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ABSTRACT 

The wave-deformation characteristics of several difference schemes 
for two-dimensional long-wave propagation are compared by means of the 
propagation factor introduced by J. J. Leendertse. The schemes compared 
are those proposed by N. S. Heaps, R. 0. Reid and B. R. Bodine, J. J. 
Leendertse, and M. B. Abbott, respectively. The study also demonstrates 
the differing behavior of explicit and implicit schemes. 

FOREWORD 

This report is published because of the useful manner in which 
several finite-difference schemes for two-dimensional long-wave propaga-
tion are compared. The suitability of a particular scheme is based on a 
comparison of its numerical solution with the analytical solution. Such 
comparisons provide the coastal engineer with guidance and a method for 
evaluating and selecting the most appropriate difference scheme for 
resolving problems concerned with long-wave motion. 

Mr. R. J. Sobey of Australia made this study in partial fulfillment 
of the Individual Study requirements of the 1968-69 International Course 
in Hydraulic Engineering, Delft Technological University, The Netherlands. 
The topic for this study was suggested by Ir. J ,' Siemons of the Delft 
Hydraulics Laboratory, and his assistance throughout the study was appre-
ciated. The author also acknowledges the general assistance of Dr. M. B. 
Abbott, Reader, International Course in Hydraulic Engineering, who intro-
duced him to, and· stimulated his interest in, numerical modeling in tidal 
and coastal engineering. Mr. Sobey is now studying for his doctorate at 
the Imperial College of Science and Technology in London, where he prepared 
the final draft of this report. 

Mr. B. R. Bodine, a hydraulic engineer at CERC, was a fellow-student 
of Mr. Sobey at Delft Tecnnological University. He was co-author with 
R. 0. Read of one of the difference schemes compared in this study. 

At the time of publication, the Director of the Coastal Engineering 
Research Center was Lieutenant Colonel Edward M. Willis; the Technical 
Director was Joseph M. Caldwell. 

NOTE: Comments on this publication are invited. Discussion will be 
published in the next issue of the CERC Bulletin. 

This report is published under authority of Public Law 166, 79th 
Congress, approved July 31, 1945, as supplemented by Public Law 172, 88th 
Congress, approved November 7, 1963. 
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Section I. INTRODUCTION 

The finite-difference technique for the solution of partial differ-
ential equations has been known for many years. However, in many cases, 
its wide-spread application has been limited by the computational effort 
involved. Long-wave propagation in two horizontal spatial dimensions, 
considered in this study, is such a case. 

The introduction in the last decade of large, fast, digital com-
puters has greatly removed this computational limitation, but has served 
to magnify another difficulty in that there is a wide variety of finite-
difference schemes that can be used in each particular case. The suita-
bility of a particular scheme can be measured by considering its order of 
approximation and its stability, and also by comparison of its numerical 
solution with the analytical solution, this latter measure being of 
interest to this study. 

Two-dimensional, long-wave propagation has received considerable 
attention from numerical modelers as the system of equations describes 
a physical situation of considerable practical interest to coastal en-
gineers and related practitioners. A long-wave can be alternatively 
described as a nearly horizontal flow, with the implication that verti-
cal accelerations are negligible and that the pressure distribution is 
hydrostatic. Thus, the long-wave equations can be used'to model both 
storm-surge and tidal-wave propagation. 

The comparison of the numerical solution of the difference scheme 
to the analytical solution of the partial differential equations has a 
physical interpretation for long-wave propagation in that it will be a 
measure of the deformation of the computed wave. Leendertse (Reference 
1) has used the term propagation factor to describe the ratio of the 
numerical and analytical solutions in the particular case of long-wave 
propagation. This propagation factor is generally a complex number, 
thus characterizing the wave deformation in both amplitude and phase. 
This concept is discussed more fully in Section VI. 

The behavior of this propagation factor, made suitably dimensionless, 
will provide a useful comparison of the wave deformation characteristics 
of different finite-difference schemes. A detailed comparison in this 
manner of four finite-difference schemes that have been proposed for 
two-dimensional long-wave propagation is the subject of this study. 

The four schemes considered are explicit schemes proposed by 
1. N. S. Heaps (Reference 2) 
2. R. 0. Reid and B. R. Bodine (Reference 3) 

and implicit schemes proposed by 
3. J. J. Leendertse (Reference 1) 
4. M. B. Abbott (Reference 4). 



