ADA 301394

US Army Corps of Engineers Construction Engineering Research Laboratories

USACERL Technical Report 95/07 June 1995

Human and Community Response to Military Noise

Results From Field-Laboratory Tests of Small Arms, 25 mm Cannons, Helicopters, and Blast Sounds

by

Paul D. Schomer, L. Ray Wagner, and L. Jerome Benson

The study reported here utilized paired-comparison tests with listeners in real houses to evaluate human response to test sounds from one of four categories of military sources: (1) small arms fire, (2) 25 millimeter (mm) cannon fire, (3) helicopters, and (4) large blasts. The control sound sources were either a wheeled vehicle or white/pink noise. These tests, performed at Aberdeen Proving Ground, MD, compliment similar tests in Germany (Schomer et al. 1994). The Germany tests were performed at the German Military installation at Munster and used tracked vehicles, small arms and large blasts as the test sound sources. These tests substitute helicopters or 25 mm guns for the tracked vehicles used in Germany. Where comparable, the new results are similar to the Munster results. For wheeled-vehicle control sound, the maximum value of the small arms penalty was of the order of 10 dB for the additional annovance of the impulsive sound; for the 25 mm weapon, the penalty was more like 15 dB. Surprisingly, the helicopter penalty was virtually zero. For the same A-weighted sound exposure level (ASEL) of control sound, the wheeled-vehicles and pink-noise control sounds yielded annoyance-penalty results which differed by about 10 dB. The relationship between the CSEL of a large-amplitude impulsive sound and the ASEL of its equivalently-annoying control sound was level dependent with a slope of the order of 1:2: i.e., a 1 dB change in blast-sound CSEL corresponded to about a 2 dB change in the ASEL of the equivalentlyannoying control sound. With outdoor acoustical measurements, the annoyance (indoor subjects) generated by a large-amplitude impulse sound and its equivalentlyannoying control sound were equal when the CSEL of the impulse sound and the ASEL of the control sound were each about 103 dB.

Approved for public release; distribution is unlimited.

REPORT D	OCUMENTATIO		Form Approved OMB No. 0704-0188
athering and maintaining the data needed, ollection of information, including suggestion	and completing and reviewing the collections for reducing this burden, to Washington	on of information. Send comm n Headquarters Services, Direc	me for reviewing instructions, searching existing data ents regarding this burden estimate or any other aspe- ctorate for information Operations and Reports, 1215 J Reduction Project (0704-0138), Washington, DC 20503
. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE June 1995		ND DATES COVERED
TITLE AND SUBTITLE Human and Community Respo Tests of Small Arms, 25 mm C			5. FUNDING NUMBERS 4A162720 A896 TG5
Paul D. Schomer, L. Ray Wagr	ner, and L. Jerome Benson		
PERFORMING ORGANIZATION NAME	E(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
U.S. Army Construction Engine P.O. Box 9005 Champaign, IL 61826-9005	eering Research Laboratories (USACERL)	TR 95/07
SPONSORING / MONITORING AGENC Assistant Chief of Staff for Inst ATTN: DAIM-ED-C 1815 N. Fort Myer Drive, Suite Rosslyn, VA 22209 1. SUPPLEMENTARY NOTES	tallation Management (ACS(IM		10. SPONSORING / MONITORING AGENCY REPORT NUMBER yal Road, Springfield, VA 22161.
т.		Service, 5285 Port Ro	
2a. DISTRIBUTION / AVAILABILITY ST/ Approved for public release; di			12b. DISTRIBUTION CODE
from one of four categories of 1 (4) large blasts. The control so Aberdeen Proving Ground, ME performed at the German Milit sound sources. These tests sub the new results are similar to th penalty was of the order of 10 d more like 15 dB. Surprisingly, (ASEL) of control sound, the w by about 10 dB. The relationsh lently-annoying control sound corresponded to about a 2 dB c surements, the annoyance (inde	military sources: (1) small arm und sources were either a whee b, compliment similar tests in C ary installation at Munster and stitute helicopters or 25 mm gu he Munster results. For wheeled dB for the additional annoyance the helicopter penalty was virt wheeled-vehicles and pink-noise nip between the CSEL of a larg was level dependent with a slop hange in the ASEL of the equi- poor subjects) generated by a larg	as fire, (2) 25 millimete eled vehicle or white/pi Germany (Schomer et a used tracked vehicles, s ins for the tracked vehic d-vehicle control sound e of the impulsive soun ually zero. For the sam e control sounds yielde e-amplitude impulsive be of the order of 1:2; i valently-annoying cont ge-amplitude impulse s	to evaluate human response to test sound er (mm) cannon fire, (3) helicopters, and nk noise. These tests, performed at 1. 1994). The Germany tests were small arms and large blasts as the test cles used in Germany. Where comparabl 1, the maximum value of the small arms d; for the 25 mm weapon, the penalty wa ne A-weighted sound exposure level d annoyance-penalty results which different sound and the ASEL of its equiva- e., a 1 dB change in blast-sound CSEL rol sound. With outdoor acoustical mea- sound and its equivalently-annoying control sound were each about 103 dB.
4. SUBJECT TERMS			15. NUMBER OF P/
military training blast noise noise measurement	noise assessme Aberdeen Prov	nt procedures ing Ground, MD	236 16. PRICE CODE
7. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLAS OF ABSTRACT Uncla	SSIFICATION 20. LIMITATION OF ABSTRACT ABSTRACT
SN 7540-01-280-5500			Standard Form 298 (Rev. 2-8 Prescribed by ANSI Std 239-18 298-102

Foreword

This study was conducted for the Assistant Chief of Staff for Installation Management (ACS(IM)) under Project 4A162720A896, "Environmental Quality Technology"; Work Unit TG5, "Human Response Noise Models." The study was a combined, leveraged effort with U.S. Army Europe and 7th Army reimbursable funds provided by Military Interdepartmental Purchase Requests (MIPRs) FE-57-90 and FE-58-91. The ACS(IM) technical monitor was Tim Julius, DAIM-ED-C. The USAREUR Deputy Chief of Staff, Engineer (AEAEN) point of contact was Armod LePage, Environmental Division.

The work was performed by the Planning and Mission Impact Division (LL-P) of the Land Management Laboratory (LL), U.S. Army Construction Engineering Research Laboratories (USACERL). The researchers are indebted to Tom Dieter, Dick Barnett and Tom Martin of the Combat Systems Test Activity, Aberdeen Proving Ground, MD, who were especially diligent and helpful in seeing to the preparation of the test site, repair of roads, and especially, provision of vehicles, drivers, and the firing of explosives and weapons. Without the cooperative, professional assistance of these individuals, it would not have been possible to execute this study. Robert M. Lacey is Acting Chief, CECER-LL-P; Dr. William D. Severinghaus is Operations Chief, CECER-LL; and William Goran is Chief, CECER-LL. The USACERL technical editor was Linda L. Wheatley, Technical Resources.

LTC David J. Rehbein is Commander and Acting Director of USACERL, and Dr. Michael J. O'Connor is Technical Director.

Contents

SF 298	1
Foreword	3
List of Figures and Tables	6
1 Introduction	9
Approach	. 12
2 General Study Concepts Study Design Test Site and Sound Sources Control Sound Sources Test Facility Structures Test Subjects Acoustical Data Collection Control Sound Conduct of The Test Test Conditions	. 14 . 17 . 21 . 29 . 35 . 35 . 35 . 36 . 36
3 Data Analysis Acoustical Data	. 44
4 Results Helicopter, Small Arms, and 25 mm Cannon Results—Wheeled-Vehicle Control	. 50
Sounds	. 53
5 Conclusions	. 61

References	
Appendix A:	USACERL Acoustic Test Facility at Aberdeen Proving Ground 67
Appendix B:	Measured Acoustical Data 101
Appendix C:	Nonblast Sound Transition Curves—Acoustical Measurements Near the Subjects
Appendix D:	Nonblast Sound Transition Curves—Free-field Measurements 153
Appendix E:	Blast Sound Transition Curves— Acoustical Measurements Near the Subjects
Appendix F:	Blast Sound Transition Curves— Pressure-doubled and Free-field Measurements
Acronyms	
Distribution	

List of Figures and Tables

Figures

1	Typical curve expected for a single test sound source and a	
	range of control sound levels	15
2	Map of the immediate test site area	18
3	Helicopter overflying the test facilities	19
4	Bradley fighting vehicle with 25 mm cannon	20
5	Control vehicle 1-10 ton tractor used as a tank retreival vehicle	22
6	Control vehicle 2-2 1/2 ton military type cargo truck	23
7	Control vehicle 3-5 ton civilian type cargo truck	24
8	Control vehicle 4—HUMM-V utility vehicle	25
9	Control vehicle 5-1 ton, 4-wheel drive pickup truck	26
10	(a) White-noise control sound amplitude envelope and (b) Pink- noise control sound amplitude envelope	27
11	The machine-readable subject response test form	30
12	The layout of one duplex	34
13	The instrument control room-data collection station	37
14	Schematic representation of the instrumentation	38
15	The instrument control room-test control station	39
16	A subject room showing the front wall, control lights, and loud speakers for generating the pink/white-noise control sound	41

17	Subjects seated in a test room 42
18	Data and regression line for indoor measured blast sound data at APG
19	Data and regression line for blast sounds for Munster, APG series 1, APG series 2, and Grafenwöhr
20	Data and regression line for blast sounds

Tables

1	Test sounds and associated control sounds	28
2	Middle levels for the white/pink noise control sound by set	28
3a	Order of the sound pairs for the first half of each test	31
3b	Order of the sound pairs for the second half of each test	32
4	Test conditions by measurement period	43
5a	Large-charge blast sound data by measurement set	45
5b	Small-charge blast sound data by measurement set	46
6a	All of the test sound source ASEL data used for the overall analysis	47
6b	All of the control source ASEL data used for the overall analysis	48
7a	Computed penalties for measurements made by the subjects	51
7b	Computed penalties for measurements made outdoors in a free field	52
8	All of the computed penalties (ASEL) using pink noise as the control and comparison with the corresponding penalty using vehicles as a control	54

7

1 Introduction

Background

Proper assessment of the annoyance generated by Army testing and training sounds remains a question that is not fully answered in 1994 (Schomer 1986; Schomer and Neathammer 1987; Schomer and Averbuch, August 1989; Schomer, Buchta, and Hirsch, April 1991; Schomer, Hoover, and Wagner, November 1991). The most difficult sounds to assess are the impulsive sounds generated by large weapons, small arms, and helicopters because, in contrast to more common transient sounds (e.g., aircraft and wheeled motor vehicles), the impulsive character of these sounds adds to the annoyance that they generate. The nature of this "addition" is not well understood. Currently, general community noise is assessed using the A-frequency weighting and some form of time-average sound level (American National Standard, 1988 and 1990). In the United States, the A-frequency-weighted day-night average sound level is used. For clearly impulsive sounds, adjustments or "penalties" may be added to the formulation to account for the increase in annoyance generated by the impulsive character of the sound (Sutherland and Burke, 1979; International Organization for Standardization, 1990). Adding an impulsive-sound penalty is current U.S. Army practice for the sound of small arms and helicopters (Air Installations Compatible Use Zones, November 1977; Army Regulation [AR] 200-1, April 1990).

In the mid-1980s, several European countries collaborated on a joint Council of European Communities (CEC) research project to develop improved penalties for assessing the sound of small arms, metal and wood hammering, and other impulsive, everyday sounds. Separate Nordic and Australian studies have also centered on the sound of small arms. The CEC studies specifically excluded helicopters, large blasts (e.g., mining, demolition, and artillery), and sonic booms. Rice (1989) provides a summary of the CEC results that involved teams from Italy, the United Kingdom, The Netherlands, and Germany. The CEC results suggested that a large impulse penalty should only be applied to "highly" impulsive sounds such as small-arms fire and metal and wood hammering, and that this penalty should be about 10 decibels (dB) at an outdoor measured A-weighted time-average sound level of 50 dB, decreasing by 1 dB for every 3 dB increase in outdoor measured sound level up to 80 dB. Vos (1990) and Buchta (1990) participated in the CEC studies, and both have published independent

analyses of their respective data. Both researchers found a similar level-dependent penalty, but suggested that the largest penalty was closer to 12 dB.

A report by Eystein (1984) for the Nordic countries and a report published jointly by the military construction institutes of three Nordic countries (Nordic Defense Institutes 1986) each provides summaries of research, guidance, and conclusions with respect to small arms sounds. Eystein (1984) concluded that a maximum A-frequencyweighted and impulse-time-weighted sound pressure level of 70 dB was a good approximate threshold of annoyance. The latter report proposed a form of an "equalenergy" measure that they termed "RSS." The RSS measure makes use of the so-called impulse time-weighting and "corrects" for the influence of long-term background sound. No specific guidance was given on the value for any penalty.

An Australian study (Hede and Bullen 1981) on the topic of small arms did not consider time-average sound-level descriptors. The study did find, however, that Aweighted sound exposure level (ASEL) or flat-weighted peak sound pressure level were the best descriptors out of the group they considered. Like Eystein (1984) and the Australian study made the point that more of the variance was explained by respondents' attitudes than by acoustical measures.

The study at Munster, Germany (Schomer et al. 1994) supports an equal energy model and suggests a penalty on the order of 10 dB. The study showed some indication of a level dependence as was found by the CEC, but this level dependence varies with the subject situation. The results differ for each condition: windows closed or open, subjects indoors, or subjects outdoors.

Blast sound, which is one type of high-energy impulsive sound, is assessed using the standardized C-frequency-weighting. In the United States, average C-weighted daynight sound level (CDNL) is currently used as the fundamental unit of assessment (American National Standard, 1986). Criterion CDNL values for various degrees of impact are provided in American National Standard S12.4 by estimates of the percent of a community "highly annoyed" in differing environments to the long-term day-night average C-weighted sound level. The U.S. Department of Defense (DoD) has established an average A-weighted day-night sound level (ADNL) of 65 dB as the start of impact and an ADNL of 75 dB as the start of severe impact. Information from American National Standard S12.4 can be used to establish the equivalent corresponding CDNL criterion levels for large-amplitude impulsive sound of 62 and 70 dB, respectively. Thus, based on information in American National Standard S12.4, the criterion levels for CDNL vary with respect to the ADNL criterion levels. This variation is, in effect, comparable to adding a level-dependent offset of as much as 5 dB (i.e., an ADNL for aircraft sounds of 75 dB is equivalent to a CDNL of 70 dB for large-amplitude impulsive sounds in terms of the percent of the community that is "highly annoyed"). Precise values for these offsets remains a question.

Two studies (Bullen and Hede 1984; Buchta 1989) support the use of CDNL or Cweighted sound exposure level (CSEL) for the assessment of blast sound from firing ranges. Others (Levein and Åhrlin 1988), especially in the Nordic countries, have looked only at single-event descriptors such as maximum sound pressure level. These latter studies provide little guidance on the efficacy of CSEL and CDNL for blast sound assessment.

Over the last several years, the U.S. Army Construction Engineering Research Laboratories (USACERL) has performed a series of experiments that had two purposes: (1) to better determine penalties for impulsive sound sources like helicopters and small arms, and (2) to better understand human and community response to blast sound. These experiments differed from other research in that they used subjects placed in real houses, judging real test sounds generated during the experiment, outdoors and at realistic distances from the test houses. The experiments were performed as paired-comparison tests. Artificial sound generated through a loudspeaker in the test rooms was the control sound. Helicopter tests were performed in Champaign, IL (Schomer and Neathammer 1987) and Tustin, CA (Schomer, Hoover, and Wagner, 1991). Tests of blast sounds were performed in Grafenwöhr Training Area, Germany and tests of blast, vehicle, and small arms sound were performed in Munster, Germany (Schomer et al. 1994).

Objective

A major purpose of the present test was to replicate the Munster study in the United States. This new study, performed in several stages at Aberdeen Proving Ground (APG), MD, is identical to the study performed at Munster except that for about half of the new tests, two levels of helicopter sound have been substituted one-for-one with the two levels of tracked-vehicle sound used at Munster. For the other half of these new tests, two sound levels of 25 millimeter (mm) cannon fire from the Bradley Infantry Fighting Vehicle has been substituted for the tracked vehicle sounds used at Munster. So, this study concentrates on blast, 25 mm cannon, small arms, and helicopter sounds. A given test uses either helicopters or 25 mm cannon fire, but not both.

The overall purpose of these studies was to further define and develop offsets or "penalties" that can be added to measured levels of military sounds (e.g., tank or rifle fire and helicopter noise) so that the resulting assessments are equivalent, in terms

of annoyance, to assessments for common, normal transient urban sounds assessed by ASEL or by A-weighted time-average sound.

Approach

This test follows the paired-comparison methods developed and used by USACERL for the past several years, using real houses with real test sources of sound. Small arms are fired to create small arms sound; tanks drive by the houses to create trackedvehicle sound; and plastic explosives are set off to create blast sound. But an innovation was added to this and the Munster test. Instead of using just control sounds that are electrically generated through loudspeakers in each test room, this test also used real, wheeled vehicles as a source of control sound. Six sizes of wheeled vehicles were used to create six levels of control sound. The subjects compared the sound of a truck driving by to a burst of small arms or 25 mm cannon fire, an explosive sound, or a helicopter flying by.

Measures such as time-average sound level or average day-night sound level are logarithmic transformations of the total sound exposure (Schomer, July 1992) occurring during the averaging time period. Total sound exposure is the sum of the sound exposures from the individual events, such as from cars on a highway, aircraft flybys, and gunfire. This study concentrated on examining the sound exposure from individual (1) small arms, (2) 25 mm cannon, (3) helicopters, and (4) blast events, the building blocks to total sound exposure and to any measure of time-average sound pressure level.

According to most noise regulations worldwide, most sounds, including that from helicopters, 25 mm guns, and small arms, are assessed using A-weighting. This study examined the penalties in A-weighted sound level needed to properly assess those three sound sources. However, since blast sound is assessed using C-weighting, this study also examined offsets between C-weighted and A-weighted levels to properly assess blast sound. (The latter assessment is termed an offset rather than a penalty because of the shift from C-weighting for blast sounds to A-weighting for other sounds.) Thus, the variable of interest in this study was ASEL or CSEL. This study did not differentiate between sounds having the same ASEL but differing spectra. Spectral content, while certainly important, cannot be part of the central analysis when the purpose is to develop offsets or penalties to be added to an A- or C-weighted sound exposure level.

In this report, the term "real" is used for sounds that propagate directly from the source to the subject. These sound signals are to be contrasted with recorded or artificial sounds. Artificial sound was generated by an electronic device. In this test, one of the control sounds was "real" and the other was "artificial."

Real sounds are different from recorded sounds because the latter are colored, at least in some degree, by the recording and playback process. For example, the true sensation of vehicle motion can only be generated by an array of loudspeakers, and even then, as for stereophonic reproduction, the sense of realistic motion might be available only at one listening position. Some experiments have used monophonically recorded sound (e.g., moving vehicle sound) and have even varied the amplitude by adding or subtracting gain. Such sound signals are not considered to be "real" and hence are termed "recorded" (and electronically colored).

This study was performed at the USACERL's test facility at APG, MD. This facility was specially constructed to study human and community response to sound and the effect of structural changes on the extent of response.

Mode of Technology Transfer

These data will be used to help set joint North Atlantic Treaty Organization/ Committee on the Challenges of Modern Society (NATO/CCMS) noise assessment procedures and criteria. They will be used in the United States to help reformulate National Academy of Science (NAS) recommendations. In turn, these data and NAS reports will influence American National Standards Institute (ANSI) Standards and Army policy.

2 General Study Concepts

Study Design

The study was designed as a paired comparison test where the subjects were presented pairs of sounds and asked, for each pair, which was more annoying, the first sound or the second sound. For this study, the test sound was one of four categories of military sounds that came from: (1) small arms fire, (2) 25 mm cannon fire, (3) helicopters, or (4) large blasts. The other sound in a pair was one of two control sounds, which were: (1) the sound of a wheeled vehicle passing by, or (2) a computer-generated white noise. Either the test sound or the control sound was presented first; the order was random, but balanced. This study used juries of subjects placed in adjacent rooms on the front side of the test house, and, during warm weather phases of the test, at an outdoor location that was in line with the other test rooms.

Figure 1 shows a hypothetical curve expected from the experiment for a single military source. The theoretical curve assumes a transitional shape in the general form of a sigmoid or Gaussian cumulative probability curve. When the control is very quiet, 100 percent of the subjects will find the test source to be more annoying; when the control is very loud, 100 percent of the subjects will find the control to be more annoying.

Many actual curves of the type indicated in Figure 1 were generated; each yields a pair of numbers: a military test sound exposure level (SEL) (A-weighted for all sounds except blast sound) and corresponding control sound ASEL. This pair of levels (point) occurs when 50 percent of the subjects perceived the test sound to be more annoying than the control sound and 50 percent perceived it to be less annoying. This 50 percent point is marked on Figure 1. This point is taken as the equivalency point, that is, the point where the test sound causes the same annoyance as the control sound. The number of decibels that the test sound differs from the control sound is the "offset" or "adjustment." This is the decibel difference between the test sound SEL and the control sound ASEL for equivalent annoyance. For the hypothetical example in Figure 1, the military test sound had a ASEL of 62 dB; the equivalent wheeled-vehicle control sound ASEL is 59 dB at the 50 percent point. So a -14 dB offset or "penalty" must be added to the test sound CSEL to make it equivalent to a control sound generating the same annoyance. In this example, the penalty is negative; it is a bonus.

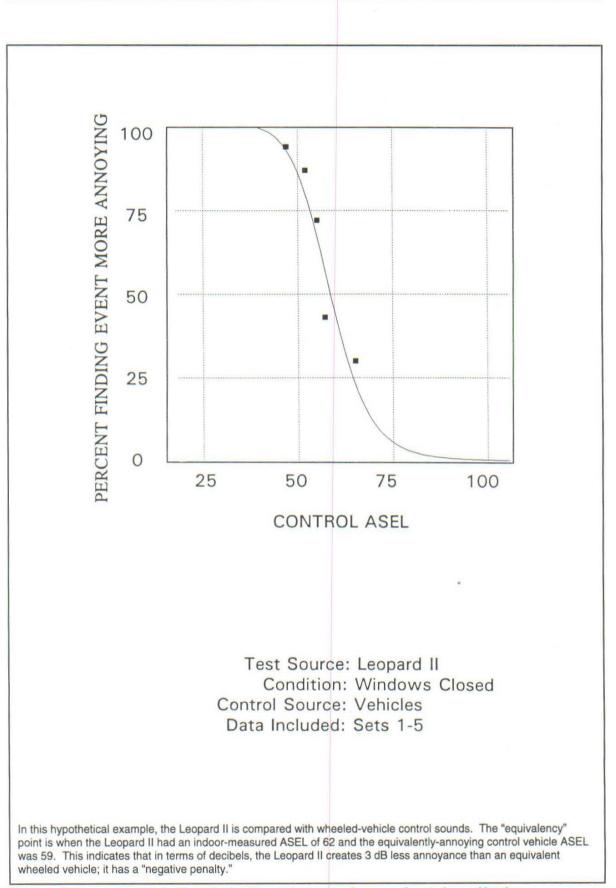


Figure 1. Typical curve expected for a single test sound source and a range of control sound levels.

Wheeled-vehicle and artificial control sounds have their own separate advantages and disadvantages.

Vehicle noise as control sound

Advantages:

- Penalties or offsets can be related to the sound level of common traffic noise.
- Traffic noise is the most-common environmental sound.
- Most assessments of traffic noise use some form of A-weighted time-average sound pressure level.

Disadvantages:

- Spectrum of the sound from actual vehicles varies from one vehicle to another.
- The spectral variations may be part of the underlying reasons for differences in the reactions of subjects to the sounds.

Pink noise as control sound

Advantage:

There are no shifts in the spectrum with changes to the level of the control sound.

Disadvantage:

• Impulsive-sound penalties determined from such tests cannot be related to the level of commonly experienced sounds.

For the above reasons, the sound of wheeled vehicles was selected as the control sound for the purpose of determining the impulsive-noise penalties associated with impulsive military sounds.

Previous analyses and reports (Borsky 1965; Kryter et al. 1968; USEPA 1974; Schomer and Neathammer 1985; Army Regulation 200-1) of high-amplitude impulse sound have commented on how important vibration and rattle are in determining human reaction to impulsive sounds. This study, using real houses and standard 2- to 3-mm-thick single-glazed windows included natural rattles induced by the blast sounds. These sound-induced rattles are nonlinear reactions to the blast stimulus. In the past, attempts to correlate subject response with blast-sound-induced rattles have failed (Schomer and Neathammer 1987). Therefore, this study did not attempt to quantify rattles. Rather, as in nearly all previous research, it relied primarily on correlations between outdoor-measured blast sound levels and the corresponding responses of the listeners.

Test Site and Sound Sources

Figure 2 shows a map of the test site including the test subject houses, vehicle roadways, helicopter flight tracks, and firing sites.

The helicopter was a standard UH-1H "Huey" flying at two distances from the test house; a "near" distance of about 60 meters (m) and a "far" distance of about 150 m. The distances were chosen so the ASELs of the helicopter flybys differed by about 10 dB between the near and the far distances. The helicopter flew equal operations in each direction. The line of flight for the helicopter is shown on the map of the test site in Figure 2. Figure 3 shows the helicopter overflying the test houses.

The small arms were American M-16 rifles fired from "near" and "far" distances, which were typically 100 and 400 m from the test house. These distances varied a little from day to day to achieve near constant received ASEL at the test house. Unlike the Munster study, live ammunition was used in the APG study. Firing rates and number of rounds varied at the near site. A rate of 60 shots in 30 seconds (s) was used at both sites throughout the entire study. In addition, a ten times slower rate of 6 shots in 30 s was used at the near site.

The 25 mm cannon also had "near" and "far" firing positions, which are shown in Figure 2. The typical distances for the "near" and "far" 25 mm cannon firing positions were 1,000 to 1,400 m and 1,800 to 2,500 m, respectively; the distances were varied in an effort to maintain nearly constant received levels. The 25 mm cannon fired a standard 8-shot training sequence in about 10 s. This sequence is: bang, bang-bang-bang-bang; 1-3-4. Figure 4 shows a Bradley with its 25 mm cannon.

The main blast site was located 1 km west of the test houses. An alternate blast site 1.8 km from the test houses was used, based on weather-related sound propagation conditions, to reduce the received level of the blast sounds. Nominally, large and small blast charge sizes of 2 kilograms (kg) and 500 grams (g) were used, but these were changed (e.g., up to 4 kg or down to 1 kg for the large blast) when needed to obtain received, flat-weighted peak sound pressure levels that were as close as possible to 124 and 119 dB for the large and small blasts, respectively.

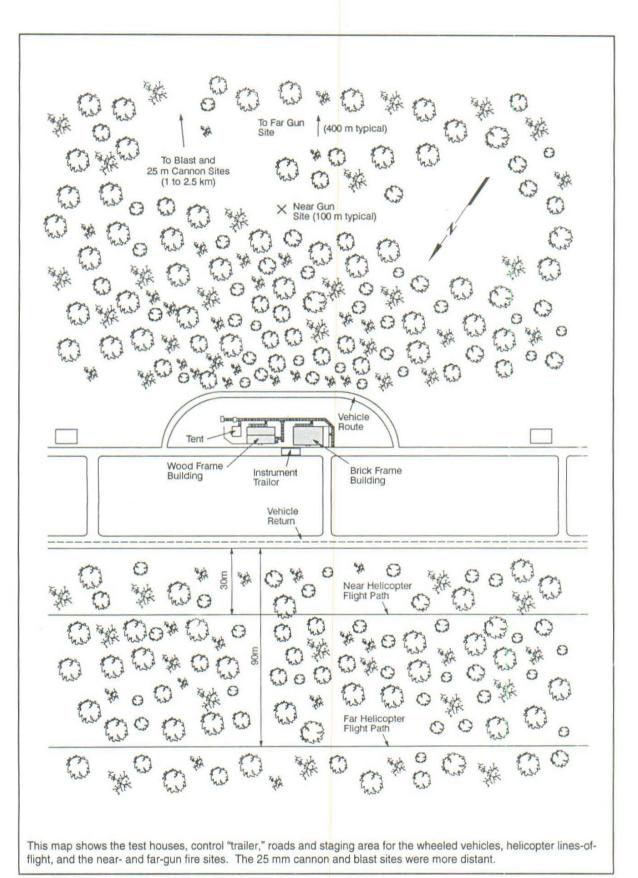


Figure 2. Map of the immediate test site area.

USACERL TR-95/07

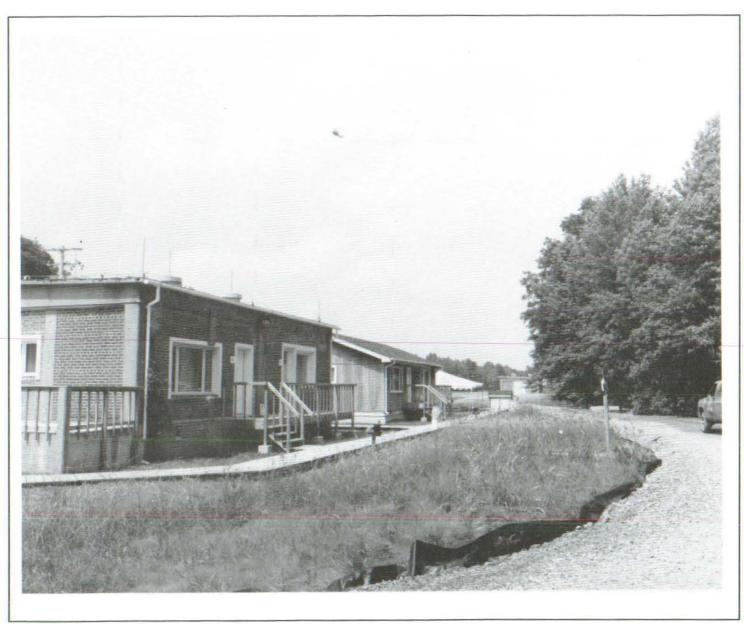


Figure 3. Helicopter overflying the test facilities.

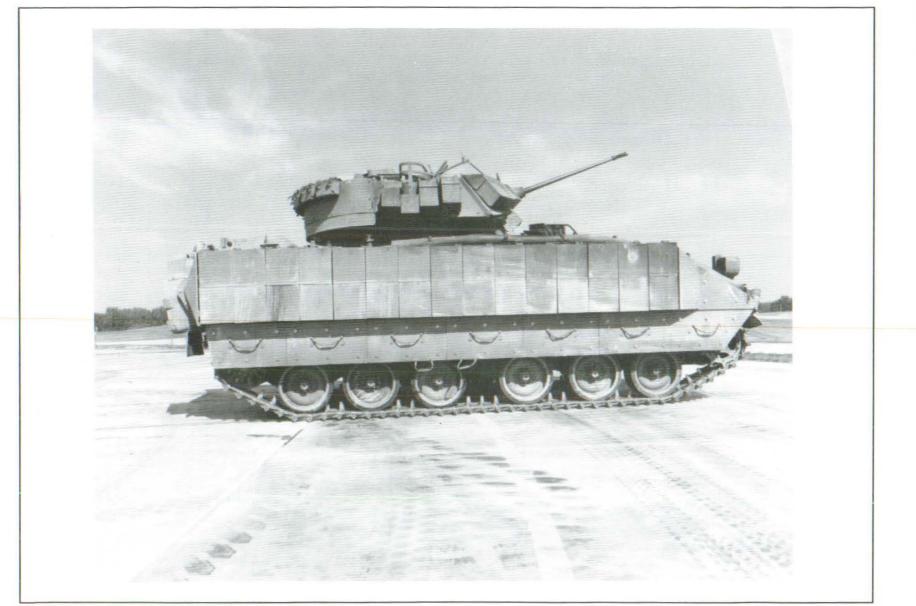


Figure 4. Bradley fighting vehicle with 25 mm cannon.

USACERL TR-95/07

20

Control Sound Sources

The wheeled control-sound vehicles, except for the smallest, were supplied by the U.S. Army. These vehicles generated ASELs ranging from about 65 to 95 dB (in roughly 5 dB steps) at a microphone in line with the front face of the test houses, but sufficiently away so the reflected sound was negligible. The vehicles were designated V1 through V6 with V1 having the highest sound exposure level (SEL). Vehicle V1 was a tank retrieval truck, V2 was a 2-1/2 ton military-type cargo truck, V3 was a 5 ton civilian-type cargo truck, V4 was a HUMM-V utility vehicle, V5 was a 1 ton, fourwheel drive pickup truck, and V6 was a small rental car. Figures 5 through 9 show vehicles V1 through V5 (all except the rental car). The test house is in the background of some of these figures. All of the wheeled vehicles passed by the test house on a specially constructed gravel road at a distance of about 15 m. The direction of travel was dictated by the orientation of the exhaust; in one case to obtain the higher sound level (V2), and in another case to obtain a lower sound level (V3). The vehicles returned by looping back on an alternate hard road 170 m from the test house as shown in Figure 2.

The computer-generated control sound had a "haystack" shape for the time variation of the sound pressure level with the final shape determined by the time variation of the sound being tested. For the blast sounds, a 0.45 s, 200 to 1500-hertz (Hz) band of white noise was used; for the tracked-vehicle and small arms sounds, an octave band of pink noise with midband frequency of 500 Hz was used as the control sound. Figures 10(a) and 10(b) illustrate the temporal amplitude envelopes for the two computer-generated control sounds. The A-weighted temporal amplitude envelopes for a passby of vehicle V2 and a helicopter are also included in Figure 10(b). The two computer-generated sounds in Figures 10(a) and 10(b), respectively, are the same as used previously for testing blast (Schomer, Buchta, and Hirsch, April 1991) and helicopter (Schomer and Neathammer 1987; Schomer, Hoover, and Wagner, November 1991) sounds.

As shown in Table 1, the nine military test sounds were compared with wheeledvehicle control sounds. The four military sources having the higher sound levels (i.e., large blast, near helicopter, near 25 mm cannon, and near small arms [60 shots]) were compared with the five larger control vehicles, V1 through V5. The other military sources (i.e., small blast, far helicopter, far 25 mm cannon, near small arms [6 shots], and far small arms) were compared with V2 through V6. The near helicopter, near 25 mm cannon, near small arms (60 shots), V2 and large blast sounds also were tested by pairing each with computer-regulated pink- or white-noise control sounds (see Table 1). There were five different levels of control sound for each source.

Figure 5. Control vehicle 1-10 ton tractor used as a tank retreival vehicle.

USACERL TR-95/07

N

Figure 6. Control vehicle 2-2 1/2 ton military type cargo truck.

Figure 7. Control vehicle 3-5 ton civilian type cargo truck.

USACERL TR-95/07

24



Figure 8. Control vehicle 4-HUMM-V utility vehicle.

Figure 9. Control vehicle 5-1 ton, 4-wheel drive pickup truck.



Figure 10. (a) White-noise control sound amplitude envelope and (b) Pink-noise control sound amplitude envelope.

Test Sounds	Control Sound Source				
	Wheeled Vehicles	Loudspeaker Sound			
Large Blasts	V1-V5	White Noise			
Near Helicopter	V1-V5	Pink Noise			
Near 25 mm Cannon	V1-V5	Pink Noise			
Near Guns; 60 Shots	V1-V5	Pink Noise			
Small Blasts	V2-V6	***			
Far Helicopter	V2-V6	* * *			
Far 25 mm Cannon	V2-V6	* * *			
Near Guns; 6 Shots	V2-V6	***			
Far Guns; 60 Shots	V2-V6	* * *			
Vehicle 2	* * *	Pink Noise			

Table 1. Test sounds and associated control s	DIE 1. LEST S	ounds an	id associated	control sounds.
---	---------------	----------	---------------	-----------------

Together, the wheeled-vehicle and computer-regulated control sounds resulted in 55 comparisons that were presented to the subjects in seemingly random order (with consideration for the return time for the control vehicles) during each half of a test session. Each test session used either helicopters or 25 mm cannon, but not both. The order of test and control sound within each pair was also random. For the second half of a test session, each pair of sounds was presented in a different random order, but the order of presentation of sounds within each pair was reversed relative to the order in the first half. Table 2 lists these test pairings.

