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PREFACE 

This study was conducted by the U .  S .  Army Engineer Wat erways 

Experiment St ation (WES ) for the Defense Nuclear Ag ency under Nuclear 

Weapons Effects Subt ask SB209 , Work Unit 40 , "Mat eri al Model Development 

and Ground Shock Calculati on ."  

The investig ation was conduct ed and the report prepared by 

Dr . G .  Y .  Baladi and Mr .  M .  E .  Georg e  during the calendar years 1974-19 75 

under t he g eneral direction of Mr .  J .  P .  Sale , Chi e f ,  Geotechnic al 

L aboratory , and Dr. J .  G. Jackson , Jr . ,  Chief ,  Soil Dynamics Division. 

Direct ors of WES during the p rep aration an d  public at ion of this 

report were COL G.  H .  Hi lt , CE , and COL J. L .  Cannon , CE . Mr . F .  R .  

Brown was Technic al Direct or . 
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CONVERSI ON FACTORS , U .  S .  CUSTOMARY TO METRIC ( SI ) 
UNITS OF MEASUREMENT 

U .  S .  customary units of m easurem ent used in this report can be con

vert ed t o  m etric ( SI ) units as follows : 

Multiply By To Obtain 

degrees ( angle ) 0. 01745329 radians 

inches 2.5 4 cent im etres 

kips ( forc e ) 4 4 4 8.222 newtons 

p ounds (m ass ) p er cubic foot 16. 01846 kilograms p er cubic m etre 
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RESPONSE OF LINEAR ELASTIC TRANSVERSE-ISOTROPIC MEDIA 

TO BOREH OLE PRESSUREMETER L OADI NGS 

CHAPTER 1 

INTRODUCTI ON 

1 . 1 BACKGROUN D 

To pred ict the ground sho ck from sur face or aboveground nuclear 

d etonation , research on the use of two-dimens ional finite di fference 

wave propaga tion codes tha t  treat nonlinear hysteretic media is being 

conducted . To use these cod es , the constitutive prop erties (stress

s tra in a nd strength ) o f  the in situ earth media must be determined for 

fast load ing ra tes in the unco ns olidated-undra ined state .  Conven

t ionally , this is done by obta ining und isturbed samples from the site 

and testing them in the laboratory . Inevitably, the in s itu prop erties 

are altered to som e extent by the sampling process . Hence , us ing 

in s itu field tests tha t  giv e  some indicatio n  of the in s itu constitutive 

properti es is d es irabl e .  

Th e  borehole pressuremeter ( References 1-3 ) , which m easures the 

increas e in vo lum e p er unit length , 1 t:.V , of a borehol e under an in

creas ing uniform internal pressure , P , is one of  s everal tests that 0 
can be used to infer information about the in situ constitutive prop-

. erties . 2 This device has been us ed in the constitutive prop erty in

vestigation for several high-explosives (HE ) tests (References 4-7 )  us ed 

as tes t  cas es to study the ac curacy of and the necessa ry improvements in 

the grotm:d shock pr edict ion procedure .  

I n  homogeneous isotropic linear elastic materials , the shea r  m odu

lus G can be d irectly determ ined from the borehole pressurem eter test : 

1 Symbols us ed in this report are listed and d efined in the Notation 
2 ( Appendix A ) • 

As with any test , it has its own sources of error , the m ost prominent 
of  thes e  being volum e measurement errors l eading to  alteration of 
the co nstitutive properties due to the drill ing of the borehol e .  

5 



v p 
G = -2....2.. 

l::.V 

where V is the initial volume of a unit length of the borehole . 0 

( 1 . 1 )  

However, re al e arth materials are often highly anis otropic. The inte r-

pretation of data from laboratory and/or field tests based on a m athe

matic al constitutive relation that does not acc ount for anis otropy may 

lead to errone ous conclusions. 

The m ost common departure from a state of isotropy in an earth m a

terial is layering or stratification during its deposition. This is the 

case whether induced by natur al causes, such as sedimentary depos its, or 

in the construction of fills where the earth materials are placed and 

compacted in hori zontal li fts . For these conditi ons , although marked 

di fferences m ay be note d  between the vertical and the horizontal direc

tions, generally no direction preference will exist in the hori zontal 

planes. Such a material is sai d  to be transve rsely is otropic 

( Re ferences 8 and 9 ) . 