Y,Y 

X and Y axes are rn plane of Mean Sea Level 

h is pos1t1ve upwards. 

Figure 1. Definition Sketch 



This latter scheme has not been published, but has been analyzed 
in detail by the present author - a summary of the relevant aspects are 
included as an Appendix. 

Section II. LONG-WAVE EQUATIONS 

This study will be restricted to the linearized, vertically averaged 
equations for two-dimensional long-wave propagation, neglecting convective 
accelerations, Coriolis accelerations, friction resistance, and surface 
stresses. These equations are 

au ah 0, 3t + gax = (1) 

av ah 0, ~ 
+ gay = (2) 

ah ho (au av) = 0, ~ 
+ + ax ay 

where u and v are the vertically averaged velocity components in the 
horizontal coordinate directions x and y respectively·, h0 is the mean 
depth, h (positive vertically upwards) is the wave height with respect 
to Mean Sea Level, and t is the time coordinate (see definition sketch, 
Figure 1). 

Section III. REAL WAVE 

The analytical solution of the long-wave equations will be called 
the real or physical wave. 

Assume a Fourier series of solution of equations (1) to (3) of form 

u =· I 
m 

-;:u i(S t + a s) e m m m 

where U = (u, v, h)T, the analytical solution, 

ij~ = (u;, v;, h;)T, the amplitude of them th component, 

Sm = real wave frequency of m th component, 

am = wave number of m th component, 

and s = coordinate dimension of the direction of wave 
propagation. 

The superscript T implies the transpose vector. 
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Now assume that this wave propagation direction is oriented at angle Ym 
to positive x-axis and define the wave number components 

Also the system is linear so that superposition is valid; consequently 
only one component of the Fourier series need be considered, namely 

Substitution of equation (4) into equations (1) to (3) yields the 
following matrix equation 

* i8 0 icr1gh u 
' 0 

* 0 i f3 icr2gh
0 

v = 0. 

* icr1 icr2 i f3 h 

Equating the determinant of the coefficient matrix to zero yields the 
cubic equation 

+ = o, 
which solves to 

f31 = 0 

82,3 =.±cr lgho } 
Back substitution into equation (4) then describes the real wave. 

Section IV. DIFFERENCE SCHEMES 

(4) 

(5) 

For the purpose of the finite-difference method, the solution vector is 
made discrete to particular grid points on the solution field. In this 

-n context, Uj,k represents the finite-difference solution at spatial 
position (j,6x, k.6y) and at time n.6t. 

1. Heaps 

N. S. Heaps (Reference 2) uses the spatial-solution field which 

4 



is sketched in Figure 2. His explicit-difference equations are written 
in spherical coordinates, the equivalent Cartesian forms being 

n+l n hn hn n n u. k - u. k k+l + h. k-1 - h. 1 k-1 J , J ' + g j +l, j-1,k+l J +l, J- , = 0, lit 4.lls (6) 

n+l n hn hn n n v. k - v. k k+l k-1 + h. 1 k+l h. 1 k-1 J' J, + g j + 1, j + 1, J - ' J- ' = 0, lit 4.lls (7) 

hn+l _ n n+l n+l n+l n+l 
h. k u. 1 k+l -u + uj+l,k-1 - u. 1 k-1 j,k J, + h J + ' j-1,k+l J - ' 

lit 0 4.lls 

n+l n+l n+l n+l 
v. 1 k+l - v. 1 k-1 + v. 1 k+l - v. 1 k-1 + h J + ' J + ' J - ' J - ' o. 4.lls = 

0 
(8) 

Further, Heaps shows that all eigenvalues of the amplification matrix are 
within the unit circle on the imaginary plane when · 

h llt2 ( . 2 2 g ~- sin o1 . lls cos a2 .lls 
o lls2 

+ < . 4' (9) 

which he reduces to a stability condition of 

4. (10) 

2. Reid and Bodine 

R. 0. Reid and B. R. Bodine (Ref~rence 3) use the spatial solu-
tion field sketched in Figure 3. Their explicit-difference equations are 

n+l n ·n n 
u. k - u. k hj+l,k hj-1,k J ' J' + g = 0, lit 2.lls (11) 

n+l n h1:1 n v . - v. k k+l h. k 1 j,k J' + g J ' J ' - = 0, lit 2.lls (12) 

5 
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Figure 2. Spatial-solution field of Heaps. 
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Figure 3. Spatial-solution field of Reid and 
Bodine; Leendertse and Abbott. 



hn+l - h~ k 
j , k J, 

Lit 

n+l n+l 
U . 1 k - UJ. -1 , k + h ( J+ , 

o 2.Lls + 

n+l n+l 
v. k 1 - v. k 1 
J,+ J, -)=O 

2.Lls ' (13) 

In addition, it can be shown that all eigenvalues of the amplification 
matrix lie on the unit circle in the imaginary plan when 

( . 2 sin a1 .Lls + 4. 

