

Improved Reliability Models for Mechanical and Electrical Components at Navigation Lock and Dam and Flood Risk Management Facilities

Robert C. Patev, David L. Buccini, James W. Bartek, and Stuart Foltz

April 2013

The US Army Engineer Research and Development Center (ERDC) solves the nation's toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation's public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default.

Improved Reliability Models for Mechanical and Electrical Components at Navigation Lock and Dam and Flood Risk Management Facilities

Robert C. Patev

Risk Management Center Institute for Water Resources 696 Virginia Road Concord, MA, 01742

David L. Buccini

US Army Corps of Engineers (USACE), Pittsburgh District 1000 Liberty Avenue Pittsburgh, PA 15222

James W. Bartek

USACE, Rock Island District Clock Tower Building Rodman Avenue Rock Island, IL 61299

Stuart D. Foltz

Construction Engineering Research Laboratory (CERL) US Army Engineer Research and Development Center 2902 Newmark Dr.
Champaign, IL 61822-1076

Final Report

Approved for public release; distribution is unlimited.

Abstract

This work developed the use of Expert-Opinion Elicitation (EOE) to help estimate the characteristic life (CL) of mechanical and electrical (ME) components at US Army Corps of Engineers (USACE) navigation projects. This effort developed improved reliability models for the ME components at the USACE navigation facilities. Current USACE ME reliability methods use generic component failure rate data from US Department of Defense (DoD) Military Standard (MIL-STD) 756B, in which failure rate data is processed for components that function in operating environments, failure modes, and maintenance practices different from those at USACE navigation and flood risk management projects. The reliability of the ME system from this data set yields very conservative results, very often overestimating the time-dependent reliability of the entire ME system. EOE will be used to define the CL for a list of critical ME components at USACE navigation and flood risk management projects. These elicited values for CL will form the basis for failure rates to be used with the existing methods for ME system reliability calculations. Additional work on fault trees for ME systems is being completed as part of dam safety and levee risk assessment procedures development.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Contents

Abstractiv		
Illu	strations	vi
Pre	face	viii
1	Introduction	1
	1.1 Background	
	1.2 EOE	
	1.3 Recent USACE EOE studies	
	1.4 Characteristic life (CL) of ME components	
	1.5 Objectives and scope of EOE for CL of ME components	
	1.6 Estimating CL	
	1.7 Selection of critical ME components for navigation projects	5
2	Selection of Experts	11
	2.1 Requirements	11
	2.2 Lists of experts	12
3	Expert-Opinion Elicitation	14
	3.1 Background	14
	3.2 Selected issues	14
	3.2.1 Mechanical system issues	15
	3.2.2 Electrical system issues	15
	3.3 Elicitation and aggregation of expert opinions	16
	3.4 Sample questions used for issues	18
	3.5 Example question for mechanical drive system issue – bearings – rolling element	18
	3.5.1 Event name	18
	3.5.2 Question	18
	3.6 Summary of results from elicitation	18
	3.6.1 Mechanical system – mechanical drive systems	19
	3.6.2 Mechanical system – hydraulic drive systems	30
	3.6.3 Mechanical system – misc. gate/filling and emptying valves and other systems	34
	3.6.4 Electrical system issues	38
4	Conclusions	47
Acr	onyms, Abbreviations, and Technical Terms	50
Ref	ferences	53
App	pendix A: Expert Elicitation Spreadsheets – Mechanical System Components	55
App	pendix B: Expert Elicitation Spreadsheets – Electrical System Components	85
App	pendix C: Results from Flood Risk Management ME Expert-Opinion Elicitation	103
Rep	port Documentation Page (SF 298)	1

Illustrations

F	i	g	u	r	e
•	•	6	u		v

1	Typical Weibull data plot (Abernethy 2009)	3
Tables	S	
1	Factors affecting estimation of CL	5
2	Mechanical drive systems component list	
3	Hydraulic drive systems component list	
4	Power	9
5	The expert panel	12
6	Mechanical panel members	12
7	Electrical panel members	12
8	Observers	13
9	CL for navigation mechanical components	47
10	CL for navigation electrical components characteristic power life (in years)	49
A1	Mechanical system - bearings	56
A2	Mechanical system - shafts	58
АЗ	Mechanical system - pins	59
A4	Mechanical system - gear reducers	60
A5	Mechanical system – open gearing	61
A6	Mechanical system - electromechanical brakes,	62
A7	Mechanical system - slip brakes	63
A8	Mechanical system – wire ropes	64
A9	Mechanical system - chains	66
A10	Mechanical system - chain sprocket	67
A11	Mechanical system - strut arms	68
A12	Mechanical system - support roller	69
A13	Mechanical system - valves	70
A14	Mechanical system - hydraulic cylinder	71
A15	Mechanical system - control valves	72
A16	Mechanical system - pumps	74
A17	Mechanical system - hydraulic motors	75
A18	Mechanical system - piping	76
A19	Mechanical system - wheel assembly (rollers)	77
A20	Mechanical system - pintles/bushings	78
A21	Mechanical system - gudgeon/trunnion	79

ERDC/CERL TR-13-4 vii

A22	Mechanical system - trunnion pin/bushings	80
A23	Mechanical system - strut spindle pin	81
A24	Mechanical system – tow haulage system	82
A25	Mechanical system – emptying/filling systems	83
B1	Electrical system – power utility	86
B2	Electrical system - service transformer	87
В3	Electrical system - transfer switch	88
B4	Electrical system – switchgear	89
B5	Electrical system - circuit breakers	90
В6	Electrical system – power panelboard	91
B7	Electrical system - cables	92
B8	Electrical system - bus duct	94
В9	Electrical system - switchboards	95
B10	Electrical system – motor control center	96
B11	Electrical system – motor starters	97
B12	Electrical system - PLC systems	98
B13	Electrical system – sensors and switches	99
B14	Electrical system – electric motors	100
B15	Electrical system – standby generator set	101
B16	Electrical system – DC rectifier	102
C1	Flood risk management ME expert-opinion results for mechanical components for navigation and dam projects (mechanical drive systems)	103
C2	Flood risk management ME expert-opinion results for mechanical components for navigation and dam projects	105

ERDC/CERL TR-13-4 viii

Preface

This study was conducted for the US Army Corps of Engineers (USACE) Navigation Systems Research Program and the Reliability Models for Major Rehabilitation Program from Fiscal Year 2006 (FY06) through FY08. The technical monitor was Daniel Casapulla, Headquarters, US Army Corps of Engineers (HQUSACE).

The work was performed by the Geotechnical Section of the Geotechnical/Water Resources Branch of Engineering and Planning, New England District. At the time the work was done, Anthony Firicano was Chief of the Geotechnical Section and Dr. Raimo Liias was Chief of the Geotechnical/Water Resources Branch. At the time of publication, Jeff Lillycrop was the Technical Director for Navigation.

At the time of publication, COL Kevin Wilson was the Commander and Executive Director of the Engineer Research and Development Center (ERDC), and Dr. Jeffery P. Holland was the Director.

1 Introduction

1.1 Background

The current USACE mechanical and electrical (ME) reliability methods use generic component failure rate data from US Department of Defense Military Standard 756B (DoD MIL-STD-756B) documents. This failure rate data is typically processed for components that function in a different operating environment, different failure modes, and different maintenance practices than at USACE navigation projects. Therefore, the reliability of the ME system from this data set yields very conservative results and very often overestimates the time-dependent reliability of the entire ME system.

This work was undertaken to develop improved reliability models for the ME) components at the US Army Corps of Engineers (USACE) navigation facilities. While efforts are underway to begin collecting such failure rate data from USACE projects, a functional failure rate data set to use in reliability calculations is at least 10 years away. As part of this research effort to assist with improving the existing reliability models, Expert-Opinion Elicitation (EOE) will be used to define the characteristic life (CL) for a list of critical ME components at USACE navigation projects. These elicited values for CL will be the basis for failure rates to be used with the existing methods for ME system reliability calculations. Additional work on fault trees for ME systems (Patev, Putcha, and Foltz 2005) is being completed as part of dam safety and levee risk assessment procedures development.

1.2 EOE

The EOE process is a formal (defined format), heuristic (verbal) process of obtaining information or answers to specific questions. These questions are defined in terms of "issues." These issues can assist in defining such items as cumulative failure rates, event timing, and percentage for event/fault trees. Ayyub, Blair, and Patev (2000) outline EOE as a process. This process should not really be used in lieu of failure statistics, but should be used where failure statistics are unavailable or too costly to collect. EOE should be performed during a face-to-face meeting of members of an expert panel that is developed specifically for the issues under consideration. The EOE should be conducted after informing the experts of the background infor-

mation, objectives, list of issues, and anticipated outcome. Ayyub, Blair, and Patev (2000) describe the different components of the EOE process.

1.3 Recent USACE EOE studies

EOE is a technique that uses a panel of individuals with various areas of specialized knowledge for estimating parameters or addressing issues of interest based on their expertise. EOE has been recently applied by the Vicksburg District's study of three different construction alternatives for Lindy C. Boggs Lock and Dam (Ayyub, Blair, and Patev 2002) by the Pittsburgh District for concrete deterioration problems at Emsworth Lock and Dam and by Nashville District for Chickamauga Lock and Dam to determine hazard rates for the cost and closure matrices. Other recent uses of EOE by the USACE include those areas of dam safety, flood damages, and navigation system wide studies such as Ohio River Main Stem Study (ORMSS) and the Great Lakes and St. Lawrence Seaway System Study (GLSLS).

1.4 Characteristic life (CL) of ME components

Abernethy (2009) defines the CL is defined as the age at which 63.2% of the units will have failed, sometimes called the B63.2 life. Assuming that this relationship assumes an exponential distribution (Weibull distribution with $\beta = 1$), the Cumulative Distribution Function (CDF) can be shown mathematically as:

$$F(t) = 1 - e^{-(t/\alpha)\beta} = 1 - (1/e) = 0.632$$

where β is a shape factor and α is the CL.

Figure 1 shows a typical data plot of the slope and Mean Time To Failure (MTTF).

Abernethy (2009) defines the slope of the Weibull plot or beta, (β) , which determines the member of the family of Weibull failure distributions that best fits or describes the data. The slope, β , also indicates the class of failure that is present, in which:

 β < 1.0 indicates infant mortality

 β = 1.0 means random failures (independent of age)

 $\beta > 1.0$ indicates wear out failures.

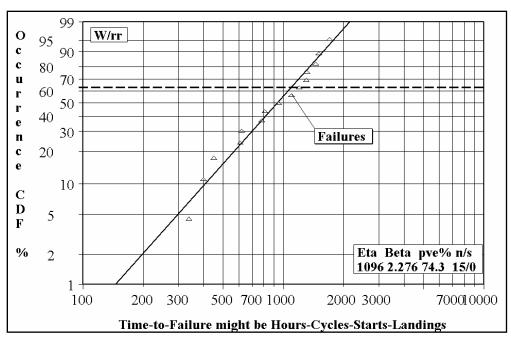


Figure 1. Typical Weibull data plot (Abernethy 2009).

The CL of an ME component is directly related to the MTTF and the failure rate, λ . This relationship is derived as:

$$MTTF = 1 / \lambda$$
$$\alpha = MTTF.$$

Note that the relationship between the CL and MTTF is dependent on β . The relationship is dependent on the value of β , in which:

$$\beta$$
 = 1, MTTF = α
 β > 1, MTF < α
 β < 1, MTTF > α
 β = 0.5, MTTF = 2 (α)

Typically, CL is based on such assumptions as:

- The components have similar maintenance practices.
- There is no replacement of smaller internal parts.
- Environmental and operating conditions are consistent or protected.
- All components are composed of materials that were properly selected and designed.

