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ABSTRACT 

This report documents the results of an airblast-induced ground­

shock calculation performed at the U. S. Army Engineer Waterways Ex­

periment Station (WES) for the Operation Prairie Flat 500-ton high­

explosive (HE) event. A WES-modified version of the 2D axisymmetric 

LAYER Code developed by the Paul Weidlinger firm was used for the in­

vestigation. Each layer of the soil profile was mathematically mod­

eled with a nonlinear elastic-plastic-compacting type constitutive 

model that provided good fits to the available material property test 

data. Field airblast measurements were used to develop an airblast 

routine suitable for code input. The code results, carried to 300 

msec of real time, showed good quantitative and qualitative agreement 

with the field ground-motion measurements in regions outside the 

crater zone. 

The calculations reported herein represent initial efforts at 

WES to conduct comprehensive parametric studies of the effectiveness 

of contemporary mathematical constitutive models in predicting 

airblast-induced ground motions for several high-explosive field 

tests. The overall research program includes study of the influences 

of computational details such as boundary conditions, grid size, and 

time step and comparative analyses of the calculated ground motions 

and those recorded during the field test events. 
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· CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT 

British units of measurement used in this report can be converted to 
metric units as follows. 

Multiply By To Obtain 

inches 2.54 centimeters 

feet 0.3048 meters 

tons (2,000 pounds) 907.185 kilograms 

pounds per square. inch 0.070307 kilograms per square centimeter 

kips per square inch 70.307 kilogranis per square centimeter 

pounds per cubic foot 16.0185 kilogrsms per cubic meter 
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1.1 BACKGROUND 

CHAPrERl 

INTRODUCTION 

The state-of-the-art in constitutive modeling of earth materials 

for free-field ground-shock calculation purposes is continually being 

upgraded to incorporate new developments both in theory and material 

property evaluation. As a consequence, each new major calculation 

project is usually performed with a supposedly improved model of the 

pertinent site materials. However, very little research effort has 

been devoted to an assessment of the degree of improvement, if any, 

that the newer models actually provide. This information gap is 

. currently of concern to theoreticians and experimentalists alike, 

since a number of serious objections have recently been raised to 

the continued use of many contemporary models. 

Under sponsorship of the Defense Atomic Support Agency (DASA), 

the U. S. Army Engineer Waterways Experiment Station (WES) has re­

cently initiated a program to evaluate a variety of contemp~rary con-

stitutive models by performing parametric code calculations 

well-documented field test events. Operation Prairie Flat, 

high-explosive (HE) event executed 9 August 1968 (Reference 

against 
1 

a 500-ton 

1) at the 

Watching Hill Test Range, Suffield, Alberta, Canada, was the first 

event chosen for study in this research program. 

Nonlinear elastic-plastic-compacting (NEPC) models have been the 

mainstay of the code community during the past few years. As implied 

by their name, these models exhibit behavior defined by elasticity 

and theory of perfect plasticity, as well as compaction behavior; the 

1 A table of factors for converting British units of measurement to 

metric units is presented on page 8. 
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latter mechanism predicts mechanical hysteresis during a cycle of vir­

gin loading and unloading through subyield stress paths. In general, 

the NEPC models are prescribed by specification of a plastic yield 

criterion and flow rule, a nonlinear compacting hydrostat, and one 

other elastic parameter such as Poisson's ratio v or shear modulus 

G • Both v and G have recently seen wide service formulated 

either as functions of the first stress invariant or as constants. The 

first model chosen for the calculation study was a mixed constant v­

constant G NEPC model. This model, called the hybrid v-G , is a re­

cent innovation resulting from WES collaboration with Applied Theory, 

Inc., on a Minuteman study sponsored by the Air Force Space and Mis­

sile Systems Organization. 

To date, one large two-dimensional (2D) calculation, using the 

hybrid V-G model, has been carried out to a real time of 300 msec. 

A mathematical idealization of the Prairie Flat surface overpressure 

history between the nominal 1500- and 40-psi contours (range = 84 and 

560 feet, respectively) was developed at WES for this purpose. The 

code used for this effort was a WES-modified version of the Weidlinger 

axisymmetric LAYER Code (Reference 2) adapted for use on an accessible 

GE-635 computer. 

1.2 PURPOSE AND SCOPE 

The primary purpose of this report is to document a code-based 

analysis of the Prairie Flat ground motions at intermediate ranges. 