Reid and Bodine have stated the stability requirements as 

Lit 2 
gh --2 < 2. 

OLIS 

3. Leendertse 

(14) 

(15) 

J. J. Leendertse (Reference 1) uses the spatial grid sketched in 
Figure 3. His implicit-difference equations, which constitute a so-called 
"leap-frog" operation, are written as 

n+~ n n+!.2 n+k 
u. k - u. k hj+l,k - h 2 

J , J , + g j-1,k 
= 0, ~.lit 2. Lis (16) 

n+~ n hn n v. k v. k h. k 1 J , J , + g j ,k+l J , - = o, !.2. Lit 2. Lis (17) 

n+~ n n+ ~ n+~ n n h. k - h. k u - u. 1 k vj,k+l - vj,k-1) J , J , + h ( j +l ,k J- , + = o, ~.Lit 0 2. t:s 2 .L\ s (18) 

n+l n+~ n+!.2 n+~ 
u. k - u. k hj +l, k - hj -1, k J , J , + g = o, 

~.Lit 2.Lls (19) 

n+l n+~ hn+l - hn+l v. k - v. k j ,k+l j,k-1 0, J , J , + g = 
~.Lit 2. Lis (20) 

hn+l n+~ n+~ n+~ n+l n+l 
h. k u. 1 k - u. 1 k v - vj,k-1) - j,k+l j,k J , h ( J+ , J- , + = o. + 2. Lis ~.Lit o 2.Lls (21) 
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Further, Leendertse shows that all eigenvalues of the amplification matrix 
lie on the unit circle in the imaginary plane, this result being uncondi-
tional as the scheme is implicit. 

4. Abbott 

M. B. Abbott (Reference 4) also proposes the spatial grid 
sketched in Figure 3. His implicit-difference equations, which also 
constitute a "leap-frog" operation, are written as 

n+l n 
u. k - u. k 

J ' J ' 

n+~ n+!z 
h. 1 k h._l k 

J + ' J ' = 0' lit 
+ g 2. l:!.s 

n+l n+l 

+ 
u. 1 k - u. 1 k 

Cl J + ' J - ' ho >-2 2.l:!.s 

n n 
vj,k+l - vj,k-1) 

+ = o, 
2. l:!.s 

+ g (!z 
h~+l h~+l 
J,k+l J,k-1 

2. l:!.s 

n+l n+l 
+ 

u. 1 k - u. 1 k J+ ' J- ' h U-2 -"---'----"--~-
0 2. l:!.s 

n+l n+l 
+ 

v. k 1 - v. k 1 J, + J, - ) = o. 
2.l:!.s 

+ 

+ 

n n 
u. 1 k - u. 1 k !z J+ ' J- ' 

2. l:!.s 

hn - hn 
j ,k+l . j ,k-1~ = 0, 

2.l:!.s 

n n 
U. 1 I - U. 1 k !2 J + 'K J - ' , 

2.l:!.s 

(22) 

(23) 

(2+) 

(25) 

Further, it can be shown (Reference 4) that all eigenvalues of the 
amplification matrix lie on or within the unit circle in the imaginary 
plane. Again, this is an unconditional result as the scheme is implicit. 

Section V. COMPUTED WAVES 

The numerical solution of the partial differential equations (i.e. 
the solution of the finite-difference equations) will be called the 
computed wave. 

For purposes of comparison it will be assumed that a square finite-
difference grid is used in each case, i.e. 

l:!.x = l:!.y = /1s. 
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Now, for each of the four sets of difference equations described 
in Section IV, a Fourier series solution (for linear operators) will be 
assumed of form 

u -* i(S' n.fl.t + = U e a1 j. fl.s + (26) 

where S' is a complex number of dimension (time- 1) and such that Re(S') 
is the computed wave frequency and Im(S') an indirect measure of the 
amplitude deformation (see Section VI, equation (52)). The remaining 
symbols are as previously defined. 

