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CONSTITUTIVE MODELING OF ROCKS 
WITH INTERNAL CRACKS 

1.0 INTRODUCTION 

The objective of this short study is to examine possible avenues of formulating a practical 

phenomenological model for analyses of the deformation of rocks subjected to mechanical 

compressive stresses. In view of this objective a compelling argument can be made for simplicity 

as a necessary attribute of models suitable for large scale computations. A model of this type 

should emphasize salient aspects of the deformation process at the expense of unimportant details. 

For this reason micromechanical studies provide a necessary_ background for constitutive_studies_of _ 
, . 

actual engineering materials. Finally, the analytical studies discussed in this report will eventually 

become a part of a comprehensive package including necessary experimental verifications. It is, 

therefore, necessary to keep the number of material parameters at a minimum and identify these 

material parameters with underlying physical processes. 

In order to further focus attention on mechanical response, only the quasi-static loading of 
dry rock specimens in isothermal conditions was considered in this initial phase of the work. The 

initial phase of this research program is restricted to studies of two-dimensional deformation 
pmblems of rock specimens subjected to large uniaxial stresses and smaller lateral confining 

pressures. Furthermore attemion is arbitrarily placed exclusively on the energy dissipating 

mechanisms associated with the sliding crack model which are commonly considered to be 

responsible for the major part of the inelastic deformation of compact rock specimens. 

In summary, the scope of this initial effort in formulation of a micromechanically based 

constitutive law for rocks is restricted to plane, laterally confined, brittle deformation of low­

porosity (compact) rocks subjected to quasi-static pressure. For some other rocks deforming under 

different conditions the essential aspects of the constitutive model as discussed within this report 

will ".":~main basically unchanged. Changes will, however, occur in many details related to different 

me•;::1~1isms of crack nucleation and growth (discussed in Section 2.0) which govern the rock 

deformation in a particular case. 
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The mechanical response of a compressed rock specimen containing a large number of sliding 
cracks which sequentially kink, grow tensile wings, interact with adjacent cracks and form large 
clusters (shear bands) of coalesced cracks is a complex problem. In general, a "rigorous" 
micromechanical study of such specimens (Kachanov, 1982; Steif, 1984; Panella and Krajcinovic, 
1988; Nemat-Nasser and Obata, 1988) requires analyses much too complex to be useful in 
practical applications. The present strategy calls for a less rigorous approach which is only inspired 
by the micromechanics of the deformation process. In each case, a single representative crack is 
selected in order to define the proper functional relationship between kinematic and force variables 
on the macroscale. Consequently, some of the parameters will have to be eventually fitted on the 
basis of the experimentally measured data. However, in each case, all relevant material parameters 
will be physically identified in order to enable rational design of an unambiguous experimental 
program for their determination. 

The proposed strategy for the formulation of a phenomenological model has an obvious 
appeal from a purely practical viewpoint. Material parameters will be identified allowing for 

_requisite-experimental-measurements. AdditianaHy, -phenomenological constitutive models in 
conjunction with traditional numerical algorithms (finite-element programs) are computatinally 
efficient. Thus, the selected strategy is, indeed, compatible with the organizational scheme of 
the entire WES directed research and development program. Finally, it seems ~at the proposed 
method may even be all that can, and perhaps should, be done at the present time. All "rigorous" 
micromechanical models include, of necessity, a string of simplifying assumptions which are 
seldom if ever realistic. For example, even the basic assumption of material homogeneity, used 
in all existing micromechanical models is, in case of natural materials such as rocks, seldom, if 
ever, fully justified. Consequently, the accuracy of the "rigorous" models. may often be 
questionable. In view of the required computational effort application of purely micromechanical 
models may, therefore, not be a rational choice. 
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2.0 MECHANISMS OF COMPRESSION-INDUCED 
MICROCRACKING IN ROCKS 

Rock is a natural, heterogeneous, cohesive material containing several types of inhomo­
geneities such as microcracks, pores, grain boundaries, joints, second phase inclusions, faults, 
etc. Under the action of externally applied stresses these flaws become stress concentrators. The 
ensuing stresses may lead to further degradation of material strength and, finally, to overall brittle 
failure. In unconfined compression tests, the microcracks grow predominantly in the planes parallel 
to the direction of loading. The final fracture in the form of splitting (slabbing) is commonly 
attributed to the unstable growth of several largest, and most favorably oriented cracks that 
propagate longitudinally towards the specimen's ends. The final failure is abrupt (almost perfectly 
brittle) and the inelastic strains at failure very small. In contrast, when lateral confinement is 
present, the deformation process is much more complex since it incorporates both brittle and 
ductile deformation modes. The final fracture (faulting) in a confined specimen results from the 
cooperative action of many small defects (cracks) which grow, interact and eventually form a 
dominant shear fault at some angle to the maximum load axis. Formation of a dominant shear fault 
implies a failure process which is more gradual and involves substantial dissipation of energy. The 
stress-strain curve in this case visibly deviates from the straight line and the inelastic and elastic 
strains at failure are typically of the same order of magnitude. 

Several micromechanical mechanisms were proposed in the literature to model the complex 
process of rock deformation. However, it would be unrealistic to expect that any of those 
mechanisms can capture all of the salient features observed and reported in experimental studies. 

· The most commonly used models for crack initiation and evolution in rock deformation are briefly 
summarized below together with appropriate comments on their applicability in rock mechanics. 

For highly porous rock, such as some sandstones, the inelastic deformation is commonly 
attributed to the micromechanism shown in Fig. 2.1. The crack nucleation is attributed to the 
presence of rather large pores assumed to be spherical in shape. Under external compressive 
loading at low co;;:i:~!:1g stress a2, tensile hoop stresses are generated at the apex of a spherical 
pore (void). The stress concentration may be funhe: increased by presence of small notches on 
the pm;; ::urface. When the tensile hoop stress near the pore surface (or the notch tip) exceeds 
the locai fracture strength of the material, Mode I (tensile) microcracks develop in the direction 
of the axial stress 0'1 (cf. Sammis and Ashby, 1986). 
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t 
Fig. 2.1. Void (pore) model for crack growth in compression. 

O't is the axial and cr2 the confining stress (I cr1 I )) I cr2 I). 

An alternate mechanism to the pore model attributes the inelastic deformation to preexisting 
closed cracks (slits) in the material. The sliding crack mechanism, shown in Fig.2.2, was used 
extensively to model the dilatant response of low-porosity rocks (granite) which cannot be 
explained by the pore model (see, for example, Brace and Bombolakis, 1963, Horii and Nemat­
Nasser, 1986, Fanella and Krajcinovic, 1988, Nemat-Nasser and Obata, 1988, Kemeny and 
Cook, 1991, etc.). The deformation mechanism for low-porosity rocks is much more complex. It 
involves a succession of events such as frictional sliding, followed by kinking of the original 
(preexisting) crack and Mode I growth of kinked (wing) segments of the crack. In dependence of 
the degree of confinement the growth of the kinked parts of the cracks (wings) may be either stable 
or unstable. In unconfined specimens the ultimate failure occurs as a result of sudden (unstable) 
growth of a single crack (splitting). The inelastic strain at failure is in this case very small. In the 
confined case failure is associated with cooperative action of many cracks forming a crack band. 
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The transition from one mode of failure to the other is commonly referred to as the brittle-to-ductile 
transition. The details of the deformation process for the case of the sliding crack mechanism will 
be discussed in sufficient detail later in this report. 

