
Approved for public release; distribution is unlimited.

ER
D

C
/C

ER
L

TR
-0

4-
14

Knowledge Discovery in the I-METL
Application
Todd R. Littell September 2004

C
on

st
ru

ct
io

n
E

ng
in

ee
ri

ng

R
es

ea
rc

h
La

bo
ra

to
ry

 ERDC/CERL TR-04-14
September 2004

Knowledge Discovery in the I-METL Application
Todd R. Littell
Construction Engineering Research Laboratory
PO Box 9005
Champaign, IL 61826-9005

Final Report
Approved for public release; distribution is unlimited.

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

Under Work Units LK6K75 and 00S64L

ABSTRACT: The Installation Mission Essential Task List (I-METL) is a software system designed to support the mod-
eling and analysis of garrison capabilities, tenant functions, and installation resources. From a system analyst’s point of
view, the main focus of the I-METL application is as a means for collecting, sharing, and managing structured data. As
the stored data accumulates in size, quality, and richness, stakeholders begin to realize the potential for harvesting new
business intelligence from the data store. To this end, a myriad of tools and methods (commonly referred to as Knowl-
edge Discovery from Database [KDD] methods) are available depending on the kind of intelligence pursued.

This research investigated KDD methods that can directly benefit I-METL stakeholders. One goal of this effort was to
provide a means for stakeholders to gain an increased understanding of the existing data and data relationships. Another
goal was to foster the discovery of new and hidden relationships from the dataset. Methods that will assist with data ex-
ploration and cognition were also researched.

The two disparate methodologies investigated produced positive results for the KDD process and offer many potential
benefits in a real-world deployment scenario. The prototype software developed validated these results and provided
insights into future research possibilities.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be
construed as an official Department of the Army position unless so designated by other authorized documents.
DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ERDC/CERL TR-04-14 iii

Contents

List of Figures and Tables ... v

Preface... vi

1 Introduction .. 1
Background... 1
Objective... 1
Approach .. 2
Scope.. 2
Mode of Technology Transfer ... 2

2 Knowledge Discovery from Automated Reasoning ... 3
Defining the Relational Data Model .. 3
Limitations of the Relational Data Model .. 4
Modeling With Logic ... 5
Integrating a Logic Inference Engine.. 6
Future Research Opportunities .. 6

3 Knowledge Discovery Through Visualization ... 8
Visualizing Relationships With Graphs... 9
Test Software for Database Visualization ... 9

Database Proxy Component.. 10
Graph Modeling Component ... 11
Graph Building Component ... 12
Graph Drawing Component ... 12
Application Kernel.. 13

Future Research Opportunities .. 14

4 Integrated Design...16

5 Conclusions and Recommendations ...17
Conclusions .. 17
Recommendations.. 17

References...18

Appendix A: Using a JESS Program To Execute Transitive-Closure Queries................19

iv ERDC/CERL TR-04-14

Appendix B: Feature Comparison of Graph Drawing Components.................................24

Appendix C: Catalog of Graph Drawings for Database Visualization26

Report Documentation Page...31

ERDC/CERL TR-04-14 v

List of Figures and Tables

Figures

 1 Sample ER diagram .. 4
 2 Diagram of graph defined by Equations 4-6 ... 9
 3 Component-based diagram of Database Visualization Software.............................. 10
 4 Sample physical schema diagram .. 11
 5 Sample output from Database Visualization Software.. 14
 6 A sample query graph that locates all contention resources for tasks #10 and

#15 .. 15
 7 Design of an Intelligent Visualization tool ... 16

 C-1 Displaying a hierarchical object graph with diameter=2.. 27
 C-2 Displaying a hierarchical object graph with diameter=3.. 27
 C-3 Displaying a hierarchical object graph with diameter=4.. 28
 C-4 Displaying a hierarchical graph with diameter=5 .. 28
 C-5 Displaying a force-directed object graph with diameter=4.. 29
 C-6 Displaying a Cartesian fisheye view of a hierarchical object graph.......................... 29
 C-7 Displaying a polar fisheye view of a hierarchical object graph 30

Tables

 B-1 Graph drawing software comparison (part 1).. 25
 B-2 Graph drawing software comparison (part 2).. 25

vi ERDC/CERL TR-04-14

Preface

This study was conducted for Department of the Army under 622784AT41, “Military
Facilities Engineering Technology”; Work Unit LK6K75, “Fort Future Facilities”;
and Work Unit 00S64L, “Mission Focused Infrastructure Investment.”

The work was performed by the Business Processes Branch (CN-B) of the Installa-
tions Division (CN), Construction Engineering Research Laboratory (CERL). The
CERL Principal Investigator was Todd R. Littell. The technical editor was Linda L.
Wheatley, Information Technology Laboratory — Champaign. The technical moni-
tor was William D. Goran, CERL Director of Special Projects. Kay Maguire is Act-
ing Chief, CN-B, and Dr. John T. Bandy is Chief, CN. The Director of CERL is
Dr. Alan W. Moore.

CERL is an element of the U.S. Army Engineer Research and Development Center
(ERDC), U.S. Army Corps of Engineers. The Commander and Executive Director of
ERDC is COL James R. Rowan, EN, and the Director of ERDC is Dr. James R.
Houston.

ERDC/CERL TR-04-14 1

1 Introduction

Background

The Installation Mission Essential Task List (I-METL) is a software system de-
signed to support the modeling and analysis of garrison capabilities, tenant func-
tions, and installation resources. The system defines and implements models for
organizations, missions, processes, activities, and resources. The system builds on
these data models to assist with business processes such as mission validation and
resource planning.

The I-METL system was designed and implemented as a web-deployed, database
application. Its 3-tier software architecture is prototypical, where application
(business) logic resides in the middle tier. The application uses a Relational Data-
base Management System (RDBMS) for reliable storage and management of appli-
cation data. Any web browser can serve as the application client since the interface
was designed with standard HyperText Markup Language (HTML).