Further, put 

0 = iS' fl.t e (27) 

for computational convenience. 

1. Heaps 

Substituting equation (26) into equations (6) to (8) and putting 

= sin(a1 . fl.s + 

and A2 = sin(a1. fl.s a2 • fl.s) 

yields the matrix equation, 
.g.fl.t * 0 1 0 l-- (Al + A2) u 2.£1.s 
.g.fl.t * 0 0 - 1 l-- (Al - A2) v = o, (28) 2.fl.s 

h fl.t h fl.t * 0 
i2 ~ fl.s·(Al i-- (Al + A2) - A ) 0 - 1 h 2.£1.s 2 

The solution of which gives the following roots 

01 = 1 

i.e. iS). fl.t = 0 or S' = o, 1 (29) 

and 

02 3 1 ±i 
fl.t 2 2 . 2 

= gho(Al + A2 ) . 2 ' 2.£1.s 

The latter roots reduce to 

9 



s2,3·6.t 
-1 M2 

gh (A 2 2 = ± tan + A2 ) 2 0 1 2.6.s 

i ln 1 
L\t2 (A 2 +A/) (30) + ·--gh 

2.6.s2 o 1 

2. Reid and Bodine 

Substituting equation (26) into equations (11) to (13) yields 
the matrix equ~tion, 

6.t . 6 * 0-1 0 i g L\s s1ncr1 s u 

6t . 6. * 0 0-1 i g IS srncr2 s v = o, (31) 

h M sincr 6.s h M . 6. * J_ 0 i 0 o/J.s s1ncr 2 s 0-1 h o/J.s 1 

the solution of which gives the following roots 

01 = 1 

i.e. i f3 i 6t = 0 or f3 I = 0, 1 (32) 

and 

-b JbR2 - 4 
02 3 

R ± = 
' 2 (33) 

where bR 2 2 2, = P1 + P2 - (34) 

(35) 
and 

Two cases of equation (33) will be considered: 

Case 1 b 2 - 4 > 0 R • 

10 



In this case, equation (33) reduces to 

I bR ~!2 I Sz 3 . t.t = -i ln - 2 ± Ci-) - 1 
' 

(36) 

It is 
equivalent 

noted here that the condition bR2 - 4 > 0 can be shown to be 
2 2 

to P1 + P2 > 4, 

i.e. 
fl.t 2 2 

gh ~ (sin cr16s 
0 6s2 

+ 

which (refer to equation (14)) inplies instability. 

Case 2 b 2 - 4 ~ o. R 

In this case, equation (33) reduces to 

I -1 j 1 -
b 2 s2 3.6t = ± sin (~) 

' 2 

3. Leendertse 

It can be shown (Reference 1) that, in this case, 

i.e. 

and 

~2 3 
' 

where bL 

= 

= 

= 

1 

-b1±lb12 

2 (A -L 
AL + 

2 
P1 

1 

2 

1) 

= -- + 4 

= 

- 4 

0, 

2 
Pz 

+ --4 

and p1, p2 are defined by equations (35). 

2 Further, it can be shown that b1 - 4 is not more than zero. Now, by 

(37) 

(38) 

(39) 

(40) 

(41) 

analogy with Case 2 of Section V, paragraph 2, but noting the different 
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definition of b, equation'(39) reduces to 

-1 p;;:L 2 
s2 3.6t = ±sin 1 -(~) . 

' 
(42) 

4. Abbott 

It can be shown (Reference 4) that substitution of equation (26) 
into the reduced two-level form of equations (22) to (25), represented by 
equations (A.I) to (A.3) of the Appendix, yields the matrix equation 

2 gh 6t 
i(0+l)~~~sincr 1~s * 

~--1 -(0-1) 0 
2 sincr16s.sincr 26s u 

4~s 

i (0+ 1) ~~~sincr 2~s * 0 0-1 v 

h 6t h ~t * i(0+1) 2 ~6 ssincr 16s i (0+1) 2 ~~ssincr 26s 0-1 h 

(43) 

the solution of which gives the following roots 

01 = 1 

i.e. iSi6t = 0 or S' = o, 1 (44) 

and 

/bA2 -b - 4 
02 3 

A ± = 
' 2 (45) 

where 

2(A - 1) A 
bA = AA + 1 (46) 

2 2 2 2 

AA 
P1 P1 P2 P2 = -4- + + 16 -4- (47) 

and pl' p2 are defined.by equations (35). 