The material model and the mathematical fits to representative 

Prairie Flat soil properties for six idealized layers a.re described in 

Chapter 2. Details of the coded _problem a..."1d -the mathematical airblast 

routine are contained in Chapter 3. In Chapter 4, the code results are 

compared with field measurements at selected .intermediate ground ranges 

and an analysis of the event up to 300 msec from detonation is pre­

sented. Conclusions and recommendations are presented in Chapter 5. 
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CHAPI'ER 2 

CONSTITUTIVE MODEL DESCRIPI'ION 

2.1 .MATERIAL MODEL PARAMETERS 

The material hydrostat is shown in Figure 2.1. Changes in dy­

namic mean normal stress P dyn and volumetric strain €kk are de­

fined by three polynomial functions: 

m 

p ~ = p + "A ( € )n 
,,, g L n max 

n=l 

. m. 

(1) 

Pu= Pg+ L Bn(€kk - €s)n ' €s < €kk =:;; €max (2 ) 

where: 

1 

where: 

n=l 

m 

€s = Len ( €max)n 

n=l 

Pp, and Pu = total (static plus dynamic) mean normal 

stresses on the loading and unloading 

hydrostats, respectively 
. 1 

p = static mean normal overburden stress 
g 

Pg~! vJ1 + 

0 

2\)~/(1 - \>._)] 
J; 1. d.Z 
3 

yi = wet unit weight of ith layer. 

of the ith layer (not 

( 3) 

\). = initial static Poisson's ratio 
1 necessarily = initial dynamic 

reported herein \)i = 0.5 was 
\)). For the calculations 
assumed for each layer. 

Z = depth coordinate. 
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€max = ma.ximwn volumetric strain achieved 

€ = permanent set relative to a closed cycle of s 
dynamic mean normal stress change 

A n' Bn' and C = material coefficients n 
When €kk < € p is computed from s u 

p = p + Bl(€kk - € ) u g s 

where: B1 = slope of the unloading hydrostat at zero dynamic mean 

normal stress. 

Equations 1, 2, and 4 determine the slopes of the hydrostat to be 

unique functi'ons of mean normal stress. To avoid energy generation 

problems, at any given mean normal stress level 

The material is assumed to be fractured for stress states P ~ 0 
u 

(soils exhibit little or no tensile strength); when this occurs, 

Pu and each individual deviator stress are set equal to zero. 

The hybrid v-G ~odel is initially a constant Poisson's ratio 

NEPC model during virgin loading. Therefore, the loading shear 

modulus can be obtained from the slope of the loading hydrostat by 

m 
3(1 - 2v_g) 

G,e = 2(1 + v_e) 2 
n=l 

·where: v =loading Poisson's ratio. e 

nA (€ )n-1 
n max 

(4) 

(6) 

HoweV"er, _the -value -of G computed from Equation 6 is constrained to 

have a definite upper limit Gmax Thus, at a prescribed mean normal 
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stress level, virgin loading switches to a constant-G (Gt = Gmax) 

NEPC model. 

The unloading shear modulus is a constant for a given cycle of 

unloading-reloading, but the value of the constant is a function of 

the maximum mean normal stress, i.e. 

G = f(P ) u max 

Therefore, the unloading shear modulus can be determined from 

3(1 - 2\) ) u 
m 

• ' nB (€ L- n max 
n=l 

)n-1 
- € s 

where: \J =unloading Pqisson's ratio (a constant). 
u 

In general, vu f v2 • The value of G computed from Equation 8 is 

also constrained by Gmax Thus, according to Equation 5, at any 

mean normal stress level, 

Ge :;:; G :;:; G u max 

(7) 

(8) 

(9) 

Equations 5 and 9 state that the material can exhibit hysteresis in 

shear as well as in compression for all virgin loading cycles. Equa­

tions 5, 6, 8, and 9 specify that the material cannot, under any 

circumstances, generate energy. 

The material description is completed by specification of a fail­

ure, or yield, surface and a flow rule. In order to realistically 

match typical soil shear strength data, a modified form of the yield 

function proposed by Drucker and Prager (Reference 3) was adopted. 

