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PREFACE

This study was conducted by the U. S. Army Engineer Waterways
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under the general direction of Mr. J. P. Sale, Chief, Geotechnical
Laboratory, and Dr. J. G. Jackson, Jr., Chief, Soil Dynamics Division.

Directors of WES during the preparation and publication of this
report were COL G. H. Hilt, CE, and COL J. L. Cannon, CE. Mr. F. R.

Brown was Technical Director.



CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)

UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be con-

verted to metric (SI) units as follows:

Multiply By To Obtain
degrees (angle) 0.01745329 radians
inches 2.54 centimetres
kips (force) L4448 .222 newtons
pounds (mass) per cubic foot 16.018L6 kilograms per cubic metre
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RESPONSE OF LINEAR ELASTIC TRANSVERSE-ISOTROPIC MEDIA
TO BOREHOLE PRESSUREMETER LOADINGS

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

To predict the ground shock from surface or aboveground nuclear
detonation, research on the use of two-dimensional finite difference
wave propagation codes that treat nonlinear hysteretic media is being
conducted. To use these codes, the constitutive properties (stress-
strain and strength) of the in situ earth media must be determined for
fast loading rates in the unconsolidated-undrained state. Conven-
tionally, this is done by obtaining undisturbed samples from the site
and testing them in the laboratory. Inevitably, the in situ properties
are altered to some extent by the sampling process. Hence, using
in situ field tests that give some indication of the in situ constitutive
properties is desirable.

The borehole pressuremeter (References 1-3), which measures the
increase in volume per unit length,1 AV , of a borehole under an in-
creasing uniform internal pressure, Po , 1s one of several tests that

can be used to infer information about the in situ constitutive prop-

-erties.2 This device has been used in the constitutive property in-

vestigation for several high-explosives (HE) tests (References 4-T) used
as test cases to study the accuracy of and the necessary improvements in
the ground shock prediction procedure.

In homogeneous isotropic linear elastic materials, the sheér modu-

lus G can be directly determined from the borehole pressuremeter test:

1 Symbols used in this report are listed and defined in the Notation

5 (Appendix A).
As with any test, it has its own sources of error, the most prominent
of these being volume measurement errors leading to alteration of
the constitutive properties due to the drilling of the borehole.



G = (1.1)

where Vo is the initial volume of a unit length of the borehole.
However, real earth materials are often highly anisotropic. The inter-
pretation of data from laboratory and/or field tests based on a mathe-
matical constitutive relation that does not account for anisotropy may
lead to erroneous conclusions.

The most common'departure from a state of isotropy in an earth ma-
terial is layering or stratification during its deposition. This is the
case whether induced by natural causes, such as sedimentary deposits, or
in the construction of fills where the earth materials are placed and
compacted in horizontal lifts. For these conditions, although marked
differences may be noted between the vertical and the horizontal direc-
tions, generally no direction preference will exist in the horizontal
planes. Such a material is said to be transversely isotropic
(References 8 and 9).

For the linear elastic transverse-isotropic material, five material
constants are needed to completely describe material behavior (Refer-
ences 8 and 9). A technique for the determination of some or all of
these five material constants in the field i; of great importance to the
material properties investigator. Such a technique (Reference 10) would
give an early deduction of those sites that are strongly anisotropic and
provide data for use in the fitting of a transverse-isotropic model
(Reference T7) for the materials. It appears that a series of pressure-
meter tests in boreholes inclined at several different angles to the
aiis of symmetry of the material will yield this information. Hence,
there was a need to obtain an analytical solution for the inclined bore-
hole pressuremeter problem. Only the special case of this problem for
a transverse-isotropic material in which the axis of the test (i.e., the
axis of a pressurized cylindrical cavity of infinite extent) is
perpendicular to the plane of isotropy has been solved analytically

(Reference 9).



1.2 OBJECTIVE

The objective of this investigation is to develop a general closed
form solution to the borehole pressuremeter problem where the axis of
the borehole is inclined to the plane of isotropy of an elastic
transverse-isotropic medium. Such a solution can be used to determine
stresses and displacements in the medium in terms of the transverse-
isotropic properties of the material. It is possible, therefore, to de-
duce the transverse-isotropic properties of the materials in terms of

the volume change of the borehole.

1.3 SCOPE

The problem geometry, boundary conditions, and constitutive and
field equations are presented in Chapter 2. Chapter 3 contains the der-
ivation of the general solution of the problem and a sample problem.

Conclusions and recommendations are given in Chapter L.



CHAPTER 2

PROBLEM GEOMETRY, BOUNDARY CONDITIONS, AND
CONSTITUTIVE AND FIELD EQUATIONS

2.1 GENERAL

Because the properties of the material are directionally dependent,
it is more convenient to obtain the solution of the problem in a
Cartesian coordinate system first and then through a coordinate trans-
formation to determine the stresses and the displacements in a cylin-
drical coordinate system. Therefore, three coordinate systems are
needed. The first is a Cartesian coordinate x'y'z' in which x'y'
is parallel to the plane of isotropy (Figure 2.1) and for which the
constitutive equations for a linear elastic transverse-isotropic material
are well known (References 8 and 9). The second coordinate system is
also Cartesian, xyz , in which the solution of the borehole pressure-
meter problem ié obtained (Figure 2.1). Finally, because the problem
is axisymmetric, it is convenient to transform the final results from
the xyz coordinate system to a cylindrical coordinate system, 1rOz

(Figure 2.1b).