From a system analyst’s point-of-view, the main focus of the I-METL application is
as a means for collecting, sharing, and managing structured data. This kind of ap-
plication is commonly referred to as a CRUD application since the primary opera-
tions are to “create,” “read,” “update,” and “delete” records. As is common with
CRUD applications, the requirement for supporting higher-level analysis often
evolves over time as a secondary goal. As the stored data accumulates in size, qual-
ity, and richness, the stakeholders typically begin to realize the potential for har-
vesting new business intelligence from the data store. To this end a myriad of tools
and methods are available depending on the kind of intelligence one is pursuing.
These methods are commonly referred to as Knowledge Discovery from Database
(KDD) methods.

Objective

The objective of this research was to investigate KDD methods that can provide di-
rect benefits to I-METL stakeholders and application. The I-METL data model is
complex, and the I-METL dataset is semantically rich. As a result, one goal of this
effort was to provide a means for stakeholders to gain an increased understanding

2 ERDC/CERL TR-04-14

of the existing data and data relationships. Another goal was to foster the discovery
of new and hidden relationships from the dataset. Methods that will assist with
data exploration and cognition were also to be researched.

Approach

This research effort focused on two concrete KDD methodologies. The first method
studied is the process of learning new knowledge from the application of automated
reasoning tools. The research of automated reasoning is presented in Chapter 2.
The second method studied applies visualization techniques in order to promote the
human element of the knowledge discovery process. The topic of KDD through
visualization is discussed in Chapter 3. Both efforts are validated through the de-
velopment of software prototypes. Since these methods complement each other, an
integrated approach is discussed in Chapter 4. Chapter 5 summarizes the lessons
learned from this research effort. Appendix A includes the source code for the test
software discussed in Chapter 2. Appendix B details the criteria used for the soft-
ware selection as discussed in Chapter 3. Appendix C contains a catalog of screen-
shot images produced under the visualization research methodology.

Scope

The scope of this research is primarily for the benefit of I-METL stakeholders and
application. However, the approaches discussed and lessons learned might poten-
tially benefit any database-driven application. The supporting software prototypes
were designed to the largest extent possible as application-independent software.

Mode of Technology Transfer

This report captures the results and lessons learned from this research effort. It
will be made accessible through the World Wide Web (WWW) at URL:
http://www.cecer.army.mil.

ERDC/CERL TR-04-14 3

2 Knowledge Discovery from Automated
Reasoning

The I-METL application uses a relational database for the reliable storage of I-
METL data and relationships. As is common in relational databases, the I-METL
database does not support complex query and analysis operations. A complex query
operation can exist in multiple forms. It can be in the form of a transitive-closure
(recursive) query that needs to re-execute an unknown number of times in order to
form a result set. Alternatively, a complex query can be in the form of a reachability
query; such as, find all records (objects) that connect record A (in table A) to record Z
(in Table Z). Furthermore, a complex query could potentially perform logical deduc-
tion; such as, determining if a task scheduling plan exists that can complete a set of
tasks within a given time constraint. Relational databases do not provide a means
for executing these complex and intelligent queries. In short, relational databases
do not provide a mechanism for reasoning with the data that it reliably stores.

Defining the Relational Data Model

The limited support for executing complex and intelligent queries emanates from
the simplicity of the relational data model. The relational data model is based upon
the constructs of entities, attributes, and relationships. Figure 1 illustrates a subset
of the relational data model for the I-METL application using an Entity-
Relationship (ER) diagram. In a relational data model, entities represent things,
people, places, events, and concepts. Attributes are properties or characteristics of
entities, such as the name of an organization or the date of an event. Relationships
represent the logical or physical connections that exist between entities in the do-
main of interest. The atomic construct, that allows databases to uniformly manipu-
late both entities and relationships, is called in mathematics a relation. Technically
speaking, an n-ary relation R , defined over domains nDDD Λ21 , , is any set

nDDR ××⊆ Λ1 .

4 ERDC/CERL TR-04-14

Organization Activity

METL Task

manages

assigned

owns involves

Process

implementedBy

orgID

name

type

metlID

mission

vision

taskID

name

description

assessment

activityID

qualitative

quantitative

processID

name

type

isSubProcessOf

Legend

Attribute

Entity

Relationship

Figure 1. Sample ER diagram.

Limitations of the Relational Data Model

While the relational data model is quite powerful, it cannot model important rela-
tionship constraints and properties. Neither the ER diagram nor the underlying
relational model is capable of denoting or enforcing certain kinds of constraints. It
is common to encounter structural constraints like “tree,” “lattice,” and “k-partite”
when modeling a domain. Similarly, one often needs to be able to capture and en-
force relationship properties, such as reflexive, irreflexive, symmetric, asymmetric,
or transitive (Odell 1998). An example would be the relationship “X supports Y.”
Equations 1–3 present three first-order logic statements that define the relationship
“supports.”

),()),()^()^(,(YXSupportsYXOfSubprocessYTaskXTaskYX ⇒∋∀∀ [Eq 1]

Translation: If X and Y are tasks and X is a subprocess of Y, then declare that X
supports Y.

),()),()^()^(,(YXSupportsXYExecutesYTaskXActivityYX ⇒∋∀∀ [Eq 2]

Translation: If X is an activity and Y is a task and Y executes X, then declare that
X supports Y.

ERDC/CERL TR-04-14 5

),()),()^,(,,(YXSupportsYZSupportsZXSupportsZYX ⇒∋∀∀∀ [Eq 3]

Translation: Regardless of what X, Y, and Z represent, if X supports Z and Z sup-
ports Y, then declare that X supports Y.

The relational data model cannot effectively model the “supports” relationship for
two main reasons:
1. The relational model does not provide a mechanism for weak typing and, as such,

cannot effectively express the fact that either a task or an activity can fulfill the
supporter role.

2. Relational data models are expressible in the relational calculus (RC) language.
Relational calculus provides the formalized, theoretical framework behind rela-
tional databases. Unfortunately, however, RC is not expressive enough to repre-
sent transitive (closure) relations such as “supports”* (Aho and Ullman 1979).

