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Section 1 

INTRODUCTION 

In July 1986, a research program was initiated by S-CUBED and its 
subcontractor, ENDOCHRONICS, INC., for the purpose of developing an 
advanced constitutiv~.Jl"U)del of ISST soils based upon the concepts of 
endochronic plasticity.' l ·;jJ The research was sponsored by the U.S. Army 
Engineer, Waterways Experiment Station (WES) as part of its continuing effort to 
pursue the development and validation of new and improved analytical methods 
for predicting explosively-induced ground motion. In order to have a complete 
and reproducible set of ISST data appropriate for this purpose, W)ES performed 
a series of laboratory tests on reconstituted ISST soil samples. (4. Some of the 
tests in this series were of a special nature, such as shearing at constant 
hydrostatic- pressure-, to- provide-the-type-of-ctata-ttlat-are-most-convenient-for 
fitting the endochronic model. 

The model development was conducted in two phases, ·for reasons that will 
become apparent in the sequel. In the first phase, which ~as initiated in July 
1986, the then existing version of the endochronic mod.el (see Ref. 5, for 
example) was applied to the ISST data provided by WES. It ·~as realized at the 
time that this endochronic model was only capable of predicting compaction 
during shearing at constant hydrostatic pressure. Thus, di.latency cannot be 
described by this model. A cursory review of data from other .sandy soils similar 
to the ISST soil conducted prior to the program had indicated that this limitation 
of the model would probably not be serious. The issue turned out to be much 
more complex than we expected, however, for reasons to be discussed in the 
text. 

Prior to applying the model to the WES data, the data were processed on 
the basis of the usual recommendations of WES, as described in Ref. 6, that is, 
volumetric strains for cases of pure hydrostatic compression were defined on 
the basis of the "uniform" approximation, while volumetric strains generated 
during a process where shear was involved were defined according to the 
"cone" approximation. It was found that, when data involving shear are 
processed on the basis of the "uniform" approximation, dilatancy is usually 
observed while, if the "cone" approximation is used to process the data, 
compaction will be predicted. Thus, there is the potential for serious 
inconsistencies between predictions and data, which were vividly confirmed in 
the first phase of this study. · 

. 1 
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The inconsistency arises due to the fact that the purely hydrostatic 
component of a model is usually fit to data which has been processed on the 
basis of the uniform approximation. This component is then used as part of the 
more general model to predict the volumetric component of response in cases 
of non-isotropic loading, involving shear. In such cases, the predicted 
volumetric response will be the result of a model based ori the uniform 
approximation, while the data, processed in the recommended fashion, would 
be based on the "cone" approximation. Because of this, the model will most 
likely predict dilatancy while the data will probably show compaction. The 
results obtained from the first phase of this study in which the endochronic 
model was fit to the ISST ctata in the recommended manner dramatically 
confirmed these inconsistencies. 

Unfortunately, there appears to be no precise way of accurately defining 
the volumetric strain, needed for constitutive model development, from the usual 
_triaxiaLdata. The_difficulty -arises from-the -fact-that the st!"ain fields Jn triaxJal tests 
are typically. inhomogeneous. In view of this, and given that the usual data from 
the triaxial test gives the nominal engineering axial strain ea over the specimen 
length and the nominal engineering radial strain er at the midpoint of the 
specimen, it appears that, while admittedly nor rigorous, the simple expression 

( 1) 

appears to provide the best definition of the nominal engineering volumetric 
strain that is possible within the limitations of the data provided. Several 
techniques for more accurately measuring strain in triaxial tests have recently 
been proposed (see Refs. 7 and 8, for example). Until such techniques have 
been implemented, however, Eq. (1) appears to be the preferred way of defining 
volumetric strain from triaxial data. 

In view of the difficulties encountered in the first phase of the study due to 
the use of the uniform and cone approximations, it was mutually agreed by WES 
and S-CUBED that a second phase should be undertaken, using data that are 
processed only on the basis of Eq. (1), which to first order is the uniform 
approximation. This eliminates the inconsistencies that can arise from the joint 
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use of the "cone" and "uniform" approximations. However, another problem 
develops, since the use of Eq. (1) in conjunction with the ISST data will lead to 
dilatancy, which is not within the scope of the endochronic model used in the 
first phase. Therefore, an endochronic model with the capability to describe 
dilatancy(~s 3t'eded. Fortunately, such a model had very recently become 
available, '1 J but had not been validated or applied to real materials. 

The second phase of this study, which began in April 1987, was 
undertaken for the e_vfRose of exploring the application of the new dilatant 
endochronic model( ' to the ISST soil data, using Eq. (1) to define volumetric 
strain from the data. The present report has been prepared mainly to 
summarize this work In Section 2, the new dilatant endochronic model is 
described and the special case of shear at constant pressure is considered. The 
application of the model to the ISST data is described in Section 3. A numerical 
scheme and corresponding computer program for computationally dealing with 
the modet are described- in Section 4~ Also, in this section, the case ofstiear at 
constant pressure is considered numerically. Section 5 discusses some 
difficulties that were encountered in the numerical study, and suggests possible 
ways to solve them. Finally, the conclusions drawn from this study, as well as 
recommendations for further study, are given in Section 6. 

3 
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Section 2 

AN ENDOCHRONIC SOIL MODEL WITH DILATANCV 

2.1 BASIC CONSIDERATIONS. 

The application of endochronic plasticity to soils has, so far, been limited 
either to one-dimensional histories (shear and hydrostatic response) under 
cyclic and other loading-unloading conditions or to two-dimensional histories 
(shear-volume interaction) under densifying conditions. The question of dilatant 
behavior has hitherto remained unresolved, in the sense that, until now, the 
constitutive relation in question [11] gave rise to densification in the presence of 
shearing under constant hydrostatic stress. 

What is needed is a constitutive equation which under conditions of low 
density and/or high_pr_essur_e will _giv_e_r:ise 1o shear-induced -densification but 
under conditions of high density and/or low pressure will give rise to shear­
induced dilatancy. In this section we present a thermodynamic approach which 
leads to such characteristics of soil behavior. The full analysis is given in detail 
in Ref. 10. 

The reasoning that led to the present treatment is broadly as follows. The 
coupling between deviatoric and hydrostatic behavior, that ultimately leads to 
dilatant deformation, must come from three possible sources: 

(i) _The intrinsic time through the shear-volumetric coupling 
parameter k; 

(ii) The expression for the free energy; 
(iii) : The rate equations for the internal variables. 

Source (i) alone, will always give rise to densification, as the application of the 
relevant equations actually showed. Source (ii) is not physically viable because 
given a soil with a certain porosity the onset of dilatancy under monotonic 
shearing is governed by the prevailing hydrostatic stress. If (ii) is to be the 
source, then a change in the form of the free energy must take place upon 
varying the hydrostatic stress, a phenomenon which does not appear physically 
plausible. One would expect the form of the free energy to remain invariant with 
a change in the hydrostatic stress. The remaining plausible cause is source (iii) 
and this is the one that we developed in Ref. 1 O and summarize in the present 
work. 

4 
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2.2 FORMULATION OF MODEL 

In Ref. 1 o we took the position that whereas the deviatoric plastic work is a 
cause of hydrostatic plastic strain, it is external to the hydrostatic process in the 
sense that it is not a hydrostatic mechanism. Therefore, it qualifies as a 
thermodynamic internal force of the first kind in the sense of Ref. 12. In the 
presence of such forces the thermodynamic equations appropriate to the rigid 
plastic solid that represents the plastic behavior of .the soil are the following, in 
the usual notation, in terms the deviatoric and hydrostatic free energies ; 0 and 
;H respectively. For a more detailed thermodynamic treatment see Ref. 13. 