2.2 PROBLEM GEOMETRY

The geometry of the problem is shown schematically in Figure 2.1.
Figure 2.1a showé a three-dimensional view of the problem with the rela-
tive position of the Cartesian coordinate systems x'y'z' and xyz .
Figure 2.1b shows a two-diﬁensional detailed view of the problem relative
to both the cylindrical coordinates r0Oz and the Cartesian coordinates
xyz . The axis of symmetry of the material and the axis of symﬁetry of
the cylindrical cavity are assumed to intersect at an angle, ¢ (Fig-
ure 2.la). Therefore, the intersection of the cylindrical cavity with
the plane of isotropy forms an ellipse A'BC'D in the x'y' plane (Fig-
ures 2.la and 2.1b). The intersection of the cylindrical cavity with the
r0- or xy-plane is, of course, a circle ABCD (Figure 2.la). Further-

more, it is assumed that the radius of the cylindrical cavity is b and




that its surface is under normal stress, Po » Which does not vary along

the cavity.

2.3 CONSTITUTIVE EQUATIONS

Let the x'y' plane of an x'y'z' coordinate system (Figure 2.1a)

be the plane of isotropy of the material. The constitutive equations for

a linear elastic transverse-isotropic material (References 8 and 9) are:

P Vg Yo A
x' T E % Ey' E' “2'
€ Yo, 4xg, =Yy
yl E xv E yl El Z'
v' 1
€0 == m (Oxr * %) *ET O
r (2.1)
I%'2"
Ex1 2 2G!
o rz'
e JZ_
ylzl 2G|
oxl !
e XY
xvyv 2G /
where
O_45 T 45 O_, total normal stress components parallel to
X y 2 1_ 1 1_ s
x'-, y'-, and z'-axes, respectively
O_ 4y .45 O 445 0_,_, = total shearing stress components in x'z'-,
x'z Y 2 XYy 1,0 14! i
y'z'-, and x'y'-planes, respectively
€crs Eo1s Egn total normal strain components parallel to
X'-, y'-, and z'-axes, respectively
€prgr? ey'z" X'y total shearing strain components in x'z'-,
y'z'-, and x'y'-planes, respectively
E = Young's modulus in the plane of isotropy

Young's modulus in a plane normal to the
plane of isotropy



v = Poisson's ratio that characterizes the trans-
verse reduction in the plane of isotropy due
to stress in the same plane

v' = Poisson's ratio that characterizes the trans-
verse reduction in the plane of isotropy due
to stress normal to it

G' = shear modulus for a plane normal to the plane
of isotropy
G = §Ti_§—;7'= shear modulus for the plane of

isotropy

The elastic properties that appear in Equations 2.1 depend on the
direction of the axes of the chosen coordinate system. If the direction
of the axes varies, then the elastic properties vary. Only in the case
of an isotropic body the elastic properties are invariant in any orthog-
onal coordinate system. However, there are always unique relationships
of the elastic properties in one coordinate system to the elastic prop-
erties in another coordinate system. These relationships could be de-
rived through transformation formulas that transform one coordinate
system into another. Therefore, the elastic properties that appear in
Equations 2.1 for the coordinate system x'y'z' could be transformed
into the elastic properties for the coordinate system xyz (Figure 2.1)

through transformation formulas.

2.4 TRANSFORMATION OF .
THE ELASTI€ PROPERTIES
Let CiJ be the elastic properties for the coordinate system xyz
and let C!, be the elastic properties for the coordinate system x'y'z'
1]
(Figure 2.1a). The position of the coordinate system xyz with respect

to the coordinate system x'y'z' 1is defined by Table 2.1 and the follow-

ing relations:
x = x'

y' cos ¢ + z' sin ¢ (2.2)

]
n

=y' sin y + 2' cos ¢

N
n

10



The transformation formulas that relate ciJ to Cij are given in

Reference 9 and can be written asl
- ]
Ci C 01 I (2.3)

The values of qu are defined in Table 2.2 where the first index, i ,
indicates the number of the row and the second index, J , shows the
number of the column. Thus, qu denotes the element belonging to the

ith row and Jth column; for example, = 62

U1 T 0% 0 3TN0
q56 = 0162 + 0261 » and so forth. The values of 6n > Ny and On
(n=1, 2, 3) are given in Table 2.1; the values of Cij can be obtained
from Equations 2.1 and are given in Table 2.3; and the values of Cij
obtained from Equation 2.3 are given in Table 2.k.
Having determined the value of the elastic properties C, the

iy

general constitutive equation for a linear elastic transverse-isotropic

material in an Xyz coordinate system may be written as:

m

n
=

Q
"

]
N
E

0]

He

s

n
<

+
=)

(¢]

o]

7]
\-€_-/
Q

L]
J

ey = (%%-sinz Y + %- ?) 0 + [%-cosh y + 51nh w
' > (2.4)
+ %7-- 2%;) cos? ) sin® %] o, + [- E, (51nh v+ cos V)
+ (%- %—- %7) cos® R sin® ﬁ] o+ [(E + “T) C032 v
1 v _1l .
- (i]_'- E—) sin V- Sgr cos 211:] sin 2y oyz )

NOTE: Equations 2.4 are continued on following page

~

1 Indices assume values 1,2...6. A repeated index is to be summed over
its range. Quantities are referred to rectangular Cartesian coordi-
nates Xy -

11



€, = "(E'L cos v +-§-sin2 w) o+ [—E—: (sinh y + cosh ‘4’)

1.1 1 2 2 1 b1y
+ (§-+ - G') cos” ¥ sin Q] oy + [E-51n vV o+ Fv cos v

1 2v' 2 . 2 1 ! .2
+ (G' - E') cos” Y sin™ ¢ cz + [(E + E') sin™ ¢

1 v'! 2 1 .
"(E' + E') cos Y + 5G" cos 2w] sin 2y cyz
=1 (v 1 v 2
eyz =5 (E' - )sin 2y o+ [(E + cos® ¢ , -
(cont'd)