Libkin (2001) shows that, while this is true for RC, the same cannot be said with
regards to the Structured Query Language 3 (SQL3; a.k.a. SQL99) standard, which
includes a few nonrelational features. Having noted the theoretical significance of
this result, however, practical implementations of transitive-closure relations are
subject to vendor-specific syntax and limitations. If one is using a database that
does not include full support of the SQL3 standard, then one can attempt an ad-hoc
solution by combining nested triggers and materialized views (Sowa 2000). Both
approaches, however, increase the complexity level for the system design and in-
crease the likelihood of error. More sophisticated examples of complex relationships
can be readily conceptualized as one considers the infinite possibilities for defining
relationships using compound and recursive logical statements.

Modeling With Logic

The inability to perform complex queries, the lack of support for recursive relation-
ships, and the inability to reason logically with data motivated the research team to
investigate the potential benefits from utilizing a logic inference engine. An infer-
ence engine allows one to assert facts and define logical rules. Then, the inference
engine will automatically infer new facts (knowledge) from those rules. The rules

* A transitive-closure relation *R is defined over the binary relation R as follows: if Rba ∈),(, then

*),(Rba ∈ . Likewise, if Rba ∈),(and *),(Rcb ∈ , then *),(Rca ∈ .

6 ERDC/CERL TR-04-14

are defined in terms of conjunctions, disjunctions, and negations of predicate terms.
Perhaps most importantly, the logic language allows one to define recursive rules,
and hence, model complex relationships. Each predicate term asserts some quality
or aspect of an object, or some binding relationship between objects. For example,
Equation 1 uses a unary predicate Task and a binary predicate SubprocessOf in or-
der to assert: if “X is a task,” “Y is a task,” and “X is a subprocess of Y,” then “X sup-
ports Y.” As can be seen in Equation 3, an inference engine allows for the definition
of implicit relationships via logical operators. A thorough analysis of the expres-
siveness and reasoning capabilities of inference engines can be found in Russell and
Norvig (1995).

Integrating a Logic Inference Engine

While the ability to model complex environments is impressive, the real power of an
inference engine stems from its ability to automatically derive new knowledge. In a
test environment, the research team used a forward-chaining inference engine
called a Java Expert System Shell (JESS), in order to prove the applicability of this
technology. The actual program used is presented in Appendix A. Rules were en-
coded into JESS in support of these complex queries:
• Show all facilities that are needed to support a specified METL (or task).
• Given two METLs (or tasks) show the contention resources that are required

by both.
• Show all METLs that depend on the availability of a specific facility or other

kinds of resource.

An inference engine such as JESS is particularly well suited for this environment
because it allows for recursive queries and complex relationships to be readily mod-
eled with first-order logic rules. As facts are entered into the system, any rule with
a matching left-hand side (the antecedent) is fired in order to derive additionally
new facts from the right-hand side (the consequents). This process for firing rules
continues until no new facts can be derived for the seed fact. This is the procedure
by which new knowledge can be consistently derived from existing knowledge.

Future Research Opportunities

While this experimentation successfully illustrated the potential benefits that could
be gained, many issues need to be resolved in a real-world deployment. These ap-
plication-dependent issues would need to be explored:
• Where should the rules be defined? Globally (where all users have access to

them), locally (where each user may have their own rule definitions), or some

ERDC/CERL TR-04-14 7

combination of the two (such as allowing general rules to be specified globally
while user-specific rules are defined within a local scope).

• In terms of the system architecture, is it more beneficial to have the logic en-
gine as a separate component that straddles the database, or is it more bene-
ficial to acquire one encompassing product, such as a deductive database?
While the former allows for greater flexibility and more deployment options,
the latter allows for faster execution and cohesiveness. If the logic engine re-
sides as a separate component, then a method would have to be implemented
for bootstrapping the engine with the current fact set.

• What kind of logic inference engine is most beneficial for the intended use? A
forward-chaining engine executes faster queries, but it sacrifices space in do-
ing so. While the sacrifice of space for time may be quite suitable on the
server-side, it may not be the desirable solution if the engine is deployed on
the client-side. On a similar note, are there justifications for pursuing a
fuzzy logic inference engine?

These issues would need to be further studied in order to suggest the most suitable
deployment scenario for a given application or environment. In any case, if the goal
is to enhance the knowledge discovery process, then automated reasoning should be
considered as a critical component for any proposed solution.

8 ERDC/CERL TR-04-14

3 Knowledge Discovery Through
Visualization

Chapter 2 described a manner in which intelligence can be harvested from auto-
mated reasoning. This chapter addresses a complementary methodology of gaining
intelligence through human introspection and analysis of visualized data. Informa-
tion visualization techniques are studied to support this process of knowledge dis-
covery from databases.

The design of a database-driven application typically proceeds by modeling data and
requirements with an ER diagram. An ER diagram provides a visualization of the
kinds of entities that need to be stored, as well as their corresponding relationships
and constraints. The two-dimensional (2-D) ER diagram is a graphical representa-
tion of a data model that is readily understood by system designers. It allows the
designers to both micro-analyze individual entities as well as to macro-analyze the
overarching design. The designers can easily recognize design anomalies, such as
isolated entities and redundant relationships by examining the ER diagram.
Hence, even a simplistic visualization can provide insights into the data model that
would otherwise be difficult or impossible to achieve. By applying the same reason-
ing, the premise being investigated is that various visualizations of stored entities
and relationships will enable greater understanding of both the application data
and the domain. Because the data stored in the I-METL database is mostly textual,
as opposed to numerical, the visualization methods deemed applicable are based on
rendering stored data with 2-D graph structures (a.k.a. networks)*.

* Here, and throughout the remainder of this report, the term “graph” is used in the discrete mathematics sense of

being a network of objects. A graph represents a set of objects and a binary relationship that exists between those
objects. Mathematically speaking, a graph),(ENG is defined to be a set of nodes (N) and a set of edges con-

necting the nodes (E NN ×⊆).

