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FOREWORD

The study of transient seepage phenomena in Mississippi River
banks was initiated by the Soils and Pavements Laboratory, U. S. Army
Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi, at
the request of the U. S. Army Engineer Division, Lower Mississippi Val-
ley (IMVD).

The investigations described in this report were performed by
Dr. C. S. Desai. The tests were conducted by Dr. Desai, assisted by
Messrs. A. L. Sullivan and W. L. Hanks. This report was prepared by
Dr. Desai and was reviewed and approved by IMVD prior to publica-
tion. The work was accomplished under the direction of Messrs. J. P.
Sale, W. C. Sherman, and C. L. McAnear of the Soils and Pavements Labo-
ratory. Useful comments and suggestions by Mr. S. J. Johnson of WES,
Messrs. R. I. Kaufman, F. J. Weaver, and L. H. Cave of IMVD, and
Dr. R. S. Sandhu of Ohio State University are gratefully acknowledged.

Directors of WES during the investigation were COL Levi A.

Brown, CE, and COL Ernest D. Peixotto, CE. Technical Directors were

Messrs. J. B. Tiffany and F. R. Brown.
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NOTATION

Matrix
Constants
Half width of gap

Boundary, matrix

Constant, rate of rise of flood

Constant

Matrix, operator, constant

Error function
Exponential

Function

Gravitational constant
Head, vector, potential

Maximum upstream head

Upstream and downstream heads

Mean head

Head, total head

Index

Modified Bessel function
Index

Jacobian matrix

Bessel function

Index, coefficient of permeability (L/T)

Permeability (L2)
Matrix
Length of model

Length scale ratio
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Coefficient of permeability of gap, index
Porosity

Interpolating functions for the finite elements
Pressure, exponent

Matrix

Rate of flow

Matrix

Coordinate, number of degrees of freedom
Matrix

Coordinate, factor

Time

Period, temperature

Time scale ratio

Head, velocity component, function
Mean velocity component

Parameter

Velocity component

Mean velocity component

Particle velocity

Volume ’

Velocity ratio

Velocity component

Model width

Coordinate

Body force component, vector
Coordinate

Body force component

Coordinate

Body force component

Constant, angle

Constants

Factors

Density

Time interval
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Interval in x direction
Interval in y direction
Small time interval
Normal to surface

Angular coordinate
Constant

Viscosity

Kinematic viscosity

Mass density

Factor

Function, total fluid head

Frequency
Potential function

Operator

Partial differential operator
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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of measurement used in this report can be converted to

metric units as follows:

Multiply By To Obtain

inches 2.54 centimeters

feet 0.30L8 meters

pounds per square inch 0.6894757 newtons per square centimeter
Fahrenheit degrees 5/9 Celsius or Kelvin degrees*

* To obtain Celsius‘(C) temperature readings from Fahrenheit (F) read-
ings, use the following formula: C = (5/9)(F - 32). To obtain
Kelvin (K) readings, use: K = (5/9)(F - 32) + 273.15.

xiii



SUMMARY

The stability of the banks of the Mississippi River is dependent
in part upon seepage conditions induced by variations in the river level.
Specifically, the drawdown conditions become significant for the design
of stable riverbank slopes and protective structures. Conventionally,
the slopes are designed on the basis of sudden drawdown conditions,
which have often been found to be conservative. For realistic design
analysis, it is necessary to evolve methods that permit computations of
the timewise fluctuations of the phreatic surface as a consequence of
the variations in the river level.

Closed-form solutions for the transient, unconfined seepage posed
by the foregoing situation are suitable only for simplified geometries
and physical conditions. Such numerical techniques as the finite dif-
ference and finite element methods can provide general solutions for
complex geometries and material properties. These methods were employed
in this research.

A parallel-pléte, viscous-flow model was designed and constructed
at the WES for the purpose of conducting tests that simulate seepage
conditions and variations of external water levels in the field. This
report presents a description of the viscous-flow model and the theory
governing fluid flow through the model. Various experiments were per-
formed using the model, and a special finite difference scheme was de-
veloped for solving approximate equations governing one- and two-
dimensional fluid flow. Comparisons were made between the numerical and
experimental solutions. A study was performed to examine the numerical
characteristics of the finite difference solution scheme.

) The finite element method for analysis of one- and two-dimensional

fluid flow situations was developed.. Theée one-dimensional flow- situation-
was based on an approximate equation, and the two-dimensional situation
was based on the division of the transient problem into a number of
steady-state problems governed by the Laplace equation. The numerical
solutions were compared with typical experimental results and with field
observations along typical sections of the Mississippi River. Analyses
were also performed to arrive at the conclusions regarding discretiza-
tion of infinite soil media as occurring in riverbanks.

Applications of the proposed techniques for obtaining head distri-
bution and flow nets in the domain of fluid seepage are presented in the
reports Work to be performed and to be included in the final report
(Report 2) is briefly described.
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SEEPAGE IN MISSISSIPPI RIVER BANKS

ANALYSIS OF TRANSIENT SEEPAGE USING A VISCOUS-FLOW
MODEL AND THE FINITE DIFFERENCE AND
FINITE ELEMENT METHODS

PART I: INTRODUCTION

Background

1. Prior to revetment construction along the Mississippi River,
the riverbank slopes are graded to help ensure their stability under
various river stages, including drawdown. During a fall in the river
level, the free water or the phreatic surface in the earth bank lags be-
hind the falling level of water in the river, and it is generally diffi-
cult to compute the location of such a free-water surface. Convention-
ally, the designs are based on the free-water surface that results after
full drawdown. This procedure is, however, conservative for many cases
and requires slopes that are flatter than necessary.

2. The stability of an earth slope subjected to the effects of
changing river stages is dependent on, among other factors, the pore
pressures induced within the earth mass due to seepage. The pore pres-
sures are generally estimated from flow net analysis obtained under
steady-state conditions. However, a more precise determinétion of pore
pressures is warranted in the case of a continuously moving free surface.
In recent years, extensive piezometer installations at selected loca-
tions along the banks of the Mississippi River have provided valuable
data on the development of free-water surfaces and pore pressures as
functions of changing river levels.

3. The U, S. Army Engineer Division, Lower Mississippi Valley
(IMVD), engaged the U. S. Army Engineer Waterways Experiment Station
(WES) to investigate the transient flow in earth banks under conditions

of variable rates of rise or fall in river level and to evolve some



rational methods for predicting the location of free-water surface and
the distribution of pore pressures for use in design and stability anal-
yses. The study described herein forms a part of these investigations.
4. Closed-form solutions to the governing equation of the tran-
sient flow are available for simple material and boundary conditions.l-6
However, increased use of high-speed computers has now made possible the
use of certain numerical techniques that allow the introduction of com-
plex material and boundary conditions. Numerical methods for the equiv-
alent problems in unsteady gas and heat flow equations have been
developec1.7-10
5. The problem of unconfined seepage through porous soils is,
however, complicated by the occurrence of the so-called "phreatic sur-
face" and "surface of seepage" and thus requires special schemes for
handling them. In a previous study, Schnitter and Zeller1l considered
flow in earth dams and, on the basis of a simplified falling surface,
employed a numerical procedure for the closed-form solution of the
Boussinesq equation. A parallel-plate, viscous-flow model was used for
comparisons with the analytical solutions. On the basis of an approxi-

13

mate approach,12 Newlin and Rossier obtained comparisons between their
analytical results and experiments with a polyethylene-bead model. In
most of the previous work, the applications were restricted to homoge-
neous, isotropic materials, relatively short model lengths, and a well

defined impervious surface (core).

Approaches

6. With the'fncreasing’use of mumerical techniques in conjunction
with digital computers, it is now possible to solve many complex situa-
tions in seepage analysis that were impossible or difficult to handle
with conventional methods. The two numerical techniques adopted in this
study were: (a) the finite difference method and (b) the finite element
method. Reviews of published work using these methods are presented in
Parts IIT and IV of this report.

T. In order to develop confidence in using such numerical methods



for design analysis, it is necessary to obtain comparisons between the
numerical solutions and laboratory and/or field observations. A number
of laboratory experiments were performed by the WES with the parallel-

14,15 The model simulated the rise and draw-

plate, viscous-flow model.
down conditions caused by variat;ons in the river stages and permitted

observations of the movements of the free surface with such variations.
In addition, the field observations of river levels and the correspond-
ing heads in piezometers over a period of years along certain sections

of the Mississippi River provided field data for useful comparisons.

8. Comparisons between laboratory and field observations and the
numerical solutions have been obtained. The laboratory tests included
gradual rise and drawdown tests and sudden drawdown tests with the
viscous-flow model. Field data included two typical sections along the
Mississippi.

9. Design curves for certain common situations along the Missis-
sippi, use of a higher order isoparametric element, numerical stability
of the procedures, and some other topics that are under investigation
and will be included in Report 2 of this series are described briefly

in Part V.



 PART IT: THE VISCOUS-FLOW MODEL

; 10. ~A~@aralieléplate,‘Visc0u3~?lOW“modeilh’lémlg was constructed
to simnlaté ﬁhe~f1owkéohditions in ﬁhefrivérbanks‘uhder changing flood
leVels;‘;Reéults fr¢m‘the experimeﬁts withithe‘mddel permiﬁted COmpariu
sbns‘with‘the‘santions‘from~the‘ﬁumerical techniquesQ This part of the
report describes salient features of the model and presents the theory

of fluid flow through the closely spaced parallel plates in the model.

. Description of the Model

 11. The viscous-flow model (fig. 1) consists of two 0.5-in.-
thick (1.27 cm), parallel glass plates with a plastic base plate, rest-

ing on an adjusﬁable Iwbeamfthat‘is supported on two columns. The glass

g, 1. View of parallel-plate, viscous~flow model

plates are 11 ft (about 335 cm) long and 20 in. (about 50 cm) in height.
Two plastic plates, each 0.25 in. (0.635 cm) thick, are inserted between
the glass plates so that a desired width of gap between them is ob-
tained. The plastic plates can be shaped to simulate any desired pro-
totype configuration. A reservoir, approximately 8 in. square (20.3 cm
square), is provided at each end of the glass plates. FEach reservoir
is provided with a means for controlling the level of liquid in the

reservoir.




Fluid used in the model

12. The fluid used for the experiments was Silicone SF-96-1000, *

manufactured by General Electric Company. The following description of
the fluid was given by the manufacturer:

Silicone fluid is chemically inert to most common
materials of construction, and its density and vis-
cosity do not change appreciably with temperature.
The fluid has excellent stability under very high
temperatures for long periods of time. It is self-
extinguishing with flash point above 550 F*¥* and au-
toignition temperature in the range of 820 to 860 F.
It has low surface tension, which is largely inde-
pendent of viscosity (about 21 dynes per cm at 25 C,
over a viscosity range of 20 to 100,000 centistokes).
The thermal conductivity of the Silicone fluid is
relatively constant over a wide range of temperature.

