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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) 

UNITS OF MEASUREMENT 

U.S. customary units of measurement used in this report can be converted to metric (SI) 

units as follows: 

Multiply by To obtain 

inches 25.4 millimeters 

2.54 centimeters 

square inches 6.452 square centimeters 

cubic inches 16.39 cubic centimeters 

feet 30.48 centimeters 

0.3048 meters 

square feet 0.0929 square meters 

cubic feet 0.0283 cubic meters 

yards 0.9144 meters 

square yards 0.836 square meters 

cubic yards 0.7646 cubic meters 

miles 1.6093 kilometers 

square miles 259.0 hectares 

acres 0.4047 hectares 

foot-pounds 1.3558 newton meters 

ounces 28.35 grams 

pounds 453.6 grams 

0.4536 kilograms 

ton, long 1.0160 metric tons 

ton, short 0.9072 metric tons 

degrees (angle) 0.1745 radians 

Fahrenheit ~egrecs 5/9 Celsius degrees or Kelvins1 

1To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use fonnula: C = (5/9) (F - 32). 

To obtain Kelvin (K) readings, use forumla: K = (5/9) (F - 32) + 273.15. 
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SYMBOLS AND DEFINITIONS 

projected area of horizontal cylinder and flanges; 
equation (76) 

cylinder radius 

coefficient of "added mass" 

coefficient of drag 

coefficient of inertia 

nondimensional amplitude of the total force on vertical 
cylinder due to a periodic incident wave; equation (60) 

nondimensional amplitude of the total wavemak.ing force 
for translational mode of oscillation; equation (40) 

Cam averaged over the water depth 

generalized damping coefficient; equation (23) 

generalized structural damping coefficient 

cylinder diameter 

dynamic magnification factor; equation (61) 

amplitude of the total wavemaking force for the 
translational mode of oscillation 

amplitude of the total viscous force for the 
translational mode of oscillation 

steady-state drag force 

generalized hydrodynamic force acting on cylinder; 
equation (8) 

generalized force due to incident wave; equation (20) 

distributed hydrodynamic force acting on vertical 
cylinder 

distributed "added-mass" force 

distributed wavemaking force 
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SYMBOLS AND DEFINITIONS--Continued 

distributed force due to incident wave 

function of amh and ~(y); equation (35) 

function of kh and ~(y); equation (33) 

acceleration of gravity 

wave height 

Hankel function of the first kind of order one and its 
first derivative 

Hankel function of the second kind of order one and its 
first derivative 

water depth 

imaginary part of a complex number, b 

modified Bessel function of the first kind of order one 

integer; also the complex number 1-1 

Bessel function of the first kind of order one and its 
first derivative 

Modified Bessel function of the second kind of order 
one and its first derivative 

generalized structural stiffness 

wave number 

wavelength 

lumped structural mass at elevation Yi where i is 
an integer 

total added mass 

generalized total mass 

generalized s truc.tural mass 

integer 

number of vertical legs supporting platform 

integer 
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Re(b) 

R* am 

r 
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u, u 

.. 
x, x, x 

x 

SYMBOLS AND DEFINITIONS--Continued 

functions of Bessel functions; defined in Appendix A 

dynamic pressure acting on cylinder 

dynamic pressure acting on cylinder due to its motion 

dynamic pressure acting on cylinder due to wavemaking; 
equation (36) 

dynamic pressure acting on cylinder due to added mass; 
equation (37) 

real part of the complex number b 

effective coefficient of added mass for mode-shape 
~(y); equation (55) 

radial coordinate; Figure 2 

oscillation Strouhal number, crnD/2nU 

period of oscillation 

time 

velocity of the current at the centerline of the channel 
averaged over time 

horizontal component of the wave water particle velocity 
and acceleration, respectively, at x = o as if the 
structure were not present 

displacement, velocity and acceleration, respectively, 
of vertical cylinder at the mean water line; also, the 
displacement, velocity, and acceleration, respectively, 
of horizontal cylinder 

oscillation amplitude at the mean water line for the 
vertical cylinder; also, the initial displacement of 
the horizontal cylinder 

amplitude of dynamic response 

amplitude of static response 

horizontal coordinate and the displacement of the 
vertical cylinder at elevation y with respect to 
its mean position; also, the argument of the functions 
P1, P2 and r 3 
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SYMBOLS AND DEFINITIONS--Continued 

velocity and acceleration, respectively, at elevation y, 
of the vertical cylinder 

amplitude of radiated wave 

Bessel function of the second kind of order one and its 
first deri va ti ve 

vertical coordinate; Figure 2 

ith elevation 

horizontal coordinate; Figure 2 

mth root of the equation o 2h/g = - a.nf. tan a.nf., 
where a.nf. > 0 and m = 1, 2, ... ~ 

angular coordinate; Figure 2 

kinematic viscosity 

fraction of critical damping 

fraction of critical damping due to structural 

fraction of critical damping due to wavemaking 

effects 

fraction of critical damping due to viscous effects 

mass density of water 

radian frequency 

natural frequency in water 

natural frequency in air 

velocity potential 

velocity potential due to the incident wave, due to the 
diffracted wave and due to the motion of the body, 
respectively 

velocity potential due to the interaction of the 
incident wave with a motionless vertical cylinder 

spatial part of <I>8; equation (26) 

mode shape of the vertical cylinder 
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HYDRODYNAMIC DAMPING AND "ADDED MASS" FOR FLEXIBLE OFFSHORE PLATFORMS 

by 
Charles Petrauskas 

I. INTRODUCTION 

The discovery of oil in water depths up to 1,000 feet is one of the 
primary factors that has stimulated research on the problem of dynamic 
response of fixed offshore platforms. In water depths less than 400 feet 
a static design based on the force due to an expected maximum wave during 
the lifetime of the platform is usually sufficient to guarantee a stiff 
platform whose first-mode frequency is sufficiently high so that dynamic 
response due to waves can be neglected. However, in deeper water eco­
nomical static designs will tend to decrease the first-mode frequencies. 

For example, Burke and Tighe (1972) cite first-mode frequencies of 2.6, 

1. 7, 1. 4, and 1. 0 radians per second for proposed platforms in water depths 
of 400, 600, 800, and 1,000 feet, respectively. 

Wind-generated waves are a major source of frequency-dependent energy 
for the dynamic excitation of these platforms. 111.e energy of these waves 
is usually specified by a spectral density function (wave spectrum) that 
defines its distribution as a function of frequency a, and direction, e. 
The one-dimensional (integrated over 8) spectrum that was developed by 
Pierson and Moskowitz (1964) is commonly used. It is a unimodal function, 
defined either in terms of windspeed or the significant wave height. The 
effect of increasing windspeed is to increase the energy level at the peak 
and shift the peak to lower frequencies. The wave energy for frequencies 
above the peak has been measured by many investigators (Phillips, 1966) 
and postulated by Phillips (1958) on the basis of dimensional analysis to 
be proportional to a- 5 • These same measurements appear to show that the 
factor of proportionality is a universal constant. However, this has been 
recently disputed by measurements of Barnett (1972) that show the factor 
to be dependent on fetch in such a way that for short fetches the factor 
and consequently the wave energy can be up to 10 times higher. 

The combination of decreasing first-mode frequencies and the variation 
of wave energy with respect to frequency implies that dynamic response 
could be a significant factor in the design of these platforms in deep 
water. 

1. Present Representation of Hydrodynamic Forces on Flexible Platforms. 

To study the effect of surface waves on dynamic response requires an 
equation that defines the forces on the members of the platform. 11ie 
presently used representation of hydrodynamic forces on flexible platforms, 
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as defined by the horizontal force, df(y,t), on an element, 
vertical structural member whose motion is constrained in the 
(Fig. l(a)) is given by the following equation: 

ctf(y,t) = {c
1 

T'D2 T'D2 
p u (y' t) - c p x (y ' t) 

4 am 4 

dy' 
x-y 

of a 
plane 

+en P: \u(y,t)-x(y,t) I [u(y,t) -x(y,t)]} cty, (1) 

wher·e 

and 

c1 = coefficient of inertia, 

Cam = coefficient of "added mass," 

c0 = drag coefficient, 

u, u = horizontal components of the wave water particle 
velocity and acceleration at x = 0 as if the 
structure were not present, 

x, x = velocity and acceleration of structural member. 

The equation as written applies to unidirectional waves traveling in 
the x-direction that are either periodic or random. If random, the equa­
tion is assumed valid for a realization of the stochastic process defining 
the surface waves. For a nonvertical member and multidirectional seas the 
equation may be used to define the force in the direction of the member's 
motion, assumed to take place in the plane that is normal to the member's 
undeflected orientation, provided the component of the fluid's motion is 
also in the same direction. 

The equation is a modification of one that was developed by Morison, 
et al. (1950) for wave forces on a rigid vertical piling. The modifica­
tion attempts to take into account the forces due to the velocity and 
acceleration of the structural members. The equation will be referred 
to as the "modified Morison equation." 

a. Rationale. TI1e first two terms of the equation represent the 
effect of the relative acceleration between the structural member and the 
fluid. Their appearance as additive terms proportional to u and x, 
respectively, can be explained by use of potential theory if each differ­
ential element, dy, of the vertical cylinder is considered moving with 
an acceleration x in a two-dimensional uniform flow field having an 
acceleration u (Fig. l(b)). Batchelor (1967) derives the force on an 
arbitrary body in an inviscid fluid by selecting an accelerating frame of 
reference such that the velocity of the fluid in this frame of reference 
is zero far away from the body. Then the force on the body is found to 
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Figure 1. Definition sketch for modified 
Morison force equation. 
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consist of two parts. The first part is an effective "buoyancy" force 
due to the pressure gradient needed to accelerate the fluid. TI1e second 
part is identical to the "added-mass" force on a body moving in a still 
fluid with an acceleration x - u. The net force on the circular cylinder 
in Figure l(b) can then be expressed by: 

2 . 2 

d f = [P TI4D • p T1D .. • ) J u - Cam 4 (x. - u dy , (2) 

where Cam = 1. Comparing this result with the first two terms of equation 
(l) shows that they are identical provided Cr = Cam + 1. 

The effect of relative velocity is represented by the third term of 
equation (1), defined here as the drag-force interaction term. Its form 
is that of the drag force on a circular cylinder in a steady flow of 
viscous fluid at high Reynolds nwnber. At each instant of time the drag 
force is assumed to be the same as in a steady flow of velocity u - x. 
This quasi-steady approach has been used successfully to predict trans­
verse oscillations due to a steady wind of elastically supported prismatic 
cylinders for the situation where the vortex shedding frequency is much 
higher than the natural frequency of the cylinder (Parkins on and Modi, 
1967; Novak, 1969). 

b. Implications. The present force equation implies two effects due 
to platform motion. TI1e added-mass force, being proportional to x, 
implies an increase in the effective mass of the platform and therefore 
lowers the modal frequencies. Because of the rate at which wave energy 
deca~s with increasing frequency, any lowering of the first-mode frequency 
provides a large increase in the amount of wave energy that is available 
for dynamic excitation. 

TI1e assumed form of the drag force interaction term implies the exist­
ence of hydrodynamic <lamping. TI1is can be clearly seen by imagining that 
the platform is excited by random waves such that on the average x << u 
and sgn(u - x) ~ sgn u. Then the following approximation can be made to 
the drag-force interaction term to isolate the damping effect: 

(3) 

The term c0 pDlulx is a positive.damping force because being proportional 
to lul it always o~poses the velocity of the platform members. Its 
proportionality to Jul also implies that the damping increases with 
increasing wave height. 

c. Applications in the Literature. 'The present equation has been used 
in a number of theoretical studies to evaluate the importance of dynamic 
response and the hydrodynamic damping implied by the drag-force interaction 
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term (Shubinski, Wilson, and Selna, 1967; Selna and Cho, 1972; Foster, 
1970; Burke and Tighe, 1972; Malhotra and Penzien_, l970j Penzien, Kaul, 
and Berge, 1972). The coefficients c1 and Cam used by the investi­
gators, usually have corresponded to the two-dimensional values of 2 and 
1, respectively. In instances where specific values were not cited the 
authors assumed that Cam= Cr - 1. CD ranged from 0.7 to 1.4; in some 
cases specific values were not given. The most informative studies were 
made by the latter three groups of investigators. They show that a 
dynamic analysis is important for deepwater fixed platforms, and that 
the hydrodynamic damping can be significant. 

'TI1e equation has also been used to predict dynamic response of plat­
form models in the laboratory. Nath and Harleman (1969, 1970) studied 
the response of vertical cylinders and multileg platforms to incident 
periodic and random unidirectional waves. Measured response compared 
well with the theoretical predictions based on the equation without the 
drag-force interaction term and Cr and Cam equal to 2 and 1, respec­
tively. The good comparison was in part fortuitous for the following 
three reasons: (a) Use of cylinders whose diameters were sufficiently 
large compared with the wave heights so that inertial forces predomi­
nated, (b) use of plastic cylinders whose damping was large so that 
hydrodynamic damping was masked, and (c) use of structural mass that 
was large compared with the added mass so that results were insensitive 
to free-surface effects on added mass. 

2. Objectives and Scope of Research. 

In view of the possible importance of dynamic response, research was 
undertaken to develop information on added mass and hydrodynamic 
damping. 

The major part of the research was directed toward developing quanti­
tative information on the effects of the existence of a free surface which 
causes the coefficient of added mass to vary with elevation and permits 
the generation of waves by the oscillation of structural members that are 
located in the near-surface zone. TI1is latter effect acts as a damping 
mechanism because energy of the generated waves radiates away from the 
platform. A vertical surface-piercing circular cylinder was chosen as 
an idealization of the platform because the vertical members forming the 
legs of the platform are usually larger in diameter than the horizontal 
and diagonal bracing. Consequently the forces due to wavemaking and 
effects of the free surface on the added mass will be most important for 
these vertical members. In some cases the platform its elf may consist of 
a single vertical colunm. 

In Section II, classical potential theory with linearized boundary 
conditions is used to derive the differential equation of motion for the 
dynamic response of the circular cylinder to incident waves. The mode 
shape of the cylinder is assumed known a priori in order that the response 
could be considered from the point of view of a single-degree-of-freedom 

17 



I 

system. The wavemaking and added mass forces are derived and studied as 
a function of cylinder diameter, water depth, oscillation frequency, and 
mode shape. Energy dissipation due to wavemaking is examined and its 
importance evaluated for fixed offshore platforms. 

Section III discusses the experimental program to verify the results 
of the potential theory. Rigid vertical circular cylinders were oscil­
lated with simple-harmonic motion in a translational mode. The resulting 
external hydrodynamic forces and the generated waves were measured and 
then compared with the theoretical results. 

The oscillations were performed in stillwater and consequently the 
verification is a limited one because a prototype structure in nature 
oscillates in an incident wave field. However, for the linearized 
boundary conditions the velocity potential and consequently the forces 
due to the incident waves are theoretically independent of the motion 
of the structure. Some experimental evidence of this independence for 
models of ship hulls is given by Vugts (1968). 

A smaller part of the research is devoted to an experimental study 
aimed at verifying the hydrodynamic damping implied by the 4rag-force 
interaction term in the modified Morison equation (Sec. IV). An elas­
tically supported horizontal cylinder was positioned within an open 
channel so that its axis was normal to the direction of a steady current. 
The motion of a cylinder was constrained so that the oscillations were 
in the direction of the current. It was located deep enough so that 
the free-surface effects were considered unimportant. Dynamic response 
to an initial displacement was measured for a range of current speeds. 
The measurements are compared with the damping predicted by the drag­
force interaction term. Added mass was also measured as a function of 
current speed. The experiment was designed so that the natural frequency 
of the elastically mounted cylinder was much higher than the highest · 
frequency of vortex shedding. This was done to avoid any possible feed­
back due to vortex shedding. 