ERDC/CERL TR-04-14 9

Visualizing Relationships With Graphs

A graph is a suitable structure for information visualization because humans read-
ily understand their diagrammatic representations and also because they can be
studied and analyzed with the powerful theory of discrete mathematics. As an illus-
tration, consider the graph defined in Equations 4–6 and shown in Figure 2. While
the text-based representation is more suitable for machine processing, the diagram
in Figure 2 is more suitable for humans as it requires less time and effort for us to
process and comprehend.

)},(),,(),,(),,(),,(),,{(

},,,,{

),(

dcdecabdabeaE
edcbaN

ENG

=
=

=

 [Eq 4,5,6]

c

d

a e

b

Graph: G

Figure 2. Diagram of graph defined by Equations 4-6.

Visualizing information with graphs is not a new idea. A thorough survey of applied
graph visualization methods and issues can be found in Herman et al. (2000). How-
ever, a point of interest for this research effort is applying various graph visualiza-
tion methods to the I-METL database. A goal of the research is to construct a test
software system that allows discovery of hidden or unknown relationships that exist
in the I-METL data.

Test Software for Database Visualization

To test and validate the hypothesis put forth, the research team designed and engi-
neered a software system for visualizing the I-METL database. This test software is
designed to construct and render 2-D object graphs from the data stored in the I-

10 ERDC/CERL TR-04-14

METL database. It allows for many experimental displays to be created from the
test database. Numerous parameters allow the researcher to control various as-
pects of graph generation, rendering, and viewing.

As shown in Figure 3, the test visualization software was constructed around core
components. By using a component-based design, the software could potentially re-
place or interchange like-components later. These components are explained in de-
tail following Figure 3.

Database Visualization Software

Application Kernel

Database
Proxy

Component

Graph
Modeling

Component

Graph
Building

Component

Graph
Drawing

Component

custom
code

open source:
JUNG

package

commercial:
aiSee viz.
product

Implemented By

custom
code

Figure 3. Component-based diagram of Database Visualization Software.

Database Proxy Component

The Database Proxy component allows the software to connect to and communicate
with any Java Database Connectivity (JDBC)-compliant database. During the ini-
tialization phase, the proxy introspects the database by reading and interpreting
the physical schema. Figure 4 shows a sample physical schema. Essentially, an in-
memory object network is constructed to reflect the content and relationships de-
fined by the physical schema. Interrelationships that exist between tables are
mined from the schema by traversing foreign key constraints, which contain the
necessary information for detecting exactly how tables interconnect. After the ini-
tialization phase is complete, the proxy serves as an independent moderator be-
tween the client application and the database. For example, the proxy can dynami-
cally construct and execute SQL queries for a client that is built without any prior
knowledge of the target database. This loose coupling increases the reusability of
this component and allows the client application to be written independent of a par-
ticular schema.

ERDC/CERL TR-04-14 11

Figure 4. Sample physical schema diagram.

Graph Modeling Component

The Graph Modeling component is responsible for building an in-memory model of a
graph and for allowing operations to be performed on that graph. The test software
utilized the open source package JUNG (Java Universal Network/Graph Frame-
work) for implementing this component. One of the requirements for the Graph
Modeling component is to be able to represent many types of possible graphs. At a
minimum, this component needs to be able to represent both directed and undi-
rected graphs, labeled graphs, and distance graphs. While not a strict requirement,
it is often desirable to be able to represent and operate on other kinds of graphs
such as K-partite, hypergraphs, acyclic graphs, and trees. The JUNG package pro-
vides representations and operations for all the required graph types and for several
recommended graph types. Additionally, a minimum set of graph algorithms, in-
cluding breadth-first-search (BFS) and single-source shortest path, should be pro-
vided by any implementation for the Graph Modeling component.

12 ERDC/CERL TR-04-14

Graph Building Component

The Graph Building component is responsible for constructing object graphs, anno-
tating object graphs, and transforming those graphs into a suitable output format
for the drawing component. The operations supported by the Graph Building com-
ponent are going to have a high dependency on the target application. For this rea-
son, it was necessary to custom code the operations supported by the Graph Build-
ing component. Some authors refer to these processes as “graph filtering and
extraction” (Noik 1992).

The graph-building phase faces several issues. One issue corresponds to the exis-
tence of bridge tables in the physical schema. A bridge table is an intermediary ta-
ble in the database design that is used to model many-to-many (and sometimes one-
to-many) relationships. A record in a bridge table does not correspond to an actual
entity from an ER model, but instead, functions as an implementation artifact.
Typically the end-user would not have an interest in viewing these implementation
details. During the graph-building phase, therefore, a function must be applied to
filter-out bridge table elements. This filtering and extraction process mimics closely
the Extraction, Transformation, and Loading (ETL) process that occurs in data
warehousing. Furthermore, Noik (1992) identifies additional challenges critical to
maximizing the displayable quality of data.

Graph Drawing Component

The Graph Drawing component serves as the Graphical User Interface (GUI) that is
responsible for displaying input graphs. Technically speaking, two phases occur
during graph drawing. The first phase is to take an input graph and use a layout
algorithm for assigning positions to each node and properly routing each edge of the
graph. The second phase involves actually rendering the graph onto the user’s
screen using traditional 2-D graphics. Furthermore, the Graph Drawing component
allows the end-user to customize and interact with the displays of these visual
graphs.

For this test software system, a third-party commercial-off-the-shelf (COTS) product
was selected and acquisitioned for the Graph Drawing component. Generally
speaking, graph drawing requires complex procedures and is still an area of active
research. Appendix B details the criteria used in evaluating commercially available
graph drawing products. For the purposes of this modest research effort, the soft-
ware product aiSee Graph Visualization (AbsInt, Saarbruecken, Germany) was se-
lected and acquisitioned to fulfill the project’s needs. While the research team dis-
covered that more capable products do exist (see Appendix B), the need to mediate
the cost and risk to the project directed selection of the aiSee product. Nonetheless,

ERDC/CERL TR-04-14 13

the aiSee product is quite capable of efficiently generating graph layouts of up to
several thousand nodes and does incorporate some unique capabilities that the
other products lack.