13, The actual viscosity-temperature relation of the fluid was
determined at the WES (fig. 2). The density-temperature relationship
is shown in fig. 3. At a temperature of 24 C, the viscosity of the
Silicone fluid is about 9.7 poises, and this value is used for numerical
computations described subsequently. At this temperature level, the
density of the fluid is approximately 0.97 g/bms. The bulk modulus of
the SF-96-1000 fluid is about 150,000 psi (10,500 kg/cmg); that of water
is about 300,000 psi (21,100 kg/cmz). Although the liquid is nearly
twice as compressible as water, the pressures in the prototype and in
the model are not large enough to cause concern.

14. The Silicone fluid is colorless; therefore, it was necessary
to add a coloring agent to it in order to obtain a distinct and clear
free surface. The coloring material, Sudan Red 4BA, was supplied by the
General Dyestaff Company of New York.

15. A Randolph pump, Model 500, manufactured by the Randolph
Company of Houston, Texas, was installed to pump the liquid into the

reservoir.

* The mumber "1000" in the designation of the fluid stands for the
nominal viscosity of 1000 centistokes.

*¥ A table of factors for converting British units of measurement to
metric units is presented on page xiii.
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Device for varying
external fluid levels

16. AFor the rising conditions in the external fluid level, the
liquid‘was pumped into the reservoir at one end of the model. A movable
pipe passihg through the bottom of the graduated reservoir was adjusted
to achieve desired heights of fluid levels. Thus, the free surface
changed with the change in level in the reservoir. A desired rate of
rise of level in the reservoir could be set by means of the electronic

control panel (fig. 4). The free surface was permitted to stabilize

STEADY STATE LEVEL /RESERVO/R ”govsﬁ;
/ PLATES
RESERVOIR (L)
( 4 FREE SURFACE
— — — STEADY STATE / [ §a4- PARALLEL
— ] PLATES
—
-
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N 26—~ |
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a. Rise in external fluid level

®,4—NOTOR

RESERVOIR \

i
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SPEED AND
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OIRECTION

PIPE —

MOVES
OOWN

FLOW

iy

FLUID SUMP

b. Drawdown in external fluid level

Fig. L. Schematic diagram of rise and fall (drawdown) in the
viscous-flow model '



under the steady head until no significant changes occurred in its
movements.

17. Drawdown at a preset rate was also achieved by setting a
selected rate on the electronic control panel (fig. 4b). The control
system was connected to the model by a motor and gear system that actu-
ated the adjustable pipe either to rise or to fall. The falling case
simulated a gradual drawdown situation by permitting the fluid to flow
out as the pipe was lowered.

18. Fig. 4 schematically shows typical stages during rising,
steady-state, and drawdown conditions. A record of the changing external
levels and the free surface was obtained by still photographs, manual
measurements, and motion pictures of typical cases. The entire front
face of the model was divided into a grid of 1l-in. squares which per-
mitted measurements of free-surface heads and interpretations of

photographs.

Theory of Flow Through the Viscous-Flow Model

Governing equations
of flow in porous media

19. General governing equations for the motion of a fluid are ex-
pressed as a system of differential equations. These equations satisfy
the three basic physical conditions: continuity, rheological equation
of state, and Newton's laws of motion. Together with a set of initial
and boundary conditions, these equations define a given problem. The
best known of these equations are those of Navier and Stokesl’6’l,+’19
which are applicable to incompressible viscous fluids. The Navier-

Stokes equations may be expressed as

1p,vd (%u,dv, aw 2 _Du \
X'Eax+3ax(ax+ay+az)+"vu‘at (12)
1% ,v3 (u,dv, ow 2, - v
Y-Pay+3ay (ax+ay+az>+vVv 3t (1v)
13,3 (du, 3v,K 3w 2 _ Dw
Z p 3z * 3 dz (?X + Ay +‘az> +WwWw = =t (1c)



where
X,y,2 = spatial coordinates

u,v,w = velocity components in x, y , and 2z directions,
respectively

X,Y,Z = body forces in x, y , and z directions, respectively
p = 7/g , mass density of fluid
g = gravitational constant
v = u/p , kinematic viscosity
V2 = 32/3x2 + 32/ay° + ¥2/32°
D/at = 3/dt + u(a/ex) + v(3/Qy) + w(3/az)

Application to viscous-flow model
20. Hele-Shawl6’r7

developed the first parallel-plate, viscous-
flow model. The Hele-Shaw viscous-flow model (figs. 1 and 5) consists
of two closely spaced, parallel plates. The narrow gap between the
plates forms a channel through which the fluid flows. The channel rep-
resents a two-dimensional cross section of an unconfined homogeneous and
isotropic aquifer. Regulating reservoirs are provided at each end of
the model. A regulating reservoir can be considered as any body of open
water that the aquifer intersects. One of the major advantages of the
Hele-Shaw model is its clearly defined free surface, which eliminates
the broad capillary zone of partial saturation that complicates the use
of sand models.18

21, 1In the sketch of the model shown in fig. 5, if the distance
2b between the two plates is small, the flow between the plates can be
considered as two-dimensional, with coordinate axes as shown, and the
velocity component w can be assumed as zero. The gravitational forces
are the only body forces acting on the system. The gravitational force
can be replaced by a potential function Q = gH , where H 1is the ele-

vation head. Thus,

X = -2 (gH) (2a)
Y = % (gH) (2b)

9
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22. For an incompressible fluid, there is no volume change;
hence, the third term in equation 1, representing the rate of volume di-
lation, can be ignored. Assuming the flow to be laminar, the fluid ve-
locities at the plates must be zero (fig. 5b); hence, the change in the
velocity components u and v with respect to z will be much greater
than the changes with respect to the x and y directions. Therefore,
the derivatives du/dx , du/dy , dv/dx , and 3dv/3dy and their second
derivatives can be neglected. )

23. Introducing the above assumptions in equation 1,

10



2

-a%(ng+p)-u:—;=-p% (3a)
Z
2 u_ v
a—y'(ng+p)-ua—§=-pa—t (3v)
2
2 (pgH + ) =0 '
3z (el + p) = (3¢)

For the special case of steady-state flow, equation 3 will reduce to

2 (pgH + ) _pu_ g (La)
?x e p 2 -
dz
2 (pgH + p) - v, (4b)
ay pg P H'BQ_
VA
-a@;(ng+p)=0 (ke)

24, Equation Lc shows that the total head at any point within the
flow domain will depend upon the x and y coordinates only. Hence,

equations l4a and Lb can be integrated with respect to 2z to yield

2 -

2 3 (pgH + D) = =t o (5a)

2 -

Zay (PgH+p)-uaz+c2 (5b)

Now, du/dz = dv/d3z = 0 when 2z = O ; therefore, from equation 5,
¢, = ¢ = 0

Integrating, once again with respect to =z ,

22 d

5 3 (pgH + p) = pu + cy (6a)

and

11



2

Z_ 9 = :

5 3y (PEH* D) = v+ (6v)
Here, u=v =0 when 2z = +b ; therefore,

2
b
_é'aa_x (pgH + D)

%3

and

3 (PeH + D) (6¢c)

o
1
n
A S
o’

23
v = =——— = (pgH + p) (64)

25, Equation 6 shows that the distribution of velocity components
is parabolic. The maximum velocity at the center of the gap, i.e., at
z=0, 1is

b2
w= -2 (e + p) (7e)

(pgH + D) (7o)

<
I

b
2u aY

and the mean velocity is 2/3 of the mexinmum, thus,

2
= - 1;—uai(e;H+p) (8a)
— b2 3

V=-§Ea (pgH + D) (8v)

Multiplying and dividing by pg on the right-hand side of equation 8
and substituting h for H + p/pg yields

=__bpgoh
U= -5 A (9a)

12



=_ _bopgoh
or
_--mg—;l a (9¢)
=_ _,oh
= -m . (9d)

where m designates the coefficient of permeability of the gap.

Relationship between
model and prototype

26. Darcy's law, which represents a linear relationship between

the hydraulic gradient and the discharge velocity, is given by
v = -k =— (10a)

Using the relationship between the permeability and the coefficient of

permeabilityl9
xk =k EE (10b)
o W
equation 10a is transformed to
k pg
o - dh
= - - 10c
B 9s ( )
where
k = coefficient of permeability, L/T
ko = permeability, L°
s = coordinate direction along the stream line

27. Now, writing equation 9b for the model and equation 10c for

the prototype yields

p)
bp g
v = m° dh

m - Vmodel = 3w, 0s (11a)

13



and

k PoE
Vb Vproto up ds (110)

28. The velocity ratio between the model and prototype for the

same gradients is given by

2
_ D8

3Kn,_ (12)

Selection of model scales
29. The properties of the Silicone fluid SF-96-1000 at 24 C are
given by

Py = 0.97 g/fem

by = 9.7 poises

Therefore,
v - Q9T X 980, b 4y b (13)
r 3X9.7 k k
Now,
Lr
Ve T T
r

where Lr = length scale ratio and Tr = time scale ratio. Thus, sample
calculations for model dimensions for certain numerical values of proto-
type conditions are given by the following:

a. For a flood of 75 ft, simulated by 1.25 ft in the model,

L =:_L__2_5

v 75 = 0.0167

b. For a flood of one week (~605,000 sec), simulated in the
model by approximately 8 min (L8O sec),

1k



180 1

T = 805,000 - 1,260
Therefore
V= 0.0167 _ 21.00 (1L)
r 1/1260  “°

c. Equating equations 13 and 14 yields
2

b
33 x = 21

where

o’
]

half width, cm
k- = permeability, cm/sec

or
b° = 0.636k
If
k = 100 X 1o'u cm/sec
b2 = 0.636 X 100 X 107
and

b = 0.08 em

Then the model width W= 2 X b = 0.16 cm or approxi-
mately 1/16 in.

30. Values of Tr for different combinations of b and k are

as follows:

7 o 0:0167 k
= 2
W b k , cm/sec T 3 4
1/8 in. 1/16 in. 100 X 10-4 1,/5000
(0.16 cm) 500 X 104 1,/1000
1000 X 10~ 1/500
(Continued)

15



_ 0.0167 k

T =
W b k , cm/sec T 33 42
1/16 in.  1/32 in. 100 X 10-4 1/1250
(0.08 cm) 500 X 10™% 1/250
1000 X 10-k4 1/125

For a given Lr s the following relationship can be written

2
b" _ 0.0167
B ="7F (15)

r

16



PART III: THE FINITE DIFFERENCE APPROACH

Background

31. The basic equations governing transient, unconfined fluid
flow through rigid porous media are nonlinear; no closed-form solutions
are available that can adequately account for the complexities posed by
this phenomenon. Some of the closed-form solutions that can handle.
simplified boundary conditions and material properties are described in
Appendix A. It can be seen from the descriptions in Appendix A that
even a linearized form of the governing equation is difficult to solve
in closed form for arbitrary and variable boundary conditions. Probably
the most suitable course of action under these conditions would be to
adopt numerical techniques for approximate solutions of the problem.
With the availability of high-speed computers and such efficient proce-
dures as the finite difference and finite element methods, it is now
possible to obtain satisfactory numerical solutions.