F or the line ar elastic transverse- isotropic material, five material 

constants are needed to completely describe material behavior ( Refer

ences 8 and 9 ) .  A technique for the de term ination of some or all of 

these five materi al constants in the field is of great importance to the 

m aterial properties investigator . Such a te chnique ( Reference 10 ) would 

give an e arly de duct ion of those sites that are strongly anisotropic and 

p rovide data for use in the fitting of  a transverse- isotropic mode l  

( Re ference 7 )  for the m aterials. It appears that a series o f  pressure

meter tests in boreh oles inclined at several different angles to the 

axis of symmetry of the material will yield this inform ation. Hence, 

there was a need to obtain an analytical solution for the incline d  bore

hole pressuremete r  problem . Only the special case of th is problem for 

a transverse-isotropic material in which the axis of the test ( i.e., the 

axis of a pressurize d  cylindrical cavity of infinite extent ) is 

perpendicular to the plane of isotropy has been s olved analytic ally 

( Re ference 9 ) . 
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1.2 OBJECTIVE 

The objective of this investigation is to develop a general closed 
form solution to the borehole pressuremeter problem where the axis of 
the borehole is inclined to the plane of isotropy of an elastic 
transverse-isotropic medium. Such a solution can be used to determine 
stresses and displacements in the medium in terms of the transverse
isotropic properties of the material. It is possible, therefore, to de
duce the transverse-isotropic properties of the materials in terms of 
the volume change of the borehole. 

1.3 SCOPE 

The problem geometry, boundary conditions, and constitutive and 
field equations are presented in Chapter 2. Chapter 3 contains the der
ivation of the general solution of the problem and a sample problem. 
Conclusions and recommendations are given in Chapter 4. 
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2 . 1  GENERAL 

CHAPTER 2 

PROBLEM GEOMETRY, BOUNDARY CONDITIONS, AND 

CONSTITUTIVE AND FIELD EQUATIONS 

Be cause the properties of the material are dire ctionally dependent, 

it is m ore convenient to obtain the s olution of the problem in a 

C artes ian coordinate system first and then through a coordinate trans

formation to determine the stresses and the displacements in a cylin

dric al coordinate system . There fore, three coordinate systems are 

neede d .  The first is a Cartes ian coordinate x'y' z' in wh ich x'y' 

is p arallel to the p lane of isotropy (Figure 2 . 1 )  and for which the 

constitutive e quations for a linear elastic transverse- is otropic ·material 

are well known ( Re fe rences 8 and 9 ). The sec ond coordinate system is 

also Cartesian, xyz , in which the s olution of the·borehole p ressure

meter problem is obtained ( Figure 2 . 1 ) . Finally, because the problem 

is ax isymmetric, it is convenient to trans form the final results from 

the xyz coordinate system to a cylindric al coordinate system, r0 z 

( Fi gure 2 . lb ) . 

2 . 2  PROBLEM GEOME TRY 

The geometry of the problem is shown schematic ally in Figure 2 . 1 .  

Figure 2 . la shows a three-dimensional view o f  the problem w ith the rela

t ive p os it ion of the Cartes ian coordinate systems x'y' z' and xy z  • 

figure 2 . lb shows a tw o-dimens ional detaile d  view of the problem relative 

t o  both the cylindrical coordinates r0 z and the Cartes ian coordinates 

xyz • The ax is of symmetry of the mate rial and the axis of symmetry of 

the cylindrical cavity are assume d to interse ct at an angle, $ ( Fig

ure 2 . la) . There fore, the interse ction of the cylindrical cavity with 

the plane of isotropy forms an ellipse A'BC'D in the x'y' plane (Fig

ures 2 . la and 2 . lb ) . The intersection of the cylindr ical cavity with the 

r0 - or xy-plane is, of course, a circle ABCD (Figure 2 . la) . Further

m ore, it is assume d that the radius of the cylindric al cavity is b and 
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that its surface is under normal stress, 
the cavity. 

P , which does not vary along 0 

2.3 CONSTITUTIVE EQUATIONS 

Let the x'y' plane of an x'y'z' coordinate system (Figure 2.la ) 
be the plane of isotropy of the material. The constitutive equations for 
a linear elastic transverse-isotropic material (References 8 and 9) are: 

where 

E x' 

E y' 

E z' 

E x' z' 

E y' z' 

E x'y' 

a ,, a ,, a ,  x y z 

a a a x'z'' y'z'' x'y' 

l ·  \) \)' = - <J - - <J - ET crz, E x' E y' 

v 1 \)' . = --a + 'E a
y

, - ET 0z• E x' 

\)' (crx' + cry•) 1 = - - + F 0z• E' 
(2.1 ) 

a x'z' = 2G' 

a 
"'l.' z' = 
2G' 

a x'i' = 
2G 

= total normal stress components parallel to 
x'-, y'-, and z'-axes, respectively 

= total shearing stress components in x'z'-, 
y'z'-, and x'y'-planes, respectively_ 

= total normal strain components parallel to 
x'-, y'-, and z'-axes, respectively 

Ex'z'' Ey'z'' Ex'y' = total shearing strain components in x'z'-, 
y'z'-, and x'y'-planes, respectively 