It is apparent that the computed wave of the scheme proposed by 
Abbott is identical to that of Leendertse. Hence equation l45) reduces to 

12 

= 0, 



(48) 

Section VI. PROPAGATION FACTORS 

Following Leendertse (Reference 1), a complex propagation factor, T, 
is defined as the ratio of the computed wave (solution of difference 
equations) to the real wave (solution of differential equations) after 
a time interval in which the real or physical wave propagates over its 
wave length, L. 

i (8'. t + CJ. s) 
i.e. T e = i (8. t CJ. s) + e 

for t 21T and 21T = s s = CJ 

• 2 c8' · 1) which becomes T l 1T - -= e 8 (49) 

It should be noted that a propagation factor exists for each wave in 
the system. In the system under consideration there are three waves. The 
first wave represents the steady-state flow of the whole field (Reference 
1) and for all four cases considered here it has been shown (by equations 
(29), (32), (38) and ( 44)) that 

8' 1 0, 

and hence it is apparent that also 

1. (50) 

The second.and third waves represent, respectively, the positive and 
negative characteristics of the system, and in all four cases considered 
here, it is apparent that when the scheme is stable, 

(51) 

and this is the T that will be subsequently considered. 

It is convenient to consider separately the amplitude error of the 
propagated wave, represented by the modulus of T, and the phase error of 
the propagated wave, represented by the argument of T. 
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It can be shown that 

= (52) 

where v is the number of time steps necessary for propagation of a real 
wave over its wave length, 

i.e. \) = 

\) = 

\) = 

and that 

arg T = 

1. Heaps 

Period 
flt 

27T 1 
s lit 

27T (/gh lit 
a. tis I liS), 0 

27T [Re(S' .lit) _ l] s. lit 

In this case, equation (52) becomes 

= [l 

and equation r54) becomes 

arg T 

2. Reid and Bodine 

+ 
h lit 2 

g 0 

2 2.lls 
(A 2 + 

1 

(53) 

(54) 

(55) 

(56) 

Again the two cases of Section V, paragraph 2 must be considered. 

Case 1 b 2 
R 4 > o. 

In this case, .equation (52) becomes 

= (57) 

this being the exception to the generality of equation (51). The negative 

14 



wave, having the larger magnitude, has been considered in the subsequent 
numerical comparisons. 

Equation (54) becomes 

Case 2 b 2 
R 

arg T = -2TI 

4 ~ o. 

In this case, equation (52) becomes 

jTj = 1, 

and equation (54) becomes 

arg T = 
[ 

sin-l J 1 
2TI . L'lt 

/gh
0 

-;;s . at:,s 

3. Leendertse 

In this case, equation (52) becomes 

jTj = 1, 

and equation (54) becomes 

arg T = 

4. Abbott 

In this case, equation (52) becomes 

= 1, 

and equation (54) becomes 

arg T = 

[

sin-l j 1 
2TI 

/gh M 
o t:,s • a!:,s 
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(60) 

(61) 

(62) 
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5. Numerical Comparison 

Two dimensionless parameters have been used to facilitate the 
numerical comparison. These are a dimensionless celerity, lgh ~t , and 

0 us 
a dimensionless grid size, ti; . This latter parameter, which represents 
the number of finite difference grid steps per wavelength, L being the 
wavelength, can also be written as 

L tis = 

where a.tis is a dimensionless wave number. 

The numerical comparisons were performed by an Algol-60 computer 
program written for the Telefunken TR-4 machine of the Technological 
University, Delft, The Netherlands. A graphical summary of the results 
is presented as Figures 4 to .12, where the behavior of the respective 
propagation factors is shown for dimensionless celerities of 0.1, 1 and 
5 with y values of 45, 22.5 and 0 degrees. Figures 4 to 12 begin on 
page 18.· 

Section VII. COMMENTS 

There are three aspects of this study worthy of comment. The first, 
and largely unexpected, aspect_ is the usefulness and slight advantage of 
the primitive explicit scheme of Reid and Bodine, while this scheme remains 
stable. This is demonstrated by Figures 4 to 9 and especially by Figures 
7, 8, and 9, where the dimensionless celerity is unity. This result is in 
some regard analogous to the surprising success of linearizing (and con-
sequently simplifying) assumptions that have such widespread application 
in analytical treatment of differential equations in applied mechanics. 