1 v! . 2 1 .
- (E7-+ fﬁ) sin” ¢ - 5G7 cos Qw] sin 2y Oy

1 (/1 , ' 2 1l v'! 2
+§[(f+ E'—)Sin lb-(f,-+-ET) cos

G' cos 2w] sin 2y o + -——-0

*3 2G' “yz
-_ 1 2
exz = EET-cos P+ 3G sin™ ¢
. 2 1 2
exy = > sin” ¢ + 5G COS v )
where
Oys O 5 O, = total normal stress components parallel to
Y x-, y-, and z-axes, respectively
oxz’ oyz’ cxy = total shearing stress components in xz-, ¥yz-»

and . xy-planes, respectively

€ Eos tz‘=-total‘normaivstrain-ccmponents parallel to
y X-, y-, and z-axes, respectively

€ 4 E_ 5 € = total shearing strain components in xz-, &z-, and
xz’ “yz .
xy-planes, respectively

/

2.5 FIELD EQUATIONS

In the case of small displacements of a continuous body, the rela-
tionships between the components of strain and displacements (Refer-

ence 9) are:

12




Y 2 3 )

& T Sy Ty fz Wz
= 1l(3w , 3u =1 (3w

€xz = 2 (ax *3z) Syz2 T2 (Bz + ay) < (2.5)
-1 _911.+iz)

v T2 oy T ox J

where u, v, and w are the displacements in the x-, y-, and z-
directions, respectively.

In the problem under consideration (Figure 2.1), the stresses and
displacements are independent of 2z and become functions of x and y

alone. Therefore, Equations 2.5 can be written as:

_ dulx,y) _ avix,y) _ )
€. = s E_ = , € =0
x ox Yy oy z
e = 1 dw(x e = 1 Jw(x (2.6)
xz 2 x °* yz 2. e *

e

Equations 2.6 leads to the compatibility equations that guarantee the
body is continuous.

The stress components in a continuous body in equilibrium under the
action of surface and body forces satisfy three differential equations
of equilibrium. In the case under consideration, these equations take

the following form:

'o] o0 3
x+—xx=0
9x oy
acx o0
9x + ay =0 ? . (2.7)
aoxz aqyz
x Ty O




2.6 REPRESENTATION OF
THE BOUNDARY CONDITION

Let X and Y be the x and y components, respectively, of a

distributed surface force per unit area; the boundary stress equations

(Figure 2.2) can be written as (Reference 9):

X

Y

o
"

g
X

o

Xy

(o]

XZ

cos (n,x) + Oy COS (n,y) + o, COS (n,2z)
cos (n,x) + o, cos (n,y) + Oy, ©€OS (n,z)

cos (n,x) + Oy, COS (n,y) + o, cos (n,z)

For the above equations, the following relationships exist:

cos (n,x) = g%- )
cos (n,y) = - %§ >
cos (n,z) =0 J

2.7 STRESSES AND DISPLACEMENTS IN
CYLINDRICAL COORDINATE SYSTEMS

? (2.8)

(2.9)

The relations between the stresses and the displacements in the

Cartesian and cylindrical coordiante systems with the same z-axis (Fig-

ure 2.1) are:

g cos2 O+o0 sin2 0 + 20 cos O sin O
X y Xy

g -sin2~e~+-o cos® 0 - 20__ cos O sin O
x y Xy

g
A

(oy - ox) cos © sin © + Ory (cos2 0 - sin® @)

(o] cos O + o sin ©
Xz Yz

- sin @ + o cos O
Xz yz

1k

-

> (2.10)




ur = ucos O+ v sin ©
(2.11)
Vg = - u sin © + v cos O
where
0= tan'la;f (2.12)

and u, and vy are the radial and tangential displacements, respec-
tively. Therefore, if the stresses and the displacements in the xyz
coordinate system are known, the corresponding stresses and displace-

ments in the r0Oz coordinate system can easily be obtained.

15



Table 2.1.

Direction cosines.

_ x' v'! 2!

X 1 = 1 n, = 0 Ol =0

y 2=0 n2=cosw 02=sin\p

z 3 =0 n3 = -sin ¢ 03 = cos V

Table 2.2. Values of qj4 in the formulas of
transformations (Equation 2.3).

N

i 1 2 3 4 5 6
1 & 52 6 26,0, 26,8, 26,5,

2 ni ng’ ng CYPUR angny 2nin,

3 o2 02 0 20,0, 20,0, 20,0,
Lm0y ng®  nyfy  mgfy +mgly MO+ g N0, * N0
5 9161 9252 0353 0263 + 0352 0153 + 0361 0152-+ 0251
6 §,n1 §,n, 63n3 62n3 + 63n2 61n3 + 63n1 §,ny + 8§,

16
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Table 2.3. Value of Ci from Equation 2.1.

J

peD——s

e s s e SRR et

-3 %— -}‘5—: 0 0
T
0 0 0 oy 0

0 0 0 o 1

=

0 0 0 0 0
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Table 2.4, Value of CiJ from Equation 2.3.

[

<1

8T

2 ‘ 3 L 5 6
] - ) ] L]
- 2T-Sinz V- 2-cosz 1] - !T cos2 Y - z-sine ] 27-- ¥ sin2 ] 0 0
E E E E E E
] |
%-cosh v+ %T-Sinh v --%T-(sinh v+ cosh v) [(%-+ %7) cos? v 0 0
L} )
+ %7-- 2%7- cos2 7} sin2 vy o+ (%-+ %7-- %7) cos2 v sin2 vy - %T + %7 sin2 ¥
- 5%7-0052 w] sin2 v
4 4 \ -
sin_y , cos ¥ [(E+3) smm? v 0 0
L L]
+ (%T" g§7) cos2 ' sin2 1} - (%T + %T) cos2 '}
E
1 2 , 2
T + 5Gv €O w] sin™ ¢
R
¥ L 0 0
cos2 Y sin2 ]
e tTe¢ °

sin2 ] 4+ cos '}
G' G
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a. THREE-DIMENSIONAL VIEW b. TWO-DIMENSIONAL VIEW

Figure 2.1 Problem geometry.