Set Test Source	Jan 92	Jun 92	Aug 92	Nov 92	Jan 93
Large Blast	75/80*	80	80	70	75
Loud Helicopter/Near 25mm	70	80	80	75	80
Near Gun, 60 shots	75	85	85	80	80
Control Vehicle 2	75	85	85	80	85

Table 2. Middle levels for the white/pink noise control sound by set.

* For January 1992 a control sound level of 75 was used for the first two sessions and 80 was used for the others. The control sound levels at the tent for June and August 1992 were 10 dB above the indoor levels.

Note: These levels were adjusted in ± 5 dB steps depending on received test sound levels and the response data already collected. The goal was to have the equivalency point at the middle of the control range which was the sound level of V3 or V4 for the vehicles and the middle level for the white/pink noise control sounds. The most accurate estimate of a "penalty" possible is provided when the equivalency point lies in the middle of the analysis range.

The test subjects used the test form, Figure 11, to mark which sound was more bothersome or annoying. The first 11 lines in each of the two sections of each test form were used. Test form numbers 1 through 5 were used for the 110 pairs of sounds. Subjects marked the form after each pair of sounds was presented. The subjects were also to mark how difficult it was to decide on a scale of 1 to 5 with the endpoints anchored by the descriptions "very easy" and "very hard."

The white/pink-noise control sound levels were adjusted in ± 5 dB steps; the absolute level depended on received test sound levels and the response data already collected. The goal was to have the equivalent-response point in the middle of the control sound level range produced by vehicles V3 or V4 for the control-sound vehicles and the middle of 5 sound levels for the white/pink-noise control sounds. These adjustments were needed because the most accurate estimate of an offset or penalty is determined when the equivalency point lies in the middle of the analysis range.

A desk top computer was used to regulate the artificial control sound that was played back from a 2-channel digital audio tape recording; one channel contained the white noise (200 to 1,500 Hz), the other channel contained the pink noise (500-Hz octave band). The amplitude envelope of either control sound was shaped with a programmable attenuator connected to the personal computer. This process regulated the ASEL and 10-dB down time of the artificial control sound.^{*}

Two loudspeakers produced the computer-regulated control sound in each house. The outdoor control sound was the same as the indoor sound, except the outdoor level was 20 dB higher. This 20 dB gain had been found (Schomer, November 1991; Schomer, April 1991) to be the correct shift to obtain listener-response data so the 50 percent point lies in the middle of the control sound range. Table 3 contains the actual "base" levels by set.

Test Facility Structures

The test facility comprised two specially constructed "duplexes," identical on the inside, each containing two isolated spaces. One half of each duplex includes a test "living room" identical to the test room used in earlier tests at USACERL (Schomer 1989). The other half of each duplex includes a living room identical to the living room of the test house used in Grafenwöhr, Germany (Schomer 1991). So, one half is designated the American half and one half is designated the German half. The American half includes standard American windows, doors, and ceiling heights; the

¹⁰⁻dB down time: time period when the sound level is within 10 dB of the maximum level.

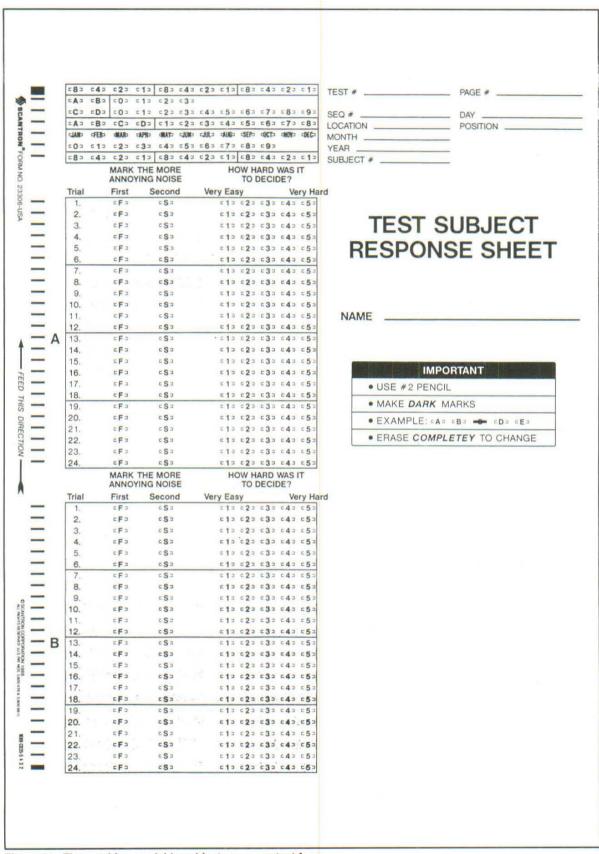


Figure 11. The machine-readable subject response test form.

		FIRST	HALF		
	1ST EVENT	2ND EVENT		1ST EVENT	2ND EVENT
1	V2	+5 Pink Noise*	29	V1	Near Gun-60 shots
2	+10 Pink Noise	Leo II	30	-10 Pink Noise	Near Gun-60 shots
3	V5	Small Blast	31	+5 Pink Noise	Loud Helicopter**
4	V3	Near Gun-60 shots	32	Large Blast	V3
5	V6	Far Gun-60 shots	33	+10 Pink Noise	V2
6	V2	Loud Helicopter**	34	Far Gun-60 shots	V5
7	Small Blast	V4	35	-10 White Noise	Large Blast
8	Large Blast	+10 White Noise	36	V4	Loud Helicopter*
9	+10 Pink Noise	Near Gun-60 shots	37	Small Blast	V6
10	Loud Helicopter**	-10 Pink Noise	38	Quiet Helicopter**	V2
11	Near Gun-60 shots	V5	39	Far Gun-60 shots	V3
12	Near Gun-6 shots	V2	40	Large Blast	+5 White Noise
13	V3	Quiet Helicopter**	41	Near Gun-60 shots	-5 Pink Noise
14	V4	Large Blast	42	V2	-10 Pink Noise
15	Loud Helicopter**	V1	43	V5	Near Gun-6 shots
16	-5 White Noise	Large Blast	44	V3	Small Blast
17	Near Gun-60 shots	+5 Pink Noise	45	Large Blast	-0 White Noise
18	Quiet Helicopter**	V5	46	V2	Far Gun-60 shots
19	Large Blast	V2	47	Quiet Helicopter**	V4
20	Near Gun-6 shots	V3	48	Loud Helicopter**	V3
21	V4	Near Gun-60 shots	49	V5	Large Blast
22	Loud Helicopter**	-0 Pink Noise	50	-0 Pink Noise	Near Gun-60 shots
23	V1	Large Blast	51	-5 Pink Noise	V2
24	Near Gun-60 shots	V2	52	V6	Quiet Helicopter**
25	Near Gun-6 shots	V6.	53	-5 Pink Noise	Loud Helicopter**
26	V5	Loud Helicopter*	54	V4	Far Gun-60 shots
27	V4	Near Gun-6 shots	55	V2	Small Blast
28	V2	-0 Pink Noise			

Table 3a. Order of the sound pairs for the first half of each test.

* The designation "+5 Pink Noise" shows that the control sound level for that set and test sound was pink noise presented at 5 dB above the "base" sound level as given in Table 2.

** During the last two test periods, the Loud Helicopter was replaced by the Near 25mm Cannon and the Quiet Helicopter was replaced by the Far 25mm Cannon.

SECOND HALF						
	1ST EVENT	2ND EVENT		1ST EVENT	2ND EVENT	
1	-0 Pink Noise*	Loud Helicopter**	29	Large Blast	-5 White Noise	
2	V2	Quiet Helicopter**	30	V5	Near Gun-60 shots	
3	Near Gun-60 shots	-10 Pink Noise	31	-0 Pink Noise	V2	
4	Large Blast	V5	32	Large Blast	V1	
5	Loud Helicopter**	+5 Pink Noise	33	V3	Large Blast	
6	Quiet Helicopter**	V3	34	Loud Helicopter**	-5 Pink Noise	
7	Near Gun-6 shots	V4	35	Quiet Helicopter**	V6	
8	V2	Near Gun-6 shots	36	Near Gun-6 shots	V5	
9	Far Gun-60 shots	V6	37	V3	Far Gun-60 shots	
10	V5	Quiet Helicopter**	38	V2	Near Gun-60 shots	
11	Loud Helicopter**	+10 Pink Noise	39	Near Gun-60 shots	V4	
12	-5 Pink Noise	Near Gun-60 shots	40	+10 White Noise	Large Blast	
13	V2	-5 Pink Noise	41	V3	Near Gun-6 shots	
14	V4	Small Blast	42	Far Gun-60 shots	V2	
15	V5	Far Gun-60 shots	43	Loud Helicopter**	V5	
16	Near Gun-60 shots	+10 Pink Noise	44	Large Blast	V4	
17	Small Blast	V3	45	+5 Pink Noise	Near Gun-60 shots	
18	V1	Loud Helicopter**	46	V2	+10 Pink Noise	
19	Small Blast	V2	47	Near Gun-60 shots	-0 Pink Noise	
20	-0 White Noise	Large Blast	48	V3	Loud Helicopter**	
21	V6	Small Blast	49	+5 White Noise	Large Blast	
22	Far Gun-60 shots	V4	50	V2	Large Blast	
23	Loud Helicopter**	V2	51	V6	Near Gun-6 shots	
24	Near Gun-60 shots	V3	52	Small Blast	V5	
25	Near Gun-60 shots	V1	53	-10 Pink Noise	Loud Helicopter**	
26	Large Blast	-10 White Noise	54	V4	Quiet Helicopter**	
27	-10 Pink Noise	V2	55	+5 Pink Noise	V2	
28	Loud Helicopter**	V4				

Table 3b. Order of the sound pairs for the second half of each test	Table 3b.	Order of the sour	d pairs for the second	half of each test.
---	-----------	-------------------	------------------------	--------------------

* The designation "-0 Pink Noise" shows that the control sound level for that set and test sound was pink noise presented at 5 dB above the "base" sound level as given in Table 2.

** During the last two test periods, the Loud Helicopter was replaced by the Near 25mm Cannon and the Quiet Helicopter was replaced by the Far 25mm Cannon. German half includes windows and doors taken from Grafenwöhr and is constructed to the standard German ceiling height. Each room has one large window and door facing the vehicle road, and the small arms, 25 mm cannon, and blast firing sites. In each German room, the door is a glass patio door; in each American room, the door is wood and there is an additional, small window on the side of the room in addition to the large front window. Figure 12 shows the layout of one duplex. Appendix A describes the structures and the immediate site in more detail.

Each duplex half is separated from its other half by vibration isolation and triple walls with special acoustical treatment. Each half has its own heating, ventilating, and air conditioning (HVAC) and electrical systems so nothing penetrates from one half to the other. The construction of the two duplexes differed. One has typical American woodstud walls, a crawl space, and a trussed, asphalt-shingled roof. The other has 30 centimeter (cm) masonry walls and a poured concrete floor and ceiling. The latter mimics German construction, which typically has these features. Although the masonry wall at APG is heavier than a typical German masonry wall, the windows are the limiting factor in either case in terms of acoustical transmission. The American walls use nominal 2 inch (in.) x 6 in. (exact dimensions—4 cm x 14 cm) studs rather than the nominal 2 in. x 4 in. (exact dimensions—4 cm x 9 cm) studs in order to increase stiffness and improve low-frequency sound isolation performance.

The test facility is located within the main weapons test area of APG; an area that is several hundred square km in size. Because of its location, no problems occurred using live ammunition and no neighbors were near to be bothered by the test sounds. However, because of sound from other non-acoustical testing during the day at APG, it was necessary to perform these tests during the evenings and on Saturdays.

The subjects were placed in each of the four test living rooms. They sat on chairs and couches towards the rear of each room, as distant as possible from the wall containing the front windows and facing the road and firing sites. A test supervisor sat with each group. All windows were covered by closed drapery to prevent subjects from seeing the passing vehicles. (All other sound sources were obscured by trees.)

An outdoor group created when tests were performed during summer months (two of the five test periods) was located just northeast of the test house (Figure 12). The outdoor group faced the sound sources but were visually screened from the sound sources by being in a large tent. An absorbant barrier wall behind and to the side of the tent protected respondents from other extraneous sounds.

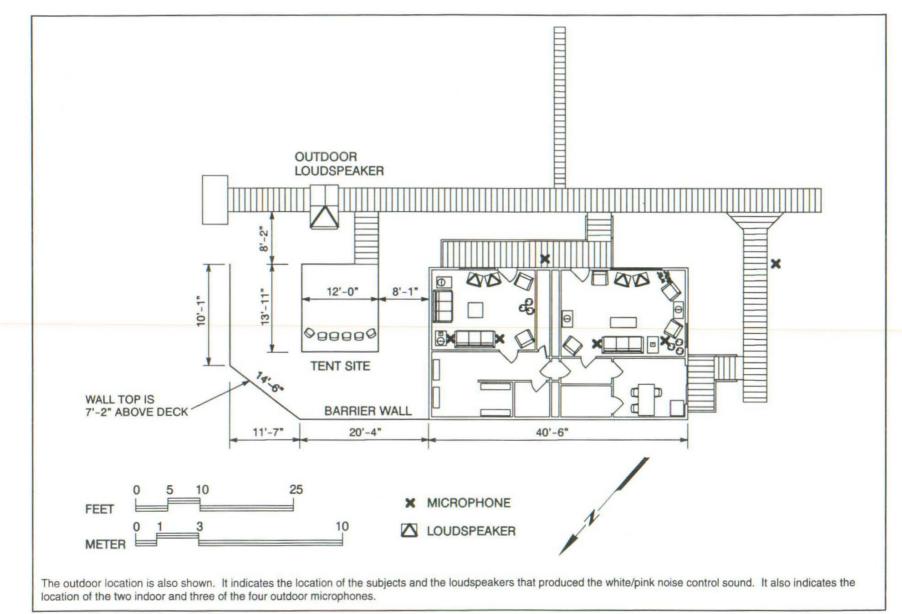


Figure 12. The layout of one duplex.

34

The control computer and measurement equipment were in the instrument "trailer," a permanent part of the test facility. This is also where the coordinator of the vehicles, blasts, small arms, and computer-generated sounds was located.

Test Subjects

The subjects—hired for the test by a local contractor—came from the local area and represented a reasonable cross section of the general public in terms of age and gender. Subjects participated in the experiment only once. Overall, about 350 subjects were used for this study. Because the paired-comparison methodology reduces the need to have subjects with perfect hearing and the desire was to have a cross-sectional representation of the community, subjects were not screened for perfect hearing acuity. The elderly, even with an age-related hearing loss, were used in this test to form the typical community cross section. However, subjects who could not communicate over the telephone were excluded.

Acoustical Data Collection

The acoustical measurement instruments consisted of eight indoor and four outdoor microphones. Two Brüel and Kjær (B&K) 4145 "1-inch" microphones were placed in each subject room at the subjects' ear height and located to obtain a good approximation to the stimuli heard by the subjects. Two B&K 4921 outdoor microphone systems were located about 80 to 100 mm (the thickness of the windscreen plus a small air space) from the southeast face of each test duplex. A third B&K 4921 microphone was located in a "free-field" setting midway between and about 50 cm forward of the line formed by the front faces of the test houses.^{*} A fourth B&K 4921 microphone was located just behind the subjects in the outdoor group. The subject group microphone was at ear height, about 1 m. The other three outdoor microphones were at a height of about 2.5 m. Figure 12 shows the microphone positions near the eastern duplex.

To ensure more accurate measurement of both low-level (small arms and vehicles) and high-level (blast) sounds, a computer-controlled attenuator was developed. It was used during the June 1992 test. In general, the eight indoor microphones were used to measure the sound signals received by the subjects. With the exception of blast sounds, the free-field microphone was used to obtain the general outdoor sound levels

^{*} The term "free-field" is used without quotations to designate this microphone position for the remainder of this paper although a microphone at only a height of 2.5 m is not exactly in a free-field.

used for analysis; the microphones on the front (southeast) faces of the test houses were used to determine the blast sound levels.

The equipment room shown in Figure 13 housed all the equipment for analyzing and recording the signals taken from the houses and three outdoor microphones. Both the indoor and outdoor signals were recorded on Panasonic 3500 DAT recorders. Also, the microphone signals were amplified with a Tektronix AM502 amplifier and analyzed using a USACERL-developed integrating noise monitor and SEL meter (Model 380). Figure 14 shows the instrumentation.

Control Sound

A personal computer (Figure 15) was used to regulate the control sound that was compared with each test sound. The starting point in generating a control sound was playback of a DAT recording. One channel contained the white noise (200 to 1,500 Hz), the other channel contained the pink noise (500 Hz octave band). The amplitude envelope (Figure 10) of either control noise type was created with a programmable attenuator connected to the personal computer. By using the programmable attenuator, the computer regulated the SEL and 10-dB down time of the control sound.

The white/pink-noise control sounds were presented at 5-dB intervals. The levels were -10, -5, 0, +5, and +10 dB with respect to the base level ASEL (see Table 3). The control sound would gradually rise from inaudible to 10 dB below its maximum level, and then rise to the maximum at a different rate. The sound would then decay in approximately the same manner. (See Figure 3 for examples of the amplitude envelopes of the two control sounds.) The sound in each room was generated by two loudspeakers. The outdoor control sound was the same as the indoor sound, except the outdoor level was 20 dB higher. This 20 dB gain was used because the A-weighted attenuation of a typical American house from outdoors to indoors is about 20 to 25 dB (A-weighted). For the white/pink-noise control sound sources, the control levels were adjusted in ± 5 dB steps depending on received test sound levels and the response data already collected. The goal was to have the equivalency point at the middle of the control sound range which was the middle level for the white/pink noise control sounds. Table 3 contains the actual "base" levels by set.

Conduct of The Test

Each test required approximately 3 hours to complete. Random groups of five or six subjects were taken to the test house by a supervisor who gave them information on

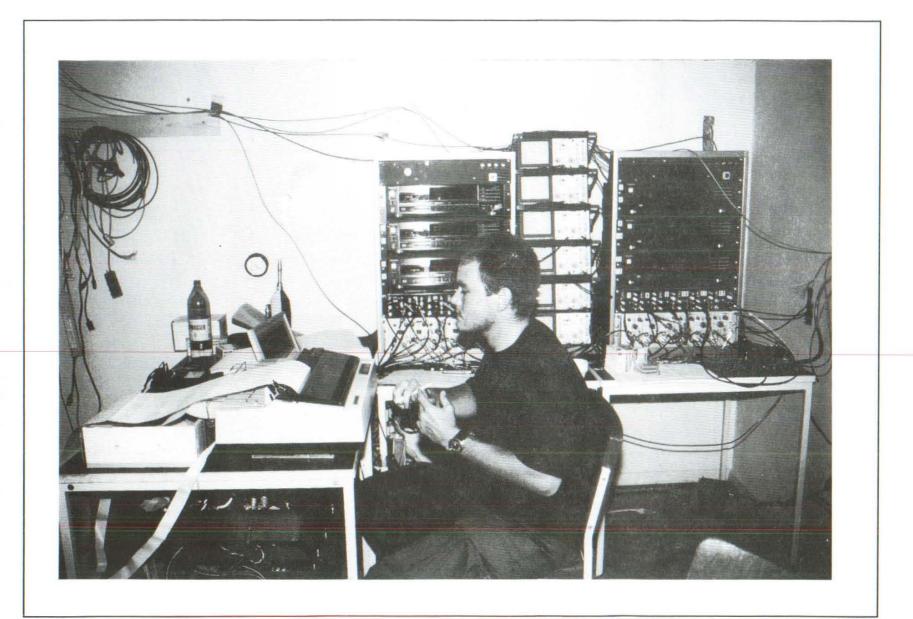


Figure 13. The instrument control room-data collection station.

USACERL TR-95/07

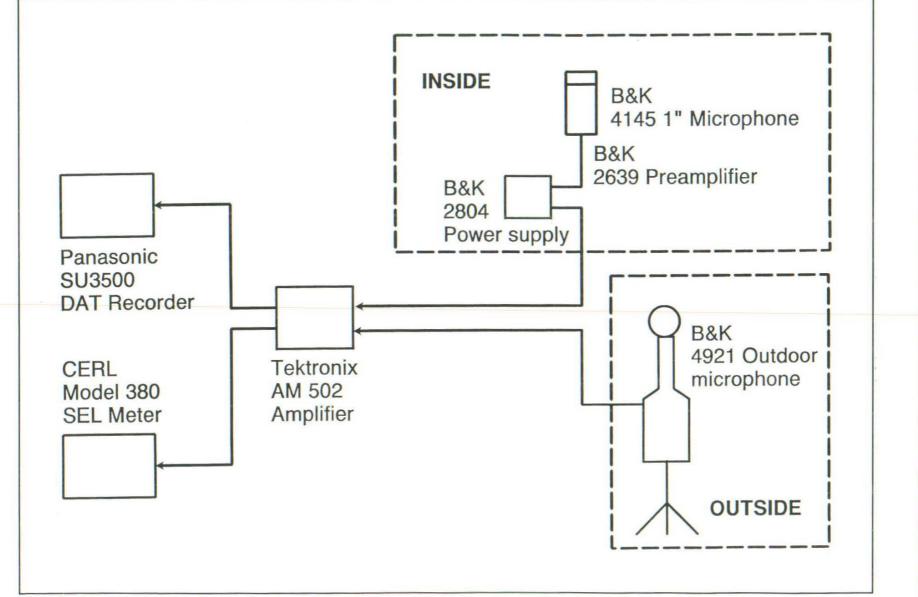


Figure 14. Schematic representation of the instrumentation.

USACERL TR-95/07

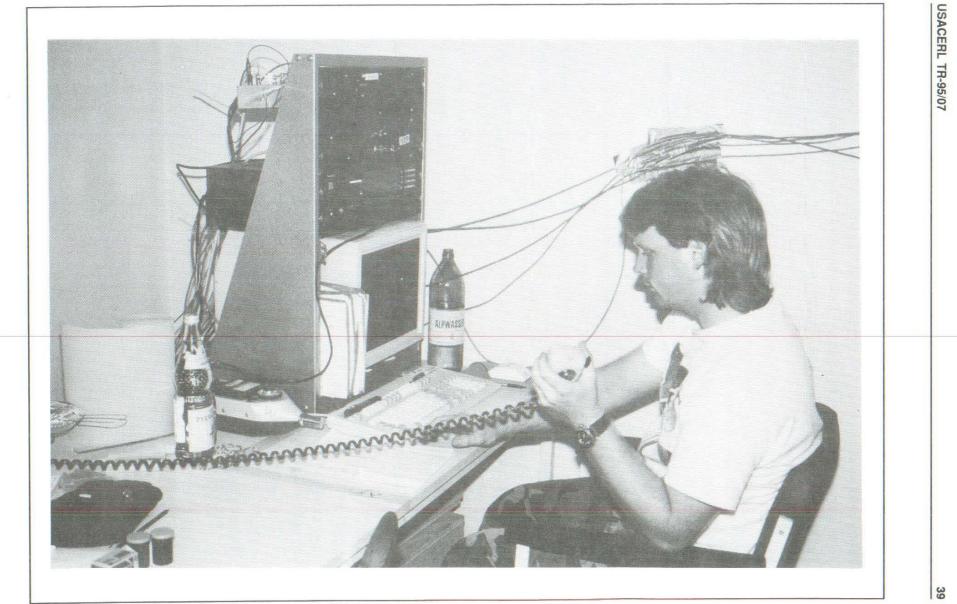


Figure 15. The instrument control room-test control station.

test conduct and remained with them throughout the test. (Figure 16 shows a typical indoor group of test subjects.) First, to train the subjects, a pretest used two pinknoise samples as the pair of sounds. Typically, three pairs of sounds were presented. For the first two pretest pairs, the ASEL of the two sounds in each pair clearly differed; their levels were 10 dB apart. In the first pair, the first sound had the higher level, and in the second pair, the second sound had the higher level. In the third pair, the ASELs of the two sounds were equal. Supervisors would check the participants' answers after each pretest run and use the first two pretest pairs to verify that everyone understood the instructions. If a test subject chose the "wrong" answer during the pretest, the supervisor would repeat the instructions to everyone. If necessary, more pretest pairs were run until everyone fully understood the instructions.

The subjects were told to mark which sound was more bothersome or annoying (Figure 11); the sound they would rather not hear again given the choice. The subjects were also told to mark how difficult it was to make this decision on a scale of 1 to 5 with the endpoints anchored by the descriptions "very easy" and "very hard." It is important to note that test participants were required to decide which sound of a pair was more annoying or bothersome for every pair of sounds. They could not say that the two sounds were of equal annoyance, but they could indicate that it was "very hard" to decide. The primary purpose for including the "degree of difficulty" scale was to ensure that the subjects made a choice as to which sound was more annoying in a pair.

Judgments of the annoyance of each pair of sounds were accomplished in four segments. First, a red light would light and subjects would concentrate on the first sound. Second, a yellow light would light and the participants would listen to the second sound. Third, a green light would light and the subjects would have approximately 5 s to mark the form. Finally all lights would be turned off and the subjects would wait until the red light was turned on again to signal the start of the next pair. The red and yellow light segments for the vehicles and small arms lasted for approximately 30 s; for the blasts, these lights were lit for 5 to 10 s. Figure 17 shows the signal lights and loudspeakers in a subject test room.

A computer controlled signal lights and generation of control sounds. The operator of the computer used a portable radio to contact supervisors at each of the test sound source sites (i.e., near and far small-arms sites) to ensure the arrival of each sound at its proper time.

Figure 16. Subjects seated in a test room.

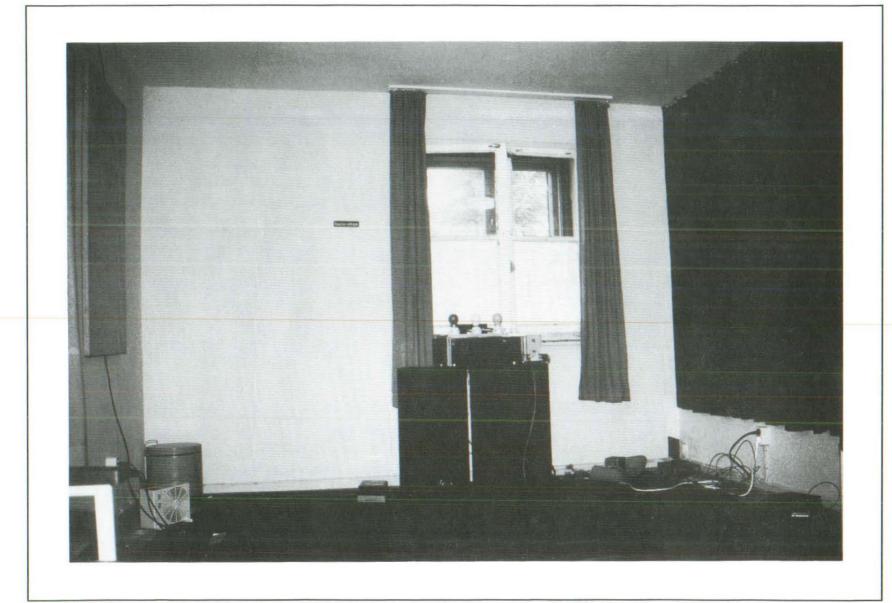


Figure 17. A subject room showing the front wall, control lights, and loud speakers for generating the pink/white-noise control sound.

Test Conditions

Table 4 lists the three conditions tested. The subjects were located indoors with the windows in each room closed (like most previous research in this general subject) during: the first measurement period, which consisted of a pretest and six good test sessions; the fourth measurement period, which consisted of three test sessions; and the fifth measurement period, which consisted of two good test sessions. (Recording problems and high instrument noise floors rendered useless the data from two other test sessions during the fifth test period.) Second, during the second and third measurement periods, which together consisted of six test sessions, the windows were partially open (about 50 mm), enabling air flow but not allowing the subjects to see the test stimuli. Third, during the second and third measurement periods, subjects also occupied the outdoor area (see Figure 12).

Condition	Test Sessions
subjects indoors; windows closed	Jan 92, Nov 92, Jan 93
subjects indoors; windows open	Jun 92, Aug 92
subjects outdoors	Jun 92, Aug 92

Table 4. Test conditions by measurement period.

3 Data Analysis

Acoustical Data

The acoustical levels for the small arms, tracked-vehicle, and wheeled-vehicle sound were kept constant from test to test, so the resulting data could be aggregated based on test condition (windows closed, subjects indoors; windows open, subjects indoors; or subjects outdoors). The blast sound levels were not constant from day to day because of changes in sound propagation conditions. Table 5 lists the blast levels by test. For analysis, the blast data were grouped by like levels within a test time period as indicated in Table 5. Appendix B contains the measured average data for sound sources for each set.

Table 6 lists the ASELs for the small arms, helicopters, 25 mm cannon, and wheeled vehicles. The ASELs in Table 6 represent the average values of the measured sound exposures and were rounded to the nearest 0.5 dB. Because the levels for these four sounds were kept almost constant from one test session to another, the resulting data could be aggregated across test sessions within each of the three test conditions. These aggregated sound exposure levels (SELs) were used throughout the analysis.

Subject Responses

Responses of the subjects were analyzed to determine the test sound ASEL (CSEL for blast sounds) at which 50 percent of the subjects felt that the test sound was more annoying than the control. This analysis concentrated on group-pooled responses using the average SEL data (Tables 5 and 6).

Test-subject responses were analyzed for each test sound source paired with each of its five respective control sounds to find the percentage of subjects that were more annoyed by the test-sound source at each control sound level. The result of such an analysis should have the form of a transitional function.

However, it is not feasible to test with extremely high- or low-level control sounds. For example, control ASELs at or below 20 dB are virtually inaudible and unmeasurable (at a field test site), and control ASELs at or above 110 dB are well above recommended

Test Period	Test Set	Test Grouping	Free-field CSEL (dB)	Free-field Peak level (dB)	Pressure-doubled CSEL (dB)	Pressure-doubled CSEL (dB)	Indoor CSEL (dB
January 1992	1	A	107	129	110	128	98
	2	В	101	125	107	130	93
	3	с	94	116	97	119	84
	4	В	102	120.5	105	127	88
	6	A	106	127	108	128.5	93
	7	В	102	124	105	126	89
June 1992	1	D	94	116	96	117	81
August 1992	2	E	100	122	103	123	95
	3	F	105	128	109	132	101
	4	F	101	124	105	128	99
	5	E	100	123	104	127	99
November	1	G	103	123	105	123	90
1992	2	G	106	127.5	109	127	90
	3	G	105	127	108	130	90
January 1993	1	н	98	119	101	119	85

Table 5a. Large-charge blast sound data by measurement set.

Test Period	Test Set	Data grouping	Free-field CSEL (dB)	Free-field Peak level (dB)	Pressure-doubled CSEL (dB)	Pressure-doubled CSEL (dB)	Indoor CSEL (dB)
January 1992	1	1	99	119	101.5	121	96
	2	I	96	117	103	124	88
	3	J	92.5	112	95	115	81
	4	J	93	113	96	116.5	80
	6	В	99	120	102	123	90
	7	1	97	117	100	120	85
June 1992	1	к.	92	112	93	115	78
August 1992	2	L	95.5	117	98	120	91
	3	L	99	121	103	125	93
	4	L	96	117	100	121	95
	5	м	95	117	98	120	95
November	1	N	94.5	115	99	119	85
1992	2	N	95	116	98	120	86
	3	N	95	116	97	120	85
January 1993	1	0	92	112	96	116	83

Table 5b. Small-charge blast sound data by measurement set.

Test Sound Source	Near Guns 60 shots	Near Guns 6 shots	Far Guns 60 shots	Near Helicopter	Far Helicopter	Neat 25 mm Cannon	Far 25 mm Cannon
		0	UTDOOR DATA	(Free-Field), ASEL (d	IB)*	_	
Jan 92	85	76	75	88	78		
Jun 92	86	74	76	88	78		
Aug 92	85	75	75	88	78		
Nov 92	85	75	76			70	70
Jan 93	85	76	77			72.5	74
		01	UTDOOR DATA	(Tent Group), ASEL	(dB)		
Jun 92	83	74	75	90	82		
Aug 92	82	73	74	86	76		
		INDOORS	AT SUBJECTS	-WINDOWS CLOSED	, ASEL (dB)		
Jan 92	55	46	46	65	54		
Nov 92	54	45	46			51	49.5
Jan 93	52	44	42			51	50.5
		INDOORS	AT SUBJECT	-WINDOWS OPEN,	ASEL (dB)		
Jun 92	67	58	58	70	65		
Aug 92	66	57	58	68	59		

Table 6a. All of the test sound source ASEL data used for the overall analysis.

Control Sound Source	Vehicle 1	Vehicle 2	Vehicle 3	Vehicle 4	Vehicle 5	Vehicle 6
		OUTDOOR DATA	(Free-Field), ASE	EL (dB)		
lan 92	97	93	88	81	75	70
lun 92	96	90	85	79	73	69
Aug 92	98	90	87	80	72	67.5
Nov 92	98	92	88	80	76	72
Jan 93	96	92	89	81	76	71
		OUTDOOR DATA	(Tent Group), AS	EL (dB)		
Jun 92	93	89	83	79	74	72
Aug 92	95	89	84	80	74	70
	INDOOF	S AT SUBJECTS-	-WINDOWS CLO	SED, ASEL (dB)		
Jan 92	67	63	59	55	51	48
Nov 92	68	64	61	59	56	49
Jan 93	68	63	60	57	51	50
	INDOO	RS AT SUBJECTS	-WINDOWS OP	EN, ASEL (dB)		
Jun 92	77	72	66	62	59	50
Aug 92	76	71	68	63	57	55

Table 6b. All of the control source ASEL data used for the overall analysis.

levels for hearing conservation. So, in this analysis, a transitional curve was fitted to the data, but constrained to be very near to 100 percent for control ASELs at or below 20 dB, and also constrained to be very near 0 percent for control ASELs at or above 110 dB. One of the following three transition functions was used to produce a plot for each test sound and corresponding set of five control sounds. Selection of the best-fit function was made on the basis of which yielded the smallest error. The curve having the largest F-statistic (i.e., minimum mean square residuals) was selected. Once the plots were generated, the SEL of the test sound source and the corresponding ASEL of the control sound for each equivalency point were determined by computer solution of the curve fitted to the data.

Each of the three potential transition functions has four independent parameters, a, b, c, and d. Each curve relates the percent of the judgments that found the test sound to be more annoying (%) to the ASEL of the control sound (L_{AE}) in decibels.

The Sigmoid function has the form:

$$\% = a + b/(1 + \exp[-(L_{AE} - c)/d]), \tag{1}$$

the Logistic Dose Response function has the form:

$$\% = a + b/[1 + (L_{AE}/c)^{d}],$$
(2)

and the Cumulative Distribution function has the form:

$$\% = a + (b/2)\{1 + \operatorname{erf}\left[(L_{AE} - c)/(2^{1/2}d)\right]\}$$
(3)

where erf is the Error function.

Appendixes C, D, E, and F contain complete listings and transition curve figures for all of the data. The tables in these appendixes include the F-statistic and the corresponding standard error for each transition curve, type of curve fit, 90 percent confidence limits, t-value, and standard error for each of the four independent parameters.

4 Results

Helicopter, Small Arms, and 25 mm Cannon Results—Wheeled-Vehicle Control Sounds

As described in the Munster article (Schomer et al. 1994), the data were analyzed using both the free-field microphone and the indoor microphone. Both sets of results are discussed below.

Table 7 summarizes the results for the three test conditions of windows closed, windows open, and outdoors. This table includes consolidated data for the four indoor rooms together and for the outdoor group. In this table, the penalties are the amounts in decibels to be added to the test SELs to make them equivalent in terms of annoyance to their corresponding control SELs. The penalties in Table 7a are for acoustical measurements made near the subjects; those in Table 7b are for acoustical measurements made outdoors in a free field.

