U.S. Army

Coastal Engineering Research Center

A METHOD FOR

 CALCULATING AND PLOTTING SURFACE WAVE RAYSTECHNICAL MEMORANDUM NO. 17

A METHOD FOR CALCULATING AND PLOTTING SURFACE WAVE RAYS

by
W. Stanley Wilson

TECHNICAL MEMORANDUM NO. 17
U.S. Army Coastal Engineering Research Center

February 1966

Material contained herein is public property and nol subject to copypight. Reprint or re-publication of any of this moterial shall glve approprlote eredit to U.S. Army Coostal Engineering Research Center

COASTAL ENGINEERING RESEARCH CENTER
 Addenda and Errata for Technical Memorandum No. 17

1. Since this Technical Memorandum was approved for publication, the Coastal Engineering Research Center has used the computer program in cooperation with the U. S. Army Engineer District, Wilmington, to plot rays in the vicinity of Oregon Inlet on the Outer Banks of North Carolina.
2. A card deck containing the program is available on loan from CERC for copying by the borrower. This deck is identical to that in Aprendix C except for the following changes:

Page 35 Cards numbered RAYN 45 through RAYN 49 have been removed, and the following has been substituted:

396 GO TO $(397,397,404)$, MIT
Page 36 The following has been inserted between MOVE 11 and MOVE 12:

$$
\begin{aligned}
& I F(D / D Y-0.005) 204,204,203 \\
& 204 \mathrm{D}=\mathrm{DY} * 0.005
\end{aligned}
$$

3. The sample data in figure 6 will also be provided to enable determination of satisfactory operation. If satisfactory, the resulting plot will be identical to that in figure 10 ; the printed output for the fifth ray will be identical to that in figure 8.
4. It is recommended that a Calcomp reference manual be used in conjunction with this report. The Calcomp subroutines are not listed in Appendix C, but are included in the card deck which can be borrowed from CERC. If an IBM 7094 computer and a Calcomp $670 / 564$ ploting system are used, these sub.. routines will be the correct ones for use with this program. If another computer or plotter is used, other versions of the subroutines should be obtained.
5. Users may find little use for NUMCON and SHORE routines mentioned in Optional Computer Operations on page 11. If NSH $=0$ and $N C O=0$, no sounding card is needed, and these subroutines are not used.

ERRATA

Page ii, the LIST OF FIGURES should read:
$\begin{array}{lll}177 & \text { Bathymetry of Depth Grids } & \text { 44, } 45 \\ 6 & \text { Example of Input for Computer Program } & 43\end{array}$
Page 18, footnote 12 should read:
"... is given in figure 6 ..."
Page 26, the definition of $C O L=0$ should read:
"If COL $\ddagger 0$ on a ... If $\mathrm{COL}=0$, the plotter ..."
Page 29, the definition of NXCMAT should read:
"If NXCMAT $=0$, the ... if NXCMAT $\neq 0$, the ..."

FOREWORD

An important aspect of any wave refraction analysis is the determination of wave-ray patterns for a coastal area of interest. Manual construction is both difficult and time consuming - especially when waves with many periods and directions of travel must be followed over an irregular bottom.

An alternative to manual construction is presented in this report. A digital computer and an incremental plotter are used to calculate and plot wave rays.

This study was begun at the Virginia Institute of Marine Science, Gloucester Point, Virginia, under Contract DA-49-055-CIV-ENG-64-5 with the Coastal Engineering Research Center, U. S. Army Corps of Engineers, Washington, D. C. The study was completed and the report prepared at the Johns Hopkins University, Baltimore, Maryland, under the same contract. The author, W. Stanley Wilson, is a graduate student in the Department of Oceanography at the University.

NOTE: Comments on this publication are invited. Discussion will be published in the next issue of the CERC Bulletin.

This report was prepared under authority of Public Law 166, 79th Congress, approved July 31, 1945, as supplemented by Public Law 172, 88th Congress, approved November 7, 1963.

TABLE OF CONPENNLS

Page
LIST OF FIGURES ii
LIST OF SYMBOLS iii
ABSITRACT 1
INIRODUCIION 1
MEHTHOD 2
Initial Requirements 2
Selection of Grid Boundaries 2
Selection of Grid Interval 3
Selection of Depth Values 6
Selection of Ray Origins 8
Computer Operations 9
Optional Computer Operations 11
Plotting Operations 12
DISCUSSION 12
Computers Compatible with the Program 12
Plotting Systems Compatible with the Program 14
Recommendation for a Field Test 14
SUMMARY 14
ACKNOWL FEDGEMENTS 16
REFERENCES 17
APPENDIX A. Description of Computer Program 18
APPENDIX B. Principal Variables Used in Program 26
APPENDIX C. Program Listing 30
APPENDIX D. Example of Computing and Plotting Operations 41

LIST OF FIGURES

Figure No.

1
Orientation of Plot Border and Label. 13
The Calcomp 564 Plotter. 15
Generalized Flow Chart of Computer Program. 19
Generalized Diagram of Input for Computer Program. 20
Location of Depth Grids. 42
Bathymetry of Depth Grids. 44,45
Example of Input for Computer Program. 43
Example of Output from Computer Program (NPT = 1) 46
Example of Output from Computer Program $(N P T=0)$. 47
Ray Pattern $\left(T=4 \mathrm{sec}, A=120^{\circ}\right)$ on Small Grid. 48
Ray Patterns ($T=4 \sec ; A=120^{\circ}, 180^{\circ}$,$210^{\circ}, 240^{\circ}$) on Large Grid.49Rays ($T=6 \mathrm{sec}$) Refracted from a Point onLarge Grid.50,51Ray Pattern $\left(T=6 \mathrm{sec}, A=180^{\circ}\right)$ on LargeGrid.52,53Ray Pattern ($T=6$ sec, $A=195^{\circ}$) on LargeGrid.54,55
15
Ray Pattern ($T=6$ sec, $A=210^{\circ}$) on Large Grid.

Page No.

LIST OF SYMBOLS ${ }^{1}$

A	direction of ray travel
B	a given angle
c	wave speed
D	incremented distance between successive calculation points along a wave ray
g	acceleration due to gravity
H	wave height
h	water depth
h_{0}	maximum water depth at which refraction begins to be important for a group of sinusoids
K	ray curvature
L	wave length
I_{d}	deep-water wave length
T	wave period
W	conversion factor relating $\partial \mathrm{h} / \partial \mathrm{n}$ and $\partial \mathrm{C} / \partial \mathrm{n}$
α_{1}, α_{2}	arrows used in establishing grid boundaries
δ	a small distance used in initial positioning of grid boundaries
$\partial / \partial n$	partial with respect to the direction normal to a wave ray

[^0]A METHOD FOR CALCULATING AND PLOTTIING
SURFACE WAVE RAYS

by
W. Stanley Wilson
The Johns Hopkins University Baltimore, Maryland

ABSTRACT

A method using a digital computer and an incremental plotter for calculating and plotting wave rays is described. Given a grid of depth values, the initial position of a wave ray, and the direction of travel and the period of the wave, successive points along the ray path are calculated. For each point on the path, water depth and bottom slope are estimated from the depth grid by linear interpolation, wave speed and curvature are computed according to classic theory, and the location of the next successive point is approximated by an iteration procedure. The numerical results may be plotted automatically. An example of the results, obtained from an application of the method to Virginia Beach, Virginia, is presented.

Unless the bathymetry of an area is unusually smooth, this method calculates and plots wave rays faster than they can be manually constructed.

INTRODUCTION

As waves move toward a beach, their crests approach parallelism with the shoreline and their rays approach perpendicularity. Any wave-refraction analysis requires the determination of waveray patterns; however, if the bathymetry is irregular, the determination of the ray patterns--even for waves with a single period and direction of travel--can be both cumbersome and tedious.

Plerson, Neumann, and James (1955) explain how to estimate the effect of refraction on a continuous wave spectrum. They approximate the deep-water spectrum by a finite sum of discrete longcrested sinusoids, refracting each separately and recombining them to approximate the refracted spectrum. A cursory inspection of an application of their method (Pierson, Tuttell, and Woolley, 1953) reveals the extensive labor required of which by far the greater part is the construction of ray patterns for single sinusoids.

The method which they use to construct the rays is the manual method of Arthur, Munk, and Issacs (1952).

An altemative to manual construction is presented in this report. A digital computer and an incremental plotter are used to calculate and plot wave rays. Important references for the basic wave-refraction theory are Munk and Arthur (1952) and Dorrestein (1960). The computer program itself has evolved from Griswold and Nagle (1962), Mehr (1962), Griswold (1963), Harrison and Wilson (1964), and Wilson (1964).

MEIHOD

Initial Requirements. Let the coastal area of interest be specified and the group of sinusoids, characterized by their periods and directions of travel $\left\{\mathrm{I}_{1}, \mathrm{~A}_{1}\right\}$, be given. It is necessary that a chart including the coastal area of interest and containing adequate bathymetric information be available.

Selection of Grid Boundaries. A rectangular X,Y-coordinate grid, whose boundaries also form a rectangle, is imposed on the chart of the region. The boundaries are identified by the lines $X=0, X=A M M, Y=0$, and $Y=A N N$. The position to be selected for these lines depends on the maximum water depth at which refraction begins to be important for the group of sinusoids, the given directions of travel for the group of sinusoids, and the bathymetry and coastal area of interest. Six examples, illustrated in sketches 1 through 6, will show how these lines are initially positioned.

The seaward extent of the regior of analysis is approximated by drawing on the chart the contour whose value, h_{c}, represents the maximum water depth at which refraction begins to be important for the group of sinusoids. This depth, h_{c}, equals one-half the deepwater wave length, $I / 2 I_{d}=2.56 T^{2}$, of the longest-period sinusoid in the group. If an island or reef lies seaward from the $h_{0}-$ contour (sketch 3), the seaward extent of the region of analysis must be extended to include it and the surrounding water whose depth is less than h_{c}.

The lateral extent of the region of analysis is approximated by considering the given directions of travel $\left\{A_{i}\right\}$ in conjunction with the ho-contour. Arrows, α_{1} and α_{2}, with the bounding directions for the set $\left\{A_{1}\right\}$ are dram on the chart. Usually, α_{1} and α_{2} are pointed toward the area of interest. The exception (sketch 4) occurs when the area of interest lies in a bay, in which case α_{1} and α_{2} are directed toward the headlands. The lateral extent
of the region of analysis must include the intersections of α_{1} and α_{2} with the h_{c}-contour; and, if an intersection lies on an island (sketch 3), the lateral extent must be extended to include it and the surrounding water whose depth is less than h_{c}.

The landward extent of the region of analysis must, of course, include the beach of the area of interest. When the area of interest lies on a small island (sketch 6), the region of analysis must include all water of depth less than h_{c} in the vicinity of the island.

When the extent of the region of analysis has been determined, the grid boundaries, $X=0, X=A M M, Y=0$, and $Y=A N N$, are positioned initially. Generally the Y-axis is established parallel with the direction of the h_{c}-contour; however, when the area of interest lies on a promontory (sketch 5), the Y-axis is parallel with a line connecting the intersections of α_{1} and α_{2} with the h_{c}-contour. In each of the sketches, the shoreline of the area of interest and that portion of the h_{0}-contour between α_{1} and α_{2} must lie a distance at least equal to δ inside the grid boundaries. ${ }^{2}$ Note that the X -axis increases positively seaward from the area of interest and that the X, Y-coordinate system is right-handed; hence, all coordinate values are positive.