This form, widely accepted in recent years by all major calculators, is 
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written as a polynomial function of dynamic mean normal stress (Fig­

ure 2.2) 
m 

F2=.2: 
n=l 

D (P )n-1 
n dyn 

where: J2 = second invariant of the stress deviator tensor. 

. (10) 

At low stress levels the material exhibits Coulomb type yield be­

havior, but transitions into Von Mises behavior at higher stresses. 

Beyond the point at which the slope of Equation 10 becomes zero 

(Pd > P , Figure 2.2). yn c 

~ Constant (11) 

The code calculations reported in this report utilized the Von 

Mises flow rule. Because the Prairie Flat soils above the groundwater 

table generally exhibit Coulomb yield behavior, this rule is nonassoci­

ative in these materials. 

2.2 REPRESENTATIVE SOIL PROPERTIES AND M)DEL CONSTRUCTION PROCEDURES 

Laboratory material property tests and data analyses for Operation 

Prairie Flat were accomplished as a separate, though related, task un­

der the DASA nuclear weapons effects research program at WES. The 

outcome of this task resulted in the division of the Prairie Flat pro­

file into six idealized horizontal layers or zones. The density and 

depth to bottom of each zone are listed at the top of Table 2.1. For 

each zone, representative dynamic load-unload stress-strain and stress 

-path -relations Tor uniaxial strain (UX), Figure 2. 3, ·and values of \J .e 
were made available for constitutive model analyses. 

Construction of a constant Poisson's ratio NEPC model, well doc­

umented in Reference 4, is a relatively straightforward procedure. 
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This procedure was used, along with the representative UX stress­
strain relations and ve values, to construct loading and unloading 
hydrostats for each of the six zones, assuming the materials possessed 
nonassociated flow rules. Then, guided by the representative unload­
ing UX stress paths, variations in Gmax and vu were parametrically 
studied for each zone. This effort, coordinated with the WES material 
property testing and data analysis group, eventually led to the selec-
tion of representative values of G and v These values are max u 
listed along with all other pertinent model parameters for each zone 
in Table 2.1. NU in the table is v ; PC = P ; EFFK is the value of c 
the constant in Equation 11; coefficients A , AM , AU , and AY 
define the polynomials for the loading hydrostat, the permanent set, 
the unloading hydrostat, and the yield condition, respectively; GZ 
and EMZ are the initial shear and constrained moduli, respectively; 
P-VEL and S-VEL are the initial elastic compression and shear wave 
speeds; EZ is the initial Young's modulus; and KMAX and EM are 
irrelevant to this ,report. 

2.3 MODEL FITS 

Figure 2.4 compa~es the representative Zone 1 UX stress-strain 
relations with the model fits; Figure 2.5 shows the low stress-level 
fits at an expanded scale. In Figures 2.6 and 2.7 the corresponding 
Zone 1 stress path comparisons are presented. As an aid to the iden­
tification of the stress paths, significant stress states have been 
labeled; point A defines the intersection of the representative 
loading path with the yield surface, point 1 defines the model loading 
path and yield surface intersection, points B and 2, respectively, 
define representative and model unloading departure states, and points 
C and 3, respectively, locate the states at which the representative 
and model unloading paths intersect the lower yield surface. 

Figures 2.4 through 2.7 indicate that in Zone 1 good quality fits 
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were obtained for both types of UX data over the entire stress range 

considered (0 to 2000 psi); however, because the model incorporates 

strain-axis translation for the unloading hydrostat, the soft hooks 

at the bottoms of the UX unloading stress-strain curves could not· 

be matched without creating energy-generation problems in the model. 2 

Comparisons of the representative and modeled UX relations for Zones 

2 through 6 are shown in Figures 2.8 through 2.16. 

Material behavior within the first three zones is characterized 

by very low constrained moduli during virgin loading in uniaxial 

strain and large hysteretic strain energy loss upon unloading due to 

very high air void contents and low densities. The relation for 

Zone 4 is somewhat stiffer and less hysteretic due to increased den­

sity, increased geostatic overburden.confinement, and decreased air 

void content. This trend continues very sharply into Zone 5 (which 

underlies the groundwater table3) .and culminates in Zone 6 with a 

condition of full saturation and a constrained loading mo~ulus approx­

imately that of water. The .Stiffness variations between Zone. 1 and 6 
differ by almost two orqers of .magnitude as indicated in Figure 2.l7 