Note that there is uncertainty in defining consistent or proper maintenance and environment. There are no consistent operating conditions within USACE, as loading cycles vary from less than one per year for a dam to more than 10 per day for a lock. This is one of the complications discussed further in Section 1.6.

1.5 Objectives and scope of EOE for CL of ME components

This analysis uses EOE to obtain information relating to the CL of critical components at USACE navigation facilities. The information obtained from this EOE is not readily available in the literature. MIL-STDs are based on failure rates and assume a CL based on a defined Weibull distribution. These data standards are not valid for USACE ME equipment since they typically underestimate (i.e., estimate earlier failures) the CL. Also, failure rate data may be available from some ME equipment manufacturers, but this failure rate data is often proprietary and not available to the USACE.

The overall objective and results from this study are to define CL values for use in future ME reliability modeling of USACE navigation projects. A list of critical components will be defined to pinpoint those pieces of ME equipment that create significant economic consequences such as navigation delays, lock shutdowns, and lock closures. These values for CL will be elicited by bringing together a team of USACE ME experts from around the nation. The use of nationwide ME experts will permit the inclusion of a wide range of experience and operation of these critical components. Chapter 2 discusses the selection of the experts.

1.6 Estimating CL

As mentioned previously, the CL is dependent on consistent or proper maintenance, environment, and operating conditions. These factors are not uniform across USACE. Maintenance profiles vary significantly. Environment may include any combination of heat, cold, ice, ultraviolet (UV) light, saltwater, oxygenated water or protection from all such extremes. Operating conditions range from frequent use each day for a navigation lock, to use less than once per year for a flood control dam; the loading during use will also vary. Other non-uniform physical properties include design, water head, and component size. These are only a small portion of the parameters that make it a challenge to estimate an average CL for a particular project. Table 1 lists some factors that may be used to adjust the CL.

Type Factor Temperature (heat and cold) Humidity (high or low) Wind Environmental Frequency of wetting Ice U۷ Oxygenated water Protected from environment Climate controlled environment **Quality of Iubrication** Quality of paint protection Operational Frequency of load cycles Load history versus design loads Variation in dominate failure mode across inventory Era of component manufacture

Table 1. Factors affecting estimation of CL.

The experts elicited in this study represented a wide range of USACE ME equipment throughout the entire United States. Their consensus was based on their knowledge and experience representing their operating, environment, and maintenance practices. The experts agreed that using the "k-factors" adjustments defined in Engineer Circular (EC) 1110-2-6062 (HQUSACE 2011) and in Military Standards (MIL-STDs) would be sufficient to refine each of the CL for their equipment. This technique has been successfully adopted in the USACE practice and provides reasonable and quantifiable results. Therefore, when experts apply past experience of component maintenance, environment, and operating conditions to estimate CL, they need to consider how each parameter or property varies from normal and how that might have lead to an earlier or later failure than the estimated CL.

1.7 Selection of critical ME components for navigation projects

The list of critical component was complied and screened by the facilitator and four ME engineers from Pittsburgh District, Rock Island District, and Headquarters prior to the EOE. One of the primary criteria for screening the ME components was the number of hours of navigation delay it would take to temporarily repair or replace the component. The components

were screened based on a minimum of 4 hours of navigation delay to repair or replace the component. This value was based on the availability of the failed component (most are not at lock site) and the availability of District staff to inspect and repair the component.

The final list of critical components was sent to the panel of experts as part of the read-ahead package prior to the elicitation. This was to gain their inputs and agreements to the list of components that would be elicited during the EOE. In the read-ahead package sent to the experts, the panel was only informed of the issues and not given any of the questions that would be elicited. The list was reviewed again as the part of startup to the EOE to ensure that no questions or issues lingered with any of the components that were screened.

This list of components was broken into disciplines (i.e., mechanical and electrical [ME]) and by subcategories as well. The list of the mechanical components was broken into the following categories: mechanical drive systems (Table 2), hydraulic drive systems (Table 3), miscellaneous gatevalve systems, and other systems.

The list of electrical components was broken into the following categories: Power (Table 4), Motor Control, Sensors and Switches, and electromechanical (EM) Control.

Type Component **Bearings** Rolling element Sleeve (self lubricated) Bronze sleeve Couplings Flexible **Shafts** Rigid Pins Gear reducers Worm Parallel Right angle Open gearing

Table 2. Mechanical drive systems component list.

Туре	Component
	Spur
	Helical
	Bevel
	Rack
Brake	Electromechanical
Clutch	Slip
Wire ropes	
	Spiral plate
	Single/multiple sheave(s)
	Single Drum
	Round
	Flat
Wire rope drums	
Wire rope sheaves	
Chains	Roller
	Link
Chain sprocket	
Miter gates	
	Sector arms
	Strut arms - buffered
	Strut arms - rigid
	Support roller
	Rack support beam
Valves	
	Bellcranks
	Crosshead/guide
	Strut
	Butterfly
	Ball
	Slide
	Knife
	Jet

Table 3. Hydraulic drive systems component list.

Туре	Component
Vertical Lift	
Control Valves	
	Check
	Relief
	Directional
	Manual
	Solenoid
	Proportional/throttle
Pumps	
	Fixed
	Variable
Hydraulic Motors	
	Fixed
	Variable
Piping	
Hose	
Misc Gate/Filli	ng Emptying Valves
Wheel assembly	
Pintles/bushings	
Gudgeon pin/bushings	
Trunnion pin/bushings	
Strut spindle pin	
Other	r Systems
Tow haulage	
	Hydraulic
	Mechanical
Emptying filling	
	Butterfly
	Vertical lift
Gate connection (pins, cable, chain)	
Grease/lube system	
Actuators (screw type, limit torque)	

Table 4. Power.

Туре	Component
Power	
Power utility	
Power receptacle	
Service transformer	
Transfer switches	
	Automatic
	Manual
Switchgear	
Circuit breakers	
Power panelboard	
Cables	
	Buried/submerged
	Duct/cable tray
	Portable/flexible
	Twisted
	Coax
	Fiber optic
Bus duct (electronic	
Switchboards	
Motor control centers	
Motor Control	
Motor starters	
	Full voltage
	Reduced/variable
	Variable Frequency Drive (VFD)
Programmable Logic Controller (PLC) systems	
Sensors and Switch	hes
Selsyn motor	
Traveling nut limit switch	
Rotating cam	
Encoder resolver	
Hydraulic cylinder position sensor	
Rotating limit switches	
Proximity switch (mag/photo)	
Mechanical proximity plunger switch	
Linear displacement transducer	
Pressure switch (hydraulic systems)	

Туре	Component
Water level transducer (all types)	
Inclinometer	
Relay-based control panel	
Supervisory Control And Data Acquisition (SCADA)	
Electromechanical Dr	ives
Electric motors (new and rebuilt)	
Standby generator sets	
DC rectifier (brakes)	

2 Selection of Experts

2.1 Requirements

The size of the expert panel should be large enough to achieve a needed diversity of opinion and credibility that will lead to resultant CL with minimal bias and robustness. Depending on the topics of interest, it is recommended to have five to seven paneled experts for this type of study and analysis. This EOE will have six experts for each discipline, mechanical and electrical. A nomination process was first used to establish a list of candidates who could contribute best to the elicitation. From this list, formal nominations and a selection process was established to define the candidates with the best background that closely fit the topics at hand. The panel members were defined based on a comprehensive combined knowledge of:

- design of ME system for navigation structures
- construction of ME systems for navigation structures
- operating and maintenance of ME systems navigation structures
- knowledge of state-of-the-art mechanical/electrical equipment used at USACE and external navigation projects
- knowledge and experience with reliability calculations.

Observers also need to be invited to participate in the elicitation process. The observers can contribute to the discussion, but not to the expert judgment and results. The observers can include:

- One or two observers from the USACE offices with detailed experience and knowledge of ME systems for navigation projects including planned construction, and operations and maintenance.
- One or two people with expertise in probabilistic analysis, probabilistic computations, consequence computations and assessment, and expert elicitation. This observer can be the technical facilitator or the technical integrator and facilitator.

2.2 Lists of experts

Tables 5–8 list and give brief biographical statements for all identified experts.

Table 5. The expert panel.

Name	Affiliation
Jim Hay, P.E.	Operations Division, McNairy Lock and Dam, Walla Walla District USACE
Ross Woodbury, P.E.	Operations Division, Louisville District, USACE
David Buccini	Mechanical Engineer, Mechanical/Electrical Section, Pittsburgh District, USACE
Bryan Radkte, P.E.	Electrical Engineer, Mechanical/Electrical Section, Rock Island District, USACE
John Nites, P.E.	Electrical Engineer, Mechanical/Electrical Section, Pittsburgh District, USACE
Todd Jennings, P.E.	Civil Engineer, General Engineering Section, Huntington District, USACE
Chuck Palmer	Operations Division, Walla Walls District, USACE
Tim Paulus	Mechanical Engineer, St. Paul District, USACE
Russ Whitten	Chief Electrical/Mechanical Division, Huntington District (Ret.)

Table 6. Mechanical panel members.

Name	Affiliation
Jim Hay, P.E.	Operations Division, Walla Walla District USACE
Chuck Palmer, P.E.	Mechanical Engineer, Mechanical/Electrical Section, Walla Walls District, USACE
Tim Paulus, P.E.	Mechanical Engineer, Mechanical/Electrical Section, St. Paul District, USACE
Ross Woodbury, P.E.	Operations Division, Louisville District, USACE
Todd Jennings, P.E.	Civil Engineer, General Engineering Section, Huntington District, USACE
Russ Whitten, P.E.	Chief, Mechanical/Electrical Section, Huntington District, USACE

Table 7. Electrical panel members.

Name	Affiliation
Jim Hay, P.E.	Operations Division, McNairy Lock and Dam, Walla Walla District USACE
Ross Woodbury, P.E.	Operations Division, Louisville District, USACE
David Buccini	Mechanical Engineer, Mechanical/Electrical Section, Pittsburgh District, USACE
Bryan Radkte, P.E.	Electrical Engineer, Mechanical/Electrical Section, Rock Island District, USACE
John Nites, P.E.	Electrical Engineer, Mechanical/Electrical Section, Pittsburgh District, USACE
Todd Jennings, P.E.	Civil Engineer, General Engineering Section, Huntington District, USACE

Table 8. Observers.

Name	Affiliation
James Bartek, P.E.	Chief of the Mechanical/Electrical Section in Engineering Division, Rock Island District, USACE
David Buccini	Regional Technical Specialist – Mechanical Engineering for the Great Lakes and Ohio River Division (LRD), USACE
Dan Casapulla, P.E.	Lead Mechanical Engineer at HQUSACE
Stuart D. Foltz	Research civil engineer at the Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL)
Brendan McKinley	Regional Technical Specialist – Mechanical Engineering for Lakes and Rivers Division (LRD), USACE
Richard W. Schultz, P.E.	Chief of the Mechanical/Electrical Section in Engineering Division, Louisville District, USACE

The technical integrator and facilitator was Robert C. Patev, the USACE North Atlantic Division Regional Technical Specialist for Navigation Design and a structural/geotechnical engineer with the US Army Corps of Engineer, New England District in Concord, MA. Mr. Patev was more recently a research civil engineer at the Engineer Research and Development Center, Information Technology Laboratory (ERDC-ITL). For the past 15 years, Mr. Patev has focused his work in the areas of risk assessment and engineering reliability. He has worked in directing the risk and reliability research arena for the Corps and has worked with Corps Districts on the application of time-dependent reliability procedures to many navigation projects. Mr. Patev's background is diverse; he has bachelor's and master's degrees in geology, geotechnical engineering, and structural engineering. He has published a variety of journal and conference papers on risk assessment and engineering reliability and has contributed technical chapters to a variety of textbooks.