E = Young's modulus in the plane of isotropy 
E' = Young's modulus in a plane normal to the 

plane of isotropy 
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v = Poisson's ratio that characteri zes the trans
vers e reduction in the plane of isotropy due 
to stress in the same plane 

v' 
= Poisson's ratio  that chara cterizes the tra ns

verse reduction in the plane of isotropy due 
to stress normal to it 

G' = shea r modulus for a plan e  norma l  to the plane 
of is otropy 

E G = 2(1 + v) = shear modulus for the plan e  of 

isotropy 

The elastic prop ert ies that appear in E quations 2 . 1  depend on the 

direction of  the ax es o f  the chos en coordinate system. If the direction 

o f  the axes vari es ,  then the elastic prop erties vary. Only in the case 

of an isotropic  body the elastic properties are invariant in any orthog

onal c oordinate system . However , there are always unique relationships 

of  the elastic prop erties in on e coordinate system to the elastic prop

erties in  another coordinate system. Thes e  relationships could be de

rived through transformation formulas that trans form one coordinate 

system into a nother . Therefore , the elastic p rop erties that app ear in 

E quations 2 . 1 for the coordina te system x'y' z' could be transformed 

i nto the elast ic prop erties for the coordinate system xyz ( Figure 2 . 1 ) 
through trans formation formulas . 

2 .4 TRANSFORMATION OF 
THE ELAST IC PROPERTIE S  

Let c iJ be the elastic prop erties for the coordinate system xy z  

and let c � � ··-u 
be the elastic prop erties for the coordinate system x'y' z' 

( Fi gure 2 . la ) . The pos ition of the coordinate system xyz with respect 

to the coordinate system x'y' z' is defined by Table 2 . 1 and the follow

ing relati ons: 

x = x' 

y = y' cos w + z' s in w ( 2 . 2 ) 
z = -y' s in w + z' cos w 

10 



The transformation formulas that relate Cij 
to Ci

j 
are given in 

Reference 9 and can be written as1 

(2.3) 

The values of qij 
are defined in Table 2.2 where the first index , i , 

indicates the number of the row and the second index , j , shows the 

number of the column. Thus , q ij 
denotes the element belonging to the 

ith row and j
th column; for example , q11 = oi , q43 = n3e3 ' 

q 56 
= 0102 + 0201 ' and s o  forth. The va lues of on nn an d  en 

( n  = 1, 2, 3) are given in Table 2�1; the values of Cf
j 

can be obta ined 

from Equations 2.1 and are given in Table 2.3; and the va lues of Cij 
obta ined from Equation 2.3 are given in Table 2.4. 

Having determined the value of the elastic prop erties Cij 
, the 

genera l  constitutive equation for a linea r  elastic transverse-isotrop ic 

material in  a n  xyz coordinate system may be written as : 

1 (" ' . 2 \) 2 ,\ Ex 
= E ax - ET si n ip + E c os ipJ cr

y 

E y 

1 

= (" ' . 2 \) 2 ip) - ET sin ip + i cos a x 

(1 2v' ) 2 2 + GT - ET cos ip s in ip] 
[l 

4 + 'E c os ip 1 4 +ET sin ip 
[ "' 4 4 a + - E' (s in iJJ + cos ip) y 

(2.4) 

J 
NOTE: Equations 2.4 are continued on following page 

Indices assum e values 1 ,2 • • •  6. A rep eated index is to be summed over 
its range. Quantities are referred to rectangula r  Cartesia n coordi
nates x . . l. 

11 



e: = z (v' 2 v . 2 
) - ET cos $ + E sin $ ox 

(
1 1 1

) 
2 $ . 2 

+ E+w- GT  cos sin 

[ v' ( 4 
+ - E' sin $ + 

$] [l . 4 ip oy + E sin 

4 
$) cos 

1 4 
+ E' cos $ 

(1 2v' ) 2 ip sin2 $] + [(i + �:) 2 + GT -E' cos o sin ip z 

( 
1 \) ' ) 2 $ 

1 2$] sin 21JJ - ET+ F cos + 2G' cos C1 yz 

e:yz = � (�: - �)sin 2$ ox + t [(i + �:) cos2 ip 
- (i, + �:) sin2 1JJ - 2�, cos 2$] sin 2$ oy 

+ � [(i + �:) sin2 $ - (i, + �:) cos2 ip 
+ 2�, cos 2ip] sin 2$ oz+ 2�, oyz 

1 2 , , , 1 . 2 ,,, e:xz = 2G' cos "' 
+ 2G sin 

"' 