Figure 2.2 Two-dimensional element from the boundary.
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CHAPTER 3

DERIVATION OF THE GENERAL SOLUTION OF THE PROBLEM

3.1 GENERAL

The problem of the determination of stresses and displacements
around an infinite cylindrical cavity can be formulated analytically by
use of the equations presented in Chapter 2. The solution will be
unique if it satisfies the equilibrium and compatibility equations and
the boundary conditions (Reference 11). This is done below by expressing
stresses and displacements as complex harmonic functions in a manner
similar to that developed by Lekhnitskii (Reference 9). Recalling
Equations 2.4,

(y]
n

x = C11% * C1p9 * €130, + Cpy0,,

™
I

v = C10% * Cop%y * €39, * Cpu0y,

ez = Cl3°x + 023oy + 033oz + C3h°yz
r (3.1)
2eyz = Clhcx + C,&,hcy + C3h°z + Chhcyz
2€xz = CSSsz .
253@_ = C66ny J

where the values of CiJ are given in Table 2.3. Since €, =‘O (see

Equations 2.6), the third equation of 3.1 leads to

R
O, =~ Cas (€130 * €39y * CBMOYZ) (3.2)

Substitution of Equation 3.2 into Equations 3.1, gives

21



ex = allox + alZUy + alhcyz 3

Ey = alzcx + 8.220y + azhcyz

(3.3)
28yz =890 ¥ 821% + 84,% ?

2exz = aSSOXZ

%y = %66%xy )

in which

c..C
a, =0, --—i313 (3.4)
id i 033

Equations 3.3 can be written in terms of the displacements as

u
au _ \
ax - 211% t eyt alhoyz

127y

¥, o+ o+ 8,0
ay - %12% T %22% ol yz

ow (3.5)
oy - %100 t 8%y 89y, ¢

9x 'aSSsz

y  ax 66" xy J

3.2 STRESS FUNCTION

Equations 2.7 (the equilibrium equations) can be satisfied for a
homogeneous medium by the introduction of the following stress functions
(References 9, 12, and 13):

22
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e s s AN K

AR VT AN 2 s bt 1

(Y]
g

a%p(x,y)

X
3x2

2
G = 3°P(x,y) } (3.6)

xy 3x9y

o = 280ny)

X2z oy

s = . 28lxy)

¥z ox

The compatibility equations can be satisfied by substitution of
Equations 3.6 into Equafions 3.5 and elimination of uw, v , and w by
differentiation (Reference 13). Therefore, the following system of dif-

ferential equations that the stress functions must satisfy can be easily

obtained:
LhP(xsy) + LSQ(X,Y) =0
(3.7)
LP(x,y) + LAalx,y) = 0
where L2 R L3 » and Lh are differential operators of the second,
third, and fourth orders, respectively, that have the form:
2 LY 852 55 3y2
3 3 L
3 )
L,==-8a, — =& (3.8)
3 2k e 1k 8x3y2 |

L

_ ) ) .3
Iy, =8 T+ (28 *agg) —3 3t a1 T
9x 3x dy oy

23



For the components of stresses and displacements around the cylin-
drical cavity to be continuous and single-valued functions of the
coordinates xyz , the stress functions P(x,y) and Q(x,y) must sat-
isfy Equations 3.7 and the boundary conditions.

The general differential equations in terms of P(x,y) and
Q(x,y) , separately,.can be obtained by application of the operator L2
on the first equation of the system 3.7 and the operator L3 on the sec-

ond equation and subtraction of the results. Thus:

1
(@]

(LhL2 - Lg) P(x,y) = (3.9)

Similarly,
2 v) =

Equations 3.9 and 3.10 are sixth order differential equations where the
operator of the sixth order LhL2 - L§ can be decomposed into six
linear operators of the first order. Hence, Equations 3.9 and 3.10/can

be represented in the following forms:

D6D5DMD3D2D1 P(x,y) = 0
and (3.11)
D6D5DhD3D2Dl Qlx,y) =0
in which
D ='3—-u -a—(k=12 6) (3.12)
k 9y k 9x -

where My represents the roots of the following algebraic equation that

corresponds to the differential Equations 3.9 and 3.10:
2 =
Ly, () Ly(w) - 13(u) =0 (3.13)
According to Equations 3.8, L2(u) . L3(u) , and Lh(u) can be written

as:
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Ly(w) = a55“2 *ay)

L3(u) -alhuz - a,), (3.14)

- L 2
Lk) = apqu + (280, + age) W5+ 8y

Three of the roots of Equation 3.13 are independent; the other three are -
their complex conjugates (Reference 9).