Vortex shedding was not studied although it could be an important 
mechanism for providing additional excitation energy at the modal fre­
quencies of the platform. Bidde (1970) and Wiegel and Delmonte (1972) 
present laboratory measurements of transverse forces on rigid vertical 
circular cylinders subjected to unidirectional periodic waves. They 
show transverse forces up to 60 percent of the inline forces. Bidde's 
results for deepwater waves appear to show that the ratio of transverse 
force to inline force depends on the ratio of wave height, H, to 
cylinder diameter, D. This dependence on ' H/D seems reasonable because 
Keulegan and Carpenter (1958) show that the initiation of vortex shedding 
and the number of vortices shed depends on the excursion of the water 
particle relative to D. The frequency of vortex shedding in waves is 
not well known. The data of these investigators show average frequencies 
of 2 to 6 times the wave frequency. For large values of H/D, such that 
a large number of vortices are shed, an estimate of frequency can be made 
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by using the Strouhal number of 0.25 measured by Roshko (1961) for steady 
flow at supercritical Reynolds number. Then for deepwater waves, if the 
maximum water particle velocity at the mean water line (l11WL) is used, the 
vortex shedding frequency is approximately 2(H/D) times the wave fre­
quency. In that case vortex shedding may act as a mechanism for trans­
ferring energy from low-frequency waves to the structure at high frequency. 
The level of this energy at the first-mode frequency could be much higher 
than that available directly from the surface waves because most of it 
would be supplied by the larger waves with frequencies centered about the 
peak of the wave spectrum. It seems that such a mechanism of energy trans­
fer would be important for unidirectional waves, but it is not clear if it 
could be effective in random mul tidirectional seas. 

II. POTENTIAL THEORY MODEL FOR DYNAMIC RESPONSE OF PLATFORMS 

Classical potential theory with linearized boundary conditions is used 
to formulate the steady-state dynamic response problem for a platform 
idealized by a vertical cylinder. The hydrodynamic forces due to wave­
making and added mass are investigated in detail and used in the equation 
of motion to study the importance of wavemaking as a damping mechanism 
for idealized and actual platforms. 

1. Idealization of Offshore Platform. 

The platform is idealized by a single vertical surface-piercing 
circular cylinder of diameter, D, with the deck mass, M1 , concentrated 
at an arbitrary distance, y 1, above the MWL. It is assumed to respond 
dynamically predominantly with a mode shape ijJ(y) only in the x-y plane. 
ijJ(y) is defined such that ijJ(O) = 1.0. The deflection of the platform 
is assumed infinitesimal so that the platform behaves as a linear system. 
Figure 2 is a definition sketch and presents the coordinate system that 
is used. 

2. Differential Equation of Motion. 

With the above assumptions the dynamic system can be simplified to an 
equivalent single-degree-of-freedom linear system with a generalized struc­
tural mass, M~, generalized structural stiffness, Kg, and generalized 
structural damping, cg, excited by a generalized force, F*(t). TI1e 
generalized displacement is X(t), the deflection of the cylinder at the 
MWL. The differential equation of motion for X(t) is then given by: 

•• . 2 
X(t) + 2s a X(t) + a X(t) 

s s s 

where 

* * = F (t) /.M 
s 

(4) 

crs = IK~/Mg =radian natural frequency of the system in air, (5) 

~s = C~/2M~crs = fraction of critical damping in air. (6) 
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Figure 2. Definition sketch and coordinate system. 
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c. 

The structural damping of the platform in air is specified in terms 
of a single quantity, t;s. This representation of damping is commonly 
used in the modal method of dynamic response analysis where t;s is 
specified for each mode. A more detailed representation of structural 
damping is not used or warranted because there is at present no method 
for specifying in detail the energy dissipation capabilities of all the 
members and connections in a structure. The values of t;5 used in prac­
tice are based on experience and on the few data that are available from 
shaking tests of land structures, such as reported by Hoerner and 
Jennings (1969). In this study the specification by t;s is partic­
ularly convenient because the hydrodynamic damping due to wavemaking can 
be specified in equivalent terms and thereby comparisons can be made. 

TI1e generalized quantities Mg and F*(t) are derived by the appli­
cation of the principle of virtual displacement, first formulated by Jean 
Bernoulli in 1717. In essence it states the following: If forces acting 
on a structural system are in equilibrium, and if the system is subjected 
to a virtual displacement compatible with the geometric arrangement or 
kinematic constraints, then the total virtual work done is zero. Appli­
cation of this principle to the dynamic system of Figure 2 yields the 
following: 

Y1 

M:::: J ms(y) t2(y)dy + LMi ~2(yi), (7) 

-h i 

where 

ms(Y) =distributed structural mass per unit length, 

Mi = concentrated mass at elevation Yi, 

and 

yl 
* r F (t) = j f(y,t) t(y) dy, ( 8) 

-h 

where 

f(y, t) = distributed hydrodynamic force per unit length. 

F* (t) is the generalized hydrodynamic force acting on an oscillating 
cylinder in the presence of surface waves. The water is assumed inviscid 
so that f(y,t) is derivable from a velocity potential ¢(r,e,y,t). With 
the further assumption of linearized theory, f(y, t) can be calculated 
by integrating the pressure, p(r,e,y,t), corresponding to ¢, around 

21 



the circumference of the cylinder at its mean position, r = a. The 
following equation results: 

2n 

f(y,t). =-a J p(a,9,y,t) cos8 d9. 

0 

(9) 

The relationship between p and <I> according to linear theory is given 
by: 

p = .. p. 0 ~/Gt - pg y • (10) 

This relationship is derived by integrating the Euler equations of motion, 
yielding Bernoulli's Law, and then neglecting the higher order terms that 
are due to convective acceleration. Then, 

O 2n 

F*(t) = J J Paoi!i/'Otlr=a *(y) cos9d6dy. 

-h 0 

(11) 

Consistent with linear theory, the integration with respect to y extends 
only to the ~fivL, and consequently the hydrostatic pressure in equation 
(10) has no net effect. 

According to linear theory (Wehausen and Laitone, 1960) <I> can be 
represented as the sum of three velocity potentials: 

iji=ip +i!i +if?' I D B (12) 

where <t> 1 is the potential of the incident waves, <t> 0 is the potential 
of the diffracted waves, and <t>B is the potential due to the motion of 
the cylinder. The physical interpretation is that <t>1 + <t> 0 = <t>G is the 
velocity potential due to the interaction of the incoming wave with a 
motionless vertical cylinder and <t>B is the velocity potential due to 
the motion of the cylinder in a disturbance-free fluid. Substitution of 
equation (12) into equation (11) then yields: 

0 2TT 

F*(t) = J J apo(i!i8 +q;G)/otlr=a V(Y) cos6d9dy. 

-h 0 

For the steady-state case of simple-harmonic motion defined by: 

where 

x
0 

= amplitude of the cylinder oscillation at y = O, 

a = radian frequency of oscillation, 
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the dynamic pressure, pB, due to the motion of the cylinder can be 

decomposed into two parts that are proportional to X(t) and X(t), 
respectively, as follows: 

PB = - p (l¢ I ot I = q (a e v) e i at 
B r=a O ' u 

.. 
=q

1
(a,6,y) X(t) +q

2
(a,9,y) X(t), (15) 

where q0 is complex but q 1 and q 2 are real. Then the generalized 

force becomes: 

where 

o 2n 

= I I a[ P (l§G/ Ct \ -r-a 
-h 0 

2TT 

J a q
1 

cos9X(t)d8 

0 

(16) 

( 17) 

is the distributed wavemaking force, fw(y,t), per unit length of the 
cylinder. It is an energy dissipation term because it opposes the 
cylinder velocity. The term: 

2n 

I 
.. 

a q2 cosex (t) de (18) 

0 

is the distributed added-mass force, fam (y, t), per unit length of the 
cylinder. It has the same effect as the inertial force due to structural 
mass. 

Incorporating equation (16) i~to the equation of motion yields: 

.. * 
X(t) +2cr Es M l<M* +M* ) + s. J x(t) 

n s s s am w 

+ cr
2 

X(t) = 
n * * * FG (t) I (M + M ) • 

s am 
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where 

generalized force due to the diffraction of the 
incident wave on a motionless cylinder 

O 2n 

a J J Pa1'G/dt \r=a cose ~(y) d8dy, 

-h 0 

Mim generalized added mass 

O 2n 

s ·s aq2cose l\f(y)dedy' 

-h 0 

a = radian natural frequency in water n 

= K* /(M + M , J * * 
s s am 

C~ = generalized wavemaking damping coefficient 

-h 0 

~w = fraction of critical damping due to wavemaking 

* * C /[2 cr (M 
w n s 

* + M ) • am 

3. Hydrodynamic Forces Due to Motion. 

(20) 

(21) 

(22) 

(23) 

(24) 

The hydrodynamic forces on the cylinder due to its motion are 
derivable from the velocity potential 1' 8 and in linear theory are 
independent of the forces due to the incident waves. In this section 
1'8 is derived and a theoretical investigation is made of the wavemaking 
and added-mass forces. 

a. Derivation of Velocity Potential. 
state simple-harmonic motion of a vertical 
inviscid fluid of constant depth, h, and 
The motion of the cylinder is specified by 

1'8 is derived for the steady­
cylinder in an incompressible 
of infinite radial extent. 
its velocity 

x(y,t) = Xoa~(y)eiat 

Figure 2 is the definition sketch. 
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The derivation of cI>B is similar to that for a flap-type wave maker 
in finite depth for which the velocity potential was derived by Havelock 
(1929) and rederived and its mathematical aspects discussed by Biesel and 
Suquet (1952). In both instances separation of variables is used to solve 
the Laplace equation with linearized boundary conditions. The main differ­
ence is that qiB is here three-dimensional and requires a solution in 
cylindrical coordinates, (r,6,y), whereas the flap-type wavemaker prob­
lem is two-dimensional. This difference is important because it results 
in a vertical variation of added mass that is very different from that of 

the two-dimensional problem. 

It is also similar to the derivation of the diffracted potential for 
the case of a vertical cylinder in an incident wave field as solved for 
finite depth by MacCamy and Fuchs (1954). Here the difference is in the 
boundary condition on the surface of the cylinder. For the diffracted 
potential the velocity on the boundary in the radial direction must be 
such that no flow crosses the boundary. The solution results in out­
wardly radiating waves. But for 1>3 the boundary condition is specified 
by the motion of the cylinder. This results not only in radiated waves 
but also in a nonprogressive disturbance that is maximum at the cylinder 
and decays exponentially with distance. This latter disturbance contri-

butes to the added mass. 

The potential for the case of a circular cylinder in infinite water 

depth has been derived by Havelock (1929). Although his solution could 
have been used for obtaining the wavemaking forces in deep water, the 
added-mass forces required a finite-depth solution. Consequently all 
derived forces are based on the following solution in finite depth. 

(1) Partial Differential Equation and Boundary Conditions. 

cI>B must satisfy the Laplace equation in cylindrical coordinates, that is, 

2 (L 2 ?} \ +-L 1 
V ~B = 0 = +- § 

2 (jr2 2 ae2 ) Qy r B 
(25) 

in the region a $: r < co; -h $; y $; 0. 
' 

and 0 $; e $; 2n. 

Because cI>B is sought for steady-state simple-harmonic motion the 
time factor can be separated out, yielding: 

(26) 

where 9
8 

also must satisfy Laplace's equation, the following linearized 

boundary conditions, 
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(a) (i _ c?J ~ = 0 on y = 0' qy g B 

(b) 
CqlB 

0 -h. = on y = oy 

( c) 
{5pB 
-er = x 0 o~(y) cose on r =a, 

and the radiation condition that: 

1 
lim 
r-+ co 

r:.i ( '6pB/0r + ikcp
8

) = 0 , 

where k is the wave number. The radiation condition guarantees that 
the solution for c;PB is unique and implies that the generated wave is 

1, 
outgoing and its amplitude decays as r-'2 (Wehausen, 1971). 

(2) Elementary Solutions. Using the standard separation-of­
variables technique, the elementary solutions for 'PB that satisfy the 
boundary conditions are as follows: 

(a) 
(1) (2) 

cosh k (y+h)[A
0

H
1 

(kr) + B
0

H
1 

(kr)] cos 9, 

(b) cos a (y+h) [A 1
1 

(a r) + B Kl (a r)] cos 9, 
m m m m m 

where kh and arJl satisfy the following transcendental equations: 

for 

2 I o h g = kh tanh kh, 

2. / 
o n; g -- -ah tan'et h 

m m 

ct h > 0 and m = 1, 2, ..• , co • 
m 

(27) 

(28) 

(29) 

The first equation is the classical relationship between wavelength 
and frequency that is derivable from the free-surface condition for small 
amplitude plane surface waves. In this case it is simply a functional 
relationship between cr 2h/g and kh and has the classical meaning only 
for the radiated waves far from the cylinder. The second equation has no 
simple physical interpretation. The solutions arJl can be interpreted 
geometrically as shown in Figure 3. 
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Figure 3. Geometrical interpretation for the roots of 
o2h/g = -aJi tan anf.. 

and are the Hankel functions of the first and second kind 

of order one. Their asymptotic behavior, as represented by the first term 
of their asymptotic expansions (Dwight, 1961), are: 

If they are multiplied by the time factor, ei0 t, the products repre­

sent an incoming and an outgoing wave, respectively, with an amplitude 
that decays like r-~. 

I1 and K1 are the modified Bessel functions of the first and second 
kind, respectively, of first order. The first terms of their asymptotic 

series (Dwight, 1961) are: 
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-a r m J_ 
=e (TI/2ar) 2 • 

m 

These functions are analogous to the exponential functions that result 
from the solution of the flap-type wavemaker. TI1ey represent a non­
progressive disturbance that decays rapidly with the radial distance. 

(3) Expansion of Boundary Condition on Surface of Cylinder in 
Terms of Elementary Functions. ~B is a linear combination of the ele­
mentary solutions, but to satisfy the radiation condition the coeffi­
cients Am: m = 0,1,2, ... , 00 must be identically zero. Consequently, 

. (2) 
<p

8 
= B

0
H

1 
(kr) co sh k (y+h) cos e 

cc 

+\l B K
1
(ar)cosa (h+y)cos9. 

m m m (30) 

m= 1 

The constants B : m = 0,1,2, ... , 00 are determined from boundary condition 
(c) for the normal velocity on the surface of the cylinder. Substitution 
of into the boundary condition yields: 

(2) I 
= B0 kH

1 
(ka) co sh k (y+h) 

co 

+ \ B K.
1 

(a a) cos a (y +h) • L m m m (31) 

m= 1 

The functions in equation (31) form a complete orthogonal set over the 
interval -h .::_ y < 0 and therefore the coefficients are given by: 

B 
m 

XOO' 
=----

k K{ (am a) 

0 

J 2 \ 
*(y)cosh k(y+h) dy/ cosh k(y+h)dy )• 

-h 

0 0 

( J *(y)cosC<m (h+y)dy/ J cos
2 

am (h+y)dy J. 
-h -h 
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Then 

where 

i ot (2) (2) I 
~B = cp

8
(r,9,y)e =x

0
ch[G

0
(kh)cosh k(y+h) H

1 
(kr)/H

1 
(ka) 

+ \L G (O' h)coset (h+y) K
1 

(CJ r)/K
1
1 (CJ a)] cos9 

m m m m 
m= l 

0 

iOt 
e (32) 

G (kh) = 
0 

(2/h) J W (y) co sh k (y+h) dy 

-h 
s inh kh cosh kh + kh 

(33) 

0 

(2/h) J W~Y) cosam (h+y)dy 

-h 
G·(O' h) = ------------

m sin CY h cos a h +et h 
(34) 

Psam· 

m m rn m=l,2, ... ,co 

(4) Dynamic Pressures Due to Wavemaking, 

To obtain p and PB , the functions Bw am 

PBw and Added Mass, 

qi and q2 must be 

related to 'PB· Because ~B is a complex number it can be written as 
Re (<pB) + ilm(<pB). Then: 

and 

iot 
e 

Equating this with equation (15), where X icrt = x0oe , yields: 

q
2 

=- - ( P/XC) Re(:;; ) I . 
'B r=a 

(35) 

Taking the real and imaginary parts of <pB yields the following results 
for the dynamic pressures: 

P8 = Poh G0 (kh) P
1 

(ka) co sh k (y+h) cos 9 x (t), (36) 
w 

where 
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and 

PB = ph[ G0 (kh) P 2 (ka) coshk (y+h) 
am 

co 

+ I G (a h) P 3 (c.Yma) COSQ' (h+y)] cos9X(t), . m m 
(37) 

m= 1 

where 
P

2 
(ka) = - [J

1 
(ka) J{(ka) 

+ Y
1 

(ka) .Y{ (ka)] /[J{ (ka) 2 + y{ (ka) 2 J , 

P3(Q'ma) = -K
1 

(ama) !K{ (ama). (38) 

J 1 and Y1 are Bessel functions of the first and second kind, 
respectively, of the first order. Behavior of the functions P1, P2, and 
P3 is discussed in Appendix A. 

b. Wavemaking Forces. The distributed wavemaking force, fw (y, t)J, 
as defined by equation (17) is given by: 

fw(y,t) =-PnaohG0 (kh)P1 (ka) coshk(y+h)X(t). (39) 

f is maximum at the MWL and decays with respect to y like the 
w 

velocity potential of a small amplitude free-surface wave. In non-
dimensional form, it is a function of two independent parameters, kh and 
ka and the mode shape ~(y). Because k is related to the oscillation 
frequency a by equation (28) the wavemaking forces and consequently the 
damping due to wavemaking are frequency-dependent. 