1 2 1 2 e:xy = 2G' sin $ + 2G cos ip 

where 
o , a , o x y. z = total normal stress components parallel to 

x-, y-, and z-axes, respectively 

2. 4 
(cont ' d) · 

= total shearing stress components in 
and . xy-planes, respectively 

xz-, yz-, 

e: , -e: , -e: --= -t-otal -normal -strain -components parallel to x Y z x-, y-, and·z-axes, respectively 
= total shearing strain components in 

xy-planes, respectively 

2. 5 FIELD EQUATIONS 

xz-, yz-, and 

In the case of small displacements of a continuous body, the rela
tionships between the components of strain and displacements (Refer
ence 9 )  are: 

12 
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au E = -

x ax ' 

E _ 
1 (aw + au) 

xz - 2 ax . az 

E = 1. (au + av) 
xy 2 ay ax 

1 (av + aw) 
Eyz = 2 az ay ( 2 . 5 )  

where u , v , and w are the displacements in the x-, y-, and z
directions, respectively. 

In the problem under consideration (Figure 2. 1) ,  the stresses and 
displacements are independent of z and become functions of x and y 
alone. Therefore, Equations 2 . 5  can be written as: 

E = au(xzy) E = av�x2y) E x ax y ay 

= 1 aw(x,y) 1 E E = -
xz 2 ax yz 2 ·  

E = 1 [au(x,y) + av(x2y)] 
xy 2 .  ay ax 

aw(xzy) 
ax 

= 0 z 

( 2 . 6 )  

Equations 2 . 6  leads to the compatibility equations that guarantee the 
body is continuous. 

The stress components in a continuous body in equilibrium under the 
action of surface and body forces satisfy three differential equations 
of equilibrium. In the case under consideration, these equations take 
the following form: 

acr acr � + _.Bl =  ax ay 

acr acr _.Bl + __:;[_ = ax ay 

acr acr xz + __.:£!:... = ax ay 

13 
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2 . 6  REPRESENTATION OF 
THE BOUNDARY CONDITION 

Let X and Y �e the x and y components, respectively, of a 
distributed surface force per unit area; the boundary stress equations 
(Figure 2 . 2 ) can be written as (Reference 9 ) : 

x = a cos (n, x) + a cos (n, y) + C1 cos (n, z) x xy xz 

y = C1 cos (n, x) + <J cos (n,y) + <J . cos (n,z) xy y yz 

0 = C1 cos (n, x) + <J cos (n, y) + C1 cos (n, z ) xz yz z 

For the above equations, the following relationships exist: 

cos 

cos 

(n,x) = � ds 

(n,y) dx = 
- ds 

cos (n,z) = 0 

2 . 7 STRESSES AND DISPLACEMENTS IN 
CYLINDRICAL COORDINATE SYSTEMS 

( 2 . 8 )  

( 2.9 ) 

The relations between the stresses and the displacements in the 
Cartesian and cylindrical coordiante systems with the same z-axis (Fig
ure 2 . 1 ) are: 

2 e + a sin 2 e + 2a e sin 0 C1 = a cos cos r x y xy 
. 2 -0 2 -0 - 20' 0 -sin 0 -a = -a -sJ:n - - --+-a -cos -eo-s e x y xy 

a = <J z z 

a = {cry - ax) e sin e + (cos2 e sin 2 e) cos a -re xy 
( 2 . 10 )  

a = C1 cos e + a sin e rz xz yz 

14 
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and 

where 

and u r 
t ively. 

u = 
r 

Ve 
= 

u cos e + v s in e 

- u sin e + v cos e 

- 1 v e = t an M
x 

} ( 2 . 11 )  

( 2 . 12 )  

and ve ar e the r adial and tangent ial displacements , respec

Therefor e ,  i f  the str ess es and the displacements in the xy z  

c oordinat e  syst em ar e known, the corr esp onding str ess es and displ ace

ments in the re z coordinate  system can easily be obt ained. 
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R 1 

l 02 l 

2 2 n1 

3 02 l 

4 n101 

5 0101 

6 o1n1 

Table 2.i. Direct ion cos ines . 

x' 

x 0 = 1 l 

y 0 = 2 0 

z 03 = 0 

n = 1 

n2 = 

y' 

0 

cos 

n3 = -s in 

1'> 

1'> 

Tabl e 2. 2. Values of q ij 
tr ansformat ions 

2 _3_ 4 

02 2 02 3 20203 

2. 2 2n2n3 n2 Tl3 

02 2 02 3 20 0 2 3 

n202 n303 n203 + n302 

0202 0303 0203 + 0302 

o2n2 o3n3 o2n3 + o3n2 

16 

z' 

0 = 1 0 

0 = 2 s in 1J> 

0 = 3 cos 1'> 

in the formulas 
( Equat ion 2. 3). 

5 

20301 

2n3n1 

20 0 3 l 

n103 + n301 

0103 + 0301 

o1n3 + o3n1 

of 

6 

20102 

2n1n2 

20 0 1 2 

n102 + n201 

0102·+ 0201 

o1n2 + o2n1 
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Tabl e 2.3. 