Application Kernel

The logic that ties all these components together and controls the flow of the appli-
cation software is the Application Kernel. The first responsibility of the kernel is to
accept and validate user input. This application allows the user to specify the
search criteria that will be used for selecting the seed set of records. Querying the
database through the proxy and interpreting the query results allows the kernel to
formulate the seed set of records. The next step for the kernel is to perform a BFS
from the seed set.

All records that can be reached from crawling up to N (a user-specified parameter)
levels deep are then added to the set. A graph is built over this set utilizing the ser-
vices provided by the Graph Modeling component. Next, the kernel calls the Graph
Building component for traversing the graph and outputting a valid Graph Descrip-
tion Language (GDL) file. Finally, the kernel calls the external program (aiSee) for
layout and rendering of the visual graph.

The test visualization software allows the user to control many aspects of the graph
generation and display. In addition to controlling the graph extraction and filtering
process, the user can customize the graphical output with various visual cues (e.g.,
shapes, colors, line styles, fonts, etc). Furthermore, the user can choose between
various graph layout methods, such as hierarchical layout vs. force-directed (energy-
based) layout. Figure 5 shows a sample graph display. Appendix C presents addi-
tional displays showing various layout and viewing options.

14 ERDC/CERL TR-04-14

Figure 5. Sample output from Database Visualization Software.

Future Research Opportunities

The test software system provides the research team with a tool that can visualize
database information. The benefit of this tool is its ability to generate numerous
displays of information and experiment with many variables that control this visu-
alization process. However, a number of research issues still remain that warrant
investigation. These issues include:
• The two natural limitations on how much data can be effectively displayed:

(1) the amount of available screen space and (2) the amount of information
that can be cognitively digested within a given timeframe. Hence, one aspect
of research should be to explore what the mean information threshold is for
an end-user. For example, one may investigate (in the context of cognition)
what the ideal relationship is between the number of displayed entities N
and the number of attributes per entity M. Does M decrease inversely pro-
portional to N, such as NCM /= for some constant C?

• Nontraditional user interface controls that warrant investigation for applica-
bility fall under the category of “focus+context” and include techniques such
as semantic zooming, flip zooming, and perspective walls. These controls al-
low the user to zoom in on detail of an item in focus while retaining other
items at their former level of granularity. Semantic zooming can be inte-
grated into the user interface (UI) to create what is commonly referred to as a
Zoomable User Interface (ZUI). Some issues related to “focus+context” meth-
ods are discussed in Herman et al. (2000).

• If visualization is the more intuitive methodology for presenting information,
then it seems natural that visualization would be the more intuitive means

ERDC/CERL TR-04-14 15

for querying and navigating the information space. A visual query interface
would allow the end-user to formulate complex data queries without any
prior programming knowledge. Within the context of information visualiza-
tion, visual querying assumes the form of graph-based querying. A notable
system in this arena that warrants further investigation is the G+/Graphlog
Visual Query Sytem (Consens et al. 1992).

• While there are benefits to allowing the end-user to control the style and vis-
ual cues of the display, there may be overriding benefits to standardizing the
graph display format. A conceptual graph (CG) is one proposed standard for
formalizing the representation of knowledge. The CG model includes a com-
mon display format. For the purposes of consistency in displays and for the
purposes of knowledge interchange, conceptual graphs should be further ex-
amined. Figure 6 shows a sample query graph presented with the CG dis-
play format.

needs Task: #15Task: #10 Resource: ?x

Quantity

Quantity: 1

has

needs

<=

Query Graph

Figure 6. A sample query graph that locates all contention resources for tasks #10 and #15.

16 ERDC/CERL TR-04-14

4 Integrated Design

The knowledge discovery methods described in this report can be combined into a
single high-end analysis tool. Automated reasoning provides a complementary ca-
pability to visualization. While visualization allows one to gain a better under-
standing of semantics and relationships, the automated reasoning allows one to ex-
plore those relationships with powerful logic-based queries. Figure 7 shows one
possible design of an intelligent visualization tool. In addition to the capabilities
previously discussed, this design incorporates the additional capability of data min-
ing. Data mining allows for descriptive and predictive analysis of data based
largely on statistical methods. This complements automated reasoning by allowing
one to explore inexact relationships as well.

RDBMS

Logic
Inference
Engine

Data Mining
Engine

Visualization
Components

uses

Visual
Analysis

Tool

Intelligent Visualization Tool

Figure 7. Design of an Intelligent Visualization tool.

ERDC/CERL TR-04-14 17

5 Conclusions and Recommendations

Conclusions

This research investigated two disparate methodologies in the context of the I-
METL application. These methods produced positive results for the knowledge dis-
covery process and offer many potential benefits in a real-world deployment sce-
nario. The prototype software developed validated these results and provided in-
sights into future research possibilities. The integrated design presented in
Chapter 4 illustrates how these methodologies can operate cohesively towards the
common goal of KDD.

Recommendations

Opportunities exist for extending this research effort in both applied and theoretical
directions. By applying the methods reported here to different application contexts,
further ground truthing can expose unforeseen user requirements. These methods
could potentially benefit application stakeholders by allowing them to improve their
understanding of an application’s data model and expose previously hidden data re-
lationships. Correspondingly, the researcher would benefit from observing the
stakeholder’s learning process and being able to identify factors that contribute to
or detract from the user’s understanding.

Likewise, opportunities exist for continuing research in a theoretical direction. Re-
search should be dedicated to evolving the design of an intelligent visualization tool
as described in Chapter 4. Particular emphasis should be placed on evolving a vis-
ual query interface that retains the power of intelligent querying while succumbing
to imposed limits in user interface complexity. Furthermore, research should be fo-
cused on identifying an architecture and implementation that supports an economy
of scale, a high degree of adaptation, and the ability to support knowledge-feedback
loops. A knowledge-feedback loop would allow users to submit and validate knowl-
edge that they acquire from their KDD process. The goal of such an ideal system
would be to (1) accelerate the learning cycle for the user, (2) allow the system to
grow and learn from what the user learns, and (3) allow multiple users to cross-
validate their knowledge and understanding of the domain of interest.