' where the initial constrained modulus has been· plotted ver!3us p.epth. 
\· •' ' 

Shear· strength also varies significantly ~ith .. depth. as shown in 

Figure 2.18. The saturated and nearly saturated materials in the 
' . 

vicinity of the groundwater table exhibit little or no increase in 

strength with increasing mean normal stress, whereas the upper, high 

2 Use of an associated flow rule would provide improved agreement with 

the UX unloading hooks. This is one of the model parameters under 

consideration for future Prairie Flat calculations. 
3 Just prior to the Prairie Flat test, piezoroeter readings determined 

a depth to groundwater of approximately 23 feet. 
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initial air void content materials show large increases in strength 

with increasing mean normal stress. 
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TABLE 2.1, MATERIAL MODEL DESCRIPTION 

YIELD CONDITION, S~J2•AYl11•SUHIAYIN•ll•P••NI, N•1,2,3, •••• 9 P.LT.PC 
SOJ2• ClfK P,OJ,t'C 

PHESSUMf oGT,O~.tQ, ZERO 
now llOLl HI SES lYl'E 

PHESSIJRt - \ OLUHE REL AT I ON 
INITIAL LOADING, l'HAXIEKKl•SOHIAINl•EKK••N) WHl:NE, N• 1,2,3 •••• 10 
UNLOAUING•llEL0ADIN6, ~•SUHIAUINl•DEIEKK••NI WHEHf, N• 1,2,J •• ,.ll 

DELl:KK•lKK •EPSlll:KKNAXI 
lPSZ•SUHIAHINl•l:PSHAX••MI 

LUlUIN6 Ul:VIATUR NtlATIUN NU•CONST.FUH G Ll:SS IHAN OHAX HSE GL•llHAX 
UNLOADING ~EVIATUR Rl:LATIUN GUN•CO~SIANT•HINIGUNIPHAXI, GHAXI 

LAHR 2 J 4 ,, 6 
Ul:Pltl fl l>oOOU 120000 18oOUO 240000 'JJ,008 
DEN~l IY PCf Y2oUOU 94,'>00 lu6.ooo 117,'>GU 121.ouo 121.'>00 
LOAu, NU o.Jouu 0.21100 u .. 1200 o.3eoo u.4200 o.4100 
UHL. NU 0 • .10~0 0.2600 UoJOOO OoJUOU Uo42UI 1.Hou· 