(2) 

(3) 

(4a,b) 

r a;o r dg 
agr + a11 az = 0 (5) 

(6) 

Wiere 

(a~1 > o) (7) 

5 
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Thus Ar is a thermodynamic force of the first kind, i.e., one which is 
internally ,g~plied but which is external to the (internal) mechanism on which it 
operates.~ 1 J The role of the coefficient ~1 is to determine the degree to which 
the plastic work affects the r'th hydrostatic mechanism. 

The intrinsic time dz is given by th~ customary relation 

(8) 

The resistance coefficients ~ 1 and ~2 are not constant but are related to the 
hardening functions F0 and FH respectively by the equations 

(9a, b) 

W!ere 

(10~.b) 

The dependence of F0 on z is weak so that for deformations other than cyclic, 
for which the variation in z is small, the latter plays a minor :role in F0 and may 
be ignored. The question as to whether the dilatancy coefficienfs a~ 1 are 
constant during the deformation, or whether they change with hardening, is an 
open one at the moment. In this work they have been taken as constar;it and this 
choice seems to be consistent with experiment. 

A straightforward analysis using Eqs. (2) to (7) in·light of the initial 
conditions 

(11a, b) 

gives rise to the following set of two constitutive equations that govern, 
respectively, the deviatoric and hydrostatic behavior of soils:. 

6 
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(12) 

2H zt.i 

u = J ~(2\-i - z·)~ dz" + J r[2H - z") 
0 0 

(13) 

where the kernels P:-1 and r ara all weakly. singular- but-integrab~e-in any-finite -
domain (O,z] and: 

· ar p z.. r = ~ p 21 e- r--n 
L- r FH 

r 

(14a,~) 

(15)' 

(16) 

(17) 

· (18a,b) 

Some simplifications occur when the effect of the deviatoric plastic work rate is 
distributed uniformly among the hydrostatic mechanisms, in which case 

7 
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ro o a21 = a21 (for al I r) (19) 

In this event, and in view of Equations (16) and (17) 

r (Zi-i) = a~1 ; (Zi-i) (20) 

so that once ;{zH) is known, from a simple monotonic hydrostatic test, then 
r(zH) is also determined within a multiplicative constant. . 

In addition there exist the elastic relations 

dee = da/K (21) 

whereµ is the elastic shear modulus, and K the elastic bulk modulus neither of 
which need be constant in the course of deformation. The total strain is given by 
the relations: 

(22) 

The general method for determining the form of the functions p, ; and r, the 
functions FH and F0 , the elastic moduli G and K as well as the parameter k, 
from appropriate experiments, is a subject that will be discussed later on in this 
section. The specific determination of these functions and parameters for the 
WES ISST soil is addressed in Section 3. 

2.3 GENERAL APPROACH FOR DETERMINING MATERIAL FUNCTIONS 
AND PARAMETERS. 

In this section, the general approach for determining the material functions 
and parameters of the endochronic model described in the preceding section is 
given. The functions and parameters that need to be determined for a particular 
material are: K, G, k, p(z0), ;(zH), FH and '.o· 

8 
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The bulk modulus K, hydrostatic kernel ~(zH) and the hardening function 
FH can be determined from a pure hydrostatic test, which should have at least 
two unloadings and reloadings and extend well into the concave part of the 
virgin hydrostatic stress-strain curve. The data should consist of continuous 
measurements of q and f. 

The shear modulus G, coupling parameter k, dilatancy parameter r 0 , 
hardening function F0 and the shear kernel p(z0) are most efficiently determinea 
from triaxial tests in which specimens are sheared under fixed hydrostatic {not 
confining) pressure. The fixed hydrostatic pressures selected for these tests 
should adequately cover the hydrostatic range of interest; they should be 
reached monotonically and lie on the concave part of the virgin hydrostatic 
curve. The shearing should be taken out to where the shear stress has 
essentially reached a limiting value. The data should consist of continuous · 
measurement of q, e, §and~· 

Specific details of the approach for determining the material functions and 
parameters from the types of data discussed above are given below. 

2.3.1 The Bulk Modulus K. 

The bulk modulus Kat the onset of hydrostatic deformation is determined 
by the slope of the hydrostatic stress-strain curve at the origin. We denote this 
value of K by K0 . However, in the case of ISST soils it was found that K does not 
remain constant but varies with compaction. Simultaneously it becomes 
dependent on the elastic hydrostatic strain. This complex behavior is inferred by 
making the following observations: 

·(a) Upon loading to some value of a and unloading to zero stress and 
reloading one finds that' K (i.e., the slope of the hydrostatic stress-strain curve at 
the onset of reloading) is not equal to K0 . 

(b) The reloading stress-strain curve almost retraces the unloading 
curve with the implication that unloading is virtually elastic, and because it is 
non-linear, obviously dependent on the elastic strain. This also implies that 

9 
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plastic unloading in the stress-plastic strain space is almost vertical with the 
inference that ;(zH) is close to a delta function.,, In mathematical terms K admits 
the representation: · 

(23) 

In ISST soils Eq. (23) is closely approximated by the multiplicative form 
given in Eq. (24), i.e., 

(24) 

-where, -withouHoss-of-generality, -we may-set-K1-(0) = i. 

· - Now let P be a point on the hydrostatic strain axis, reached upon unloading from 
a value of"· Then· K0 is determined from the initial slope of the reloading hydrostatic 
stress-strain curve at P (where Ee = O) and K1 from the shape of the unloading part of 
the hydrostatic curve, terminating at P. , · 

2.3.2The Hardening Function FH. · 

At this· point certain observations are in order. The hydrostatic response under 
purely hydrostatic conditions is given by Eq. (25), obtained by setting~ equal to zero in 
Eq. (13). Thus · 

4-i ' 

a =I ;(2H - z') g~~ dz' 

0 ' 

(25) 

Thermodynamic considerations support the position that ; is integrable, 
bounded and convex for all finite zH. Thus 

' . 

. 4-i 

I ;Cz')dz' < • 

0 

(for all finite4-i) 

10 
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If FH were constant and equal to unity, say, then in view of Eqs. (25) and (26), zib'i 
would be equal to EP and Eq. (25) would give" as a convex function of E • 
However in actual experiments " becomes asymptotically a very rapidly 
increasing concave function of e:P as Ep increases. In particular this function is 
invariably of an exponential type, so that 

(27) 

for large values of e:P. Equation (27) is a basic hypothesis of the critical state 
theory. If ;(zH) were a delta function in the sense of Eq. (28), then, 

(28) 

Thus in view of Eqs. (25), (8) and (14b): 

(29) 

Comparison of Eqs. (27) and (29) yields the important result, · 

(30) 

Consider now the other simple case where the hydrostatic response is given in 
terms of one internal variable. In this event the resulting constitutive response is 
given by the following equation: · · 

(31) 

which under monotonic loading.conditions becomes the nonlinear differ·ential · 
equation: ' · 

11 
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(32) 

where p* and ; 0 are material constants. 

We now ask the question as to what should the form of the hardening 
function be if the hydrostatic response is to be given, albeit asymptotically by 
Eq. (27). A simple substitution for u (as given by Eq. (27)) in Eq. (31) gives rise 
to the following result: 

(33) 

where a = p/p*. Now FH is more complicated but still looks a great deal like an 
exponential functi.on for small values of "a". It is of interest to note that in view of 
Eq. (32) it follows that as P* + •, ;(zH) tends to a delta function, u is given by 
Eq. (29) and FH by Eq. (30), which is~the limit of Eq. (33) as a+ o. 

2.3.3 The Kernel Function l(ZH). 

The function ;(zH) can be determined uniquely from Eq. (25) if the form of 
the hardening function FH is known a priori. To that end we note that there is 
sufficient experimental evidence to support the position the FH is of exponential 
character and is given by Eq. (30). Under conditions of monotonic loading 
Eq. (25) then becomes: 

J~ ' 
u(~ = ;(~ - Z')FH(z'_)dz' 

0 

(34) 

where 

(35a,b) 

12 
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In the case where Eq. (30) applies a simple calculation shows that · 

(36) 

Since now both" and FH are known, Eq. (34), which is a Volterra integral 
equation, may be solved numerically to give the unknown function ;(zH). 