Environmental noise is normally measured and assessed on the basis of outdoor data. For example, airport or highway noise contours predict outdoor free-field sound levels; not the sound levels at the ears of residents inside houses. So, to assess military sounds compared with traffic sounds, it is **mandatory** that the penalties be based on outdoor-measured SELs—even though the judgments were made by subjects situated indoors. Table 7b lists these penalties.

Small arms results

The data gathered using the outdoor, free-field microphone indicate an average penalty of 12 dB for all indoor test conditions, windows open or closed, 60 shots or 6 shots, near or far position. With acoustical measurements indoors near the subjects, the results are much the same, but the scatter is a little greater and the penalty is about 10 dB. Sound level causes no apparent variation. This is in contrast to earlier results by Rice (1989), Vos (1990), and at Munster (Schomer et al. 1994) where there was some indication of a level dependence to the results. Here the penalty is fairly constant at 12 dB.

For subjects outdoors, the small arms penalty appears to be about 9 or 10 dB.

Fest Sound Source	Near Guns 60 shots	Near Guns 6 shots	Far Guns 60 shots	Near Helicopter	Far Helicopter	Near 25 mm Cannon	Far 25 mm Cannon
		OUTD	OOR (TENT) GR	OUP, ASEL (dB)*			
Jun 92	10	8.5	10	2.5	1		
Aug 92	7.5	9.5	12.5	2	5		
AVERAGE	8.8	9	11.2	2.3	3		
		INDOOR	S-WINDOWS C	LOSED, ASEL (d	B)		
Jan 92	11	8	6	-7	-1		
Nov 92	13	**	**			13	13
Jan 93	15	**	**			11	11
AVERAGE	13	8	6	-7	-1	12	12
		INDOO	RS-WINDOWS	OPEN, ASEL (dB)		
Jun 92	9	12	15.5	2	-3.5		
Aug 92	11	13	12	2	1.5		
AVERAGE	10	12.5	13.8	2	-1		
			INDOOR AVE	RAGES			
AVERAGE							

Table 7a. Computed penalties for measurements made near the subjects.

Test Sound Source	Near Guns 60 shots	Near Guns 6 shots	Far Guns 60 shots	Near Helicopter	Far Helicopter	Near 25 mm Cannon	Far 25 mm Cannon
		OUTD	OOR (TENT) GR	OUP, ASEL (dB)*			
Jun 92	9	8	9	6.5	4.6		
Aug 92	6	7.5	12.5	1.5	3		
AVERAGE	7.5	7.8	10.8	4	3.8		
		INDOOR	S-WINDOWS C	LOSED, ASEL (d	B)		
Jan 92	15	12	12	2	3		
Nov 92	12	11	9			19	18
Jan 93	12	10	8			12.5	15.5
AVERAGE	13	11	9.7	2	3	15.8	16.8
	_	INDOO	RS-WINDOWS	OPEN, ASEL (dB)		
Jun 92	9	15	16	2.5	1		
Aug 92	12	14	14	1	0		
AVERAGE	10.5	14.5	15	1.8	0.5		
			INDOOR AVE	RAGES			
AVERAGE	12.0	12.4	11.8	1.8	1.3	15.8	16.8

Table 7b. Computed penalties for measurements made outdoors in a free field.

25 mm Cannon results

Penalties for the 25 mm cannon appear to be about the same as for small arms when measured indoors by the subjects—12 dB versus 10 or 11 dB for the small arms. However, because of the low frequencies present in the cannon spectrum, the outdoor, free-field computed penalties are larger—about 16 dB versus 12 dB for the small arms. So at the subjects' ears, the 25 mm cannon appears to be judged similarly to small arms in terms of annoyance, but it may need a larger penalty when it is compared to other sounds on the basis of outdoor, free-field measurements.

Helicopter results

The most surprising result was found for the helicopters. Although many have thought that helicopter sound should be penalized because of its "impulsive" character, little or no penalty was found. In fact, with acoustical measurements indoors at the subjects, the penalty is sometimes negative—a bonus. This result is considered to be particularly reliable because a penalty was clearly found by the same subjects in the same test for small arms sound.

Small Arms, 25 mm Cannon, and Helicopter Results; Pink Noise as a Control Sound

Loudspeakers produced the pink-noise signal near each group of subjects. Therefore, the following analysis is only for acoustical data measured by the microphones near the subjects. (The outdoor free-field microphone did not measure any loudspeaker sound.) Table 8 shows the results for the three test conditions of windows closed, windows open, and subjects outdoors for the three sources (nearby small arms [60 shots], nearby 25 mm cannon, and nearby helicopter) each of which had both wheeled-vehicle and pink noise as a control sound. Table 8 also includes the results for vehicle V2 with pink noise as a control sound.

As at Munster, the results using the pink-noise control sound were substantially different from the results using wheeled-vehicle control sounds. The difference both in this study and in the Munster study was of the order of 10 dB, and in both studies the results were internally consistent (as Table 8 demonstrates for this study). For each test condition, the value of the penalty found for vehicle V2 using pink noise as a control sound was quite similar to the difference in penalty found between using

Test Sound Source	Vehicle 2	Near Gun-60		Near Hel	icopter	Near 25 mm	
Control	Pink Noise	Pink Noise	Vehicles plus*	Pink Noise	Vehicles plus*	Pink Noise	Vehicles plus*
	OUTDOOR	COMPUTED PENA	LTY (Measurem	ent near Tent Grou	up), ASEL (dB)		
Jun 92		outdoor pink no	oise was incorrect				
Aug 92	6.5	15.5	14	12.5	8.5		
PEI	NALTIES COMPUTE	D INDOORS-WI	DOWS CLOSE	(Measurement n	ear Subjects),	ASEL (dB)	
Jan 92	9	24	20	2	2		
Nov 92	9	26	22			19	22
Jan 93	11.5	22.5	26.5			19.5	22.5
AVERAGE	9.8	24.2	22.8	2	2	19.5	22.3
PI	ENALTIES COMPUT	FED INDOORS-W	INDOWS OPEN	(Measurement nea	ar Subjects), A	SEL (dB)	
Jun 92	5	20	14	4	7		
Aug 92	7	18.5	18	8.5	8		
AVERAGE	6.5	19.3	16.5	6.3	8		

Table 8. All of the computed penalties (ASEL) using pink noise as the control and comparison with the corresponding penalty using vehicles as a control.

wheeled-vehicle or pink-noise control sound for near small arms (60 shots), the near 25 mm cannon, or the near helicopter. Because of the internal consistency in each study and the replication of the results in both, this difference of about 10 dB between the penalty determined using the two different control sound sources is considered to be very reliable and real.

The 10-dB difference between the ASELs of equally annoying pink-noise and wheeledvehicle sounds casts some doubt on testing methodologies that use artificial, machinegenerated sounds as a control to develop *absolute* penalties. Since the goal of absolute penalties is to make assessment of some study sound equal to assessment of normal environmental sounds such as motor vehicle traffic, the large differences in penalties derived using the two different control sounds indicates that artificially-generated control sounds should not be used as a surrogate for real sounds when testing annoyance to determine *absolute* levels for penalties.

Blast Sound Results

In the following, results are given both for acoustical data gathered near the subjects' ears and for acoustical data collected outdoors, but with the subjects indoors.

Because sound propagation conditions and resulting received blast SELs changed greatly from day to day, the data were grouped by like levels within test sessions. On some occasions, for example, nearly all of the subjects found the blast more annoying for all control sound levels when the blast sound levels were especially high on one day, and conversely, the opposite occurred when the blast sound levels were very low on another day. In one case, no reliable transition curve could be developed for the data.

This problem was so acute because, as shown below, a 1 dB change in CSEL of a blast corresponded to about a 2 dB change in ASEL for an equivalently annoying control sound. Since the range of control SEL was about 20 dB, a shift of only 10 dB in the received blast SEL could shift the subject responses from one extreme to the other, from all finding the blast more annoying to none finding the blast more annoying than the control sound. Because of this problem, several sets of blast data points do not include the 50 percent point within the data range. In these cases, the 50 percent point was determined by extrapolation. However, the extrapolation was required to be small and the closest data point to 50 percent was at about 55 to 60 percent. One data set was excluded because it required what was considered to be too great an extrapolation (more than 10 percentage points from the nearest data point) to determine the 50-percent point. Figure 18 shows the data and regression line for CSEL compared with both wheeledvehicle and white-noise control SELs. The data were measured indoors near the subjects with the windows closed. The slope of the regression line is 0.33. Thus, in Figure 18, a 1-dB change in the CSEL of the blast sound corresponded in terms of annoyance to about a 3 dB change in control sound ASEL. However, the range of SELs for the control sounds was only about 30 dB, and the range of SELs for the blast sounds was only about 15 dB.

As at Munster, the blast data exhibited no difference between using the wheeledvehicle control sound or the white-noise control sound. But the white-noise sound was much different in spectrum and amplitude envelope from the pink-noise control sound. Given the difference in the earlier results for the two control sounds (pink noise and vehicles), the lack of difference between white noise and vehicles may be purely coincidental.

Figure 19 shows the data and regression line for earlier results from the Grafenwöhr Training Area and Munster along with these results from APG and eight earlier data points from a prior test at APG. All of the data are for a windows-closed test condition with acoustical measurements made indoors, near the subjects. The control sound in each case was white noise. At each site, the large-charge-size blast sound source was typically about 2 kg of explosives (known as C-4 or military TNT); the small blast sound source was about 500 g of explosives at a site about 1 km from the test houses, and the control sound was white noise. The most important features are the comparatively good agreement among the data sets and the 0.54 slope of the regression line. In Figure 19, a 1-dB change in CSEL corresponded to a change in equivalent control sound ASEL of about 1.8 dB. Also, in contrast to Figure 18, the SELs for the control sound shown in Figure 19 varied almost 50 dB and the SELs for the blast sounds varied about 25 dB.

In the Munster study (Schomer et al. 1994), it was found that for a combination of open- and closed-window data, the indoor measurements did not correlate well with indoor blast sound responses, but measurements of **outdoor** CSELs of blast sounds correlated well with judgments made indoors for both windows-open and closed test conditions, and even for subjects outdoors. The conclusion was that ASELs or CSELs measured indoors for blast sounds are not good predictors of annoyance judgments made indoors. So in this report only the outdoor measured acoustical data are used to analyze the responses to blast sounds when using wheeled-vehicles as the control sound source.

USACERL TR-95/07 CSEL = 0.33 ASEL + 66.7 50 Both white noise (closed circles) and wheeled-vehicle (open circles) control sound data are included.

Figure 18. Data and regression line for indoor measured blast sound data at APG.

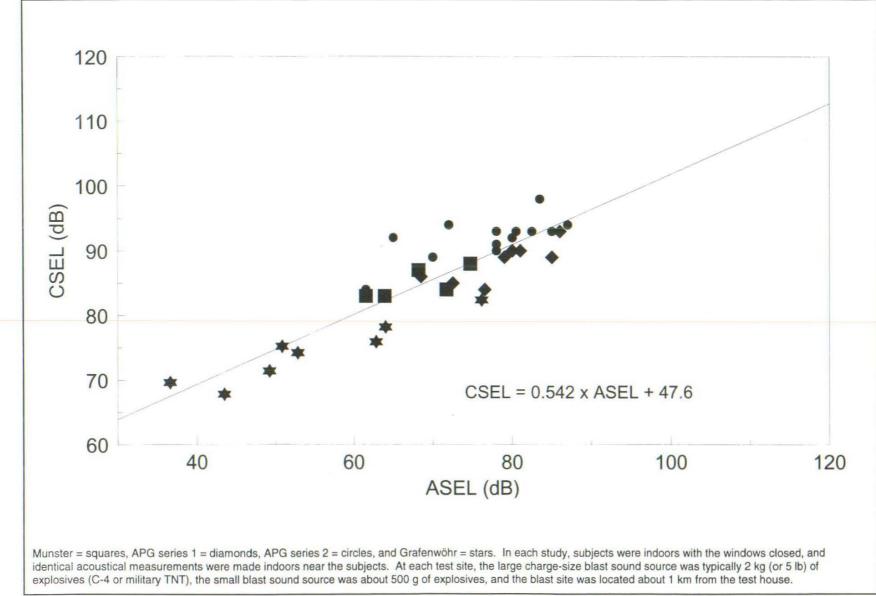


Figure 19. Data and regression line for blast sounds for Munster, APG series 1 and 2, and Grafenwöhr using white-noise control sounds.

USACERL TR-95/07

Figure 20 shows the results of the indoor judgments of blast sounds for all wheeledvehicle control sounds measured outdoors at the face of the test houses both in this study and in the Munster study. White-noise control sound data were not included because the loudspeakers were near the groups of subjects, and the microphone on the face of the test house did not measure the loudspeaker sound levels.

The most salient feature of the data in Figure 20 is its slope of about 0.50. A 1-dB change in CSEL of the blast sound corresponded to a change on the order of 2 dB in the ASEL of the equivalently annoying vehicle control sound. The point of subjective equality was at about 103 dB. Above 103 dB, the CSEL of the blast sounds should include a positive offset (in addition to measuring with C-weighting); below 103 dB, the offset becomes increasingly negative (indicating a reduction in the annoyance of blast sounds relative to the annoyance of the control sounds).

Figure 20 also includes the results from APG for the outdoor group. A regression line fit to these six data points shows a steeper slope than for the indoor subject; but it shows a slope that is less than one. These outdoor-subject data would seem to indicate that blast noise is less of a problem outdoors than indoors for the same outdoormeasured CSEL.

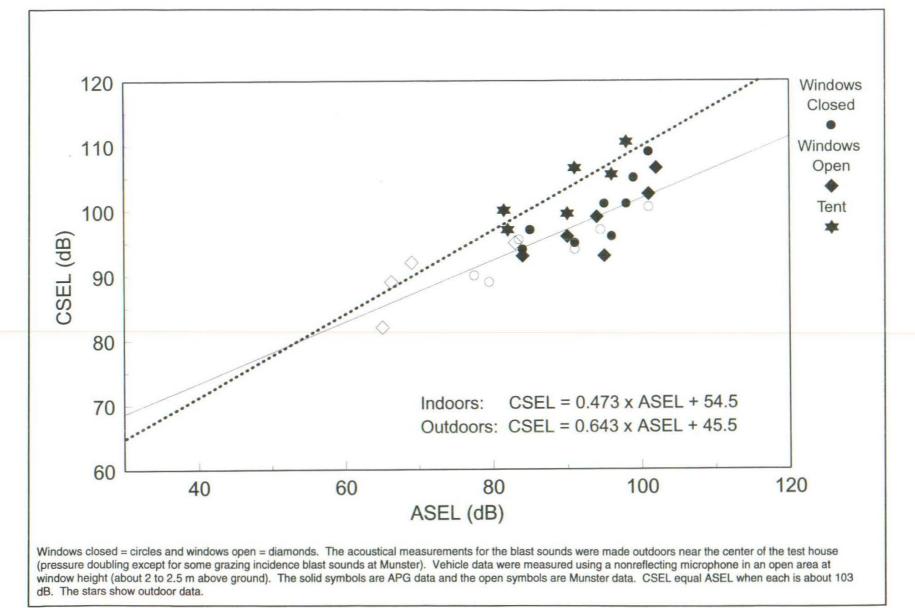


Figure 20. Data and regression line for blast sounds using wheeled-vehicle control sounds.

USACERL TR-95/07

5 Conclusions

Measured near a subject's ears, the real sound of a passing vehicle did not compare in terms of annoyance with a computer-generated pink-noise sound producing the same ASEL. Equal annoyance responses differed by approximately 10 dB. This 10 dB difference replicated the result found in Munster. The large differences in penalties derived using two different control sounds indicated that artificial sounds should not be used as a surrogate for real sounds when testing annoyance to determine *absolute* levels for penalties, since the goal of such absolute penalties is to make the assessment of a military sound equivalent in terms of annoyance to the assessment of normal environmental sounds such as motor vehicle traffic.

The data in Table 7 further support a small arms penalty that is on the order of 10 dB. The variations from test to test and condition to condition suggest that this penalty is not a constant. It is some complicated function of many variables. However, for purposes of environmental noise assessment, the near maximum value of this penalty appears to be on the order of 10 dB. A penalty of 10 dB is in reasonably good agreement with other research on impulsive-sound penalties for small arms sounds. The data tend to support an equal-sound-exposure model for small arms since the penalty is constant when the rate of fire changes from 60 shots in 30 seconds to 6 shots in 30 seconds, for the same test condition and site.

For the 25 mm cannon, the outdoor-measured data support a penalty that is closer to 15 dB than to 10 dB. This result is strengthened by the fact that when measured indoors, the penalty for small arms is similar. The difference may lie in the building transmission from outdoors to indoors for the lower frequency 25 mm cannon sound as compared with small arms sound. Since this is the first set of data for this type of weapon, the results should be treated as very preliminary. Given the variation in small arms results from test to test and condition to condition, somewhat different results should be expected in any replication of the 25 mm cannon test.

The results for helicopter sound compared with wheeled-vehicle control sound show no penalty. This somewhat surprising result draws increased confidence on two different bases. First, results with the same subjects in the same test find penalties for small arms and 25 mm cannon sound when no penalty is found for helicopters. Second, the 10 dB "penalty" found in this test using the pink-noise control sound is consistent with earlier studies at Tustin (Schomer 1991) and Champaign (Schomer 1989).

The relationship between the CSEL of a large-amplitude impulsive sound and the ASEL of its equivalently-annoying control sound was definitely level dependent with a slope on the order of 1:2 (i.e., a 1 dB change in the CSEL of blast sounds corresponded to about a 2 dB change in the ASEL of an equivalently annoying control sound). With outdoor acoustical measurements, the annoyance (indoor subjects) generated by a large-amplitude impulsive sound and its equivalently annoying control sound were equal when the CSEL of the impulsive sound and the ASEL of the control sound were each about 103 dB.

References

- Air Installations Compatible Use Zones (AICUZ), U.S. Department of Defense [DOD] Instruction 4165.57, Washington, DC, 8 November 1977.
- American National Standard S12.4, Method for Assessment of High-Energy Impulsive Sounds with Respect to Residential Communities (Acoustical Society of America, New York, 1986).
- American National Standard S12.9, Quantities and Procedures for Description and Measurement of Environmental Sound. Part 1 (Acoustical Society of America, New York, 1988).
- American National Standard S12.40, Sound Level Descriptors for Determination of Compatible Land Use (Acoustical Society of America, New York, 1990).
- Army Regulation 200-1, "Environmental Protection and Enhancement," Chapter 7, Environmental Noise Abatement Program (Headquarters, Department of the Army, Washington, D.C., 23 April 1990).
- Borsky, P.N., Community reactions to sonic booms in the Oklahoma City area, AMRL-TR-65-37 (Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio, 1965).
- Buchta, Edmund, "Pilotprojekt für passive Schallschutzmassnahmen am Truppenübungsplatz Grafenwöhr," Bundesminister der Finanzen (Federal Ministry of Finance), (Bonn, Germany, 1989).
- Buchta, Edmund, "A field study on annoyance caused by sounds from small firearms," Journal of the Acoustical Society of America, Vol 88 (September 1990), pp 1459-1467.
- Bullen, R.B., and A.J. Hede, "Community response to impulsive noise: A survey around Holsworthy Army Range," Commonwealth Department of Health, Commissioned Report Number 3 (National Acoustic Laboratories, Canberra, Australia, 1984).
- Eystein, Arntzen, "Annoyance caused by shooting noise," Report Based on Investigations in the Nordic Countries (1984).
- Hede, A.J., and R.B. Bullen, "Community reaction to noise from Hornsby Rifle Range," Commonwealth Department of Health Report 84, Australian Government Publishing Service (National Acoustic Laboratories, Canberra, Australia, February 1981).
- Information on levels of environmental noise requisite to protect health and welfare with an adequate margin of safety, Office of Noise Abatement and Control Report 550/9-74-004 (U.S. Environmental Protection Agency [USEPA], Washington, DC, March 1974).

- International Organization for Standardization, "Acoustics—Description and measurement of environmental noise—Part 2: Acquisition of data pertinent to land use," ISO R1996:1990/2 (International Organization for Standardization, Geneva, Switzerland, 1990).
- Kryter, K.D., P.J. Johnson, and J.P. Young, "Psychological experiments on sonic booms conducted at Edwards Air Force Base," USAF Contractor Report AF 49(638) (USAF National Sonic Boom Evaluation Office, Arlington, Virginia, 1968).
- Levein, B., and U. Åhrlin, "Annoyance caused by shooting range noise," *Journal of Sound and Vibration*, 127(3) (1988), pp 589-592.
- "Noise From Weapons—Small-arms ranges and general firing ranges," Denmark (Danish Defence Construction Service, Norway (Norwegian Defence Construction Service), and Sweden (Fortifications Administration) (Nordic Defense Institutes, 1986).
- Rice, Christopher G., "Annoyance due to Impulse Noise—CEC Studies: Final Report," ISVR Memorandum 690 (Institute of Sound and Vibration Research, Southampton, England, 1989).
- Schomer, Paul D., and Robert D. Neathammer, Community Reaction to Impulsive Noise: A Final 10-year Research Summary, Technical Report (TR) Number N-167(Revised)/ADA159455 (U.S. Army Construction Engineering Research Laboratory [USACERL], June 1985).
- Schomer, Paul D., "High-energy impulsive noise assessment," Journal of the Acoustical Society of America, Vol 79 (January 1986), pp 182-186.
- Schomer, Paul D., and Robert D. Neathammer, "The role of helicopter noise-induced vibration and rattle in human response," *Journal of the Acoustical Society of America*, Vol 81 (1987), pp 966-976.
- Schomer, Paul D., and Aaron Averbuch, "Indoor human response to blast sounds that generate rattles," Journal of the Acoustical Society of America, Vol 86(2) (August 1989), pp 665-673.
- Schomer, Paul D., Edmund Buchta, and Karl-Wilhelm Hirsch, "Decibel annoyance reduction of lowfrequency blast attenuating windows," *Journal of the Acoustical Society of America*, Vol 89(4) (April 1991), pp 1708-1713.
- Schomer, Paul D., Brian D. Hoover, and Lee R. Wagner, Human Response to Helicopter Noise: A Test of A-Weighting, TR N-91/13/ADA243719 (USACERL, November 1991).
- Schomer, Paul D, "Time-average aircraft noise descriptors; Confusion with no benefit," Inter-Noise 92, Vol 2 (Noise Control Foundation, Poughkeepsie, NY, July 1992), pp 987-992.
- Schomer, Paul D., L. Ray Wagner, L. Jerome Benson, Edmon Buchta, Karl Wilhelm Hirsch, and Detlef Krahé, "Human and community response to military sounds: Results from field-laboratory tests of small arms, tracked-vehicle, and blast sounds," *Noise Control Engineering Journal*, Vol 42(2) (March-April 1994), pp 71-84.
- Sutherland, L.C., and R.E. Burke, "Annoyance, loudness, and measurement of repetitive type impulsive noise sources," EPA 550/9-79-103 (USEPA, Washington, DC, November 1979).

Vos, Joos "On the level-dependent penalty for impulse sound," Journal of the Acoustical Society of America, Vol 88 (August 1990), pp 883-893.

Appendix A: USACERL Acoustic Test Facility at Aberdeen Proving Ground

Acoustic Test Facility Development

Acoustic Test Facility Development

Introduction

The purpose of the test structures is to provide a field test site for fabrication methods to shield residents from blast noise of large Army weapons, and other generators of noise.

The two structures, each of which includes two strictly isolated areas, are built to the typical level of normal home construction of different continents. The halves are referred to as the "American" half (imperial measurement), and the "German" half (metric measurement).

Each half has completely separate HVAC and electrical systems to ensure sound separation.

No openings or puncture in the walls, floors, or ceilings, other than the doors required for passage, were allowed between the "American" and "German" half of each structure.

The work of the Contractor consisted, in general, of site preparation, construction of the wood framed building, and retrofit of a magazine which represents masonry construction.

The Architect was retained to prepare sufficient Drawings and Specifications for review by governmental agencies having jurisdiction, and to secure approvals for issuing required general building permit. The Architect was to also provide additional consulting services when and if so requested during the construction and modification phases of the work.

The various division's listed represent the entire spectrum of construction. Only those divisions with special requirements for the acoustic testing contain information, all other divisions are listed with the statement: "Not used at this time"

DIVISION 1 - GENERAL REQUIREMENTS

This project was designed to be executed in three phases:

I. Initial construction and renovation, and test calibration.

IIa. All remaining doors and windows placed.

b. Windows modified

III. siding removed from wooden house, replaced with brick.

L Initial construction and renovation

WOODEN FACILITY

Scope: Fabrication of the wood frame field laboratory test site shall include rough openings for all future fenestration but no exterior windows of doors, to be installed, except the sliding door in the bedroom. The interior and exterior walls will be finished smoothly

BRICK FACILITY

Renovation of the magazine shall include:

a. Installation of reinforcing beams within the existing brick of the structure to accomidate future openings.

b. Provide rough framed openings for future exterior doors and windows, but interior walls finished smoothly for phase I.

c. Provide in the space labled bedroom, a sliding door, fill brick around opening.

d. Removing existing doors and non-essential columns, fill brick to match existing.

e. Plumbing: No plumbing or water is required

f. Electric: Will be two exterior electric panels, one on each structure having separate isolated feeds to each "side" of both buildings. Wire mold at base boards for interior distribution

g. HVAC: Electric heat pumps with condenser units (2) per structure

USACERL TR-95/07

Acoustic Test Facility Development

h. Furnishings as required to give a "home like" feel.

II a. All remaining doors and windows placed

Scope: Placing of 12 windows (6 per structure) and 4 Doors (2 per structure) into existing framing of test facilities. Installing requires removal of existing interior chip board and exterior skins. Provisions will be made for eventual removal and replacement of the windows.

Major Requirements:

a. Locate rough framing openings. Remove existing surfacing materials from areas of future openings. Remove existing temporary framing materials. Prepare openings to accept windows and doors.

b. Place windows and Doors. Provide attachment of window and doors to allow for future removal (removal in part B).

c. Finish work. Provide finish trim at all windows and doors. Leave site as found. Remove construction spoilage, verify procedure with security

Acoustic Test Facility Development

II b. Windows modified

Scope: Removal of 4 Windows (2 per structure) in existing framing of test facilities and installing upgraded window. Provisions will be make for eventual removal and replacement of these windows.

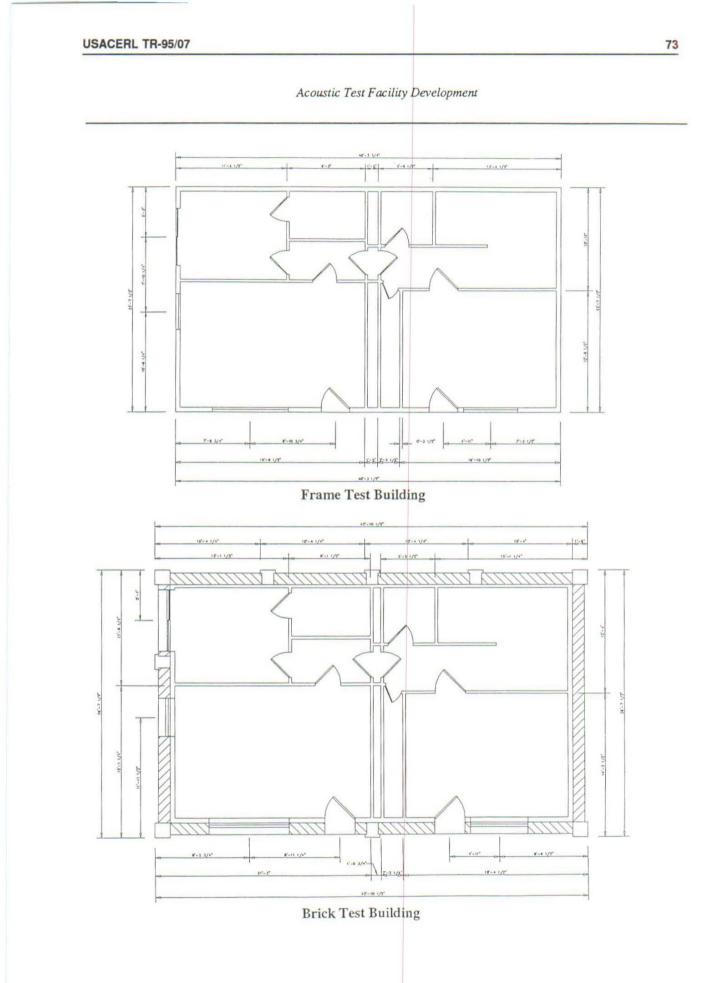
Major Requirements:

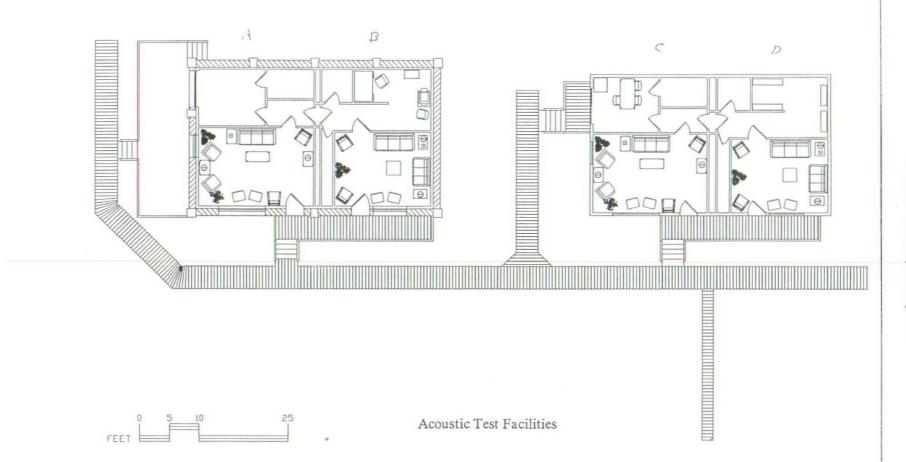
a. Remove existing American manufactured windows. Prepare openings to accept upgraded windows.

b. Place windows. Provide attachment methods of window to allow for future removal.

c. Finish work. Provide finish trim at all windows. Leave sight as found. Remove construction spoilage.

III. Siding removed from wooden house, replaced with brick.


Scope: Removal of existing wood siding of test facility. Installing of brick facing

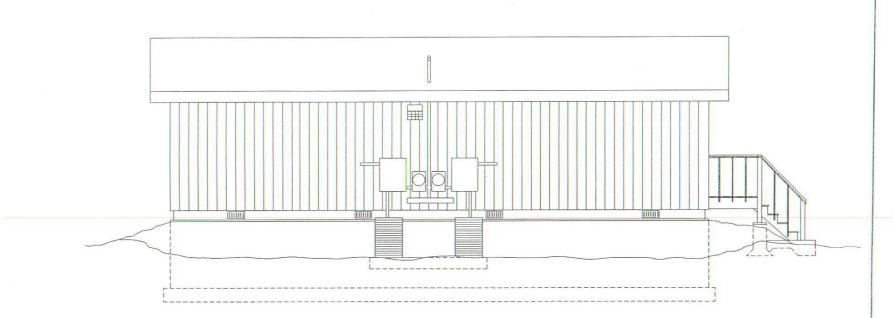

Major Requirements:

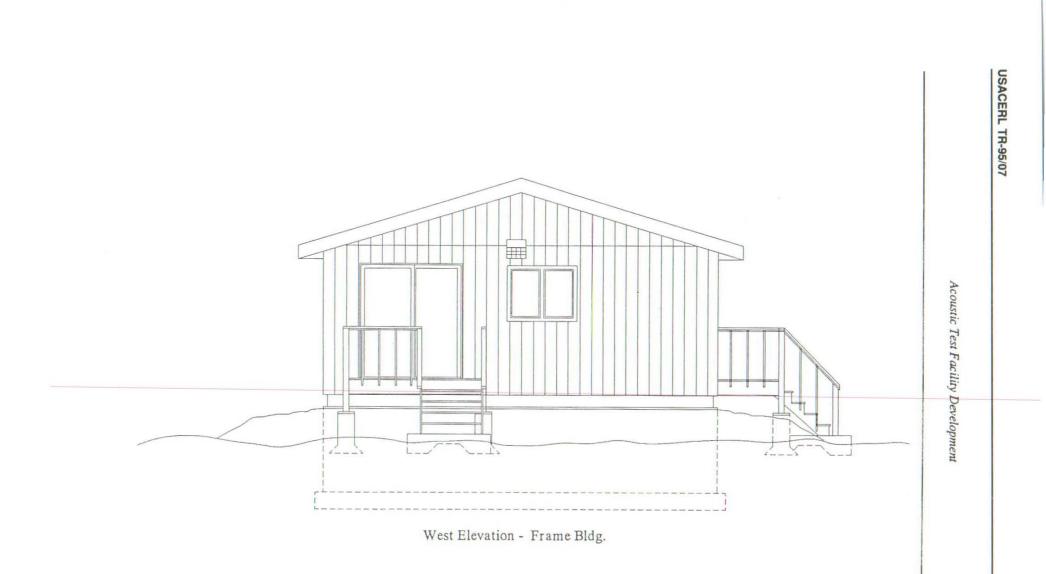
a. Removal of wood siding, (or if possible leave in place).

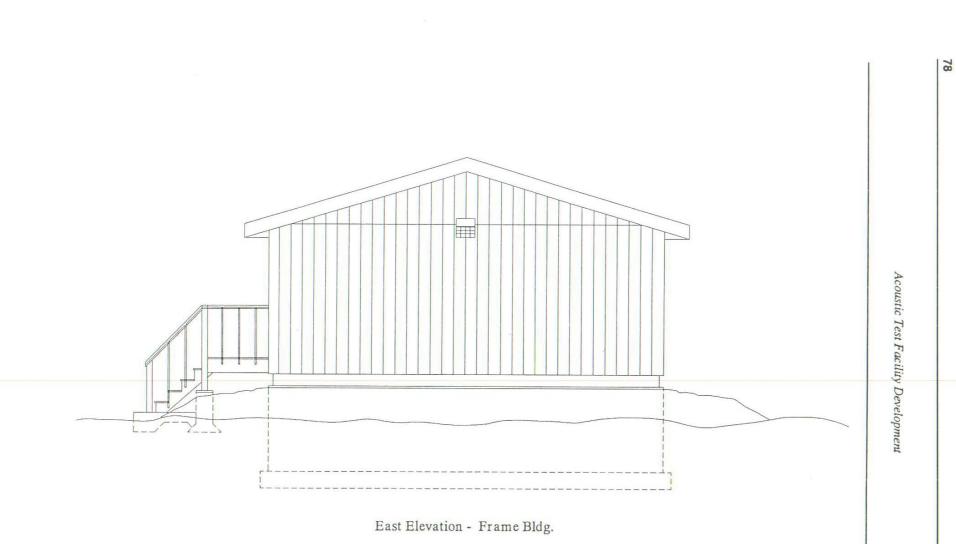
b. Place brick siding

c. Finish work. Provide finish trim at all windows and doors. Leave sight as found. Remove construction spoilage, verify procedure with security.

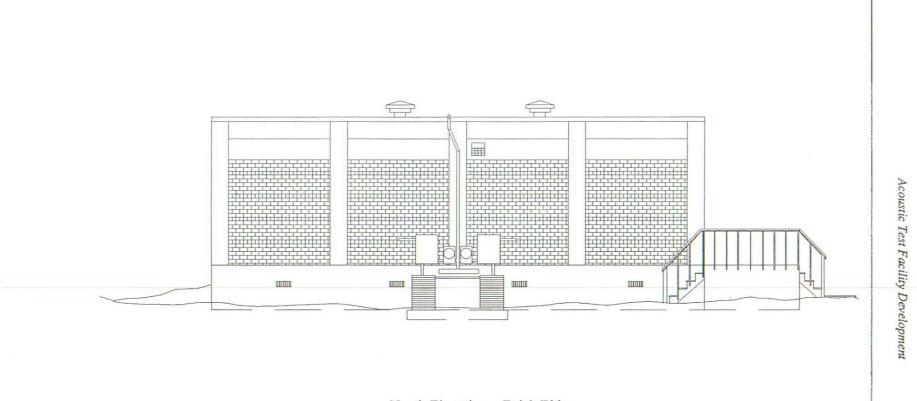
Acoustic Test Facility Development


USACERL TR-95/07


South Elevation - Frame Bldg.