(1) Total Wavemaking Force for Translation Mode, ~(y) = 1. To 
gain a better understanding of the wavemaking force, the theoretical 
result for total force was studied for the case of translational oscilla­
tion that would occur, e.g., if a rigid cylindrical structure were exc.ited 
by simple-harmonic ground motion. This theoretical result, in terms of 
the nondimensional amplitude Cw of the total force, Fw, defined as the 
coefficient of the wavemaking force is: 

cw = Fw/Pgna
2x0 = (o

2
h/g) sinhkh a

0 
(kh) p

1 
(ka) /ka, (40) 

where for ~(y) = 1, 

G
0 

(kh) = 2 sinh kh ( 41) 
kh (sinh kh coshkh + kh) 

it is derived by integrating the amplitude of fw(y,t) over the water 
depth. 
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Fw is solely due to wave generation. This can be shown by considering 
the limiting case where kh -+ 0. For small values of kh, such that 
h/L < 1/25, use of the shallow water approximations (sinh kh ~ kh and 
cosh ~ 1.0) yields the result: 

2 
Cw ~ (kh) P

1 
(ka) /ka; ( 42) 

then 

lime = o, 
w 

kh-tO. 

This result is expected because when kh is zero, so is o 2h/g, and 
therefore the free-surface boundary condition for the velocity potential 
implies that the vertical velocity is zero. The free surface is in effect 
a lid so that the flow field is the same as for the two-dimensional case 
of a cylinder oscillating in an infinite motionless fluid for which the 
part of the force that is proportional to velocity is zero. 

If kh > O, then the free-surface condition permits the existence 
of waves, resulting in a force that opposes the velocity and consequently 
net work is done on the fluid over each cycle of oscillation. 

For the case of deep water, for practical purposes defined by 
h/L > l/2(kh >TI), the wavemaking force depends on only one parameter, 
F

0 
= olD/ g. This can be shown by using the deepwater approximations 

(o2h/g ~ kh, ka ~ o2a/g and cosh kh ~ sinh kh ~ ekh/2) in equation (40), 
which yield: 

( 43) 

The dependence on one parameter is expected because for kh > TI the 
radiated waves are not influenced by the bottom. TI1en the wavernaking 
forces do not depend on the water depth. As kh increases, the extent 
of the zone over which fw is significant decreases, so that for practi­
cal purposes the radiated wave energy is characterized by the motion at 
the l!WL and does not depend on the exact mode shape. This simplifies 
the estimation of damping for offshore platforms because the wavemaking 
force can then be assumed to act at the !1fiVL as a point force having an 
amplitude determined by equation (43). However, the estimate is always 
on the high side. The magnitude of the error is determined as a function 
of kh and ~(y) in the next section. 

As stated previously, the wavemaking force is frequency-dependent. 
This dependence is illustrated in Figure 4 showing Cw plotted versus 
The shape of the curve implies that the damping due to wavemaking could 
be important only for a small range of F0 values, so that for a given 
diameter, energy can be effectively dissipated through a small range of 
frequencies. 
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(2) E~.f.ect of lfode ShaEe. First the mode shape affects the 
distributed wavemaking force and secondly enters into the calculation 
of the generalized wavemaking damping coefficient, C~, as defined by 
equation (23) . 

In the first case, the effect of the mode shape is included in the 
function G0 (kh), to which fw is proportional. Assuming first-mode 
shapes to be contained within the class of shapes defined by (Fig. 5): 

~ (y) = 1 - q (y)' (44) 
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where O .::_ q(y) < 1 such that q(O) = 0 and q(-h) = 1 yields the result 
that: 

GO (kh) = 
2sinh kh 

kh (sinh kh cosh kh + kh) 

k 
sinh kh 

0 

J q (y) coshk (y+h)dy J. 
-h 

( 45) 

If q(y) is equal to zero for all y, G0 (kh) 
lation mode. Otherwise the second term within 
so that the effect of q(y) is to reduce fw 
by a factor that depends on kh and the shape 

corresponds to the trans­
the brackets is positive, 
for the translation mode 
of q (y) . 

h 

y 

t/J(y)=lP, -q_(y) 
0 

I 
I 
I 
I 
I 
I 

I t/J(y)=lP,=I 
~ 0 

I 

/ 

Figure 5. First-mode shapes. 

Assuming q(y) can be expanded in a Taylor series about y = O, 

1 (n) n , 
q(y) = q(O) + q (O)y + .•• + q (O)y /n. 

TI1e major contribution to the integral in the above equation will come 
from the second term of the expansion which is the slope of q(y) at 
y = 0. Substitution of the second term yields the following result for 
deep water: 

-kh 
4e 

GO (kh) ~ __ k_h_ [
. q 1 (0)h 1 

1 - J kh • 
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A reasonable first-mode shape is given by: 

~(y) = 1 - cos ¥ (1 + t> ' (47) 

which corresponds approximately to the first mode for a cantilever column 
having a constant cross section and mass per unit length. Then q'(O) = 
TI/2h and the error made in using the translation mode is approximately 
(TI/2kh). 100 percent. 

In the case where ~ 
for the amplitude of fw. 
co sh k (y + h) , 

is calculated, ~(y) acts as weight function 
Because fw is distributed with depth like 

kh 
sinh kh 

0 2 

J q (y) cash k (y+h)dy J 
-h 

( 48) 

and therefore the result for the translation 
bound for C*. The error made in using C* w w 

mode will represent an upper 
based on the translation 

mode will be twice that for fw· 

In most practical situations the error will be small. For example, 
the platforms analyzed by Burke and Tighe (1972) yield values for o~h/g 
(or equivalently kh) ranging from 32 to 84. The corresponding errors 
range from 9.8 to 3.7 percent. Therefore, for practical purposes C~ 
can be considered independent of ~(y). Then the deepwater results for 
Cw as plotted in Figure 4 can be used because 

* 2 Cw = Cw pg(TT a /cr). (49) 

c. Added-Mass Forces. The distributed added-mass force, famCy,t), 
as defined by equation (18), is given by: 

f (y' t) = -am P n ah[ a
0 

(kh) P
2 

(ka) co sh k (y + h) 

(X) 

' COSQ'm (h+y) J .. 
+ )_ G (et h) p 3 (Q'ma) x (t). (50) 

m 

m= 1 

It consists of two components. TI1e first varies with depth in the same 
way as the distributed wavemaking force so that in deep water it is con­
centrated in the near-surface zone; it wi 11 be referred to as a "local" 
force. The second component is defined by an infinite series and acts 
at all elevations even for deep water; it will be referred to as an 
"overall" force. 

ka 
In nondimcnsional form, fam 
and kh, and the mode shape 

is completely defined by two parruneters, 
~ (y). TI1is can be clearly seen for the 
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local force although it is not so obvious for the overall force, which is 
defined in terms of anfi. and ama. But because ama = a1Ji.(ka)/(kh) and 
the set {aiJl: m = 1,2, .•. 00 } are determined uniquely by o2h/g, which is 
its elf determined by kh, the same two parameters completely define the 
overall force. For plotting theoretical results, the alternate parameters, 
o2h/g and D/h, were used because they are related directly to the char­
acteristics of the dynamic system, whereas kh and ka require the 
calculation of k for a given o and h. 

The added-mass force per unit length over a width na for the two­
dimensional flap-type wavemaker is given by 

lim fam 
ka-tw 

for which P2 (ka) = 0 and P3Cama) = 1.0 (App. A). In this case the local 
component no longer exists. This results in an added mass distribution 
that is very different from that for the circular cylinder. 

(1) Added-Hass Forces for Translation Mode, ijJ(y) = 1. The added­
mass forces for the translation mode are as simple to obtain as the wave­
making forces and provide a better understanding of their nature. Calcu­
lations are presented showing the variation of added mass with respect to 
elevation and its dependence on the parameters o2h/g and D/h. 

(a) Distributed Coefficient of Added Mass, CamCy). TI1e 
variation of added mass with respect to elevation is specified by CamCY) 
defined as follows: 

c (y) = 
am 

amp[ f (y, t)] 
am 

2 . ' 

where the term "amp(z)" means 
assumed to be simple harmonic 
the cylinder at elevation y 

For l]J(y) = 1, 

pm ('!mp [ x (y , t)] 

amplitude of the quantity z which is 
in time. ~(y,t) is the acceleration of 
and therefore amp[x(y,t)] = ijJ(y)x0o2. 

Cam (y) =¥[Go (kh)P2 (ka) coshk (y+h) 

+\ 
L 

m= 1 

., 
G (a h) P3 (a a) cos a (h+y) I , m rn m _ 

where G0 (kh) is defined by equation (41) and 
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2 sin Ct h 
0 (a h) = _ __, ____ m ____ _ 

m Ct h (sinet l1 cosa h +Ct h) 
m m m · m 

Cam(Y) was evaluated by computer for a series of a 2h/g 
D/h = 0.50 and 0.10 and are plotted in Figures 6 and 7. 
ponent was based on 30 terms, each of which required an 
for amh. 

(53) 

values and for 
The overall com­

i terati ve solution 

Certain trends can be noted from the plotted results. As a2h/g 
becomes small, Cam approaches a constant value of one. The explana­
tion is identical to that for the wavemaking forces. For a 2h/g = 0, 
the boundary condition on the free surface implies the existence of an 
impermeable lid. Consequently, the flow field is identical to the two­
dimensional case of a circular cylinder accelerating in a fluid of 
infinite extent for which the coefficient of added mass is one. 

At the other extreme when a 2h/g becomes very large the local com­
ponent goes to zero and amh, as can be inferred from Figure 3, 
approaches mrr/2 where m = 1,3,5, •.• , 00 • Therefore, 

lim C (y) 
2 

am 
a h/g-+co 

- 82; I 
TI m=l,3,5 

mn a 
mn P3 <2 h) ( \ 

sin 
2 2 

cos ~n 1 + ~), 
m 

(54) 

and consequently CamCY) for larger a 2h/g can be considered dependent 
only on a/h. The function P3 is monotonically increasing and is always 
less than one. For large a/h,P 3 will be close to one so that the terms 
of the series decrease approximately as m- 2 , making the first term domi-
nant. In that case Cam(Y) will vary approximately as cos rr/2(1 + y/h). 
TI1e result for a2h/g = 50 and D/h = 0.50 in Figure 6 illustrates this 
case. However, a 2h/g is apparently not large enough because in the 
limit Cam at y = 0 should be zero, whereas a negative value results. 
(Negative added-mass values have also been derived by Ogilvie (1963) for 
a submerged horizontal circular cylinder oscillating with simple-harmonic 
motion in the horizontal direction. He used linear theory and found nega­
tive values for some cases of low submergence.) As a/h becomes small, 
Cam approaches a constant value of one. TI1is can be seen by considering 
the case of a/h -+ 0 in which 

and therefore, 

mn a 
p3 -+- -

2 h 

lim C (y) 
2 am 

a h/g-+co, a/h-tO m=i,3,5 
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Figure 6. Variation of the coefficient of "added mass" with respect to elevation 
for D/h = 0.50; translation mode. 
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Figure 7. Variation of the coefficient of "added mass" with respect to elevation 
for D/h = 0.10; translation mode. 
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Tile series converges to the value n/4 (Dwight, 1961) and consequently, 
CamCY) = 1.0 except at the MWL where it is zero. 'The tendency toward 
uniformity can be seen in Figure 7 for o 2h/g = 50 and D/h = 0.10. In 
fact, it can be shown theoretically that for all o2h/g,Cam approaches 
the value one as a/h becomes small. This tendency can be seen by com­
paring the results for D/h = 0. 5 with those for D/h = 0. 1 where Cam 
is approximately one for a much larger part of the water depth. 

Tile limiting case of o2h/g + 00 can also be derived by solving for 
the velocity potential function with its value equal to zero at y = 0. 
Tilis boundary condition results when o2h/g + oo for the free-surface 
boundary condition. This approach has been used by other investigators 
with the intent of applying the results to earthquake-excitation problems. 
Tile boundary condition, being homogeneous in time, implies that the added 
mass is not time-dependent and consequently the added-mass forces are 
directly proportional to any time function representing the base accel­
eration. Jacobsen (1949) studied the added mass by this approach for 
fluid outside and inside rigid circular tanks. He found that the dis­
tribution of added mass with respect to elevation for the inside fluid 
is similar to that outside except that it approaches uniformity more 
quickly with decreasing a/h. Garrison and Berklite (1973) studied it 
for fluid outside arbitrarily shaped bodies using a numerical procedure 
based on the distribution of singularities on the bodies' surface. He 
included the circular cylinder as a special case for comparison with 
analytical results based on equation (54). Chopra (1967, 1968, 1970) 
studied it for vertical-wall dams excited by earthquake-produced ground 
motion. 

At the MWL, Cam ranges from values greater than one (up to 1. 5 for 
the plotted results) all the way to negative values. This variation is 
due to the combined effects of the local and overall components. For 
small values of o2h/g the local component dominates. In fact, for 
o2h/g + O it can be seen from Figure 3 that arJl + mn so that 
G (arJl) + 0 because sin arJl + 0. Consequently, the overall component 
contributes little. As o2h/g increases, the local component becomes 
concentrated near the surface, but the overall component at y = 0 
provides a negative contribution because the product G(amh) cos amh is 
always negative. Eventually the overall component dominates, resulting 
in a negative Cam and implying that the force on the cylinder at this 
level is in the direction of the acceleration rather than opposite to it 
as is usually the case. As o2h/g + 00 the contribution from the local 
component disappears. At the same time amh + mn/2 where m is odd so 
that G (aiJ1) cos amh + 0 and consequently Cam + 0. 