In the actual case of ISST soil, the steepness of the unloading hydrostatic 
stress-strain curve indicated that ;(zH) is indeed close to a delta function. In this 
event the numerical values of ; are so dominant near zH = z • that, by virtue of 
the mean value theorem, one can represent the integral on the right-hand side of 
Eq. (34) by the expression: 

. . zt.i zt.i 
a = FH J ;(2H - z')dz' = FHJ ;(z')dz' 

0 . . 0 

(37) 

Thus, in view of Eqs. (35) and {36): 

; (4;) = (d/dzt.i) {" (zt.i) (1 - Pzt,V} (38) 

· 2.3.4 The Material Constants k and r 0 . 

We begin with the hydrostatic constitutive equation, previously Eq. (13), 
which in the case of the cylindrical triaxial test becomes: 

zt.i zt.i 

a =I ;(2H - z'):Ji~ dz' +I f (2t-J - z') s • ~~dz' (39) 
0 0 . 

13 



wheres= f273(u2 - u1) and eP = f273(E~ - E~). with x1 being the axial 
direction. 

The shear modulus G is presumed known. Its determination will be 
discussed later in the section. Thus eP may be calculated from e via Eqs. (21) 
and (22). 

Previously - and r were represented by delta functions in the specific case 
where initial hydrostatic stress lay on the concave part of the hydrostat. Here we 
consider the more general case where ~ and r are represented by an 
exponential function. Thus we set 

(40) 

Note that, in the limit as p*+m, the right-hand sides of Eqs. (40a,b) become delta 
functions, thereby recovering the previous case. 

Using Laplace transforms one may now solve Eq. (39) in the light of 
Eqs. (41) and obtain the following expression for EP: 

(41) 

Now let u = u , where u is the constant hydrostatic stress at which 
shearing occurs, and'let de~ be ~he increment in volumetric strain due to shear, 
at constant hydrostatic stress. Then differentiating Eq: ( 41) we obtain the 
following relation for deg: 

= " -0 

14 

(42) 
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Note that the same equations would have been obtained had we 
represented ; and r by 6-functions: Hjwever, now there is an important 
difference in that" 0 is no longer equal to e eg where eg is the volumetric strain 
at the end of the (initial) hydrostatic phase. In fact, in the present case: 

I~* -P*(~·Z') 
" = p ;0e eJedz' 

0 . 

(43) 

or 

(44)_ 

The effect is illustrated in Figure 1. Note that at low stresses the form 
; = ;0 6(zH) seriously overesti~ates the initial hydrostatic stress. 

Let us now recall Eqs. (8) and (42) with the constraint" = " 0 , i.e., 

(45) 

(46) 

except that now" 0 ¢ eJe but is given by Eq. (43). Specifically in the case of the 
triaxial test: 

(47) 

(48) 

15 
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a 

Figure 1. Mean stress t1 versus plastic volumetric strain e:P. 
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(48') 

Equations (47) and (48) can be solved simultaneously to give: 

1 - [r L) 2 
deP o uo 

k dep - _(_]_~_O_efl_EP--.-e2""""'p-eP ____ 2 _____ (_s _)_2_2_..,,...,..1.,..,..2 

r o ~o -;- + 2 ;o + q- r o - 1 o a0 o 

(49) 

The constant r is determined at the point A where the slope of the curve 
of the shear-induced°hydrostatic strain versus plastic shear strain is zero. (See 
Fig. 2). Then it follows from Eq. (49) that 

(50) 

where sA is the value of s at_point A in Fig. 2. Since the right-hand side of 
Eq. (49) 1s now knpwn,. deP/deP may be found for various values of k. The one 
which provides the best agreement with the experimental data is chosen. 

Approximate Solution of Equation (49). 

The hydrostatic response can be determined explicitly by means of an 
approximate solution of Eq. (43). In effect, since p* exp(-p*zH} is close to a delta 
function, Eq. (43} becomes: 

* p ( -/J z. 11 
a = efte ;0 1 - e -,,J (51) 

Thus 

17 
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0 

Figure 2. Shear-induced hydrostatic strain versus eP. 
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(52) 

Equation (52) may now be used in Eq. (50) to give the following explicit result 

(53) 

·where 

peP 
• e D + (54) 

and 

(55) 

Solution of Eq. (49) for Asymptotically Small t10 • 

Of interest is the case of asymptotically small u0 and e~ in which event 

(56) 

and 

19 
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* -P ZH * 
1 - e N p ZH = p•eg (57) 

Thus Eq. (54) becomes 

2peg ]1/2 
e + s r 2 1 [P*<g)2 [u0 o) · (58) 

It follows, therefore, th. at a. t small values of" 0 , D is magnified and thus the value 
of dEeJdeP is depressed and the onset of ouatancy Js accelerated jn accordance 
with 5bservation. · 

'' 

2.3.5 The Shear Modulus G. 

The singularity of the shear kernel ensures that the behavior is always 
elastic at loading, unloading and reloading points, on the shear stress-strain 
curve. Thus the initial shear modulus is determined by the slope of the tangent 
at the origin of the shear stress-strain curve. Measurement of this slope at other 
loading and unloading points will determine if G is cor:istant. If not, then G will 
most likely depend on the second invariant of the elastic deviatoric shear strain 
tensor, i.e., 

(59) 

as was found to be the case in plain concrete (see Ref. 5). The form of the 
relationship will be found by measuring G at such points. In the present study G 
is considered constant and was determined from the initial slope of the shear 
stress-strain curve. 

2.3.6 The Devlatorlc Memory Kernel p(z0 ). 

The kernel pis determined from the deviatoric response equation (12), i.e., 
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Zo 

S = J P(2Q • Z") ~ dz' 

0 

(60} 

at a hydrostatic stress value "oat which the deviatoric hardening function F0 is 
normalized and equal to unity, i.e., 

(61) 

The-determination-otF0 forothervatues-ott1 wiil oe-discussed snortry. Tfius in 
the course of the shearing test conducted at " = " 0 , we have 

Now let z0 be the value of z at the conclusion of the hydrostatic test. Then in 
view of Eq. (62) · 

(63} 

Also let the right-hand side of Eq. (49) be denoted by a function 7(eP). This 
function is known from experimental measurement. Thus 

(64) 

Combining Eqs. (62} and (47) one finds the relation 

deP 1 
dz[) = ~( 1-+--7~2)~1"r.:'/2 (65) 
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Integration of Eq. (65) yields the relation 

(66) 

Let 

ge~ ~I 9('1J) (67) 

where g is a known function of z0 . Also 

(68) 

In view of Eq. (60) 

Zn 
s ("o) = J p ["o - z'J g(z' )dz' 

0 

(69) 

Equation (69) is a Volterra integral equation of the first kind which can be solved 
for p(z0 ) since both s and g are known .. The method of solution is given in 
Ref. 3. · · · . · . 

2.3.7 Determination of the Hardening Function F0 . 

The analysis behind the procedure was discussed at length in Ref. 5. Let 
s., be the value of s in the limit of large eP, in the course of a shear test at 
constant hydrostatic stress " 0 . Then it was sho~n in Ref. 5 that 

s., 
=-

"o (70) 

As a result, the dependence of F0 on" 0 , can be determined from data on 
shear tests conducted at several values of fixed hydrostatic pressure " 0 which 
span the hydrostatic range of interest. 
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Section 3 

APPLICATION TO ISST SOIL DATA 

. In this section, the endochronic model described in Section 2.2 is applied 
to ISST soil, using the laboratory data for reconstitutied ISST soil generated by 
WES specifically for this study [4]. Before the model wa.s fitted, the WES data 
were transformed from engineering strain to natural strain so that the resulting 
model would be appropriate for use in conjunction with existing wave 
propagation codes, which typically are formulated in terms of natural strain. In 
add.ition, the volumetric strain was determined from the data in a consistent 
manner, using Eq. (1) given earlier. The material functions and parameters of 
the model were determined from the WES ISST data according to the methods 
described in Section 2.3. Specific details of the manner in which this was 
accomplished, as well as the results, are given below. 