pi; KSI ?. , 0 OU U 2.0000 2.oouo lo'iUUO 1,,oou z.ouo 
HH K~I Oo242:> 0.7U06 004042 0.1732 o.o6YJ 0.0.10 
KHAX KSI 59.'>0 1aJ,ou 150,0U 10,uo Jtu.u• Ju,uo 
GIUX K~I 9,uo 40,00 3!io08 J0.00 21.00 u.oo 
Ut •O,Jd3Ubl ~U ·u.24'/00E on -n .2·,1!>0~ uo •Oo42'61H·OI -o.121oui.:-u1 •1.uuuE-11 
lit I KSI o.JuoKot Ul Uo23J98E 01 U. JHllOE H u,o;9419f 01 O. UJ16E oz •·250IUE OJ 
&121 K~I -o .1156;>1- 111 · u. 8JJ60E 01 -0.1112741: 02 •0.4787~E 02 •Oo149d4E 04 •• 
AIJ l K~I •0.320?01: nJ 0. 4111?.4E O? Ool404H OJ Oo61YJJE 04 o,71679E U!> •• 
ll4 I KSI O.J6R781: 04 •U • U6V731: Ol o.J11Joe1: UJ -o.1222uE Ob D, 14o;J1E 08 u. 
Al!> I K!. I •O, ll>JJH uo; o. •U,70U'>H 04 0.1128H 07 a,J73UJE 09 o, 
ll6 I KSI 0, .IJ465t U!> •• o.J!>78eE 05 •• •0,467Y2E .. o. 
Al71 KSI •U,262JUI: U!:i ~. •0,51J06E U5 o, o.eu294,E 08 •• 
AIB I KSI 0. u. o. •• o, o, 
Al9 I KSl 0. u, o. 0. •• 11. 
a nn 1 KSI 0. o. a. u, •• u. 
AHll I Q,J720Ul dO u.J1309E 00 o,439,llE U.D u.8812'>E•01 •• 815J7E•U1 Uo16667E 01 
AH121 -o .89J'i01: 01 •Uolllt9JE 02 •&.U3HE 02 • O • 11 U Hi u •0,8J469E 02 u. 
AHIJI •0,77U!j\l 02 •D,J5758E OJ •0,6111JE OJ Uo2773lf 14 t.510dH O!> u. 
At114 I •O.J696J[ 9J •0,46196E 04 -0.1117.!0E. U5 Uo21l'i9E 06 Ool97JJE OB •• 
AHio; I -o.1u21u 14 •U,JdR!>'iE 05 ·0.122!>2[ 06 o,011112e 07 o.27J74E 10 o •. 
AIU 61 •0.1';1761: 04 ·O .19l18E 06 •U ,9J465f 06 a.ti>4J9E 19 Oo170Y5E 12 o. 
A1117 I -o. 9J92ll: dJ •U,5U766E 06 •00441471 u7 D•621l65E 19 Oo40Zll2E 13 u. 
AH Id I 0. ·o ,'>4790E 06 •OolJ24H 08 o. 0. •• 
Al11111 0. o. •U,2:.!l98f- .. o. o. o. 
AH I 10 I o. u. •O,l1>J1JE U8 o, •• u • 
AUi\ I KSI o.6Jt74f 111. u,J527Jf 01 u.J~054f Ul Do6'5287E 11 lo179U21i 02 u • .soeue OJ 
AUi? I KS I •0,1!>1JH UJ U.!:i149JE OJ 0,4184JI: 04 0,1'i'>48E OJ 0,401119E d4 u. 
AUIJ I KSJ 0, 17 JJ61: 05 •U.13374E Ob -o.tJ86Jl 07 •O oUllJ!>E 05 Oo1dU8E 07 u. 
AUl4 l KSI •O .2!>114'H 06 u.16114H 06 O,ZJ699t 09 o.94078~ 01 •O,J1729E 1D u. 
AU15 I .KS1 0. l';J201: 07 -o.;e·HeE Oil •U.l.!81H 11 •OolOllOOE 10 0.1J552t 1J •• AUii> I KS! 0. u, 7J;l89E lU 0, 39988E 12 0.97921E 11 -o .1J5JlE 15 u. 
AUl11 K~I o. 0,20!i21E 11 •U,4J!>9H 13 o. u. u. 
AUIR) K51 0. u. 0. u. o. do 
AU19 I KSI o. o. •• o. o, •• AUIJO I K!'l o. u. o, o. o. '· AYll I K !. I 0 o l.!447E•Ol u,125117E•01 0 .1l 71H•01 Oo896'i1E•92 l,8Q148E•U2 u.1J961E•Ol 
A Yl2 l O .31745E ~o o,77450E 00 0.4J1J1E 00 0.235811: OU Ool1016l OU Uo26440E•U1 
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Ptotal = Pg 

Pdyn = 0 

Ptotal= 0 

p 

TENSION CUTOFF 

Figure 2.1 Compacting hydrostat. 
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DRUCKER-PRAGER 
VON MISES 
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3.1 CODED PROBLEM 

. CHAPI'ER 3 

COMPUTATION DETAILS 

The coded problem is shown schematically in Figure 3.1. The 

region considered for the calculation extended horizontally from · 

ground zero (GZ) to a range of 555 feet and vertically to a depth 

of 75 feet. The bottom boundary was specified to be rigid-fixed, the 

far boundary was set free of radial gradients of stress, and the sym­

metry axis was, of course, free of shear stress and able to move ver­

tically only. A mathematical air overpressure routine developed at 

WES was used to prescribe the time-dependent surface boundary condi­

tion; discussed in detail in the next section, this routine smoothly 

describes the actual Prairie Flat overpressure history between the 

nominal 1,500- and 40-psi contours (range = 84 and 560 feet, respec­

tively). Between ground zero and 84 feet, an artificial pulse was 

applied to the surface. 

A 3-foot square grid size and a time step of 0.5 msec were used 

to carry the 2D finite-difference calculation to a real time (from 

detonation) of 300 msec. The problem required approximately 3 hours 

of computer processor time. 

3.2 AIR OVERPRESSURE FUNCTION 

Airblast measurements obtained during the Prairie Flat event 

(Reference 5) were utilized to develop a mathematical expression for 
overpressure as an exponential interpolation function of range and 

time. In constructing the function, measured arrival times, peak 

pressures, and impulses were preserved as closely as possible. 