Selection of Grid Interval. Two opposing criteria govern the selection of the grid interval. The first requires that each grid cell be so small that its bottom topography can be approximated by a plane surface which need not necessarily be horizontal. The second requires that each grid cell be so large that the total number of grid points, which are the coordinate intersections, does not exceed 20,000. ${ }^{3}$ Any cell size which meets both requirements can establish a grid interval satisfactory for the program. The number of feet per grid interval is needed for computations.

When both criteria are satisfied, the initially selected position of the grid boundaries is adjusted to make the distance
2δ, a small distance, serves to position the grid boundaries initially so that the grid interval can be selected. δ will then be set equal to two grid units.

Tinis value depends on the storage capacity of the IBM 7094 computer. See the DISCUSSION section for storage requirements of the program when used with other computers.

Sketch 1.

Sketch 2.

Sketch 5.
Sketch 6.

LEGEND

δ equal to two grid units and AMM and ANN integers. ${ }^{4}$ Parallels and perpendiculars, whose intersections are the grid points, are ruled on the chart. The directions of travel $\left\{A_{i}\right\}$ for the group of sinusoids are expressed in degrees with respect to the direction of increasing X, as finally established (sketch 7).

Sketch 7.
If both criteria cannot be satisfied with a single grid, two overlapping grids--each including the area of interest--can be used (sketch 8). Each must satisfy both criteria. ${ }^{5}$

Selection of Depth Values. A Z-axis is established vertically with $Z=0$ at sea level and increasing positively downward so that the X, Y, Z-coordinate system is left-handed. Any unit may be used to measure water depth; however, the program needs the conversion factor to feet (DCON). For example, if depths are given in meters, DCON $=3.28(\mathrm{ft} / \mathrm{m})$. Should the depths be given in feet, $\mathrm{DCON}=$ 1 ($f t / f t$).

4 The computer program requires that $M M=A M M+I$ be an integral multiple of 10. This requirement can be changed by altering the controlling input format statement.

5 If more than two grids are used, the rays can be transferred from one grid to the other. There is no provision for this operation in the present computer program.

Sketch 8 .
Estimate from the chart the water depths at every grid intersection where the depth is non-negative. Record these depth values. Negative depth values are associated with grid points which lie on land. They are assigned as discussed below. Draw depth contours in a strip extending at least three grid units seaward from the shoreline. On the land draw the reflections of these contours in the
shoreline (sketch 9). The "depth" assigned to each reflected contour is the negative of the water depth associated with the contour being reflected. From these land contours, negative depth values are estimated and recorded for every grid point lying two grid units or less from the shoreline. Depth values need not be considered for grid points further inland.

--.-- - Reflection of contour in shoreline

Sketch 9.
Selection of Ray Origins. To determine the ray pattern for a given sinusoid, origin points must be specified for individual rays. A segment of a single wave crest of the sinusoid (T_{1}, A_{1})--represented by a straight line-is drawn on the chart in deep water ($h>1 / 2 I_{d 1}$). Origin points for the rays are selected along this crest, and the coordinate values for each point are recorded (sketch 10). 6 This method of choosing wave-ray origins is used if the ray pattern for a single sinusoid having a fixed direction of travel and approaching the area of interest from the sea is wanted.

[^1]

Sketch 10.
If a group of rays converging upon a single shallow-water point from many directions is desired, then the reverse tracing procedure (Dorrestein, 1960) is used. For the point of interest, a given T, and a set of angles $\left\{B_{1}\right\}$ at the point, the ray paths radiating from the point are traced (sketch 11). When the rays reach deep water, their directions give the directions of travel $\left\{A_{1}\right\}$ corresponding to the selected angles $\left\{B_{1}\right\}$.

Computer Operations. 7 The computer starts with a ray origin and approximates the path by calculating successive points. For this calculation the computer needs the array of depth values, the wave period (T), the direction of travel (A), and the coordinates of the initial position (X, Y). At each point a plane is fitted by

7 All operations described in this section are performed by the computer.

least-squares to the four closest depth values. Water depth (h) and the gradients $\partial h / \partial X$ and $\partial h / \partial Y$ are obtained from the plane. The change in depth normal to the ray ($\partial \mathrm{h} / \partial \mathrm{n}$) is found from

$$
\frac{\partial h}{\partial n}=-\frac{\partial h}{\partial \bar{X}} \sin A+\frac{\partial h}{\partial \bar{Y}} \cos A
$$

Wave speed (C) and $\partial C / \partial n$ are calculated with

$$
C=\frac{g T}{2 \pi} \tanh \left(\frac{2 \pi h}{C T}\right)
$$

and $\quad \frac{\partial C}{\partial n}=\frac{\partial h}{\partial n} \cdot W$
where ${ }^{8}$

$$
W=\frac{I}{k^{\prime}} \cdot\left[\frac{1}{\frac{C k^{\prime \prime}}{1+k^{\prime \prime} C}+\frac{C k^{\prime \prime}}{1-k^{\prime \prime} C}+\ln \left(1+k^{\prime \prime} C\right)-\ln \left(1-k^{\prime \prime} C\right)}\right]
$$

[^2]In this expression $k^{\prime}=T / 4 \pi$ and $k^{\prime \prime}=2 \pi / g^{T}$. Ray curvature (K) is computed with

$$
K=\frac{I}{C}\left(\frac{-\partial C}{\partial \mathrm{n}}\right) .
$$

Denoting the current point $\left(P_{n}\right)$ and the next succeeding point $\left(P_{n}+1\right), P_{n+1}$ is reached from P_{n} by iterating with
and

$$
\begin{aligned}
& \Delta A=\left(K_{n}+K_{n+1}\right) D_{n} / 2 \\
& A_{n+1}=A_{n}+\Delta A \\
& \bar{A}=\left(A_{n}+A_{n+1}\right) / 2 \\
& X_{n+1}=X_{n}+D_{n} \cos \bar{A},
\end{aligned}
$$

$$
Y_{n+1}=Y_{n}+D_{n} \sin \bar{A}
$$

where D_{n}, the incremented distance between points, is given by the ratio h_{n} / L_{d}. (See Griswold and Nagle, 1962; Griswold, 1963.)

Computations stop when the ray reaches the shore or a border of the grid. The coordinates of the points defining the ray path Just completed are recorded on a magnetic tape. The process is repeated for each ray origin specified. Later, the information contained on this tape is used by the plotter to draw the rays.

Optional Computer Operations. The computer may be made to perform any or all of three optional operations. The first calculates the coordinates along a ray of the positions occupied by a wave crest at equal time intervals (CIN). If the value of CIN is chosen so that $C I N / T=M$ where M is an integer, the result of the calculation can be interpreted as the positions of every Mth crest in a sinusoidal wave train.

The second operation obtains coordinate values of points on the depth grid where the linearly-interpolated depth equals zero. This option, if exercised, provides the plotter with data from which it can draw an approximate position of the shoreline. 9

The third operation enables the plotter to enter selected soundings on the ray diagram. If a judicious selection of water

[^3]depths is made, an idea of the bathymetry of the region of analysis can be formed directly from the ray plot without referring to the chart of the region.

The results of these optional operations are recorded on the same magnetic tape used for the ray calculations.

Plotting Operations. The plotter transforms the calculations recorded on the magnetic tape into a series of plots. Each plot shows ray paths and is bordered and labeled. If the options have been exercised, the plot will also show travel-time marks, the shoreline, and soundings. (See figures 10-15 in APPENDIX D.)

The maximum dimensions of the plotting surface are 120 feet by 29.5 inches. The position of the border and label of each plot is controlled by AMM, ANN, and IT, as shown in figure $1 .{ }^{10}$ AMM and ANN have already been determined by the depth grid. HT must be chosen and may be set equal to its maximum value of 28 inches1.5 inches less than the respective plotting dimension. On the other hand, it may be chosen to make the scale of the plot (SCL) equal to a specified value. In the latter case, $H T=$ GRID. SCL • ANN • 12, where GRID equals the number of feet per grid interval.

Before beginning a series of plots, the plotter pen is set (15.0 - HT/2) inches from the bottom of the roll of paper where HT is the height selected for the first plot. This establishes the origin, as shown in figure 1 .

DISCUSSION

Computers Compatible with the Program. Although the program for calculating wave rays was written in Fortran II for the IBM 7094° computer, any computer operating with the Fortran monitor system and satisfying the memory requirement can be used. Approximately 11,000 positions are required for the data (exclusive of the depth grid) and the program. In addition, one memory position is required for each coordinate intersection on the depth grid.
${ }^{10}$ These are the dimensions for the Calcomp 564 plotter. See the DISCUSSION section for the dimensions if other plotters are used.

Figure 1. Orientation of Plot Border and Label.

Plotting Systems Compatible with the Program. The Calcomp $670 / 564$ plotting system was used. This plotting system, produced by California Computer Products, Inc. ${ }^{11}$, consists of a Model 670 magnetic-tape unit and a Model 564 plotter. (See figure 2.) The tape unit simultaneously reads information from the magnetic tape and instructs the plotter in graphing the information. The drum-type plotter translates information on the tape into deflections parallel with the X-axis by rotating a drum and deflections parallel with the Y-axis by moving a pen carriage along a track parallel with the axis of the drum. A given line is approximated with this system by movements of the pen in any of eight directions in .005-inch steps.

Calcomp makes other tape units and plotters which are compatible with the system. Among the tape units are Model Numbers 570, 670, 750, 760, and 770; among the plotters are 502, 563, 564, and 763. With the exception of the 502 plotter, whose plotting dimensions are 31 inches by 34 inches, the plotting dimensions of all these plotters are 120 feet by 29.5 inches. These models differ in plotting speed, step size, number of basic directions, and ability to read various densities of magnetic tape.

Recommendation for a Field Test. A practical field test of the method described in this report could be performed if it were possible to locate a coastal area having a well-defined swell. A hydrographic survey would be necessary if adequate bathymetric information were not available. Aerial photography could provide the deep-water wave length and the crest pattern for the swell. It would then be possible to compute the period of the swell and to draw a ray pattern. A depth grid would be prepared, and coordinate values obtained for initial points of rays. Ray paths would be computed, plotted, and compared with those obtained from the photography.

SUMMARY

Unless the bathymetry of an area is unusually smooth, the method described in this report calculates and plots wave rays faster than they oan be constructed manually. The method requires the availability of a compatible computer and plotting system and the preparation of a grid of depth values for each region of analysis.

11305 Muller Avenue, Anaheim, California, 92801.

Figure 2. The Calcomp 564 Plotter.

ACKNOWLEDGEMMENTS

Guidance and advice were provided by the author's major professor, Dr. Blair Kinsman, during the course of this study. Programing assistance was obtained from Miss Patricia M. Powers and Mr. Willard Graves of the Homewood Computing Center, the Johns Hopkins University, and from Mr. Kudi Saenger of the National Oceanographic Data Center. Mr. Saenger and Mr. John Chakalis, also of N.O.D.C., arranged free use of the plotting system.

California Computer Products, Inc., granted permission to include in this report a summary of the Calcomp subroutines and a listing of a modified version of their AXIS subroutine. This information was taken from their Reference Manual, copyright 1963.