3.1 D ET ER M I NAT I 0 N 0 F H VD R 0 ST AT I C FU NC TI 0 NS AN D 
PARAMETERS. 

The measured behavior of ISST soil to pure hydrostatic. loading is shown in 
Figure 3, where the results from three separate tests have been plotted. As this 
figure rev~als, the unloading-reloading paths practically coincide,. indicating that 
the behavior along these paths is essentially elastic. In view of this, the 
dependence of the bulk modulus Kon elastic volumetric strain Ee (see Eq. (24)) 
was obtained from the unloading curve emanating from 57 MPa. The expression 

(71) 

where 

tb. = 50 tJPa, ~ · = 1 .426 x 1o1 O tJPa, m = 5. 2 (72) 

was found to describe the data very well. 

* ·See Appendix A for details. 
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Figure 3. Isotropic compression of ISST soils, showing comparison 
between endochronic model and data. 

24. 



SSS-A-88-9375 

The hydrostatic hardening function FH(eP) was determined as follows. 
First, a plot of pressure,"· versus plastic volumetric strain, eP, was constructed 
from the data shown in Figure 3, using the expression for the bulk modulus . 
given in Eq. (71) to define the elastic volumetric strain. Since the unloading­
reloading curves practically coincide, the kernel function ;{zH) must be very 
close to a delta-function and, for the present purposes, was inlact assumed to 
be one. When this is the case, the virgin hydrostat is given by the expression 
{see Eq. (29)): 

(73) 

This was fit to the" versus eP data, using Eq. (30), with the result 

(74) 

Wiere 

p = 19.5 (75) 

Turning now to the hydrostatic kernel function ;(zH), we adopted the form 
given by Eq. (16), i.e., . 

N -p z. I 

;(:z. .1 = L: Be rr1 
ru r=1 r (76) 

and set N = 2. To determine the Br and Pr' we proceeded as follows. First, let 
us set: · .. . 
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A plot was made, in terms of '7(zH) ve~sus zH, of the second reloading path 
shown in Figure 3. This plot shows that '1 approaches an asymptotic value, call 
it "•' as zH· + •. A further plot was made of 'I,. - 'l(z ) versus zH, and the 
resulting curve was fit, via Prony's method (see Ref. 1~, for example), by an 
expression of the form: · 

(78) 

Differentiating this with respect to zH, and recalling Eq. (38), it follows that 

(79) 

Wiere 

(80) 

Thus, since Pr and C are known from the Prony fit in Eq. (78), the Br are also 
known as a r.esult of Eq. (80). In this manner, the following values of Br and Pr 
were determined: · 

B1 = 1,680 MPa 

B2 = 11,610 MPa 

p1 .= 2,595. 

p2 = 13,680. 
(81) 

This completes the specification of the hydrostatic functions and 
parameters for ISST soil. A comparison between the model predictions based 
upon these:tunctions and parameters and the corresponding WES soil data [4] 
is shown in ·Figure 3. As an inspection of this figure reveals, the model does a 
remarkably· good job of capturing all of the details of the data. · 
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3.2 DETERMINATION OF SH EAR-VOLUMETRIC COUPLING 
PARAMETERS k AND r o· 

For the determination of k and r 0 , we will use Eq. (49) and the data given 
in Ref. 4 for the cases of shear at various fixed hydrostatic pressures. Attention 
is specifically focussed on the three cases for which the fixed hydrostatic 
pressure lies on the concave portion of the virgin hydrostat, i.e., those with fixed 
pressure of 3.45, 6.90 and 10.34 MPa. 

The importance of Eq. (49) lies in the fact that by fitting it to the appropriate 
shear-volumetric coupling data obtained from shear tests at constant hydrostatic 
pressure, the values of the parameters k and r 0 , can be found directly. Thus, 
the shear-volumetric coupling parameters do not need to be determined 
iteratively. It will be recalled that the parameter p was obtained independently 
from the pure hydrostatic compression data (see Eq. (75)) for ISST soils and has 
the vafue 19.5. 

It should be noted that Eq. (49) was derived on the assumption that the 
shear strain increases monotonically. However, the shear tests at constant 
pressure reported in Ref. 4 were, for other reasons, not performed under 
monotonic shearing conditions. In each test, the shearing was interrupted at a 
shear strain of 3 percent by an unloading-reloading process, and then the 
shearing was continued out to a shear strain of about 11 percent, after which 
unloading took place. The experimental data for these tests are shown in 
Figures 4 to 6, where the volumetric strain due to shear has been plotted 
against the plastic octahedral shear strain. These figures reveal that the soil first 
undergoes compaction up to a peak, followed by dilatancy with further increases 
in the shear strain. 

In applying Eq. (49) to the data depicted in Figures 4 to 6, we attempted to 
compensate for the effects of the unloading-reloading process at 3 percent 
shear strain. A numerical program was developed to integrate Eq. (49), and 
using this, the following values of k and r 0 were found to provide the best 
·correlation of the data from the three tests: , 

k = 0.6 
(82) 

r 0 = 1.25 MPa. 
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Figures 4 to 6 show comparisons between the data and Eq. (49) with the above 
values of the parameters. An inspection· of these figures reveals that the model 
captures the essential features of the data quite well, in view of the fact that the 
data were not obtained under truly monotonic shearing conditions. These 
figures demonstrate the ability of the model to _describe both compaction and 
dilatancy in accordance with experimental observation. 

3.3 DETERMINATION OF DEVIATORIC FUNCTIONS AND PARAMETERS. 

Figure 7 summarizes the measured dependencies of the octahedral shear 
stress on the octahedral shear st~ain from the nine shear tests reported in Ref. 4 
that were performed at constant· hydrostatic pressures. In view of the . 
remarkable consistency and reproducibility of these data, the care with which 
these experiments were done is clearly evident 

The deviatoric functions G,p_(Zi:J)andf=--were-determined from-one-ofthe­
tests depicted in Figure 7, namely, test ADC ~24 in which the fixed hyhdrostatic 
pressure was f?.90 MPa. The volumetric strain caused by the shearing was taken 
to be irreversible (fully plastic) and, in the developments which follow, will be 
denoted by Eg. ·From the data for test ADC 624, numerical tables of the relations 

,,. = ,,. ( 7P) 

Eg = Eg(7P) 

were constructed, where 

(83) 

(84) 

(85} 

Here; ,,. and 7 denote, respectively, the octahedral shear stress and the 
octahedral shear strain. Furthermore, 7P is the plastic component of 7, while G 
is the shear modulus.· 
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The shear modulus, and its dependence on 7, was found as follows. The 
response of the soil at the initiation of shear loading, as well as at the two points 
of unloading shown in Figure 7, is assumed to be purely elastic. On this basis, 
the slopes of the r versus 7 curve at these points defines the corresponding 
values of 2G. In this manner, the following dependence of 2G on 7 was found to 
provide a reasonable description of the data~. 