The functional form of the derived fit (valid for ranges be­

tween 84 and 560 feet) is patterned after that used in the Weidlinger 
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calculation of Event Distant Plain lA (Reference 2): 

crzz (R, t) = A(R) x ( B exp {- A1 (R) X [t - ta (R) - tr]} 

+ C exp {- A2(R) X (t - ta(R) - tr]}) X [1 - t - ::~:~ - tr] 

where: a = surface pressure (tension considered zz 
positive.), kips/in2 

R = ground range, feet 

t = time in milliseconds 

U(x) = unit step functions 

A1 (R) and A2(R) =functions related by 

and B and C are constants: 

B = 0.67 

c = 0.33 

(13) 

The peak amplitude A(R) , the arrival time ta(R) , and the positive 

duration td(R) functions are determined from expressions of the form 

(14) . 



·where the exponent is given by 

'(15) 

Experimental values of arrival time, peak overpressure, and the 

adjusted positive durations used in the above equations are given 

in Table 3.1. A constant rise time t = 0.25 msec was appended 
r 

to the overpressure function to provide agreement with the field 

airblast measurements. 

In the region 0 ~ R < 84 feet, the artificial overpressure 

applied to the surface was cr (84, t) with zz 

t (R) = t (84) x :r. a a O'+ 

The quality of the airblast fit is depicted in Figure 3.2, 

where it is compared with field measurements at ground ranges of 

84, 220, 330, and 560 feet. 
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- - - - - - - - - - - - - - - - - - -

TABLE 3.1 SURFACE OVERPRESSURE FUNCTION PARAMETERS 

Ground Range Arrival Time Peak Overpressure Positive Duration 
R t (R) -A(R) td(R) a 

feet msec kips/sq in msec 

84 5.3 1.5174 11.1 

140 11.0 0.8103 13.9 

220 22.2 o.495 25.0 

240 25.4 0.3966 45.0 

400 63.5 0.1063 110.0 

475 89.7 0.0744 135.0 

560 125.5 0 .03'?8 250.0 
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4.1 GENERAL 

CHAPI'ER 4 
RESULTS 

The field data.utilized in this report were obtained from the 

Project Officer in charge of the WES ground-motion measurement experi­

ment for Operation Prairie Flat. A description of the WES experiment 

and portions of the measured data have been published (Reference 6). 

The measurements are considered reliable; however, they are still sub­

ject to future modification. 

The results of the 2D calculation are compared with the field 

measurements at two intermediate ground ranges, R = 220 feet (nominal 

500-psi contour) and R = 330 feet (nominal 200-psi contour), where 

code output was least prone to artificial boundary influences. Com­

puted waveforms at depths of 1.5, 4.5, 10.5, and 16.5 feet are com­

pared with corresponding field data obtained at depths of 1.5, 5.0, 

10.0, and 17.0 feet. 

4.2 PRELIMINARY CODE STUDIES 

Prior to the 2D calculation, a series of one-dimensional (lD) 

runs were made, using the nominal 800-psi contour overpressure pulse, 

to parametrically study the effect of grid size and time step, This 

study showed that time-step variations satisfying the Courant crite­

rion (Reference 7) would have negligible effect on the computed verti­

cal waveforms. However, it also showed that grid-size variations 

would significantly influence computed peak stresses and particle ve­

locities in the immediate vicinity of the surface" 

The results of the grid-size study are summarized in Figure 4.1 

where the attenuations of computed peak vertical particle velocity are 

compared for grid dimensions of 0.75, 1.5, and 3,0 feet; field data 



obtained at this range (140 feet) and the results of the 2D calcula­
tion are included in the figure for completeness sake. As grid size 

increased, more and more of the high-frequency spike of the airblast 

front was lost in the lD calculations; however, little impulse was 
lost as a result, and below a depth of about 5 feet, the calculated 
peaks converged (as did the remainder of the waveforms). This study 

indicated that a very fine grid is needed in the vicinity of the sur­
face to minimize ground shock underprediction for HE tests conducted 

at the Watching Hill site. 