The second aspect is the positive manner in which the instability 
of the explicit schemes is manifested. This is demonstrated by the 
propagation-factor amplitude behavior in Figures 10 to 12. The scheme 
of Reid and Bodine, in particular, results in rather extreme amplitude 
distortions when unstable, but immediately reverts to the no-amplitude-
distortion situation when the stability conditions are satisfied. 

In contrast, the explicit scheme of Heaps exhibits a type of creeping 
instability within the range of the comparison; the deformation of the 
wave becomes more severe with increasing dimensionless celerity. However, 
further comment on this scheme would be of little value as it was not 
proposed as a direct alternative to the other three. Firstly, the spatial 
solution field is different (Figure 2) and secondly, Heaps proposed his 
scheme and solved his difference equations in a spherical-coordinate 
system, whereas an equivalent Cartesian form has been considered for 
the purposes of the present study.· 

The third aspect is the overall suitability of the implicit schemes 
proposed by Leendertse and Abbott. The satisfactory wave-deformation 
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characteristics of these schem~s throughout the range of the comparison, 
coupled with their unconditional stability, establishes their overall 
utility. 

As a general conclusion, the present study has demonstrated the 
usefulness of the propagation-factor behavior as a measure of the 
suitability of difference schemes. 

LITERATURE CITED 

1. Leendertse, J. J. (1967), Aspects of a Computational Model for Long-
Period Water-Wave Propagation, Rand Corporation, Santa Monica, 
California, Memorandum RM-5294-PR, May 1967. 

2. Heaps, N. S. (1969), "A Two-Dimensional Numerical Sea Model", Philo-
sophical Transactions, Royal Society, London, Series A, Vol. 265, 
No. 1160, pp. 93-137. 

3. Reid, R. 0. and Bodine, B. R. (1968), "Numerical Model for Storm 
Surges in Galveston Bay", Proceedings, American Society of Civil 
Engineers, Journal, Waterways & Harbors Division, Vol. 94, No. 
WWl, pp. 33-57. 

4. Sobey, R. J. (1969), Solution of Two-Dimensional Nearly-Horizontal 
Flows Using an Implicit Method Proposed by M. B. Abbott. Group 
Work Report, International Course in Hydraulic Engineering, 
August 1969. (Unpublished - a summary of the relevant aspects 
of this report is included as an Appendix to the present study.) 

5. Richtmyer, R. D. and Morton, K. W. (1967), Difference Methods for 
Initial-Value Problems, 2nd Edition. New York, Interscience. 

17 



0 

0 -go 

org T 

-180° 

I-----

-270° ----

0 
-360 

1 

.... 

1·2 

1 ·, 

lO 

/ v 
I vx 

~ 

I I ~~ "Abbott 

I I \ 'Leendertse 
I 

II I 
\Reid & Bodine 

'V \Heaps 

v 

10 

~ "' Heaps 
./ 

/ \ [7 

·-

I~ - .__ ....... 

100 

II 

L 
6.s 

Reid 8. Bodine 

Abbott\ Ii .._____ 
Leendertse 

I 
10 

I/ 

100 
L 

65 

Figure 4. Propagation Factors for 

fgh ~t = 0.1 & y = 45° 
0 us 

18 

1000 

1000 



0 

-90° 

arg T 

0 
-180 

0 

-270 

0 

-360 1 

1·2 --

lrl 

lO 

/ --/ 
I // 

I ~ ----~ 

I I 
II ' ~~ 

// "" 
/ \ 

Heaps 

10 

-
/ r \ / 

II' 

Abbott , 

~ 
Leendertse / 

I I 
10 

---· 

------~ 

---Abbot} 
. I 

I'-.. Leendertse 

"'Reid & Bodine 

100 L 
/:ls 

-·-·---~- - ----- --1-·--·--.. 

Heaps 
/ /. 

-· 

I~ Reid & 

......... 

., 

/ 

)<: 1---

100 
L 

/:ls 

~ 

Figure 5. Propagation Factors for 

ygK t.t = 0.1 & y = 22.5° 
o b.s 

19 

--

1000 

Bodine 

1000 



0 

-90° 

org T -

-18cf 

0 
-270 

-360° 
1 

1·2 

I Ti 

1-1 

10 

/ ~ ! 

/ 
I Abbott -k I ------- Leendertse 

I " . ------- I 
'~ r---Reid & Bodine 

'"-.. I 

I ·~I 
Heaps 

I I 
I 

I 
I 

10 

( \ 
I \ 
I . \ 

/./ 

l,,-.-/ 

I~ ..... 