The integration of Equations 3.9 and 3.10, therefore, can be reduced
through Equations 3.11 to the integration of six equations of the first

order. The general integral is equal to functions of the arguments

N
"

X + uky
(k =1, 2, 3) (3-15)

and
Z =x+uky

and can be written as

k=3
Yy = +P
P(x,y) 12—-:1 [Pk (Zk) kszSJ

(3.16)

Q(st)

T [a@) 5@ ]

where ;l_k is the complex conjugate of” W o _z; is the complex con-

Jugate of Z and Pkizk; and ZZkS are tbe complex con.jﬁgates of

Pk(zk) and Q’k(zk) , respectively. ‘
Since the functions P(x,y) and Q(x,y) satisfy Equations 3.7 and

3.8, the following relations between P(x,y) and Q(x,y) exist:

O (5) = - I:;é:i;;} dpléz%‘)

+az +b (3.17)
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or

Ly (v, ) dp, (z
() = g T .10

where a bk ’ Ak , and Bk are arbitrary constants. Hence, the
stress functions P(x,y) and Q(x,y) (Equations 3.16) can be written

as:
P(x,y) = Pl(zl) + Pl(zls + Pz(zz) + Pzzzei
+ P3(z3) + P3(z3) . (3.19)
Qlx,y) = AlP:'L(zl) + Alpi(zlj + AzPé(zz) + AePézzzj
ey Ea@ s om
where
A 5%—15% (k 2) \
- - s (k =1,
k 2("x.
-3 R ATER
4\3) , (3.21)
and
() "y
dP. (zk)
Pl'{(zk) = g.zk ' J
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Therefore, the general solution to the borehole pressuremeter problem
can be completely determined by determining the functions Pk(zk) . But
before this can be done, the stresses and the displacements have to be

expressed as functions of Pk(zk) .

3.3 COMPLEX REPRESENTATION OF
STRESSES AND DISPLACEMENTS

Since the stresses are functions of the second derivative of P(x,y)

(Equations 3.6), and the displacements are functions of the first deriv-
ative of  P(x,y) (Equations 3.5), it is more convenient to introduce the

§ new functions of the complex variable L

o (5 )
| : ¢k(zk) = —%ng—l= Plz(zk) (k =1, 2)
> (3.22)

1 dP3 Z

- 3) -1
¢3(%3) = [ TR % P3(23)

With the help of these functions, the expressions for the first and sec-
ond derivatives of P(x,y) and for the firet derivatives of Qx,y)

with respect to x and y may be written in the following way:

3Pa§ =01(21) * 01(7) * 42(%2) * %a(%)
* Ag5(23) + Ao(zy)  (3.23)

T e SN U e A a1 e e s

. |
____a _{__zli L 1
zx}z( =¢1(z) * 41(1) * 45 (22) * 93(2p)
*Ag03(zg) * A38i()  (3.20)

3
H
a
i
i
{

OPy (%) _ aPy (7)) dz
ay

dz, &y WPy () = et (%) (3.25)
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Tl N ) RATCY CHORARN A RENN Of)

*ughats(zg) +ughds(zg)  (3.26)
32P§x,x2

, 2., 2 2., N
2y = “§¢1(zl) +u0g (21) * upth(z0) * v2ta(%2)

+ u§A3¢é(z3) + u§A3¢é(z3) (3.27)

. gigy = upbg (7)) ity (Z) tuta (%) ¢ Ho95(22)

*ughgey(zg) * uahaty(zy)  (3.28)

Qxay) = A8y (21) + g0y (71) * Ap02(%) * R2ta(%2)

+ ¢3(z3) + ¢3(z3) (3.29)

bR CH VR CYRRRHCARRRA Oy
+ ¢é(23) + ¢éiz35 (3.30)

. BQ(X ) o)
ay = uprpei(zy) * u1k1¢'i ) + Agugs( oHa?2(%2
) 1
+ugby(z3) *ugbi(e3)  (3.31)
According to Equations 3.2 and 3.6, and on the basis of Equa-

tions 3.23 through 3.31, the general expression for the components of

stresses can be obtained as:
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x = 2Real uicbi (z.l) + u§¢é(zz) + u§>\3¢é(z3)] (3.32)

o, = 2Real [¢i(zl) + ¢é(z2) + A3¢é(z3)] (3.33)
Oy = ~2Real [U81(21) *+ Upbh(3p) * H3he3(z3)] (3.34)
Oy = SReal [ul)‘ld’l'.(zl) MPPOYCY IR (23)] (3.35)
Oz = ~2eal [1101(21) * A205(%) *+ 43(%3)] (3.36)

o, = - —C—l—- (Cl3°x + C23O'y + C3h0yz) (3.37)

33

The displacements u , v , and w can be obtained by the substitu-
tion of Equations 3.32 through 3.37 into Equations 3.5 and integration

of the resulting equations. Thus:

k=2
u = 2Real kgl (allui +ta, - Akalh) ¢k(zk) |
+ 2Real{[)\3 (allug + 8.12) - a‘lh] ¢3(z3)} (3.38)
k=2 8sp . 115
v = 2Real k§l <a12uk + RS azh) ¢k(2~k)

a8 8,
' : 22 2k

kf:z ( " )
w =2Real anyM, t—T/— -8 9 (2
& 147k W W LY k(k)
Ban\ By
+ 2Real [A3<alhu3 + s - -—u;- ¢3(z3) (3.k0)

The stresses and the displacements in cylindrical coordinate systems
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can be obtained by substitution of Equations 3.32 through 3.40 into
Equations 2.10 and 2.11.

It is clear from Equations 3.32 through 3.40 that ¢k(zk) is the
only function needed for the determination of stresses and displacements.
This function can be determined from the boundary conditions, as shown

in the next section.

3.4 DETERMINATION OF
THE STRESS FUNCTION

The relationships between the stresses along the boundary and
inside the region can be obtained by the combination of Equations 2.8
and Equations 3.32 through 3.37. Thus:

¢l(zl) + ¢1Zz1; + ¢2(z2) + ¢2z225 + A3¢3(zé)
s
+ )\3¢3Zz35 = f - Yas (3.41)
)
Moy () + up8y (1) * et (%) * H2%2(Z2) * H3r3t4(%3)
' S
+ W= [ Xds (3.42)

0

Aoy (21) * M0 (7)) * At (22) * Rato(Z) * 43(23)
F5E) = (343)

where S 1is an arc length along the boundary and C0 is an arbitrary
constant.