The 2D calculation suffered an even greater loss of the high­

frequency airblast spike due to horizontal as well as vertical grid­
size effects. The surface node at this range did not experience its 
mathematically predicted peak overpressure (810 psi, Table 3.1) during 

the incremental sweep of the airblast function; it only saw a peak of 

732 psi. This accounts for a portion of the 1D-2D discrepancy in Fig­
ure 4.1. This problem can be alleviated somewha~ (if running time is 
not a problem) by reducing the time step. 

Another series of one-dimensional runs were made using the ·over­
pressure pulses pertinent to the 800- and 200-psi contours in order to 
assess the influence of the rigid bottom boundary location on code 

output in this region. Rigid boundaries at depths of 75, 150, and 250 
feet were considered (bedrock at the site is located in the vicinity 

of 250 feet). The results showed detectable quantitative, but not 
qualitative, differences in the vertical motions at later times. The 

differences were sufficiently minor to suggest running the first 2D 
-Galculation-of-the-Prair~e-Flat const1tutive model' parameter study 

_with the 75-foot-deep boundary. The influences of· the bottom boundary 
location on the late-time computed horizontal motions will be assessed 
in future 2D calculations. 
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4.3 VERTICAL MOTIONS 

Fieures 4.2 and 4.3 show comparisons of the experimental and com­

puted vertical particle-velocity waveforms at the 220- and 330-foot 

ranges, respectively. The correlations are quite favorable at·all lo­

cations. The oscillations in the computed waveforms are partially due 

to the numerical techniques employed in the code and partially due to 

real stress-wave interactions in the multilayered profile; separation 

of these effects also awaits additional calculations. 

As suggested by the grid-size effects study, the computed peaks 

at the 1.5-foot depth at both ranges are lower than the measured peaks 

by about a factor of two. The discrepancy in the peaks at depth 

17 feet, range 330 feet, is partially attributable to the fact that 

the gage recorded an early-arriving outrunning signal well prior to 

the arrival of the local airblast energy. 

Comparisons of the computed and measured vertical displacement 

waveforms at the 220- and 330-foot ranges are shown in Figures 4.4 

and 4.5, respectively. The measurements represent integrated 

particle-velocity gage records. The agreements are generally good 

although the phasing of the computed waveforms appears to lag that of 

the measurements. ·The late-time measurement at depth 1.5 feet, range 

220 feet, is suspect. 

Ground shock attenuation with depth at the 220- and 330-foot 

ranges is summarized in Figures 4.6 and 4.7, respectively, where com­

puted peak vertical particle velocities and displacements are com­

pared with the measured peaks. The dashed portions of the computed 

curves are a reminder that the calculated peaks are questionable in 

the vicinity of the surface (see Figure 4.1). 

The combined effects of the short duration of the Prairie Flat 

airblast pulse and the highly compressible and energy-absorbing nature . 

of the materials in the upper zones of the profile resulted in an'. 
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initially extremely rapid attenuation of incident peak vertical veloc­
ity and stress with depth. As the groundwater table was approached, 
further reductions in incident peak velocity occurred while peak 
stresses were simultaneously enhanced due to reflection-refraction 
phenomena at the higher impedance interfaces. Figure 4.8 shows the 

computed attenuation of peak dynamic vertical, radial, and mean nor­

mal stresses versus depth for the 220- and 330~foot ranges. 

The calculation revealed that the major upward-traveling re- , 

fleeted stress pulse generated when the incident wave impinged on the 
stiff materials in the vicinity of the groundwater table was a sig­

nificant factor in arresting or reversing the downward momentum of 

the materials above the water table. In its subsequent refraction 

from the surface (which by then was free of positive overpressure), 

this pulse became a tensile rarefaction that imparted new or addi­

tional upward momentum to the near-surface soils, spalling or frac­
turing them as it passed (i.e., the tension cutoff, Chapter 2, was 
invoked). The spalled materials essentially behaved as groups of free 
particles acted upon only by gravity with each particle having an 

initial velocity vector. Eventually, after following ballistic tra­
jectories, the particles came back into contact with one another to 
reconstitute the continuum. This phenomenon can be readily observed 
in the velocity waveforms shown in Figures 4.2 and 4.3. Near-surface 
spalling occurred in the time period 100 to 125 msec at range 220 feet 

and in the period 125 to 150 msec at range 330 feet. Both the calcu­
lation and the measurements indicate that the vertical velocities de­
crease at an approximately linear rate (R:S32.2 ft/sec2) for periods 