3 Expert-Opinion Elicitation

3.1 Background

The elicitation process of opinions is a formal process that is performed systematically for each issue according to the following steps:

- Issue familiarization of experts and review of critical component list.
- Train experts in elicitation process using two examples.
- Experts discuss and come to agreement on assumptions for each issue.
- Facilitate the first elicitation and collection of opinions.
- Collect and present results to experts.
- The group discusses its first response.
- Facilitate the second elicitation and collection of opinions.
- Make the final presentation of experts' opinions.
- Solicit the experts' confidence of final response.
- Return to Step 3 and repeat for all components.

The issues consist of groups of similar questions concerning the CL of critical ME components at navigation projects. The issues also include the experts' confidence level in the final value that was obtained after the second elicitation. Assumptions made and defined by the experts with each issue will be documented with the final results. These final tabulated responses define a CL for the components that will be used in the system reliability analysis of ME equipment at USACE navigation projects.

3.2 Selected issues

The issues for the experts were developed from the critical ME list that the experts reviewed in their read-ahead package. The issues were only focused on the normal deterioration and wear on the ME systems at navigation projects. Since the goal of the elicitation was to only estimate CL, the issues to address in this EOE are less difficult than typical EOE for navigation reliability.

3.2.1 Mechanical system issues

3.2.1.1 Description of problem

The mechanical system consists of four major categories: (1) mechanical drive systems, (2) hydraulic drive systems, (3) misc. gate/filling/emptying valves, and (4) other systems. The components in each of these categories are subjected to deterioration due to wear, corrosion, overstress, and fatigue from normal operational and environmental conditions at lock and dam facilities.

3.2.1.2 Potential failure mode(s)

The failure modes for these components were limited to any potential internal failure mechanism that could occur during normal operation of the lock and dam system. Individual failure modes were not identified for each component since it would be difficult to identify and elicit CL estimates for each failure mode with a high level of confidence.

3.2.1.3 Potential consequences/repair scenarios

The CL for the mechanical components was defined as the time until the component caused a navigation delay or closure greater than 4 hours. Partial or temporary repair scenarios were not considered for the mechanical system other than a replacement or rehabilitation of the entire system at a particular life cycle.

3.2.1.4 Issue definition for questions

Questions were defined for each critical mechanical component to determine the CL of that component and their confidence in that final elicited value. No assumptions were given to the experts as to the life of a navigation project.

3.2.2 Electrical system issues

3.2.2.1 Description of problem

The electrical system consists of four major categories: (1) power, (2) motor control, (3) motor and switches, and (4) electromechanical drives. The components in each of these categories are subjected to deterioration due to

wear and fatigue from normal operational and environmental conditions at lock and dam facilities.

3.2.2.2 Potential failure mode(s)

The failure modes for these components were limited to any potential internal failure mechanism that could occur during normal operation of the lock and dam system. Individual failure modes were not identified for each component since it would be difficult to identify and elicit CL estimates for each failure mode with a high level of confidence.

3.2.2.3 Potential consequences/repair scenarios

The CL for the mechanical components was defined as the time until the component caused a navigation delay or closure greater than 4 hours. Partial or temporary repair scenarios were not considered for the mechanical system other than a replacement or rehabilitation of the entire system at a particular life cycle.

3.2.2.4 Event definition for questions

Questions were defined for each critical electrical component to determine the CL of that component and their confidence in that final elicited value. No assumptions were given to the experts as to the life of a navigation project.

3.3 Elicitation and aggregation of expert opinions

The panel of experts, observers and the facilitator convened at the Louisville District offices in Louisville, KY for the period of 2 days to discuss and address the issues shown above. The following protocol was followed in the deliberation of the issues:

Training of the experts on probabilities and the elicitation process was
conducted using two different elicitation examples. This training was
conducted to familiarize the experts with the type of questions that
were forthcoming, and to focus the experts on how to discuss and
answer the issues that were forthcoming. The experts felt this training
was very helpful in understanding and making them more comfortable
with their elicitation and gained their confidence for discussion with
other panel members.

After presenting an issue and question, discussion of the issue was
encouraged to ensure that all experts clearly understood the questions
and event before answering. The participants also listed and agreed to
the assumptions. For each issue, experts were given a general form to
record their evaluation or input. The experts' judgment along with their
supportive reasoning was recorded for the issues. The experts were also
advised that the CL can only be answered in a whole number.

- The collected assessments from the experts were analyzed and aggregated quickly to obtain the first response from the experts about the issue. The medians and percentiles for the issue were computed in real time, and were discussed as they were being shown on a computer projection unit. Discussions then ensued among the experts to develop a consensus and agreement among the experts toward their first responses. The experts were given the opportunity to revise their assessments of the individual issues at the end of discussion. Also, the experts were asked to state the rationale for their statements and revisions. The revised assessments of the experts were collected for aggregation and analysis. Any additional assumptions made by the experts were documented as well.
- The experts were then asked for their second responses after discussion was formally closed. The collected assessments from the experts were analyzed and aggregated quickly for review by the experts. This last assessment was shown to the experts, but no changes were made to these results. The median of the final expert estimates was used as the final value. The experts were also asked to give a qualitative response to their confidence in the final medians for the CL estimate from the second response. This response was requested as high (±5 years), medium (±10 years), or low (±15 years). These medians are documented in this report for initial and final responses.
- In addition, a comprehensive documentation of this process is essential
 to ensure acceptance and credibility of the elicitation results. This
 document includes complete descriptions of both the first and second
 responses and the confidence of the experts in the final median response. The summarized results for each issue are provided in Section
 3.6. Appendix A includes the actual elicited results in Microsoft Excel
 spreadsheets form.

3.4 Sample questions used for issues

The elicitation questions defined for each issue were developed based on defining the CL for the ME components. The following section gives an example elicitation question for "Mechanical Drive System — Bearings — Roller" issue. For each question, Appendix A includes the Excel spreadsheet used to record the results and the expert panel responses for each issue.

3.5 Example question for mechanical drive system issue – bearings – rolling element

3.5.1 Event name

Bearing (rolling element) fail in the mechanical drive system during normal operation.

3.5.2 Question

What is the CL (in years) for a rolling element type bearing?

3.6 Summary of results from elicitation

This section discusses an aggregated summary of the results from the elicitation. The results in this section are shown as the median of each (first and second) response. The minimums and maximums are included to show the variation in the expert's responses. Also included with these results are the assumptions made and agreed to by the experts as shown for each response and the confidence each expert had in each of the final median response to the question. The confidence levels were solicited only in three categories: high (± 5 years), medium (± 10 years), or low (± 15 years). Appendix A contains more detailed results from the elicitation, including the non-aggregated results, which contain the minimum, maximum, and various percentiles for each question. The non-aggregated results also show individual responses for each expert.

Note that, in all cases, experts' confidence was established using "low," "medium," and "high" categories. The confidence results are expressed for each question based on the median for the second response.

3.6.1 Mechanical system - mechanical drive systems

3.6.1.1 Assumptions made by experts for mechanical drive systems

The experts made and agreed to the following assumptions:

- CL is the expected life until failure.
- Normal maintenance is done; there is no replacement.
- Operations are assumed to be "normal," i.e., there is no increase in future traffic.
- CL is expressed in years (no fractions).
- The general purpose environment is "good."
- The typical lock and dam does not go underwater.
- All materials are properly selected and designed.

3.6.1.2 Bearings-rolling element

What is the estimated CL (in years) for a rolling element type bearing?

	1 st response	2 nd response
Minimum	40	40
Median	40	40
Maximum	45	40

	Median	Low	Med	High
Final value(s)	40	0	1	5

3.6.1.3 Bearing sleeve (self lubricated)

What is the estimated CL (in years) for a sleeve (self lubricated) bearing?

	1 st response	2 nd response
Minimum	20	20
Median	28	25
Maximum	40	35

	Median	Low	Med	High
Final value(s)	25	1	4	1

3.6.1.4 Bearing - bronze sleeve

What is the estimated CL (in years) for a bronze sleeve bearing?

	1 st response	2 nd response
Minimum	30	20
Median	40	25
Maximum	45	35

	Median	Low	Med	High
Final value(s)	25	1	4	1

3.6.1.5 Couplings-flexible

What is the estimated CL (in years) for flexible couplings?

	1 st response	2 nd response
Minimum	30	20
Median	40	25
Maximum	45	35

	Median	Low	Med	High
Final value(s)	25	1	4	1

3.6.1.6 Couplings-rigid

What is the estimated CL (in years) for flexible couplings?

	1 st response	2 nd response
Minimum	40	45
Median	50	50
Maximum	80	70

	Median	Low	Med	High
Final value(s)	50	0	0	6

3.6.1.7 Shafts

What is the estimated CL (in years) for shafts?

	1 st response	2 nd response
Minimum	50	50
Median	50	50
Maximum	80	60

	Median	Low	Med	High
Final value(s)	50	0	0	6

3.6.1.8 Pins

What is the estimated CL (in years) for pins?

	1 st response	2 nd response
Minimum	25	30
Median	33	35
Maximum	40	35

	Median	Low	Med	High	
Final value(s)	35	0	1	5	

3.6.1.9 Gear reducers - worm

What is the estimated CL (in years) for worm gear reducers?

	1 st response	2 nd response
Minimum	25	25
Median	28	25
Maximum	40	30

	Median	Low	Med	High
Median Final value(s)	25	0	3	3

3.6.1.10 Gear reducers - parallel

What is the estimated CL (in years) for parallel gear reducers?

	1 st response	2 nd response
Minimum	30	40
Median	40	40
Maximum	50	45

	Median	Low	Med	High
Final value(s)	40	0	1	5

3.6.1.11 Gear reducers – right angle

What is the estimated CL (in years) for right angle gear reducers?

	1 st response	2 nd response
Minimum	30	35
Median	40	38
Maximum	45	45

	Median	Low	Med	High
Final value(s)	38	0	4	2

3.6.1.12 Open gearing –spur

What is the estimated CL (in years) for spur open gearing?

	1 st response	2 nd response
Minimum	35	45
Median	48	50
Maximum	60	60

	Median	Low	Med	High
Final value(s)	50	0	1	5

3.6.1.13 Open gearing –helical

What is the estimated CL (in years) for helical open gearing?

	1st response	2 nd response
Minimum	30	35
Median	38	38
Maximum	50	40

	Median	Low	Med	High
Final value(s)	38	0	6	0

3.6.1.14 Open gearing-bevel

What is the estimated CL (in years) for bevel open gearing?

	1 st response	2 nd response
Minimum	30	35
Median	38	40
Maximum	40	40

	Median	Low	Med	High
Final value(s)	40	0	6	0

3.6.1.15 Open gearing –rack

What is the estimated CL (in years) for rack open gearing?