REFFERENCES

Arthur, R.S., W.H. Munk, and J.D. Issacs. 1952. The direct construction of wave rays. Trans. Am. Geophys. Un. 33 (6) 855-865.

California Computer Products, Inc. 1963. Scoop Programming System for Digital Incremental Plotters: Reference Manual. Anaheim, Calif. (revised Dec. 1964), 94 pp.

Dorrestein, R. 1960. Simplified method of determining refraction coefficients for sea waves. Jour. Geophys. Res. 65 (2) 637-642.

Griswold, G.M. 1963. Numerical calculation of wave refraction. Jour. Geophys. Res. 68 (6) 1715-1723.

Griswold, G.M. and F.W. Nagle. 1962. Wave refraction by numerical methods. Mimeo. Report, U.S. Navy Weather Res. Facility, Norfolk, Va., 19 pp .

Harrison, W. and W.S. Wilson. 1964. Development of a method for numerical calculation of wave refraction. Coastal Eng. Res. Center, U.S. Army Corps of Eng., Tech. Mem. No. 6, 64 pp.

Mehr, E. 1962. Surf refraction: computer refraction program. N.Y.U., Coll. of Eng., Statistical Lab., Final Report prepared for the Navy Weather Res. Facility, Norfolk, Va., under contract N189(188)5411A, 21 pp .

Munk, W.H. and R.S. Arthur. 1952. Wave intensity along a refracted ray, in Gravity Waves. U.S. Nat'l. Bureau of Standards, Gircular 521, pp. 95-108.

Pierson, W.J., Jr., J.J. Tuttell, and J.A. Woolley. 1953. The theory of the refraction of a short crested Gaussian sea surface with application to the northern New Jersey coast. Proc. 3rd Conf. on Coastal Eng. (J.W. Johnson, Ed.), pp. 86-108.

Pierson, W.J., Jr., G. Neumann, and R.W. James. 1955. Practical Methods for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics. U.S. Navy Hydrographic Office Pub. No. 603 (reprinted 1960), 284 pp.

Wilson, W.S. 1964. Improving a method for numerical construction of wave rays. Masters Thesis, College of William and Mary, Williamsburg, Va., 60 pp .

APPENDIX A.

Description of Computer Program

The computer program for calculating and plotting wave rays consists of a main program and sixteen subroutines. The main program and twelve of the subroutines are included in the generalized flow chart of the program as shown in figure 3. Definitions of variables used in this section are found in APPENDIX B.

1. MAIN PROGRAM.

MAIN controls the operation of the computer program and receives all input. Any given operation of the computer program entails the preparation of a magnetic tape containing instructions for the plotter to produce one or more plots--each plot to contain, for a specified wave period and depth grid, a group of refracted rays whose origins and initial angles were given. The input, when punched on cards and arranged for a given operation of the computer program, appears physically as is show in figure $4 .{ }^{12}$

For the first plot, MAIN calls TITLE, NUMCON, and SHORE subroutines to prepare the general features of the plot. For each ray, MAIN calls RAYN to compute the path. When all paths have been computed for the first plot, the cycle is repeated for each additional plot.

2. TITLE.

TITLE produces the information necessary for the plotter to write the label and draw straight-line borders for each plot. The label includes a project number, date, plot number, and wave period. Depending on the value of NAX, TITLE may call AXIS in order to prepare instructions for drawing and calibrating the X - and Y-axes.

3. AXIS. ${ }^{13}$

AXIS prepares instructions so that the plotter can draw, calibrate, and label the X - and Y-axes. Calibrations are located

[^4]

Figure 3. Generalized Flow Chart of Computer Program. SYMBOL, NUMBERR, PIT670, and BCDFL not included. (-m-moptional subroutines)

Give origin and initial angle for each ray

Gives sounding values to be drawn on plot

Give water depths
Specifies depth grid, number of rays, wave period, and

Gives number of plots to be prepared (in this figure, it equals two)

Figure 4. Generalized Diagram of Input for Computer Program.
at integral values along the axes. In this modification of AXIS, which is listed in APPENDIX C, the product of DY and SIZE must be an integer. For information concerning Calcomp's version of AXIS, see their Reference Manual (California Computer Products, Inc., 1963).
4. NUMCON.

NUMCON is called by MAIN to draw specified sounding values on a particular plot. NGO gives the number of sounding values, and each value is represented by an element of the CTOUR array. For each integral value of Y where $1 \leqq Y \leqq A N N-1$ and for each CTOUR value, NUMCON prepares the necessary instructions for the plotter so that the value of CTOUR will be drawn at those positions on the plot where the linearly-interpolated value of CMAT equals the value of CTOUR. This subroutine cannot be used unless
$\left.\frac{\partial h}{\partial \mathrm{X}}\right|_{\mathrm{h}=0} \geqq 0$ for the entire depth grid. When NCO ≤ 0, NUMCON is not called, and a sounding card is not used in the input.
5. SHORE.

If NSH $\neq 0$, SHORE is called by MAIN to prepare the necessary plotting instructions so that the shoreline can be drawn. Coordinates of points, where the linearly-interpolated value of CMAT equals zero, are calculated. The shoreline, when plotted, consists of a line connecting these points. This subroutine cannot be used unless $\left.\frac{\partial h}{\partial \bar{X}}\right|_{h=0} \geqq 0$ for the entire depth grid. If NSH $=0$, SHORE is not called.

6. RAYN.

RAYN is called by MAIN to determine the path of each wave ray. RAYN calls MOVE to obtain the coordinates of each point along a ray. After each point is located, RAYN first calls PCD to obtain PCTDIF and then calls STORE to store the coordinates of the point. After all points have been computed, RAYN calls DRAW so that the coordinates of the points can be transformed into plotting instructions.

Computations of new points along a ray terminate when one of the following five conditions is encountered. Listed with each is
the message that is produced for the printed output.
(1) $\operatorname{MIT}=3, \quad$ CURVATURE APPROXIMATIONS NOT CONVERGING.
(2) NGO $=2, \quad$ RAY REACHED GRID BOUNDARY.
(3) $N D P=2, \quad$ RAY FEACHED SHORE.
(4) (D/DY) ≤ 0.005, RAY REACHED SHALLOW WATER.
(5) MAX + KCIN \geqq MMAX, DIMENSION OF OUTPUTT-ARRAYS EXCEEDED.

RAYN outputs information in either of two formats, depending on the value of NPT. If NPT $\neq 0$, MAX, X, Y, ANGLE, TIME, PCTDIF, DEP, and D are output for each point along a ray; if $N P T=0, X, Y$, ANGLE, and TIME are output only for the origin and terminal points of a ray. An example of each format is given in figures 8 and 9 in APPENDIX D.
7. MOVE.

MOVE is called by RAYN to calculate the coordinates of the next point along a wave ray. D is computed, and the curvature used in getting the present point is used to approximate the location of the next point. MOVE then calls SURFCE to obtain the curvature at the approximated position of the next point. The average of the curvatures at the present and new points is taken and is used to obtain a second approximation of the next point. This procedure continues for a maximum of 20 times or until two successive curvature averages differ by a factor less than $0.00009 / D$. If this convergence occurs, the new point is accepted and $M I T=1$. If the average curvatures used on the 18 th and 20th trials have converged to less than $0.00009 / D$, the curvature used to obtain the new point is the average of the curvatures used on the 19th and 20th trials. This is done because the curvature approximations have converged to two values. $\mathrm{MIT}=2$ in this situation and, if NPT $\neq 0$, causes a message CURVATURE AVERAGED to appear with the printed output. If neither convergence condition is satisfied, $M I T=3$ and no new point is accepted.

Before returning to RAYN, the coordinates of the new point are tested to see if the point lies one-half grid unit from the edge of the grid. If this is true, NGO = 2; if this is not true, $N G O=1$.

8. SURFCE.

SURFCE is called by MOVE to calculate curvature for a specific point along a wave ray. The four closest CMAT values are stored in $\mathrm{C}(4)$, and the coefficients, $\mathrm{E}(3)$, of the plane fitted to $C(4)$ are calculated. DEP is obtained by interpolating on this plane. NDP = 1 if $D E P>0$; NDP $=2$ if $D E P \leqq 0$. If NDP $=2$, control is transferred back to MOVE. Otherwise, VELCTY is called to obtain CXY. If ($\mathrm{DEP} / \mathrm{WL}$) >0.5, $\mathrm{NFK}=1$ and curvature, $\mathrm{FK},=0$; if ($\mathrm{DEP} / \mathrm{WL}$) $\leqq 0.5$, NFK $=2$ and $F K$ is computed after calling CONDER to obtain the partial of wave speed normal to the ray.

2. VELCTY.

VELCTY is called by SURFCE each time a wave speed, CXY, is to be obtained. If $N F K=1$, CXY $=$ CXXO. If $N F K=2$, the expression on page 10 is used to obtain CXY.
10. CONDER.

CONDER is called by SURFCE to convert the partial of water depth with respect to the direction normal to a ray into the partial of wave speed with respect to the normal. The expression on page 10 is used.

11. PCD.

PCD is called by RAYN to compute PCTDIF for a given point along a ray. For each of the four depth values, C, closest to the point, PCD obtains the percent difference between C and the corresponding point on the plane fit to the four C's. PCTDIF represents the maximum of these four differences.

12. STORE.

STORE is called by RAYN after each point along a ray has been calculated. The X,Y-coordinates are stored in the AX and AY arrays, respectively. If CIN >0, the X, Y-coordinates representing the position of a wave crest at equal time intervals along a ray are calculated and similarly stored in AX and AY. If CIN $\leqq 0$, these crest-position coordinates are not calculated.
13. DRAW.

DRAW is called by RAYN after a. 11 points have been calculated for a given ray so that the coordinates of these points can be transformed into plotting instructions. In order to minimize plotting time, odd-numbered rays are plotted beginning with the initial point; even-mumbered rays are plotted beginning with the terminal point. Note the description of FAN in APPENDIX B to see how rays are numbered. If CIN >0, marks are placed along a ray to designate crest positions; if $C I N \leqq 0$, these marks are not entered.
14. SYMBOL. ${ }^{14}$ CALU SYMBOL (X, Y, HEIGHP, BCD,THETA, \mathbb{N})

This subroutine is used to prepare plotter instructions for drawing characters where:
(1) X,Y are the coordinates of the lower, left-hand corner of the first character to be drawn,
(2) HEIGHP specifies the character height and spacing in inches where the spacing between the lower left-hand corners of two successive characters equals $6 / 7 \mathrm{HEIGHI}$,
(3) BCD is the string of characters to be drawn and is written either as Hollerith information or as a variable containing alphanumeric information,
(4) THENA is the line angle where THELA $=0$ for characters to be drawn from left to right and THELA $=90$ for those to be drawn from bottom to top, and
(5) N is the number of characters to be drawn.
15. NUMBER. CAJU NUMBER (X,Y,HEIGHT, FLOAT, THETA, N)

This subroutine is used to prepare plotter instructions for drawing floating-point numbers where:

[^5](1) $\mathrm{X}, \mathrm{Y}, \mathrm{HEIGHP}$, and THETA are the same as for SYMBOL,
(2) FLOAT is the floating-point number to be drawn, and
(3) $-1 \leqq N \leqq 11$ where N gives the number of decimal places to be drawn. For -1 and 0 , no decimal places will be drawn; however, -1 suppresses the decimal point and 0 does not.