(b) Average Coefficient of Added ~!ass, Cam· Cam is the 
average value of Cam CY) for the translation mode. The computrttion of 
this quantity is simpler than Cam (y) because the terms of the infinite 
series are proportional to m- 3 rather than m- 2 and therefore the 
series converges more rapidly. Calculations were made by computer for 
many different pairs of o2h/g and D/h covering the range of laboratory 

39 



------------------·-----

experiments and field conditions. The infinite series was assumed to 
have converged when an addition al term' caused less 1th an 0. 01 percent 
change in the cumulative sum. The results are plotted in Figure 8 
(experimental data are discussed in Section III). / 

These results illustrate more fully the influence of the two para­
meters. For practical purposes: (a) cr2h/g can be considered infinite if 
it is greater than 100 so that Cam CY) as defined by equation (S4) can 
be used, and (b) the influence of D/h is negligible for values less than 
about 0.01 so that a constant Cam(Y) of unity can be assumed to act at 
all depths. 

(2) Effect of Mode Shape. The effect of lj!(y) on CamCY) was 
not studied directly. Instead its integrated effect, as included in the 
generalized added mass, Miim, defined by equation (21), was investigated. 
This choice was made because Miim is a measure of the kinetic energy com­
ponent due to hydrodynamic effects and co11.sequently enters into the eval­
uation of effective energy dissipation due to wavemaking as defined by 
the fraction of critical damping, ~W' in equation (24). 

The effect of mode shape was studied in terms of a normalized 
generalized coefficient of added mass, Rtlm, defined by: 

0 

! J c (y) *2 
(y)dy h. am 

-h 
a * R = am 

~ J *2 (y) dy 

-h 

(SS) 

where Cam(Y) is now a function of ijJ(y) as defined by equation (Sl). 
The numerator is the average value of Cam(Y) weighed by iji2(y) and is 
equivalent to M~m/pna2h. The denominator is the same quantity for the 
case where Cam CY) = 1. 0. Therefore, R~m is an overall measure of the 
deviation of CamCY) from a uniform value 'of one as influenced by the 
combination of 1jJ (y), cr 2h/g and D/ho It is the equivalent constant 
coefficient of added mass, applied at all elevations, that yields the 
correct natural frequency in a fluid for a prescribed mode shape. 

The four mode shapes studied were the cantilever mode, defined by 
equation (47), and approximations to three higher modes defined by: 

* (y) = sin 
n n2 (1 + y/h); n = 3,5, and 7. 

The results are plotted in Figures 9 and 10; equations used to obtain 
results are given in Appendix B. 

The significant result for the cantilever mode is the increased 
sensi ti vi ty of R~m to D/h when compared with results for the 
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translation mode. This effect is primarily due to the weight function 
~2 (y) being applied to the variation of CamCY), as exhibited in Figures 
6 and 7, rather than due to effects of ~(y) on Cam CY). This was clari­
fied by study of the higher mode shapes. 

Figure 10 shows that as the number of nodes increases for the higher 
modes, R~m for a given D/h and o 2h/g decreases. The results are a 
combination of effects due to ~(y) and the presence of a free surface 
and an impermeable bottom. As n increases, the effect of the free 
s~rface and bottom contribute less and less to R~m· The primary contri­
bution comes from ~ (y). The resulting R~m approaches that for ~(y) 
in a fluid of infinite extent in the y-direction. Evidence for this is 
shown by the dotted lines that correspond to the infinite fluid result 
plotted in Figure 11, calculated from the velocity potential derived by 
Landweber (1967). The dotted lines were obtained from Figure 11 by the 
relationship nD/S = n/4 n D/h, where S is the wavelength of the 
deflected shape. 
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Figure 11. Effective added mass for flexible cylinder in 

infinite fluid. 
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4. Hydrodynamic Forces Due to the Incident Waves. 

The velocity potential, ~G, for the diffraction of a plane surface 
wave about a rigid vertical cylinder has been derived by Havelock (1940) 
for infinite depth and by MacCamy and Fuchs (1954) for finite depth. 

a. Distributed Force. For a wave of height H traveling in a 
positive x-direction, defined by: 

'Tl = ~ sin (kx - ot), 

where n is the surface elevation, the force per unit length is given by: 

f (y,t) = _ 2PgH cash k(y+h) P ka) 
g k cash kh 4 ( cos (at + Y) ' (57) 

where 

y =arc tan[J{(ka)/Y{(ka)], (59) 

fg ~s maximum at the M\V~ and_decays wit~ r~spect to y like the wave­
mak1ng forces. In nond1mens1onal form it is a function of two parameters 
kh and ka. Unlike the forces due to the motion of the cylinder, the 
incident-wave forces do not depend on ~(y); this is a consequence of 
linearization. 

b. Total Force and its Relationship to the Generalized Force. 
Although ~(y) has no direct influence on fg, it does enter into the 
calculation of dynamic response as a weight function applied to fg, 
yielding Fc(t) as defined by equation (20). 111e force magnitude at 
the first-mode frequency will be of most importance for the dynamic 
response problem. This frequency will usually be sufficiently high that 
fg will be concentrated in the near-surface zone and ~(y) will have 
Ii ttle influence. For practical purposes the generalized force will then 
be equal to the total deepwater force. The error made will be identical 
to that made in the calculation of fw based on the translation mode. 

The amplitude of total force, FG, in nondimens ional form is defined 
by Cg· For deep water (kh > n) it is given by: 

· 8 (i (F~/2)-, Q 

=f°3L iT J 
0 

(60) 

It is plotted in Figure 12; the limiting values were derived using the 
limiting values for the function P1 in Appendix B. 

'TI1e plotted results show that the nondimensional force decreases 
rapidly beyond F0 = 1. This decrease is important because the effective 
exciting force can be decreased by increasing the first-mode frequency. 
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5. Dynamic Response and Damping. 

The wavemaking and added-mass forces of the previous sections show 
that the coefficients of the differential equation of motion (equation 19) 
are frequency-dependent. This implies that the dynamic system is actually 
represented by an integral equation in the time domain (Tick, 1959). 
Consequently, the transient part of the well known general solution of 
the equation with constant coefficients is not valid in this case. To 
obtain the transient part requires the solution of an initial value 
problem. However, the steady-state part of the general solution is valid 
and can be used to obtain the response due to either periodic waves or 
random waves specified by a wave spectrum. 
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The steady-state solution for the amplitude of dynamic response, 
Xod• due to a periodic input of frequency er is given by the following 
equation: 

(DMF) Xos' (61) 

where 

x0s amplitude of static response, 

DMF dynamic magnification factor, 

1/((1 - Co/cr ) 2J2 
+ [2s(cr/cr )] 2 j~. 

n n 

The m!F for constant values of E; is plotted in Figure 13. It is a 
unimodal function of er/ern peaking at 1.0 for E; values less than about 
0.20 (20 percent of critical damping). The value at resonance is inversely 
proportional to E;; equal to l/2E;. Static response occurs when er/ern 
becomes small because then DMF """ 1. 0. The DMF + O as er/er + 00 n . 

In the case of damping due to wavemaking, equation (24), gives: 

* * * S = E'. = C /2 CJ (M + M ) 
"'w w n s am ' (62) 

where C~ and M~m are functions of er 2h/g, D/h and ljJ(y). In deep 
water this reduces to: 

(63) 
<) * * 2 o~ (ti! + l\! ) 
n s am 

Fo and er 2h/g can be written by (er/ern) ern ID/g and (er/ern)2 er2h/g, 
respectively, and consequently E; in equation (61) will be a function of 
er/ern· 'I11erefore, the DMF will have a different shape from that shown in 
the figure and this would have to be taken into account when calculating 
the dynamic response spectrum to random waves. Nevertheless, the DMF for 
constant E; is very useful for understanding the importance of damping. 
Its inverse proportionality to E; at resonance implies that even very 
small amounts of damping are important in reducing the dynamic response. 
For example, if the forcing function is simple-harmonic with er = ern 
then Xod = (l/2E;) Xos. Wave energy is usually spread over a band of 
frequencies so that the effectiveness of E; in reducing the overall 
response, defined by the rms [X(t)], will depend to a great extent on 
how far removed is the frequency er at the peak of the wave spectrum 
from the natural frequency of the s~ructure. For example, under lifetime 
design storm conditions, such that erp << ern, the static response may 
dominate; but under the more frequently occurring moderate conditions such 
that erp ::::: crn, the dynamic response will be inversely proportional to E;. 
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Figure 13. Effect of damping on dynamic 
response (Biggs, 1964). 

Consequently, the effectiveness of E;, must be evaluated on a statistical 
basis taking into consideration the occurrence probabilities of lifetime 
and moderate conditions. 

a. Idealized Platforms. E;,w and dynamic response were studied theo­
retically as a function of diameter for three idealized platforms having 
natural periods of 3, 4, and S seconds in a water depth of 600 feet. TI1e 
objective was to determine the level of damping that can be obtained from 
this mechanism and the conditions under which it is of significance. 

TI1e idealized platforms are described with reference to Figure 2. Tile 
first platform is a single vertical cylinder extending to the ~~VL having a 
wall thickness of 2 inches and no deck. Tile second platform is the same 
except that it extends some distance above the MWL and supports a deck. 
Both the mass of the deck and mass of the steel above the ~~VL are assumed 
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lumped at the deck level so that the generalized mass M* · 400 . 1 ht . d f ' l' is k-slugs. This va ue was o aine rom the mass at deck level used by 
Burke and Tighe (1972) for proposed deepwater drilling platforms. The 
third platform is the same as the second except that M* is assumed to 
be shared by four legs. Consequently each of the legs ~ontributes to 
wavemaking; interaction between legs was neglected. In all cases the 
shell was considered full of water adding a mass per unit length of 
pTID2/4 to the structural mass. The cantilever mode shape was used 
for ip(y). 

(1) Effect of Diameter and Natural Frequency on Sw· sw was 
calculated by using equation (62) with the assumption that 0 0 n· The 
total generalized mass, M*, for the cantilever mode shape was given by: 

where 

0 

* * M == M s 
* + M == [ (PA + P A ) + PA 
am w s s w 

0 

* I 2 * Ram] ~ (y)dy + Ml/N 

-h 

A,,,, = area of enclosed water ~ TID2/4 

As = area of shell ~ TIDd where d = wall thickness 

Ps = mass density of steel 

f *2 (y)dy = 0.228h 

-h 

N = number of legs 

R* is defined by equation (SS). 
am 

(64) 

~ was calculated ex~ctly, al though the use of the deepwater approxi­
mation, defined by equation (49), would have resulted in an error no 
higher than 10 percent. sw is shown plotted versus diameter in Figure 14. 

The plotted results show that sw will be most important for the larger 
cylinders. However, the diameter for which it becomes significant will 
depend on an. The results also indicate that ~ generally increases 
with decreasing an but the relationship is complicated because for a 
given diameter sw may sometimes be greater for the platform having a 
higher an. The following explains the theoretical results in terms of 
the wavemaking forces and their dependence on the parameter, F

0 
= anlD/g. 

The first case (one leg; no deck) represents an approximate upper 
bound on the available sw because the structural mass of this idealized 
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Platform for diameters larger than 20 feet is less than 15 p 
ercent of the 

combined added mass and mass of the internal water. The effect of diameter 
on ~ can be understood from the deepwater approximation fo C* d f" 

w . . . r w e ined 
by equation (63). When F0 is less than one, this equation i 1. h 

2 2 . mp ies t at 
~Vf o:: ~ bec~use ~oth C~. and M~m cc D . This quadratic increase of ~ 
with increasing diameter is portrayed by the left limbs of the plotted w 

curves. When F0 is greater than about two, ~w cc 0-1 because then 
Cw cc o-1 but M~m cc o-2. Consequently, ~w decays more slowly with 
increasing diameter than it rises. 1be rise and decay imply that there 

must be a diameter for which ~w is maximum. This diameter is defined by 
F0 = 1.4 at which Cw is a maximum. 

The effect of decreasing the natural frequency is to increase the peak 

~w and shift it to larger diameters. TI1e shift of the peak results from 
the requirement that F0 = 1.4. An increase in the peak ~w occurs 
because both C* and M* cc D2 · consequently ~ cc a-2 F w am ' w n · or a given 
diameter monotonic relationships exist only in the limiting situations 
where F0 is less than one and greater than two, respectively. When 
F < 1, ~ cc a2 because Cw cc an- 4 and Figure 9 implies that M* is o w n am 
practically independent of an ~or the range of values that are consid-
ered here. When Fo > 2, ~w o:: an 4 because Cw cc a~2 • These results are 
valid only for the range of an satisfying the criteria on F . In 
general, for a given diameter, ~w need not be monotonically ~elated to D 
and requires a series of plots as shown here to evaluate the conditions 
under which maximum damping can be achieved. 

Similar trends exist for the other cases. 1be major difference is the 
decrease of ~w and the shift of the peak values to larger diameters. 
These effects are due to the contribution of the deck mass and can be 
similarly explained by a study of equation (63). 

1be behavior of ~w for prototype structures will be approximately 
represented by the region between the plots for the second and third cases. 
~w for the smaller diameters (but not < 15 feet) will correspond more 
closely to the second case because one column will probably not be suffi­
cient to provide the necessary stiffness. In this case, ~w will range 
from 0.5 to 1.0 percent of critical. For the larger diameters it will 
correspond more closely to the third case. Consequently, ~w will be 
higher, on the order of 2 to 3 percent of critical. 

Decreasing the water depth would increase ~w because M~m is propor­
tional to h. However, an will likely be larger because stiffer plat­

forms can be constructed in shallower water. This will tend to decrease 
~ • The net effect requires an analysis for each depth. 
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(2) Effect of Diameter and Diffraction 
dynamic response at resonance is given by: 

XOd = 
* amp[FG (t)] 

* 0 c 
n w 

on Dynamic Response. The 

(65) 

Using the deepwater approximations for the amplitude of Fd(t), defined 
by equation (60), and C~ yields the result: 

C (F
0

) 

XOd/(H/2 ) = Cg (F ) • 
w 0 

(66) 

This is plotted in Figure 15 as a 
platfonnso Because at resonance 
idealized platforms have the same 
force acts on all legs. 

function of diameter for the idealized 
Xod is independent of mass, all the 
response provided the same incident-wave 

The dynamic response, as shown in the figure, decreases with increasing 
diameter due to the combined effects of diffraction and wavemaking. This 
can be shown theoretically for F0 > 2 where Cw~ 4/F~ and Cg~ 8/(/nFg) 
yielding Xod/(H/2) ~ l/DYi. Diffraction acts as a low-pass filter signifi­
cantly reducing the response of large-diameter platforms as illustrated for 
the 4-second natural period. The "no diffraction" curve was calculated by 
assuming Cg = 2, which is the limiting value as F0 becomes smallo 

b. Damping for Actual Platforms. The Table below represents l;w for 
proposed deepwater oil drilling platforms that were studied by Burke and 
Tighe (1972) and Malhotra and Penzien (1969) and for the Texas Tower Noo 4 

Tab le. Damping due to wavemaking for actual platforms. 

Source 

Burke and Tighe 
(1972) 

Malhotra and 
Penzien (1969) 
Brewer Engineering 
Laboratories, Inc. 
(1959) 

lM* = ~ Mi~2(yi). 
l 

2Number of legs. 

h 

(ft) 

400 

600 

800 

1,000 
1, 270 

180 

crn k-slugs 1 

(rad/s) 

2.59 560 

1.67 900 

1. 42 1,000 

1. 01 1,800 
0.57 1,800 

2.20 330 

52 

N D Fo Cw 

-2 (ft) (Fo) 

4 5.0 1. 02 0.66 

4 5.0 0.66 0.18 

4 5.0 0.56 0.08 

4 5.0 0.40 0.02 

3 18.0 0.43 0.02 

3 12.5 1. 37 1. 48 

t;,w 

(pct) 

0.05 

0.02 

----
----
0.08 

0.56 
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Figure 15. Effect of diameter and diffraction on the dynamic response 
at resonance for idealized platforms in water depth of 
600 feet. 
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that was studied by Brewer Engineering Laboratories, Inc. (1959). ~w for 
the first five platforms in the Table is insignificant. Member diameters 
of the first four platforms are much too small for this damping mechanism 
to be effective, while the natural frequency is too low and the water too 
deep for the fifth platform. Only for the Texas Tower is ~w of some 
significance because the natural frequency and diameter combine to produce 
a maximum value for Cw· However, due to the predominance of the deck 
mass, the diameter is still too small to provide appreciable damping. For 
example, according to equation (63), assuming M* >> M* , a diameter of s am 
25 feet could provide ~w close to 3 percent. Of course the design 
static load, being predominantly due to inertial forces, would be quad­
rupled. This would have to be considered in conjunction with any possible 
reduction in dynamic response. 