	1 st response	2 nd response
Minimum	35	40
Median	45	50
Maximum	60	60

	Median	Low	Med	High
Final value(s)	50	0	4	2

3.6.1.16 Brake - electromechanical

What is the estimated CL (in years) for electromechanical brake?

	1 st response	2 nd response
Minimum	35	40
Median	43	45
Maximum	45	45

	Median	Low	Med	High
Final value(s)	45	0	0	6

3.6.1.17 Clutch

What is the estimated CL (in years) for the clutch?

	1 st response	2 nd response
Minimum	20	20
Median	30	30
Maximum	35	35

	Median	Low	Med	High
Final value(s)	30	2	4	0

3.6.1.18 Wire ropes-spiral

What is the estimated CL (in years) for spiral wire ropes?

	1 st response	2 nd response
Minimum	3	3
Median	5	5
Maximum	40	20

	Median	Low	Med	High
Final value(s)	5	2	0	4

3.6.1.19 Wire ropes-single sheave

What is the estimated CL (in years) for single sheave wire ropes?

	1 st response	2 nd response
Minimum	12	15
Median	20	20
Maximum	40	25

	Median	Low	Med	High
Final value(s)	20	0	4	2

3.6.1.20 Wire ropes-single drum

What is the estimated CL (in years) for single drum wire ropes?

	1 st response	2 nd response
Minimum	10	25
Median	25	28
Maximum	30	30

	Median	Low	Med	High
Final value(s)	28	0	3	3

3.6.1.21 Wire ropes drums

What is the estimated CL (in years) for wire ropes drums?

	1 st response	2 nd response
Minimum	40	50
Median	50	50
Maximum	60	60

	Median	Low	Med	High
Final value(s)	50	0	0	6

3.6.1.22 Wire ropes sheaves

What is the estimated CL (in years) for wire ropes sheaves?

	1 st response	2 nd response
Minimum	20	25
Median	30	33
Maximum	40	40

	Median	Low	Med	High
Final value(s)	33	0	4	2

3.6.1.23 Chains

What is the estimated CL (in years) for chains?

	1 st response	2 nd response
Minimum	20	25
Median	28	40
Maximum	60	45

	Median	Low	Med	High
Final value(s)	40	2	3	1

3.6.1.24 Chain sprockets

What is the estimated CL (in years) for chain sprockets?

	1 st response	2 nd response
Minimum	40	50
Median	48	60
Maximum	60	60

	Median	Low	Med	High
Final value(s)	40	2	3	1

3.6.1.25 Miter gate sector arms

What is the estimated CL (in years) miter gate sector arms?

	1 st response	2 nd response
Minimum	50	50
Median	68	73
Maximum	120	75

	Median	Low	Med	High
Final value(s)	73	1	1	4

3.6.1.26 Miter gate strut arms (buffered)

What is the estimated CL (in years) miter gate strut (buffered) arms?

	1 st response	2 nd response
Minimum	30	30
Median	40	35
Maximum	75	40

	Median	Low	Med	High
Final value(s)	35	0	3	3

3.6.1.27 Miter gate arms – strut (rigid)

What is the estimated CL (in years) miter gate strut (rigid) arms?

	1 st response	2 nd response
Minimum	20	30
Median	43	40
Maximum	120	75

	Median	Low	Med	High
Final value(s)	40	0	6	0

3.6.1.28 Miter gate support roller

What is the estimated CL (in years) miter gate support roller?

	1 st response	2 nd response
Minimum	30	30
Median	43	43
Maximum	50	50

	Median	Low	Med	High
Final value(s)	43	0	5	1

3.6.1.29 Miter gate rack support beam

What is the estimated CL (in years) miter gate rack support beam?

	1 st response	2 nd response
Minimum	50	50
Median	60	60
Maximum	80	80

	Median	Low	Med	High
Final value(s)	60	0	5	1

3.6.1.30 Valves - bellcranks

What is the estimated CL (in years) for the valve bellcranks?

	1 st response	2 nd response
Minimum	50	70
Median	75	78
Maximum	100	100

	Median	Low	Med	High
Final value(s)	78	0	3	3

3.6.1.31 Valves – crossheads/guides

What is the estimated CL (in years) for valve crossheads/guides?

	1 st response	2 nd response
Minimum	45	55
Median	63	73
Maximum	80	80

	Median	Low	Med	High
Final value(s)	73	0	4	2

3.6.1.32 Valves -struts

What is the estimated CL (in years) for the valve struts?

	1 st response	2 nd response
Minimum	35	35
Median	45	43
Maximum	60	60

	Median	Low	Med	High
Final value(s)	43	0	2	4

3.6.2 Mechanical system - hydraulic drive systems

3.6.2.1 Assumptions made by experts for hydraulic drive systems

The experts made and agreed to the following assumptions:

- CL is the expected life until failure.
- Normal maintenance is done; there is no replacement.
- Operations are assumed to be "normal," i.e., there is no increase in future traffic.
- CL is expressed in years (no fractions).
- The general purpose environment is "good."
- The typical lock and dam does not go underwater.
- All materials are properly selected and designed.
- All materials are properly selected and designed.

3.6.2.2 Hydraulic cylinders

What is the estimated CL (in years) for the hydraulic cylinders?

	1 st response	2 nd response
Minimum	50	55
Median	60	60
Maximum	70	70

	Median	Low	Med	High
Final value(s)	60	0	0	6

3.6.2.3 Control valves -check

What is the estimated CL (in years) for check valves?

	1 st response	2 nd response
Minimum	30	40
Median	50	45
Maximum	60	50

	Median	Low	Med	High
Final value(s)	45	0	2	4

3.6.2.4 Control valves -relief

What is the estimated CL (in years) for relief valves?

	1 st response	2 nd response
Minimum	30	30
Median	45	40
Maximum	60	50

	Median	Low	Med	High
Final value(s)	40	0	2	4

3.6.2.5 Control valves -manual

What is the estimated CL (in years) for manual valves?

	1 st response	2 nd response
Minimum	50	60
Median	60	60
Maximum	70	70

	Median	Low	Med	High
Final value(s)	60	0	1	5

3.6.2.6 Control valves -solenoid

What is the estimated CL (in years) for solenoid valves?

	1 st response	2 nd response
Minimum	30	30
Median	45	40
Maximum	60	50

	Median	Low	Med	High
Final value(s)	40	0	5	1

3.6.2.7 Control valves - proportional/throttle

What is the estimated CL (in years) for proportional/throttle valves?

	1 st response	2 nd response
Minimum	30	30
Median	40	40
Maximum	50	50

	Median	Low	Med	High
Final value(s)	40	0	5	1

3.6.2.8 Pumps –fixed

What is the estimated CL (in years) for fixed drive pumps?

	1 st response	2 nd response
Minimum	45	50
Median	50	50
Maximum	80	60

	Median	Low	Med	High
Final value(s)	50	0	0	6

3.6.2.9 Pumps -variable

What is the estimated CL (in years) for variable drive pumps?

	1 st response	2 nd response
Minimum	25	25
Median	45	30
Maximum	60	45

	Median	Low	Med	High
Final value(s)	30	0	1	5

3.6.2.10 Piping

What is the estimated CL (in years) for variable drive pumps?

	1 st response	2 nd response
Minimum	40	40
Median	40	40
Maximum	50	50

	Median	Low	Med	High
Final value(s)	60	0	3	3

3.6.3 Mechanical system – misc. gate/filling and emptying valves and other systems

3.6.3.1 Assumptions made by experts for misc. gate/filling and emptying valves

The experts made and agreed to the following assumptions:

- CL is the expected life until failure.
- Normal maintenance is done; there is no replacement.
- Operations are assumed to be "normal," i.e., there is no increase in future traffic.
- CL is expressed in years (no fractions).
- The general purpose environment is "good."
- The typical lock and dam does not go underwater.
- All materials are properly selected and designed.

3.6.3.2 Wheel assembly (rollers)

What is the estimated CL (in years) for the wheel assembly (rollers)?

	1 st response	2 nd response
Minimum	10	40
Median	40	40
Maximum	50	40

	Median	Low	Med	High
Final value(s)	40	0	3	3

3.6.3.3 Pintles/bushings

What is the estimated CL (in years) for the pintle/bushings?

	1 st response	2 nd response
Minimum	25	30
Median	30	30
Maximum	75	60

	Median	Low	Med	High
Final value(s)	30	0	2	4

3.6.3.4 Gudgeon pin/bushings

What is the estimated CL (in years) for the gudgeon pin/bushings?

	1 st response	2 nd response
Minimum	30	35
Median	48	43
Maximum	50	50

	Median	Low	Med	High
Final value(s)	43	0	4	2

3.6.3.5 Trunnion pin/bushings

What is the estimated CL (in years) for the trunnion pin/bushings?

	1 st response	2 nd response
Minimum	15	25
Median	35	38
Maximum	45	40

	Median	Low	Med	High
Final value(s)	38	0	1	5

3.6.3.6 Trunnion pin/bushings

What is the estimated CL (in years) for the trunnion pin/bushings?

	1 st response	2 nd response
Minimum	15	25
Median	35	38
Maximum	45	40

	Median	Low	Med	High
Final value(s)	38	0	1	5

3.6.3.7 Strut spindle pin

What is the estimated CL (in years) for the strut spindle pin?

	1 st response	2 nd response
Minimum	20	20
Median	25	25
Maximum	40	25

	Median	Low	Med	High
Final value(s)	25	0	0	6

3.6.3.8 Tow haulage -hydraulic

What is the estimated CL (in years) for a hydraulic tow haulage unit?

	1 st response	2 nd response
Minimum	20	25
Median	35	30
Maximum	50	35

	Median	Low	Med	High
Final value(s)	30	0	6	0

3.6.3.9 Tow haulage – mechanical

What is the estimated CL (in years) for a hydraulic tow haulage unit?

	1 st response	2 nd response
Minimum	20	30
Median	43	48
Maximum	60	60

	Median	Low	Med	High
Final value(s)	48	1	3	2

3.6.3.10 Butterfly valves

What is the estimated CL (in years) for butterfly valves?

	1 st response	2 nd response
Minimum	40	40
Median	45	50
Maximum	60	60

	Median	Low	Med	High
Final value(s)	50	0	6	0

3.6.3.11 Vertical lift valves

What is the estimated CL (in years) for vertical lift valves?

	1 st response	2 nd response
Minimum	30	40
Median	45	50
Maximum	50	50

	Median	Low	Med	High
Final value(s)	50	0	4	2

3.6.4 Electrical system issues

The experts for electrical system issues made the following assumptions:

- CL is the expected life until failure.
- Normal maintenance is done; there is no replacement.
- Operations are assumed to be "normal," i.e., there is no increase in future traffic.
- CL is expressed in years (no fractions).
- The general purpose environment is "good."
- The typical lock and dam does not go underwater.
- The equipment has been in service for 50-60 years.
- All materials are properly selected and designed.
- A power outage of 4 hours or more is assumed.
- Environmental factors could be used for site specific conditions.

3.6.4.1 Power utility

What is the estimated CL (in years) for power utility (commercial) power?

	1 st response	2 nd response
Minimum	1	1
Median	5	4
Maximum	10	10

	Median	Low	Med	High
Final value(s)	50	4	0	3

3.6.4.2 Service transformer

What are estimated CL (in years) the service transformer?