.ranging from 100 to 200 msec after spall inception. This free-fall 
effect was computed at all code output ranges. 
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4.4 RADIAL MOTIONS 

Calculated radial velocity waveforms are compared with the field 

measurements at ground ranges of 220 and 330 feet in Figures 4.9 and 

4.10, respectively. The peak radial velocities are smaller than the 

vertical peaks by approximately one order of magnitude; this indicates 

that a highly superseismic condition existed at these depths and ground 

ranges. The computed motions at early times generally agree in form 

and magnitude with the measurements. For example, first-arrival out­

ward velocity peaks show little or no attenuation with depth and the 

consistently computed shear-wave-induced reversals immediately behind 

the first peaks have detectable counterparts in the data; however, as 

discussed in the previous section, the computed near-surface peaks are 

probably low because of grid-size effects. The individual oscilla­

tions beyond the first full cycle are partially due to realistic 

reflection-refraction phenomena and partially due to unrealistic nu­

merical noise. Late-time correlations at range 220 feet could be im­

proved by considering the higher energy inputs closer to ground zero. 

Further calculations are required to clarify these details. 

The computed radial velocities at depth 1.5 feet at both ground 

ranges are constant at later times as a result of the near-surface 

spall; these are the horizontal components of the ballistic trajec­

tories discussed previously. 

The 10- and 17-foot-deep gages at range 330 feet, Figure 4.-10, 

indicated that low-amplitude outrunning signals were the first ar­

rivals at these locations; this correlates with the vertical record 

for the 17-foot station, Figure 4.3. 

The radial displacement waveforms are compared in Figures 4.11 

and 4.12 for the 220- and 330-foot ranges, respectively. The late­

time computations are, of course, partially suspect since the degree 

of influence of the bottom artificial boundary has yet to be 



established, but the calculation mirrors the continuous outward flow 

of material recorded by the field gages. 

The overpressure impulse at the 200 psi contour was greater than 

that at the 500 psi contour by approximately 30 percent (Reference 5); 

in addition, the duration was much longer. Thus, peak stress attenua­

tion was less severe at the further ground range. This resulted in 

higher peak stresses in Zones 5 and 6 at R = 330 feet (see Figure 

4.8), which in turn resulted in more plastic flow occurring in Zone 5 
at this range than at R = 220 feet • This effect, in combination 

with the extra impulse, resulted in larger computed radial displace­

ment peaks at R = 330 feet than at R = 220 feet (larger by at least 

a factor of two). 

The measured peak radial displacements skown at t = 300 msec in 

Figures 4.11 and 4.12 represent 50 percent or lll;Ore of the total outward 

displacements recorded at these locations in the Prairie Flat event due 

to the direct and airblast-induced energy inputs. The results of this 

calculation indicate that a significant portion of the near-surface 

radial displacement maxima is attributable to ai,rblast effects alone. 

Finally, it is worth noting that the measured maximum radial displace­

ments at these locations are the same general order of magnitude as 

the measured vertical maxima. 
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CHAPI'ER 5 

CONCLUSIONS AND RECOMMENDATIONS 

The major conclusion derived from this Prairie Flat analysis· is 
that gravity effects must be included in code calculations of HE field 
tests conducted at the Watching Hill test range, especially if late 
real time ground motion phenomena are to be correctly computed. In 
addition, refined zoning is required in the vicinity of the ground 
surface to realistically predict surface peak particle velocities. 
These requirements are, of course, strongly dictated by the geology 
of this particular site and the high-intensity, short-duration nature 
of the overpressure pulses produced by the conventional explosives 
used for Watching Hill tests; however, they should be considered fac­
tors for all major ground shock calculations. 

It should be readily apparent that a great deal of both quanti­
tative and qualitative information can be extracted from a single 
2D code calculation. Yet, to answer the numerous questions that cane 
to mind concerning the effects of calculation variables such as air­
blast simulation, boundary locations, grid size, layering, model co­
effici.ents, tens ion cutoff specifications, and gravity treatment, let 
alone the influences of different types of constitutive models, a 
large number of additional parametric calculations are required. 
These calculations will be performed at WES as part of the ongoing 
consti tu ti ve model parameter atudy o:f tha Er.a.ilia. Flat_ av.ent~- This­
report represents the first step in this direction. 
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