� 
1 

2 

3 

4 

5 

6 

1 

1 
E 

" - -
E 

"' --
E' 

0 

0 

0 

Valu e of 

2 

" - -
E 

1 
E 

"' - w 

0 

0 

0 

Cj_j from Equat ion 2.1. 

_3_ 4 6 

"' 0 0 -- 0 E' 

"' 0 0 - w 0 

1 0 0 0 E' 

0 1 0 0 G' 

0 0 1 0 G' 

0 0 O· 1 
G 
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1 
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E cos 1jl + F sin �' 

Table 2.4. Value of Cij 
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v' 2 v 2 - E' cos 1jl - E sin 1jl 

v' 4 4 -·E' (sin 1jl + cos iji) 

+ (�, - 2�:) cos2 1jl sin2 1jl + (� + i• - �') cos2 1jl sin2 1jl 

sin4 ip 4 
+� E E 

. 2 1jl sin 
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(1 2v') 2 + GI- E' cos 1'i 

E 
T 
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y 

from Equation 2.3. 
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1 2 J 2 
2G' cos 1jl sin 1jl 

[(� + �:) . 2 sin 1jl 
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CHAPTER 3 

DERIVATION OF THE GENERAL SOLUTION OF THE PROBLEM 

3.1 GENERAL 

The problem of the determination of stresses and displacements 
around an infinite cylindrical cavity can be formulated analytically by 
use of the equations presented in Chapter 2. The solution will be 
unique if it satisfies the equilibrium and compatibility equations and 
the boundary conditions (Reference 11). This is done below by expressing 
stresses and displacements as complex harmonic functions in a manner 
similar to that developed by Lekhnitskii (Reference 9 ). Recalling 
Equations 2.4, 

e: = cllcrx + cl2cry + cl3crz + cl4cryz x 

e: = cl2crx + c22cry + c23crz + c24(Jyz y 

e: = cl3crx + c23cry + c33crz + c34°yz z 

2e: = C14°x + C24cry + C34crz + C44°yz yz 

2e: = c55°xz xz 

2e: = c66crxy xy 

where the values of Cij are given in Table 2.3. Since 
Equations 2.6) , the third equation of 3.1 leads to 

Substitution of Equation 3.2 into Equations 3.1, gives 
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e: = 0 z 

(3.1) 

(see 

(3.2) 



£ = a11°x + al2ay + a14°yz x 

£ = a12°x + a22°y + a24°yz y 

2£ = a14°x + a24°y + a44°yz yz 

2£ = a55°xz xz 

2£ = a66°xy xy 

in which 

Equations 3.3 can be written in terms of the displacements as 

3.2 STRESS FUNCTION 

aw - =-a a ax 55 xz 

J 

(3.3) 

(3.4) 

(3.5) 

Equations 2.7 (the equilibrium equations) can be satisfied for a 
homogeneous medium by the introduction of the following stress functions 
(References 9 ,  12, and 13) : 
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a x 

a y 

a xy 

a xz 

a yz 

2 
= a P{x2;yJ 

ay 2 

2 
= a P{x2:d 

- -

ax 2 

2 a P{x2;;t:} 
axay 

= aQ (xzy) 

- -

ay 

as�X2;£� 
ax 

(3.6) 

The compatibility equations can be satisfied by substitution of 
Equations 3.6 into Equations 3.5 and elimination of u , v , and w by .. 
differentiation (Reference 13). Therefore, the following system of dif-
ferential equations that the stress functions must satisfy can be easily 
obtained: 

(3.7) 

where L2 , L3 , and L4 are differential operators of the second, 
third, and fourth orders, respectively, that have.the form: 

(3.8) 
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For the components of stresses and displacements around the cylin
drical cavity to be continuous and single-valued functions of the 
coordinates xyz , the stress functions P(x,y) and Q(x, y) must sat
isfy Equations 3.7 and the boundary conditions. 

The general differential equations in terms of P(x, y) and 
Q(x, y) , separately, ,can be obtained by applic·ation of the operator L2 
on the first equation of the system 3.7 and the operator L3 on the sec
ond equation and subtraction of the results. Thus: 

(3.9) 

Similarly, 

(3.10) 

Equations 3.9 and 3.10 are sixth order differential equations where the 
operator of the sixth order L4L2 - L� can be decomposed into six 
linear operators of the first order. Hence, Equations 3.9 and 3.10 can 
be represented in the following forms: 

and } (3.11) 

in which 

(3.12) 

where µk represents the roots of the following algebraic equation that 
corresponds to the differential Equations 3.9 and 3.10: 

(3.13) 

According to Equations 3.8, L2{µ) , L3{µ) , and L4(µ) can be written 
as: 
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i i 

I 

(3.14) 

Three of the roots of Equation 3.13 are independent; the other three are 
their complex conjugates (Reference 9). 