32. The finite difference technique was used in the first phase
of investigations involving numerical methods. In certain situations,
the finite difference method could provide adequate solutions economi-
cally. The second phase of the numerical study consisted of the use of
the finite element method. An evaluation of the two techniques is pre-
sented in Part V.

33. The finite difference method has been used for the solution
of the equations governing fluid flow in rigid porous media.lh’ls’eo-29
Most of the previous work is based on the solution of the Laplace or
Poisson's equations. In the case of unconfined seepage with a free sur-
face, it usually becomes necessary to adopt an approximate form of the
governing equation, employ an iterative technique for satisfaction of
the Laplace equation, or solve the nonlinear equation directly. In the
finite difference solution presented herein, an approximate nonlinear

form. of the governing equation was adopted. .
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Governing Equations

Two-dimensional flow

34. The following nonlinear equation is assumed to govern the

two-dimensional fluid flow.5
N S (16a)
2 2 2
ot 3x ayz

where

= head at point (x,y) at time t

= porosity

kx and k = horizontal and vertical permeability,

respectively

Equation 16a is based on such assumptions as laminar flow, incompress-

ible fluid, rigid soil, and no change in kx s ky , and n with time.

Moreover, Dupuit assumption is made in deriving equation 16a, and the
function h2 satisfies only approximately the basic Laplace equation
19

governing the flow.

35. If a mean head h is assumed, a linearized equation can be

obtained ase’lh’ls’22
2 2
dh _ 3 h 3 h
n=—-=h(k — +k — (16v)
ot ( X Bx2 Yy 2)

The boundary conditions (fig. 6) associated with equation 16a are

i. h(x,y,O)
ii. h(x,y,t) = £(t) on the entrance face

O for an initially dry bank

an (16c)
iii, S; = 0 at the impervious base

iv. h(x,y,t) = Y elevation head at free surface

One-dimensional flow

36. One-dimensional equations corresponding to equations 16a and
16 b are

18
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FREE SURFACE
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\ AT Oz«

AN

Fig. 6. Section of earth bank subjected to time-dependent
: external heads

k 2.2
dh X O h
n =5 (17a)
ot 2 42
and
3h _ . —3°h
n g = kh =5 (17v)
ox

37. The above equations of free-surface flow through porous media
were considered analogous to the equations governing the flow through
the narrow gap of a parallel-plate model. 14,16,18,19 The parallel-plate
model used in the experiments had a uniform gap throughout (fig. 5b).
This configuration simulated an isotropic and homogeneous soil mass. It
is possible, however, to simulate a nonhomogeneous and anisotropic soil
mass by appropriately varying the gap between the plates. The perme-
ability of the model for use in equations 16 and 17 was obtained from

the relationshiplh’l8’l9

2
lgn=k=k=b—3&5 (17¢)



where b = half width of the gap, with porosity equal to unity.

Alternative linearization

38. The linearization in equation 17 essentially yields solutions
of the form

h(x,t) = X * oo, (18)

where oy and a, are constants. Equation 18 is a linear function and
indicates that the equation of the free surface is obtained in the form
of a straight line.5
39. An alternative linearized form for equation 17a can be ob-
tained by adopting h2 as an unknown and writing the equation as
du 32u
n—-=% Yyu—s (19)
ot X 2
ox
where u = h2 and Yu represents the mean height of the external level
of fluid. This approach can yield a parabolic variation of the free-
5,14

surface head.

Finite Difference Procedures

Alternating direction
explicit procedure scheme

L4O. A special scheme, the alternating direction explicit proce-
dure (ADEP),3O-32 of the finite difference procedure can be employed
(fig. 7) to derive the finite difference analogue of equation 16a,

-

2 2 2 2
h ch L. +8 (hi-ljj,tﬂ "Rt Paagge hi+1,j,t>
1,3,641 ° M1,5,t 7 Px ey I

2 2 2 2
h, . - h, . h, . - h, .
+ 8 <1ig+l,t+l i,j,t+1  i,3,t 1,3-1,t) (208)
Y AYl ‘ AY2

-

where Bx = kx At/n(Axl + sz) and By = ky Am/h(Ayi + Ayé) .

20
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Finite difference approximation for ADEP

Equation 20a, at time level t + 1 , reduces to the quadratic form

2
+ + =
Ahi’j’t+l Bhi’j’t+l cC=0 (20b)
where
AXx and Ay = spatial intervals
ANt = time interval
A, B, C=known constants at (t + 1), and are functions of

p

X b

By_,and known heads at t and (t + 1)

and the index symbols are shown in fig. 7.

L1.

equation 1b is

The finite difference form corresponding to the linearized

h, . - h, . h, . - h, .
h = h + B ( i-1,3,t+1 i,,t+1 _ i,j,t 1+19¢])t>
i,j,t+1 ij,t  "x oy £t
h, . - h, . h, - h, .
+ E ( i,j+1,t+1 i,j,t+l  i,3,% 1,3-1,?) (21)
y &yq A '

21



where B = kh/0.5n (&) + Axy) 5 and B = k. h/0.5n (&yy + 4&yp) .
k2. For the equation governing one-dimensional flow, equation 17a,
the ADEP forms are

h2 _ h2 2 _ h2
h = h + B i-1,3,t+1 i,j,t41 - i,j,t i+l,j,t (223.)
1,5,041 7 T1,3,t  x Ay A,
and

h, . - h, . h, . - h,
h = h + B ( i-1,j,t+1 i,j,6+1 _ i,3,t 1+l,j,‘t) (22b)
1,5,t+1  “i,3,t  Px 3 A,

43. Alternatively, simple explicit forms of the finite difference
scheme can be used; however, this scherrielh is only conditionally stable.
Steps in the numerical scheme «

L4, In equations 20-22, two time levels are used. At each of the

two time levels, only one head from each direction is included. If a
proper choice of an initial starting point is made, e.g., at the up-
stream face where f(t) is prescribed for all times, then hi,j,t+l is
the only unknown and can thus be computed explicitly. Equation 20 or 21
is sequentially applied point by point, either in the x or y direc-
tions. The accuracy of this proéedure is improved by adopting the
point-by-point sequence in the alternate directions. It has been found
that the ADEP is more suitable and computationally stable, compared to
some other finite difference schemes, and can also be extended for
three-dimensional flow.3l’32

45. The solution usually starts at time t = O when the head
distribution in the flow domain is specified, as in the boundary condi-
tion i of equation 16c. The solutions for increasing times are then
propagated by using one of the recurrence equations, 20, 21, or 22,
These equations are easy to program for the computer.

Solution for rise of
external water level

L6. The solution for a rise of external water level proceeds as
described above, with the applied heads at the entrance known at all

time levels according to the boundary condition ii, equation 16c. The
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approximate location of the free surface at a given time is obtained on
the basis of the known heads af that time. This solution is achieved by
locating those points in the flow domain at which the computer head is
equal to the elevation.head. A linear interpolation scheme is used to
satisfy this condition as stated in the boundary condition iv, equa-
tion 16c. Thus, the free surface can be located at any selected time
level.

Solution for fall (or
drawdown) of external water level

k7. The solution for a drawdown in the external water level in-
volves additional complexities due to the occurrence of the surface of
seepage (fig. 8). The surface of seepage arises because the fall of the
free surface lags behind the fall of the external water level. Conse-
quently, the surface exits the entrance face at a point higher fhan the
external water level. Since the seepage forces near the entrance are
influenced by the location of the exit point, it is necessary to com-
pute the point for all time levels. Furthermore, this location is nec-
essary for imposing the appropriate modified upstream heads.

L8. Pavlovsky';h@ethod of fragmentss’15’19’22’33 or the method

of permeable membrane~ " may be used to locate the point of exit. The
method of fragments, which also has been recently used by Dvinoff,z2 is
employed herein. Fig. 8 shows a section of the bank at a typical in-
stant of time t + 1 during drawdown. To apply the method, the time
interval At from t to t + 1 is divided into a number of small time
intervals Ar . For instance, At = 100 sec wused in this study was di-
vided into 5000 small At's . The quantity of fluid out of the upstream
face is equal to the amount of fluid contained between the free surfaces
at two time levels Ar apart. Hence, the outflow per unit length,

assuming it to be essentially horizontal, is

AQ = -kx[he(t +om) - ng(t 1)] tan o (1 + log A)Ar (23a)

he(t + Ar)
= b (t+ar) - bt +1) °

where M\
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Fig. 8. Location of the surface of seepage

The corresponding volume change is
AV = n[hm(t) - he(t + Ar) cot o §f + n cot ¢ (5f)2] (23p)

where §&f denotes the fall of the free surface in time AT . Equating

AQ and AV yields an expression for §f ,
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2
6f=-P+\JP + lr

5 (23c)

where p'= hm(t) - he(t +Ar) ,and r=/AQ tan @/n . For o = 90 deg,
5

the above equations reduce (fig. 8b) to

I:hi(t) - hi(t + 1)
2Q = kx

5D AT (24a)
AV = nD §f (2p)

and
6 = %;' (2ke)

in which D denotes the distance between the entrance toe and the lo-
cation of the maximum head (fig. 8). An impervious boundary is needed
in using ‘the above procedure. For the model that represents a long
riverbank, no such physical boundary is generally available. Hence, an
imaginary impervious boundary is established at each time level. This
boundary is established by locating the point of maximum head hm(t) at
the previous time and using the vertical plane through that point as the
required impervious boundary.

49. Once the fall of the surface §f corresponding to Ar is

computed, the location of the exit point is obtained from the recurrence

relation
h (t, + or) = n () - 6f, (25)

where ti assumes values from t to t + 1 , which include, for in-
stance, 5000 iterations for At = 100 sec. The last value in equa-
tion 25, he(t + 1) , gives the exit head for the current time t + 1 .

50. The entrance boundary heads are now imposed as
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' 3
i. h(x,x tan @, t + 1) = hd(t + 1) for points below hd(t + 1)
ii. h(x,x tan @, t + 1) = elevation head along the surface of
seepage
h(t + 1) + b (t) (26)
iii. h(x,x tan @, t + 1) = 5 for points above
+
he(t 1)

Condition iii is arbitrarily chosen.

51. Equation 20, 21, or 22 is now applied, and the procedure is
repeated until the desired drawdown level is attained.

52. For the constant-head time zone between the time of maximum
rise and the time when the fall starts .(fig. 9), equation 20, 21, or 22
is used in the same manner as for the rising condition.

Approximation for boundary
conditions at the downstream face

53. The level of fluid at the tail or exit end was always main-
tained at zero. The above procedure for locating the surface of seepage
was not employed for the exit face, since the variations in the exit
point for a model of this length were very slow. Instead, an approxima-
tion was made according to which zero head was assumed at a distance of
one /Ax outside the exit face with a linear head variation from this

point to the point one Ax inside from the exit face.

Experimental Results

54. A number of experiments were conducted by the WES with a
viscous-flow model that was about 350 cm long and 58 cm hig‘h.l)+ Results
from four tests are reported herein. Silicone fluia, which is stable
under the influence of temperature, was used in these tests; the level
in the reservoir of the model was varied by pumping the fluid at desired
rates. After a desired height was reached, the free surface was studied
under a constant head until the surface was relatively stable. Then
the fluid level was allowed to fall. Typical photographs taken during

the experiments are shown in photos 1-L4. Typical variations,

26



interpreted from photographic and manually obtained data, are plotted
in figs. 9-12.