Fig. 2.2. Sliding crack mechanism.The preexisting crack has the 
length 2c. 01 is the axial and 02 the confining stress (I 01 I > I 02 I). 
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Among other brittle mechanisms of microcracking in heterogeneous rocks, the most common 
are the elastic mismatch mechanism and the bending mechanism. The elastic mismatch model 
emphasizes the role of the local tensile stresses at the interface of two elastic materials with 
different elastic moduli (E 1 > E2), e.g. matrix and inclusion. The tensile stresses resulting from the 
unequal lateral expansions of these two materials often suffice to cause nucleation and subsequent 
propagation of a microcrack as shown in Fig.2.3a (Kemeny and Cook, 1991). According to the 
bending model, the tensile stress needed to trigger microcrack growth occurs as a result of bending 
a soft and elongated particle spanning two harder inclusions, as shown in Fig.2.3b. 

(b) 

CJ1~ 
E1 

0'2 ..__ __. 
E2 

i i 
Fig. 2.3 (a) Elastic mismatch model for axial cracking in compression. 

(b) Bending model for crack growth under compression. 
In both cases the material at the top has inferior stiffness and strength 

and I ail > I 02 I. 

The above summary of crack initiating mechanisms is brief rather than exhaustive and 
comprehensive. Other mechanisms can occur depending on the rock microstructure, loading, 
temperature, and strain rate. 
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3.0 MICROMECHANICAL BASIS FOR A 
PHENOMENOLOGICAL DAMAGE MODEL 

A two-dimensional phenomenological damage model proposed in this report addresses brittle 
deformation of low-porosity rocks attributing the inelastic defonnation solely to the development of 
the sliding crack mechanism sketched in Fig.2.2. This mechanism is widely used in the 

micromechanical modeling of rock inelasticity because of its ability to describe some of the major 
trends of mechanical behavior observed in experiments. The characteristic aspects observed in 
compressive tests of low-porosity rock specimens are: large inelastic lateral strain as compared to 
inelastic axial shortening (resulting in substantial increase of the apparent Poisson's ratio), 
increasing dilatancy, and dominant effect of the degree of lateral confinement on the failure modes 
(faulting) and on the ultimate strength of a specimen. Most of these aspects can be explained by the 
sliding crack deformation model which is, therefore, considered to be the dominant mechanism of 
inelastic deformation of low-porosity rocks of significant strength. Micromechanical analysis 
contained in this section summarizes some of the results for the sliding crack model available in the 
published literature. This micromechanical analysis is used in the formulation of a phenomeno­
logical model for the deformation of a low-porosity rock in Section 4.0 of this report. Essential 
differences between brittle and ductile response of low-porosity, high-strength rocks are listed in 
Table 3.1 below. The numbers listed in Table 3.1 are typical and may change from one specimen 
to the other. 

Table 3.1. Brittle vs. Ductile Response of Confined Low-Porosity 

Rock Specimens Subjected to Compression 

RESPONSE 

Failure mode 

Inelastic strain 

at failure 

BRITILE 

< 0.1 to 0.2 

Slabbing or spalling. 

Unstable propagation 

of a single crack. 

Small compared to 

elastic strain. 
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DUCTILE 

> 0.1 to 0.2 

Coalescence of many 

small cracks into a 

crack band. 

Approximately equal 

to elastic strain. 



3 .1 Deformation Process. 

The entire deformation process of a typical low-porosity rock specimen subjected to 
compression can be interpreted as a sequence of several distinctly different phases. Since the 
deformation mechanisms are different in each of these phases, they will be discussed separately in 
the order of their occurrence. A typical macrostress vs. macrostrain (or better, "force -
displacement") curve for a low-porosity rock subjected to a single compressive loading cycle is 
sketched in Fig. 3.1. Points A to E correspond to the succession of different deformation phases to 
be discussed in the sequel. 

O' 
F --..... , 

, 

t ~ 
O'oc 

O'oc 

"--~ 

0 

Fig. 3.1. A typical stress-strain curve for a low-porosity rock specimen 
subjected to uniaxial compression. 

Phase I. During the initial or first loading phase (segment OB in Fig.3.1) a compact rock 
usually deforms elastically. In some cases an increase of tangent modulus is observed as a result of 
crack closure (segment OA in Fig. 3.1). At the current phase of the model development 
deformation due to the crack closure is neglected, and the rock is assumed to be perfectly elastic. 
Thus the stress-strain curve in the region OA will be modeled by a straight line. Since a typical 
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rock contains many crack-like defects this assumption implies that these defects stay closed for the 
duration of this phase, and that the cracks do not create any discontinuities in the displacement 
field. Needless to say, during the deformation in Phase I no energy is dissipated since the 
compaction is elastic. 

Phase II. Phase II of the deformation process is characterized by the onset of inelastic 
deformation (point B in Fig. 3.1) attributed to the frictional sliding over the preexisting cracks. 
During this sliding the cracks do not change their length. In other words, no new internal surfaces 
are created in the material, and the frictional sliding of the crack faces in a shearing mode is the 
only energy dissipating mechanism. 

ex= 7t/4 

/ 
2c 

/ 
Fig. 3.2. Representative sliding crack before wing formation (Phase Il). 

For the modeling used in this study, consider first a representative defect. As a representative 
initial (preexisting) microdef ect, select a single, closed, rectilinear microcrack (slit) of length 2c 
inclined at an angle ex= 7t/4 with respect to the direction of principal compressive stress cr1 > cr2, 

Fig. 3.2. The matrix surrounding the rectilinear slit is assumed to be homogeneous, isotropic and 
elastic. Compressive stress and shortening are assigned positive sign. The resolved shear and 
normal stresses acting on the crack faces are 
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' 1 
't12 = (l/2)(0'1 - cr2)sin2a = 2 (0'1 - cr2) 

(3.1) 

O'~ = O'n = (l/2)[(cr1 + cr2) - (cr1 - cr2)cos2a] 

where prime indicates local (crack) coordinate system. The axis 2' is colinear with the normal n 
(Fig. 3.2) to the slit. 

During Phase I of the deformation process the slit is closed and resists relative displacement 

of its faces. At the onset of Phase II the resolved shear stress t 0

12 exceeds the frictional and 
cohesive resistance at the crack interface triggering relative sliding of the two crack faces in contact 
Assuming a Mohr-Coulomb type relationship the effective (or net) shear stress responsible for the 
relative motion (frictional sliding) of the slit faces (attached to each other only at crack tips) is 

'teff = 't0

12 - (µcr~ + 'tc) > 0 (3.2) 

_As_soon_as_theinequality-(3.2) -issatisfied,-du.ting-the -loading proc-ess, frictional sliding will begin 
(point B in Fig. 3.1). The onset of inelastic deformation associated with frictional sliding is 
reflected in the initial deviation of the stress-strain curve from the straight line shown in Fig. 3.1. 
In (3.2), µ is the coefficient of friction (assumed to be constant), tc is the current value of cohesive 

shear strength of the matrix. A preexisting slit may also be curved or locked by a hard particle. 
These cases would require appropriate changes of the sliding condition (3.2). The shear resistance 
to a large degree depends on the roughness of the slit faces, i.e. interlock of surface asperities. 
Thus, in the case of cyclic loading it seems reasonable to assume that the shear resistance will 
decrease with each loading cycle as these asperities are sheared away. The slit length 2c remains 
constant during Phase II (segment BC of the stress-strain curve shown in Fig.3.2) of the 
deformation process. 

