing the theory to second order we proceed as outlined by 
Stoker (1957) by assuming a perturbation solution and expanding the 
boundary conditions at the free surface and at the wavemaker around 
y = 0 and x = 0, respectively. Denoting the second order solution by 
superscript (2) we have the governing equations, 

1724>(2) 4> (2) + 4> (2) 0 -h:;, y:?., 0 (3.9) 
XX yy 

4> (2) 
y 0 y -h (3 .10) 

4> (2) 1 4> (2) =-l{cq,Cl) (1)) + q,Cl) q,Cl) + q,Cl) q,Cl)} ·- n t y g tt g ty xt x yt y 

-4>(1) n(l) + q,Cl) (1) y = 0 (3. 11) yy X nx 

where (3.11) is obtained bY. combining the dynamic and kinematic conditions 
to obtain a condition in q,C2) only. The second order profile, nC2), is 
given by 

(3 .12) 

and the boundary condition at the wavemaker 

q,C2) = _ q,Cl) t, 
X XX 

X = 0 (3 .13) 

where we have used that f, = O(n) except for very long waves (see (3.7)). 

The troublesome part of the determination of q,C2) from (3.9), (3.10), 
(3.11) and (3.13) is the inhomogeneous equation (3.11). However, under 
the assumption oft-+<», q,Cl) and n(l) are as given by (3.2) and (3.3) and 
it can be shown that at y = 0 the maximum value of the inertia terms is 
of the order 1/4 of the term associated with the progressive wave so 
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long as h/1 "> 1/4. It, therefore, seems to b.e a reasonable approximation 
to neglect the inertia terms when substituting 1>(_1) and n.(_l) into (.3.11) 
With this approximation the solution satisfying the equations (.3.9) 
through (.3.11) is the well known Stokes' second order solution for pro-
gressive waves (see e.g., Ippen, 1966). 

<I> (2) 3 2 cosh 2k
0

(y+h) 
-- wn 

sinh4k
0
h 

sin 2(k
0
x-wt) p 8 0 

and 
(2) - .!. k n2 cosh k

0
h (cosh 2k

0
h+2) 

nP 4 0 0 sinh3k
0

h 
cos 2 (k

0
x-wt) 

However, we have not yet included the boundary condition x 0, 
(3.1.3), which reads 

<1>(2) = - <1>(1) l;(y,t) = 
X XX 

(3 .14) 

(3 .15) 

[C k2 cosh k (y+h) coswt + sinwt L C k2 cos k (y+h)] ~(y,t) (3.16) 
o o o n=l n n n 

We have previously justified the neglect of the inertia terms in the 
boundary condition at y = 0; however, this cannot be justified for all 
y's at x = 0 unless the wave length is restricted further (h/1 < 0(0.1)). 
Introducing (3.1) in (.3.16) and using the relationship among n0 and C0 
we obtain 

<1>(2)= -~ [ gno k2 cosh :o~y+h) cos 2wt + sinwt coswt L C k2 cosk (y+h)] 
x o w o cosh 

0 
n=l n n n · 

(3 .17) 

Clearly the solution (3.14) does not satisfy this boundary condition. 
Using cos2wt = ~ ·(cos:iwt + 1) and taking only the periodic part of (3 .17) 
we see that we have a residual periodic boundary condition at x = 0. 

I 
n=l 

2 2 
(2) = (2) _ (2) = _ gn 0 k0 l n1 cosh k0 (y+h) _ 

(<I>R )x <l>x C<l>p )x 2w sinh k h 
0 

3 cosh 2ko (y+h) l cos ~o 
2 3 ~ 2wt - sin 2wt 2 sinh k

0
h cosh k

0
h 

C k2 cos kn(y+h) n n u~2 ) (y) cos 2wt + sin 2wt L (V~2 ) (y) )n 
n=l 

(.3.18) 
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Introducing 

(3 .19) 

in the governing equations, which are linear in ~( 2 ) we see that ~~2 ) is 
the solution to (3.18) and the homogeneous equations 

v2 <P (2) 0 -h !i y !i 0 (3. 20) 
R 

(</1(2)) 
R y 0 y - h (3.21) 

and 
(</1 (2)) 1 (~ (2)) 0 0 (3. 22) + - y R y g R tt 

i.e., the same governing equations as those for the first order solution, 
except for the more complicated boundary condition (3.18) at x = 0. The 
solution, however, can be found from the classical solution to the linear 
problem as a sum of <PR's, which we may combine and the progressive part 
can be written as 