16. PLT670.

This subroutine has two entry points used by the computer program:

CAL工 PLOTS (BUFHER(N),N)
CALC PLOT (X,Y,IPENV)
The first is used to initialize plotting operations by reserving an output buffer region for plotter information. The limits on the dimension of this region are $120 \leqq N \leqq 180,000$, where it is reconmended that N be at least 2000.

The second entry point is used to issue instructions to move the pen to a new location (X, Y) specified in inches, where the pen will be up if IPEN $=3$ and down if IPEN $=2$. If IPEN <0, the call is an end-of-plot entrance. This call is used to issue instructions to establish a new origin at the point to which the pen is to move. During the plotting operation, the only time that plotting can be stopped is after the pen has moved to a newly established origin. If IPEN $=999$, a terminating mark is written on the tape.
17. BCDFL

This subroutine is used internally by the Calcomp subroutines to convert fixed- and floating-point numbers into BCD.

APPENDIX B.

Principal Variables Used in Program

A	In the input: the initial ray angle measured in degrees relative to the direction of increasing X; internally in the program: the ray angle in radians for a specific caloulation point along a ray. Note sketch 7 on page 6 to see how A is measured.
AMM, ANN	Maximum values of X and Y, respectively, for a particuler depth grid.
ANGIE	The ray angle in degrees for a specific calculation point along a ray.
AX, AY	Two arrays used for temporary storage of output information. The dimension of these arrays is specified by MMAX.
BUFFFER	An array used for temporary storage of plotter output information. Limits on the dimensioning of this array are given in the description of PLT670 in APPENDIX A.
C(4)	The four values of the depth grid which are closest to a specific calculation point along a ray.
CIN	If CIN >0 : in the input and output, the travel time in seconds between successive crest marks along a ray; internally in program, the same time as above but measured in hours. If $C I N=0$: no crest marks will be placed along rays.
cmat	The array representing the grid of depth values. The dimension of this array is given by MM,NN.
COL	If COT $=0$ on a particular ray card, the plotterwhen plotting this information-will pause before that ray is plotted. If COL $\neq 0$, the plotter will not pause. This pause is called an "end-of-plot entrance" and is discussed in the PLT670 section of APPENDIX A.
CTOUR	An array specifying the sounding values in feet which are to be drawn on a particular plot. NCO gives the number of these values.

CXXO Deep-water wave speed in feet per second.
CXY Have speed in feet per second at a specific calculation point along a ray.

D The incremented distance in grid units between successive calculation points along a ray.

DATE1, DATE2 The date given in the form $x x / y y / z z$, where $x x$ is the day, yy the month, and $z z$ the year.

The conversion factor necessary for the product of DCON and CMAT to be a depth measured in feet.

The water depth in feet at a specific calculation point along a ray.

Before CONDER is called: the partial of depth with respect to the direction normal to a ray (feet per grid unit); after CONDER is called: the partial of ware speed with respect to the direction normal to a ray (feet/second per grid unit).

DY The number of grid units per inch for a specific plot.
$E(3) \quad T h e$ coefficients of the equation of the plane fitted to the four closest depth values around a specific calculation point along a ray.
$\operatorname{EM}(4,3) \quad$ This and the $S(3,3)$ array are used in obtaining $E(3)$. (See Harrison and Wilson, 1964, Appendix C for the derivation of these arrays.)

FAN $\neq 0$ (for rays originating from a point) causes rays to be numbered at their terminal points; $F A N=0$ (for rays originating from points spaced along a crest) causes their origin points to be numbered.

Ray curvature (grid units ${ }^{-1}$).
The number of feet per grid unit for a particular depth grid.

HT
The height in inches for a specific plot.
$I, J \quad$ Indices for $\operatorname{CMAT} ; I=X+I, J=Y+I$.

KCIN	The number of crest marks calculated along a ray which do not coincide with calculation points used for plotting the ray path.
KREST	The number of crest marks calculated along a particular ray.
LI	LI $+5=$ the number of lines printed per page. The value of LI depends on the page height and printer being used by the computing center running the program.
MAX	The serial number of a specific calculation point along a ray.
MIT	MIT $=1$ if the curvature approximations in MOVE have converged to one value; MIT $=2$ if they have converged to two values; MIT = 3 if they have not converged.
MM, NN	The dimensions for a particular depth grid.
MMAX	The dimension of the $A X$ and $A Y$ arrays.
MXPLOT	The number of plots to be prepared for a given operation of the computer program.
N	The ray number.
NAX	If NAX $=0$, the borders of a given plot will be uncalibrated; if NAX $\neq 0$, the borders will be calibrated with integral values of grid units.
NCO	If NCO is an integer where $1 \leqq N C O \leqq 5$, it specifies the number of CTOUR values to be input; if NCO $\leqq 0$, no CTOUR values will be input and no sounding card is needed.
NDP	If $\mathrm{DEPP}>0, \mathrm{NDP}=1$; if $\mathrm{DEPP} \leq 0, N D P=2$.
NEX	If ($\mathrm{DEP} / \mathrm{WL}$) >0.5, NFK $=1$; if ($\mathrm{DEP} / \mathrm{WL}$) ≤ 0.5, NFK $=2$.
NOR	The number of rays to be calculated for a given plot.
NPLOT	The plot number.
NPT	This determines the format of the printed output; see the discussion of RAYN in APPENDIX A.
NSH	If NSH $\neq 0$, the shoreline will be drawn on a particular plot; if NSH $=0$, it will not be drawn.

NXCMAT	If NXCMAT $\neq 0$, the depth grid will be input for a particular plot; if NXCMAT $=0$, the depth grid used for the previous plot will be used again.
PCTDIF	An estimate of how well the linear-interpolation surface fits the four depth values which are closest to a specific calculation point along a ray. See the description of PCD in APPENDIX A.
PROJCT	Six digits of alphanumeric information used to identify each operation of the computer program.
RT	The width in inches of the plot.
$s(3,3)$	See EM.
SCL	The scale of the plot.
SCLI	1/SCL 。
TIME	The total time in hours necessary for a wave crest to travel from a ray origin to a specific calculation point of the same ray.
$T T$	The wave period in seconds.
WL	The deep-water wave length in feet.
X, Y	The coordinates of a specific calculation point along a ray.

APPGNDIX C.