18 ERDC/CERL TR-04-14

References

Aho, A.V., and J.D. Ullman, “Universality in Data Retrieval Languages,” Proceedings of the 6th
ACM Symposium on Principles of Programming Languages, January 1979.

Consens, M., I. Cruz, and A. Mendelzon, “Visualizing Queries and Query Visualizations,” SIGMOD
Record (21), Vol 1, 1992.

Herman, I., G. Melancon, and M.S. Marshall, “Graph Visualization and Navigation in Information
Visualization: a Survey,” IEEE Transactions on Visualization and Computer Graphics, Vol
6, 2000.

Libkin, L., “Expressive Power of SQL,” Proceedings of the 8th International Conference on Database
Theory, Springer LNCS, Vol 1973, 2001.

Noik, E., “Challenges in Graph-based Relational Data Visualization,” Proceedings of the 1992
Conference of the Centre for Advanced Studies, IBM Centre for Advanced Studies
Conference, Nov. 9-12, 1992.

Odell, J.J., Advanced Object-Oriented Analysis & Design Using UML, Cambridge University Press,
1998.

Russell, S., and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall, Inc., 1995.

Sowa, J., Knowledge Representation: Logical, Philosophical and Computational Foundations,
Brooks Cole Publishing Co., 2000.

ERDC/CERL TR-04-14 19

Appendix A: Using a JESS Program To
Execute Transitive-Closure
Queries

Below is the Java Expert System Shell (JESS) program used to illustrate the poten-
tial benefits that can be obtained from integrating a logic inference engine. Both
the syntax and semantics of the JESS language are similar to that of C Language
Integrated Production System (CLIPS) from which JESS is a derivative. The first
responsibility of the program below is to define fact templates via the “deftemplate”
statement. This provides a consistent structure for fact definitions. Secondly, func-
tions are defined for executing custom queries and displaying the results. Thirdly,
the inference rules are defined using “defrule” statements. The inference rules used
below assume the form of Horn clauses, which are conjunctions of antecedents that
implies a consequent. Lastly, both the queries and sample facts are defined in order
to complete the testing.

;; --
;; Deftemplates
;; --

(deftemplate metl
 (slot mission)
 (slot vision))

(deftemplate task
 (slot name)
 (slot descr))

(deftemplate activity
 (slot descr))

(deftemplate process
 (slot descr))

(deftemplate resource
 (slot name)
 (slot quantity (type INTEGER)))

(deftemplate metl-task
 (slot metl)
 (slot task))

(deftemplate task-activity

20 ERDC/CERL TR-04-14

 (slot task)
 (slot activity))

(deftemplate activity-process
 (slot activity)
 (slot process))

(deftemplate process-resource
 (slot process)
 (slot resource))

(deftemplate supports
 (slot sup)
 (slot sub))

(deftemplate task-resource-support
 (slot task)
 (slot resource))

(deftemplate metl-resource-support
 (slot metl)
 (slot resource))

;; --
;; Deffunctions
;; --

(deffunction mr-list-func ()
 (bind ?it (run-query mr-query (fact-id 1)))
 (while (?it hasNext)
 (bind ?token (call ?it next))
 (bind ?fact (call ?token fact 1))
 (bind ?r (fact-slot-value ?fact resource))
 (bind ?rname (fact-slot-value ?r name))
 (bind ?rquant (fact-slot-value ?r quantity))
 (printout t "METL '" (fact-slot-value (fact-id 1) mission) "'
needs " ?rquant " of RESOURCE " ?rname crlf)))

;;(deffunction task-intersect-func (?x ?y)
;; (bind ?it (run-query task-query-join ?x ?y))
(deffunction task-intersect-func ()
 (bind ?it (run-query tq-join (fact-id 2) (fact-id 3)))
 (printout t "RESOURCES required for both " (call (fact-id 2)
toString) crlf " and " (call (fact-id 3) toString) ":" crlf)
 (while (?it hasNext)
 (bind ?token (call ?it next))
 (bind ?fact (call ?token fact 1))
 (bind ?r (fact-slot-value ?fact resource))
 (bind ?rname (fact-slot-value ?r name))
 (bind ?rquant (fact-slot-value ?r quantity))
 (printout t " " ?rquant " of RESOURCE " ?rname crlf)))

(deffunction task-list-func (?x)
 (bind ?it (run-query tr-query ?x))
 (printout t "TASKS that depend on RESOURCE " (call ?x toString)
":" crlf)
 (while (?it hasNext)
 (bind ?token (call ?it next))

ERDC/CERL TR-04-14 21

 (bind ?fact (call ?token fact 1))
 (bind ?t (fact-slot-value ?fact task))
 (bind ?tname (fact-slot-value ?t name))
 (bind ?tdescr (fact-slot-value ?t descr))
 (printout t "TASK(" ?tname ", " ?tdescr ")" crlf)))

;; --
;; Defrules
;; --

(defrule mt-support-rule
 (metl-task (metl ?m) (task ?t))
 =>
 (assert (supports (sup ?m) (sub ?t))))

(defrule ta-support-rule
 (task-activity (task ?t) (activity ?a))
 =>
 (assert (supports (sup ?t) (sub ?a))))

(defrule ap-support-rule
 (activity-process (activity ?a) (process ?p))
 =>
 (assert (supports (sup ?a) (sub ?p))))

(defrule pr-support-rule
 (process-resource (process ?p) (resource ?r))
 =>
 (assert (supports (sup ?p) (sub ?r))))

(defrule tran-support-rule
 (supports (sup ?a) (sub ?b))
 (supports (sup ?b) (sub ?c))
 =>
 (assert (supports (sup ?a) (sub ?c))))

(defrule tr-support-rule
 ?tt <- (task (name ?n1) (descr ?d))
 ?rr <- (resource (name ?n2) (quantity ?q))
 (supports (sup ?tt) (sub ?rr))
 =>
 (assert (task-resource-support (task ?tt) (resource ?rr))))