The integration of Equations 3.9 and 3.10, therefore, can be reduced 
through Equations 3.11 to the integration of six equations of the first 
order. The general integral is equal to functions of the arguments 

and (3.15) 

and can be written as 

(3.16) 

where µk is the complex conJugate or- l1t , zk fa tne comprex con
jugate of � , and Pk (�) and � ( zk) are the complex conjugates of 
Pk(zk) and �(zk ) , respectively. 

Since the functions P (x, y) and Q(x,y) satisfy Equations 3.7 and 
3.8, the following relations between P(x, y) and Q(x, y) exist: 

� �(�) =- � 
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or 

(3.18) 

where � , bk , � , and Bk are arbitrary constants. Hence, the 
stress functions P(x, y) and Q(x,y) (Equations 3.16) can be written 
as: 

where 

and 

A = - � , (k = 1, 2) k � 

dP (z ) 
P' (z ) = 

k k 
k k dzk 
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Therefore, the general solution to the borehole pressuremeter problem 
can be completely determined by determining the functions Pk (zk) • But 
before this can be done, the stresses and the displacements have to be 
expressed as functions of Pk (zk) • 

3.3 COMPLEX REPRESENTATION OF 
STRESSES AND DISPLACEMENTS 

Since the stresses are functions of the second derivative of P(x,y) 
(Equations 3.6), and the displacements are functions of the first deriv
ative of P (x,y) (Equations 3.5), it is more convenient to introduce the 
new functions of the complex variable � : 

(3.22) 

With the help of these functions, the expressions for the first and sec
ond derivatives of P (x,y) and for the fir�t derivatives of Q(x,y) 
with.respect to x and y may be written in the following way: 

aP (x,y) = ax 

2 a P (x,y) 
ax2 

(3.23) 

(3.24) 

(3.25) 
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a2P(x2y) 2 2 2 2 
ay2 = µl <Pi (z1) + ll14>i (z1) + ll24>2 (z2) + ll24>2 (z2) 

+ µ�A3<P3 (z3) + µ�A3<P3 (z3) 

"14>i(z1) + "1<Pi(z1) + "24>2(z2) + A24>2(z2) 

+ 4>3 (z3) + 4>3 (z3) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

According to Equations 3.2 and 3.6, and on the basis of Equa
tions 3.23 through 3.31, the general expression for the components of 
stresses can be obtained as: 

28 



(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

The displacement� u , v , and w can be obtained by the substitu
tion of Equations 3.32 through 3.37 into Equations 3.5 and integration 
of the resulting equations. Thus: 

k=2 
w =2Real L 

k=l 

(3.40) 

The.stresses and the displacements in cylindrical coordinate systems 
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can be obtained by substitution of Equations 3.32 through 3.40 into 
Equations 2.10 and 2.11. 

It is clear from Equations 3.32 through 3.40 that �k(zk) is the 
only function needed for the determination of stresses and displacements. 
This function can be determined from the boundary conditions, as shown 
in the next section. 

3.4 DETERMINATION OF 
THE STRESS FUNCTION 

The relationships between the stresses along the boundary and 
inside the region can be obtained by the combination of Equations 2.8 
and Equations 3.32 through �.37. Thus: 

s 
+ A3�3(z3) = � - Yds 

0 

s 
+ �3A3*3(23) = � Xa.s 

0 

(3.41) 

(3.42) 

(3.43) 

where S is an arc length along the boundary and C is an arbitrary 0 
constant. 

The arguments, zk , in the above functions can be written as (see 
Equation 3.15) : 

zk = � (1 - iµk) exp(i0) + � (1 + iµk) exp(-i0) (k = 1,2, 3) (3.44) 
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where r = b at the boundary and i is a complex number (i.e., 
i = 0,1) . 

The function �k(zk) in the above equat:iA)ns can be considered as 
functions of the parameter 0 having period 2� (References 9 and 13) . 
Hence, Equations 3.41 through 3.43 satisfy Dirichlet conditions and can 
be expressed by the following two series: 

Real [$1 (z1) + $2 (z2 ) + A3$3 (z3)] = Real(� b0 e::e) (3.45) 

A comparison between Equations 3.41 through 3.43 and 3.45 through 3.47 
leads to 

s 0 � 

J - YdS = b J - Yd0 = ' (b �ne 
+ 

b 
e
ine) 

L \ n bn n bn O 0 n=l 
(3.48) 

(3.49) 

The coefficients b and d can be obtained by use of the properties n n 
of the Fourier series (Reference 13) and the problem geometry defined in 
Section 2.2, which yield the following values: 

p b2 
b = --o __ l 2 ' 

b = d = 0 for n > 2 n n 
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Substitution of Equations 3.50 into Equations 3.45 through 3.47 leads to: 