Phase Ill. Once the frictional sliding is initiated (and the inequality (3.2) satisfied), the 
considered crack is subjected to Mode II loading. In other words, the singular stress field at the 
crack tip acting as stress concentrator, is dominated by the Kn stress intensity factor. At some point 

the maximum energy release rate G(0) = Kft I E will reach the threshold or critical value 
(characterizing material toughness) in a plane at an angle 0 with the original slit The stresses in the 

vicinity of the crack tip are linear and homogeneous functions of the stress intensity factors. Thus, 
the critical value of the energy release rate can also be interpreted as a critical value of the maximum 
tensile hoop stress in the vicinity of the crack tip. Regardless of interpretation, at this point the slit 
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will suddenly sprout a wing crack at each tip (point C in Fig. 3.1). This wing crack will be at an 
angle 0, subtending approximately an angle of 70 degrees* (Fig. 2.2) with the direction of the 
original slit. As the wing crack grows from the near-field of the initial slit (wing length is small in 
comparison to the length of the preexisting slit, oL << c), dominated by the stress intensity factor, 
into the far-field of the macrostresses (wing length is larger than the length of the original slit, AL 
> c) the crack shifts from a mixed-mode (coupling Mode I and Modem to a single-mode (Ky> 0, 
Kn= 0) tensile or cleavage loading (Lawn and Wilshaw, 1975). The actual orientation of the 
original slit is important only during the initial phase of the wing growth (L << c). After a short 
initial curved segment, the wings will align themselves with the compressive stress cr1 and become 
rather straight. 

t 
Fig.3.3 Sliding crack mechanism with simplified wing geometry. The applied stresses 

and_ forces on the crack and the gap opening displacement u are shown as well. 

*A Table of factors for converting non-SI units to SI (metric) units is presented on page iii. 
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Having in mind the relative insensitivity of wings on the actual direction and even size of the 
original slit, it is sufficient to consider a representative kinked crack sketched in Fig. 3.3. The 
original slit is at an angle of 45 degrees with respect to principal macrostresses 0'1 and 0"2. The 
wing cracks which are slightly curved, according to the linear elastic fracture mechanics theory 
based on the assumption that the matrix is homogeneous, are approximated in subsequent analysis 
by straight lines colinear with the principal compressive macrostress 0'1. The heterogeneity of the 
rock, i.e. inhomogeneous distribution of fracture strength across the volume, has a strong 
influence on the shape of the crack. Thus, the nicely curved wings (Fig.2.2), obtained from 
theoretical analyses assuming homogeneous material, are never observed in natural rock 
formations or even experimental specimens. Consequently, simplifying the wing crack geometry 
(Figs.2.2 and 3.3) to make the model tractable is more than justified. 

The two sources of inelastic strains occurring during Phase Ill (region between points C and 
Din Fig. 3.1) of the deformation process are the displacement discontinuities associated with the 
openings of wing cracks, and the frictional sliding across the faces of the preexisting slit. 

-Assuming-that-the-directions-of-macro-(-average) stresses do not rotate and strains remain small 
during the entire deformation process, the total strain tensor e can be decomposed into four 
component tensors 

(3.3) 

where ev is the strain due to the initial compaction of pores, ee= S:O' is the elastic deformation of 
the matrix (with S being the compliance tensor depending on the already accumulated damage), ef 
is the strain due to frictional slip of preexisting cracks and eC is the strain due to the opening of the 
wing cracks. The original, preexisting crack remains closed and contributes to inelastic 
deformation exclusively through the frictional slip. Additional strains due to thermal effects, 
chemical reactions, pore pressure, etc. may be added to the right-hand side of the expression (3.3) 
for the total strain. 

Phase IV. Assuming that the macrostrength of the specimen was not exceeded, the final 
phase of the deformation process consists of unloading (segment DE of the stress-strain curve in 
Fig. 3.1). In the course of quasi-static unloading (starting at the point Din Fig. 3.1), the material 
response is initially linearly elastic up to a point E. In general, the axial elastic modulus in the 
region DE will be slightly reduced in comparison with its initial value measured from the slope of 
the segment AB of the stress-displacement curve. This results from the fact that following the 
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loading cycle to the point D the rock specimen becomes more compliant due to additional 

microcracking. However, for the assumed representative kinked crack (Fig. 3.3), consisting of the 

preexisting slit oriented at 45 degrees and straight vertical wings parallel to the axial compressive 
stress cri, the elastic modulus in unloading (DE) is assumed to remain virtually the same as for the 

segment AB of the stress-strain curve. During the elastic unloading, all the preexisting slits are 

locked and the wing cracks remain open. At the point E, the backsliding on some preexisting flaws 

commences. 

The initiation of the backsliding process can be determined in the following way. Denote by 

~ff the maximum effective elastic shear stress stored in the material (corresponding to the stress 

state at the point D in Fig. 3.1) surrounding the crack faces during the loading process. If the 

unloading starts, this stress acquires the opposite sign. The condition for the onset of the reverse 

sliding becomes (e.g. Jaeger and Cook, 1979) 

(3.4) 

where 't1

12 and CJ'n are current values of the shear and normal stress acting on the preexisting crack, 

Fig. 3.3. As soon as the unloading commences the direction of the frictional resistance changes its 

direction as well. The effective shear stress acting on the face of the inclined part of the kinked 

crack (Fig. 3.3) is 

_m 'm 
.,eff = 't12 - µag1 (3.5) 

where superscript m denotes stresses at the peak of the preceding cycle (point Din Fig. 3.1). Note 

that in (3.5) the cohesive shear stress, 'tc, vanishes at the peak of the er-£ curve. Denote further the 

reduction in normal and shear stresses (taken with respect to the corresponding stresses at point D 

in Fig. 3.1) by 

(3.6) 

Introducing (3.5) and (3.6) into the condition for backsliding initiation (3.4) leads to 

(3.7) 
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According to the inequality (3.7), the reverse sliding will start if the drop in the shear stress and 
reduction of frictional resistance along the crack faces exceeds the threshold value 2µCJW. In the 
case of the uniaxial compression (a1:#-0, a2 = 0), the reverse sliding condition (3.7) reduces, for 
the crack angle of 45 degrees, to a much simpler form 

(3.8) 

where of denotes the maximum compressive stress applied to the specimen in loading (point D in 
Fig. 3.1). 

The permanent (residual) strain that remains in the specimen after a complete unloading (i.e. 
when the externally applied stress a is reduced to zero) is commonly attributed to the imperfect 
crack closure and to a lesser extent to the plastic strains in the vicinity of the tips and kinks of the 
crack shown in Fig.2.2 (if the lateral confinement was present). Determinations of the permanent 
strains were considered to be beyond the scope of the initial phase in the model development 

Softening Regime. Finally, in certain cases it becomes necessary to consider the softening 
(descending) part of the stress-strain curve (beyond apex F sketched by dashed lines in Fig. 3.1), 
i.e. the part of the curve for which the tangent modulus becomes negative. These analyses are 
rather difficult and the deformation process is still not well understood. In consideration of the 
deformation processes developing in the course of all phases preceding softening it was tacitly 
assumed that the defects are small in comparison with the specimen and that the distribution of 
defects is such that the specimen can be considered macrohomogeneous (i.e. homogeneous in a 
statistical sense). These assumptions are not valid in the case of softening. Softening deformation 
of the specirnen·is dominated by the largest cluster of coalesced defects (macrocrack). This cluster, 
in general, has a random geometry, which in an essential manner, depends on the details of the 
microstructure and the initial distribution of microdefects. Consequently, the mechanical response 
during this phase of the deformation is strongly influenced by the higher statistical momenta 
(statistically unlikely events) of the initial defect distribution. Correspondingly, the purely 
deterministic models of softening (or post-localized response) available in the existing literature are 
of dubious merit. The deformation beyond the apex of the stress-strain curve is not considered in 
this report. 
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3 2. Strain - Displacement Relations 

The principal objective of the micromechanical studies, presented within this section, is to 
investigate the relations between the displacement discontinuities imposed by cracks and the overall 
(macro) strains. In a rigorous micromechanical analysis this task involves, in addition to the 
following development, a homogenization (averaging) procedure in order to estimate the 
contributions of all microdefects within a representative volume element. Consequently, this 
procedure involves a nontrivial computational effort even in the case of homogeneous stress and 
strain fields. In the case of nonhomogeneous stress and strain fields the data bank containing all 
relevant information regarding microclefects in each material point of the specimen is too large to be 
manageable in practical applications (see Krajcinovic, 1989). Thus, in view of the stated 
objectives, the task is herein somewhat simplified considering only a single, representative crack 
and its contribution to the macrostrains. 