	1 st response	2 nd response
Minimum	30	40
Median	45	55
Maximum	60	60

	Median	Low	Med	High
Final value(s)	55	0	3	3

3.6.4.3 Transfer switches -automatic

What are estimated CL (in years) automatic transfer switches?

	1 st response	2 nd response
Minimum	15	20
Median	30	30
Maximum	40	40

	Median	Low	Med	High
Final value(s)	30	0	0	6

3.6.4.4 Transfer switches -manual

What are estimated CL (in years) for manual transfer switches?

	1 st response	2 nd response
Minimum	40	60
Median	60	65
Maximum	80	80

	Median	Low	Med	High
Final value(s)	65	0	1	5

3.6.4.5 Switchgear

What is the estimated CL (in years) for the switchgear?

	1 st response	2 nd response
Minimum	40	70
Median	55	78
Maximum	90	90

	Median	Low	Med	High
Final value(s)	78	0	4	2

3.6.4.6 Circuit breakers

What is estimated CL (in years) for circuit breakers?

	1 st response	2 nd response
Minimum	30	40
Median	45	63
Maximum	70	75

	Median	Low	Med	High
Final value(s)	63	0	2	4

3.6.4.7 Power panelboard

What is the estimated CL (in years) for power panelboard?

	1 st response	2 nd response
Minimum	25	60
Median	65	78
Maximum	90	90

	Median	Low	Med	High
Final value(s)	20.0	0	4	2

3.6.4.8 Cables-buried/submerged

What is the estimated CL (in years) for buried/submerged cables?

	1 st response	2 nd response
Minimum	30	50
Median	55	60
Maximum	75	75

	Median	Low	Med	High
Final value(s)	60	0	4	2

3.6.4.9 Cables-duct/cable tray

What is the estimated CL (in years) for buried/submerged cables?

	1 st response	2 nd response
Minimum	75	75
Median	80	80
Maximum	100	100

	Median	Low	Med	High
Final value(s)	80	0	4	2

3.6.4.10 Cables-portable/flexible

What is the estimated CL (in years) for portable/flexible cables?

	1 st response	2 nd response
Minimum	20	20
Median	28	38
Maximum	35	35

	Median	Low	Med	High
Final value(s)	38	1	3	2

3.6.4.11 Bus duct (electronic)

What is the estimated CL (in years) for portable/flexible cables?

	1 st response	2 nd response
Minimum	75	80
Median	95	95
Maximum	150	120

	Median	Low	Med	High
Final value(s)	95	2	1	3

3.6.4.12 Switchboards

What is the CL (in years) for switchboards?

	1 st response	2 nd response
Minimum	50	75
Median	75	83
Maximum	90	90

	Median	Low	Med	High
Final value(s)	83	0	6	0

3.6.4.13 Motor control centers

What is the CL (in years) for motor control centers?

	1 st response	2 nd response
Minimum	50	75
Median	75	83
Maximum	90	90

	Median	Low	Med	High
Final value(s)	83	0	6	0

3.6.4.14 Motor starters – full voltage

What is the CL (in years) for full voltage motor starters?

	1 st response	2 nd response
Minimum	30	60
Median	60	63
Maximum	80	80

	Median	Low	Med	High
Final value(s)	63	0	1	5

3.6.4.15 Motor starters – reduced/variable

What is the CL (in years) for reduced/variable motor starters?

	1 st response	2 nd response
Minimum	15	50
Median	50	50
Maximum	60	60

	Median	Low	Med	High
Final value(s)	50	0	5	1

3.6.4.16 Motor starters - VFD

What is the CL (in years) for VFD motor starters?

	1 st response	2 nd response
Minimum	15	25
Median	25	35
Maximum	40	40

	Median	Low	Med	High
Final value(s)	35	4	2	0

3.6.4.17 PLC systems

What is the CL (in years) for PLC systems?

	1 st response	2 nd response
Minimum	20	25
Median	25	25
Maximum	40	40

	Median	Low	Med	High
Final value(s)	25	0	3	3

3.6.4.18 Selsyn motor

What is the CL (in years) for a Selsyn motor?

	1 st response	2 nd response
Minimum	30	30
Median	55	43
Maximum	100	80

	Median	Low	Med	High
Final value(s)	43	0	6	0

3.6.4.19 Traveling nut limit switch

What is the CL (in years) for a traveling nut limit switch?

	1 st response	2 nd response
Minimum	30	50
Median	73	65
Maximum	105	100

	Median	Low	Med	High
Final value(s)	65	0	6	0

3.6.4.20 Electric motors (new and rebuilt)

What is the CL (in years) for new or rebuilt electric motors?

	1 st response	2 nd response
Minimum	50	60
Median	65	68
Maximum	85	80

	Median	Low	Med	High
Final value(s)	68	0	6	0

3.6.4.21 Standby generator set

What is the CL (in years) for a standby generator set?

	1 st response	2 nd response
Minimum	25	40
Median	50	50
Maximum	75	70

	Median	Low	Med	High
Final value(s)	50	0	2	4

3.6.4.22 Direct current (DC) rectifier (brakes)

What is the CL (in years) for a standby generator set?

	1 st response	2 nd response
Minimum	10	25
Median	35	35
Maximum	50	45

	Median	Low	Med	High
Final value(s)	35	1	1	4

4 Conclusions

The CL data collected as part of this study will be useful in evaluation of the reliability of ME systems at USACE navigation projects. The results documented in this report are estimates of the characteristic lives of the typical navigation project across the country. The results for the CL presented here may be modified if more detailed information on performance is known for a site specific project. This data collected from this elicitation can be used in Weibull models to predict the reliability of ME components. Weibull models are recommended for use with fault tree methods for analysis of ME system reliability (Patev, Putcha, and Foltz 2005).

Tables 9 and 10 summarize all the median elicitation values for the mechanical system and electrical system at navigation projects. Reference is made to Appendices A and B for the actual response values, and the elicitation and confidence results for each component.

Table 9. CL for navigation mechanical components.

Component		Life (in years)
	Mechanical drive systems	
Characteristic sha	afts pins gear reducers	
Bearings	Rolling element	40
	Sleeve (self lubricated)	25
	Bronze sleeve	40
Couplings	Flexible	35
	Rigid	50
		35
	Worm	25
	Parallel	40
	Right angle	38
	Spur	50
	Helical	38
Open Gearing	Bevel	40
	Rack	50
	Electromechanical	45
	Slip	30
	Spiral Plate	5
	Single Sheave(s)	20

Component		Life (in years)
Brake Clutch Wire	Single Drum	28
ropes		50
		33
Wire rope drums	Roller	40
Wire rope		60
	Sector arms	73
	Strut arms - buffered	35
	Strut arms - rigid	40
	Support roller	43
	Rack support beam	60
	Bellcranks	78
Valves	Crosshead/Guide	73
	Strut	43
	Worm	25
	Parallel	40
	Right angle	38
	Hydraulic Drive Systems	
Hydraulic cylinder		60
Control Valves		
Check		45
Relief		40
Directional		
Manual		60
Solenoid		40
Proportional/Throttl e		40
Pumps		
Fixed		50
Variable		30
Hydraulic Motors	Fixed	50
	Variable	30
Piping		40
Selsyn motor		43
Traveling nut limit switch		65
	ElectroMechanical Drives	
Electric Motors (new and rebuilt)		68
Standby generator sets		50
DC Rectifier (brakes)		35
Tow Haulage	Hydraulic	30

Component		Life (in years)
	Mechanical	48
Emptying Filling	Butterfly	50
	Vertical Lift	50
Mis	c Gate/Filling Emptying Valves	}
Wheel assembly		40
Pintles/Bushings		30
Gudgeon pin/bushings		43
Trunnion pin/bushings		38
Strut spindle pin		25

Table 10. CL for navigation electrical components characteristic power life (in years).

Component		Life (in years)
Service transformer		4
Transfer switches		55
	Automatic	
	Manual	30
Switchgear		65
Circuit breakers		78
Power Panelboard		63
Cables		78
	Buried Submerged	
	Duct/Cable Tray	60
	Portable/Flexible	80
Bus duct		28
Switchboards		95
Motor control centers		83
Motor control		83
Motor Starters		
	Full Voltage	
	Reduced/Variable	63
	VFD	50
PLC systems		35
Service transformer		25

Acronyms, Abbreviations, and Technical Terms

Acronyms and Abbreviations

CDF Cumulative Distribution Function

CERL Construction Engineering Research Laboratory

CL Characteristic Life
DC Direct Current

DoD US Department of Defense

EC Engineer Circular
EM ElectroMechanical

EOE Expert-Opinion Elicitation (EOE)

ERDC Engineer Research and Development Center

GLSLS Great Lakes and St. Lawrence Seaway System Study

HQUSACE Headquarters, US Army Corps of Engineers

ITL Information Technology Laboratory
LRD Great Lakes and Ohio River Division

ME Mechanical and Electrical MTTF Mean Time To Failure

OMB Office of Management and Budget

ORMSS Ohio River Main Stem Study
PLC Programmable Logic Controller

TF Technical Facilitator
TI Technical Integrator

TIF Technical Integrator and Facilitator

TR Technical Report US United States

USACE US Army Corps of Engineers

UV Ultraviolet

VFD Variable Frequency Drive

Technical Terms

<u>Term</u>	<u>Definition</u>
Average	A central tendency measure that is computed as the sum of values divided by their count.
Evaluators	Evaluators consider available data, become familiar with the views of proponents and other evaluators, question the technical bases of data, and challenge the views of proponents.
Expert	A person with related or unique experience to an issue or question of interest for the process.
Expert elicitation	A formal process of obtaining information or answers to specific questions about certain issues.
Expert-Opinion Elicitation (EOE) process	A formal, heuristic process of gathering informing and data or answering questions on issues or problems of concern.
Leader of EOE process	An entity having managerial and technical responsibility for organizing and executing the project, overseeing all participants, and intellectually owning the results.
Mean	Refer to average.
Median value	The point that divides the data into two equal parts, i.e., 50% of the data are above it and 50% are below it.
Observers	Observers can contribute to the discussion, but cannot provide expert opinion that enters in the aggregated opinion of the experts.
Peer reviewers	Experts that can provide an unbiased assessment and critical review of an Expert-Opinion Elicitation process, its technical issues, and results.
p-percentile value	The value of the parameter such that $p\%$ of the data is less or equal to this value.
Probability	Measured by dividing the number of occurrences by the total number of repetitions.
Proponents	Proponents are experts who advocate a particular hypothesis or technical position. In science, a proponent evaluates experimental data and professionally offers a hypothesis that would be challenges by the proponent's peers until proven correct or wrong.
Resource experts	Resource experts are technical experts with detailed and deep knowledge of particular data, issue aspects, particular methodologies, or use of evaluators.
Technical Facilitator (TF)	An entity responsible for structuring and facilitating the discussions and interactions of experts in the EOE process; staging effective interactions among experts; ensuring equity in presented views; eliciting formal evaluations from each expert; and creating conditions for direct, non-controversial integration of expert opinions.
Technical integrator (TI)	An entity responsible for developing the composite representation of issues based on informed members and/or sources of related technical communities and experts; explaining and defending composite results to experts and outside experts, peer reviewers, regulators, and policy makers; and obtaining feedback and revising composite results.

<u>Term</u>	<u>Definition</u>
Technical Integrator and Facilitator (TIF)	An entity responsible for both functions of TI and TF.
Uncertainty	The doubt (or the lack of sureness) about the outcomes (in number or magnitude) of a system.
Failure event	Any event that will have an adverse impact on lock performance is defined a failure event.
Failure rate	The probability of failure per unit time or a unit of operation, such as cycle, revolution, rotation, startup, etc.
Variance	Measure of dispersion.