The mode shapes and frequencies used to compute ~w for the oil drill­
ing platforms were calculated from the mass and stiffness matrices publi­
shed by the investigators. The mode shapes are shown in Figure 16. 

III. EXPERIMENTAL VERIFICATION OF THE POTENTIAL MODEL 

The objective of the experimental program was to verify the wavemaking 
and added-mass forces predicted by the potential model. The tests con­
sisted of oscillating rigid surface-piercing vertical cylinders in a 
translation mode and measuring the total forces and the generated waves. 
'These oscillations were performed in stillwater and therefore the verifi­
cation is a limited one because a prototype structure in nature oscillates 
in an incident wave field. However, the test is valid within the scope of 
potential theory with linearized boundary conditions for which the forces 
due to the incident waves and those due to the motion of the structure are 
independent. 

This section discusses the experimental equipment, important factors 
in their design, and the experimental program and its results. 

1. Experimental Equipment and Important Factors in Their Design. 

A general view of the experimental equipment and arrangement is shown 
in Figure 17. Some uf the relevant dimensions are given in the schematic 
diagram of Figure 18. A four-legged platform of welded steel structural 
members supports the carriage used to transmit a translational oscillation 
to the test cylinders and the necessary power transmis~ion equipment to 
impart to them an approximately simple-harmonic motion. It is placed in a 
rectangular basin (63 by 150 feet) so that the shortest distance from the 
test cylinders to the nearest wall is about 24 feet. The system is capa­
ble of oscillation frequencies up to 2.8 cycles per second and amplitudes 
of carriage displacement, X0 , up to o.s foot. An array of five gages is 
positioned along a circular arc to measure the surface waves in one quad­
rant. 

a. Platform. The theoretical results of the previous section imply 
that the amplitude of the generated wave will be proportional to cos 8. 
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Figure 17. General view of experimental equipment . 
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Consequently, to m1n1m1ze the effect of wave reflection it was necessary 
to perform the experiments off a platform situated near the middle of a 
wide basin; existing two-dimensional flumes could not be used. 1bis 
necessitated the construction of a platform for supporting the carriage 
and power transmission equipment. 

1be main design considerations were rigidity and wave reflectivity. 
It was very important for the platform to be rigid (have a large stiff­
ness and high modal frequencies) because frequency-dependent energy 
sources dynamically excite the platform and the resulting vibrations 
could contaminate the force measurements. 1be simple-harmonic motion of 
the carriage at a maximum frequency of 2.8 cycles per second induces hori­
zontal loads on the platform at the same frequency and vertical loads and 
torque on the axle of the eccentric and speed-reducer shaft at double the 
frequency. Energy at higher frequencies is supplied by motor noise and 
impact forces due to backlash in the speed-reducer gears and clearances 
in other moving parts. Based on the experience of using a trial platform 
it was determined that a very rigid platform would be required; one for 
which the lowest natural frequency wouldn't be less than about 40 to 50 
cycles per second. To minimize wave reflection the legs had to be of 
small diameter and located as far away as possible from the oscillating 
cylinder. However, this makes the platform more flexible so that a com­
promise had to be made between rigidity needs and minimization of wave 
reflection. 

1be present platform satisfied the natural frequency criteria for the 
following assumed modes of vibration: (a) a vertical mode in the z-y 
plane (the y-axis points out of the page in Figure 18.) where the deck 
bends as a beam assumed simply supported by the I-beams; (b) a vertical 
mode in the x-y plane where the beams supporting the deck bend as if 
simply supported by the legs; and (c) a horizontal mode where the deck 
and the supporting beams translate in the x-z plane, the stiffness being 
provided by the legs which are assumed fixed to the underside of the beams 
and pinned at the basin floor. 

Wave reflection from the front legs was minimized by locating the 
carriage so that the mean position of the cylinder axis intersected a 
line connecting the two front legs. Al though according to linear theory 
no energy should radiate perpendicular to the direction of oscillation, 
measurements showed a small amount at twice the oscillation frequency. 
1bis was too small to affect the force measurements and could be neglected 
in the calculation of radiated energy from the measured surface waves. 
Reflections from the back legs were also small and in most cases suffi­
cient force and wave data were obtained before the reflected wave arrived. 

b. Carriage. 1be purpose of the carriage is to transmit a transla­
tional motion to the cylinder along a line. Consequently, it was essen­
tial that all elements of the carriage and supports be rigid and the 
motion restrained laterally and vertically. At the same time the car­
riage had to be light to reduce the inertial loads on the platform and 
on the mechanical linkages. 1be restraints had to be low-friction devices 
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for which the difference between dynamic and static friction was small 
so that impact forces due to stick-slip would be minimized. Welded alu­
minum construction was used for the carriage to meet the rigidity and 
weight requirements and special roller-bearing devices were used to meet 
the friction and restraint requirements. 

The carriage that was used is a welded aluminum frame of four 
4- by 4- by 5/16-inch H-beams (Figs. 17, 18, and 19) supported on four 
tracks of 1-inch O.D. solid stainless steel 60 Case-hardened and ground 
shafting of material 440C. The supports and restraints are provided by 
the SKF linear-motion assemblies shown in Figure 20. These assemblies 
solved the difficult problem of providing a frictionless four-point 
support and complete lateral and vertical restraint without the aline­
ment problems that usually occur in such cases. Each assembly consists 
of two rollers enclosed within a housing; each roller is supported by 
two completely sealed ball bearings. On one side of the carriage the 
rollers within the housings can move along their axes, thereby prevent­
ing jamming due to any misalinement in the tracks. Each assembly can 
be rotated so that the rollers can be preloaded in place onto the shaft­
ing thereby eliminating any play in the vertical direction. Each of the 
tracks is rigidly connected to a lower aluminum frame by means of three 
shaft-support blocks (Fig. 19). The blocks are movable to allow a maxi­
mum travel of 1 foot. The lower frame acts as a rigid base for the 
carriage. A rigid vertical extension of the carriage, consisting of an 
H-beam whose ends are .butt-welded to.aluminum plates, connects to the 
underside of the carriage (Fig. 18). The H-beam passes through a hole 
cut in the platform and the lower welded plate provides a flat surface 
for attaching the force transducers and cylinders (Fig. 21). The use of 
four clamps as shown in the figure provided a sufficiently rigid connec­
tion. 

c. Power Transmission Equipment. The power transmission equipment 
is illustrated in Figure 19. The basic elements are the connecting rod, 
eccentric and its axle, and the V-belt and pulleys. 

The connecting rod transforms the constant rotational speed of the 
eccentric into a periodic translation of the carriage. The motion is 
approximately simple-harmonic if x0 is sufficiently small compared to 
the length of the connecting rod and if the center of the eccentric's 
axle is at the same elevation as the center of the pin at the carriage 
connection point. The design length of the rod was 2.5 feet and Xo was 
0.25 foot for the force measurements. This resulted in the second har­
monic of the carriage displacement and acceleration that was 0.25 and 1 
percent, respectively, of the first harmonic. TI1e corresponding values 
for the radiated wave measurements based on a maximum x0 of 0.094 foot 
reached 0.9 and 3.7 percent. To reduce impact loads it was essential 
that the clearance between the pins and the bearing surface of the con­
necting rod ends be as small as possible. Commercially available bushing­
type rod ends were found unsuitable because the initial wear was too great 
and ball bearing rod ends produced too much noise in the measured force 
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Figure 20. Linear-motion assembly for supporting carriage on track. 



Figure 21 . Attachment of cylinder and force transducer to 
carriage extension. 
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records. ConsequentlY, split-ring type rod ends of bronze-bearing material 
were designed and built. These were made with an adjustable bore thereby 
providing a method for controlling the clearance. 

The eccentric is a device for adjusting Xo· It consists of a 3/4-
inch thick steel plate butt-welded to a 2-inch O.D. axle. An aluminum 
block with an attached pin that connects to the rod end can freely slide 
along two slots that are cut in the plate. This allows a maximum x0 of 
0.5 foot. The important design consideration was the rigidity of the axle 
because the axle acts as a spring for the carriage mass and the added mass. 
After a I-inch O.D. axle proved to be too flexible, the 2-inch 0.0. axle 
was chosen. The noise content of the force measurements was reduced and 
its frequency increased. 

Commercially available cast iron pulleys and a rubber V-belt were used 
to transmit the rotary motion from the speed-reducer shaft to the eccen­
tric's axle. The noise level in the force measurements was sensitive to 
the tension of the belt. Although lowering the tension reduced the noise 
level, it had to be maintained at a high enough tension to prevent belt 
slippage and corresponding distortion of the simple-harmonic carriage dis­
placement. An optimum tension was found and used throughout the force 
measurement experiments. 

d. Power. The power was supplied by a combination of 1/2 horsepower 
direct-current motor and speed reducer. The motor speed could be varied 
over a continuous range by a variable transformer-type control. The 1/2 
horsepower was sufficient because the dominant forces are inertial so 
that very little net work has to be done. A d.c. motor was particularly 
suitable because of its low noise level compared to an a.c. motor. The 
speed reducer was a worm-gear type. Because of clearance between the 
gear teeth impact forces occurred on torque reversal and contaminated the 
force records. However, enough control over the noise level was provided 
by the V-belt tension that special devices, such as a brake on the eccen­
tric's axle, for preventing torque reversal were not necessary. 

e. Cylinders and Force Transducer. Two cylinders, approximately 
1.1 feet in height and having diameters of 0.50 and 0.75 foot, respec­
tively, were used in the experimental program. 'I11ese are illustrated 
together with the force transducer in Figure 22. 

The cylinders had to be watertight containers constructed of light 
material in order to isolate the added-mass forces due to the outside 
water from the total force measurements. Plastic material was suitable 
for this purpose. Each cylinder was constructed of tubing having a wall 
thickness of 1/8 inch. A disk was welded to one end to provide a water­
tight fit. 

The force transducer was designed to measure the total force on the 
cy~inders by summing the forces transmitted to the upper and lower struts 
(Figure 22). The forces from the struts are transmitted to the upper­
force and lower-force load cells that consist of flexible aluminum 
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elements as shown in Figure 23. The deformation of each load cell is 
picked up by the four strain gages shown in the figure; each gage acts as 
a resistance element of a full Wheatstone bridge. The output from each 
bridge pas,ses through a preamplifier, the tll'o outputs are summed and then 
passed through an amplifier to yield a pen deflection on the strip-chart 
recorder that is proportional to the total force. 

The force transducer had to be sensitive and at the same time have a 
natural frequency that is high with respect to the oscillation frequency. 
The latter requirement is necessary to use the results of a static cali­
bration to measure time-varying forces and to shift the noise to higher 
frequencies. The natural frequency was measured to be 43 cycles per 
second when the 0.50-foot O.D. cylinder was submerged to the maximum water 
depth of 1 foot; the corresponding value for the 0.75-foot O.D. cylinder 
was not measured but calculations based on the previous measured value and 
the theoretical added mass showed it to be about 35 cycles per second. 
The force transducer was assumed to respond statically because the meas­
ured force data were for oscillation frequencies less than 2.5 cycles per 
second. 

f. Displacement Se~sor. The carriage displacement, x0 , was measured 
by a line'ar potentiometer-type displacement sensor. Figure 24 shows the 
sensor. The motion of the rod changes the resistance in a manner that is 
linear with displacement. Figure 25 shows the sensor attached to the 
carriage. 

g. Wave Gages. Five resistance-type wave gages were used to measure 
the radiated waves. Each consisted of two stainless steel wires 0.50-foot 
long and 0.03 inch in diameter as shown in Figure 26 (the scale in the 
figure is in centimeters). The wave gage acts as a resistance element in 
a Wheatstone bridge network. The resistance is proportional to submergence 
and therefore the gage can be used to measure water level fluctuations. 

h. Amplifiers and Recorders. An eight-channel Brush amplifier­
recorder system was used to record the force, carriage displacement, and 
wave data. Figure 27 shows the system in position for recording the forces 
and corresponding carriage displacement. The two amplifiers on the left 
side of the recorder were used to amplify and sum the outputs of the top­
force and bottom-force load cells as previously described. TI1e carriage 
displacement was measured by the bottom amplifier. Due to frequent break­
downs all eight amplifiers could not be used continuously. Consequently, 
the waves and corresponding carriage displacement were recorded separately 
using any six of the amplifiers that were operational. 

2. Measured Forces, Analysis, and Resuits. 

One of the objectives was to verify the theoretical wavemaking forces 
for deepwater conditions in the vicinity 9f F0 = 1. 4 where Cw is maxi­
mum. To do this accurately required that both the viscous and added-mass 
forces be small in comparison with the wavemaking forces. These require­
ments restricted the experiments to stout cylinders for which d/h > 0. 50 
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Figure 25. . Location and attachment of carriage-displacement sensor. 
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Figure 26 . Parallel-wire resistance-type wave gages . 
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Figure 27. Eight- channel recorder, amplifiers, and d.c. motor speed control. 



and values of o2h/ g < 8; consequently, the added-mass forces, which 
depend on both parameters, were verified only in this range. The viscous­
force requirement also restricted XcJ/O to small values. 

a. Ranges of the Variables. In order for the viscous forces to be 
small in comparison with the wavemaking forces it was important to pre­
vent boWldary-layer separation, otherwise the low pressure in the wake 
could produce drag forces that would not be possible to separate from 
the wavemaking forces. Separation can be prevented by using small values 
of X0/o. Schlichting (1968) shows that for a cylinder starting impul­
sively from rest and then continuing with a constant velocity, separation 
begins only after the cylinder has traveled a distance of 0.1750. If the 
starting process is more gentle, then the distance traveled before sepa­
ration occurs is larger, e.g., the distance is 0.260 for a motion defined 
by a constant acceleration. Consequently it is unlikely that separation 
will occur for an oscillating cylinder if x0;o is less than 0.25. 

In this case laminar boundary-layer theory can be used to obtain an 
estimate of the viscous forces. Batchelor (1967) obtains the viscous 
forces on an oscillating cylinder in a still fluid of infinite extent 
(no free surface) for the case that X0/o « 1 and the Reynolds number, 
00 2/v, is large in comparison to unity. The part of the force that is 
proportional to velocity is due to two factors, each contributing 50 
percent: (a) tangential stresses on the surface of the cylinder, and 
(b) normal stresses· acting on a cylinder whose cross section is that of 
the cylinder plus a perturbation on the order of the boundary-layer thick­
ness. His result for its amplitude, Fv, is shown plotted in Figure 28 
as the ratio Fw/Fv versus oscillation frequency; Fw is the amplitude 
of the wavemaking force for the translation mode. This shows that if 
O/h is sufficiently large and the oscillation frequency is sufficiently 
small then Fv can be made insignificant .in comparison with Fw. 

The added-mass effects dictated that o 2h/g be small so that Fw 
could be accurately isolated from.the total measured force. The impor­
tance of o2h/g can be seen from the following relationship for the ratio 
Fw/Fam where Fam is the amplitude of the added-mass force: 

A 2 
F /F = c I (C a h/g) w am w am 

(67) 

However, in order to measure Cw for deepwater conditions, o2h/ g could 
not be smaller than TI. Consequently, the experiment could not be designed 
such that Fw is very large with· respect to Fam· Nevertheless, very 
accurate values of Cw were obtained by the analysis technique described 
previously. 