100 

Heaps 

L 
t.s 

vReid & Bodine 
/ 

K Abbott\\ 
I . / "-:----
I v 

Leendertse ./ 
I I 

10 100 
L 

6s 

Figure 6. Propagation Factors for 
lcll tit 00 gh ~ = 0.1 & y = 0 s 

20 

1000 

1000 



0 -90 t-----+-

arg T 

-180 

-270 -----

I 
Reid & Bodine 

Abbott 

Leendertse 

--·- ----· ---·--·- -----;-

--···--·--· ·---·-·-- ·-----···· -···· --··- ---···-----·-· ----- -----· -·---+----t 

0 
-:360'--~-'-~~~~~---.~~-'-~~--'~~_.._~~.._~~-'-~~~ 

1 

5 ·-·------

ITI 

3 ---

1 ------· 

0 
1 

10 

------- ---·-·-

Abbott 

Leendertse 

10 

100 

Reid 

100 

L 
6.s 

& Bodine 

L 
6.s 

Figure 7. Propagation Factors for 

lgh llt = 1 & y = 45° 
o !::is 

21 

1000 

1000 



0 

0 
-90 

arg T 

0 
-180 

-v<:J 

0 
-360 

1 

5 

lrl 

3 

0 
1 

I~ ~ i...----

I vi /------Reid & Bodine 

IA ~I 
II ~ ~ r-Abbott 

f I "" I'- Leendertse 

'/ ~ ~Heaps 

10 100 

/ 
v I\ Heaps 

/ \v 

L 
65 

---

/ "' Reid & Bodine 

Abbo~t\ 
I 

I I 
Leendertse I 

I I. 

10 

~ 
/ 

/ 

k_ -
100 L 

6s 

Figure 8. Propagation Factors for 

J;h°gh ~t = 1 & y = 22 5° 
o /J.s • 

22 

--

1000 

1000 



-90° 

arg T 

0 
-270 

···-- -- -- ----+---+------t------+-------. 

0 
-360L---'----'--~-'--~-'--~~-'-~~-'-----'---~-'----' 

1 

5 

3 

1--

0 
1 

10 

/ 
v r\ 

/ \ 

Abbott \ 

100 

,.........-Heaps 
v 

Reid "'- / 

"' L 
/ 

L 
~s 

& Bodine 

L~endertse / 
I I 

10 100 
L 

6s 

Figure 9. Propagation Factors for 

v'gh0 ~~ = 1 & y = 0° 

23 

1000 

I 

1000 



0 Heaps 
-go 

arg T -·-- -----·-+------t 

0 
-1801----+----r---l-l'-F---t---'r--+---~--+----t---; 

0 
-210~--+------'---l-t----r+-----t---t-----r----t-----j 

lrl 
Heaps 

21-----1~---+----+---+----t--t---+-~c-t----r---; 

Leendertse 

0·5'------L.----'---'----'-----'----'----'-----------1 10 100 1000 
L 

b.S 

Figure 10. Propagation Factors for 
~flt vgh- = 5 o !ls 

24 

& y = 45° 



Heaps 

arg T 

Reid & Bodine 

0 -360,L-__ _.. __ ....__._.&.L.j ..... 10-----'-------L..----1~0-o---L~----_.._---10_.oo 

t::.s 

20 1-------; 

I Reid & Bodine 
101-----1-/-,,!_--1~--t.,£--+·~~-+-+~.----,-~-r·---; 

Ir I 

Leend~rtse 

0·5L-~--L~~~-L-~~~1 ~~_._~~~-'-~~.._~___..__~~-'-~~-
1 10 100 1000 

L 
t::.s 

Figure 11. Propagation Factors for 
,-;-- lit & 0 vgh 0 lis = 5 Y = 22.5 

25 



-90° 
Reid & 

arg T 

Leendertse 

0 
-360,'--~-===...:...:===-===,=o=--~'--~~-'-~~,o~o-::--~..._~~_._~,~ooo 

L 
6.s 

Leenderts.e 
0·5'--~-L..~~~...._~~'--~_._~~~...._~~'--~--'-~~~"'--~--' 

1 10 100 
L 

As 

Figure 12. Propagation Factors for 

v'gi1"" lit = 5 & y = 00 
o !:is 

26 

1000 



APPENDIX 

ASPECTS OF AN ANALYSIS OF A DIFFERENCE SCHEME PROPOSED BY M. B. ABBOTT 

The difference scheme detailed by equations (22) to (25) is written 
in three time levels, namely n.6t, (n + ~)6t and (n + 1)6t. For mathemat-
ical analysis of the scheme, it must be reduced to an equivalent two-level 
scheme. 