55. In the first test (fig. 9), the length of the rectangular
plates (¢ = 90 deg) was about 190 cm, with an average width of gap of
0.2 cm., One-dimensional equations were used for this case. Three dif-
ferent plates with upstream slopes of 45, 30, and 18.5 deg (1:3),
lengths of 300 cm, and an average gap width of 0.17 cm were used for the
other three tests, figs. 10-12. The permeability of the model was com-
puted from equation 17c, with the following values for the various quan-
tities: p = 0.97 g/bm3, g = 980 cm/éecz, p = 9.7 poises. The poros-
ity of the model n was assumed as equal to unity.

Comparison and assessment of results

56. Typical experimental results for the four tests are plotted
in figs. 9-12, in comparison with the numerical solutions. Each of these
figures contains three typical plots: the first, during the rising water
level; the second, at the steady-state condition; and the third, during
the drawdown. The results from the linearized equations gave satisfac-
tory comparison at earlier times but generally only in the regions in
the vicinity of the entrance face. These results showed poor correla-
tion with the experiments in the majority of the flow domain at higher
time levels and for the fall (drawdown) conditionms. Dvinoff2 2 used the
linearized equation and compared the numerical results with experiments
from two viscous-flow models with upstream slopes of 45 deg and 22.5 deg
and lengths equal to 24 in. and 30 in., respectively. The linearized
solutions gave satisfactory comparison in the flow zones in the vicinity
of the entrance face. In a previous stu.dy,2 closed-form analytical so-
lutions for the linearized equation were compared with experiments from
models with upstream slopes of 90, L5, énd 22.5 deg and with similar
lengths, Satisfactory comparisons were obtained in the vicinity of the
entrance face, but the two results showed significant differences in
other regions of the flow domain.

57. In the case of long riverbanks and embankmenté, it is desir-
able that the solutions be satisfactory for the entire flow domain.

Particularly, the designer is interested in seepage forces near both the
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entrance and the exit faces. The nonlinear form of the equation used in
this report showed improved agreement with the experiments for the en-
tire flow domain and for all times. The main reasons for the improve-
ments compared with the linearized solutions may be due to the higher
order nature of the head distributions inherent in the nonlinear solu-

P 14

tion” and the reduced influence of the impervious boundary.
58. Figs. 9 and 10 for o = 90 and g = 45 deg, respectively,
are plotted to show comparisons between nonlinear and linearized solu-
tions and the experimental results. Since the nonlinear solutions were
found to be better, figs. 11 and 12 for @ = 30 and 18.5 deg slopes are
plotted to show only the nonlinear and the experimental results.

Numerical discretization and
its effects on the solutions

59. The finite difference mesh size for the results reported in
figs. 9-12 was /X =10 cm, Ay = &Xx tan o , and At = 100 sec. The
extent of the vertical domain included as a flow region was determined on
the basis of the magnitudes of the head h developed in the flow domain.
When the computed h at a node point was very small, the cycle of anal-
ysis was terminated, and the next cycle was started. The heads beéame
negligible at a distance from the base of approximately four to six
times the maxirmum head in the reservoir.

60. A Time-Sharing system connected to a GE 400 computer system
was used for all computations reported herein. The numerical solutions
gained accuracy as the time interval was reduced. For example, for the
same 2Ax and Ay , the solution gained about 5 to 10 percent accuracy
with a reduction in At - from 100 to 50 sec. For At = 10 sec, the nu-
merical solution gained further accuracy and showed very close agreement
with the experiments. The computation time, however, increased with a
decreasing At . For instance, the computation times for At = 100 ,

50 , and iO sec for the same Ax = 10 cm were in approximate ratios
of 1:2:10. The approximate time for computing the free surface for six
time levels, for Ax = 10 cm and At = 100 sec, was 30 sec. No signif-
icant increase in accuracy was observed for a decrease in the spatial

subdivision, and it required much higher computer times. Often the
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results from finer space subdivisions became less accurate. For in-
stance, Ax = 2.5 cm and At = 50 sec were attempted, but thése values
required so long a time in the Time-Sharing system that the computations
were terminated. Plots of comparison between various discretization
schemes and experiments for « = 90 deg and for two typical times are
shown in fig. 13.

61. The numerical results described in this report were for
&Xx =10 emy Ay = &x tan ¢ , and At = 100 sec. It should be noted that
these numerical results can be considerably improved by reducing the
size of the time interval and that such a reduction is recommended for
field applications, which will necessitate use of a larger computer

device,

Nonhomogeneous Media

62. Soils usually occur as nonhomogeneous materials. A soil
medium can consist of different layers of soils separated by vertical,
horizontal, or inclined interfaces. It can also contain pockets of dif-
ferent materials. The latter possibility was not considered in these
analyses. Consideration of a highly nonhomogeneous system can be ac-
complished by obtaining statistical values of the soil parameters. Only
the general case of an inclined interface is considered to derive modi-
fied finite difference equations. Fig. 14 shows an inclined interface
between two soils with different permeabilities. For convenience, an
inclined interface is treated as a combination of horizontal and verti-
cal interfaces.lh’eg’35

Vertical interface v-v

63. As shown in fig. 1L, the vertical interface v-v can occur
either to the left or to the right of the node point (i,j). Linear head
variation is assumed between nodes (i - 1,3j), (i,j), and (i + 1,j). It
is necessary, as a numerical expedient, to establish a fictitious head
h* that represents head at node points (i - 1,j), fig. 1lLb, or
(i + 1,j), fig. lbhc, as if soil 2 and soil 1 were extending, respec-

tively, into soil 1 and soil 2, An expression for h* can then be
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substituted into the ADEP scheme as if the soils were homogeneous at the

interface.

6h. For a v-v to the left of (i,j), fig. 14b, continuity of

flow across v-v gives

ko = Kot (27)

vhere o = (Bh/éx)l and a, = (ah/ax)2 . Also, from the linear head

variation (the time subscript is dropped for convenience),

ay(1 = Moy +ap(h + 8 )y = by oo- by (28)

Substitution of equation 27 into equation 28 gives

1
)X & [T -0+ k(N + 5] (29)

o = (B 5 =By

where "k _ =k /k Now,

x1" "x2 °*

*

iy, = Pyop,y t (g - )1 - Moy (30)

Substituting for oy and Uy s equation 30 becomes

*

= + . . = h, ]
SRR SRS R A Lt (1)

where 7 . = [(l - er)(l - h{l/[(l- A) + er()\ + Bx)] .« In a similar

manner, for v-v to the right of (i,j), fig. 1lkc, the fictitious head

is

h,,. . =h + (n h, o L) (32)
41,5 T Mi+1,y T Wi,y T Mie1,57 ke B

where 7., = [(L -k )@ -A)|/[(a+2.)+x _(1-2)8_1.
x2 rX X rX X
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Horizontal interface h-h

65. Following a similar procedure for the horizontal interface

h-h above and below the node point (i,j), the fictitious heads are,

respectively,
h, ,,=h + (n h, , .)7 (33)
1,5-1 ° PBi3-1 1,541 " B4,3-1731 33
and
n, .. =h + (n h, . o) (34)
1,000 7 "1,50 T Paga T a7y ’
where

BECEE IR
=TT+ (X7E)

(1 - kry)(l - \)
y2 (T + ABy) + kry(l - K)By

and

k
Kk = LE

Y ko

66. The expressions for h¥* can now be substituted in the ADEP
scheme (equations 20-22) to account for an interface between two

materials.
Comments

67. The finite difference procedure developed herein could pro-
vide satisfactory and economical solutions for the transient, unconfined
fluid flow in porous, anisotropic, and nonhomogeneous media, The solu-
tions are straightforward for simple geometries and material variations
but may become cumbersome for complex geometries and severe

nonhomogeneities.
A
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PART IV: THE FINITE ELEMENT APPROACH

68. The second phase of the numerical solutions for the seepage
problem constituted development of the finite element procedures. A
general, two-dimensional finite element solution presented later in this
report can be used for fluid flow in porous media, idealized as both
one- and two-dimensional. However, a finite element formulation based
on a governing equation directly representing one-dimensional flow can
yield simplified and economical solutions. Such an approximate solution
is developed in this part of the report, and the results therefrom are
compared with experimental results from the viscous-flow model with rec-

tangular entrance face.

One-Dimensional Seepage

69. Certain situations involving flow of fluids through porous
media can be approximated as one-dimensional. Some examples of engi-
neering interest are flow in and out of earthen banks with vertical
faces, such as in the case of long, parallel drains or ditches, quay
walls, and sheet-pile walls. In this part of the report, attention is
directed toward a simplified and approximate finite element solution
of a linearized equation governing such one-dimensional transient fluid
flow. Both rise and drawdown in the external water level are considered.
The case of sudden or gradual drawdown conditions is solved by an in-
direct scheme. This scheme is based on Pavlovsky's method of fragments
described in Part IIT.

T70. Since this approach requires only one-dimensional elements,
it would provide significant savings in the formulation of and cdmputa-
tional efforts for the above class of problems, compared with numerical
solutions for such problems based on two- and three-dimensional ideal-
izations. Moreover, it is somewhat difficult to establish a changing
finite elements mesh for a rising phreatic surface for two- and three-

36-39

dimensional solutions when the external water level rises at a

given rate. The approximate solutions presented could avoid such a
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difficulty for the problems idealized as one-dimensional. The economy
and the usefulness of the procedure for approximate solutions are illus-
trated by obtaining an example of satisfactory comparison with experi-
mental solutions for free-surface flow in and out of the rectangular,
parallel-plate, viscous-flow model, simulating a vertical bank subjected
to rise and fall (gradual drawdown) in the external water level. An
additional use of the procedure for seepage analysis in parallel drains
or ditches under sudden drawdown conditions is given in reference 37.

Tl. The effects on the solutions of the proposed procedure of
spatial and temporal discretizations were examined. Consideration was
given to material nonhomogeneities introduced by vertical separations in
the one-dimensional medium. Effects on the solution of higher order
approximating models were also briefly examined.