(2) 
<I>R, Progressive cC2 ) cosh k(2)(y+h) cos(k(2)x-2wt + $) 

0 0 0 
(3. 23) 

where c~2 ) and $ are found by combining the <PR's and 

(3. 24) 

We can therefore express the velocity potential far from the wavemaker to 
the second order 

<P "'<I> (1) + Progressive 
4>(2) 4>(2) 
P + R, Progressive (3. 25) 

or in physical terms the periodic waves generated by a wavemaker can be 
expressed as 

(1) A first harmonic linear wave of amplitude n
0

• 

(2) A second harmonic coupled with the first harmonic to give the 
second order Stokes' wave corresponding to the linear solution. 

(3) A second harmonic free wave of small amplitude. 

This description agrees with that of Fontanet (1961), and when combined, 
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we see that the surface elevation at a fixed value of x can be expressed 
as 

n n
0 

(sinwt + c1 sin(2wt + ~ 1 )) (3.26) 

where c1 « 1. This type of surface elevat~on was shown by Ursell et al., 
(1960) to give a wave height, H = 2n

0
(l+O(c1)). Thus for small q, the 

wave height of nonlinear waves, as recorded by a fixed gage, is practic-
ally the same as that predicted by a linear theory. 

This analysis was carried out assuming the final periodic state to 
be reached, and suggests that when results for periodic waves obtained 
from a linear theory are compared with experiments, a comparison of wave 
heights should essentially eliminate the influence of finite amplitude. 
From this we conclude that the large difference between computed and 
experimental wave heights noted in Table 1 can hardly be attributed to 
nonlinear effects. 

4. THE INFLUENCE OF LEAKAGE ON THE 
HEIGHT OF THE GENERATED WAVES 

The results of Ursell et at. (1960) indicated that the discrepancy 
between measured and predicted wave heights increases from the order 
3% to 10% with an increase in wave steepness from 0.03 to 0.045. This 
does not agree with the experiments at CERC, which show a larger dis-
crepancy (of the order 15%) between theory and observation as well as 
the opposite trend, i.e., decreasing discrepancy with increasing wave 
steepness. In the experiments by Ursell et al. the leakage around the 
wavemaker was reduced by a rubber foam lining between the piston and the 
walls and bottom of the tank, whereas no such provision was taken in the 
CERC experiments. This suggests that leakage around the piston may have 
a large influence upon the height of the generated wave. A series of · 
experiments performed at CERC (Tenney, 1969) serve as further evidence 
of the influence of leakage on the height of the generated waves. Two 
holes were drilled through a piston, the area of the holes was approxi-
mately 0.29% of the wetted area of the piston. It was found that the 
difference in wave height between the waves generated with these holes 
closed and open was of the order 2.8% - (1.6% - 4.0%). 

4.1 Waves Generated by an Oscillating Flow Through a Slot 

To ev~luate the influence of leakage let us start by examining the 
waves generated by the oscillating flow through a slot which extends over 
the width of the generator. 

For a slot of height ~ a distance Y below the free surface, we have 
0 y>-Y+~ 

u (y' t) v
0

sinwt -Y & y & -Y +~ (4 .1) 
0 y < - y 
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which, with the notation used in Section 3, gives the solution 

4 1 Zk h . h k v
0 

[sinh k
0

(-Y+t.+h) -sinh k0 (-Y+h)] 
0 

+ s1nh 2k
0 0 

For small n we may write this as 

4 sinh. k
0
h 1 

2k h+sinh 2 k h k 
0 0 0 

6k0 cosh k0 (-Y+h) } 
sinh k h 

0 

(4. 2) 

(4.3) 

which written in this form by comparison with (3.5) clearly shows the 
generated progressive wave to be the same as that generated by a piston-
type wave generator having a velocity given by 

u U' v 
0 

k0 6 cosh k0 (-Y+h) 
sinh k h 

0 

(4.4) 

In particular we see that for a gap between the wavemaker and the 
bottom of the tank, Y h, 

(4. 5) 

with indices introduced for clarity. 