(86) 

Wiere 

~ = 500 fvPa 

(87) 
c0 = 3000 fvPa 

To determine the kernel function p(z0 ), we begin by rewriting Eq. (69) in 
the form 

r(w) =[,cw -w· i'/t dN' 

0 

(88) 

where T and 7P are, respectively, the octahedral shear stress and plastic 
octahedral shear strain, 

(89) 

and zg denotes the value of z0 at the end of the pure hydrostatic compression 
phase of the test. In Eq. (88), T(w) and d1P/dw(w) are presumed known while 
p(w) is to be determined. To determine T(w) and d1P /dw(w), the relation 
between 7P and w during shearing must be known. This relation was found by 
numerically integrating Eq. (49), which can be rewritten in the form: 
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[e2P•g + 3[:~ r)2 d.,P 
ON = '"'!'-{r-0 ---1-PE_g_2_p __ Eg---------[r-o -]-2-....... 1 ......... 2) 

-T+---e e +3 -r -1 
"o .f3 "o 

(90) 

Inasmuch as both,. and Eg are known as functions of 7P from Eqs. (83) and 
(84), the righthand side of E'q. (90) can be expressed solely in terms of7P, i.e., 
Eq. (90) can be written in the form: 

(91) 

and numerically integrated to give the relation 

(92) 

In this manner, the relation between wand 7P, shown in Figure 8, was obtained. 
The relation (92) was numerically inverted to give 

(93) 

Therefore, by using Eq. (93), the relations (83) and (84) were expressed in the 
form: 

r = 1"(W) 

(94) 

g_# = ~(w) 

Using these relations in conjunct.ion with Eq. (88), the resulting Volterra integral 
equation was solved numerically for p(w}, using a technique described in Ref. 3. 
The result was then fit by Prony's method [14] to yield the following expression 
for the shear kernel function: 
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Figure 8. W as a function of 7P for test ADC 624. 
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(95) 

(96) 

To provide a check on the internal consistency of the above operations, we 
performed the followin_g analysis. The expression given by Eq~ ~95) for p{z0 ), 
together with the derivative d;,tJ /dw obtained from the relation between 7P an cf w 
depicted in Figure 8, were used in conjunction with Eq. (88) to predict .,-(w). 
Figure 9 shows a comparison between the predicted .,-(w) and the coresponding 
.,-(w} from the data for test ADC 624. As the figure reveals, the agreement is 
quite good and thus validates the accuracy of the above technique. 

To determine the shear hardening function, F0 , we first recall that in the 
preceding devlopments we set F0 = 1 at the reference pressure _of 
"'A = 6.90 MPa. In view of this, we can write Eq. (70) as . 

(97} 

since s00 and .,. OD differ only by a multiplicative constant. The dependence of .,. OD 
on u0 , for the ISST soil, is given by the data in Figure 10 and is-found to have the 
following linear form: . 

(98) 
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where 

.,.5 = 0.15 fVPa 

(99) Ps = o.56 
' . ~ 

For the reference pressure of 6.9 MPa, we find from Figure 7 that 

(100) 

Thus, from :Eqs. (97) to (100), it foll.ows that 

(101) 

Yilere 

; 0 =:0.0375 
. . 

;1 =0.140rvPa-1 (102) 

The specification of the model parameters for the ISST soil is now 
complete. 
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Section 4 

NUMERICAL CONSIDERATIONS 

A numerical scheme is presented in this section for integrating the system 
of equations which govern the new endochronic model with iPilatancy described 
in Section 2.2. The scheme is explicit, first order accurate and based upon 
Euler's method. Accordingly, care must be taken in applying the method to 
ensure that the prescribed increments are sufficiently small so that the computed 
results are essentially independent of the increment size. Otherwise, the scheme 
is straightforward, efficient and easy to implement. 

Two different versions of the scheme are described below, namely, one 
which requires the prescribed strain history as input and one which requires the 
prescribed stress history as input. In both cases, the equations are restricted to 
principal directions of stress and strain. Another version that specifically applies 
to the standard triaxial compression configuration has been developed under 
separate contract [16]. A listing of a computer program for the version of the 
scheme that requires the prescribed strain history as input is given in 
Appendix B. 

4.1 BASIC EQUATIONS. 

The basic equations which govern the new endochronic soil model with 
dilatancy were given earlier in Section 2.2 but are summarized below for 
convenience; 

J
2c d~p 

§ = P(2c - z')dz' dz' 

0 t 

(103) 

I~ I~ . 
"= ~(~ - z')~ dz' + · r(~ - z') 

0 0 

(104) 

* A second-order accurate scheme has recently been developed by 
Murakami ar:id Read [15]. · 
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(105) 

(106) 

(107) 

dZcJ = dz/F0 (108) 

d1ti = dz/ (kFH) (109) 

Here, ~ denotes the deviatoric stress tensor, u is the hydrostatic stress 
(pressure), ~P represents the plastic component of the deviatoric strain tensor~. 
while EP is the plastic component of the volumetric strain E. Moreover, G and K 
are, respectively, the shear and bulk moduli, while k is a contant which 
determines the magnitude of shear-volumetric coupling. The double bars 
surrounding a symbol denote its Euclidean norm, while single bars denote 
absolute value. Furthermore, F0 and FH are, respectively, shear and hydrostatic 
hardening functions. In addition, z denotes the intrinsic time scale, while z0 and 
zH are, respectively, the intrinsic times for shear, dilatancy and hydrostatic 
behavior. Finally, p(z), ~(z) and r(z) are weakly singular kernel functions 
satisfying the condition p(O) = ;(O) .. = r(O) = oo, but integrable in the domain 
0 s z < 00, 

The weakly singular kernel functions can be expressed in terms of Dirichlet 
series: 

(110) 

( 111) 
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(112) 

where in order to satisfy the Clausius-Duhem inequality, it is necessary that 
ar ~ 0, pi~ 0, 7j ~ O and A ~ O, Bi~ 0, ri ~ O. Moreover, to ensure that p(z), ;(z) 
and r(z) are singular at the origin and integrable over a finite domain, we must 
have 

(113} 

and 

(114} 

. 4.2 INCREMENTAL FORM OF BASIC EQUATIONS. 

In applications of the theory to date, it has been found that two or three 
terms of the series (11 O} to (112) are usually quite adequate for representing the 
kernel functions. In such cases, however, care must be take~ to ensure that the 
infinitely large values of p(O), ;(o) and r(O) are approximated by suitably large 
finite values. When this is done, we can write: 

· ~ -a z 
p(z) ~ ~ Ar e r (115) 

r=1 

m L -p.z 
• I ;(z) = B;e 

1=1 
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(116) 

It then follows that the expressions for~ and (J, as given by Eqs. (103) and 
(104), can be alternately written as 

(117) 

m m 
q= ~p. + ~N. 
~I L___, I 

1=1 i=1 
(118) 

where Qi, Pi and Ni satisfy the following ordinary differential equations: 

r = 1,2, ... ,n (119) 

i = 1,2, ... ,m (120) 

i = 1,2, ... ,m (121) 

From Eqs. (117) to (121) we can write: 
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n 

A= LAr 
r=1 

m 

B=LBi 
1=1 

m 

r= Lri 
1=1 

m 
N= ~7· N. ~-1·1 

1=1 
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(122) 

(123) 

(124) 

Equations (122) and (123) provide a simple approach for incrementally 
integrating the stresses § and u, which is considerably more attractive from a 
computational standpoint than numerically coping with the hereditary integrals in 
Eqs. (103) and (104). 

In that which follows, explicit numerical schemes are presented for 
incrementally updating the endochronic equations given above when either the 
strain incrments or the stress increments are given. Because of the explicit 
nature of the scheme, it is necessary that the increments be taken sufficiently 
small to ensure accuracy. · 

4.3 PRESCRIBED STRAIN INCREMENTS A,. 

It is assumed that i· fl, fi!, fi!P, E, EP, Qr, Ni and Pi are known at the 
beginning of each prescribed strain incrment, ti,. From Eqs. (108), (109), (122) 
and (123), we can write 
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(125) 

(126) 

If we now combine these equations with the· incremental Hooke's Law, 
Eqs. (105) and (106), it follows that 

Afip = (A +123) [23 A~+ Q ~) (127) 

p 1 r 23 r · · f P + N · r (Q • ~) ...1 
AF- = (B + K) cKA-t: - A + a1 (§ • Afa) + l l<FH -- (A + ) D fiLf 

(128} 

Upon substituting these results into Eq. (107), the following quadratic expression 
for Az is obtained: 

a ~z2 + b Az + c ~ O . {129) 

where 

{131) 
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(132) 

It can be verified that the above expression for a, b, and c reduce to those given 
in Ref. 17 when dilatancy is not present, i.e., N = r = o. Equation (129) 
provides two roots Az1 2, the one of interest being the one for which Az ~ o. 
Once Az is known, AfAP and Ae:P can be obtained from Eqs. (127) and (128), after 
which A§ and A" can be obtained from Eqs. (125) and (126). Finally, Eqs. (119) 
to (121) are used to update the Qr, Ni and Pi. This approach, therefore, permits 
one to determine the stress increments, Ag;, for prescribed increments in the 
strain A,. 