Inelastic Strains Attributed to Frictional Sliding. The inelastic strains associated with the 
relative frictional slip cf the faces-of a-dosed-rectilinear- s-lit, can-be-computed-by-the--method­
suggested in the Nemat-Nasser and Obata (1988) model. In general, the strains due to 
discontinuities of the displacements (in any mode) u along a surface (-a S: .Q. S: a) with normal n, 
can be, using the conventional divergence theorem, readily written in the form 

a 

eij' = (N/2) J (nj'ui' + ni'uj') d.Q. (3.9) 
-a 

where N is the crack density (number of cracks in a unit volume) and the integration extends over 
the entire surface (or in this case, length) of the discontinuity. 

During the course of Phase II of the deformation process the inelastic strains are attributed 
solely to the frictional sliding (El* 0, ec = 0). Assuming that the initial rectilinear crack (slit) is 
closed and remains closed throughout the entire process of sliding, it follows from (3.9) that in the 
local (crack) coordinate system (l ', 2') the macrostrains associated with frictional sliding are 

(3.10 a) 
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N e e 
£12' = £21' = 2 f (n1'u2' + n2'u1')da = N Ju1'da = Nuc 

~ 0 
(3.10 b) 

In expressions (3.10) n1'=0 and Ui'=O since the slit is rectilinear with normal n2' and the only 
displacement discontinuity is attributed to sliding motion u1' in the direction of the coordinate axis 
l'. Since the present analysis is two-dimensional, Nin the formulas (3.10) denotes the number of 
cracks per unit area. Consequently, N is the property of the specimen reflecting the degree of 
damage existing in the specimen prior to the considered loading. The average slip u (Fig.3.3) is 
determined averaging the Mode II crack opening displacement over the crack length. In the global 
coordinate system (1, 2) the strain tensor due to sliding takes the form 

£f .. =£ ·[1 o]=fu[1 o] 
IJ 12 0 -1 C 0 -1 (3.11) 

where f = Nc2 is a parameter characterizing crack size and density. The equations (3.11) are 
obtained from (3.10) using coordinate transformation from the primed (slit) to the fixed (global) 
coordinate system. 

Strains due to microcracking. During Phase III of the deformation process the relative sliding 
of the faces of the preexisting crack is coupled with the growth of tension wing cracks, so that Ef-f ~ 
0, £e ~ 0. The onset of cracking (point C in Fig. 3.1) is defined by Griffith's instability condition 
at the crack tip 

G= Ge (3.12) 

where G is the elastic energy release rate, and Ge is the critical elastic energy release rate and is a 
material parameter defining the fracture toughness of the rock specimen. Unfortunately, Ge is not 
always a constant and is dependent on several aspects of the geometry and state of stress. Initially, 
the energy release rate G is associated with the frictional sliding on the preexisting slit, i.e. Mode II 
loading. 

Consider first the relation between the macrostrains and the displacement discontinuities 
imposed by the kinked crack shown in Fig. 3.3. Relative sliding of the faces of the preexisting 
crack creates concentrated discontinuities (gaps) at the points A and A'. Opening of the wings due 
to the gaps created by the sliding crack faces contributes to the global strain £8 as (see, for example, 
Nemat-Nasser and Obata, 1988) 
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(3.13) 

The lateral stresses 02 (assumed to be compressive) resist this opening displacement of the 

wing cracks. The resulting strain associated with the resistive action of lateral stresses is (see again 

Nemat-Nasser and Obata, 1988) 

1 - v2 JCL2 [ O 
ejj = f 4E ~ 0 (3.14) 

where v is the Poisson's ratio and E the elastic modulus. The component of the total strain related 

to the average crack opening displacements (3.13) and (3.14) is efj = Efj + e!j· 

33. Stress -Displacements Relationship 

The ultimate objective of this exercise is to derive a relation between the macrostrains and 

macrostresses in a rock specimen under considered loading conditions. In the preceding section, 

the strains were derived in terms of the average displacement discontinuities u. Hence, the next 

task consists of the determination of relations between the displacement discontinuities u and 

macro-stresses a. In general, this task involves application of the methods of linear elastic fracture 

mechanics. Most of the expressions to be used in this section are available in collections of 

t:xpressions for the stress intensity factors such as that by Murakami (1987) and others. 

Frictional Sliding of the Faces of the Preexisting Rectilinear Slit. Consider first the relative 

Mode II sliding of the two faces of the preexisting crack subjected to effective shear stress. In this 

case the displacement discontinuity occurs only in the direction of the slit plane. Since the slit is 

fixed at two ends, the displacement discontinuity must be averaged over the length of the slit, 

2 c 
u1' = 16(1-v ) 1 J< 2 2)1/2 dx = 

1tE(2-v) 'teff 2c -c c - x 
4(1-v2) 

E(2-v) C'teff 
(3.15) 

Combining (3.11) and (3.15) it becomes possible to relate the macrostresses and macro­

strains by elimmating the displacement discontinuity u. 
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Kinked Crf!ck. In order to compute the strains from (3.13) and (3.14) it is necessary to 
determine the amount of average slip u and the size of the wing crack L as a function of macro­
stresses. Both of these quantities can be determined if the stress intensity factor K1 at the tip of the 
kinked crack is known. 

F 

Fig. 3.4. Actual kinked crack and substitute rectilinear crack. 

The stress intensity factor Ky at ·the tip of the wing crack can be computed from deformations 
and forces. However, a closed form, analytical solution for the stress intensity factor of the actual, 
kinked geometry is not possible. Approximating the actual crack by a rectilinear crack as shown in 
Fig. 3.4 and subjecting it to concentrated forces F = 2cteff at the crack center and lateral uniformly 
distributed stresses 0'2, Horii and Nemat-Nasser Q986) were able to compute the stress intensity 
factorK1 as 
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(3.16) 

where, L * is included to render K1 nonsingular when L -+ 0. The constant L * can be computed 
from the condition that K1 given by (3.16) in the limit as L-+ 0 reduces to the solution by Cotterell 
and Rice (1980) for a kink initiation. In the present case (a= 45 degrees) it follows that 

L* 
c 

32 = 0.21 
9x2[sin(7t/8) + sin(3x/8)]2 

(3.17) 

Numerical computations for a crack of actual (kinked) configuration demonstrate surprising 
accuracy of the expression (3.16) developed for the substitute rectilinear crack sketched in Fig. 
3.4. 

Alternatively, the stress intensity factor K1 at the tip of the wing crack can be determined 
assuming that the crack is wedged open at the wing root by displacement u (relative sliding along 
the preexisting slit). In this case the stress intensity factor K1 is 

(3.18) 

where L** plays the same role as L* in (3.16) and was found to be (L**/c) = (x2/32)(L*/c) = 
0.065. The first term on the right-hand side of (3.18) reflects the contribution of wedging, while 
the second term defines the resistive role of the lateral confining pressure. 