The arguments, Z s in the above functions can be written as (see
Equation 3.15):

z, = g-(l - iuk) exp(i0) + é'(l + iuk) exp(-i0) (x = 1,2,3) (3.k4L)
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where r = b at the boundary and i is a complex number (i.e.,
i=0,1).

The function ¢k(zk) in the above equ;ati.ons can be considered as
functions of the parameter © having period 2m (References 9 and 13).
Hence, Equations 3.41 through 3.43 satisfy Dirichlet conditions and can
be expressed by the following two series:

oo

-in®

Real [¢1(zl) + 9, (22) + A3¢3(z3)] = Real 2 Fn elz - (3.45)
n=1 T
_ =in0

Real [0y (2) * abp(%0) * ¥atats(2a)] = Rear| D, T, S| (3.16)

r

n=

Real ["1‘1’1(21) + A2¢2(z2) + 4, (z3)]‘ = Real (co) (3.47)

A comparison between Equations 3.41 through 3.43 and 3.L45 through 3.47
leads to

S ¢) . .
_ — z éno _ E:Ln@
[ - YdS = b - Ydo = bn——n-+ bn " (3.48)
0 0
0

— b b
n=

= {6 __=ino
0= z dn —+ dn = (3.49)
- b b

n=1

o,
oL
[6)]

o

o

o
b
foN)

The coefficients bn and dn can be obtained by use of the properties
of the Fourier series (Reference 13) and the problem geometry defined in

Section 2.2, which yield the following values:

Pb2 Pbi
o -y o

(3.50)



Substitution of Equations 3.50 into Equations 3.45 through 3.47 leads to:

Pb
Real [0y (21) * 92(22) * 3¢3(%3)] = Resl <‘ o Eie> (3.51)

-P b1

Real [ul¢l(zl) + U0, (22) + u37\3¢3 (z3)] = Real < gr Eio) (3.52)

Real [Aldvl(zl) + A2¢2(z2) + ¢3(z3)]= 0 (3.53)

When Equations 3.51 through 3.53 are solved, this results:

P b2 [ (p - )+ (- AAg) 4 i
_ 3 2 273 .
¢1(Z1) B Zr iy =1y + A )\B(ul u3) " Al)‘3(“ ) exp(-10) (3.54)
2r -
Pb P, = M (A Ay - 1) i
37173 13 .
¢2(z2) - gr - 1(;11+ Y (ull hy) + A1A3(u3 = “2) exp(-10) (3.55)
P b° (ul-u ) (A-A)'
= 2°1 172 1 . .
¢3(23) B gr [22 - ¥ + A A3(ul - u3) + A1A3( 3 - uz)] exp('le) (3.56)
The derivative of the functions ¢k can be easily obtained from the
‘above equations:
8 (2,) = e (“3 2h3 ~ M) * (L= Rph)
l( l) 2r2 My - + A K3(ﬁ - u3) + AlAB(u3 - UQ)V

sin @ + i cos O
X (sin 0 - M, cos O) (3.57)
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N Ppb” (- wahrg) + (M3 - 1) 4
*2(%2)" o2 [ Mo = My * Aprg(My = M3) * AAs(ug - wp)

x.(s.in g + i cos © ) (3.58)

sin

N Pob2 (ule - “-1*2) +()\2 - Al) i
3(3) 2 | - v MAg (kg = H3) + AAs(kg

ug)

- u3cos 0

X<:§§8+i °°SO> (3.59)

The distribution of stresses can be determined from Equations 2.10, 3.32"
through 3.37 and 3.57 through 3.59, and the distribution of displacements
can be determined from Equations 2.11, 3.38 through 3.40, and 3.5k
through 3.56. The computer program BOREHOLE was developed to solve
numerically the above system of equations and to generate various plots
of stress and displacement distributions around the cylindrical cavity.
Examples of the distribution of stresses and displacements are given in
Figures 3.1 through 3.8.

The volume change of a unit length along the génerator of the bore-
hole can be obtained from the radial displacement (Equation 3.38) at
r=b,and ©=0, and 0 = /2 : '

5y o+ u(v,0] [b + u (b, -’é'-)] - m°
~ 2

Lt

or

u(b,0) + u(E? g)

v
A b 2

(3.60)

Equation 3.60 is a function of the five material properties as
well as the angle of inclination of the borehole, y (Figure 2.1).

e
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Therefore, the solution of Equation 3.60 for the material properties is i
not straightforward and requires an iterative scheme and a large computer
program such as BOREHOLE. However, the solution is relatively simple if
four material properties as well as the volume change are known.

In the following section, spatial stress and displacement distribu-
tions for a sample problem are investigated. The material properties
used in this sample problem as well as the angle of inclination.of the
borehole are tabulated below.

E E' G' G " s P

ksi ksi v v! ksi ksi degree inch ksi

7.8 2.6 0.3 0.2 1.5 3.0 30 1.5 1.0

3.5 SPATIAL STRESS

DISTRIBUTION FOR SAMPLE PROBLEM

Figure 3.1 shows a typical result of the radial and tangential
stresses along the radius for © =0 degreesl (Figure 2.1) at an angle
of inclination of 30 degrees. The solid line shows the radial stress
while the dashed line shows the tangential stress.

Figure 3.2 shows a radial stress contour in dimensionless form,
or/PO , at an angle of inclination of 30 degrees. It is clear from this
figure that the radial stress attenuates to a value of or/PO = 0.25 at
r= 2ro . .

The distribution of tangential stress along the boundary of the
borehole whose angle of inclination is 30 degrees is shown in Figure 3.3.

Figure 3.4 shows the distribution of radial and shear stresses along
the boundary of the borehole whose angle of inclination is 30 degrees.