( p b2 . ) 0 -10 =Real - � e 

When Equations 3.51 through 3.53 are solved, this results: 

(3. 51) 

(3.52) 

(3.53) 

The derivative of the functions �k can be easily obtained from the 
-above equa�ions: 
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x (sin 0 + i cos e ) 
sin e - µ c�s e 1 

(3.57) 



0 Pb2 [ 4>' z = --
2( 2) 2r2 µ2 -

0 Pb2 [ <t>' z  =--
3 ( 3) 2r2 µ2 -

µl - µ3A1A3 
+ (A1 A3 - 1 ) i 

µ2) ] µl 
+ A2A3 µl - ll3 + A1A3(ll3 -

x (sin e + i cos a ) (3.58) sin 0 - µ2 cos e 

ll2A1 - µ1A2 
+ A2 i 

- µ2J µl 
+ A2A3 µl - ll3 

x ("�n e + i cos e ) (3.59) sin e - µ3cos e 

The distribution of stresses can be determined from Equations 2.10, 3.32-
through 3.37 and 3.57 through 3.59, and the distribution of displacements 
can be determined from Equations 2.11, 3.38 through 3.40, and 3.54 
through 3.56. The computer program BOREHOLE was developed to solve 
numerically the above system of equations and to generate various plots 
of stress and displacement distributions around the cylindrical cavity. 
Examples of the distribution of stresses and displacements are given in 
Figures 3 . 1 through 3.8. 

The volume change of a unit length along the generator of the bore
hole can be obtained from the radial displacement (Equation 3.38) at 
r = b , and e = O , and e = n/2 : 

or 

n[b + u (b,ofl 

l::.V u(b,O ) + u (b, %) 
+ 

u (b,O ) u(b, �) 
v = 

b b2 
(3.60) 

Equation 3.60 is a function of the five material properties as 
well as the angle of inclination of the borehole, w (Figure 2.1) .  
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Therefore, the solution of Equation 3.60 for the material properties is 
not straightforward and requires an iterative scheme and a large computer 
program such as BOREHOLE. However, the solution is relatively simple if 
four material properties as well as the volume change are known. 

In the following section, spatial stress and displacement distribu
tions for a sample problem are investigated. The material properties 
used in this sample problem as well as the angle of inclination of the 
borehole are tabulated below. 

E 
ksi 

7.8 

E' 
ksi v v' 

2.6 0.3 0.2 

G' G l/J 
ksi ksi degree 

1. 5 3.0 30 

ro P 
inch ksi 

1.5 1.0 

3.5 SPATIAL STRESS 
DISTRIBUTION FOR SAMPLE PROBLEM 

Figure 3.1 shows a typical result of the radial and tangential 
stresses along the radius for 0 = 0 degrees1 (Figure 2.1) at an angle 
of inclination of 30 degrees. The solid line shows the radial stress 
while the dashed line shows the tangential stress. 

Figure 3.2 shows a radial stress contour in dimensionless form, 
a /P , at an angle of inclination of 30 degrees. It is clear from this r o 
figure that the radial stress attenuates to a value of a /P = 0.25 at r o 
r = 2r 0 

The distribution of tangential stress along the boundary of the 
borehole whose angle of in�lination is 30 degrees is shown in Figure 3.3. 

Figure 3. 4 -shows _the _dis±ributinn Df _radial and shear stresses along 
the boundary of the borehole whose angle of inclination is 30 degrees. 
It is interesting to note that the shear stress, cr0z , along the 
boundary of the borehole is not zero but would be if the material were 
isotropic. 

1 A table of factors for converting U .  S .  customary units of measurement 
to metric (SI ) units is presented on page 2. 
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3. 6 SPATIAL D ISPLACEMENT 
D ISTRIBUTION F OR SAMPLE PROBLEM 

Figure 3. 5 shows a typical result of the r adial displacements along 

the r adius of the borehole for 0 = 0 and 90 degrees at an angle of in

clination of 30 degrees . The solid line shows the r adial displacement 

for 0 = 90 degrees and the dashed line shows the radi al displacement 

for 0 = 0 degrees. Note that both the solid an d  the dashed lines would 

coincide if the mater ial is isotropic. 

Figure 3 . 6  shows a r adial displacement contour in dimensionless 

form u /u (r ) , at an angle of inclination of 30 degrees where u r r o r 
is the radial displacement at r and 0 , and u (r ) is the r adial r o 
displacement along the boundary of the borehole . It is clear fr om 

Figures 3. 5 and 3.6 that for this case approx imately one half of the 

b orehole volume change is due to strains in the material within one 

b orehole-r adius of the s idewall . It is also clear that three fourths of 

the borehole volume change is due to str ains that occur at less than 

three r adi i from the borehole sidewall. Since the r adius of a borehole 

pressuremeter test is typically 1 . 5  inches, only a very small volume of 

in s itu material close to the borehole can significantly influence the 

test results. 