Expressions (3.16) and (3.18) represent the same quantity. Thus, 

(3.19) 

whenever the sliding activation condition (3.2) is satisfied. 

Substituting expressions (3.16) and (3.18) into (3.19) it was possible to derive the 
expression for the average slip along the preexisting crack as a function of the applied stresses 
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(3.20) 

The length of the wing crack can be obtained from the Griffith condition (3.12). The ensuing 
expression can be arranged in the form of a rather complicated fourth-order algebraic equation 
which cannot be solved in a closed form 

(3.21) 

where L =(lie)+ (L*/c). However, since (L*/c) << (L/c) for long wings, (L*/c) can be neglected 
at latter stages of the deformation process (i.e., when the inelastic deformation is more pro­
nounced). In this case, the aspect ratio (Uc) can be derived from the expression (3.21) in the form 

--ofa-simplere:xpression 

L = Kfc + 212°c'teff0'2 - K1cVKfc+ 412°c'teft0'2 
c 2xco1 

(3.22) 

Having determined the average slip and the kink length as functions of stresses, it becomes 
possible to compute the macrostrains from (3.11), (3.13) and (3.14). As is always the case in 
micromechanical modeling, all material constants involved have a clear and well-defined physical 
meaning allowing unambiguous experimental identification. In the case considered here these 
material parameters are: elastic constants, fracture toughness Kie. average initial preexisting crack 
length c, and initial crack density parameter f = Nc2 for a specific rock sample. 
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4.0 PHENOMENOLOGICAL MODEL 

The micromechanical analysis of the preceding section will now be used as a background to 
formulate a phenomenological constitutive model for the inelastic behavior of a brittle rock under 
compres:;ion. For the assumed cracking mechanism and the crack configuration shown in Figs. 
2.2 and 3.3, it directly follows that nonlinear axial strain can be attributed primarily to the sliding 
on preexisting cracks. The lnteral strain, however, can be traced both to sliding and opening of the 
wing cracks and is, therefore, more pronounced than the axial shortening of the specimen. This 
fact is corroborated by existing experimental data for hard rocks such as granite (e.g. Zoback and 
Byerlee, 1975). The same conclusion is, however, not always true for concrete (see, Krajcinovic, 
et al. 1991) and may, therefore, be questionable in the case of porous rocks as well. The faces of 
the sliding crack were assumed to remain in contact throughout the entire process of deformation. 
Therefore, the mfcrostructural origins of rock dilatancy ~nder compressive stresses are, in the 
proposed ~odel, the result of the crack opening displacements of the wing cracks. Since the 
frictional sliding of the faces of the preexisting cracks does not involve any volume change of the 
material, the resulting deformation can be modeled using conventional methods of the theory of 
plasticity. In the case when the crack surfaces are very rough, frictional sliding over large asperities 
may result in volumetric changes, especially during the first few loading cycles. In this case, the 
present model will have to be appropriately modified. 

In the absence of experimental results it seems reasonable to start with the simplest version of 
the analytical model. However, in the considered case the deformation process emphasizes 
interaction of two different modes of irreversible changes of the microstructure. Mechanical energy 
is, in other words, dissipated on frictional sliding and microcracking (creation of new internal 
surfaces in the specimen). It will be assumed that the relation between the thermodynamic fluxes 
and their affinities (conjugate thermodynamic forces) for the two energy dissipating mechanisms 
can be formulated on the basis of appropriately defined potential functions. 

4.1 Nondilatant Frictional Sliding 

As already mentioned, prior to any growth (kinking) the preexisting crack is, during Phase II 
of the deformation process, subjected to frictional (and cohesive) forces along its faces. If the 
normai opening of such a crack is neglected (u2' = 0), no inelastic volume change of the material 
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will take place and the ensuing deformation will be solely attributable to the relative frictional 
sliding of the faces of activated cracks. This process is, to a large extent, analogous to slip along 
the slip planes in polycrystalline materials. Consequently, standard methods of Ii plasticity theory 
can be used to evaluate macroscopic strains in Phase II of the deformation process. In the case 
when a perfect contact between the faces of the crack exists in the direction of the crack normal, the 
analysis suggested by Rudnicki and Rice (1975) and extended by Nemat-Nasser and Shokooh 
(1980) could be adopted, or at least properly modified. In these papers the normality rule is relaxed 
and nonassociative flow is introduced. 

According to earlier studies by Rudnicki and Rice (1975) appropriate modeling of internal 
frictional sliding requires use of a nonassociative flow rule. The angle subtended by the plastic 
flow vector and the normal to the yield surface is an additional material parameter associated 
with frictional resistance. The nonassociative flow rule is especially important in studies of 
localization, a process during which the slips self-organize into a shear band (Rudnicki and Rice, 
1975). It was shown by Rudnicki and Rice (1975) that a J2 plasticity theory must be embellished 
either by introducing vertices into the yield surface or by relaxing the nonnality rule in order to 
be able to predict the onset of localization. In the case considered in this report plastic strain 
attributable to frictional sliding over the preexisting slits is neither the only nor the dominant 
source of inelasticity. Thus, is seems reasonable to start with the associative rule and ascertain 
the limits of its validity. However, if the subsequent developments demonstrate that the 
nonassociative model is absolutely necessary the requisite modifications will have to be 
incorporated into the present model. 

In the present model (based on the slanted preexisting crack shown in Fig. 3.2. and the 
kinked crack shown in Figs. 3.3 and 3.4) the volumetric changes are exclusively due to the 
displacement discontinuities (crack opening displacements) across the wings. Therefore, for the 
determination of strains in Phase II, it suffices to introduce a scalar-valued parameter h defining 
the hardening due to distortional plastic work. In general, this parameter, for incompressible plastic 
defonnation and constant lateral pressure, can be expressed, as suggested by Nemat-Nasser and 
Shokooh (1980), as 

h = (()q(c)e~ 
(4.1) 

where 
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(4.2) 

is the differential stress for a two-dimensional case and h is the second invariant of the deviatoric 
stress tensor. The distortional strain ef is 

(4.3) 

where £1 and £2 are the principal components of the plastic strain tensor. Note that in the 
considered case (ex= 45 degrees) £1 = -£2. Usually the variation of the distortional hardening 
parameter with strain (4.1) is assumed on the basis of experimental observations. It is well known 
that the hardening parameter h must be a monotonically decreasing function of ef. The particular 
form of the functional relationship h(ef), though, will be dependent on the specific rock. For the 
purpose of illustration of a possible phenomenological model, assume that for constant lateral 
confining stress 0'2 = constant 

(4.4) 

where hand n are material parameters to be determined from experiments. Integrating (4.4) it 
follows that 

(4.5) 

where O'uc denotes the ultimate strength in uniaxial compression, while ef.: is the corresponding 
strain due to sliding at the apex (to be determined in Section 5.0). The stress O'oc at the onset of 
sliding is obtained from the slip activation condition (3.2) as 

2t8 + 0'2(1 + µ) 
O'oc = ---1---µ--

where ro is the initial cohesive shear strength of the material and µ the friction coefficient. 
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42 Microcracking 

Next consider Phase III of the deformation process during which both sliding and 
microcracking occur simultaneously. The approximate formula (3.16) (Horii and Nemat-Nasser, 
1986) for the stress intensity factor was based on the assumption that the representative crack in 
Fig. 3.3 subjected to macrostresses CJ1 and 02 is equivalent (i.e. has identical stress intensity factor 
K1) to a straight vertical crack of length 2L subjected to the applied stresses 01, a2 and to a pair of 
colinear concentrated splitting forces F = 2cterr oriented along the direction of the preexisting part 
of the sliding crack. These concentrated forces were to represent the effect of sliding along the 
slanted crack upon opening of the wing cracks. If a single crack is considered, this simplification 
provides a reasonably good estimate for the stress intensity factor K1 with the lateral strain £2 and 
the shear strain £12 being the only non-zero (inelastic) strain components (see expressions 3.13 and 
-3;i-4). 