Program Listing


```
    399 CONTINUE
        T (0.0.0.0,
        CALL PLOT (0.0.999)
        WRITE UUTPUT TAPE 6,9999
    MAIN
        CALL PLOT (0,0,999)
    MAIN 61
    FORMAT (I7HITHIS IS THE END.)
    FALIS THE ENO.) MAIN 63
        EXIT
        END
        LISTa
        LABEL
        SUBROUTINE TITLE (NPLOT,NAX,SCLI,HT)
    TIJLE 01
        TME TITLE TITLE O2
        DIMENSICN S(3,3),EM(4,3),E(3),YVW(3),CMAT(100,100),C(4), BUFFER(2OOTITLE O3
    10),AX(1000),AY(1000),CTOUR(5) TITLE 04
    COMMON S,EM,E,YVW,CMAT,C,BUFFER,AX,AY,CTOUR,PROJCT,D,TT,CXY,MAX,GRTITLE OS
    IID,UCON,DEP,WL,AMM,ANN,DY,FAN,DATEL,DATE2,CIN TITLE O6
        IF (NPLGT - I) 701,701,700 UITLE O7
    700 CALL PLGT (RT+6.0,(YHT-HT)/2.0,-3) IITLE O8
    701 RT = AMM/OY
    XNPLOT = NPLOT
    CALL SYMBOL 1-1.5,0.0,0.21,81HPROJ.NO. , PLOT- NO. TITLE 11
    1,SCL = 1/ , TT= CIN= ,90.,81), IITLE I2
    CALL NUMBER (-1.5,13.50,0.21,CIN*3600.,90.,-1) TITLE 13
    CALL NUMBER (-1.5,11.16,0.21,TT ,90.,1) TITLE 14
    CALL NUMBER (-1.5,08.46,0.21,SCLI,90.,-1) TITLE 15
    CALL NUMBER (-1.5,06.12,0.21,XNPLOT,90.,-1) IITLE I6
    CALL SYMBUL (-1.5,02.88,0.21,DATE1,90.,4) TITLE 17
    CALL SYMBUL (-1.5,03.60,0.21,DATE2,90..4) TITLE IB
    CALL SYMBOL (-1.5,01.44,0.21,PROJCT,90.,6) TITLE 19
    IF (NAX) 705,704,705
    704 CALL PLGT (0.0.0.0.3)
    CALL PLUT (O.O,HT,2)
    GO TO 706
    705 CALL AXIS (O.,0.,1HY,1,HT,90.,O.,DY)
    CALL AXIS (0.,0.,1HX,-1,RT,0.,0.,DY)
    CALL PLUT (0.0,HT,3)
    706 CALL PLOT (RT,HT,2)
    CALL PLCT (RT,0.0,2)
    IF (NAX) 707,708,707
    708 CALL PLCT (0.0.0.0.2)
    707 CALL PLGT (0.0,0.0,-3)
    YHT = HT
    RETURN
    ENC
        LIST8
        LABEL
    SUBROUTINE AXIS (X,Y,BCD,NC,SIZE,THETA,YMIN,UY)
    TITLE 21
    IITLE 22
    TITLE }2
    TITLE }2
    TITLE 25
    IITLE 26
    TITLE 27
    TITLE 28
    TITLE 29
    TITLE 30
    TITLE 30
    TITLE 31
    TITLE 32
    TITLE 33
    TITLE 34
    AXIS 00
    AXIS 01
    AXIS.02
    MUDIFIEC FRUM A CALCOMP SUBROUTINE OF THE SAME NAME. AXIS 03
    REPROCUCED WITH PERMISSION FROM
    AXIS 04
    CALIFORNIA COMPUTER PROUUCTS,INC., ANAHEIM,CALIF. AXIS OS
    SIGN = 1.0
    AXIS 06
    IF(NC) 1,2,2 AXIS 07
    I SIGN = -1.0 AXIS OB
    2 \mp@code { N A C ~ = ~ X A B S F ~ ( N C ) ~ A X I S ~ 0 9 }
        TH=THETA#0.017453294 AXIS 10
        N = OY SIZE +0.5 AXIS II
    CTH = CUSF (IH)
    AXIS 12
    STH=SINF (TH) AXIS IS
    TN=N
    XH}=
    Yt = Y AXIS 15
    AXIS 16
    XA =X - O.1 SIGN:STH AXIS 1T
```

```
        YA = Y 0.1 SIGN*CTH AXIS 18
        CALL. PLCT (XA,YA,3) AXIS 19
        DU 2O I=1,N AXIS
        CALL PLCT (XE,YB,2) AXIS 2I
        <
        XC = XB + CTH/DY
        AXIS
        YC = YG + STH/DY
        AXIS 23
        CALL PLCT (XC,YC,2) AXIS 24
        XA = XA +CTH/DY AXIS 25
        YA = YA +STH/OY AXIS 26
        CALL PLCT (XA,YA,2) AXIS 27
        XB = XC
        AXIS 28
    20 YE YC AXIS 29
    ABSV = YMIN + TN AXIS 30
    XA = XB - (.20.SIGN - .05) STH - .02857%CTH AXIS 31
    YA = YO + (.20 SIGN - .05) CTH - .02857% STH AXIS 32 
    N=N+1 AXIS 33
    DO 30I=1,N AXIS 34
    IF (MUUF(ABSV,5.)) 100,10L,100 AXIS 35
    101 CALL NUNBER (XA,YA,O.1,ABSV,THETA,-1) AXIS 36
    100 ABSV = ABSV - 1. AXIS 37
    XA = XA - CTH/DY AXIS 38
    30 YA = YA - STH/UY AXIS 39
        TNC = NAC + 7 AXIS 40
        XA = X + (SILE / 2.0 -.06 TNC)*CTH - (-.07 + SIGN*.36): STH AXIS 4L
        YA =Y + (SIZE / 2.0-.06 (TNC)*STH + (-.07 + SIGN*.36)= CTH AXIS 42
        CALL SYMBCL {XA,YA,O.14,BCD,THETA,NAC} AXIS 43
        RETURN AXIS 44
        END
        LISTB
        LABEL
        SUHROUTINE NUMCON (MM,NN,NCO)
        NUMCONOO
        NUMCONOI
        UIMENSION S(3,3),EM(4,3),E(3),YVW(3),CMAT(100,100),C(4),BUFFER(200NUMCONO3
    10),AX(1000), AY(1000),CTOUK(5)
        NUMCONO4
    COMMON S,EM,E,YVW,CMAT,C,BUFFER,AX,AY,CTOUR,PROJCT,D,TT,CXY,MAX,GRNUMCONO5
    IIU,DCON, OEP,WL,AMM,ANN,DY,FAN,DATEL,DATE2,CIN NUMCUNO6
    NOU =NN-1
    MUD = MM-1
    DO 5OOO J=2,NOD
    YJ=J-1
    KKK = 1
    DC 8000 KC=1,NCO
    KWIT = U
    NOIF = 3
    I = MN-1
    DO 101UII=1,MOD NUMCUN16
    XI=I-I
    IL=I+L
    XL=IL-I
    IF (KWI|) 21,21,8000
21 IF {CMAT(I,J)) 10,10,20 NUMCON21
10 KWIT=1 NUMCON22
20 IF (CMAT(I,J)*DCON-CTOUR(KC)) 12,11,13 NUMCON23
11 AX(KKK) = XI
    AY(KKK) = CJOUR(KC)
    KKK = KKK+1 NUMCON26
    NDIF=3
    GO TO 1010
    12 GO TO 114,7%,141,NDIF NUMCON29
14 NCIF=1 NUMCON3O
    GO TO 1010 NUMCON31
        NUMCONO7
        NUMCUNO8
        NUMCONOG
        NUMCON1O
        NUMCON11
    NUMCDN12
    NUMCON12
    NUMCON14
    NUMCUN16
    NUMCON17
    NUMCON18
    XL = IL-I
    NUMCON19
    NUMCON2O
    NUMCON23
    NUMCON26
    NUMCON27
```

```
        13 GO TO (77,15,15),NDIF NUMCON32
    15 NDIF = 2
        GO TO 1010
    77 SLPX = (DCON=(CMAT(IL,J)-CMAT(I,J)))/(XL-XI)
        XP = (CTOUR(KC)-DCON*CMAT(I,J)I/SLPX + XI
        AX(KKK) = XP
        AY(KKK) = CTOUR(KC)
        KKK = KKK+1
        GO TO (81,82),NOIF
    81 NOIF = 2
        60 TO 1010
    82 NOIF = 1
1010I = I-1
8000 CONTINUE
        KKK = KKK-1
        IF (KKK-1) 5000,668,670
    670 KKL = KKK-1
    OO 997 IA=1,KKL
    IAD = IA I I
    00 997 IB = IAD,KKK
    IF (AX(IA)-AX(IB)) 997,997,996
    996 XMIN = AX(IA)
        AX(IA) = AX(IB)
        AX(IB) = XMIN
        XMIN = AY(IA)
        AY(IA) = AY(IB)
        AY(IB) = XMIN
    99% CUNTINUE
    668 IF (XMOUF(J,2))1104,103,104
    103 KUNE = KKK
        KADD = -1
        LAST = +1
        GO 10 105
    104 KUNE = +1
        KADD = +1
        LAST = KKK
    105 CALL NUMBER (AX(KONE)/DY,YJ/OY,0.10,AY(KONE),0.0,-1)
        If (KONE-LAST) 109,5000,109
    109 KONE = KONE + KADD
    GU TO 105
5000 CONTINUE
    CALL PLCT (0.,0.,-3)
    RETURN
    END
        LISTA
        LABEL
        SUBROUTINE SHORE (MM,NN)
    DIMENSICN S(3,3),EM(4,3),E(3),YYH(3),CMAT(100,100),C14),OUFFER(200S
    10), AX(1000),AY(1000),CTOUK(5)
    CUMMON S,EM,E,YVW,CMAT,C,BUFFER,AX,AY,CTOUR,PROJCT,D,TT,CXY,MAX,GRSHORE O5
    1ID,OCON,DEP,WL, AMM, ANN, OY, FAN, DATE1, DATE2,CIN
        SHORE O6
        PONTF(X1,X2,D1,D2)= X1 - D1:((X1-X2)/(D1-D2)) SHORE O7
        IC = 3
        DO 1 J J=1,NN
        YJ= J-1
        JL = J-1
        YL=JL-1
        I}=M
        OO 2.II=1,MM
        XI= I-I
        SHORE OB
        SHORE O9
        SHORE 10
        SHORE 11
        SHORE 12
        SHORE }1
        SHORE }1
        SHORE }1
```

```
    IL =I+1 SHORE 16
    XL = IL-1
    IF (CMAT (I,J)) 100,200,300
    100 IF (IC-2) 101,101,102
    101 XP = PONTF(XI;XL,CMAT(I,J),CMAT(IL,J))
    CALL PLOT (XP/DY,YJ/DY,IC)
    IC = 2
    60 10 1
    102 IF (J-1) 101,101,103
    103 YP = PONTF{YJ,YL,CMAT(1,J),CMAT(1,JL))
    CALL PLCT (O.,YP/DY,IC)
    lC=2
    XP = PONTF(XI,XL,CMAT(I,J),CMAT(IL,J))
    CALL PLOT (XP/DY,YJ/DY,IC)
    GO TO 1
    200 IF (II-MM) 201,202,201
    202 CALL PLOT (XI/DY,YJ/DY,IC)
    IF (IC-2) 203,203,204
    203 IC = 3
    GU TO 1
    204 IC = 2
    GO TO 1
    201 IF (IC-2) 207,207,206
    206 IF (J-1) 207,207,209
    209 YP = PONTF(YJ,YL,CMAT(L,J),CMAT(1,JL))
    CALL PLOT (O.,YP/DY,IC)
    IC=2
    207 CALL PLOT (XI/DY,YJ/DY,IC)
    IC = 2
    GO TO 1
    300 IF (II-MM) 2,302,2
    302 IF (IC-2) 303,303,1
    303 YP = PONTF(YJ,YL,CMAT(1,J),CMAT(1,JLI)
    CALL PLUT (O.,YP/DY,IC)
    IC=3
    GO TO 1
    2I= I-I
    1 CONTINUE
    CALL PLOT (0.0,0,0,-3)
    RETURN
    END
        LIST8
        LABEL 
        SUBROUTINE RAYN (X,Y,A,NPLOT,N,MMAX,LI,NPT,LII) RAYN
        DIMENSION S(3,3),EM(4,3),E(3),YVW(3),CMAT(100,100),C(4),BUFFER(200RAYN O3
    10),AX(1000),AY(1000),CTOUR(5)}\mathrm{ RAYN 04
        COMMON S,EM,E,YVW,CMAT,C,BUFFER,AX,AY,CTOUR,PROJCT,D,TT,CXY,MAX,GRRAYN OS
    IID,DCON,DEP,WL,AMM,ANN,DY,FAN,DATEI,DATE2,CIN RAYN 06
        NDP =1 . . NAYN 07
        NFK =1 RAYN 08
        NGO =1 RAYN 09
        KREST =0 RAYN 1.0
        KCIN =0 RAYN 11
        CALL SURFCE (X,Y,A,FK,NFK,NDP)
        CALL MOVE (X,Y,A,FK,NGO,MIT,NFK,NOP) RAYN 13
        TIME = 0.0
        ANGLE=A*57.29577951
        RAYN 14
        RAYN 15
        IF (NPT) 100,101,100 RAYN 16
100 WRITE OUTPUT TAPE 6,7,PROJCT,DATEL,DATE2,NPLOT,TT,N RAYN 17
    7 FORMAT ILHI,IIHPROJECT NO.,AG,2H, ,2A4,1OH, PLOT NO.,I3,1OH, PERIORAYN I8
```

```
    10 =,F5.1,14H SEC., RAY NO.,I3,1H.//) RAYN
        WRITE OUTPUT TAPE 6.150 RAYN
150 FORMAT IIH, 3X, 3HMAX,6X,1HX, 8X, LHY, 8X,5HANGLE,6X,4HTIME,4X,6HPCTDIRAYN
    LF,5X,5HCEPTH,6X,IHD//1 
        GC TO 19
101 IF (N-1) 800,800,801
801 IF (XMUCF(N,LII)) 803,800,803 RAYN
    RAYN
800 WRITE OUTPUT TAPE 6,850,PROJCT,DATEI,DATE2,NPLOT,TT RAYN
85O FORMAT 112HIPROJECT NO.,AG,2H, ,2A4,1OH, PLOT NC.,I3,1OH, PERIOD =RAYN
    1,F5.1,5H SEC.///1
        WRITE OUTPUT TAPE 6,851
    = RAYN
        WRITE OUTPUT TAPE 6,851 RAYN
851 FURMAT (8H RAY NO., 4X, 3HMAX,6X, 1HX, 8X, 1HY,8X,5HANGLE,6X,4HTIME//I RAYN
803 WRITE UUTPUT TAPE 6,853,N,MAX,X,Y,ANGLE,TIME RAYN
853 FORMAT (1H,16,1X,I7,2F9.2,F11.2,F10.3) RAYN
3 GO TO 19
GO TO 19
        IF (MAX+KCIN-MMAX) 399,400,400
400 WRITE.OLTPUT TAPE 6,401
401 FORMAT (80X,36HDIMENSION OF OUTPUT-ARRAYS EXCEEDED.I
399 ZU TO 15
399 ZCXY = CXY
CALL MOVE {X,Y,A,FK,NGO,MIT,NFK,NDP)
    GO TO (396,402),NDP
402 WRITE OUTPUT TAPE 6,403
403 FORMAT (80X,1 &HRAY REACHED SHORE.)
    GO 10 15
396 IF (D/OY - .005) 700,700,702
700 WRITE OUTPUT TAPE 6,701
701 FURMAT (80X,26HRAY REACHEU SHALLUW WATER.)
M GO TO 15
GO TO 15
404 WKITE UUTPUT IAPE 6,405
404 WRITE UUTPUT IAPE 6,405 
    GO 10 15
397 IF (NPT) 180,20,180
180 IF (XMODF(MAX,LI)) 20,5,20
    5 WKITE UUTPUT TAPE 6,7,PROJCT,OATE1,DATE2,NPLOT,TT,N
        WRITE UUTPUT TAPE 6,150
    20 IIME = IIME + (U*GRID/(1800.*(CXY +2CXY)))
        ANGLE=A*57.29577951
    I9 IF (NPT) 160,161,160
160 CALL PCL (C,E,PCTUIF)
    WRITE UUTPUT TAPE 6,12,MAX,X,Y,ANGLE,TIME,PCTOIF,DEP,D
    12 FORMAT (I7,2F9.2,F11.2,F1O.3,F10.1,F10.2,F10.3)
161 KMAX = MAX
        PX=X
        PY = Y
        CALL STORE (X,Y,A,KMAX,TIME,KCIN,KREST)
        GO TO (10,11), MIT
    11 IF (NPT) 170,10,170
170 WRITE OUTPUT TAPE 6.9
    9 FORMAT (1H+,80X,19HCURVATURE AVERAGED.)
    10 IF (MAX-1) 4,4,13
    4GO TO (3,402),NDP
    13 GO TO (3,406),NGO
406 WRITE UUTPUT TAPE 6,407
407 FORMAT (80X,26HRAY REACHED GRID BOUNDARY.)
    15 IF (NPT) 190,191,190
Iq1 WRITE QUTPUT TAPE 6,1233,N,KMAX,PX,PY,ANGLE,TIME
1233 FORMAT (1H+,I6,1X,I7,2F9.2,FII,2,F1O.3,1/)
    GO TO 19 RAYN
RAYN
RAYN 30
            RAYN }3
RAYN
    RAYN
20
21
23
25
26
27
28
29
30
33
34
35
RM}\mathrm{ RAYN
36
37
RAYN
RAYN
39
39
40
RAYN 41
RAYN 41
RAYN }4
RAYN 43
RAYN 43
RAYN
RAYN
RAYN 4%
RAYN
RAYN
RAYN
RAYN
RAYN
44
45
46
47
RAYN
RAYN
RAYN
RAYN
48
4850
```