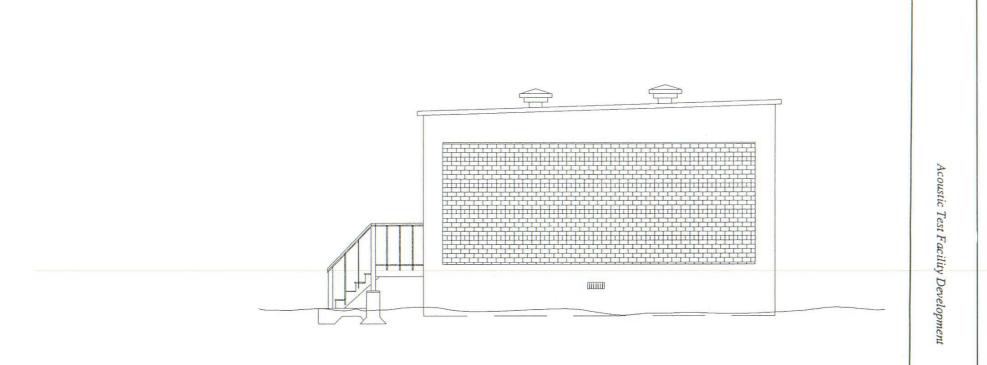
North Elevation - Frame Bldg.



USACERL TR-95/07

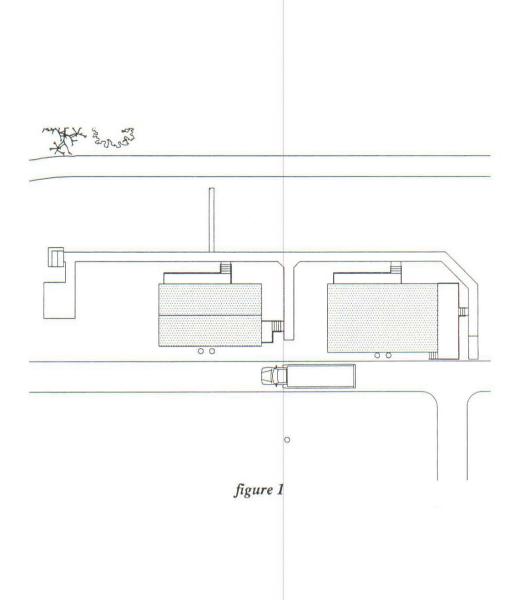
Acoustic Test Facility Development

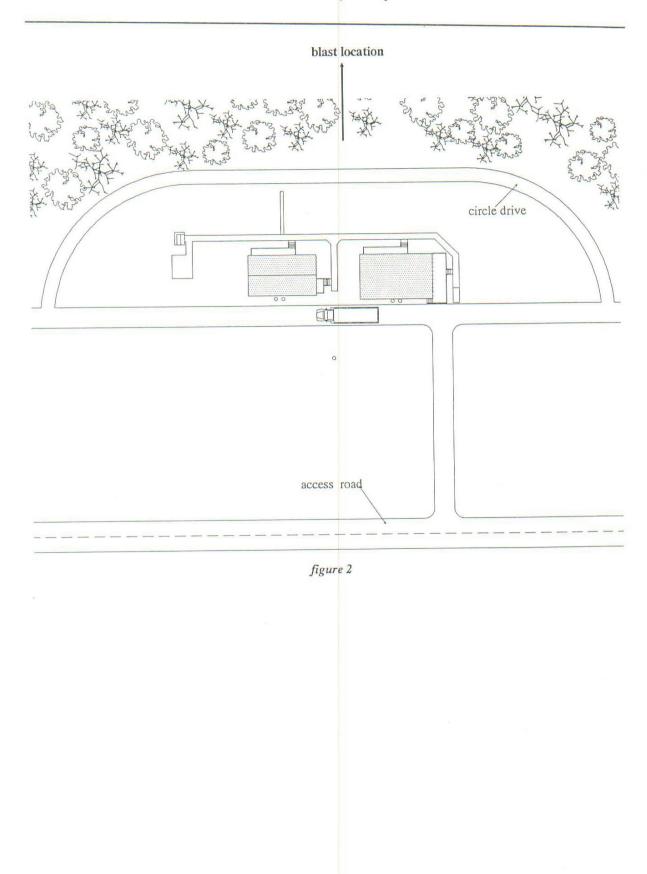
South Elevation - Brick Bldg.



North Elevation - Brick Bldg.

Acoustic Test Facility Development


West Elevation - Brick Bldg.


East Elevation - Brick Bldg.

DIVISION 2 - SITE WORK

Site work requirements are preparation of site for test buildings, construction of road to circle buildings for use during future acoustic testing. Site must be in remote location and of adequate size for required blast detination and helicopter fly over. (figures 1 & 2)

USACERL TR-95/07

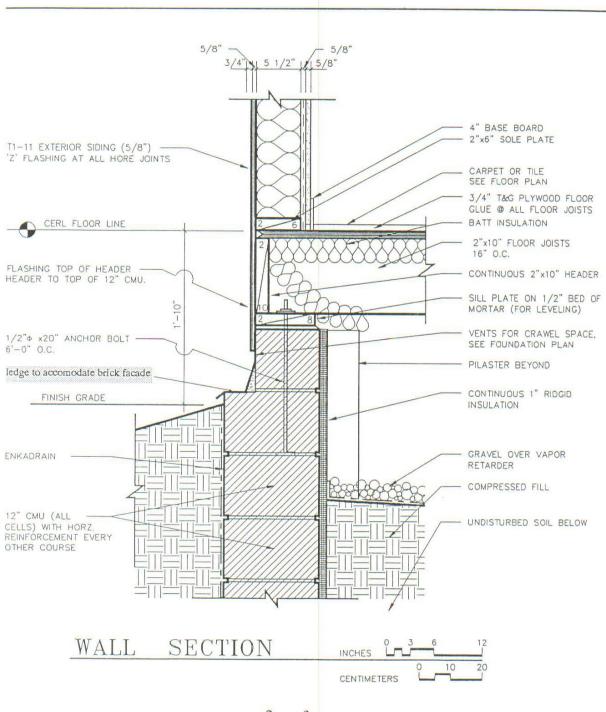
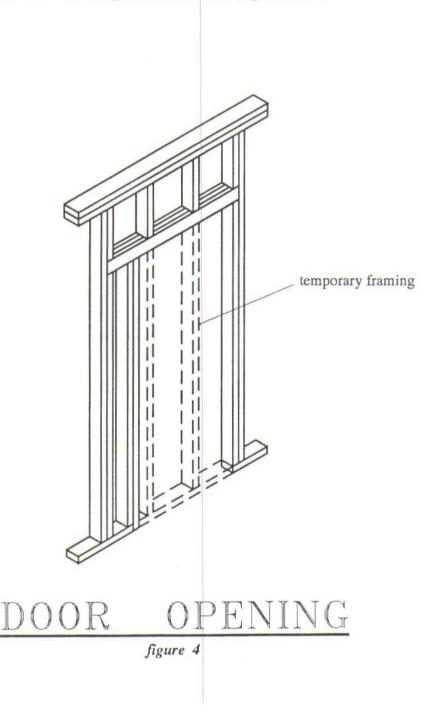
Acoustic Test Facility Development

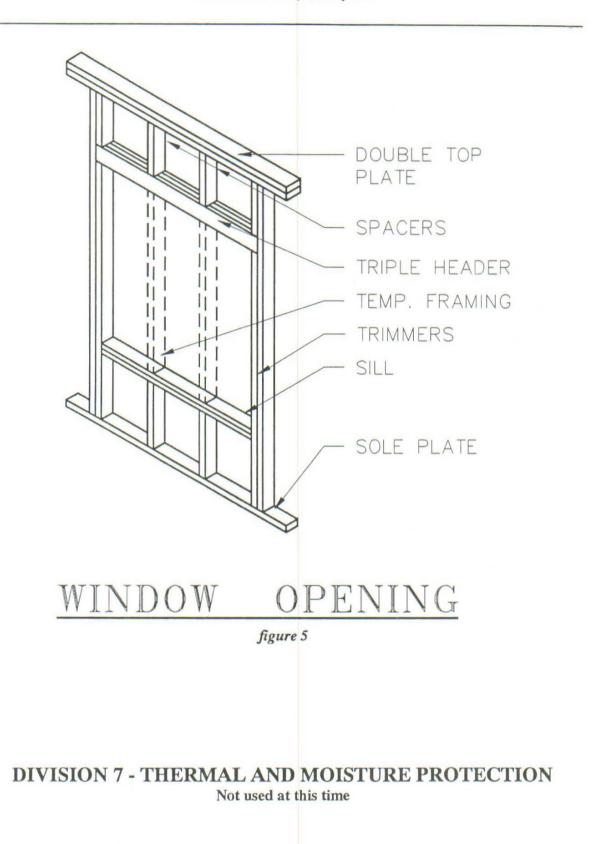
DIVISION 3 - CONCRETE Not used at this time.

DIVISION 4 - MASONRY

Foundation of frame building must be constructed to accomodate the addition of a brick facade for phase III of Acoustic testing (figure 3).

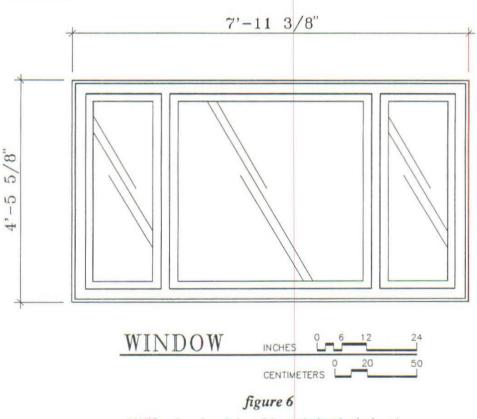
DIVISION 5 - METALS Not used at this time

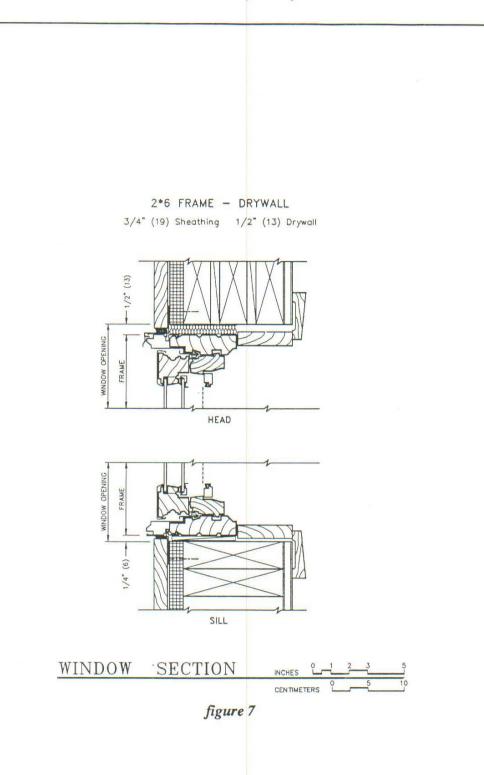

figure 3

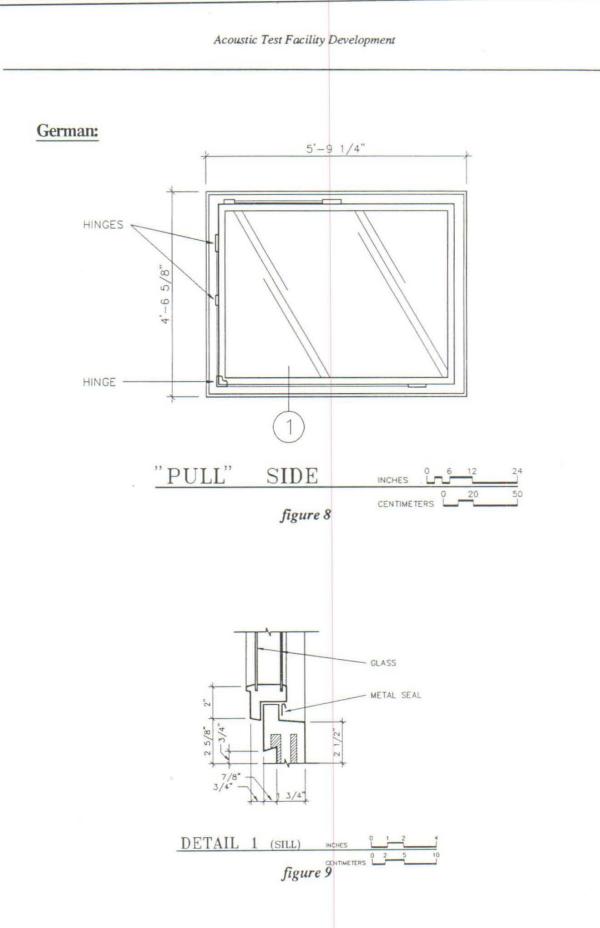
DIVISION 6 - WOOD AND PLASTICS

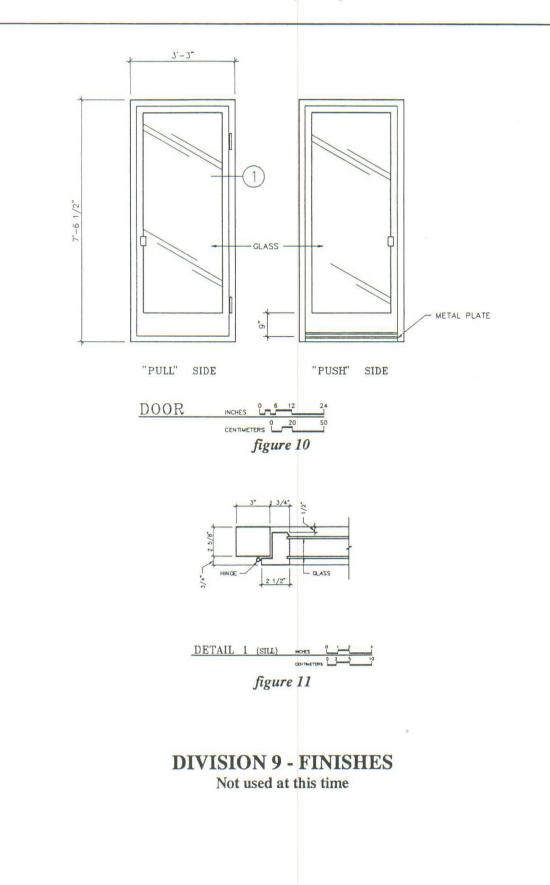
Frame building is to be constructed as solid walls for phase I of Acoustic testing. However, provisions maust be made during framing for the addition of doors and window at a later date for phase II of testing in both structures (figures 4 & 5).

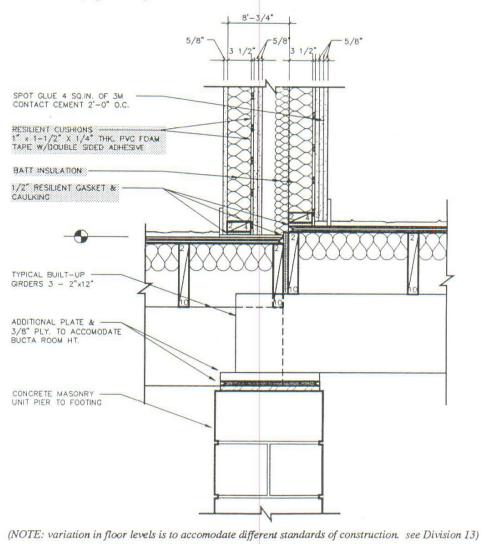

Acoustic Test Facility Development

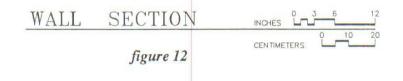
DIVISION 8 - DOORS AND WINDOWS


In phase II part a. doors and windows are to be placed in the test rooms. These windows are to be market standards. Standard American windows and doors for the "American " rooms (figure 6 & 7) and window and doors from Germany for the "German" rooms (figures 8 - 11). These are to be installed by standard hard mounting.


For phase II part b. the windows will be replaced by higher grade acoustically designed windows. These are to be installed by an approved method of mounting to prevent sound transfer and rattling.

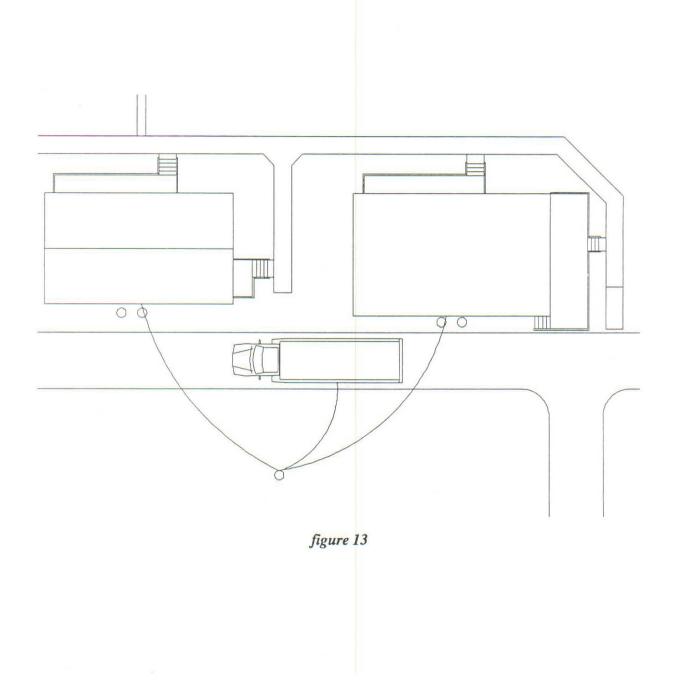

American:



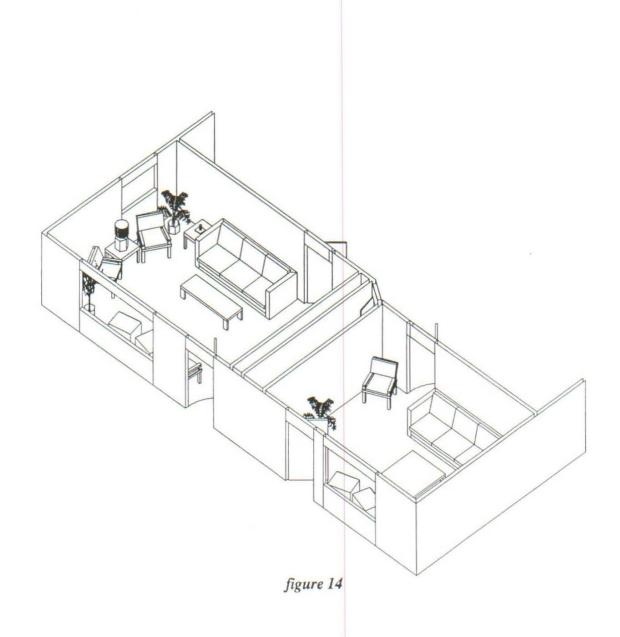

Acoustic Test Facility Development

DIVISION 10 - SPECIALTIES

To prevent sound transfer, test rooms are to be constructed as two independent and separate units. NO opening, or puncture in walls, floors or ceilings between the "American" and "German" half of each structure are to be made. Resilient Cushions, gaskets and caulking are used in the wall construction as well as batt insulation in the air space between the interior walls. (figure 12).



Acoustic Test Facility Development

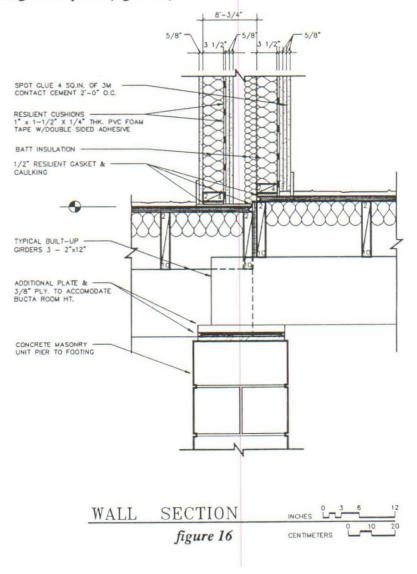

DIVISION 11 - EQUIPMENT

Power and Phone lines are to be provided for each test building and sound equipment trailer (figure 13).

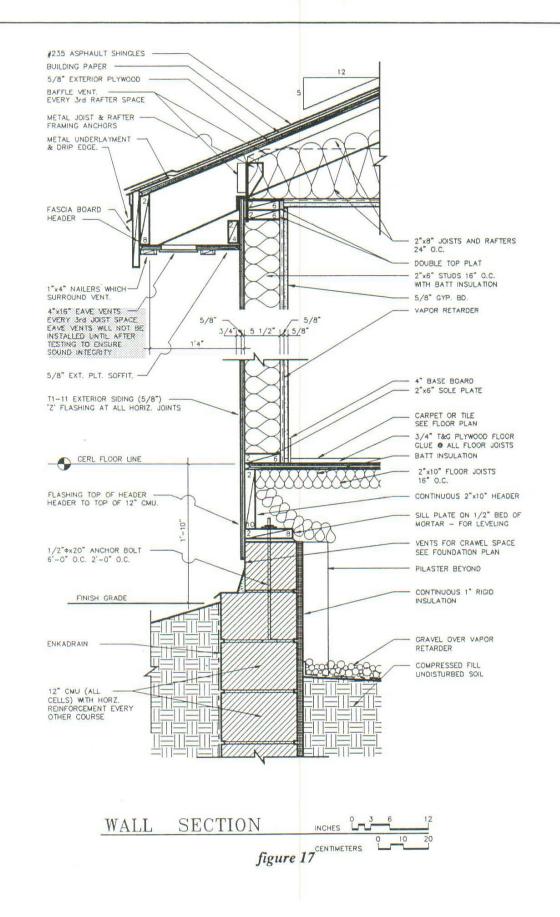
DIVISION 12 - FURNISHINGS

Furniture layout must provide seating for six test subjects approximately equal distance from window, (facing blast location) and seating for a test supervisor in each room. Furniture, art work, plants and finishes must give appearance of a residential atmosphere as opposed to a sterile test environment. Space must be provided for sound speakers, microphones and test equipment. (figures 14 & 15)

Acoustic Test Facility Development German American \odot


figure 15

Test subject positions 1 - 6 Supervisor position - 0


DIVISION 13 - SPECIAL CONSTRUCTION

Each of the test rooms in the two test houses must be constructed to replicate ech countries average room size and built to their standards of measurement (American = Imperial and German = metric). To accomodate the difference in standard ceiling heights, the ceiling in the brick building was lowered in the German room due to concrete floor. For ease of construction in the frame building, the floor level of the German room was raised (figure 16).

To Ensure sound integrity all eave vents and attic vents are not to be installed until all acoustic testing is complete. (figure 17)

Acoustic Test Facility Development

DIVISION 14 - CONVEYING SYSTEMS Not used at this time

DIVISION 15 - MECHANICAL

To ensure sound isolation, each test room must have separate hvac systems (figure 18).

DIVISION 16 - ELECTRICAL

To ensure sound isolation, each test room is to be wired separately with no connection between the rooms (figure18).

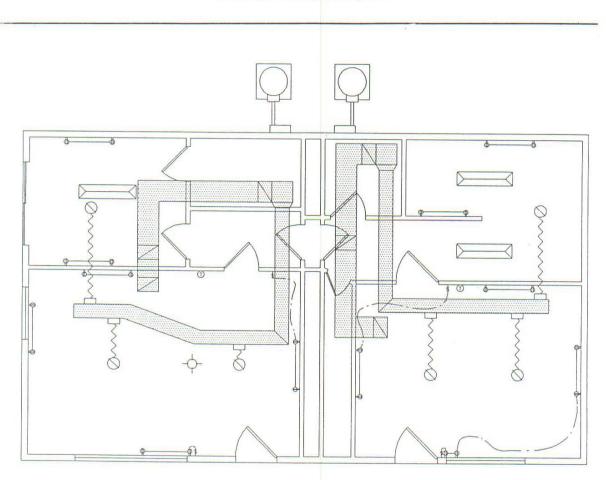


figure 18

Appendix B: Measured Acoustical Data

This appendix contains listings of the measured acoustical data by test time period and individual tests during that time period. The nonblast data are listed in a summary fashion for the entire test period; the blast data are listed by individual test.

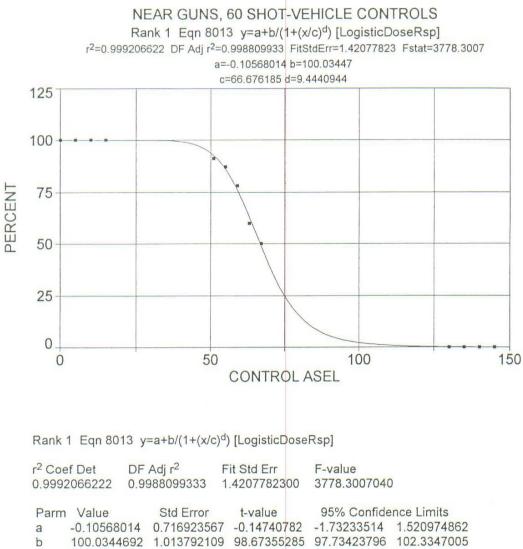
In this appendix, "A", "B", "C", and "D" refer to indoor measurements in the four test rooms. "FF" denotes the free-field microphone, and "PD" denotes the pressuredoubling microphone. CSEL is C-weighted sound exposure level and FPEAK is the flat-weighted peak sound pressure level. Room A is brick construction, American design, Room B is brick construction, German design, Room C is wood frame construction, American design, and Room D is wood frame construction, German design.

2					USA	CERL TR-95/07
Jan92 NG-60 NG-6 FG-60 LH QH V1 V2 V3 V4 V5 V6	A 57.5 51 52.5 64 56 68 64.5 60 55 53 47.5	B 57.5 51 52.5 64 55 70 64.5 61 56 54 48	C 56 52 53 66 57 66.5 64 61 57.5 54.5 48	D 56.5 52 53 67 58 67 65 61 57.5 56 50	FF 84.5 75.5 76.5 89 80 96.5 92 86 79 74.5 70	PD 88 78.5 80.5 88.5 78 101 96 90 84 78 72
TEST 1 HB LB	FF-CSEL F 107 99	F-FPEAK 129 119	PD-CSEL P 110 101.5	D-FPEAK Ind 128 121	loor CSEL 98 96	
TEST 2 HB LB	101 96	125 117	107 103	130 124	93 88	
TEST 3 HB LB	94 92.5	116 112	97 95	119 115	84 81	
TEST 4 HB LB	102 93	120.5 113	105 96	127 116.5	88 80	
TEST 6 HB LB	106 99	127 120	108 102	128.5 123	93 90	
TEST 7						
HB LB	102 97	124 117	105 100	126 120	89 85	

USACERL TR-	95/07						103
JUN92	A	В	С	D	FF	PD	TENT
NG-60	68	66.5	73	71	86	89	83
NG-6	57	57	64	60	74	77.5	74
FG-60	57	55	57	59	76	78	75
LH	69	68	72.5	71	88	88.5	90
QH	59	58	61	65	78	79	82
V1	77	77	77.5	79	96	100	93
V2	72	72	74	73.5	90	95	89
V3	66	66	67	67	85	89.5	83
V4	61	61	62.5	65	79	83.5	79
V5	57.5	57	62	60	73	78	74
V6	49.5	50	55	52	69	72	72
Blast							

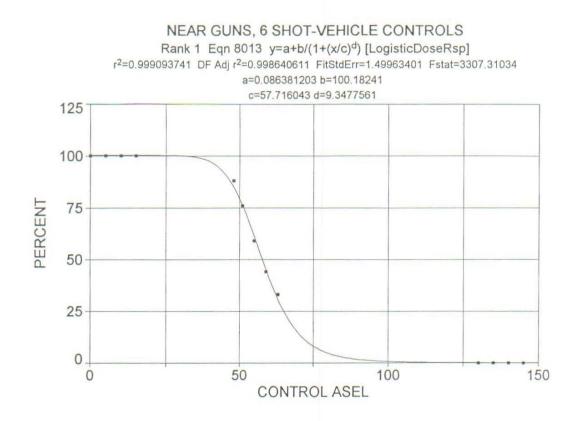
FF-CSEL FF-FPEAK PD-CSEL PD-FPEAK Indoor CSEL

HB	94	116	96	117	81 78
LB	92	112	93	115	78


104						USACERL	TR-95/07
Aug92 NG-60 NG-6 FG-60 LH QH V1 V2 V3 V4 V5 V6	A 66.5 58 59 68 60 76 71 68 63 57 56.5	B 65 57.5 58 67 59 75 71 67 62.5 56.5 55	C 65 58 58.5 68.5 60.5 76 71 68 63 56.5 55.5	D 66 57 56.5 67.5 58 77 72 69 64 58 54.5	FF 85 75 75 88 78 96 90 87 81 76 71	PD 88 79.5 79 87 76.5 99 95 91 85 79 74	TENT 82 73 74 86 76 95 89 84 80 74 72
Blast							
TEST 2	FF-CSEL FF	-FPEAK	PD-CSEL PD	-FPEAK Ind	oor CSEL		
HB LB	100 95.5	122 117	103 98	123 120	95 91		
TEST 3 HB LB	105 99	128 121	109 103	132 125	101 93		
TEST 4 HB LB	101 96	124 117	105 100	128 121	99 95		
TEST 5 HB LB	100 95	123 117	104 98	127 120	99 95		

USACERL TR-95/0	7					
nov92	A	В	С	D	FF	PD
NG-60	53	55	54	54	85.5	89.5
NG-6	48	52	53.5	48	77.5	81
FG-60	50	52	53.5	47	73.5	78
N25	52	48	51	51	70	74
F25	51	49	47	47	70	74.5
V1	66	68	69	68	98	101.5
V2	63	65	64	64	92	97
V3	59	60	61	62	88	92.5
V4	57	58	58	59	80	84
V5	54	56	56.5	57	76	80
V6	47	50	47.5	47	72	75
Blast						
	FF-CSEL	FF-FPEAK	PD-CSEL	PD-FPEAK In	door CSEL	
TEST 1						
HB	103	123	105	123	90	
LB	94.5	115	99	119	85	
TEST 2						
HB	106	127.5	109	127	90	
LB	95	116	98	120	86	
TEST 3						
HB	105	127	108	130	90	
LB	95	116	97	120	85	
has had	50					

4					USA	CERL TR-95
jan93	A	В	C	D	FF	PD
NG-60	51.5	52	52.5	53	84.5	88.5
NG-6	43.5	44	46	44	75.5	79
FG-60	*	*	*	*	76	80
N25	50	52	51	51	72.5	80
F25	50	50	51.5	51	74	77
V1	68.5	70	68	68	96	101
V2	62.5	64	65	63	92	96.5
V3	60	62	60.5	60	88.5	92
V4	58	57	58	57	81	85
V5	51	51.5	50.5	52	76	79
V6	46	51	49	46	71.5	73
Blast						
	FF-CSEL F	F-FPEAK	PD-CSEL PD	-FPEAK Ind	oor CSEL	
HB	98	119	101	119	85	
LB	92	112	96	116	83	

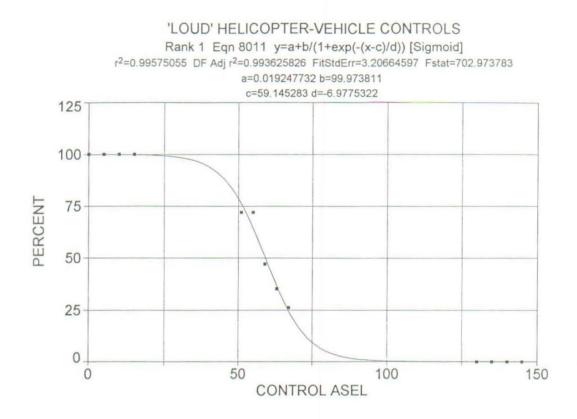

Appendix C: Nonblast Sound Transition Curves—Acoustical Measurements Near the Subjects

This appendix contains the transition curves for the nonblast sound data for subjects indoors and outdoors with the **acoustical measurements made near the subjects**. As discussed in the text, only these data include the pink-noise control sounds because these could only be heard or measured by the subjects. Each curve represents an entire test period, so there are five sets of curves for the five test periods. Each curve represents an entire test period, so there are two sets of curves for the two test periods that included outdoor subjects.