Finite element formulation

72. Flow through a porous medium with vertical faces (o = 90 deg,
fig. 6) is assumed to be one-dimensional. As stated in Part III, this
idealization is based on such simplifications as the Dupuit assumption
and Darcy's law. A linearized version of the equation governing such

flow is given by equation 17b as

k h(t) 2—2321- =n g‘% (17b bis)
X
where

h = fluid head
kx = permeability in x direction

n = porosity

t = the space and time coordinates

H(t) = the mean external fluid head given by

h(o,t h(o,t + At)
(0,8) + h(o,t » (35)

h(o,t) =

in which At denotes the time increment. The boundary conditions are

h = h(x,t) prescribed on boundary 8 (36a)
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oh

ke 3 © q(x,t) prescribed on boundary S, (36b)
and the initial conditions are
h = ho(x,o) in the domain D (36¢c)

Formulation by the
Galerkin residual method

73. The Galerkin method of weighted residuals is used to derive

36,37,40-42

the finite element equations. The approximating function for

h 1is written as

r
h(x,t) = Y N.(x)h,(t) (37)
=1 Y J
where
N, = interpolating functions for the finite elements, which vanish
J elsewhere in the domain D
hj = nodal values of h in the subdivided domain

r = number of degrees of freedom

TLh. The Galerkin method requires that the weighted averages of
the residual R over the domain should vanish. By using the interpo-

lating functions Nj as the weighting functions, this method yields

.fRNh AD=0; m=1,2, .o. r (38a)
D

For equation 17b, the residual R is

3° 3 f: |
R=|A(t) =— - n — N.h, (38b)
[ ax2 at] T J

where A(t) = k#ﬁ(o,t) . Hence,
3° d | &
A(t) a—x'§ -n 3t § (Njhj)Nm dpD =0 (38¢)
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which will yield r equations for .r wunknowns.

theorem, equation 38c can be modified to

By applying Green's

A(t) -B—X_Z 5% h,j dD + nNmzNjhj dp
1 1

D
-ka
m
S5

lx hﬁ ds

(39)

in which zx = direction cosine of the normal to the boundary and the

overdot denotes the derivative with respect to time.

to a system of equations than can be expressed as

96} B3 - ()

where
oy 3
ml :S ME) 5 Bx ox ]
P i =}:fn1\rml\rj dx
E
and

R, = -Z[Ndas
E

Equation 39 leads

(Loa)

(L4ob)

(40c)

(4od)

Here, [K], [P], and {R} can be called permeability matrix, porosity ma-

trix, and forcing parameter vector, respectively;

and the summation is carried for all elements in the domain.

Approximating models

E denotes an element;

75. The linear-, quadratic-, and cubic-interpolating function

L1



models (fig. 15) used in the study are, respectively,

x=x, X=0 x=x,

| L==1 L=o0 L=1

| as=x,=x, J

| |

-2/ _
L-a(x xo)

a. LINEAR MODEL

— 0 .
a a

R
*O
J"<:>1

o|~° ol

b._CuBIC MODEL

Fig. 15, One-dimensional finite elements and
local coordinate systems

h=|:%"(1-L) —;-‘(1+L):|{21}

2

by

h=|:%L(L-1) 2 (L + 1) (l-L2)] b,

h

o

where h0 = head at the internal node, and

by
h= [15(3 - 21,) 1°T.a 12(3 - 2L.) -L.I°a 1
- 1 1 172 2 2 172 h2'
%

where © = gradient of h .

(k1a)

(41v)

(41e)

76. Integration in time. Initial heads h(x,0) are prescribed;

hence, equation 4Oa can be expressed by a finite difference integration
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scheme for solution at the subsequent time level At and so on. The

37,42,43

following difference scheme is employed herein.

[] {ht-(At/Z)} + 7] fﬁ}# = {R }  (42a)

t
= + 2 . i i
where {ht-(Am/é)} {ht} {ht-At}/ Finally, equatlonlho reduces to

[€] + ?.£§1 {ht-(At/e)} = {Rt} ¥ ggl{ht-&} (42p)

T77. Rise in external heads. Values of the fluid head at the

nodal points are obtained by a straightforward application of equa-

tion L42b, with prescribed heads at the nodes at x =0 and at x=4 .
For impervious plane or plane of symmetry at x = 4 , the natural bound-
ary condition of 3h/dx = O is automatically satisfied. Equation L2b
is also applicable for periods beyond the time by which the maximum
head, point B (fig. 16), is reached and until the steady-state condjition
is approached, point C. The steady state is assumed to have been ap-

proached when the phreatic surface does not change appreciably.

30~
END OF RISE\g c/—STEADY STATE
20 —
’ &
8 &
o]
<
w
I
10 [~
oA | 1 1 1 ]
0 25 50 75 100 150

TIME, MIN

Fig. 16. Variations in external heads
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78. Drawdown (fall) of external fluid level. During drawdown

conditions, the free surface lags behind the level of water in the res-
ervoir (fig. 8b). Consequently, the applied entrance head at any time
should be modified to account for the surface of seepage A-E and the
exit head he(t + At). 1In this study, the entrance boundary nodal head
is adopted as equal to he(t + At) . Determination of the exit point E
requires a special procedure in addition to the solution of equation L42b.
Such a procedure is introduced as an iterative scheme that is based on
Pavlovsky's method of fragments, described in‘Part III, equation 2},
Applications

T79. A computer code was prepared on the basis of the foregoing
finite element formulation. For the results reported herein, the linear
approximating model, equation l4la, was used. The example problem de-
scribed below was solved by using the code.

80. Description of example. The example represents the transient

flow in a viscous-flow model with linear rise and gradual linear draw-
down. As described in Part III, a number of experiments were conducted
with the parallel-plate, viscous-flow model at the WES. For the one-
dimensional case, the experimental results with the vertical-face model
were adopted. The average gap between the parallel plates was about
0.20 cm., The permeability of the model km was computed by using the

equation
bopg
LI M (17c bis)
where

o2,
density of the fluid (0.97 g/cm”)

gravitational constant (980 cm/sece)

viscosity of the fluid (9.7 poises)
half width of gap (0.1 cm)
These values yield km = 0.323 cm/sec. A value of n=1 was adopted

o E (@ ©
[]

for the model. The position of the free surface at various time levels
was recorded photographically.
81. Figs. 17 and 18 compare the experimental results and the

L
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numerical solutions at various time levels during rise, steady-state,
and drawdown conditions. Time levels of 30 and 48-1/3 min represent
typical times during rise. Time level of 110 min denotes a steady-
state condition; 120 min is a typical time during drawdown. The results
for both rise and drawdown conditions show good agreement near the en-
trance face. The agreement away from the entrance is fair. The dis-
crepancy may be due to the linearizatioﬁ of the governing equation.

Such experimental sources of errors as nonuniform gap between the plates,
leakage of fluid, friction at the base, some variations in the proper-
ties of the fluid, and capillary effects may also have contributed to
the discrepancy.

82. Since the variation in head at the downstream end was very
small, the iterative scheme for locating the exit point was not used for
that end. Instead, linear head variation was assumed between an inside
node distance a from the downstream face and a zero head at a node
distance a outside that face.

83. Details of computer analysis. The solution was programmed

on the General Electric U430 Time-Sharing system. The equation set was
obtained in the form of a banded matrix and was solved by using the
symmetric Gauss-Doolittle procedure. Twenty elements, each with a
length a = 10 cm, were used. The time increment At = 10 sec was used
for the results reported in figs. 17 and 18. Computations for each time
increment, including the iterative scheme for locating the exit point,
took about 0.30 sec on the Time-Sharing system.

8L, General use. The formulation developed herein can be applied

to such other problems as flow toward sheet-pile walls and parallel

37

drains or ditches.,

Analysis of factors
affecting the solution

85. Improvement of accuracy. A quadratic field variable model,

equation L41b, with an internal node in the element in fig. 15 was used.
This model was found to affect the numerical solution only to a small
extent. A cubic model, equation 4lc, was also tried. This model in-

cluded the gradients of the heads at the nodes as unknowns in addition

L7



to the nodal heads. Thus, there were four unknowns per element. The
solutions from the cubic model formulation improved the solution to a
small extent. It seems that, due to the linearization and the Dupuit
assumption, increasing the order of the field variable model does not
improve the solution to a great extent.

86. Spatial and temporal discretizations. Three different meshes,
Ix = 20, 10, and 5 ecm , were adopted with time intervals of At = 100,

10, and 5 sec 1in order to examine their effects on the solutions for
the foregoing problem. It was found, as in the case of the finite dif-
ference method, that with the present formulation and the linear model
no significant improvements occurred by refining the spatial mesh. How-
ever, refining the timewise mesh did improve the solutions. Typical re-
sults for Ax = 10 cm and At = 100 and 5 sec are shown in fig. 19 in
comparison with the test results. The results for At = 10 sec lie in
between the results for At = 100 and 5 sec.

87. Nonhomogeneous materials. Any number of material properties

can be incorporated if they happen as nonhomogeneities introduced by
vertical interfaces. A typical result for the free surface with three
different permeabilities is shown in fig. 20. Distinct changes occur in
the free surface with the changes in material properties.
Comments

88. The solution described herein is intended for a special class
of problems and is based on an approximate linearized version of the
flow equation. The solutions obtained are approximate; however, it is
believed that they could provide adequate accuracy for engineering so-
lutions with considerable savings and.simplifications in the computa-

tional and formulation efforts.

Two-Dimensional Seepage

89. Insofar as the stability of an earthen bank is concerned, the
seepage forces induced during drawdown are more severe and critical than
those induced by the rising river level. Hence, attention in this phase

of the study was directed toward drawdown conditions. A finite element
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procedure was developed and applied to two-dimensional seepage during
drawdown. ‘

90. There are a number of publications available regarding
application of the finite element method to various categories of
seepage.36-39”42’m+-52 Only those works directly related to the cate-
gory treated herein are referenced in further detail. Although the for-
mulation developed is general, it was used for solution of free-surface
seepage in long riverbanks (or dams) subjected to gradual drawdown con-
ditions in the external water levels. This situation has significant
applications for stability analyses and computations of fluid flow from
banks and dams. Specifically, the procedure was used for seepage anal-
yses in the pervious banks of the Mississippi River.

91. Three examples were solved by using the proposed finite ele-
ment procedure. In the first example, the numerical sblutions were com-
pared with a typical result from laboratory experiments with the
parallel-plate viscous-flow model. The second and the third examples
involved actual field observations at two sections along the banks of
the Mississippi River. The IMVD has installed a number of piezometer
stations along the banks, and periodic readings of river stages and the
corresponding piezometric heads are recorded. The field observations
at the sections were compared with the solutions from the finite element
method.

92. In dealing with an infinite medium such as a riverbank, the
inherent nature of a numerical technique requires that only a signifi-
cant portion of the infinite medium be included in the analysis as the

6 . .
3 The -selection of the significant portion re-

-discretized -assemblage.
quires adequate study-and is influenced by various factors. Some cri-
teria for discretization of such infinite media are suggested herein

on the basis of the experimental observations and a number of numerical
solutions.

Finite element formulation

93. Governing differential equation. The differential equation

governing two-dimensional steady flow in a long riverbank or a dam,

shown schematically in fig. 21, is expressed as
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d e K-N vy _
ax (kx 3}%) Y (ky 3Y> =0 (1)

where kx and ky = the coefficients of permeability in the x and vy
directions, respectively, and § = the total fluid head . Equation 43

is based on Darcy's law, expressed in matrix form as

{v}- -[1{e} (1)

and on the fulfillment of the continuity conditions in the flow domain.