Considering the simultaneous effects of viscous and added-mass forces 
it was decided to use the following ranges for the variables of the 
experiment: 
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x0 = o.02s foot, 

D =a.so and 0.7S foot, 

a= 2n to Sn radians per second (1.0 to 2.S cycles per second), 

h = 0.67, 0.83, and 1.0 foot. 

The corresponding ranges for the nondimensional variables were: 

Xo/D = O.OS and 0.033, 

D/h = O.SO, 0.60, 0.7S, 0.90, and 1.12, 

1.0 < cr 2h/g < 8.0, 

1.2 < F0 < 2.2 (for a 2h/g > n). 

b. Experimental Procedure. Both static and dynamic calibrations were 
required for the force transducer. The static calibration determined the 
relationship between the total force on the cylinder and the deflection of 
the recorder pen. The method of imposing a known horizontal load on the 
cylinder is illustrated in Figure 29. The figure shows a string looped 
around the cylinder passing over two pulleys and supporting a 1,000-gram 
weight in a tin container; the cylinder is loaded at the upper-reaction 
point defined as the elevation at which no output is measured from the 
lower-force load cell. The procedure consisted of: (a) locating by trial 
the upper- and lower-reaction points, (b) setting the sensitivity on the 
amplifiers such that the pen deflection was the same for a given load 
whether the cylinder was loaded at the upper- or lower-reaction point, 
(c) engaging the summing circuit so that the pen deflection is proportional 
to the sum of the amplifier outputs, and (d) loading the cylinder with a 
series of loads at the two reaction points and midway between them to 
obtain three calibration curves of load versus pen deflection. This type 
of calibration was performed in air as well as water. The three calibra­
tion curves were nearly identical and therefore, it was assumed that the 
pen deflection will be proportional to the total force on the cylinder 
when it is forced to oscillate. The curves were also linear so that an 
incremental calibration was not required for each run; the pen deflection 
due to one load was sufficient. The dynamic calibration determined the 
mass-in-air that would have to be subtracted from the mass-in-water to 
arrive at the added mass due to the outside water. The procedure consisted 
of oscillating the cylinder in air with Xo = 0.02S foot at five to six 
different frequencies in the range of 1.0 to 2.S cycles per second. Using 
the results of the static calibration to calculate the oscillatory forces, 
the mass-in-air was obtained for each frequency and the average value used 
in the calculation of added mass as explained later in this section. 

A run consisted of force measurements for a given diameter and water 
depth and covering the complete range of oscillation frequencies in seven 
to eight discrete steps. Preceding each run the force transducer was 
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Figure 29 . Force transducer calibration. 
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to eight discrete steps. Preceding each run the force transducer was 
calibrated statically in water using the procedure described above. Then 
forces and carriage displacements, corresponding to approximately the 5th 
through 15th cycle, were recorded. 

c. Force Data. A sample of the force data for the o. SO-foot diameter 
cylinder is shown in Figure 30. The data represent approximately the 5th 
through the 15th cycle f:r:om the time the oscillations began in calm water. 
The carriage displacement is also recorded because the phase difference 
between the force and displacement records is required to separate out 
the wavemaking and added-mass forces. Similar records were obtained for 
each frequency and water depth. Some noise was still present in the force 
records; however, its level was not high enough to introduce significant 
errors in the analysis. 

d. Analysis. To obtain the measured wavemaking and added-mass forces 
it was necessary to first resolve the total measured force into two com­
ponents; one proportional to the velocity of the carriage, and the other 
proportional to its acceleration. Assuming that both the force and the 
carriage displacement signals are simple harmonic, two pieces of informa­
tion were required from the recorded data: (a) the amplitude of the total 
force, F, and (b) the phase difference, E, between the force and 
carriage displacement signals. TI1e phase difference yields the ratio 
Fx/Fx where Fx is the amplitude of the force proportional to velocity 
and F" is amplitude of the force proportional to acceleration. The 
addi ti~nal information provided by F was then used to calculate the 
magnitudes of the components by the following equations: 

F. = F/[ 1 + l/tan2 
e:] ~ , (68) x 

F .. = F./tane. x x (69) 

F was defined as one-half of the peak-to-through value that appeared 
to be representative of the force record. E was the average of approxi­
mately 15 values bas·ed on zero-crossings of the force and displacement 
records. The averaging process allowed accurate values to be obtained 
even though they were small, ranging from 10° to 40°, and the records 
still contained some noise. 

A 

Cw and Cam were calculated using the following equations: 

A 

G w 

c 
am 

2 
TID = FX/Pg 4 XO' (70) 

(71) 

F;.: was assumed due solely to wavemaking.because the viscous forces for all 
the data were less than 5 percent of Fw· The calculation of Cam required 
the subtraction of the mass-in-air, Ms, which ranged from 10 to 50 percent 
of the added mass. 
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e. Results and Comparison with Theory. The Cw calculated from the 
measu:ed fo:ces are co~pared with theoretical results in Figures 4 and 31. 
The first figure contains all the deepwater data plotted as a function of 
F0 • The measured values compare well with those predicted by theory and 
are shown to be independent of D/h. The second figure contains all the 
data. In this case Cw is plotted as a function of two parameters, 
cr2h/g and D/h, because both are important for cr2h/g < TI, The theo­
retical values were calculated using equation (40). The measured values 
compare well enough with the theoretical results that the effect of D/h 
is clearly shown. Cw for D/h = 0.75 is derived from forces measured for 
both diameters; no systematic effect of D is evident. 

" The Cam are shown plotted in Figure 8. Again the measured values 
compare well with the theoretical results. The decrease of Cam with 
increasing cr 2h/g is clearly sh2wn. Some of the measured values that 
are past the,.. cr 2h/g for which Cam is minimum shows the subsequent 
increase of Cam· 

f. Data of Other Investigators. Garrison and Berklite (1973) per­
formed a series of experiments to measure the coefficient of added mass 
in stillwater for various bodies, one of which was a vertical circular 
cylinder. The objective was to verify their numerical solution for the 
case where cr 2h/g + 00 • Experimental values of Cam were obtained for 
the circular cylinder as a function of D/h for a2h/g in the range of 
200 to 500; D/h ranged from 0.4 to 6.0. Their results for D/h of 
a.so, 0.60 and 0.90 are shown plotted in Figure 8. The deviations of the 
experimental values from the corresponding theoretical ones are real 
because theoretical values in the figure agree with their numerical 
results. 

The experimental work of Clough (1960) provides some verification of 
the theoretical mode-shape effects. The objective in one set of his ex­
periments was to measure the effect of flexibility on added mass. This 
was done by using flexible hollow vertical cylinders of various cross 
sections that were fixed to the bottom of a tank and extended upward to 
the MWL. The experiments consisted of measuring the natural frequency in 
stillwater and then applying uniform weights along the cylinder until the 
same frequency was measured in air. The applied weight per unit length 
was then assumed to be proportional to the added mass after the effects 
of the water inside the cylinders were subtracted. 

One of the cylinders was circular and had a diameter of 0.25 foot. 
Its natural frequency was 3 cycles per second in a water depth of 3 feet. 
This yields a2h/g = 23 and D/h = 0.125. The average coeffici~nt_of . 
added mass was measured to be 0.58. This measure of added mass is identi­
cal to R* as defined by equation (55) and plotted in Figure 9 for the am 
cantilever mode which approximates the first-mode shape of the cylinders 
tested by Clough. His result is shown plotted in the figure. TI~e theo~ 
retical results show that low values of R~m can occur for certain combi­
nations of D/h and o 2h/g. The primary effect is due to the nonuniform 
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Figure 31. Coefficient of the wavemaking force for all force measurements. 
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distribution of ~dded mass as illustrated by Figures 6 and 7. This 
appears to explain Clough's low value. Flexibility becomes important 
only for the higher mode shapes. 

3. Measured Surface Waves, Analysis, and Results. 

Surface waves, generated by oscillations of the cylinders were 
measured in one quadrant at ~ive d~fferent locations along a ~ircular 
arc formed by a 3.5-foot radius (Fig. 18). At this radius the surface 
fluctuati~ns are primarily due to the radiated waves; the nonprogressive 
surface disturbance due to added-mass effects is negligible. TI1e objec­
tive of the measurements was to obtain Cw directly from the radiated 
waves. 

a. Ranges of the Variables. The diameters and oscillation frequen­
cies were the same as for the force measurements. Two additional water 
depths (<l.O foot) were used for the 0.50-foot-diameter cylinder. x

0 
was 

extended to larger values on the assumption that the viscous forces should 
not affect the generated waves. The water depths and x 's were as 
follows: 0 

For D 

h 

Xo 

for D 
h 

= 

= 

= 

0. 50 foot, 

1.00, 0.92, 0.83, O. 75, and 0.67 foot, 
0.025, 0.0375, 0.05, and 0.0625 foot; 

= O. 75 foot, 

= 1.00 and 0.83 foot, 

x0 = 0.0375, 0.0568, 0.075, and 0.0938 foot. 

b. Experimental Procedure. Before any runs were made all five gages 
were checked for linearity over an elevation range of ±0.05 foot with 
respect to the MWL. This was done for the maximum and minimum water 
depths by performing a step calibration in increments of 0.01 foot. The 
procedure consisted of raising each gage to ±0.05 foot, lowering it to 
-0.05 foot, and then returning it to original position. The submergence 
of the gages proved to be linearly related to the pen deflection of the 
chart recorder. 

A run consisted of surface wave measurements for a given water depth 
and diameter and spanning all pairs of x0 and a. Because an average 
of six o's were used this resulted in approximately 24 wave records per 
run. Preceding each run a simplified calibration was made based on the 
linearity of the wave gages. All gages were calibrated simultaneously 
using a single increment equal to the maximum expected wave amplitude. 
The sensitivities of all gages were made equal by adjusting the amplifiers. 
Consequently, the recorded waves at each gage were of the correct height 
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with respect to the waves at any other gage. Next, the x0 was set by 
adjusting the stroke of the eccentric and the first 10 to 20 waves were 
recorded for each a. Approximately 5 minutes were required for the 
water to become still between changes in a. The wave gage calibration 
was checked at the end of each run. 

c. Surface Wave Data. Figure 32 shows a sample of the recorded wave 
data for the 0.75-foot-diameter cylinder. The wave height is maximum at 
e = o0 (gage 5) and decreases with decreasing e (see Fig. 18 for coordi­
nate system). At e = -90°, which is perpendicular to the oscillation 
direction, the wave frequency is twice the oscillation frequencyo This 
is an effect of nonlinearity because linear theory predicts no energy 
propagation in this direction. TI1e amplitude of these waves was found to 
increase with increasing x0 and decreasing a, but it was too small to 
contribute significantly to the total radiated energy. 

The characteristics of the waves at the other gages were also affected 
by x0 and a. Simple-harmonic surface fluctuations occurred only when 
deepwater waves were generated using the smaller values of Xo· A second 
harmonic became evident for the larger x0 •s. For the smaller values of 
a the waves were highly nonlinear; for the lowest a the shape was asym­
metrical. The asymmetry was found to be due to the generation of a second 
harmonic that propagates at its own phase speed rather than the speed of 
the fundamental componento This was determined by measuring the waves at 
five locations along the direction of oscillation. The records showed 
that the profile differed from gage to gage because the phase of the free­
second harmonic with respect to the phase of the fundamental changed with 
distance. This phenomenon has been predicted and experimentally verified 
by Madsen (1971) for a flap-type wavemaker oscillating in a translation 
mode. He shows that in shallow water it occurs when (H/2)/(kh) 2 > l/6TI 4 ; 
it can be eliminated if a second harmonic of an appropriate amplitude is 
added to the simple-hannonic motion of the generator. An analysis of 
this phenomenon was outside the scope of this study. It is reported here 
because this effectively limited the measurements of Cw to deepwater 
waves. 

-
d. Analysis. c;1 can be calculated from the radiated waves by equat-

ing the average rate of energy flux through a circular boundary at a radial 
distance, r, with the average rate at which the cylinder does work on the 
fluid. Using this principle Wehausen (1971) derives the relationship 
between the damping coefficient, for an arbitrary body and the resulting 
amplitudes of the radiated waves. His result appears to have a typograph­
ical error that yields a damping coefficient that is twice the correct 
value. The correct result for Cw is given by: 

_ 32 (r/D) rlsinh 2kh+ 2kh 'j 
Cw - n lf2 cash 2kh + 1 
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Due to synnnetry, the integration extends over one quadranto 1his result 
can also be derived from the following relationship: 

T 

1 r 
T .! 

0 

( 

. ' rYo(9),2 
..f'1! .E 1 + 2kh ' ,. ___ .J rd e = 
4 k s inh 2kh) l 2 

c 
w 

2 . 
pg n:cr X(t) X(t)dt, 

where the integrand of the left side is the linear-theory power for a 
plane simple-harmonic wave of amplitude Yo(8) and c~est length rd8. 

(73) 

Yo was defined as one-half the difference between the measured crest 
and trough elevations. Tilis definition yields the .amplitude of the first 
harmonic provided the third and higher harmonics are negligible. 

The measured Yo's were assumed to be represented by: 

yo = a cos e + b cos3 e. . . 0 0 (74) 

a0 and h0 were determined by a least-squares procedure using the 
measured values at three locations; 8 = o0 , -22~0 and -45°. This repre­
sentation was chosen because it provided a better fit to the measured 
data than the theoretical variation defined by cos 8. 1hese three loca­
tions were used because: (a) 1he measurements here were the most accurate 
due to the larger waves, and (b) the other locations contained energy at 
twice the oscillation frequency and therefore violated the linear-theory 
assumptions. 

e. Results and Comparison with 1heory. Although G.v was calculated 
for all values of o 2h/g only those corresponding to deepwater conditions 
are plotted. The other values are not valid because in most cases the 
waves contained a free-second harmonic that made the waves asymmetrical 
as discussed earlier in this section. 1he results are plotted in two 
separate figures. Figure 33 shows Cw plotted as a function of F0 for 
the variables of the experiments that correspond to the force measure­
ments. Figure 34 shows all the deepwater results. It is evident that 
the theory forms an upper bound to the Cw 1 s calculated from the measured 
waves. 1his is expected because energy is lost during generation and 
propagation. 1his was particularly evident for the larger Xo's because 
in some cases the wave crest at 8 = o0 broke before it reached the wave 
gage. Sometimes this resulted in a wave amplitude at 8 = o0 that was 
smaller than that at 8 = -22~0 • On the average the measured Cw's were 
about 20 percent lower than the theoretical quantities. 
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IV. HYDRODYNAMIC DAMPING AND ADDED MASS 
FOR CYLINDER OSCILLATING IN A CURRENT 

It is shown in the introduction (Sec. I) that if the velocity of the 
structural members' x(t)' is small in relation to the wave-induced 
water ~article.velocities, u, then the damping force due to the drag­
force interaction term of the modified Morison equation can be repre­
sented by CopDlulx. The dominant contribution to this term will come 
from the highest waves in the spectrum. The average frequency of these 
waves during design-storm conditions will be much lower than the natural 
frequency of the structure so that a number of oscillation cycles will 
t~e place during the passage of the large waves. Consequently, as a 
first approximation, it is assumed possible to model this situation in a 
steady current. 

The experiments discussed in this section used an elastically support­
ed rigid cylinder instead of a system whereby the cylinder was forced to 
oscilla~e like for the wavemaking experiments. This was done because it 
was desired to obtain data in the range where the oscillation frequency 
was much higher than th at of vortex shedding. The use of a forced-
os cillation system in this frequency range would have made it impossible 
to extract the viscous forces that are proportional to velocity froi_n the 
total forces because they would have been (on the basis of results in 
this section) less than 1 percent of the inertial forces in the range of 
the present experiments. 