(defrule mr-support-rule
 ?mm <- (metl (mission ?m) (vision ?v))
 ?rr <- (resource (name ?n) (quantity ?q))
 (supports (sup ?mm) (sub ?rr))
 =>
 (assert (metl-resource-support (metl ?mm) (resource ?rr))))

;; --
;; Defqueries
;; --

(defquery support-query-1
 "Queries supports by sup"
 (declare (variables ?X))
 (supports (sup ?X) (sub ?Y)))

22 ERDC/CERL TR-04-14

(defquery support-query-2
 "Queries supports by sub"
 (declare (variables ?Y))
 (supports (sup ?X) (sub ?Y)))

(defquery support-query-join
 "Join queries supports by sup"
 (declare (variables ?X ?Y))
 (supports (sup ?X) (sub ?Z))
 (supports (sup ?Y) (sub ?Z)))

(defquery mr-query
 "Finds resources that support given metl"
 (declare (variables ?m))
 (metl-resource-support (metl ?m) (resource ?r)))

(defquery tr-query
 "Finds tasks that require a given resource"
 (declare (variables ?r))
 (task-resource-support (task ?t) (resource ?r)))

(defquery tq-join
 (declare (variables ?x ?y))
 (task-resource-support (task ?x) (resource ?z))
 (task-resource-support (task ?y) (resource ?z)))

;; --
;; Deffacts
;; --

(deffacts factset1 "initial facts"
 (metl (mission "operate a regional center") (vision "provide a
world-class training center"))
 (task (name "support & enable the missions and readiness") (descr
"primary task"))
 (task (name "command, control & operate installation") (descr
"primary task"))
 (activity (descr "operations & maintenance"))
 (activity (descr "security"))
 (activity (descr "communications))
 (activity (descr "personnel management"))
 (process (descr "daily maintenance schedule"))
 (process (descr "security monitoring"))
 (process (descr "intelligence reviews"))
 (process (descr "QOS monitoring"))
 (resource (name "telecom network") (quantity 1))
 (resource (name "broadband network") (quantity 3))
 (resource (name "routers") (quantity 4))
 (resource (name "security officer") (quantity 2))
 (resource (name "O&M manager") (quantity 1))
 (resource (name "HVAC system") (quantity 2))
 (process (descr "pay bills"))
 (process (descr "train new personnel"))
 (process (descr "re-train existing personnel"))
 (process (descr "install new OS"))
 (process (descr "provide guidance to organization"))
 (resource (name "staff") (quantity 3))

ERDC/CERL TR-04-14 23

 (resource (name "safety shelter") (quantity 5))
 (resource (name "wireless satellites") (quantity 4))
 (resource (name "network administrator") (quantity 3)))

(deffacts factset2 "more facts"
 (metl-task (metl (fact-id 1)) (task (fact-id 2)))
 (metl-task (metl (fact-id 1)) (task (fact-id 3)))
 (task-activity (task (fact-id 2)) (activity (fact-id 4)))
 (task-activity (task (fact-id 2)) (activity (fact-id 5)))
 (task-activity (task (fact-id 3)) (activity (fact-id 6)))
 (task-activity (task (fact-id 3)) (activity (fact-id 7)))
 (activity-process (activity (fact-id 4)) (process (fact-id 8)))
 (activity-process (activity (fact-id 4)) (process (fact-id 9)))
 (activity-process (activity (fact-id 4)) (process (fact-id 10)))
 (activity-process (activity (fact-id 4)) (process (fact-id 11)))
 (process-resource (process (fact-id 9)) (resource (fact-id 15)))
 (process-resource (process (fact-id 9)) (resource (fact-id 16)))
 (process-resource (process (fact-id 9)) (resource (fact-id 26)))
 (process-resource (process (fact-id 10)) (resource (fact-id 12)))
 (process-resource (process (fact-id 10)) (resource (fact-id 13)))
 (process-resource (process (fact-id 10)) (resource (fact-id 17)))
 (process-resource (process (fact-id 10)) (resource (fact-id 26)))
 (activity-process (activity (fact-id 6)) (process (fact-id 18)))
 (activity-process (activity (fact-id 6)) (process (fact-id 19)))
 (activity-process (activity (fact-id 6)) (process (fact-id 20)))
 (activity-process (activity (fact-id 6)) (process (fact-id 21)))
 (activity-process (activity (fact-id 6)) (process (fact-id 22)))
 (process-resource (process (fact-id 20)) (resource (fact-id 25)))
 (process-resource (process (fact-id 21)) (resource (fact-id 23)))
 (process-resource (process (fact-id 19)) (resource (fact-id 24)))
 (process-resource (process (fact-id 20)) (resource (fact-id 26)))
 (process-resource (process (fact-id 21)) (resource (fact-id 26)))
 (process-resource (process (fact-id 19))(resource (fact-id 26))))

(reset)

(facts)

24 ERDC/CERL TR-04-14

Appendix B: Feature Comparison of
Graph Drawing Components

Numerous graph drawing products are commercially available today. It became
crucial for the research team to identify and prioritize the criteria to be used in
evaluating these products. Two of the more relevant criteria for this research were
(1) the degree of customizability and (2) the number and kinds of layouts supported.
The research team utilized available online documentation for evaluating the prod-
ucts. Additionally, the higher-ranking products were obtained as demo versions so
further analysis could be performed. Tables B-1 and B-2 give product evaluation
details.

According to the specific needs of this research effort, it was deemed that the most
suitable product was the JViews component suite by ILOG, Inc (Mountain View,
CA). The JViews product can be deployed as a heavyweight Java application, me-
dium-weight Java applet, or in a lightweight manner as a Java servlet that serves
markup and images. Furthermore, JViews allows for customizable drawings to be
rendered from Cascading Style Sheets (CSS) configuration files. These features
made JViews the most flexible of the products evaluated; however, its cost and the
associated learning curve that often accompanies higher-end technologies elimi-
nated this product from consideration for this research effort.