In equation Lk,

<
-
-

[}

the velocity vector [Vx vy]

k 0
X

0O k
.

the vector of gradients [(3y/3x) (3y/ )]

the matrix of permeabilities =

—/
i
]

G

94. The boundary conditions associated with the free-surface flow,

as shown in fig. 21, are
Y
<[——AX

SURFACE OF SEEPA GEX>\
g RIVER LEVEL\&

ENTRANCE FACE

|
END BOUNDARY
FREE SURFACE \ql

PERVIOUS BANK

|

I
v2w =9 |

|

|
///////////v\//////////7/////////1//////// 777

IMPERVIOUS S,

Fig. 21. Schematic representation of two-
dimensional flow
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¥ = y(t) on 8 (45a)

1
kx%;%g_}ﬁ’ka%%%:a on S, (45b)
and
v = Y(x,¥,t) (45¢)

on fhe free surface and on the surface of seepage. Here, Sl is that
part (entrance face) of the boundary on which ¢ is prescribed, S2 is
that part on which flow Q is prescribed, and Y represents the eleva-
tion head.

95. The variational function corresponding to governing equa-

36,L0-L2
Y/ER 6
A 2 kx(BX> ' ky(ay) W (46)
v

96. Finite element and field variable model. A four-node, iso-

36551,53,54 1o

tion 1 is

parametric, quadrilateral elemént (fig. 22) was used.
field variable model describing an approximate variation of { within

the element is

(st = {uf" {al (472)

where

s,t = the natural coordinates of the element

vf
tf

The values of Ni for the system shown in fig. 22 are

[Nl N2 N3 Nh] is the vector (or matrix) of interpolation

functions, and

[wl ¢2 ¢3 *u] is the vector of nodal heads

N, =
i

&+

(1+ ss)(1+ tti) s i=1,2,3,4 (47v)
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Fig. 22. Quadrilateral finite element

The coordinates x,y of the element are also expressed by using the

same interpretation functions

{x- {1;}T {;}T {’;n} (18)

n
where {Xn}T = [xl %, x3 xu]' and {yn}T = [Tl Y5 Y‘3 yh] . The gra-

dient vector can be computed from equation UTa as
o
0
{g} -0 ,:[Bl] [5:][2s] [Bh]] {q } (49)

oy

where the submatrices [B]:l are given by
oN, oN '
T _|—1_1
5] - [ax ay] (k)
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and

J] 2
LA (k9c)
oy ot

in which [J] is the Jacobian matrix.

97. Element equations. Substitution of equations L47-49 into

equation U6 yields
A= {q}T [ [ / [87][&][B] aet ([J]) {q} ds dt (50)

Extremization of A 1in equation 50 gives the element equations for

steady-state seepage

[%(]{q} =0 | (51)
where [k = [ [ / [57][&][B] et ([J]) ds dt , and is referred to as

element permeability matrix, and {q} = vector of element nodal heads.
The assemblage equations are obtained by adding element equations, using
the direct stiffness method. Such assemblage equations, after the in-
troduction of boundary conditions such as ¢ = {(t) (equation L5a), can

be written as

36 64

where
[K] = assemblage permeability matrix

{r} = assemblage nodal head vector

{R} = assemblage nodal forcing parameter vector

Natural boundary conditions such as equation L5b are automatically sat-

isfied in the variafional formilation.
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98. Determination of changing free surface. Under a small change

in the external head (fig. 23), the free surface experiences correspond-

ing movements, In the solution scheme, the transient problem is divided

FREE-SURFACE ELEMENTS
FREE SURFACE

FREE-SURFACE
NODES

NODAL LINES
[

MOVEMENT OF FREE
SURFACE FOR 4 ¢

ENTRANCE

7777777

Fig. 23. Movement of free surface

into a number of steady-state problems, and equation 52 is solved to
obtain values of nodal heads and velocities for a given time level., The
domain of flow for such a solution is defined by the free surface at
that time and by the impervious boundaries (fig. 21). Since the problem
is actually transient, the conditions of null normal flow and velocity
across the free surface are not satisfied. The nonzero values of the
velocities at the nodes on the free surface are computed from the com-
puted heads at the nodes of the elements along the free surface. The
velocities are evaluated by using equation LL, Since the velocities
thus computed are those based on Darcy's law, the actual particle veloc-
ities need to be computed.39’51’52’55
{VP} is obtained as

The particle velocity vector

{vp} - ;1{{"} (53)



in which n = porosity of the medium. A similar procedure has also been
recently reported by France et al.39 for steady, unconfined, and sudden
drawdown analyses.

99. The normal movements of the particles at the free-surface
nodes are computed by multiplying the normal component of the velocity,
equation 5k beiow, by a given time increment At . This permits evalua-
tion of the new coordinates of the free-surface nodes. A new finite
element mesh is thus generated by modifying the coordinates of the nodes
in the flow domain. To facilitate such modifications, a number of
nodal lines (fig. 23) are fixed by assigning angles « , which the lines
subtend, with a bottom boundary. These lines retain their orientation
during the drawdown. Further simplification is obtained by locating the
nodes along a nodal line at equal vertical and horizontal distances.

The following equations summarize the process of modification of the

mesh:
VB L
7 = X X
X 2 for all free-surface
nodes except at en-
vm + v.,m+l trance and end faces
vy =L ¥y
y 2
V; = v? and v_= v? at entrance and end faces
v _sin® + v _cos 8
v=(x v ) (54)
n n
u =v._X At
n n
u
N =0 _
Up = Cos B ? B >-aF 0
ux = ur Ccos o
uy = ur sin o

The revised coordinates are then computed as

W o=axd Ty
Lo (55)
. 55
-1
yi B yi * Uy
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where i denotes a nodal point and j denotes a time level. (Other
symbols are explained in fig. 23.) Since the field variable model,
equation L47a, yields discontinuous velocities at a node between two ele-
ments, an average of the velocities at that node is adopted for comput-
ing the foregoing movements (first two equations of equation 54). A
number of iterations can be performed at each time increment in order to
improve satisfaction of the conditions at the free surface (equa-

tion 1+5c).36’h5’h6 If the time interval is small, one to three itera-
tions are sufficient for an acceptable solution.

Applications

100. Example 1l: Comparisons with laboratory tests. As described

in Part II, a number of experiments were performed with a large,
parallel-plate, viscous-flow model, A typical result for a slope angle
equal to 45 deg is included herein. The approximate length and height
of this model were 300 and 50 cm, respectively (fig. 24). The level of
fluid in the reservoir in the model was raised at a certain rate,
allowed to stabilize at 25-cm height of fluid, and then allowed to

fall as shown in fig. 25a. Equivalent permeability of the model was

computed by using

k, = 92%5 (17c bis)
in which
b = half width of gap
p = the density of the fluid (0.97 g/cm3)'
g = the gravitation constant (980 cm/secz)
W = viscosity of the fluid (9.7 poises)

The average value of b was found equal to 0.085 cm, which yields
km = 0.236 cm/sec. A value of unity was adopted for the porosity n of
the model.

101. Egquivalent field permeability. Details of derivation of the

procedure for computing the field permeability equivalent to a given
model dimensions and fluid properties were described previously and are

given in reference 1l4. Only brief computations for equivalent field

o7
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permeability are described herein. The ratio of mean model velocity ;g

and field velocity v from equation 12 is

The fluid in the field is assumed to be water, and the same gradients
are assumed in the model and in the field. For the properties of the

fluid given above,

2 2
Vv =Mp{zs3% (56)

As an illustration, assume a flood of 20-ft height simlated in

the model by 10 in.; then, the ratio of heights is L = 1/24 . TFor a.
flood of L4 weeks (4 X 605,000) duration, simulated in the model by about
20 min, the ratio of time T = 1,200/(4 X 605,000) . Therefore,

Lr
v, = 5= 8l (57)
r
Equating equations 56 and 57
b2 ,
3% = 84 , (58)

which, for b = 0.085 cm, yields an approximate field permeability of

K~ 25x 107% cm/sec (59).
which is representative of the permeability of fine sands in the Missis-
sippi River banks under consideration.

102, Finite representation of infinite media. An important ques-

tion arises as to what extent of the flow region should be discretized
for the finite element solution. During the laboratory tests, the
changes in the reservoir head did not affect significantly the movements
of the points in regions at a distance of about 10 times the total mag-

nitude of change in the external level. In other words, for the model
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test, the total change in external head was 25 cm. Around distances of
about 200 cm measured from the final point reached after drawdown (in
this case the toe of the model), the free surface did not experience
significant movements during drawdown. In order to further examine this
observation, numerical results from the finite element analysis for
three different distances, 190, 220, and 250 cm, were obtained. On the
basis of the experimental and numerical results, it seems that accept-
able solutions can be obtained by placing the end boundary at a distance

of about 8H-12H from the final point of drawdown (fig. 26), where H

/

TOTAL DRAWDOWN = H FINAL DRAWDOWN POINT END eowvomy\l

= total drawdown .

8H-I12H

BOTTOM BOUNDARY

Fig. 26. Discretization of infinite porous media

103. An impervious bottom boundary is physically available for
the viscous-flow model. However, for deep porous media in the field, it
is necessary to select adequate location for the bottom boundary, which
-Is -assumed to be impervious in the formulation. On the basis of the
numerical solution, it was observed that at a depth of about 4H from the
final drawdown point, the computed heads along vertical sections showed
little change. Hence, if the bottom boundary is located in the range of
about 3H-6H, it would provide an approximate impervious boundary
(fig. 26).

104, Finite element analysis. The end boundary was placed at

220 cm from the toe. The finite element mesh (fig. 24) contains 30 ele-

ments and L4 nodes. Since, in a problem of this nature, the variation
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of gradients in the zones away from the entrance face is not severe, a
rather coarse mesh was adopted in those zones. The time interval At
= 10 sec was adopted for the results in fig. 25b. The external draw-
down history is shown in fig. 25a.

105. The question of boundary assumptions at the discretized end
boundary is analyzed subsequently. For the viscous-flow model, the
nodes on the end boundary were fixed, but the heads at those nodes were
permitted to vary. Fixing of the nodes on the end boundary was guided
by the fact that the free-surface points around that distance did not
move significantly during the drawdown.

106. Fig. 25b shows a comparison between the finite element solu-
tion and the experimental results for a typical time level of 900 sec
during drawdown. The correlation between the two results is considered
to be good.