Parm Value	Std Error	t-value	95% Confide	ence Limits
a -0.10568014	0.716923567	-0.14740782	-1.73233514	1.520974862
b 100.034469	2 1.013792109	98.67355285	97.73423796	102.3347005
c 66.6761847	0.355711793	187.4444033	65.86909677	67.48327266
d 9.44409443	0.532603504	17.73194201	8.235650202	10.65253868

Date	Time	File Source
May 18, 1994	9:25:48 AM	c:\tcwin\noise.prn

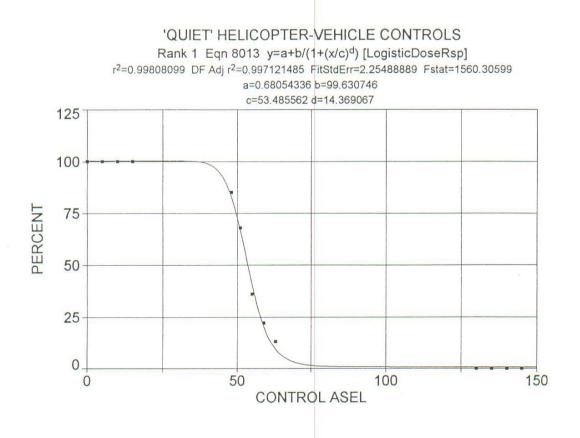
Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]


r ² Co	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.999	0937406	0.9	986406108	1.4996340118	3307.3103392	2
Parm	n Value		Std Error	t-value	95% Confide	ence Limits
а	0.086381	203	0.75121124	0 0.114989232	-1.61807040	1.790832804
b	100.1824	149	1.06292126	0 94.25196269	97.77071264	102.5941171
C	57.71604	268	0.25506498	4 226.2797572	57.13731609	58.29476927
d	9.347756	102	0.41305443	7 22.63080910	8.410561265	10.28495094
Date		Tim	e	File Source		
May 1	18, 1994	9:30	0:29 AM	c:\tcwin\noise.pr	m	

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

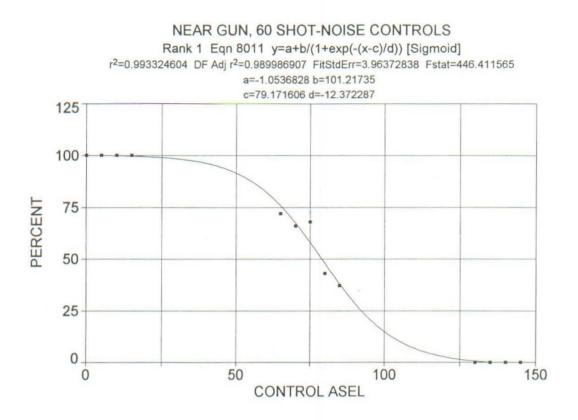
r ² Coe	ef Det	DF Adj r ²	Fit	t Std Err		F-value	
0.995	1953395	0.9927930	093 3.4	4062767	338	621.39375642	
			_				
Parm	Value	Std	rror	t-value		95% Confide	nce Limits
a	-0.050580	055 1.739	304800	-0.02908	090	-3.99695501	3.895793907
b	100.3920	699 2.457	790665	40.84646	6889	94.81549573	105.9686442
C	58.43735	115 0.753	004854	77.6055	4378	56.72882995	60.14587235
d	7.207559	677 0.826	193626	8.72381	4184	5.332977703	9.082141650

Date	Time	File Source
May 18, 1994	9:33:02 AM	c:\tcwin\noise.prn

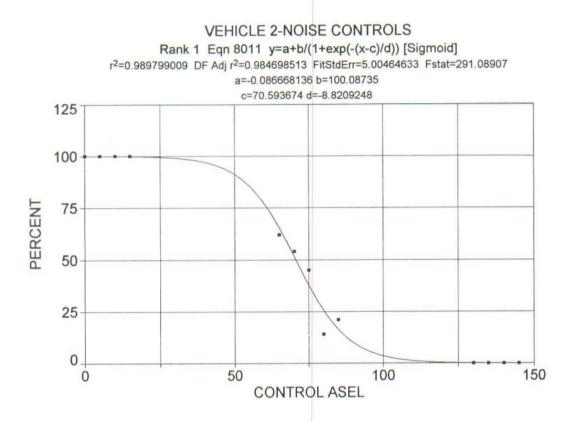


Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

May 18, 1994 9:26:58 AM

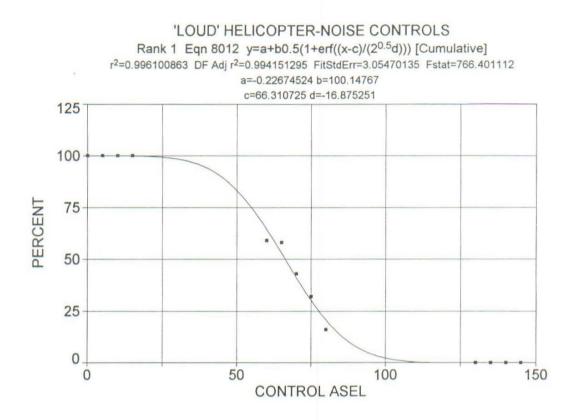

	ef Det 7505504		Adj r ² 936258256	Fit Std Err 3.2066459724	F-value 702.97378326	ò
Parm			Std Error	tualua	95% Confide	
a	a constraint of the second sec			13 0.012031030	the rest of the second second	
b	99.97381		2.28521921			105.1588314
C	59.14528	279	0.58581891	11 100.9617165	57.81609610	60.47446948
d	-6.97753	223	0.66976505	58 -10.4178803	-8.49718750	-5.45787695
Date		Tim	е	File Source		

c:\tcwin\noise.prn

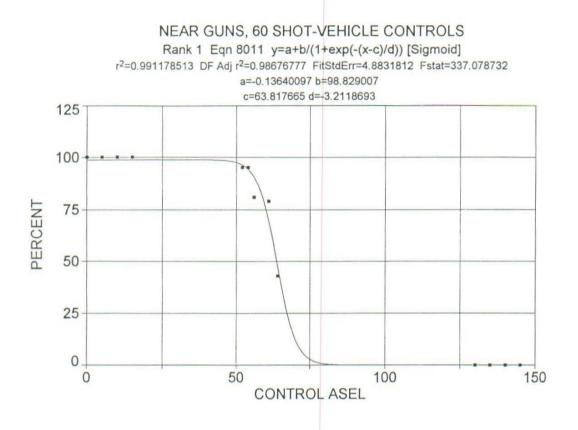

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value	3
0.9980809899	0.9971214848	2.2548888852	1560.3059943	
Parm Value a 0.680543 b 99.63074 c 53.48556 d 14.36906	593 1.58519502	9 205.1929138	96.03403698 52.89414112	3.172501396 103.2274549 54.07698329

Date	lime	File Source
May 18, 1994	9:28:16 AM	c:\tcwin\noise.prn

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

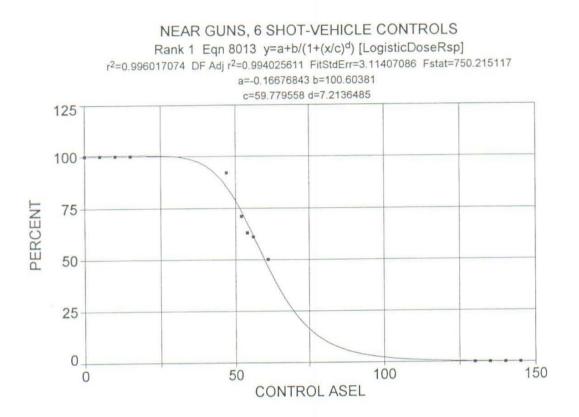

r ² Co	pef Det	DF	Adj r ²	Fit Std Err	F-value	
0.993	33246044	0.98	99869065	3.9637283845	446.41156496	5
Parr	n Value		Std Error	t-value	95% Confide	ence Limits
а	-1.05368	276	2.24367242	29 -0.46962415	-6.14443601	4.037070495
b	101.2173	3493	3.21426633	33 31.49003187	93.92437879	108.5103197
C	79.17160)562	1.33878598	30 59.13686487	76.13398346	82.20922777
d	-12.3722	867	1.93192919	99 -6.40410980	-16.7557140	-7.98885947
Date		Time	9	File Source		
May	12, 1994	2:10	:34 PM	c:\tcwin\ngf.prn		

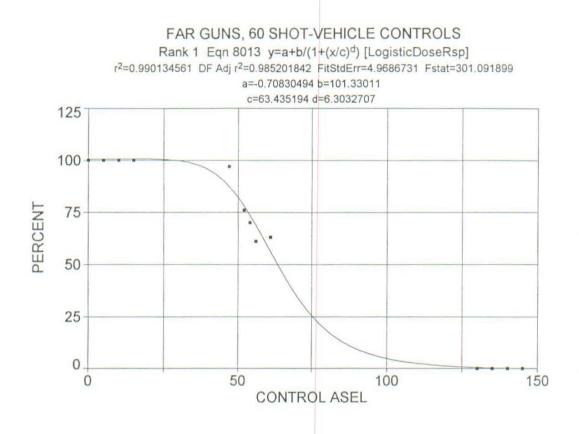
Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]


	ef Det 7990088		Adj r ² 346985133	Fit Std Err 5.0046463293	F-value 291.08906962	2
0.909	1990000	0.90	940903133	5.0040405255	291.00300302	
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.086668	314	2.51409045	9 -0.03447296	-5.79098308	5.617646814
b	100.0873	463	3.59360907	9 27.85148416	91.93367076	108.2410219
C	70.59367	386	1.21331470	1 58.18249282	67.84073824	73.34660948
c d	-8.820924	484	1.41481848	6 -6.23466892	-12.0310600	-5.61078966
Date		Tim	e	File Source		

May 12, 1994 3:10:07 PM c:\tcwin\ngf.prn

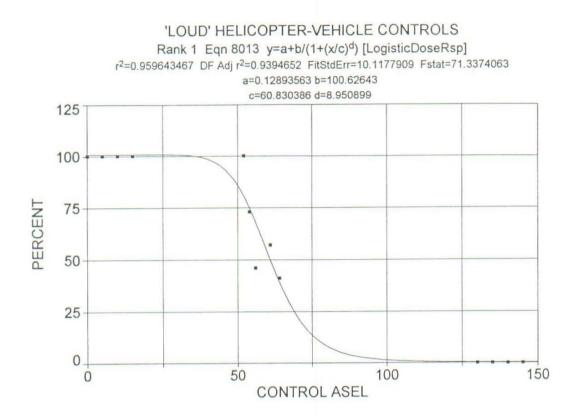
r ² Coe	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.996	1008634	0.99	41512952	3.0547013464	766.40111179	9
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	-0.22674	524	1.52614634	3 -0.14857372	-3.68947641	3.235985927
b	100.1476	6664	2.17448671	1 46.05577305	95.21389128	105.0814416
C	66.31072	479	0.84191682	3 78.76161035	64.40046786	68.22098172
d	-16.8752	507	1.69765549	3 -9.94032698	-20.7271255	-13.0233759
Date		Tim	0	File Source		


Date	Time	File Source
May 12, 1994	2:11:55 PM	c:\tcwin\ngf.prn

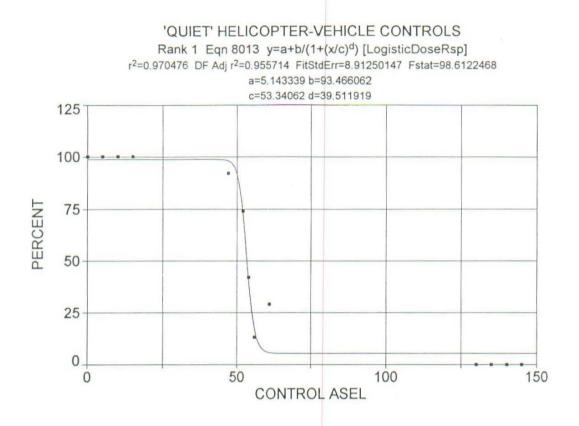

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

	ef Det 11785133	DF Adj r ² 0.986767		Fit Std Err 4.8831812023	F-value 337.07873158	3
Parr	n Value	Std	Error	t-value	95% Confide	ence Limits
а	-0.13640	097 2.440	972774	-0.05587976	-5.67481643	5.402014500
b	98.82900	652 3.352	2444328	29.47968612	91.22251877	106.4354943
C	63.81766	515 0.590	072181	108.1523027	62.47882805	65.15650224
d	-3.21186	932 0.720	914425	-4.45527126	-4.84757933	-1.57615931

Date Time File Source May 18, 1994 9:43:10 AM c:\tcwin\noise.prn

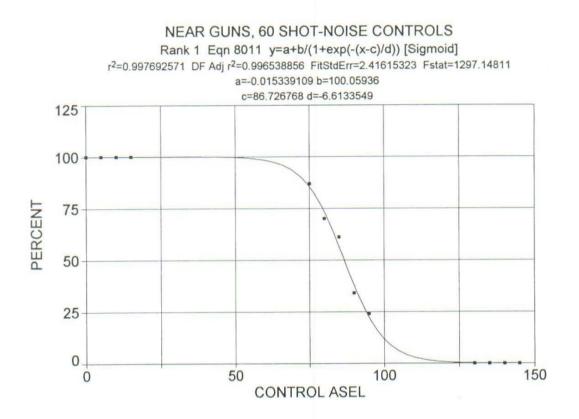


r ² Coe	f Det	DF	Adj r ²	F	it Std Err	F-value	
0.9960	0170741	0.99	940256111	3	.1140708642	750.21511743	3
Parm	Value		Std Error		t-value	95% Confide	ence Limits
a	-0.16676	843	1.59776777	73	-0.10437589	-3.79200417	3.458467311
b	100.6038		2.26185566		44,47843888	95.47179888	105.7358186
C	59 77955		0.87504105	54	68.31628929	57.79414404	61.76497154
d	7.213648		0.9346763	15	7.717803862	5.092926026	9.334370927
Date		Tim	All and and a strength		ile Source		
May 1	8, 1994	10:2	20:27 AM	C	:\tcwin\noise.pr	n	

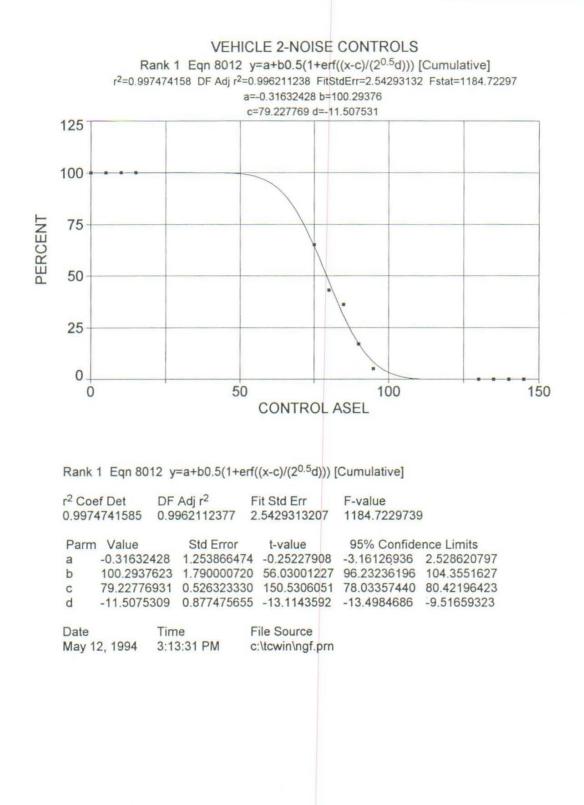


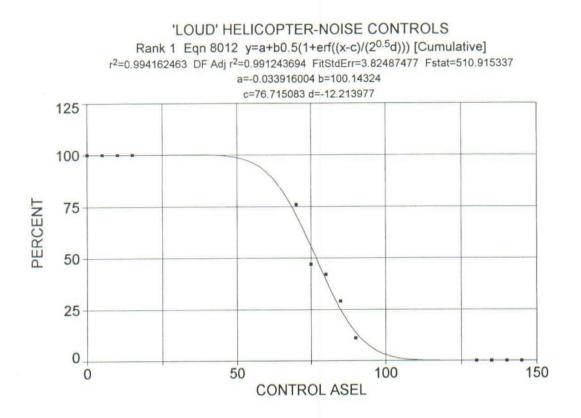
	ef Det 1345613		Adj r ² 852018419	Fit Std Err 4.9686730962	F-value 301.09189928	3
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.70830	494	2.82118118	7 -0.25106680	-7.10938966	5.692779778
b	101.3301	118	3.92339294	9 25.82716366	92.42817711	110.2320465
C	63.43519	401	2.49506030	1 25.42431298	57.77405731	69.09633071
d	6.303270	656	1.59493520	6 3.952054372	2.684461831	9.922079480
Data		Tim		Eile Course		

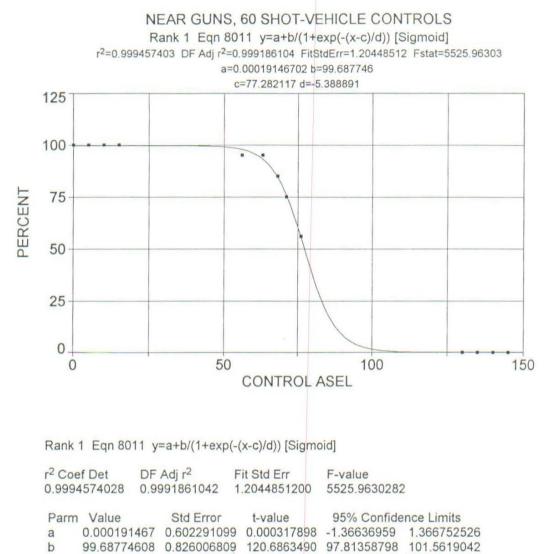
Date	lime	File Source
May 18, 1994	10:22:00 AM	c:\tcwin\noise.prn



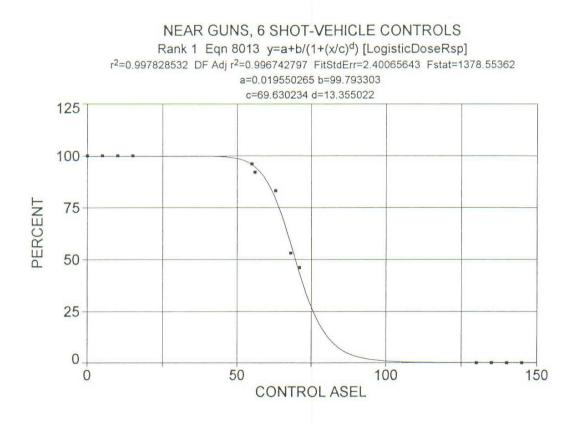
r ² Coe	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.959	6434669	0.93	394652003	10.117790896	71.337406331	1
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	0.128935	633	5.09149979	0 0.025323704	-11.4233608	11.68123211
b	100.6264	274	7.20393959	5 13.96824974	84.28113632	116.9717184
C	60.83038	1591	1.94181781	1 31.32651558	56.42452202	65.23624980
d	8.950898	961	2.98859132	2.995022731	2.169971040	15.73182688
Date May 1	8, 1994	Tim 9:47	ie 7:07 AM	File Source c:\tcwin\noise.p	rn	


	oef Det 04759997		Adj r ² 557139996	Fit Std Err 8.9125014700	F-value 98.612246799	Э
Parr	n Value		Std Error	t-value	95% Confide	ence Limits
a	5.143339	018	4.000837793	3 1.285565495	-3.93431320	14.22099123
b	93.46606	240	5.74102897	5 16.28036765	80.44002458	106.4921002
C	53.34062	2037	0.448490716	5 118.9336109	52.32302281	54.35821792
d	39.51191	892	12.7211761:	3 3.105995743	10.64836116	68.37547668

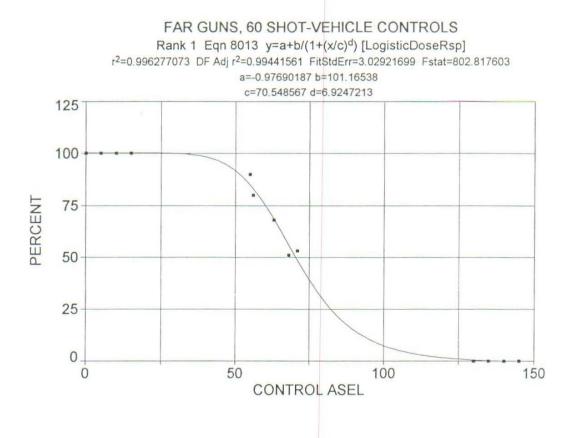

Date	Time	File Source
May 18, 1994	10:07:36 AM	c:\tcwin\noise.prn


Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

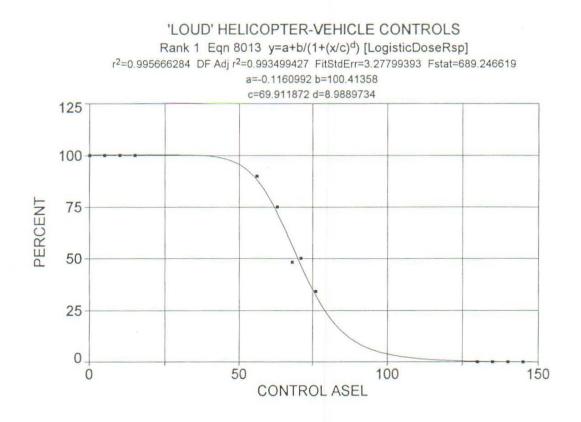
r ² Coe	f Det	DF Adj r ²	F	it Std Err	F-value	
0.9976	925706	0.99653885	59 2	.4161532347	1297.1481057	7
Parm	Value	Std E	ror	t-value	95% Confide	ence Limits
а	-0.01533	911 1.2118	83430	-0.01265725	-2.76502727	2.734349051
b	100.0593	627 1.7178	24714	58.24771406	96.16172525	103.9570002
C	86.72676	821 0.4506	49340	192.4484527	85.70427288	87.74926355
d	-6.61335	494 0.4405	31215	-15.0122278	-7.61289288	-5.61381700
Date	2 4004	Time 3:14:49 PM		File Source :\tcwin\ngf.prn		
way I	2, 1994	3.14.49 PW	C	. ucwindigi.pin		


r ² Co	oef Det	DF	Adj r ²	F	it Std Err	F-value	
0.994	41624626	0.99	12436939	3	.8248747714	510.91533709)
Parr	n Value		Std Error		t-value	95% Confide	ence Limits
a	-0.03391	600	1.90033832	27	-0.01784735	-4.34566552	4.277833515
b	100.1432	362	2.70125997	73	37.07278722	94.01424526	106.2722271
	76.71508	329	0.78764560	08	97.39797002	74.92796438	78.50220221
c d	-12.2139	773	1.30372862	29	-9.36849663	-15.1720565	-9.25589806
Date		Tim	e	F	ile Source		
May	12, 1994	3:17	7:08 PM	C	:\tcwin\ngf.prn		

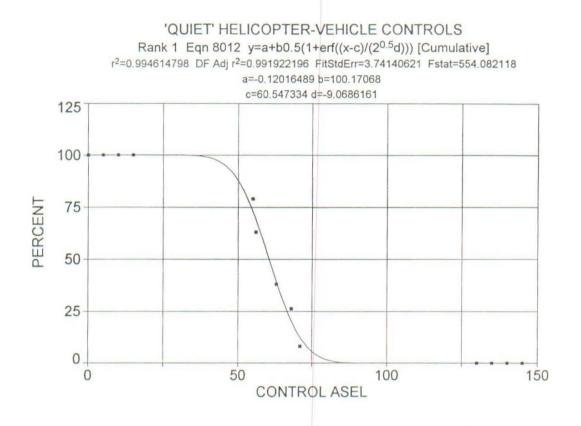
C	77.28211742	0.304268205	253.9934053	76.59175178	77.97248306
d	-5.38889101	0.309436520	-17.4151746	-6.09098323	-4.68679878


File Source Date Time May 18, 1994 2:38:28 PM

c:\tcwin\noise.prn

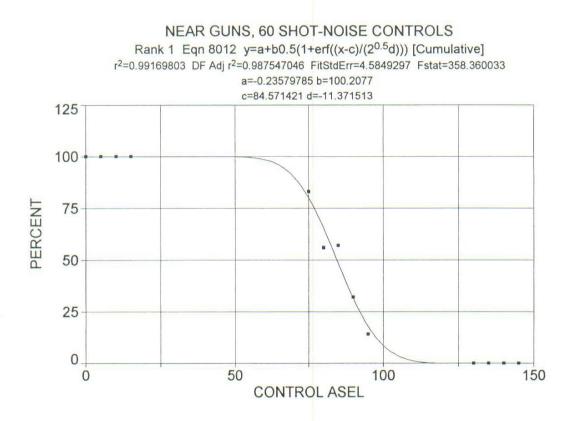

	ef Det 8285316		Adj r ² 967427974		F-value 1378.5536228	3
Parm			Std Error	t-value 5 0.016276530	95% Confide	
a b c	99.79330	250	1.66320567	5 0.010270530 7 60.00057834 5 176.6351190	96.01959223	103.5670128
d				5 10.31184769		

Date	lime	File Source
May 18, 19	94 11:19:57 A	M c:\tcwin\noise.prn



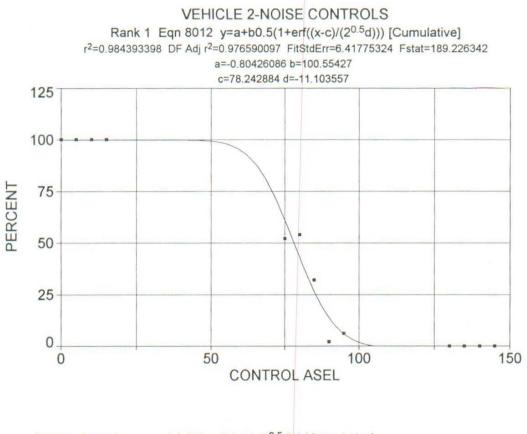
	oef Det 62770731		Adj r ² 944156097	Fit Std Err 3.0292169906	F-value 802.8176031	5
Pari	m Value		Std Error	t-value	95% Confide	ence Limits
а	-0.97690	187	1.71582728	7 -0.56934744	-4.87000731	2.916203572
b	101.1653	3772	2.39535144	7 42.23404347	95.73047364	106.6002807
C	70.54856	655	1.06146103	7 66.46364218	68.14017745	72.95695565
d	6.924721	321	0.82436646	5 8.400052184	5.054285064	8.795157577

Date Time File Source May 18, 1994 10:30:30 AM c:\tcwin\noise.prn

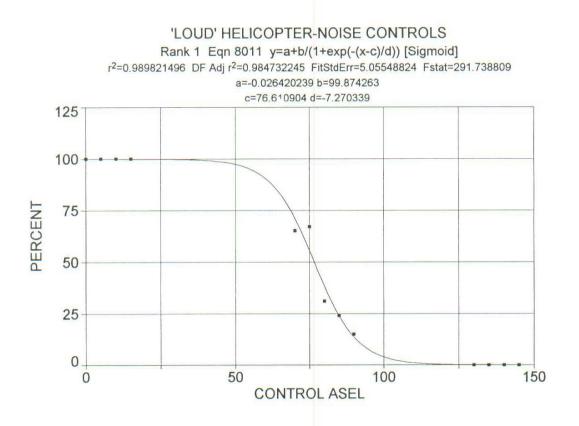

	ef Det		Adj r ²	Fit Std Err	F-value	
0.995	6662844	0.99	934994265	3.2779939313	689.24661874	1
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.11609	920	1.67727925	9 -0.06921876	-3.92174156	3.689543164
b	100.4135	5774	2.36885637	6 42.38905254	95.03878952	105.7883652
C	69.91187	157	0.68289990	2 102.3749913	68.36241415	71.46132899
d	8.988973	8412	0.95826032	5 9.380512976	6.814740311	11.16320651
Date		Tim	e	File Source		
May 1	8, 1994	11:3	32:18 AM	c:\tcwin\noise.p	rn	

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9946147975	0.9919221963	3.7414062063	554.08211823
Darm Value	Std Error	tualua	05% Confidence Lin

Parr	n Value	Std Error	t-value	95% Confide	ence Limits
а	-0.12016489	1.855749323	-0.06475276	-4.33074473	4.090414951
b	100.1706846	2.641171027	37.92661802	94.17803179	106.1633375
C	60.54733446	0.600948116	100.7530148	59.18382055	61.91084838
d	-9.06861608	0.833776987	-10.8765488	-10.9604042	-7.17682794


Date	Time	File Source
May 18, 1994	11:25:28 AM	c:\tcwin\noise.prn

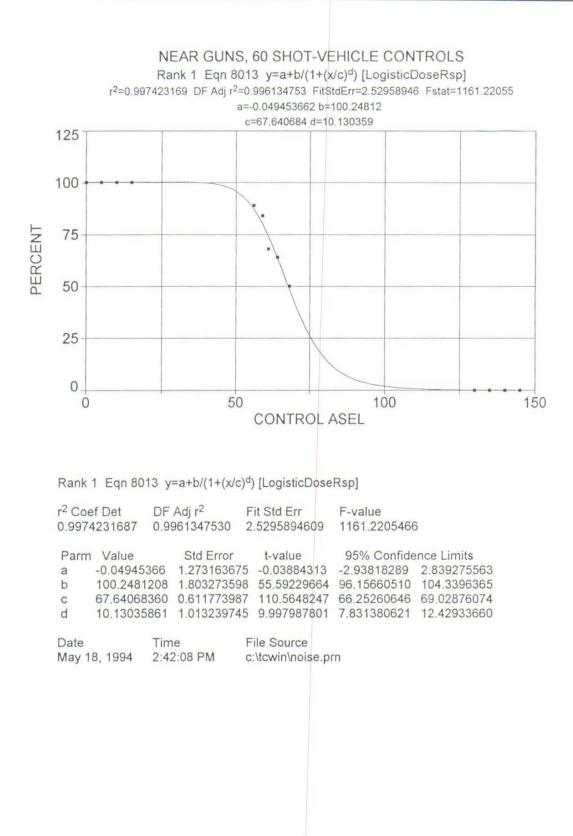
May 12, 1994 4:06:44 PM


r ² Coe	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.991	6980304	0.98	375470456	4.5849297004	358.36003313	3
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	-0.23579	785	2.282925053	3 -0.10328760	-5.41561287	4.944017160
b	100.2077	048	3.241065018	30.91814086	92.85392975	107.5614798
C	84.57142	095	0.873480920	96.82114292	82.58954704	86.55329485
d	-11.3715	127	1.362213968	8 -8.34781683	-14.4622915	-8.28073388
Date		Tim	e	File Source		

c:\tcwin\augh.prn

r ² Coe 0.9843	f Det 3933981			Fit Std Err 6.4177532369	F-value 189.22634176	6	
Parm	Value		Std Error	t-value	95% Confide	ence Limits	
а	-0.804260	086	3.145779929	-0.25566342	-7.94183995	6.333318220	
b	100.5542	718	4.505069106	3 22.32025070	90.33255013	110.7759936	
C	78.24288	422	1.330091117	58.82520619	75.22499017	81.26077828	
	-11.1035	570	2.233591558	3 -4.97116716	-16.1714374	-6.03567662	

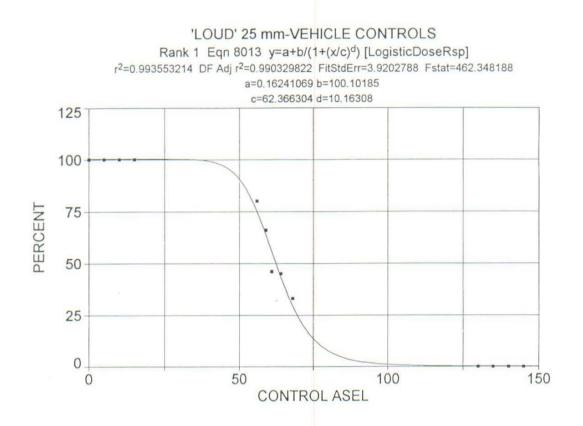
Date Time File Source May 12, 1994 4:08:19 PM c:\tcwin\augh.pm



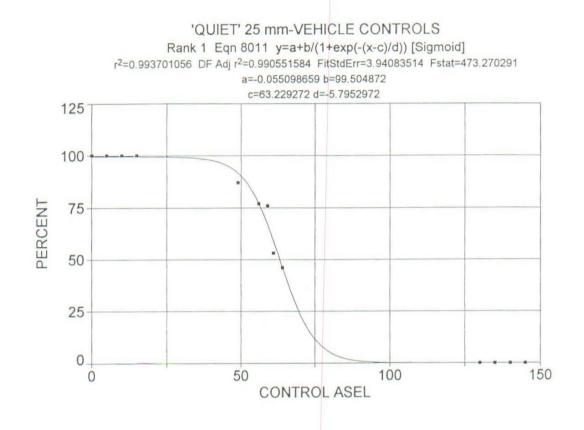
Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coe	ef Det 8214965		Adj r ² 347322447	Fit Std Err 5.0554882398	F-value 291,73880862	
0.969	0214900	0.90	04/32244/	5.0554002590	291.75000002	
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.02642	024	2.51580512	7 -0.01050170	-5.73462566	5.681785184
b	99.87426	282	3.58485072	2 27.86008974	91.74045940	108.0080662
C	76.61090	427	1.02494140	4 74.74661867	74.28537595	78.93643260
d	-7.27033	896	1.07234553	8 -6.77984726	-9.70342431	-4.83725360
Date		Tim	e	File Source		

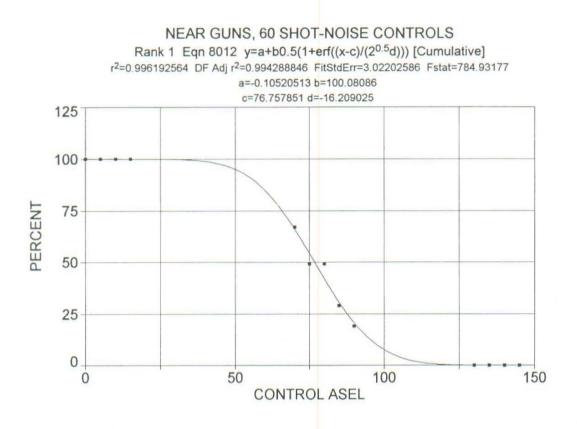
Date	THILE	The obdice
May 12, 1994	4:09:58 PM	c:\tcwin\augh.prn



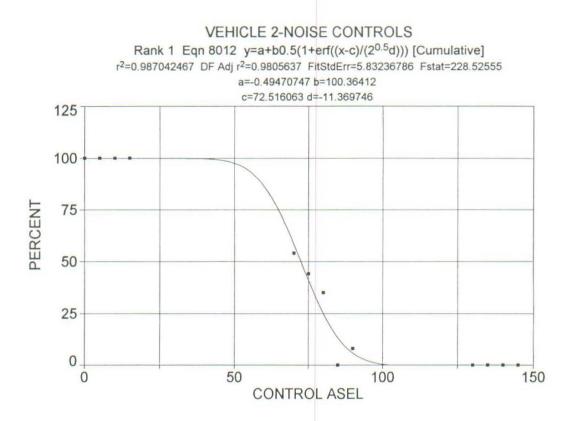
Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]


r ² Co	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.995	8621529	0.9	937932293	3.1765398494	722.01470524	1
Parm	n Value		Std Error	t-value	95% Confide	ence Limits
a	-0.21735	266	1.58656037	5 -0.13699615	-3.81715952	3.382454189
b	99.37453	8468	2.23664701	5 44.43013761	94.29972166	104.4493477
C	60.79553	3781	0.44995612	1 135.1143698	59.77461534	61.81646027
d	-5.29032	629	0.59298440	08 -8.92152682	-6.63577105	-3.94488154
Date		Tim		File Source		
May '	18, 1994	3:04	4:36 PM	c:\tcwin\noise.p	rn	

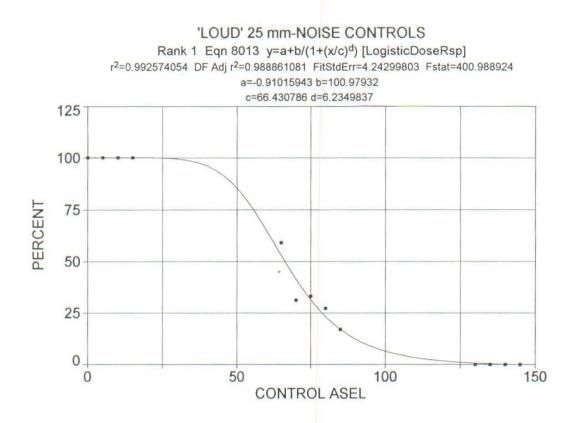
r ² Co	oef Det	DF	Adj r ²	F	it Std Err	F-value	
0.999	98658182	0.9	997987273	0	.5674157442	22354.72667	1
Parr	n Value		Std Error		t-value	95% Confide	ence Limits
a	-0.10296	200	0.28666427	74	-0.35917277	-0.75338542	0.547461414
b	100.1522	2484	0.40579286	66	246.8063312	99.23152961	101.0729672
C	61.15546	5374	0.10986016	52	556.6664254	60.90619786	61.40472962
d	8.393857	7179	0.18462870	00	45.46344742	7.974946138	8.812768220
Date		Tim	e	F	ile Source		
May	18, 1994	3:0	7:28 PM	C	:\tcwin\noise.pr	'n	


r ² Co	ef Det	DF	Adj r ²	F	it Std Err	F-value	
0.993	5532144	0.99	903298216	3	.9202788014	462.34818788	3
Parm	Value		Std Error		t-value	95% Confide	ence Limits
а	0.162410)695	1.96606726	66	0.082606886	-4.29847370	4.623295089
b	100.1018	3465	2.78184725	58	35.98394780	93.79000802	106.4136850
C	62.36630	382	0.61354864	18	101.6485066	60.97420008	63.75840755
d	10.16307	7992	1.32560641	11	7.666740176	7.155361393	13.17079846
Date	9 1004	Tim			ile Source		
May 1	8, 1994	2:4	3:57 PM	C	:\tcwin\noise.p	m	

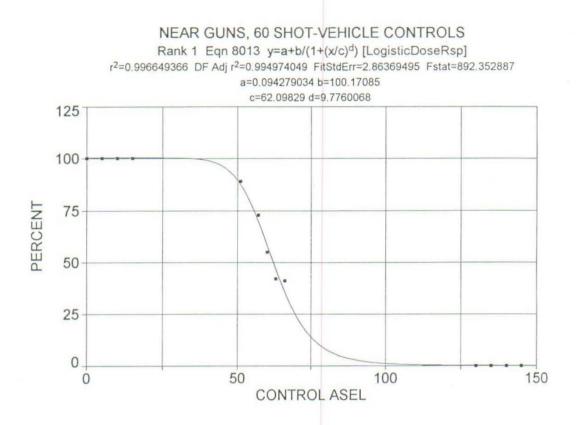
Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]


	oef Det 37010558	DF Adj r ² 0.9905515837	Fit Std Err 3.9408351359	F-value 473.27029149	9
Parr	n Value	Std Error	r t-value	95% Confide	ence Limits
а			428 -0.02797013	-4.52470295	4.414505631
b	99.50487	7224 2.7716873	373 35.90046742	93.21608591	105.7936586
C	63.22927	7162 0.7323606	697 86.33624369	61.56759073	64.89095251
d	-5.79529	716 0.9567846	609 -6.05705516	-7.96618195	-3.62441236