References

- Abernethy, R. B. 2009. *The New Weibull Handbook*. North Palm Beach, FL: Robert B. Abernethy (Publisher and Distributor).
- Ayyub, B. M., A. N. Blair, and R. C. Patev. December 2002. Expert-opinion elicitation for the risk analysis of design-improvement alternatives to the Lindy C. Boggs Lock and Dam. ERDC/ITL TR-02-2. Vicksburg, MS: Engineering Research and Development Center, Information Technology Laboratory (ERDC-ITL).
- Headquarters, US Army Corps of Engineers (HQUSACE). 1 February 2011. *Risk and reliability for major rehabilitation studies*. Engineer Circular (EC) 1110-2-6062. Washington, DC: HQUSACE, http://publications.usace.army.mil/publications/eng-circulars/EC_1110-2-6062.pdf
- Patev, R. C., C. S. Putcha, and S. D. Foltz. May 2005. *Methodology for risk analysis of dam gates and associated operating equipment using fault tree analysis.* ERDC/ITL TR-05-3. Vicksburg, MS: ERDC-ITL.
- US Department of Defense (DoD), 18 November 1981. *Reliability Modeling and Prediction*. Mil-Std-756B. Washington, DC: DoD, http://www.responseboatproject.net/rbmcontract/sections/Section_J/References/MIL-STD-756B.pdf

Appendix A: Expert Elicitation Spreadsheets – Mechanical System Components

Table A1. Mechanical system - bearings.

- ·				Expert-opinio	11. 14. 41					
Event Name	Full Description of Issue									
			First Response			Second Response				
Bearings fail in the mechanical drive system during normal operation	What is the expected characterisitic life for the different bearings identified?								<u>Confidence</u>	
		Rolling Element	Sleeve (self lubricated)	Bronze Sleeve	Rolling Element	Sleeve (self lubricated)	Bronze Sleeve	Rolling Element	Sleeve (self lubricated)	Bronze Sleeve
	Expert #1 Expert #2 Expert #3	40 40 40	40 30 25	40 40 40	40 40 40	30 25 25	40 40 40	high med high	high med med	high med high
	Expert #4 Expert #5	40 40	20 40	30 40	40 40	20 35	40 35	high high	med low	high low
	Expert #6	45	20	45	40	20	40	high	med	high
Summary Table	Minimum = 25 Percentile = Median =	40 40 40	20 21 28	30 40 40	40 40 40	20 21 25	35 40 40			
	75 Percentile = Maximum =	40 45	38 40	40 45	40 40	29 35	40 40			

Table A1. (Cont'd).

Event Name	Full Description of Issue							
Couplings fail in the			First Response		Second Response			
mechanical drive system during normal operation	What is the expected characterisitic life for the different couplings identified?							<u>Confidence</u>
		Flexible	Rigid	<u>Flexible</u>	Rigid	<u>FI</u>	<u>exible</u>	<u>Rigid</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #4 Expert #5 Expert #6	30 35 30 30 35 40	40 50 40 50 50 80	30 35 30 35 35 35 35	50 50 45 60 50 70		high high high high high	high high high high high high
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	30 30 33 35 40	40 43 50 50 80	30 31 35 35 35 35	45 50 50 58 70			

Table A2. Mechanical system - shafts

Event Name	Full Description of Issue	Expert-opini	Expert-opinion elicitation						
Shafts fail in the mechanical drive system during normal operation	What is the expected characterisitic life for the shafts identified? Expert #1 Expert #2 Expert #3 Expert #4 Expert #4 Expert #5 Expert #6	50 50	Second Response Shafts 50 60 50 50 50 50 50 50	Confidence Shafts high high high high high high high hig					
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	50 50 50 50 50 80	50 50 50 50 60						

Table A3. Mechanical system - pins.

Event Name	Full Description of Issue	Expert-opin		
Pins fail in the mechanical drive system during normal operation	What is the expected characterisitic life for the pins identified? Expert #1 Expert #2 Expert #3 Expert #4 Expert #4 Expert #5 Expert #6	First Response Pins 25 40 40 30 35 30	Second Response Pins 35 35 36 30 35 30	Confidence Pins high med high high high high high
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	25 30 33 39 40	30 31 35 35 35 35	

Table A4. Mechanical system - gear reducers.

Event Name	Full Description of Issue									
			First Response			Second Response				
Gear reducers fail in the mechanical drive system during normal operation									Confidence	<u>.</u>
		Worm	<u>Parallel</u>	Right Angle	<u>Worm</u>	<u>Parallel</u>	Right Angle	<u>Worm</u>	<u>Parallel</u>	Right Angle
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	40 30 25 25 35 25	40 50 30 40 50 40	40 45 30 40 45 30	30 25 25 25 25 25 25	45 45 40 40 40 40	45 40 35 40 35 35	med med med high med high	high high high high med high	high med high med med med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	25 25 28 34 40	30 40 40 48 50	30 33 40 44 45	25 25 25 25 25 30	40 40 40 44 45	35 35 38 40 45			

Table A5. Mechanical system - open gearing.

Event Name	Full Description of Issue	Expert-opinion elicitation											
				First Response				Second Response					
system during	What is the expected characterisitic life for the different open gearing identified?										O-ufid-u		
normal operation	identified?	<u>Spur</u>	Helical	<u>Bevel</u>	Rack	Spur	<u>Helical</u>	<u>Bevel</u>	Rack	<u>Spur</u>	<u>Confidence</u> <u>Helical</u>	<u>Bevel</u>	Rack
	Expert #1 Expert #3 Expert #3 Expert #4 Expert #6	50 40 45 60 35 60	40 30 35 40 30 50	40 30 35 40 35 40	50 40 35 60 35 50	50 50 45 60 50 55	40 35 35 40 40 35	40 35 35 40 40 40	50 45 40 60 50 55	high high high high med high	med med med med med med	med med med med med med	high med high high med high
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	35 41 48 58 60	30 31 38 40 50	30 35 38 40 40	35 36 45 50 60	45 50 50 54 60	35 35 38 40 40	35 36 40 40 40	40 46 50 54 60				

Table A6. Mechanical system - electromechanical brakes,

Event Name	Full Description of Issue	Expert-opini	Expert-opinion elicitation					
		First Response	Second Response					
Brakes fail in the mechanical drive system during	What is the characterisitic life for the							
normal operation	different brakes identified?			<u>Confidence</u>				
	Expert #1		Electromechanical (magnetic and torque) 45	Electromechanical (magnetic and torque) high				
	Expert #1 Expert #2 Expert #3	45	45 45 40	high high				
	Expert #4 Expert #5	40	45 45	high high				
	Expert #6		40	high				
Summary Table	Minimum = 25 Percentile =	40	40 41					
	Median = 75 Percentile =	43 45	<mark>45</mark> 45					
	Maximum =	45	45					

Table A7. Mechanical system - slip brakes.

		- Table / III - Meenamear eyett		
Event Name	Full Description of Issue	Expert-c		
		First Response	Second Response	
Brakes fail in the mechanical drive system during normal operation	What is the characterisitic life for the different brakes identified?			<u>Confidence</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	Slip 30 30 35 30 35 20	Slip 30 30 35 30 35 20	Slip med med med med low low
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	20 30 30 34 35	20 30 30 30 34 35	

Table A8. Mechanical system - wire ropes.

Event Name	Full Description of Issue	Expert-opinion elicitation								
			First Response			Second Response				
Wire ropes fail in the mechanical drive system during normal operation	What is the expected characterisitic life for the wire ropes identified?								Confidence	
normal operation	ine for the time ropes lastitude.	Spiral Plate	Single Sheave(s)	Single Drum	Spiral Plate	Single/Multiple Sheave	Single Drum	Spiral Plate	Single/Multiple Sheave	Single Drum
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6		20 12 25 40 15 20	30 20 20 30 10 30	3 5 20 20 3 5	20 20 25 20 15 20	30 25 25 30 25 30	high high Iow Iow high high	med med med med high high	med med high high med high
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	3 4 5 16 40	12 16 20 24 40	10 20 25 30 30	3 4 5 16 20	15 20 20 20 20 25	25 25 28 30 30			

Table A8. (Cont'd).

Event Name	Full Description of Issue		E	xpert-opinion elicitation			
			First Response		Second Response		
system during	What is the characterisitic life for the wire rope drums and sheaves identified?						<u>Confidence</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #6	<u>Drums</u> 50 60 45 50 50 50	<u>Sheaves</u> 25 40 40 30 20	50 60 50 50 50 50	<u>Sheaves</u> 40 35 40 30 25 30	Drums high high high high	Sheaves med med high med
Summary Table	Expert #6 Minimum = 25 Percentile = Median =	45 50 50	20 26 30	50 50 50 50	25 30 33	high	high
	75 Percentile = Maximum =	50 50 60	38 40	50 50 60	33 39 40		

Table A9. Mechanical system - chains.

E vent Name	Full Description of Issue	Expert-opii	ion dicitation	
Chains fail in the		First Response	Second Response	
mechanical drive system during normal operation	What is the estimated characterisitic life for the different chains identified?			Confidence
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	Roller. 20 20 45 30 25 60	Roller 40 40 45 40 25 30	Roller m ed low high med m ed low
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	20 21 28 41 60	25 33 40 40 45	

Table A10. Mechanical system - chain sprocket.

Event Name	Full Description of Issue	Expert-opini	on elicitation	
		First Response	Second Response	
nomal operation	What is the estimated characterisitic life for the different chain sprocket identified?			Confidence
		Chain Sprocket	Chain Sprocket	Chain Sprocket
	Expert #1 Expert #2 Expert #3 Expert #5 Expert #5 Expert #6	40 45 60 40 50 60	50 60 60 60 50 60	med med high med low low
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	40 41 48 58 60	50 53 60 60 60	

Table A11. Mechanical system – strut arms.

Event Name	Full Description of Issue		Expert-opinion elicitation							
			First Response			Second Response				
Sector or strut arms fail in the mechanical drive system during	What is the expected characterisitic life for the sector and strut arms									
normal operation	identified?	Sector arms	Strut arms - buffered	Strut arms - rigid	Sector arms	Strut arms - buffered	Strut arms - rigid	Sector arms	Confidence Strut arms - buffered	Strut arms - rigid
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	75 120 60 75 50 60	75 50 40 30 40 30	75 120 50 30 35 20	75 75 60 75 50 70	40 35 35 35 30 40 30	40 75 50 30 40 30	high med high high low high	med med high high med high	med med med med med med med med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	50 60 68 75 120	30 33 40 48 75	20 31 43 69 120	50 63 73 75 75	30 31 35 39 40	30 33 40 48 75			

Table A12. Mechanical system – support roller.

Event Name	Full Description of Issue		Expert-opinion elicitation						
			First Response			Second Response			
Support roller fails during normal operation	What is the expected characterisitic life for support rollers and beams identified?								<u>Confidence</u>
		Support Roller	Rack Support Beam		Support Roller	Rack Support Beam		Support Roller	Rack Support Beam
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	50 30 45 40 50 40	70 60 50 50 80 60		50 30 45 40 50 40	70 60 50 60 80 60		med high med med med	med high med med med med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	30 40 43 49 50	50 53 60 68 80		30 40 43 49 50	50 60 60 68 80			

Table A13. Mechanical system - valves.