107. Example 2: Comparisons with field observations. The histor-

ies of river stages and the corresponding heads of water in the piezom-

eters were recorded over periods of time at Walnut Bend 6 section. A

typical history at this section, for a part of 19653 is shown in fig. 27.
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TIME, DAYS, 1965
Fig. 27. History of river stages and piezometer heads at Walnut Bend 6
This figure indicates the variation in river level and the corresponding
heads in two piezometers, A and B, installed in a well at a distance of

about 30 ft from the top of the bank. Fig. 28 shows the location of the

piezometers, the cross section of the river at Walnut Bend 6, and the
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Fig. 28. Cross section at Walnut Bend 6 and boring log

boring log at the section. The bank at this section consists of pre-
dominaﬁtly silty fine sand (ML). The LMVD has performed investigations
for evaluating the permeabilities and porosities of the soils in the
regions in the vicinity of the Mississippi River.56-59 The coefficient
of permeability and the porosity of the soil at Walnut Bend 6 section
were estimated to be of the order of 10 X 10°* to 20 x 107% cm/sec
(2.84 to 5.68 ft/day) and 0.k, respectively. ‘

108. The drawdown in the river level from April 30-May 30 1965
(fig. 27) was considered for the analysis herein. In this time period
of 30 days, the river level fell from about elevation 187.5 to 167.5, at
an average rate of about 0.67 ft/day. Assuming that the section was
porous for a large distance across the river and assuming that the flood

stayed long enough for the free surface to develop, the steady free sur-

face was estimated as shown in fig. 29. Such a steady free surface can

TOTAL ORAWDOWN

@ . INI TIAL FREE SURFACE
592000 00,6

Y =H IN 30 DAYS —] sy ]
gﬂ/ars_/// _~ +PEZA(70.0)
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DAL L"‘ L‘M/ e /(msz B (154.0)
- NO
\ - e /
g LEGEND
A 0 NODES END BOUNDARY ~]
& ELEMENTS
) il ' ‘ ' f ' ! : t 1 ' 1 i EL /00 X
7‘<700 2040 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

DISTANCE, FT

Fig. 29. Finite element mesh for idealized Walnut Bend 6_section
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1k

be estimated either on the basis of experimental observations, from a

19 45,46,51 o

conventional analysis,”” by using the finite element method,

15

r
by using other numerical techniques.

109. The section in fig. 28 was idealized as shown in fig. 29,
and the mesh contained 48 elements and 63 node points. On the basis of
the observation of the model tests stated above, the infinite bank was
represented by a finite region (fig. 29) which was terminated at LOO ft
from the toe of the bank.: This distance was about 13 times the maximmum
fall H= 20 ft in the river level as measured from the final point of
drawdown. The bottom boundary was placed at a distance of about LH
measured from the final drawdown point. At the end boundary, the nodes
were fixed, but the nodal heads were permitted to vary. A time interval
At = 0.25 day  was adopted.

110, Correlations. Fig. 30 shows the location of the free sur-

face at typical time levels of 20 and 30 days during drawdown for

k = 10 X 1o'h and 20 X lO-u cm/sec. The piezometers A and B are lo-
cated at approximate elevations of 1T74.0 and 154.0, respectively. Their
locations are marked in fig. 29. Fig. 30 shows the computed values of
heads in the piezometers in comparison with the field observations. The
computed values were averaged from the heads at the nodes in the vicin-
ity of a piezometer at a certain time level. The computed values of
heads for the foregoing range of permeability at the Walnut Bend section
show good correlation with the field observations. The correlation be-
tween the numerical and field results is better in the initial times
during drawdown than in the final times. Also, for the field permeabil-
ities of 10 to 20 X 10'4 cm/sec, the movement of the free surface seems
to be faster compared with the observed piezometer heads. The movement
slowed down as the perﬁeability decreased; this change is indicated from
the computed heads (fig. 30) for k = 1 X 1074 cm/sec. Overall, in view
of the precision that can be obtained in estimating k and n values
and in field measurements of heads, the correlation is considered to be
good.

111, Effect of end-boundary assumptions on the numerical solution.

Depending upon the geological and geotechnical properties of a given
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site, the flow situation at the assumed finite boundary at the end sec-
tion will differ. Three different types of boundary assumptions are

delineated as: (a) variable nodes with variable heads, (b) fixed nodes
with variable heads, and (c) fixed nodes with fixed heads. These three

categories are shown schematically in fig. 31. The first condition

ENOD aou;vzupr“ FREE SURFACE
| |
— 4 -
' -
VARIABLE ‘# FIxeos FIXED
i . a ; (7 ;
a. CATEGORY I. VARIABLE b. CATEGORY TI. FIXED c. CATEGORY 1III. FIXED

NODES- VARIABLE HEADS NODES-VARIABLE HEADS NODES-FIXED HEADS

Fig. 31. Various end-boundary assumptions in
discretized pervious banks

implies that the free surface extends beyond the end section, the sec-
ond condition could imply an impervious end with fixed location of the
nodes, and the third category implies an equipotential at the end sec-
tion and the possibility of continuous recharge at the end section.

112, TFig. 32 compares the solutions for the mesh shown in fig. 24
for the three different categories. The results shown are for a typical
time level of 20 days, k = 5.6L4 ft/day, and n = 0.4 . The figure
shows the movement of typical nodes 1L, 28, and 80 for the three cate-
gories. The vertical coordinates or heights of the nodes for various
time levels are plotted; the horizontal coordinates are shown in the
parentheses.

113. The results for the first two categories show no significant
differences. The results for the third category are significantly dif-
ferent from the other two. Both the first and second category seem to
be suitable for long, pervious banks. In the foregoing analysis, the
second category was adopted. This assumption also permitted some reduc-
tion in computations. The assumption in the third category would be
suitable for analysis of drawdown on a face of a dam when the water

level at the other face remains constant and provides an equipotential.
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114, Analysis for different permeabilities. The banks of the

Mississippi River in the zones of interest usually contain fine sands,
silty sands, and sandy silts. The coefficients of permeability for
these sands are assumed to fall in the range of 1 X lO-,4 cm/sec

(0.284 ft/day) to 100 X 107t cm/sec  (28.4 ft/day). Fig. 33 shows the
locations of free surface for the mesh in fig. 29 at typical time levels
of 20 and 30 days for different coefficients of permeability (0.28k,
2.84, 5.68, 16.k4, and 28.4 ft/day). The results for k = 2.84 ft/day
are between those for k = 1.L44 and 7.2 ft/day. The porosity was as-
sumed to be equal to O.4. It can be seen that the free surface moves
faster with increasing permeability.

115. Nonhomogeneities in a bank. For nonhomogeneities posed by

vertical and near-vertical interfaces and in the cases where the free
surface does not cross an interface between different soils in a bank,
the proposed procedure could be directly applied. Certain modifications
would be required in the event of layered soil systems in a bank in
which the free surface traverses an element made up of two or more dif-
ferent materials. In this event, a simple procedure would be to assign
an equivalent permeability to an element in proportion to the areas of
different materials contained in the element.

116. Example 3: Comparisons with field observations, King's

Point section. Fig. 34 shows the cross section at King's Point Revet-

ment, Fig. 35b shows the histories of heads in piezometers A and B
and in the river during the months of April-June, 196L4. The properties
of soils in the bank are also shown in fig. 35b. Thé values of the co-
efficients of permeability, indicated in fig. 35b, were obtained from
reference 59 on the basis of the Dlo values indicated in fig. 35a.
The value of n = 0.4 was adopted for all soils.

117. The drawdown condition, as shown in fig. 35b, was introduced
in the finite element analysis. During this period of about 17 days,
the river fell by about 23 ft (i.e., at the rate of about 1.35 ft/day).
This rate was about twice that for Walnut Bend 6 considered in the pre-
vious example,

118. Fig. 36 shows the finite element mesh for the river section
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Fig. 36. Finite element mesh

shown in fig. 3L4. The drawdown H = 23 ft took place from a modified
elevation of 120.7 (actual height = 120.7 - L40.0 = 80.7, fig. 35) to
el 97.5 (actual height = 97.5 - 40.0 = 57.5, fig. 35).

119. Analysis for various permeabilities. As shown in fig. 35b,

three different layers existed with three different permeabilities. The
middle layer was most affeéted by the drawdown history under considera-
tion. An average permeability for the bank was computed to be about

50 ft/day .

120. A number of finite element analyses were performed by using
the average values of kx = ky = 50 ft/day and kx = ky = 4O ft/day ..
Figs. 37 and 38 show variations of free surface with time for k = Lo
and k = 50 , respectively. Table 1 shows a comparison between
the computed and measured piezometer heads for the two permeabilities
for At = 0.025 day. It can be seen that the correlations between the
measured and computed values are good and that an increase of ten in the
maghitude of permeability does not affect significantly the computed
values.

121. Effect of magnitudes of time interval. The time integration

scheme indicated in equation 54 is essentially the forward difference

procedure. Numerical stability of this procedure was dependent upon the
magnitude of the time interval At . Figs. 38, 39, and 4O show finite
element solutions for three different values of At =HO.O25‘, 0.05, and
0.1 day, respectively. Although the results for At = 0.025 day and

At = 0.05 day do not show much difference, the solutions seemed to
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become unstable for At = 0.1 , fig. LO. The subject of numerical sta-
bility and its practical implications will be presented in Report 2.

122. Effect of anisotropy. Very often, soils in the Mississippi

River banks exhibit different permeabilities in different directions.

To study these effects, a number of finite element analyses were per-
formed with k_ k= 30 ft/day, k, =30 and k, =3 ft/day, and

kx = 3 and ky 30 ft/day. Table 2 shows comparisons between the mea-

sured piezometric heads and the computed heads for the three foregoing
sets of permeabilities. Although the solutions thus obtained differ in
magnitudes, the differences did not seem great. The most probable situa-
tion would be one in which the horizontal permeability is higher than the
vertical permeability.

123, Effect of end-boundary assumption. Three flow and head

boundary conditions (fig. 31) were considered for the King's Point Revet-
ment. Figs. 39, 41, and 42 show free-surface solutions for k,x = ky
= 50 ft/day, At = 0.05 day, and for the three boundary conditions, re-
spectively. Fig. 43 shows the effects of the boundary assumptions on the
movements of nodes 26, 50, and 82 (fig. 36). The trends of these effects
were found to be similar to those for Walnut Bend 6 analyses (fig. 32).

124, FExample L4: Comparisons with laboratory observations, sudden

drawdown in a viscous-flow model simulating a dam with core. Dvinoffee

conducted a number of experiménts on viscous-flow models. A schematic
diagram of a typical model with an entrance angle of 45 deg used by
Dvinoff is shown in fig. Lha. The model was made of plexiglas, with
the spacing between the parallel plates equal to about 1/8 in. The
fluid used in the experiments was glycerin. The permeability of the
model was computed as equal to 0.846 in./sec.

125, A trap door at the bottom of the reservoir permitted "in-
stantaneous" drawdown. The right end of the model was closed to simu-
late an impervious core. The movements of the free surface with time
were recorded photographically.

126. The finite element mesh for the model (fig. LLa) is shown in
fig. Lib. The results from the finite element analysis are shown in

fig. 45, in comparison with the experimental results. Also shown in
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this figure are the numerical results from the alternating direction,
explicit finite difference procedure. There are no substantial differ-
ences between the results of the finite difference and the finite ele-
ment procedures.

127. The agreement between the measured and the computed values
is considered satisfactory. A point of interest is the movement of the
exit (nodal) point at higher time levels during drawdown, when the exit
point approaches zero height (fig. 45). According to the finite element
computations, the exit point moves nuch faster at higher time levels.,
This movement may be due to the fact that the point of zero height poses
mathematical singularity, whereas, in physical measurements, such mathe-
matical singularity does not make a difference. In other wofds, during
laboratory observations, a film of fluid could hang along the entrance
face and show a nonzero elevation for the exit point for a long period

of time.
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PART V: SUMMARY, CONCLUSIONS, AND PROJECTIONS

128. A number of procedures based on the finite difference and
the finite element methods have been proposed, and corresponding computer
codes have been developed. The results from the numerical procedures
were compared with those from laboratory experiments with viscous-flow
models and from a number of field observations along the Mississippi
River. The correlations between the numerical and observed data have
been satisfactory.