Clearly, the influence of leakage between the sidewalls and the 
piston is not as easy to handle rigorously. This leakage is probably 
one of the mechanjsms responsible for the generation of transverse waves; 
however, if the width of the tank is small compared with the wave length 
of the generated waves, it seems physically reasonable that the waves 
generated by an oscillating flow, v (y) sinwt, through a vertical slot 
of width 6s may be approximated as ~he waves generated by a piston-type 
wavemaker, having the prescribed motion 

U' = v s s 
6s 
b 

where b is the width of the wave tank, and v is the average of vs(y) 
over the depth. s 

(4. 6) 

Thus in principle, if vB and v are known, we can find, at least 
with some accuracy, the generated wffves, as those generated by an ideal 
piston-type wavemaker having the prescribed motion 

u (y, t) = (U B + U ~) s inwt ( 4. 7) 

However, is the potential theory really appropriate? When the water is 
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forced through the small gaps into the ambient fluid one might expect a 
considerable energy loss due to turbulence. In a study of the forced 
heave motion of a rectangular cylinder of large draught, i.e., small 
distance between bottom and cylinder (6B ~ 0.06 h), Svendsen (1968) found 
the radiated wave to be accurately pred~cted by potential theory. Thus, 
an inviscid theory seems indeed to give reliable results; however, con-
trary to Svendsen's study, the major problem in our case is determining 
the velocities. 

4.2 Determination of the Leakage Velocity 

In order to attack this problem we must first specify the conditions 
on both sides of the generator blade. If we assume that the region be-
hind the wavemaker is occupied by an absorber beach, which corresponds 
to the CERC 72-foot tank, a reasonable assumption is that waves are gene-
rated in both directions and that these waves are the same, but 180° out 
of phase. 

With this assumption the pressure due to the sinusoidal motion (3.1), 
of the piston on the front side is given by (3.4) and the pressure due 
to the wave on the back of the piston is of equal magnitude but opposite 
sign. If we restrict our analysis to moderately long wave (h/1 < 1/4) 
the influence of the terms in (3.4) with exponential behavior in x, the 
inertia terms, is small compared with that of the term associated with 
the progressive wave. Thus, we may approximate the pressure difference 
between the two sides of the piston, 6p, by 

6p + 
pfront 

where n
0 

is given by (3.7). 

cosh k0 (y+h) 
cosh k h sinwt 

0 

(4. 8) 

This pressure difference will produce a flow through the gaps be-
tween the piston and the sides and the bottom of the tank. The velocity, 
v, of this flow may be estimated from Bernoulli's equation. Neglecting 
friction and the unsteadiness of the motion we have 

v2 /2g = 6p/pg (4. 9) 

In particular we get for the gap at the bottom, y = -h, by intro-
ducing (4.8) and defining v to be positive when directed towards the 
front of the piston, that 

gno 
v(y= -h) = - Sign { sinwt}2_/·c-

0
-

5
-rh--.-k-.--h 

0 
(4.10) 

To comply with the type of boundary condition assumed in (4.1), we 
can expand the time dependence of (4.10) in a Fourier Series. This has 
been done by Keulegan (1967), and retaining only the term associated 
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with sinwt, we get 

v(y = -h) ~ -2.22 cosh k h 
0 

sinwt 

or with the notation used in Section 4.1 we have 

rrrn;-
VB= - 2·22 1foosh k h 

0 

(4.11) 

(4.12) 

To find the leakage velocity through the gaps along the sides of the 
piston, we proceed in a similar manner, and taking the average leakage 
velocity over the depth, h, as the mean of the velocity at y = 0 and 
y = h we get 

(1 + 1 

lcosh k h 
0 

4.3 Decrease in Wave Height Due to Leakage Around the Piston 

( 4. 13) 

By substituting (4.12) and (4.13) into (4.5) and (4.6) respectively, 
we get from (4.7) that the leakage around the piston produces waves, 
whose characteristics are approximately those of the waves generated by 
an ideal piston-type wavemaker having the prescribed motion: 

U' / 1 "'s koh "'s / 1 
- ~ C2· 221cosh k h h sinh k h + 1. 11 b (l+ycosh k h)) 

0 0 0 

( 4. 14) 

Comparing (4.14) with (3.1) we see that the leakage around the 
piston will decrease the amplitude of the generated waves by an amount 
t.n

0
, which may be found from 

koh f. / lgi) 
sinh k h + 1· 11 bs (l+vfcos~ k h))~ 

0 0 
(4.15) 

where n
0 

is found from (3. 7). 