In the formulation of a phenomenological damage model, the effect of symmetry in crack 
orientation has to be taken into account. In the case of a rock specimen weakened by a random 
population of many preexisting cracks, there is an equal chance for a slanted representative crack to 
be oriented either at a= 7t/4 or a= (7t - 7t/4), Fig. 4.la. In other words, there are just as many 
cracks at an angle of a = 7t/4 as there are cracks at an angle of a = (7t - x/4). In this case, 
considering pairs of cracks, the shear macrostrains vanish since the shear components of the 
splitting forces F on two cracks constituting a pair cancel each other (see Fig. 4.lb). 
Consequently, the lateral normal strain £2 remains the only non-vanishing component of the 
inelastic strain tensor attributed to microcracking. For this reason it is postulated that a single 
vertical crack subjected to a yet undefined lateral tensile stress a; can be used to determine the 
strains due to microcracking, as shown in Fig.4.lc. In consequence, the lateral compliance (S22) 
increases as the cracks grow in size, while all other components of the compliance tensor S remain 
virtually unchanged. 
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Fig.4.1.(a) Symmettfo pair of representative cracks. 
(b) Equivalent cracks for calculation of K1 from (3.16). 
(c) Configuration used in the proposed phenomenological model. 
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The stress intensity factor (3.16) for the rectilinear crack shown in Fig. 4. lc can now be 
expressed in a simple form as 

(4.7) 

where 

.. 
<f2 = b(L) 'teff (4.8) 

(4.9) 

'teff = ! [a1(l - µ) - a2(l + µ)] - 'tc (4.10) 

It is notable that the expression (4.7) for the stress intensity factor Kr predicts stable crack growth 
when the Griffith condition (3.12) is met, since the derivative 

aK1 = _ _k__ 'terr _ ~ 
()L flit (L+L *) Y L+L * 2fiCL (4.11) 

is negative when the lateral stress a2" is compressive (positive). In other words, an increase in the 
crack size (dL) results in the decrease of the crack "driving force" (dKr). However, in the presence 
of lateral tension ( a2" < 0) the crack growth could be unstable since, above a threshold level of a2" 

the derivative (aK1/aL) given by (4.11) becomes positive . 

. The condition (3.12) can, in absence of the stress intensity factor Kn, be rewritten in an 
equivalent form as 

Kf = 2J'Eo (4.12) 

where y is the specific surface energy resisting crack growth and E0 is the initial Young's 
modulus. Using the expression (4.7) the Griffith condition (4.12) can be cast into a new and more 
convenient form 

26 



1( "\2 "fEo 
~0'2J - - = 0 2 7tL (4.13) 

In general, y is constant only in the case of perfectly homogeneous isotropic elastic materials in 
pure plane strain. In the presence of plastic strain, material inhomogeneity and three-dimensional 
stress fields, the resistance to crack growth is not constant as demonstrated by so called R-curves 
measured in metal fracture experiments. 

It has been postulated in the past that the concept of damage surface, reminiscent of the yield 
surface in plasticity, could be used to model the inelastic response of rock-like materials. Recently, 
it was shown by Krajcinovic, et al. (1991) that a damage potential can be actually derived from 
rigorous energy considerations within the framework micro-to-macro transition. More specifically, 
it was shown by Krajcinovic, et al. (1991) that a macro-damage potential can be derived from the 
micro-damage potentials if the thermodynamic force on a given crack weakly depends on the exact 
position· of all other cracks. Damage surface is viewed in this context as a piecewise smooth, 
convex surface envefopfng arr points in the space ofthermodynamic forces that can be reached 
without chan~e in the recorded history (microstructural rearrangements). In other words, the 
damage surface separates the purely elastic states (characterized by dormant preexisting 
microcracks) from the states in which microcracks become active (grow). Geometrically, the 
damage surface is the inner envelope of all planes representing the conditions under which a 
particular microcrack starts growing. On the micro3 . .:::ale, the thermodynamic force was identified as 
a properly averaged excess in the elastic energy release rate, while the flux (change of internal 
variable) was identified as an increment of the Budiansky-O'Connell (1976) damage variable. On 
the macroscale, the inelastic change of the macrocompliance S~' was selected by Krajcinovic, et al~ 
(1991) as a flux. As a consequence, the conjugated thermodynamic force Q must be defined as 

(4.14) 

From (4.14) it follows that, unlike the yield surface which is defined in stress space, the 
damage surface has to be formulated in the space of the stress components squared. This could 
have beep anticipated since the elastic energy release rate is a homogeneous, quadratic function of 
the components of the stress tensor O'. Krajcinovic, et al. (1991) alsp derived precise conditions 

under which a damage potential exists. The existence of the damage surface was confirmed 
experimentally using acoustic emission tests to measure the so-called Kaiser effect (Holcomb and 
Costin, 1986). 
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For the proposed model (Fig.4.lc), the left-hand side of the crack activation condition (4.13) 
satisfies the following requirements imposed on the damage potential 0: 

• n = 0 separates elastic states from damaged states, 

• n is a scalar valued function of properly defined thermodynamic force Q = (1/2){a;a;}, 

•Specific dissipation rate D = QJii = (l/2)S22(a2")2 constitutes a potential from which the 

thermodynamic forces Qj are obtained by differentiation with respect to the flux components t]j 
(representing changes in the compliance). 

The damage condition (4.13) can be rewritten in the following form 

O(Q, H) = Qi - Qo(H) = 0 (4.15) 

where, Q0 (H) is a hardening function defining the threshold magnitude of the thermodynamic force 

at which cracking will commence. This threshold value depends on the already accumulated history 

--and-is, -therefore, -path -dependent. The form uf the -hardening function Q0 (H) can be either 

determined from micromechanical considerations (as in (4.13)), postulated a priori or discerned 

from experimental observations (see Holcomb and Costin, 1986). Exact micromechanical analysis 

is possible only for a handful of cases characterized by simple and idealized crack geometries for 
which the expressions for the stress intensity factor KJ are available. Since the microcracks in a 

typical low-porosity rock specimen are irregular in shape and randomly oriented a rigorous 

micromechanical approach to derive Q0 (H) does not seem to be possible. Instead, a specific form 

for the hardening function will be assumed based on the following reasoning. Theoretically, once a 

Griffith crack in a homogeneous tensile field becomes critical its further growth cannot be arrested 

in a homogeneous elastic material. However, in the case of real materials and short cracks the 

assumption of material homogeneity is not a realistic one. The internal energy barriers (such as 
grain boundaries, ~d other inhomogeneities) may and often do arrest a sufficiently short crack. As 
a crack grows, it propagates along the path of minimum value of the excess driving force (G - 2y) 
overcoming a sequence of successively higher energy barriers 'Y(x) randomly distributed in its 

path. Consequently, Q0 (H) must be a monotonically increasing function of the stresses (similar to 

the R-curve) satisfying the following conditions 

dQo I - -o dq q='b: -
(4.16) 
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where o'oc is the stress level at the onset of kinking. The second of conditions ( 4.16) reflects the 
localization of damage (coalescence of neighboring microcracks into one macrocrack) that is 
assumed to occur at the apex of the stress-strain curve (representing the ultimate strength). The 
kinking initiation stress o'ac, below the brittle-to-ductile transition, can be computed from the 
condition K1 = Kie for L = 0, with K1 given by (3.16) and 'teff by (4.10). After simple 
rearrangements it follows that 

o'ac = 2 K1cY7t/(2c) fi:k + 'tc(u) 
1-µ 

(4.17) 