51

```\(\begin{array}{ll}\text { RAYN } & 51 \\ \text { RAYN } & 52\end{array}\)
    (NPT) 180,20,180 l
RAYN
RAYN
52
52
54
54
RAYN
RAYN
RAYN
RAYN
RAYN
12 FORMAT (I7,2F9.2,F11.2,F1O.3,F10.1,F10.2,F10.3)) RM, RAYN
RAYN
56
57
58
59
RAYN 63
RAYN 63
        PY = Y STORE (X,Y,A,KMAX,TIME,KCIN,KREST) RAYN
RAYN
19 IF {NPT\ 160,161,160
60
61
62
RAYN
RAYN
RAYN
RAYN
RAYN
RAYN
    RAYN
M, RAYN
RAYN }7
RAYN
NPFJ190,191,190 RAM, RAYN
RAYN 75
RAYN
RAYN
RAYN
7 8
```

```
    190 CALL DRAW (N,KMAX,KCIN,KREST)
        IN,KMAX,KCIN,KRESTI RAYN
            RETURN . RAYN
            END . RAYN
            NO
                LIST8
                LABEL
                    MOVE
                            MOVE
    SUBROUTINE MOVE (X,Y,A,FK,NGO,MIT,NFK,NOP) MOVE
    DIMENSICN S:3,3),EM(4,3),E(3),YVW(3),CMAT(100,100),C(4),BUFFER(2OOMOVE
    10),AX(1000),AY(1000),CTOUK(5) MOVE
    CCMMON S,EM,E,YVW,CMAT,C, KUFFER,AX,AY,CTOUR,PROJCT,D,TT,CXY,MAX,GRMEVE
    IIU,DCUN,DEP,WL,AMM,ANN,DY,FAN,DATEI,DATE2,CIN MOVE
        MIT = 1 MOVE
        GO TO (201,202),NFK
201 D = 0.5
201 D=0.5
MOVE 09
    D = DEP / WL
    203 IF (MAX-2) 38,102,104
    102 FK&AR=FK
    104 DO 20 II=1,20
    OELA=FKUAK*O
    AA=A+DELA
    ABAR=A+.5*UELA
    DELX = U * COSF(ABAR)
    UELY = U SINF(ABAR)
    XX=X+DELX
    YY=Y+DELY
    CALL SURFCE (XX,YY,AA,FKK,NFK,NDP)
    GO TO (101;6), MIT
    101 GU TO (10,38),NDP
    10 FKBAR = 0.5 * (FK + FKK)
        IF (IT - 18) 5,37,9
    37 FKKPP = FKBAR
    5 IF (MAX - 2) 7,7,9
    7IF {IT - 1) 20,20,9
    9 IF (ABSF(FKKP-FKBAR) - (0.00009/D)) 6.6.20
    20 FKKP = FKBAK
        IF (ABSF(FKKPP - FKBAR) - (0.00009/D)) 18.18.17
    17 MIT=3
        GO 10 38
    18 FKBAR = 0.5 (FKBAR + FKKP)
            MIT = 2
            G0 10 39
        If ((XX-0.5)*((AMM-0.5)-XX))2,2,3
        IF ((YY-0.5)*((ANN-0.5)-YY))2,2,8
        NGO = Z
        B X = XX
            Y = YY
            A=AA
            FK = FKK
    3B RETURN
        END
            LIST&
            LABEL
        LABEL ST, (X,Y,FK,NFK,NOP)
        SUBROUTINE SURFCE (X,Y,A,FK,NFK,NDP) SURFCEO2
        DIMENSION S(3,3),EM(4,3),E(3),YVW(3),CMAT(100,100),C(4),BUFFER(20OSURFCEO3
    10), AX(1000), AY(1000),CTOUR(5)
        SURFCEO4
    COMMON S,EM,E,YVW,CMAT,C,BUFFER,AX,AY,CTOUR,PROJCT,D,TT,CXY,MAX,GRSURFCEOS
    IID,DCON,DEP,WL,AMM,ANN,DY,FAN,DATEI,DATEZ,CIN SURFCEOG
        I=X+1. SURFCEO7
        J=Y+1. SURFCEOR
        FI=I
SURFCE09
```

```
    FJ=J
    XL=X+1.-FI
    YL=Y+1.-FJ
    IF (MAX-1) 1,1,4
    4 [F (ZI-FI) 1,2,1
    2 [F (ZJ-FJ) 1,3,1
    12I = FI
    ZJ=FJ
    C(1)=CMAT(I,J)
    C(2)=CMAT(I + I,J)
    C(3)=CMAT(I+1,J+1)
    C(4)=CMAT(1,J+1)
    DO 318 II=1,3
    YVW(II) = 0.
    DO 31.8 L=1,4
    3L8 YVW(II) = YVW(II)+C(L)*EM(L,II)
    DO 319 1I=1,3
    E(iI)=0.
    DC 319 JJ=1,3
    319 E(II) = E(II)+S(II,JJ)*YVW(JJ)
    3 DEP = (E(1) + E(2)*XL +E(3)*YL) DCON
    IF (DEP) 320,320,324
    320 NDP = 2
    G0 10 403
    324 It ((OEP/WL)-0.5) 321,321,322
    321 NFK = 2
    GO TO 323
    322 NFK = l
    323 CALL VELCTY (CXY,TT,MAX,DEP,NFK)
    PCX = E(2) * OCON
    PCY = E(3) * OCON
    DN = -PCX*SINF(A) + PCY*COSF(A)
    CALL CUNOER (UN,TT,CXY,MAX,NFK)
    GO TO (401,402),NFK
    401 FK = 0.0
    GO 10 403
    402 FK = -DN/CXY
    4 0 3 ~ R E T U R N
    ENO
        LIST8
        label
        SUGROUTINE VELCTY (CXY,TT,MAX,DEP,NFK)
        (f (MAX. - 1) 101,101,102
    101 BAR = 6.2831854/TI
        CXXO = TT*32.2/6.2831854
        CCC = CXX{J
        GO 10 103
    102 CCC = XCXY
    103 GO TO (104.105),NFK
    104 CXY = CXXO
    GO TO LU6
    105 OC 1000 M=1,90
    CXY = CXXU*TANHF(BAK*DEP/CCC)
    IF (ABSF(CXY-CCC)-.00005) 106,1000,1000
1000 CCC = (CXY+CCC)/2.
    106 XCXY = CXY
        RETURN
        END
        LISTB
        LABEL
```