To test the validity of (4.15) some experiments were performed in 
the CERC 72-foot tank, which has a width, b = 1. 5 feet. Measurements 
gave t.8 = 0.28 inches and f>s = 2x0.1 = 0.2 inches. With water depth 
h = 1. 5 feet, the wave height, llexp, as recorded 16 feet from the gene-
rator serve for the comparison presented in Table 2. 
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Jhfference Difference 
h/L 1,;0 H 2no Observed from (iL 15) exp 0, 0, 

(feet) (feet) (feet} '0 -. 

0.167 0.239 0.274 12.8 17.8 
0.132 

0.251 0.367 0.411 10.7 14.6 

0.115 0.228 0.272 16.2 15.8 

0.197 0.173 0.356 0.410 13.2 12.9 

0.230 0.477 0.545 12.5 11.2 

0.125 0.300 0.352 14.8 12.7 

0.240 0.167 0.390 0.471 17.2 11.1 

0.196 0.466 0.553 15.3 10.2 

Table 2: Comparison of observed reduction in wave height with 
that predicted from (4.15) 

When considering the number of assumptions made in deriving (4.15), 
the agreement between predicted and observed reduction in wave height 
must be considered good. It is therefore concluded that the main part 
of the discrepancy between observed and predicted wave heights noted in 
Table 1 can be attributed to the influence of leakage around the piston. 
As a further check on the reasoning leading to (4.15), the reduction in 
wave height due to two holes in the piston, corresponding to the experi-
ments by Tenney (1969) mentioned earlier, gave a predicted reduction of 
2.1%, which compares favorably with Tenney's 1.6 - 4.0%. 

The neglect of friction and unsteadiness made in order to arrive at 
(4.9) was tested by mounting a fitted 3/4 inch plywood board to the front 
of the piston blade. This increased the thickness of the blade from 1/4 
inch to 1 inch, and since this had no significant effect on the height of 
the generated wave, this assumption seems justified. 

It is interesting to note that the area of the gaps around the piston 
is of the order 2. 79• of the wetted area, and that leakage through these 
gaps reduces the wave height by about 15%. This large effect of leakage 
through a small area, which is even more pronounced in the experiments 
by Tenney, may explain the results of Ursell et al. (1960), whose "seal" 
around the piston might not have been 100% effective for the large pres-
sure difference between the two sides of the piston associated with the 
steepest waves. When one considers the large gap, which may exist at the 
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bottom in the case of a flap-type generator hinged at the bottom, the 
large effect of leakage through this gap may also explain why a group of 
Neyrpic engineers (1952) observed a discrepancy of 30% between theoreti-
cal and measured wave heights of waves generated by a flap-type wavemaker. 

5. CONCLUSION 

In the preceding sections we have used a theoretical solution, based 
on the linearized governing equations, to predict the height of the waves 
generated by a piston-type wavemaker starting from rest. By comparison 
with experiments it was found that the theoretical model predicted the 
relative wave heights fairly accurately, and that the difference between 
predicted and observed wave heights could be attributed to. the influence 
of leakage around the piston rather than to the inadequacy of the linear 
model. Thus the material presented essentially serves to establish 
confidence in the theoretical model adopted. 

As stated in the Introduction, the problem initiating this study was 
the large first and last waves in a burst (Figure 1). Since the large 
last wave can be eliminated by the use of a drop-gate or a similar struc-
ture, the preceding sections have concentrated on the development taking 
place as the wavemaker is started. Computations show that the relative 
magnitude of the large first wave depends weakly on the position of the 
wavemaker, as it is started, and that this is smallest, when the wave-
maker is started from its extreme positions. This dependence is, however, 
insignificant at stations far from the wavemaker, and consequently offers 
no solution to the problem of eliminating the large first wave. 

From the analogy between Figure 3 and the response of a mechanical 
system to an exciting force, it is seen that the large first wave may be 
eliminated by starting the wavemaker slowly increasing the amplitude of 
its motion to the desired value. If this is possible and how it is most 
efficiently achieved can be determined by means of our theoretical model. 
Most wavemakers being of the type, which does not permit a change in 
stroke during operation, seems to render this solution impractical. 
However, this is where it might be possible to utilize the surprisingly 
large effect of leakage on the height of the generated waves. By con-
trolling e.g. the area of the gap petween the bottom and the piston, it 
would, in principle, be possible to change the height of the waves gene-
rated by a wavemaker having a constant stroke. If this' effect can be 
used to eliminate the large first wave remains to be seen. However, this 
effect does seem to offer the possibility of generating amplitude modu-
lated waves with a conventional wavemaker. 
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