It is interesting to note that the shear stress, coz , along the
boundary of the borehole is not zero but would be if the material were

isotropic.

1 A table of factors for converting U. S. customary units of measurement

to metric (SI) units is presented on page 2.
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3.6 SPATIAL DISPLACEMENT

DISTRIBUTION FOR SAMPLE PROBLEM

Figure 3.5 shows a typical result of the radial displacements along
the radius of the borehole for © = 0 and 90 degrees at an angle of in-
clination of 30 degrees. The solid line shows the radial displacement

for O = 90 degrees and the dashed line shows the radial displacement

for O = 0 degrees. Note that both the solid and the dashed lines would
coincide if the material is isotropic.

Figure 3.6 shows a radial displacement contour in dimensionless
form ur/ur(ro) , at an angle of inclination of 30 degrees where u
is the radial displacement at r and © , and ur(ro) is the radial
displacement along the boundary of the borehole. It is clear from
Figures 3.5 and 3.6 that for this case approximately one half of the
borehole volume change is due to strains in the material within one
borehole-radius of the sidewall. It is also clear that three fourths of
the borehole volume change is due to strains that occur at less than
three radii from the borehole sidewall. Since the radius of a borehole
pressuremeter test is typically 1.5 inches, only a very small volume of
in situ material close to the borehole can significantly influence the
test results.

The distribution of the radial and tangential displacements along
the boundary of the borehole whose angle of inclination is 30 degrees is
shown in Figure 3.7. As the figure shows, the borehole deforms to an
elliptical shape under load.

Figure 3.8 shows a tangential displacement contour in dimensionless
form ve/ve(ro) where Vo is the tangential displacement at r and
© , and vb(ro} is the tangentiagl displacement along the boundary of-
the borehole.
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RADIAL AND TANGENTIAL STRESS, KSI

\
|
|
| LEGEND
\\ ——— RADIAL STRESS, O , AT §=0
0.8 - \ —— —=—=TANGENTIAL STRESS, Oy, AT 0=0
0
-0.5 |~
-1.0 1 ] ! ] ]
(o] s " 10 15 20 25 30
RADIUS, INCHES
Figure 3.1 Distribution of radial and tangential stresses
along the radius for © = 0 degrees at an
angle of inclination of 30 degrees.

36

ke e A - 1 et N SN i 4



Figure 3.2 Contour for radial stress at an angle
of inclination of 30 degrees.

37



ro = 1.5 INCHES

Figure 3.3 Distribution of tangential stress along the
boundary of the borehole whose angle of
inclination is 30 degrees.
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Figure 3.4 Distribution of radial and shear stresses along the boundary of the
borehole whose angle of inclination is 30 degrees.



RADIAL DISPLACEMENT, INCHES

0.4

o
w

o
h
n

°

LEGEND
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Figure 3.5 Distribution of radial displacement u, along
the radius for © = 0 and 90 degrees at an
angle of inclination of 30 degrees.
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Figure 3.6 Contour for radial displacement at an angle
of inclination of 30 degrees.
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ro = 1.5 INCHES

Figure 3.7 Distribution of radial and tangential
displacements along the boundary of
the borehole whose angle of inclina-
tion is 30 degrees.

L2

[P



[ Q ™
/

\
/ ’ .’ "‘;'\- ve ;
/ I,' vﬁ('o) 0

/ ;" ‘ \ \
U i

ro = 1.5 INCHES

va(ro)

Figure 3.8 Contour for tangential displacement at an angle of
inclination of 30 degrees

43



CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

The solution presented herein can be used in the analysis of bore-
hole pressuremeter test data to provide an appropriate set of linear
elastic transverse-isotropic constitutive properties for a given medium
and to provide an index of a specific site's degree of anisotropy. To
du this, a series of pressuremeter tests in boreholes inclined at

several different angles to the material's axis of symmetry have to be

. conducted.

It is recommended that this solution be used at a very low stress
tevel or whenever the material of interest is assumed to be linear
elastic transverse-isotropic. For a highly nonlinear material, however,

this solution gives effective constitutive properties.
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APPENDIX A: NOTATION

Material properties matrix
Arbitrary constants
Radius of the cylindrical cavity

Elastic properties for the coordinate system xyz

Elastic properties for the coordinate system x'y'z'

Arbitrary constant
Complex operator
Young's modulus in the plane of isotropy

Young's modulus in a plane normal to the plane of
isotropy

Shear modulus for the plane of isotropy

Shear modulus for a plane normal to the plane of
isotropy '

Differential operators of the second, third, and

fourth orders, respectively
Differential operator of the sixth order

Complex stress function

Complex conjugate of Pk(zk)
Applied load on the boundary of the borehole
Stress function

Transformation matrix for this appears in
Equation 2.3

Complex stress function

Complex conjugate of Qk(zk)
Stress function

Cylindrical coordinate system
Arc length along the boundary’
Radial displacement

Radial displacement along the boundary of the
borehole

Displacements in the x-, y-, and z-directions,
respectively

Initial volume of a unit length of the borehole

L7



Tangential displacement

0
vo(r ) Tangential displacement along the boundary of the
° borehole
Xyz Cartesian coordinate system in which the solution
of the borehole pressuremeter problem is solved
x'y'z!' Cartesian coordinate system in which x'y' is
parallel to the plane of isotropy
X The x component of a distributed surface force
per unit area
Y The y component of a distributed surface force
per unit area
zk Complex plane
E;. Complex conJugate of Z)
AV Change in volume per unit length of a borehole
E_,E_ o€ Total normal strain components parallel to x-, y-,
x’y’z
and z-axes, respectively
€E_y13E. € _, Total normal strain components parallel to x'-,
x"’7y z ' ' .
y'-, and z'-axes, respectively
€ _SE. € Total shearing strain components in xz-, yz-,
Xz’ yz’ Xy
and xy-planes, respectively
X121 215196 100 Total shearing strain components in x'z'-, y'z'-,
y'z'" x'y 1yt :
and x'y'-planes, respectively
My Root of the algebraic equation that corresponds to
differential Equations 3.9 and 3.10
\Y Poisson's ratio that characterizes the transverse
reduction in the plane of isotropy due to stress
in the same plane
v Poisson's ratio that characterizes the transverse
reduction in the plane of isotropy due to stress
normal to it
9. Radial stress
O_,0_,0 Total normal stress components parallel to the x-,
x>y’ 2
y-, and z-axes, respectively
O_ 450, 450 Total normal stress components parallel to the x'-,
x'y'" 2!