The distr ibution of the r adial and tangential displacements along 

the b oundary of the borehole whose angle of inclination is 30 degrees is 

shown in Figure 3.7. As the figure shows, the borehole de forms to an 

e lliptical shape under load. 

Figure 3. 8 shows a tangential displacement contour in dimensionless 

form v0/v0 (r0 ) 

0 ' and ve(r ) - 0 
the b orehole. 

where is the tangential displacement at r and 

is- the tangential: d±sp-lacement a-long-the- bourrd-aTY-of'-
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Figure 3 . 3  Distribution of tangential stress along th� 
b oundary of  the borehole whose angle of 
inclinat ion is 30 de grees . 
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Figure 3. 8 Contour for tangential displacement at an angle of 
inclinat ion of 30 degrees .  



CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

The solution presented herein can be used in the analysis of bore
hole pressuremeter test data to provide an appropriate set of linear 
elastic transverse-isotropic constitutive properties for a given medium 
and to provide an index of a specific site' s degree of anisotropy. To 
du this, a series of pressuremeter tests in boreholes inclined at 
several different angles to the material' s axis of symmetry have to be 
conducted. 

It is recommended that this solution be used at a very low stress 
�evel or whenever the material of interest is assumed to be linear 
elastic transverse-isotropic. For a highly nonlinear material, however, 
this solution gives effective constitutive.properties. 
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APPENDIX A :  NOTATION 

Material properties matrix 
Arbitrary constants 
Radius of the cylindrical cavity 
Elastic properties for the coordinate system xyz 
Elastic properties for the coordinate system x' y ' z ' 
Arbitrary constant 
Complex operator 
Young' s modulus in the plane of isotropy 
Young's modulus in a plane normal to the plane of 
isotropy 
Shear modulus for the plane of isotropy 
Shear modulus for a plane normal to the plane of 
isotropy 
.Differential operators of the second, third, and 
fourth orders, respectively 
Differential operator of the sixth order 
Complex stress function 

Complex conjugate of Pk( zk) 
Applied load on the boundary of the borehole 
Stress function 
Transformation matrix for this appears in 
Equation 2. 3 

Complex stress function 

Complex conjugate of �(zk) 
Stress function 
Cylindrical coordinate system 
Arc length along the boundary 
Radial displacement 
Radial displacement along the boundary of the 
borehole 
Displacements in the x-, y-, and z-directions, 
respectively 
Initial volume of a unit length of the borehole 
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x:y z  

Tangential displacement 

Tangential displacement along the boundary of the 
borehole 

Cartes ian coordinate system in which the solution 
of the borehole pr essur emeter pr oblem is solved 

x' y'z' Cartes ian c oordinate system in which x'y' is 
parallel to the plane of is otr opy 

X The x component of a distr ibuted surface force 
per unit ar ea 

Y The y component of a distr ibuted sur face for ce 
per unit area 

zk Complex plane 

zk Complex conjugate of zk 
�V Change in volume per unit length of a borehole 

e: , e: ' , e:  x y z Total normal str ain components parallel to x- , y- , 
and z-axes , r espectively 

e: , , e: , , e: ' x y z 

e: e: e: x' z' ' y' z' ' x'y' 

Total normal str ain components parallel to x'- , 
y'- ,  and z'-axes , respectively 

Total shearing strain components in xz- , yz- , 
and xy-planes , respectively 

Total s hearing strain components in x' z'- , y' z'- , 
and x'y'-planes , respectively 

Root of the algebr aic equation that corr esponds to 
differential Equations 3 . 9  and 3 . 10 

v Poisson's r atio that char acterizes the tr ansverse 
r eduction in the plane of isotr opy due to str ess 
in the same plane 

v' Poisson's r atio that char acter izes the tr ansverse 
r edu ction in the plane of isotropy due to stress 
normal to it 

cr Radial stress -r 
a , o  , a  x y z 

a , , a  , , a  , x y z 

a cr cr x' z' ' y' z' ' x'y' 

Total normal str ess components par allel to the x- , 
y- , and z-axes , respectively 

Total normal str ess components par allel to the x'- , 
y'- , and z'-axes , respectively 

Total s hear ing stress components in x z- , yz- , and 
x:y-plan es , r espectively 

Total shear ing stress components in x' z'- , y' z'- , 
and x'y'-planes , r espectively 
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a0 Tangential str ess 

a0z Shear str ess in 0z plane 

$ Angle of inclination of the bor ehole 
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