The experiments consisted of a series of tests in which the decay of 
vibrations with respect to time were measured when the cylinder was given 
an initial displacement and then suddenly released. The cylinder was com­
pletely submerged and its motion was constrained to be in the direction 
of the current. The corresponding damping values were compared with 
theoretical values that are predicted by 'the drag-force interaction term 
of the modified Morison equation. Coefficients of added mass were also 
measured. 

1. Experimental Equipment and Arrangement. 

Figure 35 is a schematic diagram of the major experimental equipment 
and its arrangement. A horizontal circular cylinder, having a diameter 
of 0 .125 foot and a wall thickness of 1/32 of an inch is shown positioned 
in a 1-foot-wide open channel. Disk-type flanges of 0.167-foot-diameter 
were welded to the ends of the cylinder in an attempt to produce a pre­
dominantly two-dimensional flow over the cylinder so that it could be 
considered a section of an infinitely long cylinder. 111e flanges are 
welded to rigid struts that are in turn connected to H-shaped elements 
that act as elastic supports for the cylinder. All components are of 
aluminum. The system was positioned about 36 feet from the channel 
entrance. 

The initial displacement was produced by weights which transmit their 
load to the cylinder via a string as shown in Figure 35. Because the 
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Figure 35. Schematic diagram of experimental arrangement and method 
of producing initial displacement. 

86 



struts are stiff relative to the elastic supports, the initial displace­
ment and subsequent dynamic response is constrained to be along an arc of 
a circle whose origin is at the elevation of the elastic supports. How­
ever, the motion was essentially a pure translation because the maximum 
amplitude in the x-direction was less than 1 percent of the length of the 
struts. 

Strain gages mounted on the flanges of the H-shaped elements were 
used to measure the steady-state forces, initial displacement and dynamic 
response in the x-direction. The gages mounted on one of the struts was 
used to monitor the dynamic response of the cylinder along its axis. 
This later response was kept to a minimum by adjusting the position of 
the string along the cylinder so that no initial displacement was pro­
duced in the axial direction. The wiring diagrams for all the gages and 
dimensions of the H-shaped elements are shown in Figure 36. 

The velocity of the current in the channel was limited by the avail­
able discharge. Values up to 2 feet per second were obtained with a 
1.1-foot water depth. They were extended to 2.7 feet per second by using 
a water depth of O. 8 foot. The velocity was recorded by a Kent Mini-flow 
propeller-type current meter that had a propeller diameter of 0.032 foot. 
It was positioned 0. SO foot upstream of the cylinder at the elevation of 
the cylinder's axis along the centerline of the channel. The current 
meter was supported by a track spanning the width of the channel and was 
movable in the vertical direction so that velocity profiles could be 
measured. 

2. Experimental Procedure and Ranges of Variables. 

a. Calibration. The first step was to measure the damping of the 
elastically supported cylinder in air in order to extract the hydro­
dynamic effect on damping from the vibration-decay curves in water. This 
was done by tapping the cylinder, which was positioned in an empty channel 
as shown in Figure 35, and then measuring its response. The vibration­
decay was found to be exponential with t;,s (percent) equal to 0. 096. 
The method of calculation is discussed later. 

The second step was to perform a dynamic calibration whose results 
could be used to obtain the added mass from natural frequency measure­
ments in water and to determine the generalized stiffness, Kg , of the 
dynamic system with respect to the generalized coordinate, X. The 
dynamic calibration was performed in air. Fifteen pieces of 1/16-inch 
lead lashing wire, each piece about 5 feet long and weighing about 0.10 
pound, were wrapped around the outside of the cylinder. The natural 
frequency of the cylinder was measured without the wire and also after 
each piece was added. The measurements were obtained from the recorded 
dynamic response when the cylinder was tapped. Without the wire the 
natural frequency, crs, was 199 radians per second (31.7 cycles per 
second); with all the wire wrapped the natural frequency was 103 radians 
per second (16.4 cycles per second). 
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The theoretical relationship between 
the corresponding oscillation frequency, 
following equation: 

the mass of the wire, MQ,, and 
aQ,, can be expressed by the 

* M s 

2 

[(
(JS\ ]· aJ,J -1. 

Mi is approximately equal to MQ, because the diameter of 
is small in comparison with the length of the struts. M~ 
effects of the cylinder and its supporting struts. 

(75) 

the cylinder 
includes the 

A straight line was obtained when MQ, was plotted versus (as/aQ,) 2 -l; 
its slope M* was measured to be 0.0159 slugs. This equation was then 
used to obtaln the generalized added mass, M~m' by replacing a Q, with 
the measured natural frequency, an, in water. M~m is approximately 
equal to M because the added mass of the struts and flanges is small 
in comparisg~ to that of the cylinder. Kg is equal to a~M€· 

The final step was to perform a static calibration in water whose 
results could be used to measure the steady-state drag forces and the 
cylinder displacements. A series of known horizontal loads was applied 
to the cylinder under submerged conditions and then the corresponding 
pen deflections were recorded. This resulted in a straight line relation­
ship between load, F, and pen deflection, 6, defined by F = k06, 
that was used to measure the steady-state drag forces. The static and 
dynamic displacements, X, were obtained from: 

* x = (k
0

/K
5

) 6 . 

b. Submergence of the Cylinder. One of the requirements was that the 
experiments simulate conditions representative of an infinite fluid. 
Consequently, it was necessary to position the cylinder so that effects 
of the free surface and impermeable bottom be negligible. 

The location of the cylinder with respect to the free surface was 
determined by measuring the coefficient of added mass, Cam• for different 
submergences as the channel was being filled. The procedure was to tap 
the cylinder and measure the resulting an. Mam was obtained using the 
method explained previously and Cam was then determined by dividing 
Mam by the equivalent water mass of the volume of the cylinder between 
the struts. 

The.results are shown p~otted in Figure 37. Beyond a submergence of 
three diameters, Cam remained at a constant value of 1.07. On the basis 
of these results a submergence. of 4. 2 diameters was used for all the tests. 
For the O. 8-foot depth the cylinder was closer to the bottom o. 36 foot 
above it, but no change in Cam was detected. Consequently: it was 
assumed that the bottom had no influence. 
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c. Measurement of Steady-State Forces. Steady-state forces were 
measured only for the 1.1-foot-depth case. Seven different centerline 
velocities, ranging from 0.40 to 2 feet per second were used. 1hese 
corresponded to a Reynolds number range from 5.5 x 10

3 
to 2.4 x 104 at 

a temperature of 74° Fahrenheit for which the kinematic viscosity, v, 
is about 10-s square feet per second. 

d. Current-Velocity Profiles. Lateral and vertical profiles were 
measured for a centerline current velocity of 1.4 feet per second at a 
position of 0.5 foot upstream of the cylinder. 'Ih.e lateral variation 
was measured at 10 stations spanning the width of the channel. 'Ih.e 
results are shown plotted in Figure 38. TI1ey were used to correct the 
drag coefficients based on centerlina velocities. 'Ih.e vertical profile 
was measured at the centerline of the channel. It was found to be 
uniform over the elevation range of ±2.0D with respect to the axis of 

the cylinder. 
e. Measurements of Vibration Deca • Vibration decay of the cylinder 

for the 1.1- oot depth was measured for three different initial displace­
ments, Xo: 0.0015, 0.0030, and 0.0078 foot. 'Ih.is corresponds to Xo/D 
of 0.012, 0.024, and 0.0625, respectively. Only the maximum value was 
tested for the O. 8-foot-water depth. 'Ih.e initial displacement was pro­
duced by a weight as shown in Figure 35. The string was cut at the weight 
by a pair of sharp scissors and the subsequent response was recorded. 
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Figure 38. Lateral-velocity profile at centerline of cylinder. 
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Data were obtained in stillwater and flowing water. Eight different 
current velocities, up to 2 feet per second, were used for the 1.1-foot­
water depth. Six values were used for the 0.8-foot-water depth, four of 
which were less than 2 feet per second and the other two reached up to 
2.7 feet per second. 

3. Analysis and Results. 

a. Steady-State Drag Coefficients. The steady-state force measure­
ments were converted to drag coefficients, Co, by the following equation: 

where 

A = 
u = 

u = 

£A -u2 
2 

f,-2 -2\ 
\u /u ) , 

projected area of cylinder and flanges, 
centerline current velocity averaged over time, 

(76) 

current velocity at any lateral location averaged over time. 

The term in the parentheses is the correction factor for c0 due to the 
nonuniformity of the current velocity across the width of the channel. 
fiZ" is the average value over the width of the channel of the square of 
the lateral-velocity profile of Figure 38 for U = 1.4 feet per second. 
The correction was applied to all c0

1 s by assuming the velocity profiles 
for the other values of U were similar. 

The resulting c0
1 s are shown plotted versus Reynolds number in 

Figure 39. The average value is about Oo9 up to a Reynolds number of 
1.6 x 10 4 and about 1.0 for the rest of the range. The contribution due 
to wave resistance was estimated using equations presented by Wehausen 
ancl Lai tone (1960) of Havelock' s (1936) "first approximation". It was 
found to be less than 1 percent of the measured c0

1s. 

b. Damping ancl Acldecl Mass. Sample records of the vibration decay 
data for the 1.1-foot depth are shown in Figure 39. The upper two 
records were obtained in stillwater for the maximum and minimum initial 
displacements, respectively. The lower two records were obtained in 
flowing water whose velocity was 2 feet per second. Similar records 
were obtained for other velocities. 

Tiie records showed that the natural frequency in water was not 
affected by the velocity of the current an·cl <lid not change as the ampli­
tude of vibration decayed; it remained a~ the stillwater value of 126 
radians per second (20 cycles per second). Consequently, the coefficient 
of added mass was also constant, equal to 1.07 that was measured during 
the submergence tests in stillwater. 
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Figure 39. Drag coefficient for still cylinder. 

An initial analysis indicated that the vibration-decay was exponen­
tial in time, implying that the damping is due to a force that is direc­
tly proportional to the velocity of the cylinder. This information, 
together with the results of the static calibration that showed the 
imposed force to be linearly related to displacement and the invariancy 
of the added mass with respect to the amplitude of vibration, imply a 
linear dynamic system whose equation of motion for free vibrations can 
be written as: 

where 

s = 

~s = 
E: • = 
-VJ. 

x(t) +2crsx(t) +cr2xct> =o, 
n n 

* * * s M I (M + M ) + s . s s s am vi• 

structural damping measured in air; equal to 0.00096, 

hydrodynamic damping. 

Using equation 75 and its subsequent discussion, ~. can be 
expressed as: 

SS s = ----2- + svi' 
(cr lo ) 

s n 
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where the first term is equal to 0.0004. t;.vi was assumed to be equal 
to t;. because this first term was less than 5 percent of the measured 
values of t;.. 

The calculation of t;. was based on the following well-known solution 
of the above differential equation for the initial conditions X(O) = x0 
and X(O) = 0 (Biggs, 1964): 

-a st 
X(t) = x

0
e n (ssinont + cosont). 

For small values of t;. this reduces to: 

-a st 
n 

X(t)=X
0

e coscrt. 
n 

(80) 

(81) 

If t = 2Tim/crn then X(t) coincides with the m-th amplitude, Xm, (m S 1) 
of the vibration-decay curve which is given by: 

Xm = XO e-2ns::: (82) 

This relation is also valid for the (m + n)-th amplitude that is 
by an arbitrary constant and therefore can be used to obtain t;. 
part of the vibration-decay record using arbitrary units for the 
tude. 

scaled 
for any 
ampli-

t;. was calculated for each record on the basis of the 16 cycles near 
the beginning of the records that are delineated by the arrows in Figure 
40. The first few cycles were not used because of disturbances created 
by cutting the string. Equation (82) was assumed to represent the 
vibration-decay over these 16 cycles except that x0 corresponded to 
the first amplitude preceding the 16 cycles. For this purpose x0 will 
be denoted by Xb in the following logarithmic version: 

ln X m = in X ~ - 2n s m (83) 

t;. as well as in x0 were assumed unknown and solved for by a least­
squared-error procedure. Xm was defined by one-half of the distance 
between a trough and the following crest. This eliminated effects of 
fluctuations whose time scale was larger than the natural period of the 
oscillations. For each initial displacement and U two records were 
available and consequently two values of t;. were calculated. These 
were averaged for plotting purposes. 

The values of t;. are shown plotted in Figure 41 versus U and an 
oscillation Strouhal number, crnD/2TIU. The values corresponding to 
Xo = 0.00030 foot are not shown because they were essentially the same 
as for the other two Xo's except for the two largest values of U. 
In this case, t;. plotted between those corresponding to x0 = 0.0015 and 
0. 0078 foot. 
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4. Discussion of Results. 

a. Comparison of Damping with Predictions Based on the Modified 
Morison Equation. 1he differential equation of motion for free vibra­
tions of the cylinder in a steady current for the case where the viscous 
forces are represented by the drag-force interaction term of the modified 
Morison equation is given by: 

where 

.. c
0 

(P/2)A 
x + * I~ -u I (X - U) 

M 

* * M = M 
s 

* + M am 

2 +ox=o, 
n 

(In this equation structural damping is not included.) 
If X << U, the equation can be linearized to yield the following 
approximation: 

.•.. 
x + 

2 x + 0 x = o. 
n 

(84) 

(85) 

Comparing the damping force of this equation with that of equation (77) 
implies that 

s -
2o M 

n 
* . 

Assuming that the average c0 is equal to 1.0, as measured from the 
steady-state forces, this equation becomes ~qual to: 

~(%) = 2.48 u. 

(86) 

(87) 

Figure 40 shows that the theoretical results ·overpredict the measured 
values. 1he measured values increase gradually to about 1.8 feet per 
second and then become asymptotic to the predicted results for which Co 
is about 0. 25. 

1he dotted line represents theoretical results obtained from a 
numerical solution of the "exact" equation (equation 84). A fourth-order 
Runge-Kutta technique (Hamming, 1962) was used with a time step equal to 
1/20th of the natural period of oscillation. 1he accuracy of the numer­
ical method was checked by applying it to solve equation (77) for which 
an analytical solution could be obtained. TI1e numerical and analytical 
results were indistinguishable for this time ste~. Therefore, the numer­
ical method was assumed valid for the exact nonlinear equation. The 
numerical solution showed that the vibration-decay was not exponential. 
1herefore, the dotted line does not have the same meaning as for the 
linear system; it simply indicates when the linearization becomes valid. 
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b. Interpretation of Comparison. It can be shown by use of dimen­
sional analysis that the force acting on a submerged cylinder that is 
forced to oscillate with an amplitude x0 in an oncoming current can 
be specified in terms of the following three parameters: (a) X

0
/D; 

(b) onD 2/v; and (c) onD/2nU. 

The significance of the first two parameters can be understood best 
if they are interpreted for the case of no current. 'I11e first parameter 
is a measure of the ratio of the force due to the local acceleration of 
the fluid to that due to the convective acceleration. It can also be 
interpreted as a measure of the distance that vorticity, generated by 
the cylinder, is convected in relation to D <luring one cycle of oscil­
lation. If it is small, then according to Batchelor (1967), the vor­
ticity cannot be convected too far away from the cylinder before the 
convection velocity reverses thereby generating vorticity of the opposite 
sign. Consequently, no net vorticity is generated. Keulegan and 
Carpenter (1958) have shown experimentally that this parameter controls 
the generation of vortices in the wake of a fixed cylinder that is sub­
jected to an oscillating flow field (in this case, X0 is the amplitude 
of the water particle excursion).· The second parameter is a type of 
Reynolds number. It is a measure of the distance that the generated 
vorticity of one sign diffuses with respect to D during one cycle 
(Batchelor, 1967). In order for the vorticity to be confined in a 
boundary layer this parameter must be much larger than unity (Wang, 1968). 