4.4 PRESCRIBED STRESS INCREMENTS Al· 

In this case,·§, u, fA, ~P, e, iP, Qr, Ni and Pi are assumed to be known at the 
beginning of each prescribed stress increment Ag;. From Eqs. (109), (122) and 
(123); we can obtain the expressions: 

(133) 

p 1 [ r [P + N r lO • §)] J Ae = B Au - A (~ • A§) + kFH - A Fo Az . (134) 

Upon substituting these results into Eq. (107), we obtain the following quadratic 
expression for Az: 

a dz2 + b dz + c = O (135} 

where 
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a - 1 - Q • Q - L [P + N .; kr (Q • §)] 2 
- (A Fo)2 s2 FH A Fo (136) 

~ • A§ (k) 2 [ r ] [P + N r (Q • §) J] b = - 2 2 + e Au - A (§ • A~) k ~ - · A ~ (137) . F0 H D , 

{
A§ • A§ 2 2} 

c ~ - A2 + (~ [Au - ~ (:! • A~)] (138) 

Again, the root of interest from Eq. (135) is that for which ~z ~ o. Once Az is 
found from Eq. (135)-, l!.f and- teP carr be-determinettfrom· (1~3)- and· ( 1 S-4) ~ a ff er 
which A~ and Ile may be found from Eqs. (105) and (106). T~e Qr, Ni and the Pi 
are updated on the basis of Eqs. (119) to (121 ). This approach, therefore, 
permits one to determine the strain increments A~ for prescribed increments in 
the stress A~. 
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Section 5 

NUMERICAL ANALYSIS OF SHEAR AT FIXED HYDROSTATIC PRESSURE 

In order to provide a check on the accuracy of (1) the numerical scheme, 
(2) the computer program, and (3) the material functions and parameters that 
had been determined_ for ISST soil, we conducted a computer study of the four 
test cases of shear at fixed hydrostatic pressure reported by WES in 
Reference 4. The stress-drive version of the numerical scheme, described in 
Section 4.4, was used for this purpose, since the corresponding l~boratory tests 
had been conducted under stress-controlled conditions. The general stress 
path followed by these tests in the Rendulic plane is depicted in Figure 11, which 
shows the four legs consisting of (1) pure hydrostatic loading up to some fixed 
hydrostatic pressure " 0 , (2) shear loading at fixed " 0 , (3) shear unloading at 
fixed " 0 , and (4) pure hydrostatic unloading. 

5.1 DESCRIPTION OF DIFFICULTY. 

lhe numerical calculations proceeded smoothly and gave satisfactory 
results for the first three legs. However, on the fourth leg, which involved pure 
hydrostatic unloading, difficulties typically arose after the hydrostatic pressure 
had been reduced from between 20 to 25 percent of its peak value" 0 . Ttj 
elaborate on the difficulty in greater detail, let us first recall that, in the case of th~ 
stress-driven numerical algorithm, the increment in the intrinsic time Az is 
determined from the quadratic expression given by Eq. (135), i.e., 

a Az2 + b Az + c = O (139) 

where a, band care defined by Eqs. (136) to (138), but may be alternately 
expressed in the following form: 

Q • Q ( P*,...)2 
a = 1 - (A Fo) 2 - ~ (140) 
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Description of stress path in Rendulic plane for WES tests of shear 
at fixed hydrostatic pressure. 
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C = - {Aj • A~ + (k Au J2} 
A2 B ' 

if we set 

Au* = Au - ~ (~ • A~) 
H 

-" 
P* = p - t (~ • Qj 

. D 
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(141) 

{142) 

(143) 

(144) 

Inasmuch as Az is, by definition, unique and positive, an admissible solution of 
Eq. (139) is obtained when the two roots, Az, and Az2, are real, unequal and of 
opposite sign. When this is the case, Az is defined by the po$itive root, and the 
negative root is considered redundant. An admissible solution is therefore 
obtained when the following inequalities are satisfied: 

b2 - 4ac > o 
c/a < o 

(145) 

(146) 

Note from Eq. (142) that the parameter c is always negative~ The parameter b 
may be either positive or negative. Thus, if a < o then either real roots Az do not 
exist, or they both have the same sign. Either of these two cases is inadmissible 
and the computer program was designed to stop if this sit~ation arose. The 
parameter a must be positive if an admissible solution is to be obtained. 
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For the cases of shear at constant hydrostatic pressure that we studied 
numerically, the parameter a became negative in the early stages of the 
hydrostatic unloading leg and, when this occurred, the computer program 
stopped. To obtain an understanding of how this can occur, let us examine the 
governing equation for Az on this leg. Note that for hydrostatic unloading under 
zero shear, A§ = O so that Au* = Au. In this case, the solution of the quadratic 
equation (139) yields the following result: 

Az=~ 
P* • ]1 Q 2 - A"FD ~ 

[ P* ~2 Q 2 
1 - Erh. - A"FD 

(147) 

while the parameter a in Eq. (140) becomes 

(148) 

If F0 goes to zero as u tends to zero, as is the case with ISST soil if we disregard 
a very small cohesive strength, then it is possible for a to become negative, i.e., 

1 - (149) 

or 

(150) 

·Thus, in view of Eq. (147), both roots of Az will have the same sign. 
Furthermore, since Au is negative during hydrostatic unloading, both roots will be 
positive and therefore inadmissible since one does not know which of the two 
positive roots is the correct one, i.e., there is a uniqueness problem. 
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5.2 SOURCE OF DIFFICULTY. 

In order to determine whether or not the difficulty is of numerical origin, we 
took the following steps: 

1. First, each of the problems was rerun with a variety of different size stress 
increments, which varied by over an order of magnitude. As an extreme 
case, we used 20,000 stress increments on the fourth leg alone. 
Regardless of the size of the stress increment, the computer program 
stopped (because of the condition a < O) at virtually the same identical 
value of the hydrostatic pressure on the unloading leg in each case. The 
magnitude of the hydrostatic pressure at which this occurred was different, 
however, for each of the four cases considered. Thus, the difficulty did not 
appear to be due to increment size. 

2. Secondly, we replaced the usual approach for obtaining the roots Az of the 
-quadl"at~c--equat~on -(-139) -in -the computer program -by -a more accurate 
approach. As most numericists are aware, if the usual expressions are 
used to determine the roots of a quadratic, serious difficulties can arise. In 
particular, if either a or c (or both) are small, then one of the roots will 
involve the subtraction of b from a very nearly equal quantity (the 
discriminant) and the root will be determined very inaccurately. The correct 
way to compute the roots is as follows. If we set 

(151) 

then the two roots are 

(152) 

This method of determining the roots Az1 and A~2 was introduced into the 
computer program and had no perceptible effect on the results. The 
computer calculations continued to stop at the same locations on the 
hydrostatic unloading legs. 
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3. Next, the method of integrating the differential equations (119) to (121) for 
the Qr, Pi and Ni was improved. Consider, for example, the differential 
equation for Qr given by Eq. (119). A careful analysis shows that this 
differential equation can be integrated over a finite increment Az to yield the 
foflowing expression for the increment AQr: 

(153) 

where AzD = Az/FD. Similar expressions are obtained for APi and ANi. 
lnasmucti as the term inside the first parentheses on the right side of this 
equation has the potential for numerical difficulties when AzD is small, we 
replaced this term with an accurate Pads approximation to avoid the 
difficulty~ A.gain~ tb.a introductJon of this-improvement-into-the computer 
program had no perceptible effect on the calculational results and the 
calculatic;ms continued to stop at nearly the same location, as previously, 
on th~ hydrostatic unloading leg. 