Event Name	Full Description of Issue			Expert-opini	on elicitation					
			First Response			Second Response				
Valve componens fails during normal operation	What is the expected characterisitic life for the valve components identified?								<u>Confidence</u>	
		Bellcrank	Crosshead/Guide	Strut	<u>Bellcrank</u>	Crosshead/Guide	Strut	<u>Bellcrank</u>	Crosshead/Guide	Strut
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	75 100 50 75 60 90	75 80 50 75 50 45	60 40 35 40 50 60	75 100 70 75 80 90	75 80 70 75 55 60	60 40 35 40 45 50	med high med high high med	med high med high med med	high high med high high med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	50 64 75 86 100	45 50 63 75 80	35 40 45 58 60	70 75 78 88 100	55 63 73 75 80	35 40 43 49 60			

Table A14. Mechanical system - hydraulic cylinder.

Full Description of Issue	Ex	pert-opinion elicitation	
	First Response	Second Response	
What is the expected characterisitic life for the hydraulic cylinder identified?			<u>Confidence</u>
Expert #1 Expert #2 Expert #3 Expert #4 Expert #6	50 60 70 55	Hydraulic Cylinder 60 60 60 70 55 60	Hydraulic Cylinder high high high high high high high
Minimum = 25 Percentile =	50 56 60 60 70	55 60 60 60 70	

Table A15. Mechanical system - control valves.

Event Name	Full Description of Issue		Ехр				
			First Response		Second Response		
Valves fail in the hyraulic drive system during normal operation	What is the expected characterisitic life for the different valves identified?						<u>Confidence</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	<u>Check</u> 50 60 40 50 30 60	Relief 50 60 30 40 30 60	<u>Check</u> 40 50 40 50 40 50 40 50	Relief 50 40 30 40 35 40	<u>Check</u> high high high med med	<u>Relief</u> high high high med med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	30 43 50 58 60	30 33 45 58 60	40 40 45 50 50	30 36 40 40 50		

Table A15. (Cont'd).

Event Name	Full Description of Issue			Expert-opinio	on elicitation					
			First Response			Second Response				
Valves fail in the hyraulic drive system during normal operation	What is the expected characterisitic life for the different valves identified?								Confidence	
		<u>Manual</u>	Solenoid	<u>Proportional</u>	<u>Manual</u>	Solenoid	<u>Proportional</u>	Manual	Solenoid	Proportional
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	70 60 60 60 50 50	40 40 30 50 25 40	40 40 40 30 50 30	70 60 60 60 60 60	40 40 35 45 40 40	40 40 40 30 50 30	high high high high high med	med med high med med med	med med high med med med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	50 53 60 60 70	25 33 40 40 50	30 33 40 40 50	60 60 60 60 70	35 40 40 40 45	30 33 40 40 50			

Table A16. Mechanical system - pumps.

			010 / 1201 11100110111100	-,			
Event Name	Full Description of Issue		Ехр				
			First Response		Second Response		
Pump fail in the hyraulic drive system during normal operation	What is the expected characterisitic life for the different pumps identified?						<u>Confidence</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	50 75 45 50 50 80	<u>Variable</u> 45 40 45 25 45 60	Fixed 50 60 50 50 50 50 50	<u>Variable</u> 45 30 40 25 30 25	Fixed high high high high high	<u>Variable</u> high high med high high high
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	45 50 50 69 80	25 41 45 45 60	50 50 50 50 60	25 26 30 38 45		

Table A17. Mechanical system - hydraulic motors.

Event Name	Full Description of Issue		Ex				
Hydraulic motor fails			First Response		Second Response		
in the hydraulic drive system during normal operation							<u>Confidence</u>
		<u>Fixed</u>	<u>Variable</u>	<u>Fixed</u>	<u>Variable</u>	Fixe	ed <u>Variable</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	40 40 50 50 50 50	40 30 35 25 30 25	40 40 50 50 50 50	40 30 35 25 30 25	hig hig hig hig hig	h med h med h high h high
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	40 43 50 50 50	25 26 30 34 40	40 43 50 50 50	25 26 30 34 40		

Table A18. Mechanical system - piping.

		rable / Lac. Meditalisation by the		
Event Name	Full Description of Issue	Expert-opir	ion elicitation	
		First Response	Second Response]
Piping fails in the hydraulic drive system during normal operation	What is the expected characterisitic life for the piping identified?			<u>Confidence</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	40 40 40 50	Piping 50 40 40 40 50 40	Piping med high high high med med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	40 40 40 48 50	40 40 40 48 50	

Table A19. Mechanical system – wheel assembly (rollers).

Event Name	Full Description of Issue	Expert-opinion elicitation		
		First Response	Second Response	
Wheel Assembly fails during normal operation	What is the expected characterisitic life for the wheel assembly identified?			<u>Confidence</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	40 40 50 40	Wheel Assembly 40 40 40 40 40 40 40	Wheel Assembly high high med med high med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	40	40 40 40 40 40 40	

Table A20. Mechanical system - pintles/bushings.

		rable /1201 Widehambar byoter	<u> </u>			
Event Name	Full Description of Issue	Expert-op	Expert-opinion elicitation			
		First	Second			
		Response	Response			
pins fail during	What is the expected characterisitic life for the Pintles/Bushings identified?			Confidence		
normal operation	identified?	Pintles/Bushings	Pintles/Bushings	Pintles/Bushings		
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	75 30 30 25 40	60 30 30 30 40 30	med high high high med high		
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	25 30 30 38 75	30 30 30 38 60			

Table A21. Mechanical system - gudgeon/trunnion.

Event Name	Full Description of Issue	Expert-opinion eli		
pins fail during	What is the expected characterisitic life for the Gudgeon/Bushings identified? Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	Gudgeon/Bushings 50 50 40 30 45	Second Response Gudgeon/Bushings 50 40 40 35 50 45	Confidence Gudgeon/Bushings med high high med med med med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	41 48 50	35 40 43 49 50	

Table A22. Mechanical system – trunnion pin/bushings.

Event Name	Full Description of Issue	Expert-opinion eli		
Pintles or Gudgeon/Trunnion pins fail during normal operation	What is the expected characterisitic life for the Trunnion Pin/Bushings identified? Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	25 40 45 35	Second Response Trunnion Pin/Bushings 25 30 40 40 40 35 40	Confidence Trunnion Pin/Bushings med high high high high high high high hig
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	15 28 35 39 45	25 31 38 40 40	

Table A23. Mechanical system - strut spindle pin.

Event Name	Full Description of Issue	Expert-opinion elicitation		
		First Response	Second Response	
Gate connection fails during normal operation	What is the expected characterisitic life for the strut spindle pin identified?			<u>Confidence</u>
	Expert #1 Expert #2 Expert #4 Expert #4 Expert #5 Expert #6	20 40 20 40	Strut Spindle Pin 25 25 25 20 25 25	Strut Spindle Pin high high high high high high high hi
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	21 25	20 25 25 25 25 25	

Table A24. Mechanical system – tow haulage system.

Event	Full Description		Fxn	ert-opinion elicitation			
Name	of Issue		Export opinion onortation				
			First Response	T	Second Response		
Tow Haulage system fails during normal operation	What is the expected characterisitic life for the tow haulauge system identified?		Kesponse		response		<u>Confidence</u>
		<u>Hydraulic</u>	<u>Mechanical</u>	<u>Hydraulic</u>	Mechanical	<u>Hydraulic</u>	Mechanical
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	35 40 35 20 50 25	40 40 45 20 60 50	35 30 35 30 30 25	50 40 45 30 60 50	med med med med med	high med high med med low
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	20 28 35 39 50	20 40 43 49 60	25 30 30 34 35	30 41 48 50 60		

Table A25. Mechanical system – emptying/filling systems.

_						
Event Name	Full Description of Issue	Expert-opir	Expert-opinion elicitation			
		First Response	Second Response			
Emptying or filling system fails during normal operation	What is the expected characterisitic life for the different emptying and filling systems identified?			<u>Confidence</u>		
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	50 30 40 50 60 50 50 40	Butterfly Vertical Lift 40	Butterfly Vertical Lift med med med med med high med high med med med med med med		
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	40 30 40 36 45 45 50 50 60 50	40 40 43 50 50 50 50 50 60 50			

Appendix B: Expert Elicitation Spreadsheets – Electrical System Components

Table B1. Electrical system – power utility.

		Table B1. Electrical System	ponor almoj.	
Event Name	Full Description of Issue	Expert-opin		
		First Response	Second Response]
Power utility (commercial) fails during normal operation	What is the expected characterisitic life for the power utility (commercial) identified?			<u>Confidence</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	Power Utility 10 1 5 5 5 10	Power Utility 10 1 3 3 5 5	Power Utility high med med high high med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	1 5 5 9 10	1 3 4 5 10	

Table B2. Electrical system – service transformer.

Event Name	Full Description of Issue	Expert-opini		
		First Response	Second Response	
normal operation	What is the expected characterisitic life for the service transformer			
	identified?			<u>Confidence</u>
		Service Transformer	Service Transformer	Service Transformer
	Expert #1 Expert #2 Expert #4 Expert #4 Expert #5	30 40 60 50 50	50 40 60 60 60	med med med high high
	Expert #6		50	high
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	30 40 45 50 60	40 50 55 60 60	

Table B3. Electrical system – transfer switch.

Event Name	Full Description of Issue	Expert-opinion elicitation						
Transfer switch fails			First Response		Second Response			
in the electrical power system during normal operation	What is the expected characterisitic life for the transfer switches identified?							<u>Confidence</u>
		Automatic	<u>Manual</u>	<u>Auto</u>	matic <u>Manual</u>		Automatic	<u>Manual</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	30 40 40 20 15 30	40 60 70 80 40 60	3 3 2 2	70 80 60 80 75 85 80 80 60		high high high high high high	high high high med high high
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	15 23 30 38 40	40 45 60 68 80	2 3 3	20 60 26 60 80 65 80 74 80 80			

Table B4. Electrical system - switchgear.

		rabio B ii Electrical cycli	<u> </u>	
Event Name	Full Description of Issue	Experi		
		First Response	Second Response	
Switchgear fails in the electrical power system during normal operation	What is the expected characterisitic life for the switchgear identified?			Confidence
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	Switchgear 50 50 90 65 40 60	Switchgear 75 70 90 85 70 80	Switchgear med med med high high med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	40 50 55 64 90	70 71 78 84 90	

Table B5. Electrical system - circuit breakers.

Event Name	Full Description of Issue	Expert-opini		
Circuit breakers fails in the electrical power system during normal operation	What is the expected characterisitic life for the circuit breakers identified? Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	40 70 50	Second Response Circuit Breaker 50 40 70 75 70 55	Confidence Circuit Breaker high med high high high high med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	30 40 45 54 70	40 51 63 70 75	

Table B6. Electrical system - power panelboard.

Event Name	Full Description of Issue	Expert-opini	Expert-opinion elicitation		
normal operation	What is the expected characterisitic life for the power panelboard identified? Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	Power Panelboard 25 40 60 90 80	Second Response Power Panelboard 75 60 90 80 80 70	Confidence Power Panelboard med med med high high med	
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	25 45 65 78 90	60 71 78 80 90		

Table B7. Electrical system - cables.