Using the conditions (4.16),·it is at the same time assumed that the position of the damage surface 
is determined by 

- . • Quc-Qoc 
Qo(H) = Qoc + ,.. (2Qµc - CJ2)CJ2 

qfiC 
(4~18}-

In (4.18) the following notation is used: 

Que= (1/2) (~f = (l/2Xb(L)temouc) - oiJ 2 (4.19) 

where the subscript "uc" refers to the apex of the loading segment of the o-e curve, 'teff is given by 
( 4.10), and Que denotes the inelastic part of the lateral compliance (at the apex) related to the wing 
crack growth. It should be emphasized that the particular form of (4.18) was assumed primarily for 
illustration purposes and could be changed if and when test data related to the actual shape of the 
damage surface become available. 

The flux <ii can now be derived from the damage potential (4.15) and (4.18) using the 
nonnality property. Detailed derivation will be presented subsequently for an illustrative example in 
Section 5.0. Graphical interpretation of the normality rule using the damage potential (4.15) is 
depicted in Fig. 4.2. Once the compliance vector q is determined it is straightforward to compute 
the corresponding macrostrains, using expressions 
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.,__ ______ O(Q, H) 

Fig 4.2. Suggested damage surface and normality rule in compression. 

(4.20) 

In the micromechanical analysis of strain (Section 3.0) the sliding on the preexisting flaw and 
the wing cracking were coupled through the expression (3.20) for the average slip. The 
phenomenological analysis in this section is based on the formulation of the damage potential 
incorporating the expression for the stress intensity factor (3.16) for a kinked crack. This 
expression, in a somewhat simplified but sufficiently accurate form, accounts for the above 
mentioned coupling between the frictional sliding on the preexisting flaw and growth of wing 
cracks. The total inelastic strain is obtained by summing the macrostrain attributable to frictional 
slip given by (4.5) and the macrostrain (4.20) due to microcracking. The strain due to initial 
compaction of voids ev is not considered by the present model. An appropriate modification of the 
existing model in order to include the pore compaction seems to be possible without major 
changes. For example, using the self-consistent method it is possible to estimate the effective 
elastic constants of a solid with uniformly distributed spherical voids as a function of porosity. 
Furthermore, knowing the change of porosity as a function of stresses it becomes possible to 
determine the evolution equation for the change in the elastic parameters as the void density 
parameter is decreased. 
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S.O ILLUSTRATIVE EXAMPLE 

In this section the developed model will be applied to duplicate available experimental data for 
Westerly granite (Zoback and Byerlee, 1975) in the uniaxial compression test (a1 =a, 02 = 0). 

The following material constants were used in computations: 

- elastic modulus Eo = 56,500 MPa 
- Poisson's ratio Vo= 0.25 

- coefficient of friction µ = 0.5 

- compressive strength Cfuc = 204 MPa 

- initial cohesive shear strength -cg = 24 MPa 

- fracture toughness Kie = 1.0 MPa"1m 

- initial average length of preexisting flaw c = 5· 10-4m 
- 'initial d~nsity parameter' of preexisting cracks estimated as f = Nc2 = 0.1 
- ultimate lateral strain Euc = 0.00142. 

At the beginning, it was necessary to compute the limits Cfoc and Cf~c separating the elastic 

response, and the Phase I and Phase II responses. Since the initial closure (compaction) of 
preexisting cracks was not accounted for in the present model, the computed axial a-e curve was 

shifted from the origin 0 by the strain obtained from the intercept of the linear portion of the 
experimental curve with the e-axis. From ( 4.6) it follows that 

2t0 
Cfoc = ~ =96MPa 1 -µ 

(5.1) 

Computation of O'~c from the expression (4.17) is not as straightforward. A rigorous analysis 
requires a rational, experimentally-based estimate of the degradation of the cohesive resistance tc 

with increasing slip u. It is reported in the literature (e.g. Moss and Gupta, 1982, Nemat-Nasser 
and Obata, 1988) that tc decays and eventually disappears as the slip on the preexisting crack 

accumulates. In the absence of a commonly accepted relationship based on experience if not 
experimental evidence, it is postulated at this point, as a simplest solution, that tc(c) is a linearly 

decaying function of the slip strain ef 
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(5.2) 

where es is a scaling parameter assumed to be es = 5· 1 o-s, and ef is the strain due to sliding 
determined from (4.5). The constant efx: appearing in (4.5) denotes the ultimate strain due to 
sliding and can be computed from the micromechanical relation (3.11). In uniaxial compression the 
expression for slip (3.20) reduces to 

u = 2c l-v0 1./ 20J/c) + (L**/c) 't 
G0 (Uc)+ (L*/c} eff 
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Fig. 5.1. Slip vs. wing length relationship in uniaxial compression computed from (5.3). 

The nondimenionalized slip-displacement vs wing-length ctirve based on the expression (5.3) 
is plotted in Fig.~. I. The plotted curve indicates that during the advanced stage of the wing 
growth, Uc> 1 (Fig.3.3), the slip does not depend on L. Consequently, the expression (5.3) can 
be further simplified to 
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1-v .fl'f". -f1'r 1-v ) u = 2c ..!.......!.2. '·".'Ceff = "''"" .!..:...!.2. (1 - µ O' Go Go (5.4) 

In (5.4) it is tacitly assumed that the cohesive strength tc vanishes at the apex of the O'-E curve. 
Inserting (5.4) into the formula (3.11) and setting O' = O'uc it follows that 

£fx: = 2fT fl;:: (1 - µ)O'uc (5.5) 

From (4.17), (4.5), (5.2) and (5.5) it finally follows that 

where:· 

A = [2K1c.J1t/(2c)(L*/c) + 2-cg]/(l - µ) (5.7) 

The axial stress at the onset of kinking computed from (5.6) is found to be O''ac = 137.3 Mpa. 

The next step consists in computing the axial and lateral strains in Phase II from ( 4.5). In 
( 4.5) it was arbitrarily assumed that the exponent n = 2. 

The inelastic axial strain during Phase ill deformation can be determined using the expression 
(4.5) already used for Phase II. The lateral macrostrain can subsequently be computed from 
(4.20). Substituting (4.18) into (4.15) and rearranging the ensuing relation it follows that 

where 

o-ac- 0'2 
2 '2 

O'uc - O'oc 
(5.8) 

(5.9) 
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In (5.9) the crack aspect ratio b(L) denotes the parameter defined by (4.9). Obviously, the 

parameter b changes with wing crack growth. However, in order to keep the analysis as simple as 

possible, an average value of b(L = 2c) = 0.214 was adopted for this calculation. 