For most practical situations in which the cylinder is oscillating 
(rather .than the external flow) X0 /D will be significantly less than 
one and onD 2/v will probably be larger than 10 3 . In that case the 
vorticity will be contained in a boundary layer. As a consequence sep­
aration of the boundary layer will be inhibited and the rest of the flow 
field will be irrotational. This implies that in still water the added­
mass forces can be adequately predicted by potential theory and the 
viscous forces can be calculated by using linear boundary-layer theory 
in which the convective accelerations are neglected. 

The results of the experiments in this section verify the latter 
conclusions regarding the forces in still water. Figure 37 proves that 
potential theory adequately predicts the measured coefficient of added 
mass for the case of large submergence. The viscous forces are also 
adequately predicted. Calculations using Batchelor's (1967) result for 
the viscous force yielded a value of l;viC%) = 0.46 which gives 1;(%) = 0.50 
when corrected for structural <lamping by use of equation (79). This 
latter value is close to the measured value of 0. 70. 

The effect of the current is defined by the third parameter, herein 
referred to as the oscillation Strauhal number, S0 • Lighthill (1954) 
and Pedley (1972) studied the importance of this parameter in defining 
the flow in the boundary layer for the case of a fixed cylinder in a 
current with superimposed fluctuations. The velocity of the fluctuations 
was taken to be always less than or equal to the mean current so that 



flow reversal would not have to be considered. Their conclusions apply 
as well to the case where the cylinder oscillates in a steady current. 
They show that the quasi-steady asswnption is approached as this param­
eter becomes small. But at the other extreme, when the parameter becomes 
large, the oscillatory boundary layer is contained within the boundary 
layer caused by the mean current and therefore the two flow fields may 
be considered independent. 

According to the foregoing analysis, the present experimental results 
for damping, as plotted in Figure 41, are in the region for which the 
quasi-steady assumption is not valid. This appears to explain qualita­
tively the difference between the damping predicted by the drag-force 
interaction term and the measured values. The increase of ~ with 
decreasing S0 indicates that interaction of the oscillatory flow with 
the mean current becomes increasingly important and acts to increase the 
damping. The mechanism involved in causing the increase of ~ cannot 
be determined from this data; however, the gradualness of the increase 
suggests that it is due to increased shear stresses caused by the 
interaction. 

The validity of the quasi-steady asswnption for low values of S0 
has been shown by Parkinson and Modi (1967) and Novak (1969). They 
present data on the transverse response of prismatic cylinders to steady 
wind and show comparisons with the quasi-steady predictions. Good agree­
ment is found provided the vortex shedding frequency, crv, is suffi­
ciently high with respect to the natural frequency of the cylinders. 
The required separation distance of the two frequencies depends on the 
shape of the cylinders. 

The implications of the present data and current understanding of 
the interaction problem on damping of offshore platforms are not entirely 
clear. As stated at the beginning of this section the major part of the 
damping implied by the drag-force interaction term will occur during the 
passage of the largest waves. In that case, S0 cou_!_d be calculated in 
order to see if the damping mechanism is operative. U could be asswned 
to be equal to the maximwn water particle velocity at the MWL for a wave 
whose height and period is the significant height and significant period, 
respectively, corresponding to the design condition. If the resulting 
S0 is much lower than 0.20 (the value at which crn = crv) then the quasi­
steady asswnption may be valid and the damping mechanism operative. 
Otherwise vortex shedding may provide additional excitation energy if 
S0 is too close to 0.20 and the damping may be insignificant if S0 is 
much higher than 0. 20. 

c. Effect of Current on Added Mass. The coefficient of added mass 
was not affected by the current and was equal to the potential theory 
value. This was also discovered by Protos, Goldschmidt, and Toebes (1968) 
for forced oscillations of circular and triangular cylinders in the direc­
tion transverse to an oncoming current. Their experiments covered the 
range of crn/crv from 0 to 2.0; their relative oscillation amplitudes, 
X0 /D, were less than 0. 0 72. It appears that potential theory is valid 
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for predicting coefficients of added mass provided the oscillation ampli­
tudes are small in comparison to the cylinder diameter. The motion of 
the surrounding water does seem to influence the potential theory values. 

V. SUMMARY AND CONCLUSIONS 

A theoretical and experimental study was undertaken to investigate 
the "added mass'" and hydrodynamic damping for offshore platforms. 

Classical potential theory with linearized boundary conditions was 
used to formulate the steady-state dynamic response problem for a plat­
form idealized by a vertical surface-piercing cylinder of constant 
diameter in finite water depth. The hydrodynamic forces due to wave­
making and added mass were investigated as a function of oscillation 
frequency, cylinder diameter, water depth, and mode shape. Importance 
of wavemaking as a damping mechanism was investigated for idealized and 
proposed platforms. Tiie following findings were made: 

1. 'I11e nondimensionalized wavemaking force and the coeffi­
cient of added mass are functions of only two parameters, kh 
and ka or alternatively, cr 2h/g and D/h, and the mode 
shape 1/J(y). 

2. The wavemaking forces may be considered localized in 
the near-surface zone for most practical applications. In 
that case the force depends on only one parameter, F0 = cr/O/ g, 
and may be considered independent of mode shape. 

3. The coefficient of added mass consists of two components: 
(a) a "local" component concentrated in the near-surface zone and 
(b) an "overall" component that extends over the total water 
depth. As a result the coefficient depends on both parameters 
and the mode shape and varies with respect to elevation. It 
ranges from values significantly greater than one all the way 
to negative values. A uniform value of 1 may be used over 
all elevations if D/h is less than 0.01. 

4. The effectiveness of wavemaking as a damping mechanism, 
specified in terms of fraction of critical damping, ~w, depends 
on cr, h, D, 1/J(y) and the structural mass. Values of damping 
ranging from 2 to 4 percent of critical could be attained for 
platforms that have natural periods of about 4 seconds in a 
water depth of 600 feet provided the cylinder diameters are 
larger than 30 feet. 

5. Damping for a number of'proposed platforms proved to 
be negligible because the diameters in the near-surface zone 
were small. 

Experiments were conducted to verify the wavernaking and added-mass 
forces predicted by the potential theory. Rigid vertical cylinders were 
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oscillated with simple-harmonic motion 
lations were performed in still water. 
were measured. The following findings 

in a translation mode. The oscil­
Total forces and radiated waves 

were made: 

1. The measured wavemaking forces compared very well with 
the theoretical predictions. In the range where deepwater waves 
were generated all the measured values plotted on one curve as a 
function of F0 irrespective of the cylinder diameter and water 
depth. 

2. The measured coefficients of added mass also compared 
very well with the theoretical predictions. 

3. Wavemaking forces derived from the measured radiated 
waves were on the average underestimated by 20 percent. 

4. External hydrodynamic forces on oscillating bodies can 
be reliably measured provided lightweight material is used for 
the bodies and great care is taken in designing the mechanical 
equipment so that all components are rigid. 

An experimental study was made in an attempt to verify the hydrody­
namic damping implied by the drag-force interaction term of the modified 
Morison equation. Decay of vibrations and the corresponding hydrody­
namic damping were measured when an elastically supported circular 
cylinder was given an initial displacement and then suddenly released. 
The cylinder was completely submerged and its motion was constrained to 
be in the direction of an oncoming current. Coefficients of added mass 
were atso measured. The following findings were made: 

1. The drag-force interaction term predicted damping 
values that were about 4 times as large as the corresponding 
measured values. However, boundary-layer theory indicates 
that the quasi-steady assumption in the modified Morison 
equation is valid only when the oscillation Strauhal number, 
S0 = crnD/2nU, approaches zero. Consequently, the disagreement 
between measured and predicted values of the damping is probably 
due to the fact that S

0 
was large for the experiments. 

2. The measured coefficient of added mass corresponded 
to the potential theory value for all current velocities. 
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APPENDIX A 

Computer results for these functions are plotted in the figure to 
this Appendix. The following are approximate representations of these 
functions, accurate to within 1 to 2 percent, for large and small 
arguments. They are derived using a combination of computer results 
and expansions of Bessel functions as given by Dwight (1961). 

(a) Pl (x) :::: 
2/rrx 

f 1 (x) 2 + Y}_ (x) 2 

for x < 5; P ....., rr x3 1....., 2 

for x > 2. 
' 

P1 :::: 1.0 

for x < 3; P2 ~ x 

for x > 3; P2 ~ 1/2x 

for x < • 2 ; P 3 :::: x 

for x > ~ 20; P 3 ~ 1. 0 
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APPENDIX B 

EQUATIONS USED TO CALCULATE R~m 

For any mode shape: 
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1. Cantilever mode; ¢(y) = 1 - cos TI/2(1 + y/h). 
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2. Higher modes; w(y) = sinh TI/2(1+y/h):n=3, 5, and 7. 

0 

1 s 2 1 (a) h W (y) = 2 • 

(b) 

-h 

* 4kh 
R = ----:---=----:-~ am sinhkhcoshkh+kh 

P
2 

(ka) 

(ka) 

n+l 

n+l 
n 2 2 

[ 

n2 + (-1) kh sinh kh., 

(kh)
2 + c.!2 n) 2 J 

2 

CD 

sinet hcosa h+a h 
m m m 

[

n!!
2
-(-l) 

2 
ahsjnah.,2 

m m 

(n'.:'.) 2 (ct h) 2 J . 
2 m 

110 



Petrauskas, Charles 
Hydrodyn=ic damping and ''added mass'' for flexible offshore plat­

forms I by Charles Petrauskas - Fort Belvoir, Va. : U.S. Coastal 
Engineering Research Center, 1976. 

110 p. : ill. (Technical paper - U.S. Coastal Engineering Research 
Center , DAC\172-69-C-0001) Also (Technical report - University of 
California, Hydraulic Engineering Laboratory ; 9-23) 

Bibliography : p. 102-1 06. 
Dyna.'!lic responses of flexible platforl'\s due to wind-generated waves 

are an important design consideration. This study presents the theo­
retical a.rid experinental study of hydrodyna.".lic dar.lping and 
''added mass.,' 

1. Danping. 2. Offshore structures. 3. Structural dynal!lics. 
4. Wave forces. 1. Title. II. Series : U.S. Coastal Engineering 
Research Center. Technical paper no. 76-18. III. U.S. Coastal Engi­
neering Research Center. Contract DAC\172-69-C-0001. IV. Series: 
California. University. Hydraulic Engineering Laboratory. Technical 
Report HEL-9-23. 
TC203 .U531tp no.76-13 627 .U581tp 

Petrauskas, Charles 
Hydrcdyna'!lic dal!'.ping and "added D.ass" for flexible offshore plat­

for= I by Charles Petrauskas - Fort Belvoir, Va. : U.S. Coastal 
Engineering Research Center, 1976. 

110 p. : ill. (Technical paper - U.S. Coastal Engineering research 
Center ; DAC\172-69-C-0001) Also (Technical report - Universitv of 
California, Hydraulic engineering Laboratory ; 9-23) 

Bibliography : p. 102-106. 
Dyna.me responses of flexible platforns due to wind-generated uaves 

are an inportant design consideration. This study presents the theo­
retical and experimental study of hydrodynar.lic dar.i.ping and 
''added mass.'' 

1. Danping. 2. Offshore structures. 3. Structural dyna".lics. 
-.. Wave forces. I. Title. II. Series : U.S. Coastal engineering 
Research Center. Technical paper no. 76-13. Ill. l:.S. Coastal engi­
neering Research Center. Contract DACW72-69-C-0001. I\'. Series: 
California. ~niversity. Hydraulic Ent;ineering Laboratory. Technical 
Report HCL-9-23. 
TC203 .U531tp no.76-13 . U581 tp 

Petrauskas, Charles 
Hydrodynamic damping and ''added mass'' for flexible offshore plat­

forms /by Charles Petrauskas - Fort Belvoir, Va. : U.S. Coastal 
Engineering Research Center, 1976. 

110 p. : ill. (Technical paper - U.S. Coastal Engineering Research 
Center , DACl-:72-69-C-0001) Also (Technical report - University of 
California, Hydraulic Engineering Laboratory ; 9-23) 

Bibliography : p. 102-106. 
Dynamic responses of flexible platforms due to wind-generated waves 

are an important design consideration. This study presents the theo­
retical and experimental study of hydrodynamic damping and 
''added f!lass.'' 

1. Damping. 2. Offshore structures. 3. Structural dynamics. 
4. \lave forces. I. Title. II. Series : U.S. Coastal Engineering 
Research Center. Technical paper no. 76-18. III. U.S. Coastal Engi­
neering Research Center. Contract DACW72-69-C-0001. IV. Series: 
California. University. Hydraulic Engineering Laboratory. Technical 
Report HEL-9-23. 
TC203 .U531tp no.76-18 627 .U581tp 

Petrauskas, Charles 
Hydrodynamic damping and ''added mass'' for flexible offshore plat­

forms /by Charles Petrauskas - Fort Belvoir, Va. : U.S. Coastal 
I:ngineering research Center, 1976. 

110 p. : ill. (Technical paper - U.S. Coastal Engineering Research 
Center ; DAC\172-69-C-0001) Also (Technical report - University of 
California, Hydraulic Engineerinf. Laboratory ; 9-23) 

Bibliography : p. 102-106. 
Dynamic responses of flexible platforms due to t.:ind-generated waves 

are an iI!l.portant design consideration. This study presents the theo .. 
retical and experimental study of hydrodynar.:ic dar;rping end 
''added r:iass.'' 

1. Dampinf:. 2. Offshore structures. 3. Structural dyna.'!lics. 
-.. lfave forces. I. Title. II. Series : U.S. Coastal Engineering 
Research Center. Technical paper no. 76-18. III. U.S. Coastal Engi­
neering Research Center. Contract DAC\'72-69-C-0001. IV. Series: 
California. University. Hydraulic Ent;ineering Laboratory. Technical 
Report HeL-9-23. 
TC203 .USSltp no.76-18 627 .U581tp 


	76-18_0000
	76-18_0001
	76-18_0002
	76-18_0003
	76-18_0004
	76-18_0005
	76-18_0006
	76-18_0007
	76-18_0008
	76-18_0009
	76-18_0010
	76-18_0011
	76-18_0012
	76-18_0013
	76-18_0014
	76-18_0015
	76-18_0016
	76-18_0017
	76-18_0018
	76-18_0019
	76-18_0020
	76-18_0021
	76-18_0022
	76-18_0023
	76-18_0024
	76-18_0025
	76-18_0026
	76-18_0027
	76-18_0028
	76-18_0029
	76-18_0030
	76-18_0031
	76-18_0032
	76-18_0033
	76-18_0034
	76-18_0035
	76-18_0036
	76-18_0037
	76-18_0038
	76-18_0039
	76-18_0040
	76-18_0041
	76-18_0042
	76-18_0043
	76-18_0044
	76-18_0045
	76-18_0046
	76-18_0047
	76-18_0048
	76-18_0049
	76-18_0050
	76-18_0051
	76-18_0052
	76-18_0053
	76-18_0054
	76-18_0055
	76-18_0056
	76-18_0057
	76-18_0058
	76-18_0059
	76-18_0060
	76-18_0061
	76-18_0062
	76-18_0063
	76-18_0064
	76-18_0065
	76-18_0066
	76-18_0067
	76-18_0068
	76-18_0069
	76-18_0070
	76-18_0071
	76-18_0072
	76-18_0073
	76-18_0074
	76-18_0075
	76-18_0076
	76-18_0077
	76-18_0078
	76-18_0079
	76-18_0080
	76-18_0081
	76-18_0082
	76-18_0083
	76-18_0084
	76-18_0085
	76-18_0086
	76-18_0087
	76-18_0088
	76-18_0089
	76-18_0090
	76-18_0091
	76-18_0092
	76-18_0093
	76-18_0094
	76-18_0095
	76-18_0096
	76-18_0097
	76-18_0098
	76-18_0099
	76-18_0100
	76-18_0101
	76-18_0102
	76-18_0103
	76-18_0104
	76-18_0105
	76-18_0106
	76-18_0107
	76-18_0108
	76-18_0109
	76-18_0110