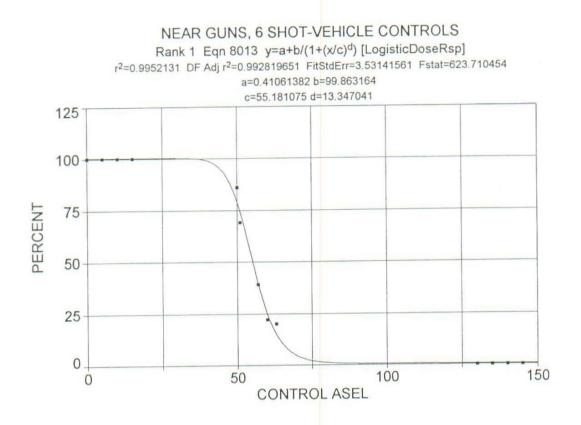
Time File Source Date May 18, 1994 2:48:09 PM c:\tcwin\noise.prn


	ef Det		Adj r ² 942888456	Fit Std Err 3.0220258592	F-value 784.93177048	
0.996	1925637	0.9	942000400	3.0220230392	104.93111040	D.
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	-0.10520	513	1.51498633	7 -0.06944296	-3.54261494	3.332204680
b	100.0808	8601	2.14355155	6 46.68927130	95.21727490	104.9444453
C	76.75785	5130	0.79117551	2 97.01747602	74.96272325	78.55297935
d	-16.2090	246	1.56387148	0 -10.3646781	-19.7573517	-12.6606974
Date		Tim	10	File Source		

Date	Time	File Source
May 17, 1994	9:47:30 AM	c:\tcwin\noise.prn


	ef Det 0424668		Adj r ² 305637002	Fit Std Err 5.8323678599	F-value 228.52554992	2
Parm	Value		Std Error	t-value	95% Confide	nce Limits
a	-0.494707	747	2.85752711	7 -0.17312433	-6.97825884	5.988843904
b	100.3641	157	4.09210683	8 24.52626963	91.07937968	109.6488517
C	72.51606	301	1.28044045	5 56.63368627	69.61082323	75.42130280
d	-11.36974	160	2.17269862	1 -5.23300649	-16.2994641	-6.44002790
-		-				

DateTimeFile SourceMay 17, 199410:01:39 AMc:\tcwin\noise.prn

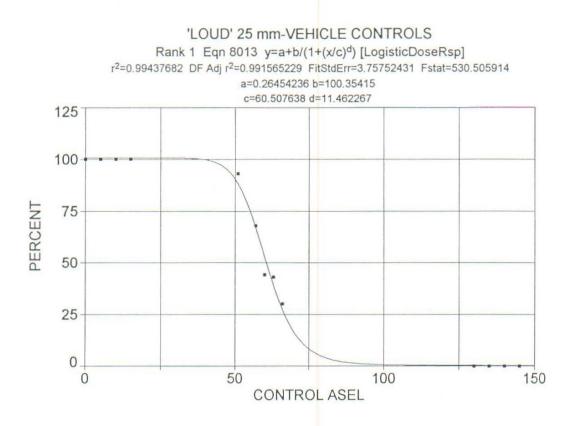


	ef Det 5740538		Adj r ² 888610808	Fit Std Err 4.2429980288	F-value 400.98892426	3
Parm	Value		Std Error	t-value	95% Confide	nce Limits
а	-0.91015	943	2.56160509	6 -0.35530825	-6.72228214	4.901963275
b	100.9793	185	3.35786137	8 30.07250959	93.36053980	108.5980972
C	66.43078	585	1.39214892	4 47.71816053	63.27208649	69.58948521
d	6.234983	694	1.15490598	7 5.398693714	3.614573810	8.855393578

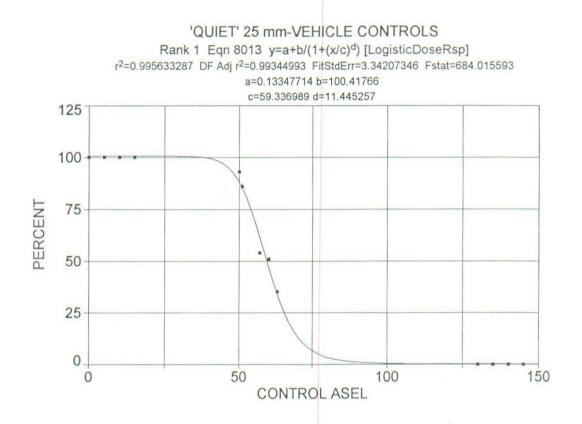
Date	Time	File Source
May 17, 1994	9:58:49 AM	c:\tcwin\noise.prn

r ² Co	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.996	6493658	0.9	949740487	2.8636949541	892.35288672	2
Parn	n Value		Std Error	t-value	95% Confide	ence Limits
а	0.094279	9034	1.43685151	3 0.065615015	-3.16584772	3.354405786
b	100.1708	3505	2.03041700	3 49.33511214	95.56396060	104.7777405
C	62.09828	3971	0.48019848	2 129.3179634	61.00874921	63.18783022
d	9.776006	6826	0.95020402	10.28832392	7.620052963	11.93196069
Date		Tim	е	File Source		
May	18, 1994	3:28	3:48 PM	c:\tcwin\noise.p	rn	

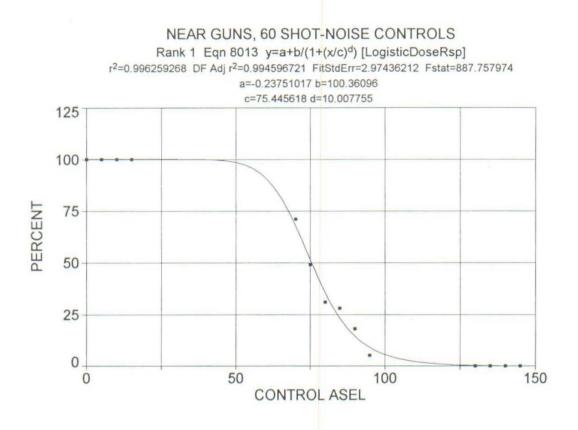
r ² Coe 0.9952	f Det 2131004			Fit Std Err 3.5314156091	F-value 623.71045431	
Parm a b c d	99.86316 55.18107	822 430 489	Std Error 1.74783740 2.49367968 0.445061069 1.170549900	1 40.04650840 9 123.9854004	94.20516014	4.376348220 105.5211685 56.19089078
-		-		Ella Cauraa		


Date Time File Source May 18, 1994 3:12:48 PM c:\tcwin\noise.prn

	ef Det 7804063	DF Adj r ² 0.9591706094	Fit Std Err 8.3237771310	F-value 107.21472358	3
Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	0.556455	842 4.1422202	59 0.134337579	-8.84198440	9.954896085
b	99.68531	198 5.8807399	88 16.95115108	86.34227856	113.0283454
C	52.76463	244 1.2220074	13 43.17865168	49.99197359	55.53729129


d	10.19302036	2.467464811	4.130968885	4.594496108	15.79154461	
---	-------------	-------------	-------------	-------------	-------------	--

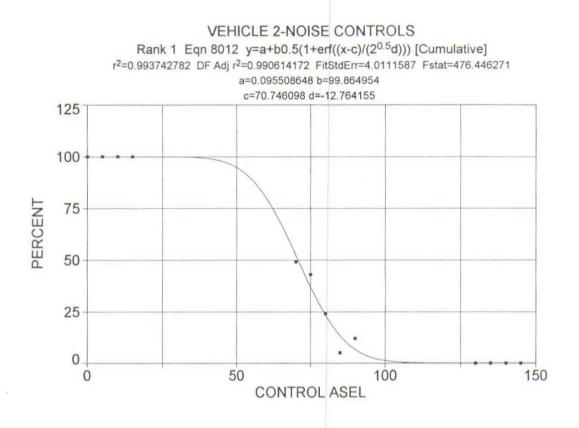
Date	Time	File Source
May 18, 1994	3:10:16 PM	c:\tcwin\noise.prn


	ef Det 3768196		Adj r ² 915652294	Fit Std Err 3.7575243111	F-value 530.50591393	3
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	0.264542	356	1.87601833	1 0.141012671	-3.99202660	4.521111316
b	100.3541	530	2.65293201	3 37.82763844	94.33481521	106.3734908
C	60.50763	781	0.53047282	4 114.0635958	59.30402796	61.71124767
d	11.46226	690	1.31505789	8 8.716169010	8.478482285	14.44605151
				F1 0		

DateTimeFile SourceMay 18, 19943:19:53 PMc:\tcwin\noise.prn

r ² Co	oef Det	DF	Adj r ²	Fit Std Err		F-value	
0.995	56332869	0.9	934499303	3.342073455	59	684.01559335	5
Parr	n Value		Std Error	t-value		95% Confide	ence Limits
а	0.133477	137	1.67002915	0.0799250	34	-3.65571518	3.922669454
b	100.4176	647	2.36034858	39 42.543573	94	95.06218054	105.7731489
C	59.33698	896	0.48522930	07 122.28649	03	58.23603383	60.43794409
d	11.44525	5713	1.17106275	9.7733935	21	8.788188547	14.10232571
Date		Tim	le	File Source			
May	18, 1994	3:1	7:03 PM	c:\tcwin\nois	e.pr	n	

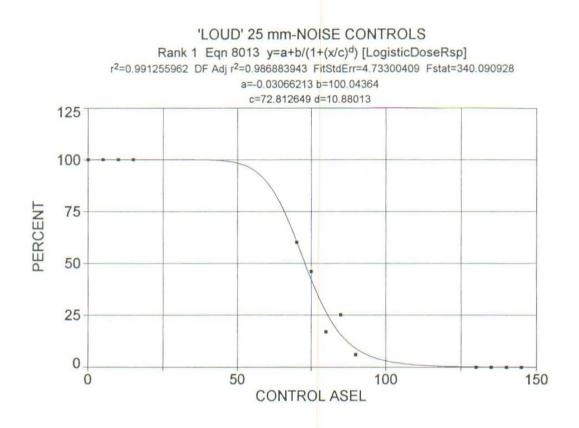
1



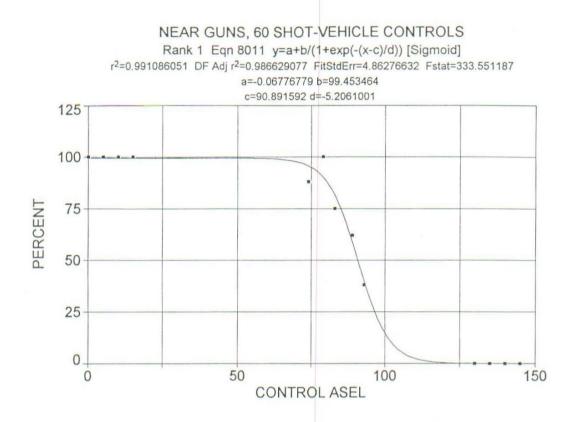
Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

	ef Det 2592685		Adj r ² 945967211	Fit Std Err 2.9743621213	F-value 887.757)
Parm	Value		Std Error	t-value	95% C	Confide	nce Limits
а	-0.23751	017	1.52193587	0 -0.15605794	-3.6371	4000	3.162119657
b	100.3609	616	2.14683417	4 46.7483529	2 95.5654	16292	105.1564603
C	75.44561	826	0.62481613	3 120.748511	9 74.0499	3293	76.84130359
d	10.00775	533	0.86378816	0 11.5858908	3 8.07826	5357	11.93724529
Date		Tim	е	File Source			

DateTimeFile SourceMay 17, 19942:42:38 PMc:\tcwin\noise.prn


8

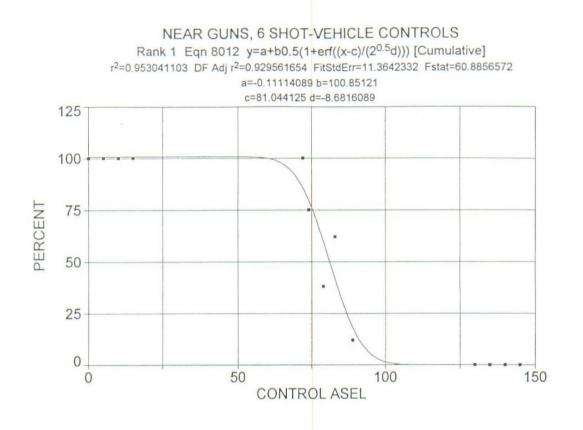
Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/(2^{0.5}d))) [Cumulative]


	ef Det 7427817	DF Adj r ² 0.9906141725	Fit Std Err 4.0111586989	F-value 476.44627052	2
Parm	n Value	Std Error	t-value	95% Confide	ence Limits
a	0.095508	3648 1.9742966	684 0.048376036	-4.38404778	4.575065079
b	99.86495	5430 2.818566	121 35.43111994	93.46980300	106.2601056
C	70.74609	833 1.1033384	485 64.12003145	68.24269191	73.24950476
d	-12.7641	551 1.8731122	226 -6.81441023	-17.0141303	-8.51417993

Date Time May 17, 1994 2:45:33 PM File Source c:\tcwin\noise.prn

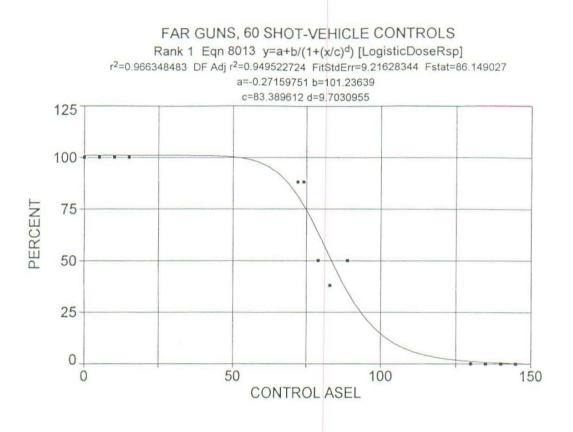
	ef Det 2559623			Fit Std Err 4.7330040867	F-value 340.09092817	7
Parm	Value		Std Error	t-value	95% Confide	nce Limits
а	-0.03066	213	2.378976796	6 -0.01288879	-5.42841258	5.367088317
b	100.0436	357	3.370387169	9 29.68312859	92.39643678	107.6908347
C	72.81264	898	0.975796230	74.61870286	70.59862800	75.02666996
d	10.88013	017	1.726381293	3 6.302275295	6.963078350	14.79718200

Date Time File Source May 17, 1994 2:44:17 PM c:\tcwin\noise.prn

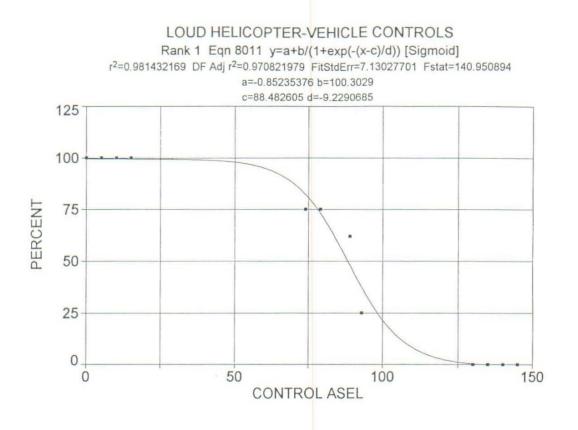


4:34:56 PM

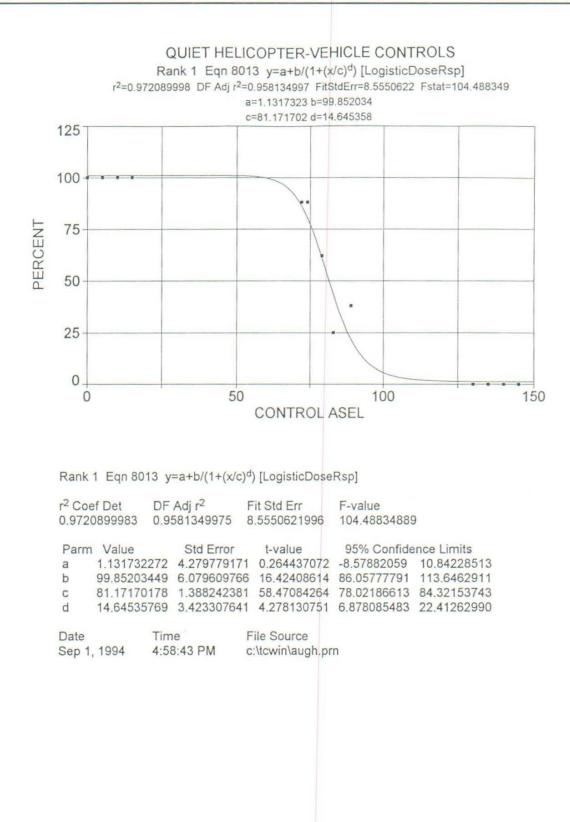
Sep 1, 1994


	ef Det 0860514		Adj r ² 366290770	Fit Std Err 4.862766324	44	F-value 333.55118715	ō
Parm	Value		Std Error	t-value		95% Confide	nce Limits
а	-0.067767	779	2.43421093	5 -0.027839	74	-5.59084107	5.455305485
b	99.45346	363	3.384229160	0 29.387331	33	91.77485807	107.1320692
C	90.89159	235	0.812533650	0 111.86194	124	89.04800401	92.73518068
d	-5.206100	011	0.89834153	5 -5.795234	78	-7.24438120	-3.16781902
Date		Tim	е	File Source			

c:\tcwin\augh.prn


	oef Det 30411029			Fit Std Err 11.364233226	F-value 60.885657185	5
Parr	n Value		Std Error	t-value	95% Confide	ence Limits
а	-0.11114	089 5	.650980723	3 -0.01966754	-12.9328648	12.71058305
b	100.8512	130 8	.030177466	5 12.55902668	82.63123960	119.0711865
C	81.04412	501 1	.745490099	9 46.43058419	77.08371649	85.00453352
d	-8.68160	894 2	.487675543	3 -3.48984777	-14.3259901	-3.03722779

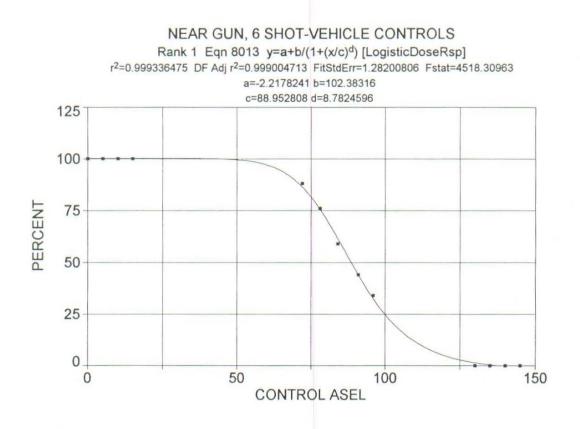
Date	lime	File Source
Sep 1, 1994	4:53:52 PM	c:\tcwin\augh.prn



	ef Det	DF Adj r		Fit Std Err	F-value	
0.966	3484830	0.949522	27245 9	.2162834363	86.149027037	
Parm	Value	Std	Error	t-value	95% Confide	nce Limits
a	-0.271597	51 5.05	2078724	-0.05375956	-11.7344500	11.19125502
b	101.23638	870 7.01	3416562	14.43467475	85.32338084	117.1493931
C	83.38961	163 2.29	2140573	36.38067082	78.18888718	88.59033609
d	9.7030954	491 2.91	4608404	3.329124927	3.090030226	16.31616076
Date		Time	F	ile Source		

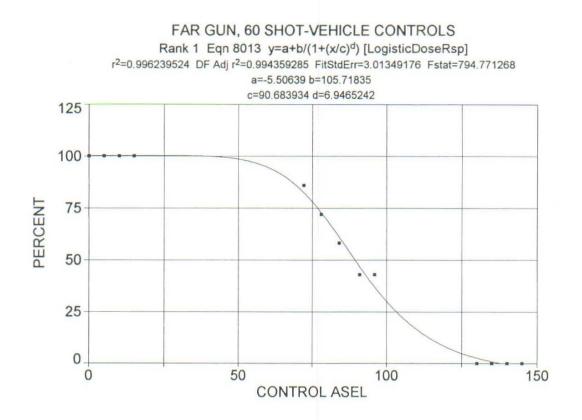
Date Time File Source Sep 1, 1994 4:55:43 PM c:\tcwin\augh.prn

DF Adj r ²	Fit Std Err	F-value	
0.9708219791	7.1302770058	140.95089408	В
Std Error	t-value	95% Confide	ence Limits
376 3.78160414	12 -0.22539476	-9.60319379	7.898486273
981 5.32476681	17 18.83704987	87.98109473	112.6247014
468 1.98279943	33 44.62509077	83.89429771	93.07091166
353 2.27784749	98 -4.05166217	-14.5001330	-3.95800410
Time	File Source		
	0.9708219791 Std Error 376 3.78160414 981 5.3247668 468 1.98279943 353 2.27784749	0.9708219791 7.1302770058 Std Error t-value 376 3.781604142 -0.22539476 981 5.324766817 18.83704987 468 1.982799433 44.62509077 353 2.277847498 -4.05166217 Time File Source	0.9708219791 7.1302770058 140.95089408 Std Error t-value 95% Confide 376 3.781604142 -0.22539476 -9.60319379 981 5.324766817 18.83704987 87.98109473 468 1.982799433 44.62509077 83.89429771 353 2.277847498 -4.05166217 -14.5001330 Time File Source

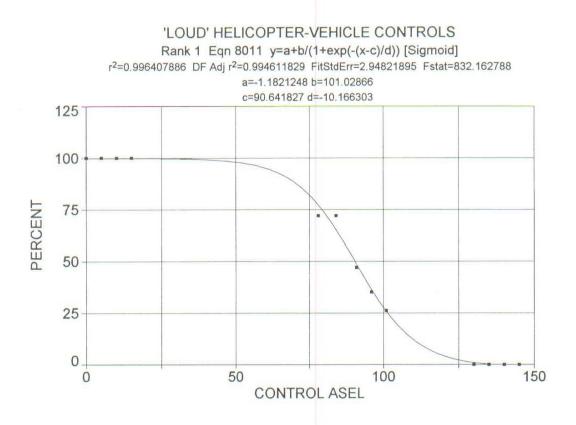


Appendix D: Nonblast Sound Transition Curves—Free-field Measurements

This appendix contains the transition curves for the nonblast sound data for subjects indoors and outdoors with the **acoustical measurements made outdoors with the free-field microphone.** Each curve represents an entire test period, so there are two sets of curves for the two test periods that included outdoor subjects.

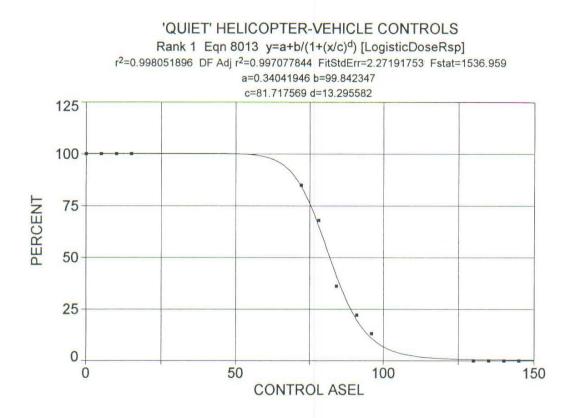


r ² Co	bef Det	DF	Adj r ²	Fit Std Err	F-value	
0.99	88140167	0.99	82210251	1.7371029337	2526.5466670)
Parr	m Value		Std Error	t-value	95% Confide	ence Limits
а	-1.71321	844	1.08563201	0 -1.57808394	-4.17644997	0.750013098
b	101.4576	6867	1.48451339	2 68.34406967	98.08941808	104.8259553
C	100.8779	9860	0.57871167	3 174.3147593	99.56492518	102.1910468
d	-8.66379	177	0.60134177	6 -14.4074337	-10.0281989	-7.29938466
Date		Tim	e	File Source		
May	12, 1994	1:32	2:58 PM	c:\tcwin\augh.pr	'n	

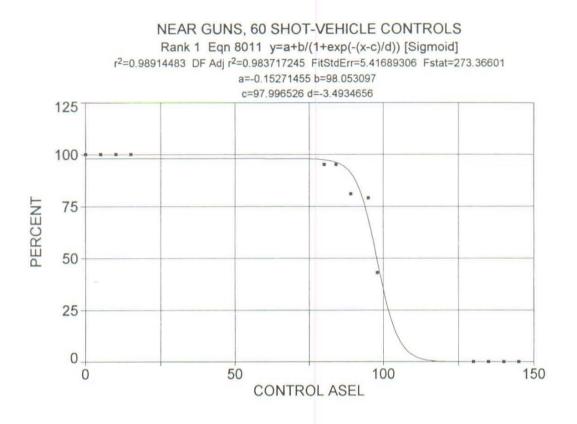


	ef Det 3364754		Adj r ² 990047132	Fit Std Err 1.2820080635	F-value 4518.3096256	6
Parn	n Value		Std Error	t-value	95% Confide	ence Limits
a	-2.21782	414	0.83200844	-2.66562698	-4.10559956	-0.33004872
b	102.3831	589	1.10324387	7 92.80192803	99.87996710	104.8863506
C	88.95280	0821	0.38541346	8 230.7983907	88.07832901	89.82728741
d	8.782459	625	0.35797875	1 24.53346627	7.970228094	9.594691156

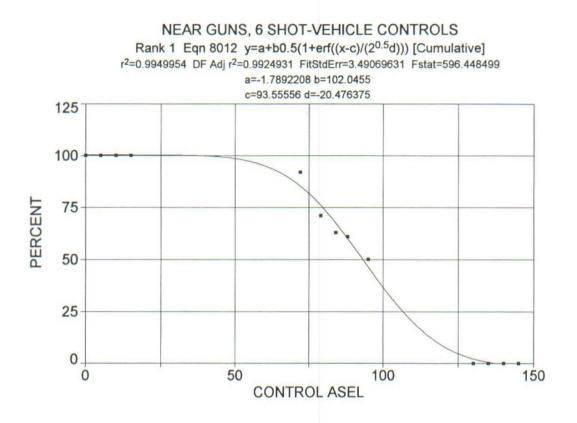
Date	Lime	File Source
May 12, 19	94 1:37:49 PM	c:\tcwin\ngf.prn



r ² Coe	ef Det		Adj r ²	Fit Std Err	F-value	
0.996	2395236	0.99	943592855	3.0134917607	794.77126845	5
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-5.50639	002	2.96044572	7 -1.85998681	-12.2234573	1.210677284
b	105.7183	543	3.50526831	2 30.15984653	97.76511847	113.6715902
C	90.68393	388	1.39498275	4 65.00720788	87.51880474	93.84906302
d	6.946524	201	0.76157755	4 9.121230223	5.218552079	8.674496323
Date		Tim	е	File Source		
May 1	2, 1994	1:39	9:03 PM	c:\tcwin\ngf.prn		

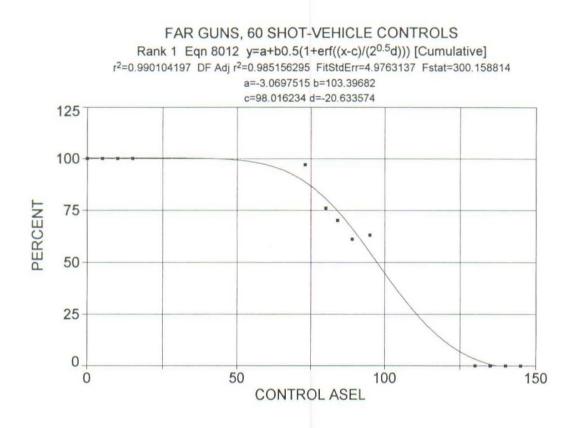

	ef Det 4078859		Adj r ² 946118289	Fit Std Err 2.9482189523	F-value 832.16278793	3
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-1.18212	477	1.67342187	0 -0.70641169	-4.97901496	2.614765411
b	101.0286	647	2.29352358	9 44.04954245	95.82480229	106.2325272
C	90.64182	725	0.80119429	7 113.1333905	88.82396720	92.45968729
d	-10.1663	035	0.92800188	1 -10.9550462	-12.2718821	-8.06072492
Dete		Tim		Eile Course		

Date Time File Source May 12, 1994 1:35:16 PM c:\tcwin\ngf.prn

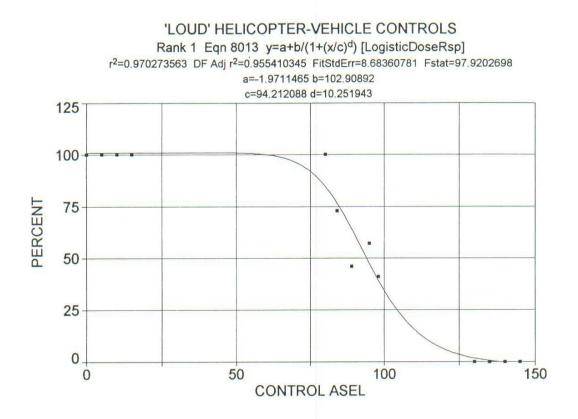

	ef Det 0518962		Adj r ² 970778443	Fit Std Err 2.2719175329	F-value 1536.9590014	4
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	0.340419	464	1.13339825	0 0.300352912	-2.23119070	2.912029630
b	99.84234	726	1.62152457	1 61.57313251	96.16320882	103.5214857
С	81.71756	858	0.43283926	1 188.7942616	80.73548321	82.69965396
d	13.29558	238	0.82090544	1 16.19624101	11.43299897	15.15816579
Data		Tim	0	File Source		

Date	Time	File Source
May 12, 1994	1:36:36 PM	c:\tcwin\ngf.prn

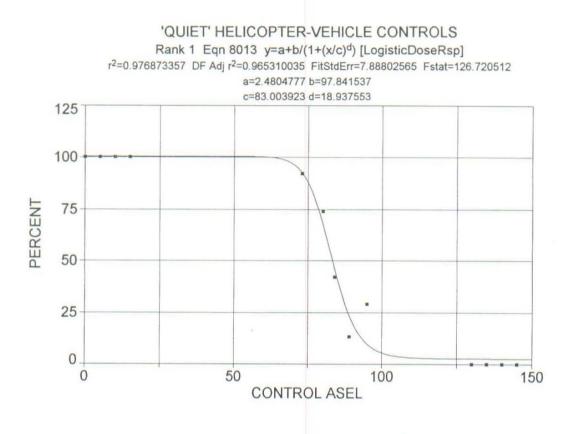
	ef Det 1448301		Adj r ² 337172451	Fit Std Err 5.4168930621	F-value 273.36600991	I
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.15271	455	2.70867445	7 -0.05637981	-6.29852849	5.993099395
b	98.05309	9711	3.60119621	4 27.22792408	89.88220679	106.2239874
C	97.99652	2563	0.74093664	8 132.2603301	96.31538644	99.67766482
d	-3.49346	561	1.01136039	9 -3.45422424	-5.78817948	-1.19875174
Date		Tim	e	File Source		


May 12, 1994 3:21:51 PM c:\tcwin\ngf.prn

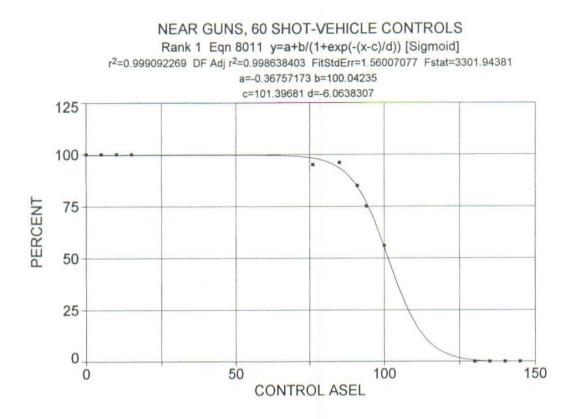
Sep 28, 1994 5:19:59 PM


r ² Coef Det 0.9949953999		DF Adj r ² 0.9924930999		Fit Std Err 3.4906963085	F-value 596.44849878		
Parm	Value		Std Error	t-value	95% Confide	ence Limits	
а	-1.789220	076	2.496256268	-0.71676165	-7.45307104	3.874629514	
b	102.0455	035	3.182915505	5 32.06038720	94.82366612	109.2673409	
C	93.55556	023	1.682449414	55.60675969	89.73818711	97.37293335	
d	-20.47637	751	2.741014601	-7.47036339	-26.6955669	-14.2571834	
Date		Tim	e	File Source			

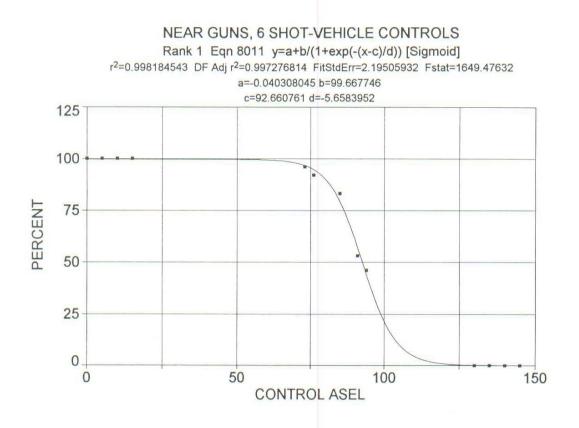
c:\tcwin\augl.prn


r ² Coe 0.990	ef Det 1041967		Adj r ² 351562950	Fit Std Err 4.9763136978	F-value 300.15881448	3
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-3.06975	145	4.59197109	7 -0.66850409	-13.4886484	7.349145482
b	103.3968	191	5.49207586	5 18.82654603	90.93564038	115.8579978
C	98.01623	376	3.09474031	5 31.67187673	90.99446039	105.0380071
d	-20.6335	738	4.12563793	9 -5.00130504	-29.9943898	-11.2727578
Dete		Tim	-	Eile Course		

Date	lime	File Source
May 12, 199	4 3:26:03 PM	c:\tcwin\ngf.prn


	ef Det 2735634		Adj r ² 554103451	Fit Std Err 8.6836078052	F-value 97.920269789)
Parm	Value		Std Error	t-value	95% Confide	nce Limits
a	-1.97114	654	5.63972802	1 -0.34951092	-14.7673388	10.82504572
b	102.9089	225	7.47867383	0 13.76031698	85.94027653	119.8775685
C	94.21208	792	2.42044716	2 38.92342266	88.72024379	99.70393205
d	10.25194	331	3.00560865	3 3.410937517	3.432404142	17.07148249
Date		Tim	0	File Source		

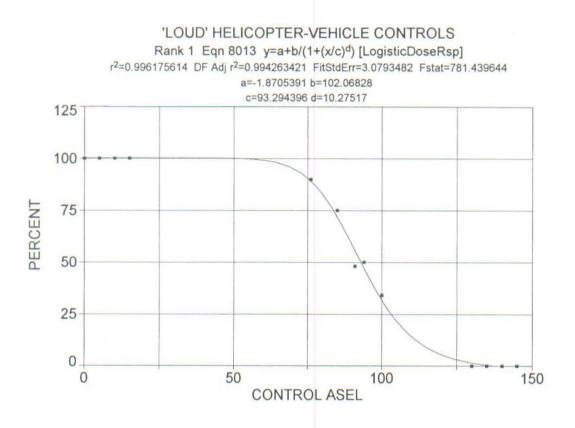
Date	Time	File Source
May 12, 1994	3:19:37 PM	c:\tcwin\ngf.prn


	ef Det 8733568		Adj r ² 553100353	Fit Std Err 7.8880256476	F-value 126.72051235	ō
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	2.480477	685	3.82314805	5 0.648805029	-6.19400756	11.15496293
b	97.84153	717	5.51965382	3 17.72602781	85.31778581	110.3652885
cd	83.00392	282	1.11170114	0 74.66388209	80.48154205	85.52630359
d	18.93755	279	4.55912288	4 4.153771082	8.593186415	29.28191917
		-				