The final graph of stress vs. axial and lateral strain is presented in Fig. 5.2. The excellent 

agreement with the experimental data is not entirely swprising since some of the material constants 

(£uc. O"uc. n, f, £5) were fitted from these experimental curves. However, several important features 

of the brittle response of granite are indeed predicted by this simple model. For instance, the 

overall trend is preserved for both curves and the lateral inelastic strain is larger than its axial 

counterpart. It is also notable that precise and realistic numerical values were selected for all other 

material constants listed at the beginning of this section of the report. It is anticipated that, if lateral 

confinement were present, the simple "hardening" function (4.17), defining the R-curve effect, 

would have to be modified once actual experimental data became available. A phenomenological 

model based on the instability of a single crack will not be able to predict a cooperative type of final 

failure typical of the confined rock specimen. In such a case the microcrack interaction is a 
-dominating-mechanism-in-fonnation-ofa-crack-band 1D'.id must be, as mich, properly accounted for 

in future modeling efforts. 

250 • Axial strain (Zoback and Byerlee, 1975) 
0 Axial strain (present model) 

I.! • Laleral strain (Z.oback and Byerlee, 1975) 0 200- fl. Laleral strain (present model) -= ~ 0 ~ 

~ ~ a. - 150-
fl.l ~ 0 
fl.l 

~ Q QJ 
r.. - 100- n Q fl.l - n Q = . ·-;iii! n Q < so-

l! a. 
l! 0 

0 -I - I I I . I 

-0.0020 -0.0010 -0.0000 0.0010 0.0020 0.0030 0.0040 

Strain 
Fig 5.2 Stress-strain curve for uniaxial compression of a Westerly granite specimen. 
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6.0 REMARKS ON THE BRITTLE-TO-DUCTILE TRANSITION 

Another outstanding feature yet to be analyzed and incorporated into this model is the brittle­
to-ductile transition obseived in rock deformation processes. The brittle-to-ductile transition point 
is that ratio of the lateral (confining) to axial stress beyond which failure is preceded by substantial 
inelastic deformation. The lateral (confining) pressure suppresses the unstable growth of the wing 
cracks leading to the appearance of plastic zones around the tips of the preexisting cracks AA', Fig. 
3.3. Analytical description of the transition from brittle to ductile behavior of a rock is a complex 
problem involving studies of the relative contributions of energies dissipated in brittle and ductile 
modes. For example, Horii and Nemat-Nasser (1986) suggested that the appropriate parameter 
defining the transition is the ductility ratio 

ll = K1c 
tyfiCC (6.1) 

In (6.1) Kie is the fracture toughness (critical stress intensity factor), and ty is the yield stress for 
a considered i:ock. "Exact" micromechanical analyses of the brittle-to-ductile transition presented in 
Horii and Nemat-Nasser (1986) are very complicated and involve the numerical solution of integral 
equations. For this reason their approach may not be entirely useful as a part of a phenomeno­
logical model suitable for applications. However, for low-porosity rocks like granite, applications 
of (6.1) may be quite practical. The ductility ratio (6.1) for Westerly granite was found to bell so: 

0.05. According to the graphs in Horii and Nemat-Nasser (1986) this value of ll indicates that the 
transition from the brittle mode of deformation to the ductile mode occurs without entering the so-_ 
called transition mode in which the brittle and ductile effects are coupled. Thus, brittle and ductile 
response can be considered separately, completely ignoring the interaction effects. Naturally, 
experimental evidence and corroboration of these results would be necessary prior to making 
definitive statements. 

The present report is focused solely on a model for the brittle response. The extension of the 
model to incorporate ductile response may require considerations of the concept of a Dugdale crack 
(Kanninen and Popelar, 1985). In order to determine the strains resulting from plastic deformation 
around the crack tips it would be necessary to compute the size of the plastic zone Lp. Preliminary 
computations indicate that the magnitude of Lp can be obtained in an analytical form. 
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7.0 SUMMARY AND CONCLUSIONS 

The analytical model discussed in this report presents, in essence, a feasibility study needed 
to ascertain the effort required to formulate a micromechanically inspired constitutive model for · 
characterizing rocks in in-situ conditions. The ultimate objective of this research program is to 
improve the constitutive laws used as input for the specialized computer software for analyses of 
shock and cratering problems. Consequently, simplicity of formulation is considered to be a vital 
condition for this stage of the research. Moreover, in view of a parallel effort on the experimental 
identification of material constants and trends in deformation it is mandatory to ensure clear and 
unambiguous identification of all constituent parameters of the analytical model. 

Based on the work completed herein, supporting work available in published literature and 
previously completed studies by the authors of this report, we conclude that a reasonably simple, 
micromechanically inspired phenomenological constitutive model can indeed be formulated within 
a reasonably limited period of time. For simple, proportional loading conditions such a model will 

--assume-a-rather-simple-form. -However, -in -the-case -of arbitrary nonproportional and/or cyclic 
loading conditions the analytical model will become increasingly more complex. Moreover, 
analogous problems are typically encountered in analyses of ductile deformations. Hence, in 
combining brittle and ductile deformation modes the level of complexity will be enhanced. The 
unilateral constraint imposed by a crack on the displacement field seems to be the major problem 
source. Unlike plastic slip, the crack opening displacement in an essential manner depends on the 
sign of the normal stress. Thus, analyses considering loading paths characterized by change of 
normal stresses from tensile to compressive and vice versa, will by their very nature involve 
discontinuous changes of material stiffnesses. The ensuing complexities in large scale 
computations may reach substantial levels. 

The main thrust of the research summarized in this report was directed towards the 
determination of dominant mechanisms of irreversible changes in microstructure of low-porosity 
rocks. For at least one of these mechanisms (kinked crack in elastic medium) the fundamental 
relations between the kinematic variables (strains and displacements) and corresponding stresses 
on the microscale are discussed in detail in this report. Assuming that the selected mechanism 
captured the main aspects of the physics of the deformation process a sequence of simplifying 
assumptions were introduced to enhance the tractability of the proposed model. In departure from 
rigorous micromechanical models, the proposed model considers only a single representative 
crack. Additional effort was devoted to the development of a rational scheme for the transition from 
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the micro to the macroscale, i.e. to decribe the macrodefonnations attributed to the presence and 
growth of the representative microdefect 

The very limited effort described in this report left few aspects of the model still unfinished 
and possibly not fully appreciated. For example, the selection of material parameters within this 
study was not based on a complete set of experimental data. Furthennore, a proper selection of 
material parameters such as those defining evolution of the damage surface (onset of .kinking, apex 
of the stress-strain curve, etc.) as a function of the recorded history should eventually become 
better clarified. A well designed, comprehensive experimental effort is essential in this respect. A 
feedback loop connecting the three basic research groups (analytical, numerical and experimental) 
is absolutely essential to facilitate this effort and avoid costly mistakes and misunderstandings. 

For example, some aspects of the overall defonnation process, most notably a proper 
characterization of the softening regime, were barely mentioned in this report. In addition, the 
brittle-to-ductile transition must be fully and thoroughly investiruited in order to be able to construct 
an appropriate analytical model. Moreover, in order to reconcile analytical predictions and 
experimental data the often neglected problem of size effect must be addressed from the 
micromechanical viewpoint. Finally, the question of associative vs. nonassociative flow rule must 
be resolved within the framework of a two potential function theory advocated in this report. 

The kinked crack mechanism is commonly regarded as suitable for compact, low-porosity, 
crystalline rocks. Models emphasizing cracks emanating from compressed spherical voids (pores) 
may be much more suitable for less-compact sedimentary rocks of inferior strength. Thus, other 
mechanisms must be given appropriate attention in order to establish a reasonably general analytical 
tool for consideration of rock deformation. 

Despite all of the limitations listed, and possibly some others, the research effort summ:irized 
here clearly indicates the power of micromechanical modeling. Thus, a claim can be made that the 
proposed modeling technique represents a promising avenue for the characterization of brittle rock 
failure. 
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