y'-, and z'-axes, respectively

Total shearing stress components in xz-, yz-, and
xy-planes, respectively

O_ 50,0
xz’ yz’ xy

190 Total shearing stress components in x'z'-, y'z'-,

x'y' .
and x'y'-planes, respectively

y'z
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Tangential stress
Shear stress in 0z plane

Angle of inclination of the borehole
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DES-C/CPT G. W. Ullrich

Deputy Chief of Staff for Research and Development,

Headquarters, U. S. Air Force, Washington, D. C. 20702
ATTN: AFRD/Technical Library
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Air Force (Continued)

Air Force Institute of Technology, AFIT Bldg 640, Area B,

Wright-Patterson Air Force Base, Ohio 45433
ATTN: Technical Library

Other Government Agencies

Director, Lawrence Livermore Laboratory, Technical Information
Division, P. 0. Box 808, Livermore, California 94550

ATTN: Technical Library

Sandia Laboratories, P. 0. Box 5800, Albuquerque,
New Mexico 87115
ATTN: Library

Director, Los Alamos Scientific Laboratory, P. O. Box 1663,

Los Alamos, New Mexico 8T75u4L
ATTN: Library

Bureau of Mines, Denver Federal Center, Building 20,
Denver, Colorado 80225
ATTN: Technical Library

Nuclear Regulatory Commission, Directorate of Licensing

Regulations, Washington, D. C. 20545
ATTN: Site Analysis Branch/Dr. Lyman Heller

Others

University of Illinois, Civil Engineering Building, °

Urbana, Illinois 61801
ATTN: Prof. W. J. Hall
Prof. A. J. Hendron, Jr.

University of New Mexico, Civil Engineering Research
Facility, P. O. Box 188, University Station,
Albuquerque, New Mexico 87106

ATTN: Mr. C. J. Higgins

Texas A&M University, Center of Tectonophysics,
College Station, Texas TT8L43
ATTN: Dr. John Handin, Director

Agbabian Associates, Engineering Consultants,
250 N. Nash Street, El Segundo, California 90245
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Applied Theory Incorporated, 1010 Westwood Blvd.,
Los Angeles, California 9002k
ATTN: Dr. John G. Trulio 1
California Research and Technology, Inc., 6269 Variel Avenue,
Woodland Hills, California 9136k
ATTN: Technical Library 1l
General Electric Company, TEMPO, 816 State Street,
Santa Barbara, California 93102
ATTN: Mr. Warren Chan (DASIAC) 1
Merritt Cases, Inc., P. O. Box 1206, Redlands,
California 92373
ATTN: J. L. Merritt 1
Pacifica Technology, P. O. Box 148, Del Mar, California 92014
ATTN: Technical Library 1
Physics International Company, 2700 Merced Street,
San Leandro, California 9uU5TT
ATTN: Mr. Dennis Orphal 1
R&D Associates, P. 0. Box 9695, Marina Del Rey,
California 90291
ATTN: Dr. H. F. Cooper, Jr. 1
Mr. R. J. Port 1
TRW Defense and Space Systems Group, Maie Station R1/2178,
Redondo Beach,. California 90278
ATTN: Mr. Norman Lipner 1
Weidlinger Associates, Consulting Engineers, 110 E. 59th,
. New York, New York 10022
‘ATTN: Dr. Melvin L. Baron 1
Dr. Ivan S. Sandler 1
Stanford Research Institute, 333 Ravenswood Avenue,
Menlo Park, California 94025
ATTN: Technical Library 1
Terra Tek, University Research Park, 420 Wakara Way,
Salt Lake City, Utah 84108
ATTN: Dr. A. S. Abou-sayed 1
Dr. H. R. Pratt 1l




No. of

Address Copies
Others (Continued)

Science Applications, Inc., Suite 216, 2201 San Pedro, N.E.

Albuquerque, New Mexico 8T110
ATTN: Mr. J. L. Bratton 1
Weidlinger Associates, Consulting Engineers,

3000 Sand Hill Road, Suite 245, Menlo Park,

California 99025
ATTN: Dr. Jeremy Isenberg 1
Fugro National, Inc., P. O. Box T765, Long Beach,

California 90807
ATTN: Mr. Ken Wilson 1
Shannon and Wilson, Inc., 1105 N. 38th Street,

Seattle, Washington 98103
ATTN: Mr. Earl A. Sibley 1
Duke University, Department of Engineering, Durham,

North Carolina 27706
ATTN: Prof. A. B. Vesic 1
Georgia Institute of Technology, School of Civil Engineering,

Atlanta, Georgia 30332
ATTN: Dr. B. B. Mazanti 1
University of Michigan, Department of Civil Engineering,

304 West Engineering, Ann Arbor, Michigan L8104
ATTN: Prof. F. E. Richart, Jr. 1
Massachusetts Institute of Technology, TT7T Massachusetts Avenue,

Room 1-382, Cambridge, Massachusetts 02139
ATTN: Dr. R. V. Whitman 1
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