DateTimeFile SourceMay 12, 19943:27:34 PMc:\tcwin\ngf.pm

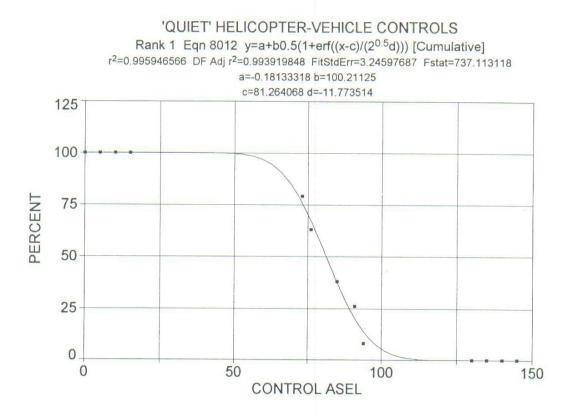
r ² Coef Det D		DF Adj r ²		Fit Std Err	F-value		
0.999	0922690	0.99	986384035	1.5600707716	3301.9438088	3	
Parm	Value		Std Error	t-value	95% Confide	ence Limits	
а	-0.36757	173	0.81190820	8 -0.45272572	-2.20974098	1.474597518	
b	100.0423	521	1.12705315	1 88.76453786	97.48513860	102.5995657	
C	101.3968	106	0.45369210	6 223.4925607	100.3674115	102.4262098	
d	-6.06383	068	0.44553051	0 -13.6103601	-7.07471170	-5.05294965	
Date		Tim	0	File Source			

Date	Time	File Source
May 12, 1994	3:58:39 PM	c:\tcwin\ngf.prn



r ² Coe 0.998	ef Det 1845428		dj r ² 72768142	Fit Std Err 2.1950593202	F-value 1649.4763212	2
Parm a b	Value -0.040308 99.66774		Std Error 1.10206919 1.52258521		95% Confide -2.54083452 96.21309524	nce Limits 2.460218432 103.1223976
cd	92.66076	098	0.391833659	9 236.4798402	91.77171477 -6.83870899	93.54980719
Date		Time		File Source		

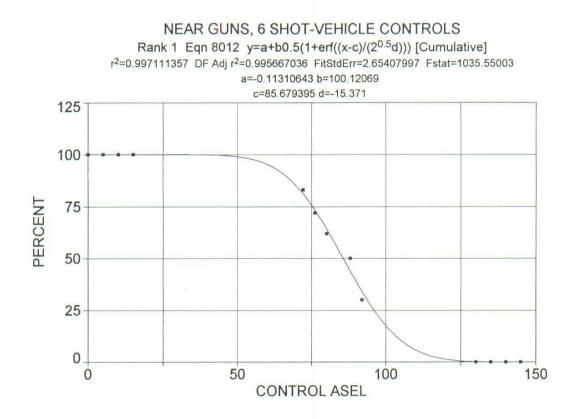
May 12, 1994 3:56:03 PM c:\tcwin\ngf.prn



	ef Det 73639119		Adj r ² 960458679	Fit Std Err 2.5489897494	F-value 1135.0499932	2
Parn		074	Std Error	t-value	95% Confide	
a b	-1.09960		1.55461347		-4.62692207 96.41141791	2.427720595
C	93.66718		1.02184734		91.34867293	95.98568911
d	-18.5161	690	1.72908942	28 -10.7086243	-22.4393654	-14.5929726
Date May	12, 1994	Tim 3:54	e 4:18 PM	File Source c:\tcwin\ngf.prn		

	ef Det 1756140		Adj r ² 942634210	Fit Std Err 3.0793481994	F-value 781.43964391	1
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-1.87053	910	1.94994413	4 -0.95927830	-6.29484111	2.553762911
b	102.0682	778	2.60899589	4 39.12167051	96.14862827	107.9879272
C	93.29439	634	0.79499203	1 117.3526183	91.49060885	95.09818384
d	10.27516			2 9.483229832		
Date		Time	e	File Source		

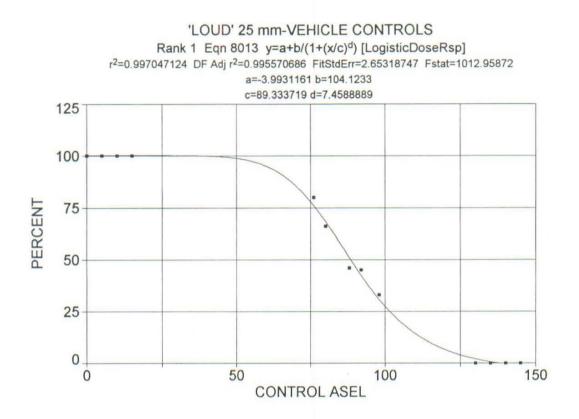
May 12, 1994 4:00:00 PM c:\tcwin\ngf.prn



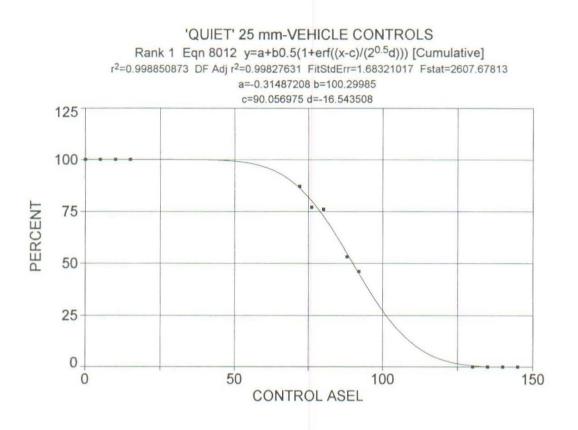
	oef Det 59465656	DF A 0.993	dj r ² 39198483	Fit Std Err 3.2459768689	F-value 737.11311750)
Parr	n Value		Std Error	t-value	95% Confide	nce Limits
a	-0.18133	318	1.61282700	2 -0.11243188	-3.84073738	3.478071018
b	100.2112	2533 2	2.29295654		95.00867749	105,4138292
C	81.26406	6800 0	0.68105508	0 119.3208456	79.71879636	82.80933963
d	-11.7735	135 (0.92393912	7 -12.7427373	-13.8698740	-9.67715310
Date		Time		File Source		
May	12, 1994	3:52:	55 PM	c:\tcwin\ngf.prn		

	oef Det 2571295		Adj r ² 988856942	Fit Std Err 1.3581996564	F-value 4035.3886577	7
0.550	52571255	0.5	500050542	1.3301990304	4033.3000377	
Parr	n Value		Std Error	t-value	95% Confide	nce Limits
a	-1.64703	480	0.91810103	7 -1.79395811	-3.73014898	0.436079369
b	101.5914	1326	1.20321527	1 84.43329724	98.86141198	104.3214533
C	97.95055	569	0.58765041	0 166.6816767	96.61721344	99.28389793
d	-17.8641	744	0.89789123	8 -19.8956996	-19.9014338	-15.8269150

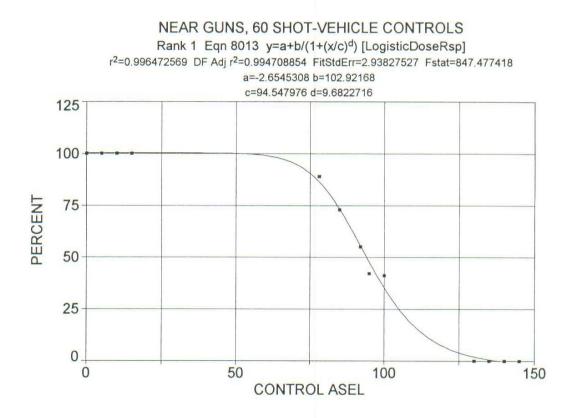
DateTimeFile SourceMay 12, 19944:51:02 PMc:\tcwin\augh.prn


r ² Coe 0.997	ef Det 1113573		Adj r ² 956670359	Fit Std Err 2.6540799674	F-value 1035.5500311	ſ
Parm			Std Error	t-value	95% Confide	The second se
a	-0.113106		1.34144543		-3.15676271	
b	100.1206	854	1.89411527	0 52.85881329	95.82305562	104.4183152
C	85.67939	478	0.68817495	0 124.5023446	84.11796860	87.24082096
d	-15.37099	999	1.20207831	5 -12.7870204	-18.0984409	-12.6435590
Date		Tim	e	File Source		

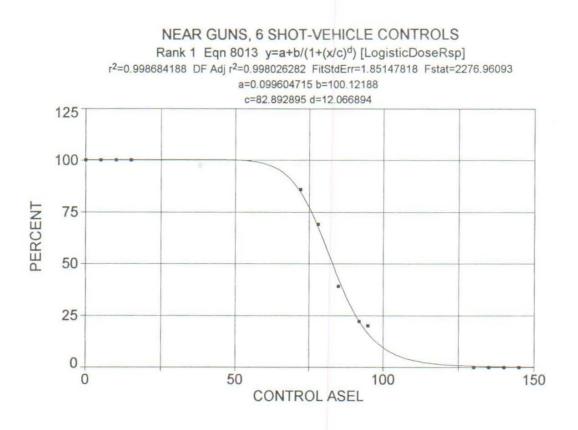
Duito	1 mile	I no oodroo
May 12, 1994	4:52:45 PM	c:\tcwin\augh.prn


r ² Coe	f Det	DF	Adj r ²	Fit Std Err	F-value	
0.9922	2529922	0.98	883794883	4.3114323181	384.24628580)
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-4.61018	426	3.95028496	2 -1.16705106	-13.5731352	4.352766728
b	104.8511	620	4.71999115	6 22.21427085	94.14179549	115.5605285
C	87.76978	3914	1.96619223	2 44.63947509	83.30862121	92.23095708
d	6.856735	238	1.11742223	3 6.136207994	4.321373663	9.392096813
		-		-		

Date	lime	File Source
May 12, 1994	4:54:35 PM	c:\tcwin\augh.prn


r ² Coe	f Det	DF	Adj r ²	Fi	t Std Err	F-value	
	0471241		955706862		6531874673	1012.9587172	2
Parm	Value		Std Error		t-value	95% Confide	ence Limits
а	-3.99311	609	2.19268910	8	-1.82110454	-8.96819135	0.981959178
b	104.1232	969	2.67174796	51	38.97197582	98.06126693	110.1853270
C	89.33371	873	0.96121299	91	92.93852615	87.15278621	91.51465125
d	7.458888	919	0.69988373	39	10.65732564	5.870896227	9.046881610
Date		Tim	e	Fi	le Source		

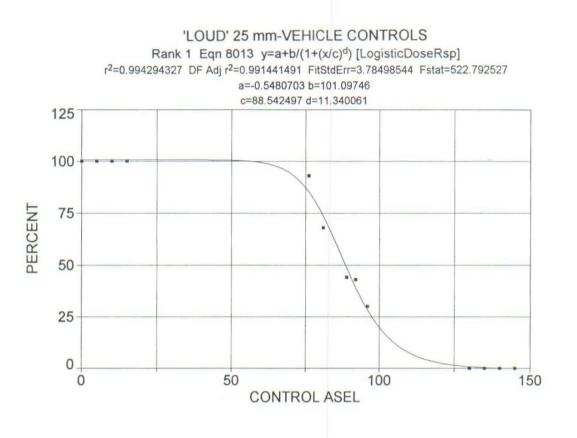
Dale	Time	rile Source
May 17, 1994	10:03:56 AM	c:\tcwin\noise.prn


	ef Det 8508733		Adj r ² 982763099	Fit Std Err 1.6832101734	F-value 2607.6781277	7
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.31487	208	0.88184176	3 -0.35706188	-2.31571621	1.685972057
b	100.2998	3502	1.24100702	3 80.82133969	97.48408241	
C	90.05697	500	0.55980951	6 160.8707470	88.78680202	91.32714799
d	-16.5435	075	0.95329130	7 -17.3540946	-18.7064663	-14.3805488
Date		Tim	0	File Source		

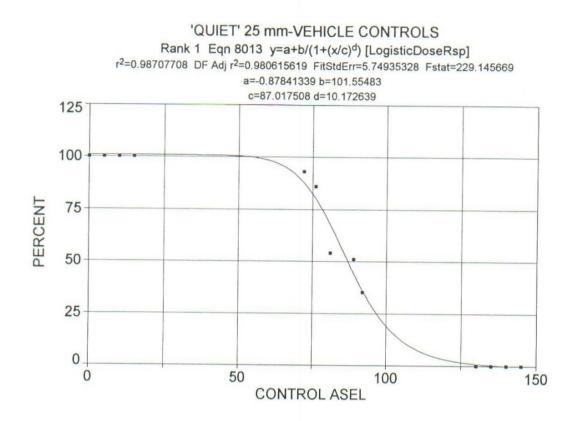
Date	Time	File Source
May 17, 1994	10:06:01 AM	c:\tcwin\noise.prn

	ef Det 4725695		Adj r ² 947088542	Fit Std Err 2.9382752714	F-value 847.47741775	ō
Parm a b c d	-2.65453 102.9216 94.54797	078 847 609	2.67417972 0.84923506	t-value 5 -1.28977894 6 38.48719803 5 111.3331043 3 9.776824950	92.62111452	2.015234816 108.9892322 96.47483765
Date		Tim	e	File Source		

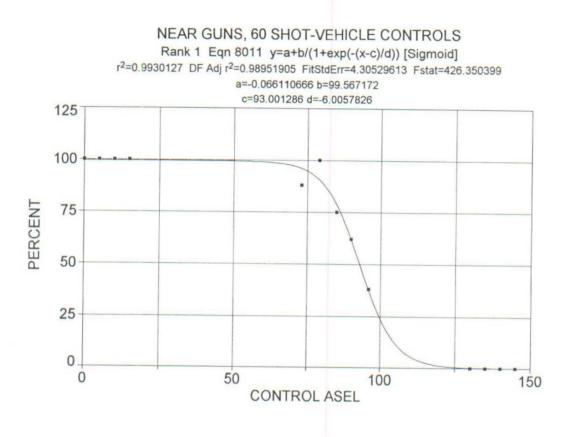
Date	THILE	The obuice
May 17, 1994	2:31:27 PM	c:\tcwin\noise.prn


r ² Coe 0.9986	ef Det 6841880			Fit Std Err 1.8514781845	F-value 2276.9609329	9
Parm				t-value 0 0.105044090	95% Confide	
b	100.1218			7 74.72573928		103.1619338
C	82.89289	498	0.385701873	3 214.9144217	82.01776141	83.76802855
d	12.06689	450	0.58936443	5 20.47441917	10.72966324	13.40412576
Date		Tim	е	File Source		

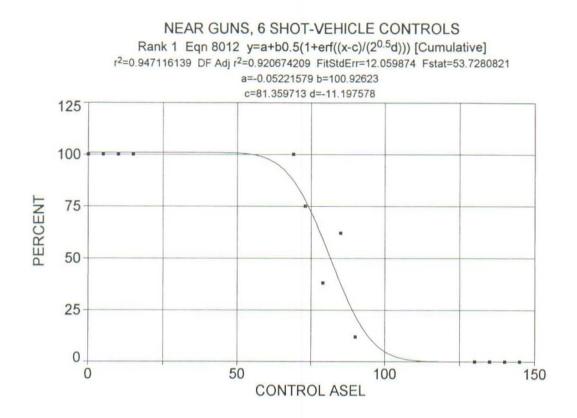
May 17, 1994 2:32:47 PM c:\tcwin\noise.prn


	ef Det 8440997		Adj r ² 317661496	Fit Std Err 5.5625405235	F-value 243.79373289	9
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	0.661272	700	2.934705404	4 0.225328477	-5.99739141	7.319936808
b	99.83641	198	4.084164798	8 24.44475600	90.56969597	109,1031280
C	78.62260	432	1.300087263	2 60.47486705	75.67278715	81,57242149
d	9.933264	919	1.633166910	0 6.082210494		
Date		Tim	e	File Source		

Date	THILE	rile Source
May 17, 1994	2:34:27 PM	c:\tcwin\noise.prn


	ef Det 2943274		Adj r ² 914414911	Fit Std Err 3.7849854442	F-value 522.79252650)
Parm			Std Error		95% Confide	
a	-0.54807	030	2.04155678	4 -0.26845705	-5.18023572	4.084095114
b	101.0974	610	2.85118818	2 35.45801068	94.62829228	107.5666297
C	88.54249	677	0.80641544	3 109.7976205	86.71279026	90.37220327
d	11.34006	095	1.26817566	4 8.942026940	8.462649211	14.21747268
-		-				

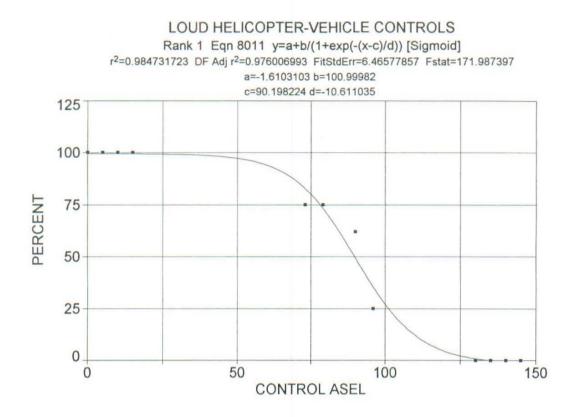
Date Time File Source May 18, 1994 3:35:12 PM c:\tcwin\noise.prn


	ef Det 0770796		Adj r ² 306156194	Fit Std Err 5.7493532810	F-value 229.1456688	5
Parm	Value	330	Std Error	t-value 6 -0.27512211	95% Confide	
b	101.5548				-8.12270715 91.47266954	6.365880364 111.6369848
C	87.01750	840	1.42963839	6 60.86679586	83.77374776	90.26126903
d	10.17263	858	1.77652022	0 5.726159752	6.141824650	14.20345251
Date		Tim	е	File Source		

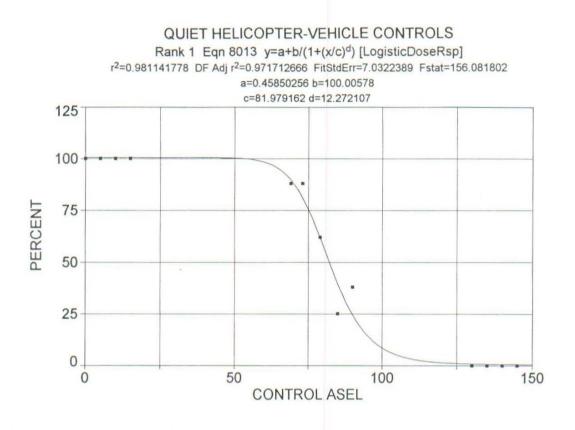
		1 millo	i no oource
May 18,	1994	3:38:24 PM	c:\tcwin\noise.prn

	ef Det 0127001		Adj r ² 895190502	Fit Std Err 4.3052961260	F-value 426.35039917	7
Parm a b c d	Value -0.06611 99.56717 93.00128 -6.00578	7221 3619	Std Error 2.16794977 3.00979567 0.84304876 0.89468520	9 33.08104032	95% Confide -4.98505392 92.73813293 91.08846095 -8.03576774	ence Limits 4.852832588 106.3962115 94.91411143 -3.97579753
Date		Tim	e	File Source		

DateTimeFile SourceSep 21, 199411:30:55 AMc:\tcwin\augl.prn

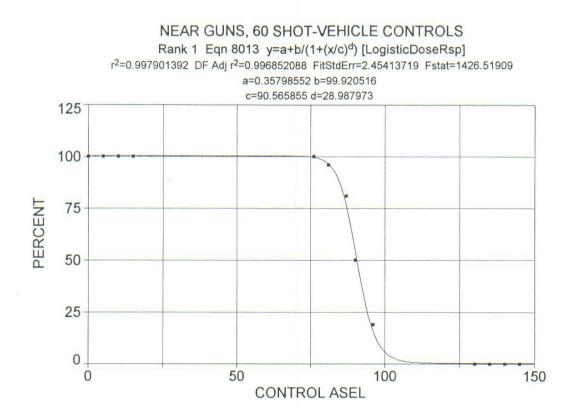

r ² Co	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.947	1161391	0.92	206742087	12.059874019	53.728082084	4
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.05221	579	6.01234916	2 -0.00868476	-13.6938622	13.58943067
b	100.9262	315	8.51788559	3 11.84874233	81.59967869	120.2527844
C	81.35971	260	2.33861204	8 34.78974321	76.05354725	86.66587794
d	-11.1975	783	3.38962769	8 -3.30348324	-18.8884328	-3.50672377
Date		Tim	e	File Source		

Dale	Time	File Source
Sep 21, 1994	1:35:06 PM	c:\tcwin\augl.prn



	ef Det 5687956		Adj r ² 603531934	Fit Std Err 8.1679294028	F-value 110.50220587	7
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-1.34732	936	5.01521237	7 -0.26864852	-12.7265344	10.03187573
b	102.1210	258	6.76079996	1 15.10487316	86.78119105	117.4608606
C	84.30628	101	2.45451478	6 34.34743254	78.73713956	89.87542246
d	8.332401	198	2.23381032	9 3.730129228	3.264024440	13.40077796
-				-		

Date Time File Source Sep 21, 1994 1:40:36 PM c:\tcwin\augl.pm

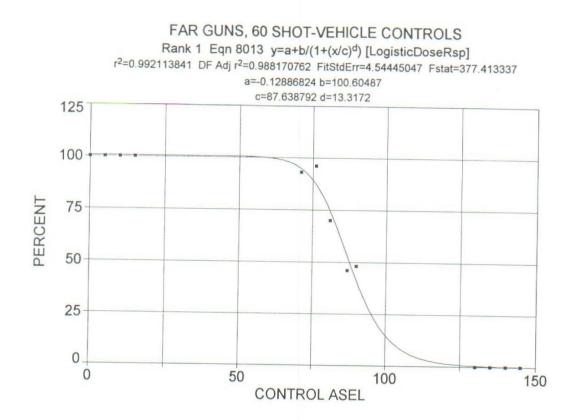


r ² Co	pef Det	DF	Adj r ²	F	it Std Err	F-value	
0.98	47317228	0.9	760069929	6	4657785743	171.98739710)
Parr	m Value		Std Error		t-value	95% Confide	ence Limits
a	-1.61031	027	3.74619003	30	-0.42985280	-10.2792001	7.058579560
b	100.9998	3244	5.1703652	57	19.53436930	89.03531472	112.9643340
C	90.19822	2399	2.1430795	55	42.08813610	85.23902000	95.15742798
d	-10.6110	348	2.37103563	32	-4.47527428	-16.0977417	-5.12432789
Date		Tim	е	F	ile Source		
Sep	21, 1994	1:27	7:11 PM	C	:\tcwin\augl.prn		

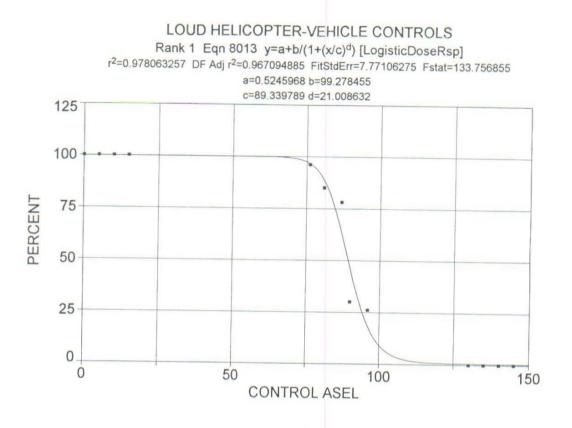


	ef Det 1417776	DF 0.97	Adj r ² 717126664	Fit Std Err 7.0322389049	F-value 156.08180193	3
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	0.458502	561	3.57823662	0 0.128136457	-7.66029387	8.577298990
b	100.0057	811	5.05671891	4 19.77681235	88.53240024	111.4791619
C	81.97916	242	1.38384698	7 59.24004835	78.83929964	85.11902520
d	12.27210	728	2.39073743	7 5.133189070	6.847672672	17.69654189

Date	Time	File Source
Sep 21, 1994	1:50:50 PM	c:\tcwin\augl.prn

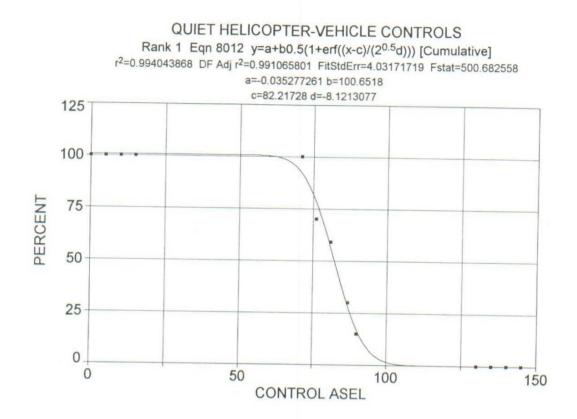


r ² Coef Det	DF Adj r ²	Fit Std Err	F-value	
0.9979013921	0.9968520882	2.4541371862	1426.5190879	Э
Parm Value	Std Error	t-value	95% Confide	ence Limits
a 0.357985	5524 1.21853044	17 0.293784636	-2.40678430	3.122755352
b 99.92051	1607 1.64445343	60.76214382	96.18935346	103.6516787
c 90.56585	6455 0.26805563	37 337.8621528	89.95765297	91.17405612
d 28.98797	345 2.36290550	12.26793598	23.62668776	34.34925913
Date	Time	File Source		
Sep 21, 1994	10:54:36 AM	c:\tcwin\augl.prr	1	



	ef Det 2636200		Adj r ² 868954300		t Std Err 0074997085	F-value 340.39165660)
Parm	Value		Std Error		t-value	95% Confide	ence Limits
а	0.562369	964	2.49002713	38	0.225848930	-5.08734681	6.212086733
b	100.9742	319	3.46349917	78	29.15382009	93.11576760	108.8326962
C	83.61253	197	0.67312800	00	124.2149071	82.08524638	85.13981755
d	20.79790	897	2.86038082	26	7.271027963	14.30788271	27.28793523
		1000					

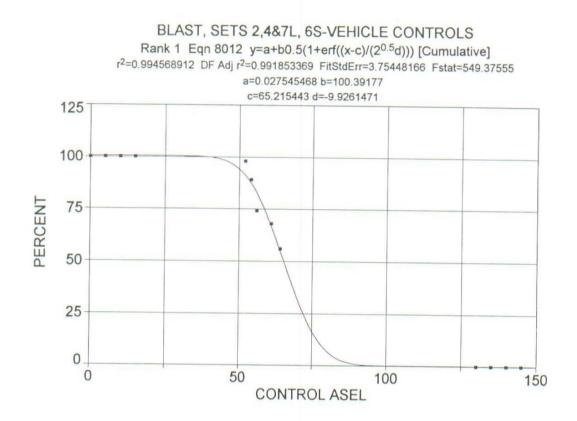
Date Time File Source Sep 21, 1994 11:03:27 AM c:\tcwin\augl.prn



	pef Det		Adj r ²		it Std Err	F-value	
0.99	21138412	0.9	881707617	4	.5444504748	377.41333697	7
Parr	m Value		Std Error		t-value	95% Confide	ence Limits
а	-0.12886	824	2.33011504	47	-0.05530553	-5.41575442	5.158017938
b	100.6048		3.28637034	10	30.61276078	93,14829907	108.0614390
C	87.63879	186	0.90056817	77	97.31499969	85.59545866	89.68212507
d	13.31719	994	2.11267289	97	6.303484063	8.523676480	18.11072339
Date		Tim	е	F	ile Source		
Sep :	21, 1994	11:0	09:15 AM		:\tcwin\augl.prn		

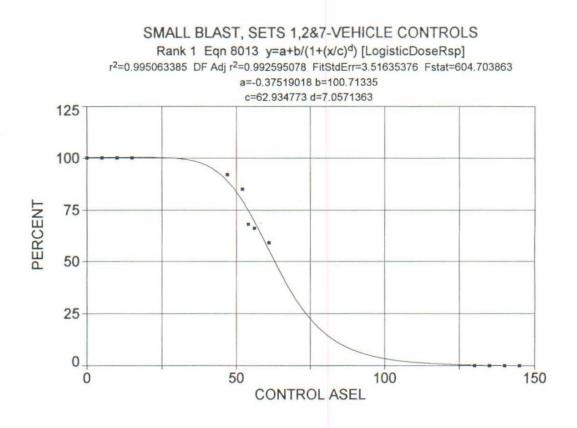
	ef Det 0632569		Adj r ² 570948854	Fit Std Err 7.7710627544	F-value 133.75685523	3
Parm a b c d	0.524596 99.27845 89.33978	475 899	Std Error 3.86384965 5.39620732 1.03316012 5.16988395	5 18.39782068 1 86.47235526	95% Confide -8.24223785 87.03479581 86.99561291 9.278486683	9.291431449
Date		Tim	e	File Source		

Sep 21, 1994 10:56:45 AM c:\tcwin\augl.prn

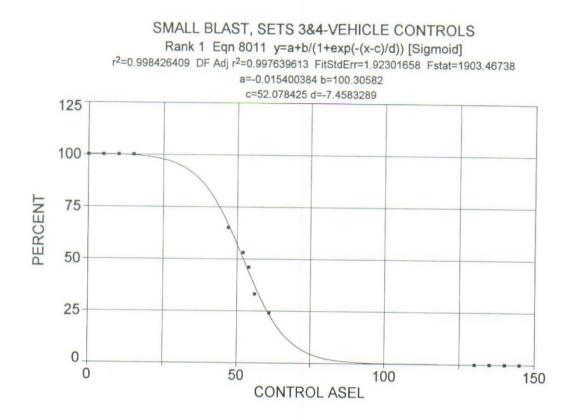


	ef Det 0438676		Adj r ² 910658014	Fit Std Err 4.0317171857	F-value 500.68255805	5
Parm a b c d	Value -0.03527 100.6517 82.21728 -8.12130	972	Std Error 2.005002810 2.837885069 0.609018094 0.80042868	9 35.46718588 4 134.9997329	95% Confide -4.58450398 94.21281246 80.83545590 -9.93743058	ence Limits 4.513949463 107.0907820 83.59910429 -6.30518475
Date		Tim	e	File Source		

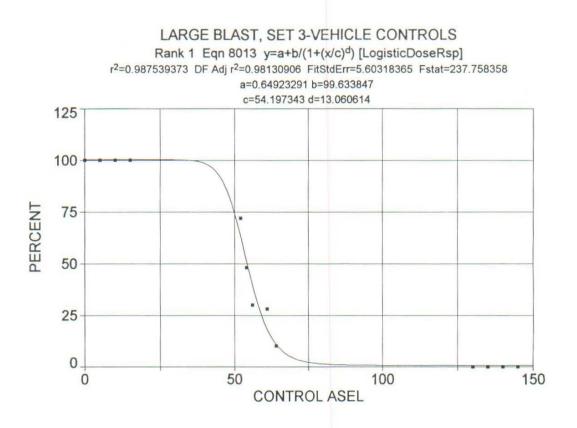
and the second sec	11110	r ne oource
Sep 21, 1994	11:12:32 AM	c:\tcwin\augl.prn


Appendix E: Blast Sound Transition Curves— Acoustical Measurements Near the Subjects

This appendix contains the transition curves for the blast sound data for subjects indoors and outdoors with the **acoustical measurements made near to the subjects.** Each curve represents the grouping of data indicated on the curve. As discussed in the text, only these data include the white-noise control sounds because these could only be heard or measured by the subjects. Because of the problems cited in the text, only indoor measured acoustical data for the windows-closed test periods are included. Each curve represents an entire test period, so there are two sets of curves for the two test periods that included outdoor subjects.


	ef Det		Adj r ²	Fit Std Err	F-value	
0.994	5689124	0.9	918533686	3.7544816636	549.37554982	2
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	0.027545	468	1.87713755	5 0.014674187	-4.23156294	4.286653878
b	100.3917	673	2.649335370	37.89318954	94.38059009	106.4029446
C	65.21544	339	0.959570132	2 67.96318606	63.03823842	
d	-9.92614	709	1.490959133	-6.65755812		-6.54325351
Date		Tim	e	File Source		

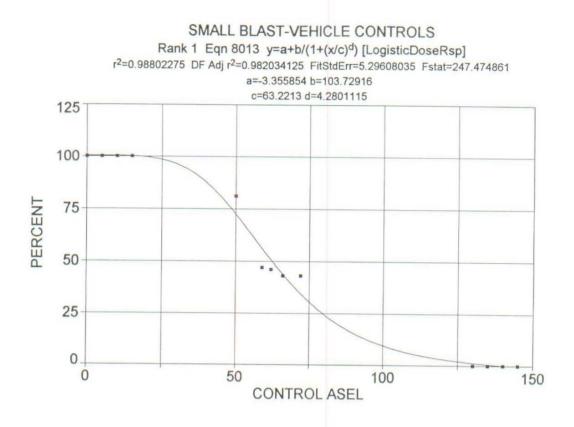
Dato	THILD	I lie Source
Sep 28, 1994	9:33:44 AM	c:\tcwin\augl.prn


r ² Co	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.995	0633850	0.99	25950775	3.5163537635	604.70386283	3
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.375190	018	1.85206291	6 -0.20257961	-4.57740579	3.827025434
b	100.7133	467	2.62573167	3 38.35629806	94.75572477	106.6709686
C	62.93477	334	1.48467491	9 42.38959824	59.56613825	66.30340843
d	7.057136	285	1.19971514	3 5.882343260	4.335057213	9.779215357
Date		Tim	e	File Source		

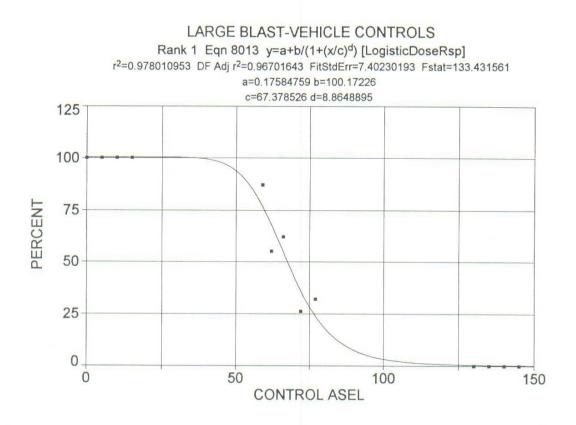
Date Time File Source Sep 28, 1994 9:36:37 AM c:\tcwin\augl.pm

	ef Det 4264089		Adj r ² 976396134	Fit Std Err 1.9230165797	F-value 1903.4673759	9
Parm a b c d	Value -0.01540 100.3058 52.07842 -7.45832	8173 2544			95% Confide -2.19253596 97.13122101 51.23007252 -8.66234777	2.161735191 103.4804136
Date		Tim	е	File Source		

Sep 28, 1994 9:38:35 AM c:\tcwin\augl.prn

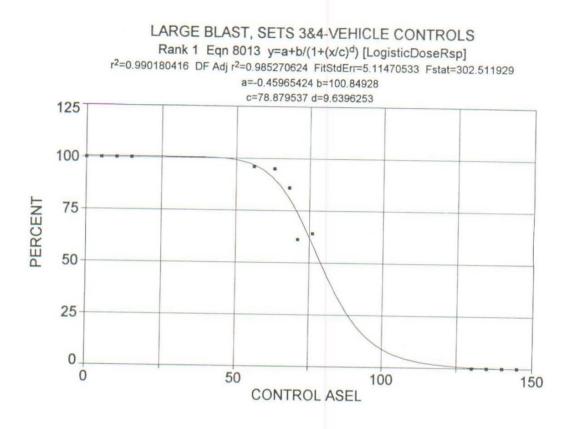

r ² Coe 0.987	ef Det 5393734		Adj r ² 813090601		6td Err 31836467	F-value 237.75835802	2
Parm	Value		Std Error	t	-value	95% Confide	ence Limits
а	0.649232	911	2.76732920	2 0.	234606317	-5.62966500	6.928130823
b	99.63384	747	3.94823890	7 25	5.23500979	90.67553885	108.5921561
C	54.19734	256	0.64609208	3 83	8.88485781	52.73139979	55.66328533
d	13.06061	428	2.41791994	6 5.	401590858	7.574504244	18.54672431
Date		Tim	e	File	Source		