This is achieved by elimination of the (n + ~)6t time level betwee~ 
the four equations, yielding the following three equations, which thus 
represent an equivalent two-level scheme: 

n+l 
u. k -
J' 

+ 

n+l v. k -
J ' 

n + £:.A! [(hn+l u. k 
J ' 4.6S J +l ,k 

h 6t 2 
g 0 [ n+l 

2 (vj+l,k+l -
16.6s 

n+l 
(vj-1,k+l 

n v. k + 
J ' 
~ [ch~· 1 
4.6s J,k+l 

h 6t 

hn+l ) n hn i] + (h. 1 k -j-1, k J + ' j-1,k 

n+l 
vj+l,k-1) 

n 
(vj+l,k+l 

n 
- vj+l,k-1) 

= 0' 

hn+l ) n 
- hJ,k-1~ 0, + (h. k 1 = j 'k-1 J, + 

hn+l [ n+l n+l n n 0 n - h. k + 4.6S (uj+l,k - uj-1,k)+ (uj+l ,k uj-1,k) ' j ,k J' 

n+l n+l n n J 0. + (v · k 1 vj,k-1) + (v. k 1 - v. k-1) = J' + J ' + J ' 

(A. 1) 

(A. 2) 

(A. 3) 

Stability in the large (i.e. remote from the boundaries) is investi-
gated by assuming a Fourier series solution of equations (A.l) to (A.3) 
of form 

u = (A. 4) 

By using the validity of superposition and assuming a square differ-
ence grid of size 6s, the substitution yields an expression of form 

(A. 5) 
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where G is the amplification matrix, whose elements g .. are listed below: iJ 

h llt 2 
g 0 

2 4.Lls 

= 

= 

= 

= 

(1 -

(1 + 

-2 

(1 + 

-i 

(1 + 

-2 

(1 + 

h Llt 2 
g 0 

2 4. Lis 
h Llt 2 

g 0 

2 4. Lis 

h Llt2 
g 0 

2 4. Lis 
h L1t 2 

g 0 

2 4.Lls 

2~ 2. Lis 
h Llt 2 

g 0 

2 4.Lls 

h Llt 2 
g 0 

2 4.Lls 
h L1t 2 

g 0 

2 4.Lls 

. 2 ) sin a1 Lis 

h L\t2 2 g 0 
sin a1Lls)(l + 2 4.Lls 

h Llt 2 h Llt 2 
g 0 

(1 + 2 
4.Lls 

2 g 0 2 sin a1Lls) (1 + 2 sin a2Lls) 
4. Lis 

= 
(1 + 

• 2 g,L\t • A -i 2.Lls sina2us 

h Llt 2 
g 0 h lit2 

2 g 0 
sin a1 Lis) (1 + 2 2 4.Lls 
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4. Lis 

. 2 ) sin a2 Lis 



h lit 
-i 2 o- . 

2.lls sina1lls 
g31 = 2 2 gh lit 

sin2 a1lls) 
gh lit 2 

(1 + 0 (1 + 0 

2 sin a2lls) 2 4. lls 4. lls 

h lit 
-i 2 2~lls sino2lls 

g32 = 
h llt2 h lit 2 

(1 
g 0 . 2 

1 s) (1 + 
g 0 

sin2a 2lls) + 2 sin 2 4. lls 4. lls 

2 h llt 2 h llt2 gh lit 2 g 0 . 2 g 0 . 2 ) (1 - 0 sin a lls) (1 + 
4. lls2 1 2 sin a2lls 2 sin a1 lls 4. llS 4.llS 

g33 = 
h lit 2 2 gh lit 

(1 + 
g 0 . 2 ) (1 + 

0 . 2 ) 
2 sin a1lls 2 sin a2 lls 

4. lls 4.lls 

Because of the rather complex nature of this matrix, the behavior 
of its eigenvalues is conveniently investigated numerically. It can 
thus be shown that all eigenvalues A. satisfy the condition 

1, 

which satisfies the "von Neuman necessary condition" for stability 
(Reference 5) . 
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