ERDC/CERL TR-04-14 25

Table B-1. Graph drawing software comparison (part 1).

Software
Cost for 1

license Platforms
Input File
Formats

Available
Layouts

ILOG - Jviews
www.ilog.com/jviews $8,000 Java SDM C, E, T, O

yWorks - yFiles
www.yworks.com $5,760 Java

GML,
GraphML C, E, T, O

Tom Sawyer - TSV
tomsawyer.com $7,500 Java TSGV C, T, O
AbsInt - aiSee

www.aisee.com $600 Win/Unix/Mac GDL E, F, T, O
TouchGraph Link Browser

touchgraph.sourceforge.net free Java
propietary

(xml) E
IBM - GraphViz

www.graphviz.org free Win/Unix/Java DOT C, E, T
Oreas - GoVisual
www.oreas.com $3,850 Win GML C, T, O

F=fisheye, T=tree/hierarchial,
C=circular/radial, E=energy/force,

O=others

Layout Codes

Table B-2. Graph drawing software comparison (part 2).

Software Deployable As
Customizable
nodes/edges

Subgraph
folding (nesting)

Documen-
tation

Output
Graphics

ILOG - Jviews
servlet, applet,

application Yes Yes Yes Yes

yWorks - yFiles application Yes Yes Yes Yes

Tom Sawyer - TSV
applet,

application Yes Yes Yes Yes

AbsInt - aiSee application Yes Yes Yes Yes

TouchGraph Link Browser
applet,

application No Yes No No

IBM - GraphViz application Yes Yes Yes Yes

Oreas - GoVisual application No No Yes No

"Customizable nodes/edges" implies that various
shapes, colors, and icons can be used for their
display.

26 ERDC/CERL TR-04-14

Appendix C: Catalog of Graph Drawings
for Database Visualization

This appendix includes various graph displays that were generated with the Test
Database Visualization software. These displays cover only a small fraction of the
large number of graph displays that can be generated. The Graph Drawing compo-
nent used for this system has more than 100 turnkey controls for customizing the
graph layout and rendering. Furthermore, each individual edge and node can be
customized with an additional 20 controls.

Figures C-1 through C-7 display hierarchical graphs with increasing diameters.
Each of these graphs was built from performing a breadth-first-search (BFS) crawl
from the entity (Activity #18). Figure C-5 illustrates the use of a force-directed
graph layout. Figures C-6 and C-7 show how fisheye views can be applied to ren-
dered graphs. The intent of these views is to provide context to the entities with
maximal focus. Due to the limited amount of screen space available for drawing a
graph, the fisheye view displays the focal nodes in complete resolution while dis-
playing nodes farther away with decreasing resolution. The degree to which the
warping occurs can be controlled with the graph drawing component’s interface.

ERDC/CERL TR-04-14 27

Figure C-1. Displaying a hierarchical object graph with diameter=2.

Figure C-2. Displaying a hierarchical object graph with diameter=3.

28 ERDC/CERL TR-04-14

Figure C-3. Displaying a hierarchical object graph with diameter=4.

Figure C-4. Displaying a hierarchical graph with diameter=5.

ERDC/CERL TR-04-14 29

Figure C-5. Displaying a force-directed object graph with diameter=4.

Figure C-6. Displaying a Cartesian fisheye view of a hierarchical object graph.

30 ERDC/CERL TR-04-14

Figure C-7. Displaying a polar fisheye view of a hierarchical object graph.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

09-2004
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
Knowledge Discovery in the I-METL Application

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
622784AT41
5e. TASK NUMBER

6. AUTHOR(S)
Todd R. Littell

5f. WORK UNIT NUMBER
LK6K75/00S64L
8. PERFORMING ORGANIZATION REPORT

NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Engineer Research and Development Center (ERDC)
Construction Engineering Research Laboratory (CERL)
PO Box 9005
Champaign, IL 61826-9005

ERDC/CERL TR-04-14

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
 U.S. Army Corps of Engineers

441 G Street, NW
Washington, DC 20314-1000

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

14. ABSTRACT

The Installation Mission Essential Task List (I-METL) is a software system designed to support the modeling and analysis of garrison ca-
pabilities, tenant functions, and installation resources. From a system analyst’s point of view, the main focus of the I-METL application is
as a means for collecting, sharing, and managing structured data. As the stored data accumulates in size, quality, and richness, stake-
holders begin to realize the potential for harvesting new business intelligence from the data store. To this end, a myriad of tools and meth-
ods (commonly referred to as Knowledge Discovery from Database [KDD] methods) are available depending on the kind of intelligence
pursued.

This research investigated KDD methods that can directly benefit I-METL stakeholders. One goal of this effort was to provide a means for
stakeholders to gain an increased understanding of the existing data and data relationships. Another goal was to foster the discovery of
new and hidden relationships from the dataset. Methods that will assist with data exploration and cognition were also researched.

The two disparate methodologies investigated produced positive results for the KDD process and offer many potential benefits in a real-
world deployment scenario. The prototype software developed validated these results and provided insights into future research possibili-
ties.

15. SUBJECT TERMS
software, knowledge management, KDD, installation management, modeling, data collection, database management

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Todd R. Littell

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

SAR

 39

19b. TELEPHONE NUMBER (in-
clude area code)

(217)373-5873
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

	Introduction
	Background
	Objective
	Approach
	Scope
	Mode of Technology Transfer

	Knowledge Discovery from Automated Reasoning
	Defining the Relational Data Model
	Limitations of the Relational Data Model
	Modeling With Logic
	Integrating a Logic Inference Engine
	Future Research Opportunities

	Knowledge Discovery Through Visualization
	Visualizing Relationships With Graphs
	Test Software for Database Visualization
	Database Proxy Component
	Graph Modeling Component
	Graph Building Component
	Graph Drawing Component
	Application Kernel

	Future Research Opportunities

	Integrated Design
	Conclusions and Recommendations
	Conclusions
	Recommendations