SURFCE10
SURFCE11
SURFCE12
SURFCEI3
SURFCE14
SURFCE 15
SURFCE 16
SURFCEI7
SURFCEI8
SURFCE19
SURFCE20
SURFCE21
SURFCE22
SURFCE23
SURFCE24
SURFCE25
SURFCE26
SURFCE27
SURFCE28
SURFCE29
SURFCE30
SURFCE31
SURFCE32
SURFCE33
SURFCE34
SURFCE35
SURFCE36
SURFCE37
SURFCE38
SURFCE39
SURFCE40
SURFCE41
SURFCE42
SURFCE43
SURFCE44
SURFCE45
SURFCE46
SURFCE47
SURFCE48
VELCTYOO
VELCTYOI
VELCTYOZ
velctroz
VELCTYO4
VELCTYOS
VELCTYOG
VELCTYOT
VELCTYOB
VELCTYO9
VELCTY10
velctyll
VELCTYI2
VELCTYI 3
VELCTYI4
VELCTYIS
VELCTY16
VELCTYI 7
VELCTYIB
CONDEROO
CONDEROL

```
        SUBROUTINE CUNDER (DN,TT,CXY,MAX,NFK) CONDERO2
        IF (MAX - 1) 101,101,102 CONDERO3
    101C1 = TI/12.5663708
    102 GU TO (105,104),NFK
    104 C3 = C2*CXY
        A1 =C3/(1.+C3)
        A2 = C3/(1.-C3)
        A3 = LOGF(1.+C3)
        A4 =LUGF(1,-C3) CONDER11
        DN = (DN/CL)*(1./(AL+A2+A3-A4))
    105 RETURN
        ENO
* LISTB
* LISTB
        SUBKOUTINE PCD (C,E,PCTDIF) PCD O2
        DIMENSIGNC(4),E(3)}0
    IF(C(1)*C(2)*C(3)*C(4)) 901,900,901 PCD 04
    900 PCTDIF = 999.
    GU゙ TO 902 PCD 06
    PCD 05
    901P1=ABSF((C)(1)-E(1))/C(1))
    P2 = ABSF((C)(2)-E(1)-E(2))/C(2)) PCD 08
    P3 =ABSF(IC(3)-E(1)-E(2)-E(3))/C(3))
    P4 = ABSF((C)(4)-E(1)-E(3))/C(4))
    PCTDIF=100. MAX1F(P1,P2,P3,P4) PCO 11
    902 RETURN
    END
- LISTB
* LISTB
    SUBROUTINE STORE (X,Y,A,KMAX,TIME,KCIN,KREST)
    STORE 0O
    STORE Ol
    OIMENSIUN S(3,3),EM(4,3),E(3),YVW(3),CMAT(100,100),C(4), BUFFER(2OOSTORE O3
    10),AX(100U),AY(1000),CTOUR(5)
    CLMMON S,EM,E,YVW,CMAT,C,FSUFFER,AX,AY,CTOUR,PROJCT,D,TT,CXY,MAX,GRSTORE OS
    IIC,OCUN,DEP,WL,AMM,ANN,DY,FAN,DATEL,DATEZ,CIN STORE OG
    IF (CIN) 403,403,410
    STORE O7
410 IF (KMAX-1) 400,400,401 STORE O8
400 AT = 0.0
403 K=KMAX + KCIN STORE 1O
    AX(K)=X. STORE 11
    AY(K)=Y STORE 12
    IF (CIN) 205,205,402 SA S STORE 13
402 2A = A
    ZCXY = CXYY
    GU TO 20゙5
401 ET = TIME - AT
    IF (CIN - ET) 405,404,403
404K=KMAX + KCIN
    AX(K) =-X
    AY(K)=Y
    KREST = KREST + 1
    AT = AT + CIN
    GO TO 402
405 DSC=(ET-CIN)*(CXY+ZCXY)*3600./(GRID*2.)
    AA= (A+LA)/2.
    XM = DSC*COSF(AA)
    YM = DSC*SINF(AA)
    K = KMAX + KCIN
    STORE 13
    STORE 15
STORE }1
STORE 17
STORE 18
STORE 19
        CONDERO4
        C2 = 6.2831854/(32.2*TT) CONOEROS
    102 GU TO (105,104),NFK
        CONDERO6
        CONDERO7
        CONDERO8
        CONDERO9
        CONDER10
        CONDERIL
    CONDER12
    CONDERI3
    CDNDER14
    PCD 00
    PCD O6
    PCD 07
    PCO 12
        PCD 12
        STORE O2
    STORE 09
4 0 2
PCO 13
STORE 20
STORE 21
STORE 22
STORE 23
STORE 24
STORE 25
STORE 26
    STORE }2
    AX(K)=-X+XM
    STORE 28
    STORE 29
    AX(K)}=-X+X
    AY(K) = Y-YM
    STORE 30
    KREST = KREST +1
    STORE 31
STORE 32
```

```
        KCIN = KCIN+1 STORE 33
        AT = AT + CIN
        STOKE
    GO TO 401 STORE 35
    20S RETURN
    END
    STORE 36
    STORE 37
        LSTB DRAW OO
        LABEL DRAW OI
        SUBROUTINE DRAW (N,KMAX,KCIN,KREST) DRAW .02
        DIMENSION S(3,3),EM(4,3),E(3),YVW(3),CMAT(100,100),C(4),BUFFER(200DRAW 03
    10),AX(1000),AY(.1000),CIOUR(5)}\mathrm{ DRAW
        COMMON S,EM,E,YVW,CMAT,C,BUFFER,AX,AY,CTUUR;PROJCT,D,IT,CXY,MAX,GRDRAW
    1IO,OCON,DEP,WL,AMM,ANN,DY,FAN,DATEL,DATEZ,CIN DRAW
    XN = N
        DRAW
    KMAX = KMAX + KCIN ORAW O8
    IF (AX{KMAXI) 600,601,601 DRAW 09
600 AX(KMAX)=-AX(KMAX) DRAW 10
    KREST = KREST - 1
601 IF (XMOUF(N,2)) 104,103,104 DRAW 12
    JRAW 11
103 KTWO = KMAX-1
    KALD = - L
    DRAW 13
    KALO =-1 DRAW
    LAST = +1 DRAW
    MC = KREST + 1
    15
    IF (FAN) 200,201,200 DRAW 17
200 CALL NUMBEK (AX(KMAX)/DY,AY(KMAX)/DY,0.35/DY,XN,0.0,-1) DRAW 1B
201 CALL PLUT (AX(KMAX)/DY,AY(KMAX)/DY,3) DRAW 19
    IF (KMAX - 1) 106,106,105
104 KTWU = +2 DRAW 2I 
    KADD = +1
    LAST = KMAX
    MC=O
    IF (FAN) 111,110,111
110 CALL NUMBER (AX\1)/OY,AY(1)/DOY,0.35/DY,XN,0,0,-1)
111 CALL PLCT (AX(1)/DY,AY(1)/DY,3)
    IF (KMAX - 1) 106,106,105
105 IF (CIN) 300,300,301
301 IF (AX(KTWO)) 302,300,300 ORM
301 IF (AX(KTWO)) 302,300,300 ORM
300 CALL PLOT (AX(KTWO)/DY,AY(KTWO)/DY,2) DRAW 31
GOTO 303 ORAW 32
302 AX(KTWU) = -AX(KTWO)
    WI = 0.05
    MC = MC + KAOD
501 WI = 0.10
500 XPN = AX\KTWO\/DY
    YPN = AY{KTWU)/DY 
    K =KTWC-KAUD DRAW 40
    XPL =AX(K)/DY
    YPL = AY(K)/UY
    DSC = SGRTF((XPN-XPL)**2.+(YPN-YPL)**2.)
    CALL PLOT (XPN,YPN,2)
    XB = +WI*(YPN-YPL)/DSC
    YB = -WI*(XPN-XPL)/DSC
    CALL PLCT (XPN+XB,YPN+YB,2)
    CALL PLOT (XPN-XB,YPN-YB;2)
    CALL PLOT (XPN,YPN,2)
303 IF (KTWO-LAST) 109,106,109
109 KTWO = KTWO + KADD
    GO r0 105
106 IF (KADD) 208,108,108
DRAW 20
DRAW }2
DRAW }2
DRAW 24
DRAW 25
DRAW 26
DRAW 27
DRAW 28
DRAW 29
    DRAW 33
DRAW 36
    XPN = AX(KTWO)/DY
    DRAH 41
    DRAW 42
    DRAW 43
    DRAW 44
    DRAW
    DRAW }4
    DRAW 47
    DRAW 48
    DRAW 49
DRAW 51
20& IF (FAN) 205,107,205 ORAW 54
URAW 52
20& IF (FAN) 205,107,205 SNAW SN
ORAW 53
```

107 CALL NUMBER (AXI1)/DY,AY(1)/DY,0.35/DY,XN,0.0,-1) URAWDRAWGO TO 205108 IF (FAN) 207,205,207207 CALL NUMBER (AX(KMAX)/DY,AY(KMAX)/DY,0.35/DY,XN,0.0.-1)DRAW
205 RETURNENDDRAW 58DRAH

APPENDIX D.

Example of Computing and Plotting Operations

To illustrate the computing and plotting operations, a portion of the coast south of Cape Henry and including Virginia Beach was selected as an area of interest. Two depth grids, one large and one small, were established. (See figure 5.) The grid interval for each equals 3038 feet, and each origin is located at $76^{\circ} 1.9^{\prime} \mathrm{W}, 36039.5^{\prime} \mathrm{N}$. U.S. Coast and Geodetic Survey boat sheets 5988, 5990, 5991, 5992, 5993; and 6595 and charts 1222 and 1227 were used to obtain depth values at grid intersections. Figure 7 shows the smoothed contours of the depth grids. It is apparent from the figure that this portion of the continental shelf includes many irregularities.

An annotated listing of input to the computer program is given in figure 6. (This input was used to produce the plot shown in figure 10.) ${ }^{15}$ Two listings of printed output from the computer are given in figures 8 and 9. (Figure 8-for NPT $=1$-gives the printed output for ray number 5 of figure 10; figure 9-for NPT = O--gives the printed output for ray numbers 18 through 31 of figure 14.)

Six plots are presented in figures 10 through 15. Figure 10 shows a ray pattern for $T=4 \mathrm{sec}$ and $A=120^{\circ}$ on the small grid. On this figure the option to enter soundings has been exercised for 10, 20, 30, and 40 feet. (Figure 2 shows this plot being drawn.) Figure 11 shows ray patterns for $T=4 \mathrm{sec}$ and $A=120^{\circ}, 180^{\circ}, 210^{\circ}$, and 240° on the large grid. Figure 12 illustrates how rays for $T=6 \mathrm{sec}$ can be refrected away from a point in shallow water. Figures 11 and 12 show how the 20 and 40-foot soundings have been entered.

Figures 13 , 14 , and 15 show ray patterns for $T=6$ sec and $A=180^{\circ}, 195^{\circ}$, and 210°, respectively. The contours of the depth grid in figure 7 have been superimposed on these three figures in order to show the relation between the bathymetry and the ray patterms.

The computing time required to produce the information for these six plots was 0.14 hours. In contrast, the plotting time was much longer- -3.5 hours.
15. If the computer program has been modified or if the program is not being used with a Calcomp 670/564 plotting system, the input listing of figure 6 and the plot in figure 10 provide the necessary information to conduct a test.

Figure 5. Location of Depth Grids.

Figure 6. Example of Input for Computer Program.

Figure 7. Bathymetry of Depth Grids

HPDJECT NO. VBOL2, OO/15/6S, PLOT NU. 1. PERIOD $=4.0$ SEC. RAY NO. 5.

MAX	x	γ	ANGLE	time	PCTOIf	DEPTH	D
1	15.79	3.25	120.00	0.	0.	46.79	0.300
2	15.54	3.60	120.00	0.021	0.	46.54	0.500
3	15.29	4.12	120.00	0.041	1.1	46.20	0.500
4	15.04	4.35	120.00	0.062	1.1	46.13	0.500
3	14.14	4.48	120.00	0.082	1.1	45.52	0.500
6	14.54	5.42	120.00	0.103	0.6	44.07	0.500
7	14.29	5.85	120.00	0.124	0.6	42.43	0.500
4	14.04	6.28	120.00	0.144	1.8	41.73	0.500
4	13.79	6.71	120.00	0.165	3.7	42.85	0.500
10	13.54	7.15	120.00	0.185	2.4	43.92	0.300
11	13.29	7.58	120.00	0.206	2.4	44.42	0.500
12	13.04	0.01	120.00	0.226	0.6	44.25	0.500
13	12.79	8.45	120.00	0.247	1.4	43.21	0.500
14	12.54	8.88	120.00	0.268	1.4	41.70	0.500
1)	12.29	9.31	120.06	0.288	2.0	39.77	0.500
16	12.05	4.73	120.19	0.308	2.0	37.73	0.485
11	11.81	10.13	120.29	U. 327	0.8	31.41	0.460
13	11.38	10.32	120.35	0.346	0.8	36.01	0.456
14	11.36	10.40	120.43	0.364	0.8	34.66	0.439
20	11.15	11.87	120.55	U. 382	0.8	33.81	0.423
21	10.94	11.62	120.67	U.399	0.8	33.41	0.412
22	10.13	11.97	120.73	0.416	0.8	33.33	0.408
23	10.32	$1<.32$	120.71	0.433	2.3	33.17	0.406
24	10.31	12.67	120.80	0.450	2.3	33.24	0.405
2)	10.11	13.02	120.81	0.467	2.3	33.29.	0.405
<0	9.90	13.37	120.86	0.484	1.7	32.83	0.406
21	9.69	13.11	120.95	0.500	1.7	31.87	0.400
< 0	9.49	14.04	121.05	0.517	1.8	30.94	0.389
29	9.30	14.37	121.16	0.533	1.8	30.03	0.377
30	9.11	14.68	121.28	0.548	1.8	29.15	0.366
31	8.92	14.58	121.51	0.563	4.5	28.54	0.355
32	8.74	15.28	121.80	0.518	3.1	27.02	0.348
33	8.57	13.56	122.01	0.592	3.1	27.00	0.329
34	8.39	13.84	122.23	0.605	3.1	26.98	0.329
3.5	8.22	16.11	122.39	0.619	0.9	27.53	0.329
30	8.04	16.40	122.47	0.634	0.9	27.86	0.336
31	7.85	10.08	123.21	0.648	0.	25.83	0.340
3 l	7.67	16.94	124.73	4.661	0.	23.36	0.315
34	7.51	11.18	126.25	0.674	27.1	21.22	0.285
40	7.35	17.38	127.63	0.685	27.1	20.31	0.259
41	7.20	17.58	129.11	0.696	27.1	19.37	0.248
42	7.05	17.16	130.68	0.707	27.1	18.42	0.236
43	6.90	17.42	134.34	0.717	10.4	16.62	0.225
44	6.75	14.06	140.85	0.727	25.0	12.27	0.203
45	6.63	18.15	148.05	0.735	25.0	8.65	0.150
46	6.53	18.20	155.38	U. 141	25.0	5.79	0.106
41	6.47	14.22	162.22	0.747	25.0	3.71	0.071
46	6.42	16.24	168.16	0.751	25.0	2.29	0.045
44	6.40	10.24	173.08	0.754	25.0	1.38	0.028
bo	6.38	18.44	117.01	0.756	25.0	0.82	0.017
51.	6.37	18.24	180.09	0.758	25.0	0.48	0.010
52	6.36	18.24	182.41	0.759	25.0	0.28	0.006

Figure 8. Example of Outpit from Computer Program (NPT =1).