In view of the fact that none of the changes described above to the 
numerical ~cheme had any significant effect in alleviating the problem of the 
parameter: a becoming negative on the hydrostatic unloading leg, it was 
concluded.that the problem was not numerical in nature. Attention was then 
turned to the model itself. 

We initially speculated that the problem may arise from the Dirichlet series 
representations for p(z ) and ;(zH) and, to explore this, we developed 
approximate, but reasonal61e, representations of p(zD) and ;(zH) based on the 
use of a single exponential in each case, which corresponds to~ internal 
variable. Using these representations for p(zD) and ;(zH), numerical studies of 
the problems of shear at constant pressure were redone, but this time the 
calculations proceeded to completion without difficulty over the entire four legs 
of the stress path. These results would certainly indicate that the difficulty was 
due to the. Dirichlet series representations for p(z ) and ;(z ). · On further 
reflection, however, it was concluded that this is no~ realistic. ~onsider that a 
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Dirichlet series represents a solid of some kind and the only thermodynamic 
constraint is that the series consist of positive decaying exponential terms. If we 
accepted the above plausibility, one must conclude that some solids suffer from 
this difficulty and some do not, a conclusion which is physically unrealistic. 

We now believe that the problem lies in the physics of the representation of 
the material behavior. For instance, in the developments to date, the parameters 
Ar have been assumed constant and the hardening function F0 has been taken 
to be a function of" only, although there is strong evidence that it also depends 
on eP. To elaborate, we note that various soils with different initial porosities 
exhibit different responses to shear. Hence, ~orosity must affect F0. However, 
since porosity and plastic volumetric strain e are interrelated, plastic volumetric 
strain must also affect F0 . It is very likely that the same will be true of the 
parameters Ar. A study 1s needed to examine this dependence with a view 
toward ensuring that the parameter "a" in Eq. (140) is never negative, whatever 
the stress (or strain) path. This will ensure that the difficulty will not arise. 
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Section 6 

CONCLUSIONS AND RECOMMENDATIONS 

On the basis of the analysis described in the preceding sections of this 
report, the following conclusions and recommendations are given: 

1. A new endochronic plasticity model for soils, which can 
describe both densification and dilatancy, has been 
successfully applied to laboratory data generated by WES for 
ISST soils. 

2. Appropriate theoretical methods have been developed from 
which the material functions and parameters of the model can 
be evaluated directly from two types of soil tests, namely, 

.(a) pure hydrostatic compression tests and (b) triaxial tests in 
whjch tha sou is sheared-at-fixed h}tdrostatic (not confining)­
pressure. 

3. An explicit, efficient numerical scheme was developed for 
numerically integrating the system of equations which govern 
the model. A corresponding computer program based on the 
.numerical scheme was also developed and applied to several 
·problems. 

4. ·A difficulty with the governing equations arose when the 
computer program was applied to the case of shear at 
.constant hydrostatic pressure. Specifically, on the final leg of 
the stress path for this case, which involves pure hydrostatic 
unloading, the computer program calculated inadmissible 
increments in the intrinsic time increment Az. 

5. A number of aspects of the numerical scheme were improved 
but none appeared to have any significant effect on alleviating 
the difficulty noted above. Decreasing the increment size by 
over an order of magnitude also had no noticeable effect. In 
view of this, it was concluded that the difficulty was !l.Q! of 
numerical origin. 
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6. We believe that the difficulty lies in the physics of the 
representation of the material behavior. It appears that the 
mathematical representations adopted in the present model 
for some of the material functions may not be general enough 
to describe some of the observed behavior of soils. A study 
is needed to explore this issue, with the goal of ensuring that 
the difficulty noted above will not arise, whatever the stress or 
strain path. 

In closing, we emphasize that this study represents the first attempt to 
apply the new endochronic plasticity model with dilatant capability to real soils 
and, in the course of the study, considerable new insight into the characteristics 
of the model was obtained. In view of the substantial promise shown by the 
model in describing the complex features of real soil behavior, we strongly 
recommend that a further study be undertaken to resolve the issue of the 
representation of material functions discussed above. 
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Appendix A 

TRANSFORMATION FROM ENGINEERING 
STRAIN TO NATURAL STRAIN 

The ISST soil data recently supplied by WES to S-CUBED for model 
development are expressed in terms of engineering strains. Most of the 
materials models used in the defense community, however, are based upon the 
natural (or logarithmic) definition of strain. In developing a constitutive model 
from the WES data for eventual use in conjunction with one of the material 
response coeds, the engineering strains given in the data must be transformed 
to natural strains for consistency. The purpose of this appendix is to document 
the equations for making this transformation. 

Analysis. 

Consider the small element of material, shown in Figure 1, which has sides 
of length L~, L~, and L~ in the initial (unstrained) state. . 

Figure 1. Unstrained configuration of material element. 

The element is strained in (principal) directions perpendicular to its surfaces so 
that.the l~ngths ?f the~ides become L1, L2 and '-3· Under these conditions, the 
engineering strains, e i , can be expressed as 

E L. - L<? 
I I 

E· = 
I L<? 

I 

(i = 1,2,3) 

while the corresponding natural strains, e~, are given by 
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(i = 1,2,3) (2) 

The minus signs appear on the right-hand sides of Eqs. (1) and (2) so that the 
strains will be positive in compression, which is the sign convention commonly 
adopted in soil mechanics. 

Equation (1) can be solved for Li to give 

L. = L9(1 - E~ 
I I iJ ( i = 1'2, 3) (3) 

which, when substituted into Eq. 2, leads to the expression 

(i = 1,2,3) (4) 

This equation, therefore, relates the engineering strains to the natural strains. 

Let us consider now the volumetric strain. The engineering definition of 
volumetric strain is 

(5) 

where V and v0 denote, respectively, the current and initial volumes of the 
element shown in Figure 1. In terms of natural strain, the volumetric strain is 
given by 
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v 

·~ = - J ~ = - 2n ~] 
Vo 

(6) 

In terms of the current and initial lengths of the sides of the small element, we 
can write 

(7) 

Equation (3) may be used in Eq. (7) to give 

(8) 

Combining this with Eqs. (5) and (6), we find 

(9) 

and 

(10) 

By setting 
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(11) 

Equations (9) and (1 O) can be re-expressed in the forms: 

E 
Ev = IE - 11 E + 111 E (12) 

(13) 

For small strains, Eqs. (12) and (13) reduce to the usual expressions for the 
volumetric strain given by the infinitesimal theory, namely, 

(14) 

Summary. 

Equation (4) ~ovides the transformation from axial engineering strains ET 
to natur,ijl strains f i, while Eq. (10) allows oge to obtain the natural volumetric 
strain f v from the axial engineering strains, E i . 
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Appendix B 