129. On the basis of the satisfactory correlations, it is believed
that the numerical techniques proposed herein can be used for design
analysis of many problems in transient, free-surface seepage, including
analyses for stability of Mississippi River banks. The procedures can
also be used for seepage towards wells in layered soils.

130. It can be possible to obtain design curves for certain com-
mon situations along the river, which may include sets of curves for such
variables as typical cross sections, rates of drawdown, and permeabili-
ties. Investigations toward this end are in progress and will be in-
cluded in a future report. Factors such as numerical stability criteria
and representation of the movements of free surface by mathematical
functions will also be considered in these investigations.

131. Other topics that are under investigation and that will be
included in the next report are:

a. Comments on comparisons of the finite difference and the
finite elements developed herein.

b. Formulations and codes based on quadratic and cubic ap-
proximeting models and the corresponding iscparametric
elements have been obtained. Results from these formu-
lations will be compared with those from the formulation
based on the bilinear model used in this report. This
comparison will yield estimations of trade-offs in ac-
curacy and computational efforts in using higher order
models.

132, The proposed finite difference and the finite element pro-
cedures can be easily extended for situations requiring three-dimensional
analyses. Some examples of such problems are an earthen bank with severe

changes in material and geometric properties in the direction of ﬁhe
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river, multiple wells in layered media, and seepage near intersections
of two structures made up of porous soil media.
133. A number of computer codes developed under the project will

also be included in Report 2.
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Table 1
Comparison of Measured and Computed Heads
King's Point, At = 0.025 Day

Time During Piezometer A Piezometer B
Drawdown Measured Computed Measured Computed
days ft k =50 k=40 ft k =50 k=140
0 80.7 79.0 79.0 79.5 79.3 79.3
2 79.0 76.6 76.9 77.8 6.7 77.1
6 4.7 72.1 72.3 75.2 72.2 72.4
10 70.2 68.6 68.8
1k 66.9 66.0 66.1
17 65.0 64.5 64.6
Table 2.
Comparisons Between Measured and Computed Heads
Effect of Anisotropy, At = 0.05 Day
Time
X X ' -
e R N TR
0 80.70 79.00 79.00 79.00  79.50 79.30 79.30 79.30
2 79.00 77.52 77.86 78.21  T77.80 77.46 78.04 78.16
6 T™H.70 73.10 74,05 75.10 75.20 T73.27 74.88  75.u44
10 70.20 68.95 To0.k2 72.11 '
14 66.90 65.68 67.14 69.52

17 65.00 63.77 64.97 67.84
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Photo 3. Typical test result: o = 30 deg

Photo 4. Typical test result: o = 18.5 deg




APPENDIX A: CLOSED-FORM SOLUTIONS

1. A closed-form mathematical solution yields an expression for
the unknown sought that is valid at every point in the flow domain. In
the case of a numerical procedure, the solution is obtained only at a
selected number of points, nodes, or subdomains within the total flow
domain. Solutions at any other points in the flow domain can usually
be obtained by interpolation. Thus, subject to the basic assumptions,
the closed-form solution is exact, whereas a numerical solution is an
approximation. However, such physical complexities as the arbitrary
shapes of a domain and arbitrary variations of material properties are
very difficult to handle in a closed-form solution. For certain simple
situations, closed-form solutions are possible, and some of the previ-

ously published solutions are reviewed herein.

One-Dimensional Flow

Derivation of governing equation

2. The differential equation governing unconfined flow in one

direction can be derived by using equation 9a,

h

o))

2
T=-2rf8 (9a bis)
3w

21

The following continuity equations can be derived.by considering the
flow through the faces of a small element, as in fig. Al:
2. The flow through the face 1-1 is given as

q, = 2bhu (Ala)

b. The flow through the face 2-2 is given by

q, = 2b (h + %h dx) (u + —g}ll{-dx) (Alb)

Al



h b+ EUQ-JX
oxX
/ 2
su
C T : Ry dided
/ 2

Fig. Al. Flow in an element of fluid

The change in flow between the faces 1-1 and 2-2 is given

by

- = - u oh )
qnl qn2 = 2bhu (2bhu + 2bh 3% dx + 2bu 3x dx

ah au 2
+ 2b = S (dx) (Ale)

The last term, being of higher order, is neglected; thus,

- = - au - ah
45 2bh axdx 2bu xdx (A14)

q >

Tl
Assuming the fluid to be incompressible, the change in
the flow must also be equal to 2b X dx X n X g% , wWhere
n 1is the effective porosity and is equal to 1 for the
slit in the model. Then the complete flow equation

becomes

-2bhg%dx-2bu§%dx 2bdxn§% (A2)

u

ox
_gbh_ﬁnﬁaﬁl ax - 2b _b_zﬂgbll b gy
3 axe 3, X/ ¥

_ ah ‘
_nx2b><c1xat (A3)

Substituting the value of from equation 9,




Simplifying equation A3 yields

2 2 2
bopg|pah (ah) | _ah
s [h () J . (a4

3. Equation A4 is the governing differential equation for uncon-
fined flow through the Hele-Shaw model. This equation also represents
flow through porous media when the term b2pg/3un is replaced by
kopg/un , where ko is the permeability of soil. Furthermore, equa-
tion A4 is a nonlinear, partial differential equation. If the change
in head h 1is small compared to the height of the aquifer, the term
(ah/bx)g can be neglected and h aZh/ax2 can be replaced by h azh/ax2,
where h is either the original depth of water in the aquifer or the
mean height in the case of a rise of flood level.

4. Thus, the nonlinear equation is reduced to a linear partial

differential equation,

borgdh_ (a5)
3un 2 T at
or
2
h h
%{ =« 2—5 (A6)
X

blpg —
where o = §E%5-h .

Closed-form solutions

5. Linearized equation. Several closed-form solutions are

available for the governing differential eguation AlY with simple bound=
ary conditions.

*
6. Rise of flood at constant rate. Carslow and Jaegerl and

Hantushu have derived the solution of equation A4 for the following
simple boundary conditions and a bank with vertical upstream face, if

the boundary conditions are

* Reference numbers refer to items in "Literature Cited" following the
main text.

A3



h(x,0) = O
h(e,t) = O
h(o,t) = ct
where
h(x,t) = head at distance x occurring at time t

distance from upstream face

time

0O ¢ K ~—
[}

rate of rise of head at upstream face

Then the solution to equation AL with the above boundary conditions is

given as
2 2 2
h(x,t) = ct|(1 + 2U%) erfc (U) - == U exp (-U") (AT)
v

where U = X .

‘Vuat

‘ / 7. The solution for the case

fct) Jb’ when the flood rises at a constant
ct, / rate to a certain head and remains

steady is also obtained by superposi-

tion of two linear functions, as shown

T in fig. A2.7

N
BN 8. Sinusoidal rise of flood.
-
\iif Cooper and Rorabaugh3 obtained the
<
\\\ solution to equation A4 with a sinu-

P eas ‘soidal rise of flood and the boundar
Fig. A2. Superposition of e sonETTR R y

two linear functions conditions
h(x,0) = 0 x>0
h(‘”’t) =0 t >0
h
h(o,t) = 3"- (1 - cos wt) t T
0 t 2T

AL



where

frequency of flood

=}
]

period of flood

9. The solution for the case of a rise and fall of flood level

(fig. A3) up to time T and then steady conditions

~= (=)

. %/w [e-Ut _ e-U(t-T)] sin <X\/g'>£]§—[j—w2 du (A8)
5 ,

is obtained by superposition of sinusoidal waves.3

|
fet) Y/7=%2 (1-coswt)
—-< _
/ AN 7
/ . 7
~ N —
o~ 7~
f— 7 ——’-l \\ // \\\-
/
N
h
h= =2 ﬂ-cosa(t-T)_7

Fig. A3. Superposition of waves

10. Nonlinear equation. The results of the linearized equation

are applicable only to those cases where the height of flood is small
when compared to the original aquifer depth. In cases where the height
of flood is not small compared to the depth of aquifer, the above re-
sults are not applicable, and the nonlinear differential equation

should be considered.

5

1ll., Exponential rate of flood rise. Polubarinova-Kochina” has

obtained a solution to the nonlinear equation AL

A5



2 2
oh _ oh ah
3t “1[(&) th 3 2] (a)

> X
b pmg
where o < m— s Or
m
2,2
§_11 = 2 a_(ﬁ_l (A9)
3t - M T2
X
where )\2 = ?l and the boundary conditions are
h(x,0) = 0
h(o,t) = ctf Ps>O

12, The equation is solved by assuming the solution in the form
of '
n(x,t) = ctf £(y) (A10)

where | = _x/{}\\fck-l t[l+p(k-l)]} . For the special case of p =1,

p

giving a linear rate of flood rise, the solution” is presented as

h=ct-x—-c—é- for Osxsu2)\2ct
2\
and
h=0 for xS \lefc t (A11)
Equation All shows that % = V2)\°c and indicates that the water

front travels with a constant velocity equal to V2)\2c .

Two-Dimensional Flow

Governing equation

13. The governing differential equation for two-dimensional flow
can be obtained by using a procedure similar to that described in para-
graph l.lh The equation may be expressed as

A6



k k. 2
sh _ x 3 (L,oh), X, 30h
a_nax(hax>+nh 5 (A12)
oy
where
k.x -and k_ = permeabilities in x and y directions,
y respectively
n = porosity

Solution by linearization

14, It is difficult to obtain a closed-form solution to equation
Al2 in the nonlinear form. Brahma and Harr2 modified equation Al2 to

the linearized form

= /2 2
B 223 2n) o w
X~ dy
where
h = mean height of reservoir
k = uniform permeability

and obtained solutions by expressing equation Al3 in polar coordinates
r,0 (fig. A4) as

- 2
§£=ﬁ<fﬁ+£ﬂ+L§_ﬁ) (A1)
r ar 2
T
with boundary conditions of

i. h(r,0,0) =0 for r>0, 0<6 < 2

ii. h(r,0,t) = h(r,2e,t) = H or = f(t)

iii. h(r,6,t) = r sin (¢ - ) on free surface

where

et
]

instantaneous head

f£(t) function giving variation of flood

AT



where

POROUS MEDIUM

f(1)

FREE SURFACE

15.

\\\ yd
Fo ™~ 7 REFLECTED DUE TO
N / IMPERVIOUS BOUNDARY
\ / AT 0=«
[ .;<
&
\Q\"*

Fig. Alk. Section of porous boundary to account
for impervious boundary

The solution for the case of instantaneous rise of head H

N
[=]
rof .
A
SN
QI3

ol

>

kh
n

modified Bessel function

The solution for linear rise of flood is

A8

(A15)



© © - 2 T (U.)
_(_;_:__lhrcst =1—£—Zsinsef (l-em) S3 du  (A16)
n=0

u
0
For further details on the derivation of equations Al5 and Al6, see

reference 2. The free surface is determined from the solutions of

equations Al5 and Al6, such that the boundary condition iii is
satisfied.
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