PROJEGT NU. VBOIL, OB/15/65, PLUT NO. S, PERIOO $=6.0$ SEC.

Figure 2 Example of Output from Computer Program (NPT $=0$).

Figure 10. Ray Pattern $\left(T=4 \mathrm{sec}, \mathrm{A}=120^{\circ}\right)$ on Small Grid.

PROJ.NO. VBO12, 08/15/65. PLOT NO. $3 . \operatorname{SCL}=1 / 120000, \mathrm{TT}=6.0, \mathrm{CIN}=0$

Figure 12. Rays ($T=6 \mathrm{sec}$) Refracted from a Point on Large Grid.

PROJ.NO. VBO12. 08/15/65. PLOT NO. 4, SCL $=1 / 120000$ TT $=6.0, \quad$ CIN $=120$

Figure 13. Ray Pattern $\left(T=6 \mathrm{sec}, \mathrm{A}=180^{\circ}\right)$ on Large Grid.

PROJ.NO. VBO12. 08/15/65, PLOT NO. 5 , SCL $=1 / 120000$, $T T=6.0$, CIN $=120$

Figure 14. Ray Pattern $\left(\mathbb{T}=6 \mathrm{sec}, \mathrm{A}=195^{\circ}\right)$ on Large Grid.
PROJ.NO. VB012. 08/15/65. PLOT NO. $6, S C L=1 / 120000, T T=E .0, C I N=120$

Figure 15. Ray Pattern $\left(T=6 \mathrm{sec}, A=210^{\circ}\right)$ on Large Grid.

A NETHOD FOR CALCULATING AND PLOTTING SURFACE WAVE RAYS by W. Stanley Wilson, February 1966, 57 pp.. including 15 illustrations

TECHNICAL MGYOORANDIM No. 17
UNCLASSIPIED
2. Virginia Beach. Virginia
3. Computer Programs 4. Plotter Systems 4. Wilson, W.S. II Title

A method using a digital computer and incremental plotter for calculating and plotting wave rays (orthogonals) is described. Given grid of depth values, initial position of wave ray, and direction of travel and period of wave, successive points along ray path are calculated. For each point on path, water depth and bottom slope are estimated from depth grid by linear interpolation; wave speed and curvature computed according to classic theory; and location of next successive point approximated by iteration procedure. Numerical resuits may be plotted automatically. Example of results, obtained by application of method at Virginia Beach, Virginia, is presented. Uniess the bathymetry of area is unusually smooth, this method is faster than manual construction. The computer program is included.
U.S. ARMY COASTAL ENGRG. RES. CENTER, CE., HASH. D.C. 1. Wave Refraction

A METHOD FOR CALCULATING AND PLOTTING SURFACE WAVE RAYS by W. Stanley W11son, February 1966, 57 pp.. including 15 illustrations

TECHNICAL MEMORANDUM NO. 17
UNCLASSIFIED
2. Virginia Beach, Virginia
3. Computer Programs 4. Plotter Systeas 4. Plotter Syste II Title

A method using a digital computer and incremental plotter for calculating and plotting wave rays (orthogonals) is described. Given grid of depth values, initial position of wave ray, and direction of travel and period of wave, successive points along ray path are calculated. For each point on path, water depth and bottom slope are éstimated from depth grid by linear interpolation; wave speed and curvature computed according to classic theory; and location of next successive point approximated by iteration procedure. Numerical results may be plotted automatically. Example of results, obtained by application of method at Virginia Beach, Virginia, is presented. Unless the bathymetry of area is unusually smooth, this method is faster than manual construction. The computer progran is included.
U.S. ARMY COASTAL ENGRG. RES. CENTER, CE., WASH. D.C. 1. Wave Refraction A METHOD FOR CALCULATING AND PLOTTING SURFACE WAVE Rays by W. Stanley Wilson, February 1966, 57 pp., Including 15 illustrations

TECHNICAL MEMORANDUM NO. 17
UNCLASSIFIED

A method using a digital computer and increnental plotter for calculating and plotting wave rays (orthogonals) is described. Given grid of depth values, initial position of wave ray, and direction of travel and period of wave, successive points along ray path are calculared. For each point on path, water depth and bottom slope are estimated from depth grid by linear interpolation; wave speed and curvature computed according to classic theory; and location of next successive point approximated by iteration procedure. Numerical results may be plotted automatically. Example of results, obtained results may be plotted automaticaliy. Example of results, obcained
by application of method at Virgiaia Beach, Virginia, is presented. Uniess the bathymetry of area is unusually smooth, this method is faster than manual construction. The computer program is included.
U.S. ARMY COASTAL ENGRG. RES. CENTER, CE., WASH. D.C. 1. Wave Refraction \triangle METHOD FOR CALCULATING AND PLOTTING SURFACE WAVE RAYS by H. Stanley Wilson, February 1966, 57 pp., including 15 illustrations

TECHNICAL MEMORANDUM No. 17
UNCLASSIFIED
2. Virginia Beach, Virginia
3. Computer Programs 4. Plotter Systems I Wilson, W. B . II Title

A method using a digital computer and incremental plotter for calculating and plotting wave rays (orthogonals) is described. Given grid of depth values, initial position of wave ray, and direction of travel and period of wave, successive points along ray path are calculated. For each point on path, water depth and bottom slope are estimated from depth grid by linear interpolation; wave speed and curvature computed according to classic theory; and location of next successive point approximated by iteration procedure. Numerical results may be plotted autosatically. Example of results, obtained by application of sethod at Virsimia Beach, Virginia, is presented. Ualess the bathymetry of area is unusually smooth, this method is faster than manual construction. The computer program is included.

U:S. ARMY COASTAL ENGRG. RES. CENTER, CE., WASH. D.C.
A METHOD FOR CALCULATING AND PLOTTING SURFACE HAVE saYS by W. Stanley Wilson, February 1966, 57 pp.s including 15 illustrations

CECHICAL MEMORANDUM NO. 17

MCLASSIFIED

1. Wave Refraction
. Virginia Bench Virginia
2. Computer Programs
3. Plotter Systems

I Wilson, W.S.
II Title

A method using a digital computer and incremental plotter for calculating and plotting wave rays (orthogonals) is described. Given grid of depth values, initial position of wave ray, and direction of travel and period of wave, successive points along ray path are calculated. For each point on path, water depth and bottom alope are estimated from depth grid by linear interpolation; wave speed and curvature computed according to classic theory; and location of next succesive point approximated by iteration procedure. Numerical results may be plotted automatically. Example of results, obtained by application of method at Virginia Beach, Virginia, is presented. Unless the bathymetry of area is unusually smooth, this method is faster than manual construction. The computer program is included.
U.S. ARIT COASTAL ENGRG. RES. CENTER, CE., WASE. D.C. 1. Wave Refraction
2. Virginia Beach. Virginia
A METHOD FOR CALCULATING AND PLOTTIAG SURFACE WAVE RAYS by W. Stanley Wilson, February 1966, 57 PP., including 15 illustrations

TECHNICAL MEMORANDUM No. 17
UNCLASSIFIED
A method using a digital computer and incremental plotter for calculating and plotting wave rays (orthogonals) is described. Given grid of depth values, initial position of wave ray, and direction of travel and period of wave, successive points along ray path are calculated. For each point on path, water depth and bottom slope are éstimated from depth grid by linear interpolation; wave apeed and curvature computed according to classic theory; and location of next successive point approximated by iteration procedure. Numerical resulta may be plotted autonatically. Example of results, obtained by application of method at Virginia Beach, Virginia, is presented Uniess the bsthymetry of area is unusually smooth, this method is faster than manual construction. The computer program is included.
U.S. ABMY COASTAL ENGRG. RES. CENTER, CE., WASH. D.C. 1. Wave Refraction

2. Virginia Beach

 Virginia3. Computer Prograns
4. Plotter Systens

I W11son, W. S.
II Title

A method using a digital computer and incremental plotter for calculating and plotting wave rays (orthogonsis) is described. Given grid of depth values, initial position of wave ray, and direction of travel and period of wave, successive points along ray path are calculated. For each point on path, water depth and botton slope are eatimated from depth grid by linear interpolation; wave speed and curvature computed according to classic theory; and location of next successive point approximated by iteration procedure. Numerical results ay be plotted automatically. Example of results, obtained by application of method at Virgimia Beach, Virginia, is presented. Unless the bathymetry of area is unumually smooth, this method is faster than manal construction. The computer progran is included.
U.S. ARMI COASTAL ENGRG. RES. CENTZR, CE., WASH. D.C. 1. Wave Refraction

A METHOD FOR CALCULATING AND PLOTTING SURPACE WAVE RaYS by W. Stanley Wilson, February 1966, 57 pp., including 15 illustrations
technical meyorandum No. 17
UNCLASSIYIED
2. Virginia Beach, Virginia
3. Computer

Prograns
4. Plotter Systens 4. Wilson, H. 8 II Title

A method using a digital computer and incremental plotter for calculating and plotting wave rays (orthogonals) is described. Given grid of depth values, initial position of wave ray, and direction of travel and period of wave, successive points along ray pati are calculated. For each point on path, water depth and botton slope are estimated from depth grid by linear interpolation; wave speed and curvature computed according to classic theory; and location of next successive point approximated by iteration procedure. Nutherical reaults may be plotted automatically. Example of results, obtained by application of method at Virgiada Beach, Virginia, is presented. Unless the bathymetry of area is unusually smooth, this method is faster than manual construction. The computer program is included.

[^0]: I See APPENDIX B for definitions of symbols used in the computer program.

[^1]: 6 No ray origin may be placed closer than one-half grid unit to a grid boundary.

[^2]: 8 See Harrison and Wilson (1964) Appendix F for the derivation of W.

[^3]: 9 The approximation becomes poorer as $\partial h /\left.\partial X\right|_{h=0}$ approaches zero positively.

[^4]: The input listing for an example operation of the computer program is given in figure 7 in APPENDIX D.

[^5]: 14 This and the following three subroutines are not listed in APPEINDIX C, but they are available from California Computer Products, Inc. The versions of these four subroutines may differ depending on the computer and plotter systems being used, but their calling statements will be the same. Only a description of their calling statements will be given here; more information, including typical listings, is contained in the Calcomp Reference Manual (California Computer Products, Inc., 1963).