COMPUTER PROGRAM FOR 
ENDOCHRONIC SOIL MODEL, 

REQUIRING THE STRAIN HISTORY 
AS INPUT. 
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c Index convention: 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

c 

c 

i=l, ... ,numi 
j = 1, ... , numr 
k = 1, ... ,3 
I= 1, ... ,nleg(nl) 
n = 1, ... ,SUM[nleg(nl)] 
nl= 1, ... ,numleg 

parameter (maxi=lO,maxl=13,maxr=lO) 
implicit double precision (a-h,o-t) 
dimension de ( 3 ) 1 dep { 3 ) , deps( 3 ) , ds ( 3 ) , 

e ( 3 ) , ep ( 3 ) , eps ( 3 ) , epso( 3 ) , 
q ( 3 ) S ( 3 ) I Sig ( 3 ) I 

b (maxi) , biggam(maxi) , beta(maxi) , bign(maxi) , 
pi (maxi) , smlgam(maxi) , 
a (maxr) , alpha (maxr) , qr{3,maxr) , 
nleg (maxi) , epsleg(3,maxl) 

character•60 ndfile,nofile 

read 210, nofile 
read 210, ndfile 
read •, akzz ,am ,amuz ,beth,bets,betk 
read •, capkz,capkl,const,pr ,taus,cO ,sigt 
-~ -*, -numr ,-Ea{D ,-alpha(JL j:l,numr) 
read •, numi ,(b(i),beta (i),biggam(i),smlgam(i),i=l,numi) 
read •, numleg,nleg(l),(epsleg(k,2),k=l,3) 

pr nt 220, akzz ,am ,amuz ,beth,bets,betk 
pr nt 230, capkz,capkl,const,pr ,taus,cO ,sigt 
pr nt 240, (j,a (j),j,alpha (j),j=l,numr) 
pr nt 250, (i ,b (i), i ,beta (i), i=l,numi) 
pr nt 260, (i,biggam(i),i,smlgam(i),i=l,numi) 
pr nt 270, {1,nleg(l),(epsleg(k,1+1),k=l,3),1=1,1) 

open(unit=ll,file=ndfile,form='formatted') 
open(unit=12,file=nofile,form='formatted') 
read (11,•) 
read (11,•) 
read (11,•) 
read (11,•) 
read (11,•) 
read (11,•) 
read (11,•) 
read (11,•) 
read (11,•) 

write (12,310) 

capa=O. 
do 10 j=l,numr 

10 capa=capa+a(j) 

capb=O. 
gamO=O. 
do 20 i=l,numi 

64 



c 

c 

c 

c 

c 

c 

c 

c 

c 

capb=capb+b ( i) 
20 gamO=gamO+biggam(i) 

n=l 

do 120 nl=l,numleg 

epoldl=epnewl 
epold2=epnew2 
epold3=epnew3 
read (11,•) epnewl,epnew2,epnew3 
epnewl=-epnewl 
epnew2=-epnew2 
epnew3=-epnew3 

do 110 nn=l,nleg{l) 

nsteps=n 
n =n+l 
epso{l)=eps(l) 
epso{2)=eps(2) 
epso{3)=eps(3) 
eps (l)=epo I dl+ (epnewl-epo I dl) • (f I oat(nn)) /f I oat(n I eg_(l)J_ 
eps (2)=epo f dZ+(epnew2-epord2J • (f I oat(nn)) /f loat(n I eg{l)) 
eps {3)=e~old3+(epnew3-epold3)•(f loat(nn))/f loat(nleg(l)) 

dev=O. 
do 40 k=l,3 
deps(k)=eps(k)-epso(k) 

40 dev=dev+deps(k) 
ev =ev +dev 

do 60 k=l,3 
q(k)=O. 
do 50 j=l,numr 

50 q (k)=q (k)+alpha(j)•qr(k,j) 
e (k)=eps (k)- ev/3. 

60 de(k)=deps(k)-dev/3. 

p =O. 
f n::O. 
do 70 i=l,numi 
fn=fn+smlgam(i)•bign(i) 

70 p =p+beta(i)•pi(i) 

qde =O. 
qq ::(). 
qs ::(). 
sde ::0. 
dede::O. 
do 80 k=l,3 
qde =qde +q (k)•de(k) 
qq =qq +q (k)•q (k) 
qs =qs +s (k)•q (k) 
sde =sde +s (k)•de(k) 

80 dede=dede+de(k)•de(k) 
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c 

c 

c 

c 

c 

akz =akzz•dexp(-betk•evp) 
capk=capkz+capkl•pp 
amu2=amuz+const•dsqrt(gamz) 
gam =gamO•exp(-cO•evp) 
fs =(taus+bets•pp)/(taus+bets•pr) 
fh =dexp(beth•evp) 

abar=capa+amu2 
bbar=capb+capk 
smla=l.-qq/(abar•fs)**2 

. -(l./bbar••2)•((p+fn)/fh-akz•gam•qs/(abar•fs))••2 
smlb=-2•(amu2•qde/(abar••2•fs)+(akz/bbar)••2 

•(capk•dev-gam•amu2/abar•sde)•((p+fn)/(akz•fh) 
-gam•qs/(abar•fs))) . 

smlc=-((amu2/abar)••2•dede+(akz/bbar)••2•(capk•dev 
- amu2•gam•sde/abar)••2) 

arg =smlb••2-4.•smla•smlc 
dzl =-(.5/smla)•(smlb+dsign(l.dO,smlb)•dsqrt(max(O.,arg))) 
dz2 =smlc/(smla•dzl) 
if (arg.lt.O •. or.dzl•dz2.gt.O.) then 

print 290, nl,nsteps,arg,dzl,dz2 
end if 

dz =ma~(dzl,dz2) 
dzs=dz/f s 
dzh=dz/(akz•fh) 

devp=(l./bbar)•(capk•dev-amu2•gam 
/abar•sde+((p+fn)/(akz•fh)-gam•qs/(abar•fs))•dz) 

evp =evp+devp 
dwp =O. 
do 90 k=l,3 
dep(k)=(amu2•de(k)+q(k)•dz/fs)/abar 
ep (k)=ep(k)+dep(k) 
ds (k)=capa•dep(k)-q(k)•dz/fs 
s (k) =s (k) +ds (k) 
dwp =dwp+s(k)•dep(k) 
do 90 j=l,numr 
emsl=dexp (-alpha(j)•dzs) 
ems2=dxpldx( alpha(j)•dzs) 
ems =emsl•ems2 

90 qr(k,j)=qr(k,j)+ems•(a(j)•dep(k)-alpha(j)•qr(k,j)•dzs) 
pp=pp+capb•devp+gam•dwp-((p+fn)/(akz•fh))•dz 
do 925 k=l,3 

925 sig(k)=s(k)+pp 

do 100 i=l,numi 
bign(i)=bign(i)+gamO•exp(-cO•evp)•dwp 

. -bign(i)•smlgam(i)•dz/(akz•fh) 
emh=dexp(-beta(i)•dzh)•dxpldx(beta(i)•dzh) 

100 pi (i)=pi (i)+emh• (b(i) •devp-beta (i) •pi (i) •dzh) 
gamz =dsqrt({eps{l)-eps{2))••2 

. + (eps{2)-eps(3))••2 

. + (eps(3)-eps{1))••2)/3. 
if (sig(1).le.sigt.or.sig(2).le.sigt.or.sig(3).le.sigt) go to 130 
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c 

c 

c 

c 

c 

write (12,320) n,(eps(k),k=l,3),(sig(k),k=l,3) 

110 continue 

120 continue 

130 ca I I exit 

210 f ormat(a) 
220 format( , 

. 
230 format( , 

'akzz =',lpel3.6, 
amuz =',lpel3.6,/, 

, beth =',lpe13.6, , 
betk =',lpe13.6) 

, capkz =',lpel3.6, 
const =',lpel3.6,/, 
pr =',lpel3.6, , 

. , cO =',lpe13.6, 
240 format(/,(' a',il,' =',lpel3.6,' 
250 format(/,(' b',il,' =',lpel3.6,' 
260 format( (' biggam',il,'=',lpel3.6,' 
270 format(/,(' leg',i2,',',i6,' points, 
280 format('nsteps =',i5) 

am =' ,lpel3.6, 

bets =' ,lpe13.6, 

capkl =',lpel3.6, 

tauz =',lpe13.6, 
sigt =',1pe13.6) 

alpha',il,' =',lpe13.6)) 
beta',il,' =',lpel3.6)) 
smlgam',il,'=',lpel3.6)) 

sigleg =',lp3el4.6)) 

290 format('nl Lnsteps,_arg_,_dzl,_dz2' ,_2i6,_lp3el5. 7)_ 
310 format(' ~train drive endochronic model results',/, , ~ ~ ~ ', 

. . sigl sig2 sig3 ') 
320 format(i5,3fl0.6,3fl0.4) 

end 
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