Event Name	Full Description of Issue		Expert-opinion elicitation						
			First Response			Second Response			
Cables fails in the electrical power system during normal operation	What is the expected characterisitic life for the cables identified?								Confidence
		Buried/Submerged	Duct/Cable Tray		Buried/Submerged	Duct/Cable Tray		Buried/Submerge	<u>Duct/Cable</u> d <u>Tray</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	50 70 30 40	75 80 100 80 75 100		75 50 70 60 60 60	75 80 100 80 80 80		med med high high med	med med high high med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	30 43 55 68 75	75 76 80 95 100		50 60 60 68 75	75 80 80 80 100			

Table B7. (Cont'd).

		Table D1.	(00 ш).		
Event Name	Full Description of Issue	Ex	Expert-opinion elicitation		
		First Response	Second Response		
Cables fails in the electrical power system during normal operation	What is the expected characterisitic life for the cables identified?			<u>Confidence</u>	
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	30 25 20 20	Portable/Flexible 30 30 25 20 25 35	Portable/Flexible low med high high high med	
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	20 21 28 30 35	20 25 28 30 35		

Table B8. Electrical system - bus duct.

		rabio Boi Elocatoai cyclor				
Event Name	Full Description of Issue	Expert-op	Expert-opinion elicitation			
		First Response	Second Response]		
Bus duct fails in the electrical power system during normal operation	What is the expected characterisitic life for the bus duct identified?			<u>Confidence</u>		
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	Electronic 75 100 150 90 80 100	Electronic 90 100 120 85 80 100	Electronic high high low med low		
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	75 83 95 100 150	80 86 95 100 120			

Table B9. Electrical system - switchboards.

		Table Bot Electrical cyclem		
Event Name	Full Description of Issue	Expert-c		
		First Response	Second Response	
Switchboard fails in the electrical power system during normal operation	What is the expected characterisitic life for the switchboards identified?			<u>Confidence</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	Switchboards 50 60 90 90 90 60 90	Switchboards 80 75 90 85 75 90	Switchboards med med med med med med med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	50 60 75 90 90	75 76 83 89 90	

Table B10. Electrical system - motor control center.

		rasio Bio. Licotrical eyetein i		
Event Name	Full Description of Issue	Expert-o		
		First Response	Second Response	
system during	What is the expected characterisitic life for the motor control center identified?			Confidence
normal operation	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	MCC 50 60 90 90 60	MCC 80 75 90 85 75 90	MCC med med med med med med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	50 60 75 90 90	75 76 83 89 90	

Table B11. Electrical system – motor starters.

Event Name	Full Description of Issue			Expert-opini	on elicitation					
			First Response			Second Response				
Motor starter fails in the electrical motor control system during normal operation	What is the expected characterisitic life for the motor starters identified?								<u>Confidence</u>	
		Full Voltage	Reduced/Variable	<u>VFDs</u>	Full Voltage	Reduced/Variable	<u>VFDS</u>	Full Voltage	Reduced/Variable	<u>VFDS</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	40 80 70 60	15 30 60 50 60 50	15 20 40 40 25 25	60 60 80 65 65 60	50 50 60 50 60 50	40 40 40 30 25 25	high high high high med	med med med med high med	med med low low low
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	30 45 60 68 80	15 35 50 58 60	15 21 25 36 40	60 60 63 65 80	50 50 50 58 60	25 26 35 40 40			

Table B12. Electrical system - PLC systems.

		rable B±2. Electrical cyclem	<u> </u>	
Event Name	Full Description of Issue	Expert-opini	on elicitation	
		First Response	Second Response	
PLC system fails in the electrical motor control system	What is the expected above devisitie			
during normal operation	What is the expected characterisitic life for the PLC system identified?			<u>Confidence</u>
		PLC System	PLC System	PLC System
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #6	20 40 25 25	25 20 40 25 25 25 25	med med med high high high
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	20 25 25 25 25 40	20 25 25 25 25 40	

Table B13. Electrical system – sensors and switches.

Event Name	Full Description of Issue			Expert-opinio	on elicitation			
Sensors and			First Response			Second Response		
switches fails in the electrical motor control system during normal operation	What is the expected characterisitic life for the sensors and switches identified?							<u>Confidence</u>
		Selsyn Motor	Travelling nut limit switch		Selsyn Motor	Travelling nut limit switch	Selsyn Motor	Travelling nut limit switch
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6		50 30 70 105 80 75		30 30 80 45 60 40	50 60 70 100 80 50	med med med med med	high high med high med low
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	30 33 55 85 100	30 55 73 79 105		30 33 43 56 80	50 53 65 78 100		

Table B14. Electrical system - electric motors.

Event Name	Full Description of Issue	Expert-opin		
		First	Second	
		Response	Response	
Electric motors fails				-
during normal	What is the expected characterisitic			
operation	life for the electric motors identified?			<u>Confidence</u>
		Electric Motors	Electric Motors	Electric Motors
	5		00	
	Expert #1 Expert #2	55 50	60 60	med med
	Expert #3	70	80	med
	Expert #4	80	80 75	med
	Expert #5 Expert #6	85 60	75 60	med med
	Expert #6	60	60	med
				-
Summary	Minimum =	50	60	
Table	25 Percentile = Median =	56 65	60 68	
	75 Percentile =	78	79	
	Maximum =	85	80	

Table B15. Electrical system – standby generator set.

Event Name	Full Description of Issue	Expert-opini	on elicitation	
Standby generator (diesel or natural gas) fails during normal operation	What is the expected characterisitic life for the standby generator system identified? Expert #1 Expert #2 Expert #3 Expert #4 Expert #4 Expert #5 Expert #6	First Response Standby Generator Set 25 40 50 70 50 50 50	Second Response Standby Generator Set 40 40 50 70 50 50 50	Confidence Standby Generator Set med high high med high high high
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	25 43 50 50 70	40 43 50 50 70	

Table B16. Electrical system – DC rectifier.

Event Name	Full Description of Issue	Expert-opini		
Brake system fails during normal operation	What is the expected characterisitic life for the DC rectifier identified?	First Response	Second Response	<u>Confidence</u>
	Expert #1 Expert #2 Expert #3 Expert #4 Expert #5 Expert #6	DC Rectifier 25 40 30 10 50 45	DC Rectifier 30 40 30 25 40 45	DC Rectifier high high high low high med
Summary Table	Minimum = 25 Percentile = Median = 75 Percentile = Maximum =	10 26 35 44 50	25 30 35 40 45	

Appendix C: Results from Flood Risk Management ME Expert-Opinion Elicitation

An additional study was conducted using the same experts to elicit the characteristic lives of ME equipment at flood control projects. The values reflect the operation, maintenance, and environment to which they are exposed, and the consensus of the experts to a national standard that could be adjusted using k-factors as discussed in EC 1110-2-6062 (HQUSACE 2011).

Tables C1 and C2 list the final results, which provide the basis to compare the characteristic lives of the similar navigation ME components.

Table C1. Flood risk management ME expert-opinion results for mechanical components for navigation and dam projects (mechanical drive systems).

Туре	Component	Navigation Components CL (years)	Flood Reduction Components CL (years)
Bearings			
	Rolling element	40	60
	Sleeve (self lubricated)	25	20
	Bronze sleeve	40	60
Couplings			
	Flexible	35	40
	Rigid	50	60
Shafts		80	100
Pins		35	70
Gear reducers			
	Worm	25	40
	Parallel	40	60
	Right angle	38	40
Open gearing			
	Spur	60	100
	Helical	38	100
	Bevel	40	50
	Rack	60	80
Brake	Electromechanical	45	60
Clutch	Slip	30	_
	Jaw	_	70
Wire ropes			

Туре	Component	Navigation Components CL (years)	Flood Reduction Components CL (years)	
	Spiral plate	5	_	
	Single/multiple sheave(s)	20	_	
	Single Drum	28	_	
	Round	_	50	
	Flat	_	20	
Wire rope drums		75	100	
Wire rope sheaves		33	50	
Chains	Roller	40	60	
	Link	_	40	
Chain sprocket		60	75	
Miter gates				
	Sector arms	73	_	
	Strut arms - buffered	35	_	
	Strut arms - rigid	50	_	
	Support roller	43	_	
	Rack support beam	60	_	
Valves				
	Bellcranks	78	_	
	Crosshead/guide	73	_	
	Strut	43	_	
	Butterfly	_	50	
	Ball	_	50	
	Slide	_	50	
	Knife	_	50	
	Jet	_	50	

Table C2. Flood risk management ME expert-opinion results for mechanical components for navigation and dam projects.

Туре	Component	Navigation Components CL (years)	Flood Reduction Components CL (years)
Hydraulic cylinder		60	60
Control valves			
	Check	45	40
	Relief	40	40
	Directional		
	Manual	60	60
	Solenoid	40	40
	Proportional/throttle	40	40
Pumps			
	Fixed	50	60
	Variable	30	35
Hydraulic Motors			
	Fixed	50	_
	Variable	30	_
Piping		40	40
Hose		_	25
	Misc Gate/Filling	Emptying Valves	
Wheel assembly (rollers)		40	50
Pintles/bushings		30	_
Gudgeon pin/bushings		43	_
Trunnion pin/bushings		38	60
Strut spindle pin		25	_
	Other S	ystems	
Tow haulage			
	Hydraulic	30	_
	Mechanical	48	_
Emptying filling			
	Butterfly	50	_
	Vertical lift	50	_
Gate connection (pins, cable, chain)		_	50
Grease/lube system		_	30
Actuators (screw type, limit torque)		_	50

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
01-04-2013	Final	
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER	
Improved Reliability Models for Mechanical		
Flood Risk Management Facilities		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT
6. AUTHOR(S)		5d. PROJECT NUMBER
Robert C. Patev, David L. Buccini, James W. Bartek, and Stuart Foltz		
		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S	· · ·	8. PERFORMING ORGANIZATION REPORT
US Army Engineer Research and Development Center (ERDC)		NUMBER
Construction Engineering Research Laborato PO Box 9005.	ory (CERL)	ERDC/CERL TR-13-4
PO Box 9005, Champaign, IL 61826-9005		
Champaign, 12 01020-3003		
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
Headquarters, US Army Corps of Engineers (HQUSACE)	HQUSACE
440 G St., NW	•	•
Washington, DC 20314-1000		11. SPONSOR/MONITOR'S REPORT
		NUMBER(S)
12 DISTRIBUTION / AVAIL ARILITY STATE	MENT	

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This work developed the use of Expert-Opinion Elicitation (EOE) to help estimate the characteristic life (CL) of mechanical and electrical (ME) components at US Army Corps of Engineers (USACE) navigation projects. This effort developed improved reliability models for the ME components at the USACE navigation facilities. Current USACE ME reliability methods use generic component failure rate data from US Department of Defense (DoD) Military Standard (MIL-STD) 756B, in which failure rate data is processed for components that function in operating environments, failure modes, and maintenance practices different from those at USACE navigation and flood risk management projects. The reliability of the ME system from this data set yields very conservative results, very often overestimating the time-dependent reliability of the entire ME system. EOE will be used to define the CL for a list of critical ME components at USACE navigation and flood risk management projects. These elicited values for CL will form the basis for failure rates to be used with the existing methods for ME system reliability calculations. Additional work on fault trees for ME systems is being completed as part of dam safety and levee risk assessment procedures development.

15. SUBJECT TERMS

characteristic life, Delphi method, electrical failures, Expert-Opinion Elicitation, flood control dams, flood risk management

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	SAR	112	19b. TELEPHONE NUMBER (include area code)