Sep 28, 1994 9:40:05 AM c:\tcwin\augl.prn



r ² Co	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.995	8031243	0.99	37046865	3.3588034305	711.81745997	7
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	0.032955	5016	1.67933482	0 0.019623851	-3.77735128	3.843261316
b	100.5526	6851	2.36275478	1 42.55739355	95.19174140	105.9136288
C	66.18972	2302	0.91100372	5 72.65582041	64.12271221	68.25673383
d	-8.89125	404	1.35940659	0 -6.54054063	-11.9756631	-5.80684500
Date		Tim	e	File Source		

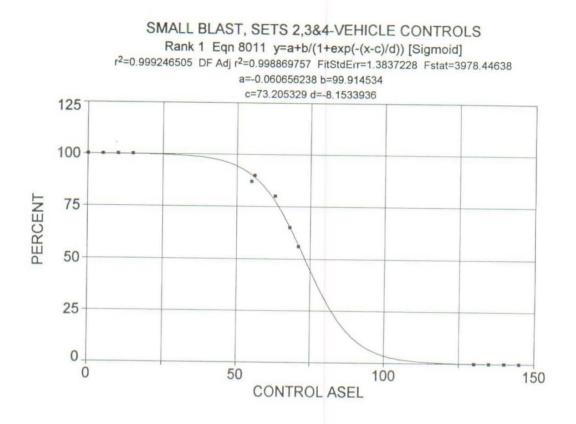
Date	TITIC	The obuice
Sep 28, 1994	9:41:55 AM	c:\tcwin\augl.prn



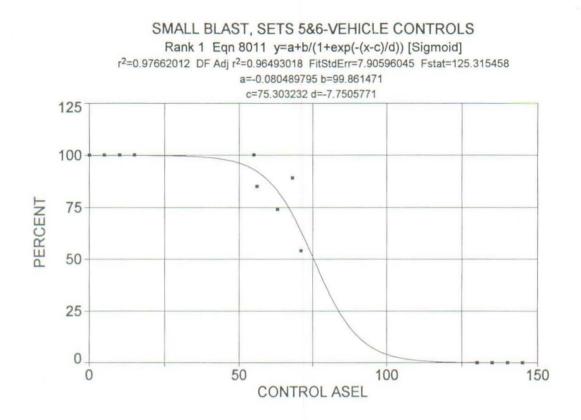
	ef Det 30227501		Adj r ² 820341252	Fit Std Err 5.2960803482	F-value 247,47486138	8
Parr	n Value		Std Error	t-value	95% Confide	ence Limits
ab	-3.35585 103.7291		5.51672863	10 -0.73888804 35 18.80265804	-13.6608308 91.21204772	6.949122770 116.2462763
d	63.22129			35 28.00221849 30 4.249236666	58.09866298 1.994687649	68.34393687
Date	28, 1994	Tim		File Source c:\tcwin\augl.pr		6.565535421

r ² Coe 0.978	ef Det 0109530		Adj r ² 570164296	Fit Std Err 7.4023019304	F-value 133.43156089)
Parm	Value		Std Error	t-value	95% Confide	nce Limits
a	0.175847	589	3.77715429	2 0.046555575	-8.39428067	8.745975849
b	100.1722	581	5.32460260	1 18.81309566	88.09106580	112.2534503
C	67.37852	602	1.51036398	2 44.61078709	63.95160405	70,80544800
d	8.864889	480	1.89150092	3 4.686695824	4.573191481	13.15658748
Date		Tim	e	File Source		

Duio	THITE	i ne obuice
Sep 28, 1994	10:05:37 AM	c:\tcwin\augl.prn


	ef Det 1804162	DF A0		Fit Std Err 5.1147053319	F-value 302.51192888	3
Parm a b c d	-0.459654 100.84928 78.879537	24 2 331 3 744 2	Std Error .743315050 .883440286 .214407870 .536868454	25.96905724	95% Confide -6.68406554 92.03799850 73.85518366 3.883628535	5.764757050 109.6605676 83.90389123
Date		Time	F	ile Source		

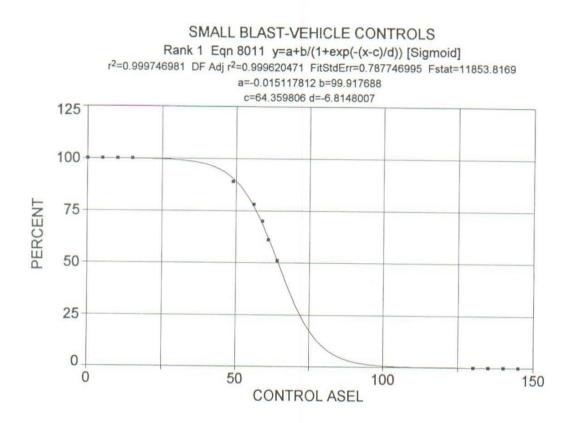
Sep 28, 1994 9:53:26 AM c:\tcwin\augl.pm



	ef Det 5798701			Fit Std Err 1.0383211487	F-value 7137.6484387	7
Parm a b c d	Value -0.07807 99.96489 78.20758 -8.02155	501 521	Std Error 0.522209368 0.739759745 0.391980090 0.403708148	135.1315690 199.5192795	95% Confide -1.26293618 98.28642614 77.31820676 -8.93754625	
Data		Tim				

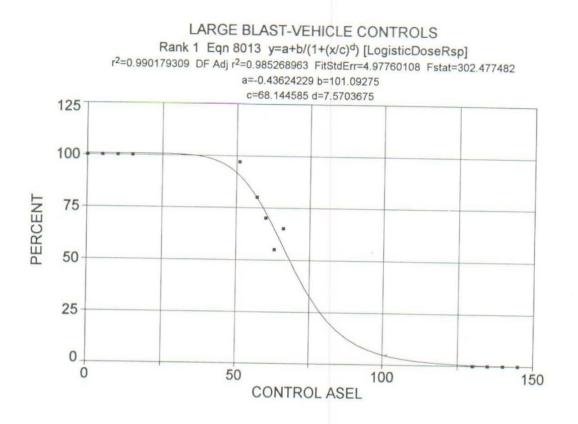
Date	Time	File Source
Sep 28, 1994	9:55:32 AM	c:\tcwin\augl.prn

	ef Det 2465050		Adj r ² 988697575	Fit Std Err 1.3837228029	F-value 3978.446378	1
Parn a b c d	-0.06065 99.91453 73.20532 -8.15339	3387 916	Std Error 0.69406693 0.98973003 0.48289941 0.52483918	6 100.9513001 0 151.5953998	95% Confide -1.63545097 97.66889795 72.10966042 -9.34422107	1.514138490
Date Sep 2	8, 1994	Tim 9:57	e 7:03 AM	File Source c:\tcwin\augl.pri	n	

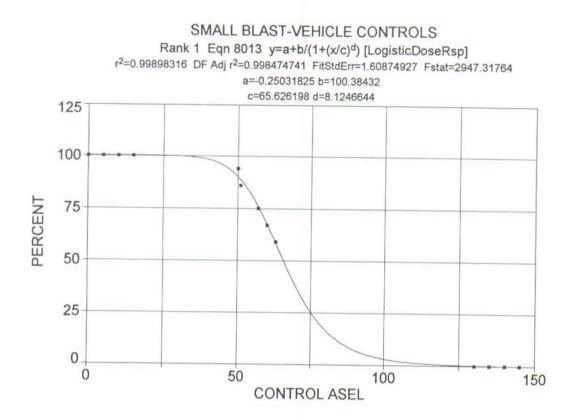

r ² Co	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.976	6201201	0.96	649301801	7.9059604503	125.31545792	2
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.08048	979	3.9640073	56 -0.02030516	-9.07457604	8.913596451
b	99.86147	094	5.63740184	10 17.71409486	87.07055665	112.6523852
cd	75.30323	3228	3.60379732	29 20.89552364	67.12644019	83.48002437
d	-7.75057	708	3.4593320	13 -2.24048373	-15.5995863	0.098432189
Date Sep 2	28, 1994	Tim 9:58	e 3:14 AM	File Source c:\tcwin\augl.pr	n	

	ef Det 7086817		Adj r ² 180630226	Fit Std Err 1.8327319737	F-value 2320.2072481	1
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	-0.00020	533	0.91728250	9 -0.00022384	-2.08146231	2.081051657
b	100.1272	314	1.29878117	9 77.09322636	97.18037766	103.0740852
C	75.96227	098	1.58155892	3 48.02999742	72.37381212	79.55072985
d	-15.4120	793	1.92713445	2 -7.99740741	-19.7846276	-11.0395311

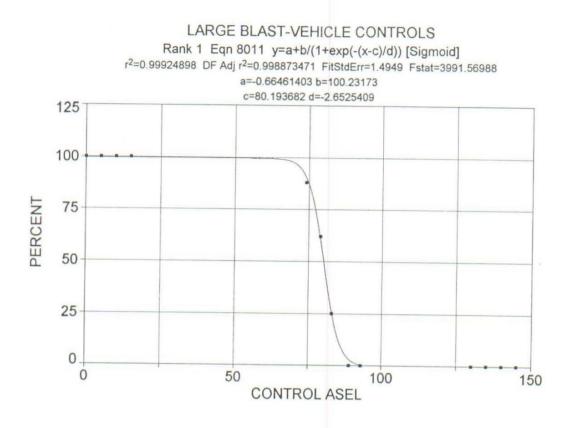
Date		lime	File Source
Sep 28,	1994	10:08:14 AM	c:\tcwin\augl.prn


November 1992 Test Period Indoor Measured Acoustical Data

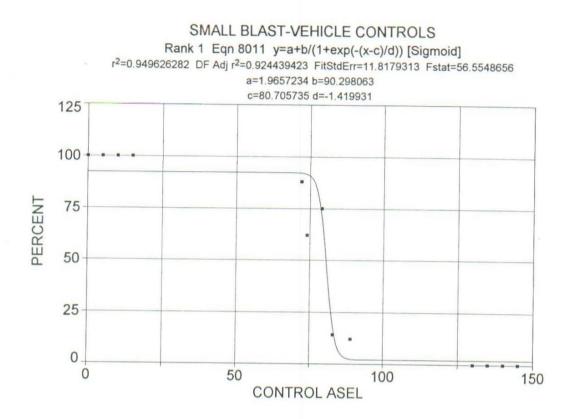
	ef Det 7469810		Adj r ² 996204715	Fit Std Err 0.7877469945	F-value 11853.816873	3
Parm a b c d	-0.015113 99.91768 64.35980 -6.814800	765 642	Std Error 0.39390413 0.55752527 0.19397352 0.24747236	3 179.2164276 4 331.7968608	95% Confide -0.90886180 98.65269747 63.91969255 -7.37630016	ence Limits 0.878626181 101.1826778 64.79992028 -6.25330132
Date		Tim	е	File Source		


Duit	THILE	r lie Source
Sep 28, 1994	10:09:13 AM	c:\tcwin\augl.prn

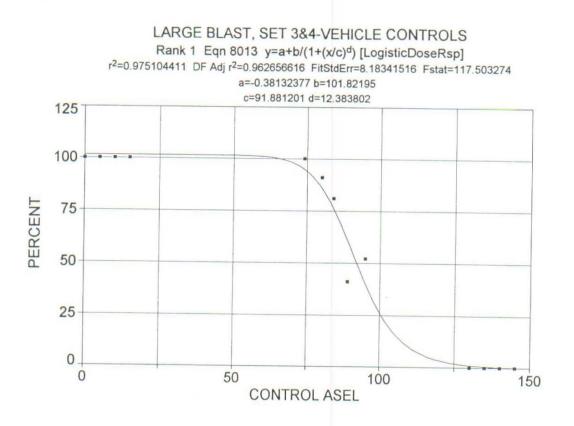
November 1992 Test Period Indoor Measured Acoustical Data


	ef Det 1793089		Adj r ² 152689633	Fit Std Err 4.9776010826	F-value 302.47748216	6
Parn a b c d	-0.436242 101.09275 68.144584 7.5703675	521 475	3.77675517 1.99745237	t-value 3 -0.16369058 5 26.76709171 6 34.11574943 8 4.062006083	92.52352945 63.61248949	5.610572776 109.6619748 72.67668000
Date		Time	9	File Source		

Sep 28, 1994 10:59:36 AM c:\tcwin\augl.pm


r ² Coe 0.998	ef Det 9831603		Adj r ² 984747405	Fit Std Err 1.6087492727	F-value 2947.3176374	1
Parm a b c d	Value -0.250318 100.3843 65.62619 8.124664	213 753	Std Error 0.82605134 1.181585539 0.611781545 0.639203162	6 84.95730375 5 107.2706394	95% Confide -2.12457739 97.70337714 64.23810324 6.674352147	ence Limits 1.623940887 103.0652654 67.01429182 9.574976617
Date		Tim	e	File Source		

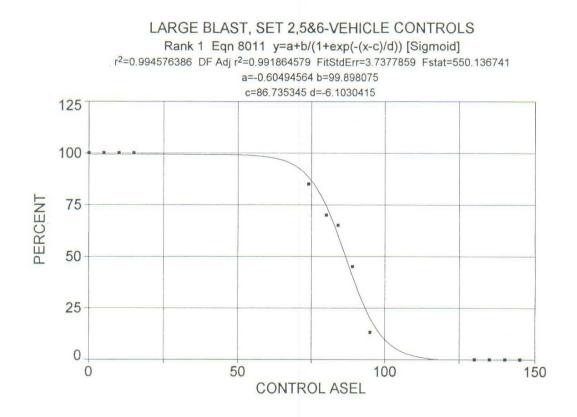
Date	Time	File Source
Sep 28, 1994	10:58:12 AM	c:\tcwin\augl.pm


	ef Det 2489805		Adj r ² 988734707	Fit Std Err 1.4949000012	F-value 3991.5698832	2
Parm a b c d	Value -0.664614 100.2317 80.19368 -2.652540	285	Std Error 0.64944156 0.99900887 0.14236525 0.13533490	8 100.3311689 7 563.2953157		ence Limits 0.808928508 102.4984175 80.51670012 -2.34547444
Date		Tim	e	File Source		

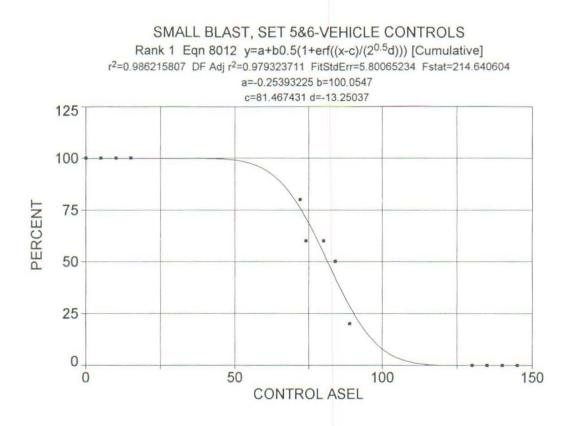
Sep 7, 1994 8:50:06 AM c:\tcwin\augh.prn

	ef Det 6262821		Adj r ² 244394231	Fit Std Err 11.817931330	F-value 56.554865596	5
Parm a b c d	Value 1.965723 90.29806 80.70573 -1.41993	350 457	Std Error 5.328337012 7.306980884 0.908037969 0.630184922	4 12.35778017 9 88.87925098	95% Confide -10.1239420 73.71897815 78.64545287 -2.84978142	ence Limits 14.05538885 106.8771488 82.76601627 0.009919395
Date		Tim	e	File Source		

Dato	1 mile	ne source
Sep 7, 1994	8:52:38 AM	c:\tcwin\augh.prn



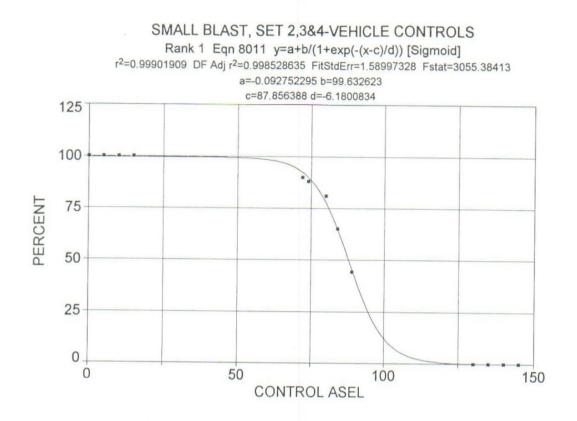
9:32:04 AM


Sep 7, 1994

	ef Det 1044109		Adj r ² 626566163	Fit Std Err 8.1834151592	F-value 117.50327400	0
Parm a b c d	-0.38132 101.8219 91.88120	535 079	Std Error 4.43166559 6.20974783 1.95915621 3.43510865	2 16.39711568 4 46.89835354	95% Confide -10.4364975 87.73242178 87.43599714 4.589754298	
Date		Tim	e	File Source		

c:\tcwin\augh.prn

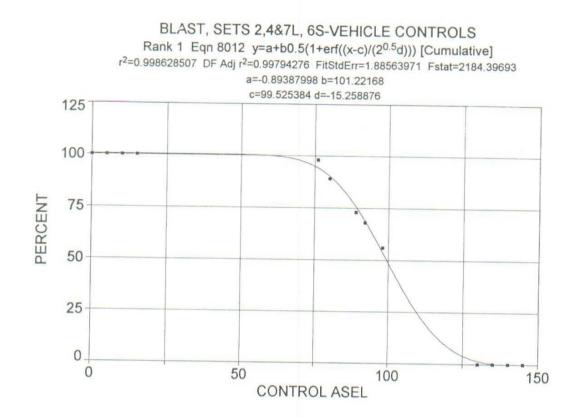
r ² Coe	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.994	5763863	0.99	18645795	3.7377858992	550.13674141	ſ
Parm	Value		Std Error	t-value	95% Confide	nce Limits
а	-0.60494	564	1.86661289	0 -0.32408736	-4.84017424	3.630282959
b	99.89807	510	2.64501457	5 37.76844031	93.89670147	105.8994487
C	86.73534	500	0.66273583	8 130.8746865	85.23163859	88.23905141
d	-6.10304	154	0.63700113	6 -9.58089586	-7.54835752	-4.65772557
Date		Tim	e	File Source		
Sep 7	, 1994	9:36	:29 AM	c:\tcwin\augh.pr	'n	



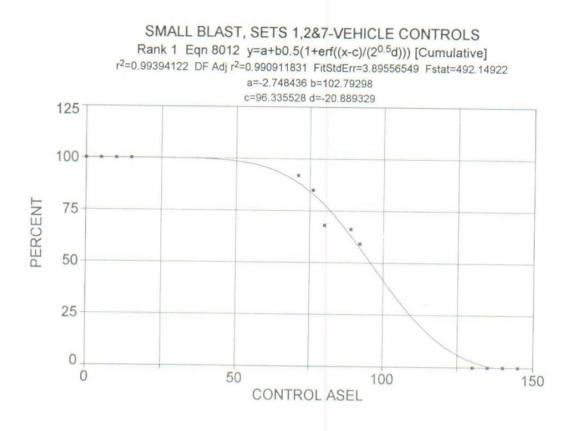
9:53:51 AM

Sep 7, 1994

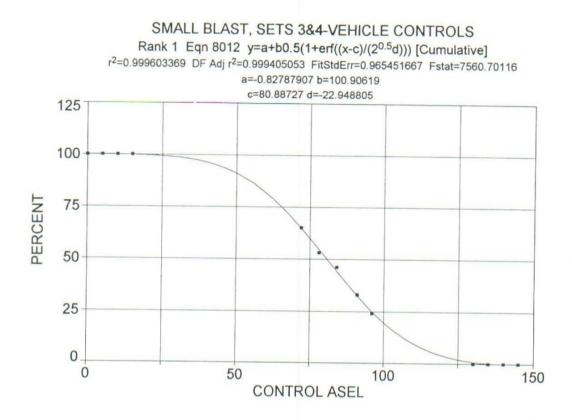
r ² Co	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.986	2158074	0.97	793237111	5.8006523374	214.64060402	2
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.25393	225	2.89999678	7 -0.08756294	-6.83384466	6.325980162
b	100.0546	965	4.10434709	3 24.37773762	90.74218813	109.3672049
C	81.46743	3128	1.23518888	2 65.95544413	78.66486450	84.26999806
d	-13.2503	698	2.25743502	9 -5.86965719	-18.3723495	-8.12839002
Date		Tim	e	File Source		


c:\tcwin\augh.prn

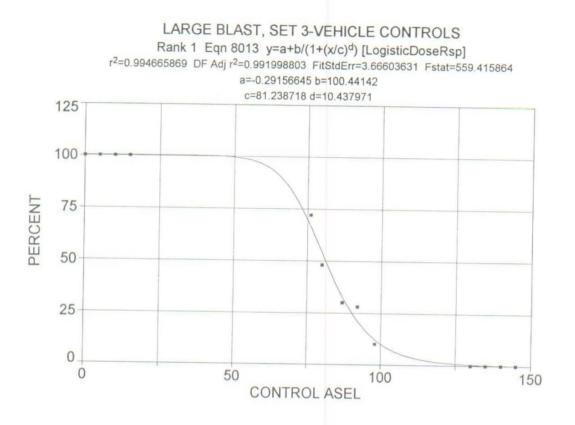
r ² Coe 0,999	ef Det 0190899		Adj r ² 985286348	Fit Std Err 1.5899732780	F-value 3055.3841276	3
Parm			Std Error	t-value		
a	-0.09275	230	0.79758330		95% Confide -1.90241922	1.716914626
b	99.63262		1.12156131		97.08787030	102.1773761
C	87.85638		0.33898263		87.08725750	88.62551855
d	-6.18008	343	0.36661516	0 -16.8571410	-7.01191044	-5.34825643
Date Sep 7	, 1994	Tim 9:57	e :37 AM	File Source c:\tcwin\augh.pr	n	


Appendix F: Blast Sound Transition Curves— Pressure-doubled and Free-field Measurements

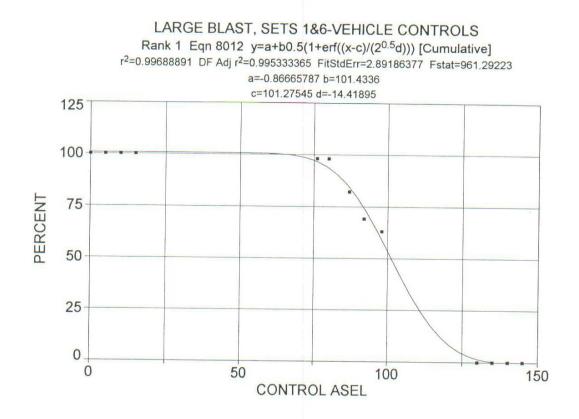
This appendix contains the transition curves for the blast sound data for subjects indoors and outdoors with the **control sound measured using the outdoor, free-field microphone and the blast sound measured using the outdoor, pressure-doubling microphone**. Each curve represents the grouping of data indicated on the curve. Each curve represents an entire test period, so there are two sets of curves for the two test periods that included outdoor subjects.


	ef Det 6285068		Adj r ² 979427602	Fit Std Err 1.8856397122	F-value 2184.3969340	D
Parm a b c d	Value -0.89387 101.2216 99.52538 -15.2588	838 8427	Std Error 1.12481982 1.54608401 0.76345447 1.17409210	1 65.46971772 6 130.3619107	95% Confide -3.44602622 97.71371527 97.79315353 -17.9228176	ence Limits 1.658266268 104.7296523 101.2576150 -12.5949336
Date		Tim	е	File Source		

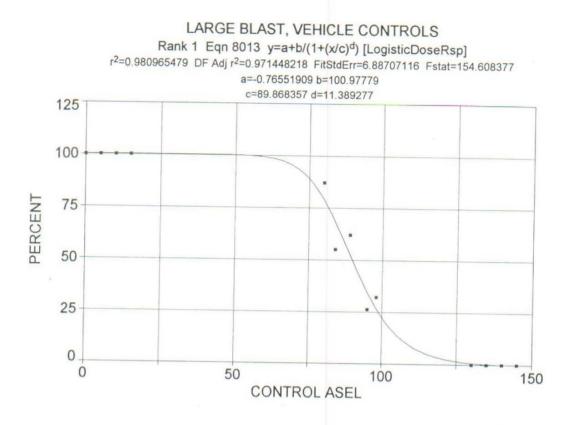
Date	TITIC	I IIE Source
Apr 20, 1994	10:59:59 PM	c:\tcwin\augh.prn

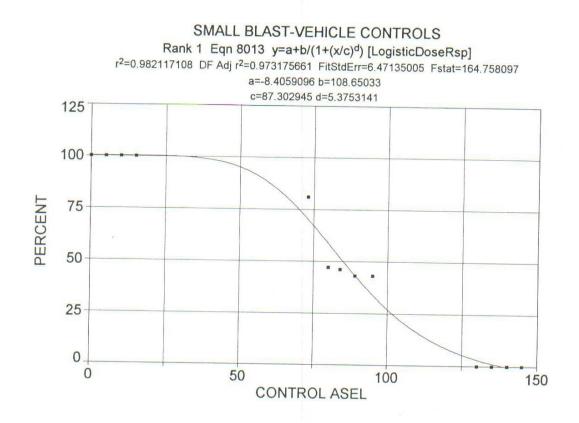

	ef Det 9412204		Adj r ² 909118306	Fit Std Err 3.8955654901	F-value 492.1492196	7
Parm a b c d	Value -2.74843 102.7929 96.33552 -20.8893	835 784	Std Error 3.38604923 4.13432223 2.45375240 3.27238516	7 24.86332164 5 39.26049248	95% Confide -10.4311712 93.41246340 90.76811618 -28.3141671	
Date		Tim	е	File Source		

Apr 20, 1994 10:56:54 PM c:\tcwin\augh.prn



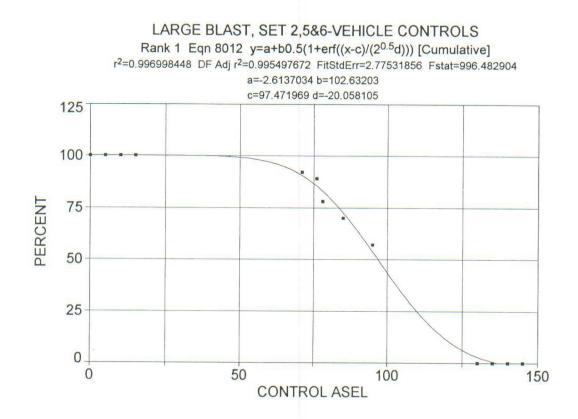
	ef Det 6033688		Adj r ² 994050532	Fit Std Err 0.9654516671	F-value 7560.7011572	2
Parm a b c d	-0.82787 100.9061 80.88726 -22.9488	858 964	Std Error 0.56365684 0.76678055 0.35130808 0.80678789	9 131.5972147 7 230.2459651	95% Confide -2.10678141 99.16640837 80.09017343 -24.7793570	0.451023266
Date		Tim	е	File Source		


Dato	TITLE	I lie Source
Apr 20, 1994	10:44:38 PM	c:\tcwin\augh.prn


						5	
	ef Det 6658688		Adj r ² 919988032		Fit Std Err 8.6660363119	F-value 559.41586352	2
Parn a b c d	 Value -0.29156 100.4414 81.23871 10.43797 	1217 1833	Std Error 1.94432173 2.6960902 0.80855785 1.17746172	33 70 59	t-value -0.14995793 37.25447281 100.4735993 8.864807393	94.32416047	4.119978680 106.5586829 83.07328585
Date Apr 2	0, 1994	Tim 10:3	ie 39:38 PM		ile Source :\tcwin\augh.pr	n	

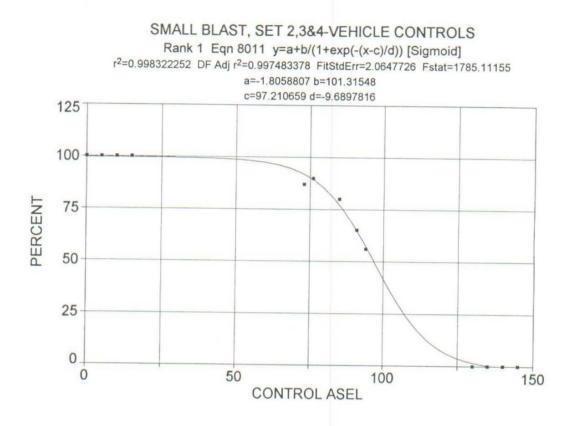

r ² Coef Det 0.9968889099	DF Adj r ² 0.9953333649	Fit Std Err 2.8918637704	F-value 961.29222989	9
Parm Value a -0.86665 b 101.433 c 101.275 d -14.4185	6009 2.3962131 4512 1.3038594	60 -0.49630692 11 42.33079288 67 77.67359427	95% Confide -4.82870787 95.99674232 98.31707517 -18.5525921	ence Limits 3.095392134 106.8704595 104.2338273 -10.2853075
Date Apr 20, 1994	Time 10:36:09 PM	File Source c:\tcwin\augh.pr	n	

	ef Det 9654788		Adj r ² 714482182	Fit Std Err 6.8870711597	F-value 154.6083774	7	
Parm	Value		Std Error	t-value	95% Confide	ence Limits	
b	-0.76551 100.9777	903	3.78887649 5.22471755	4 19.32693764		7.831206126 112.8323496	
cd	89.86835 11.38927		1.47220078			93.20868878 16.62386761	
Date Apr 19	9, 1994	Tim 9:35	e 5:07 PM	File Source c:\tcwin\augh.p		10.0200701	

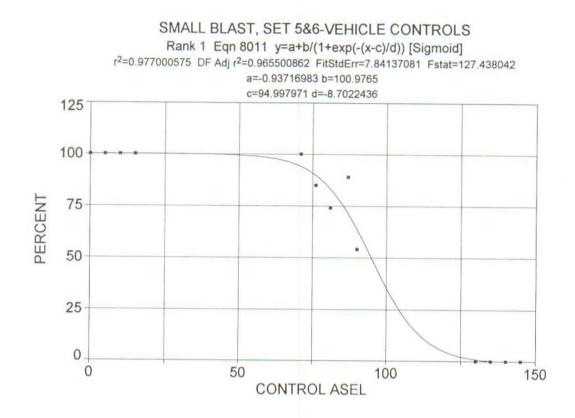


r ² Coef Det 0.9821171076	DF Adj r ² 0.9731756614	Fit Std Err 6.4713500456	F-value 164.75809709	
Parm Value a -8.40590 b 108.6503 c 87.30294 d 5.375314	261 10.48508021 510 4.225948557	10.36237434 20.65878084	95% Confide -30.4004773 84.86033101 77.71453055 1.629032920	nce Limits 13.58865808 132.4403213 96.89135964 9.121595350
Date Apr 20, 1994		File Source c:\tcwin\augl.prn		

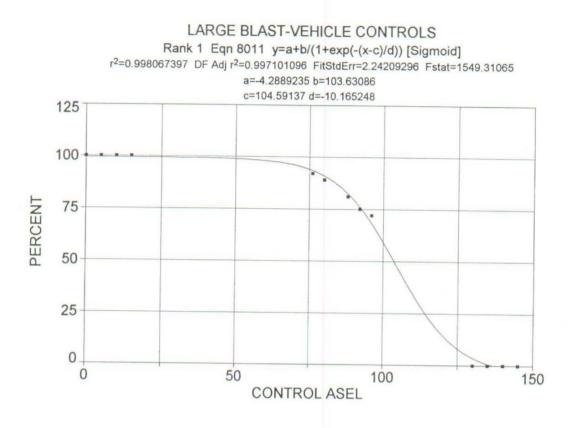
Apr 13, 1994 2:20:11 AM c:\tcwin\augh.prn


r ² Coe	ef Det	DF A	dj r ²	Fit Std Err	F-value	
0.989	1363659	0.983	37045488	5.3797444021	273.15068445	5
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	-0.947579	914 :	3.324317123	3 -0.28504475	-8.49024802	6.595089736
b	101.0585	659	4.473224952	2 22.59188102	90.90909660	111.2080352
C	103.0515	531 2	2.361975536	6 43.62939053	97.69237744	108.4107287
d	-13.85620	095 3	3.314231718	3 -4.18082100	-21.3759953	-6.33642383
Date		Time		File Source		

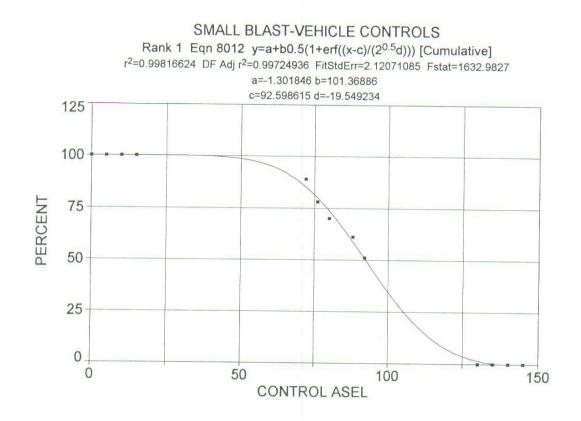
	ef Det		Adj r ²	Fit Std Err	F-value	
0.996	9984479	0.99	954976719	2.7753185641	996.48290414	4
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-2.61370	341	2.28157352	3 -1.14557054	-7.79045189	2.563045065
b	102,6320	261	2.83394300	9 36.21527525	96.20198560	109.0620666
C	97.47196	945	1.69194390	2 57.60945700	93.63305393	101.3108850
d	-20.0581	054	2.06017371	1 -9.73612337	-24.7325115	-15.3836993
Date		Tim	e	File Source		


Date	TITLE	The Source
Apr 19, 1994	8:49:55 PM	c:\tcwin\augh.prn

August 1992 Test Period Outdoor Measured Acoustical Data

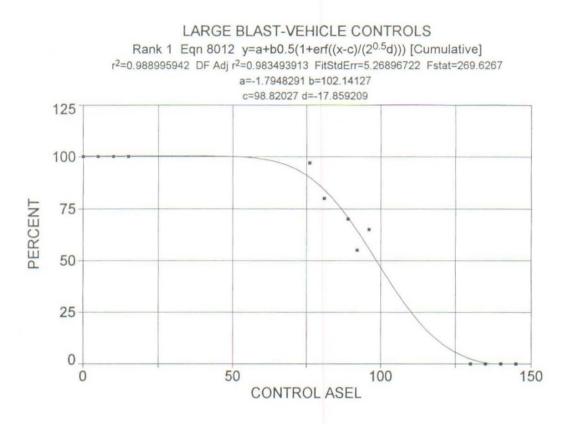

	pef Det 83222523		Adj r ² 974833785		Fit Std Err 2.0647726017	F-value 1785.1115539	9
Parr a b c d	n Value -1.80588 101.3154 97.21065 -9.68978	757	Std Error 1.37285144 1.87021935 0.95114478 0.93743016	55 88	t-value -1.31542326 54.17304414 102.2038493 -10.3365371	95% Confide -4.92079531 97.07206421 95.05257018 -11.8167524	ence Limits 1.309033850 105.5588871 99.36874696 -7.56281086
Date Apr 1	8, 1994	Tim 9:24	ie 4:37 PM		ile Source :\tcwin\augl.prn		

August 1992 Test Period Outdoor Measured Acoustical Data


r ² Co	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.977	0005747	0.9	655008620	7.8413708055	127.43804177	7
Parm	N Value		Std Error	t-value	95% Confide	ence Limits
а	-0.93716	983	4.58671262	-0.20432277	-11.3441356	9.469795952
b	100.9764	986	6.47450834	4 15.59601027	86.28624169	115.6667555
C	94.99797	129	4.16843640	5 22.78983342	85.54004824	104.4558943
d	-8.70224	364	3.71013815	-2.34553089	-17.1203165	-0.28417082
Date		Tim	le	File Source		
Sep 9	, 1994	8:49	9:53 AM	c:\tcwin\augl.prr	1	

August 1992 Test Period Outdoor Measured Acoustical Data

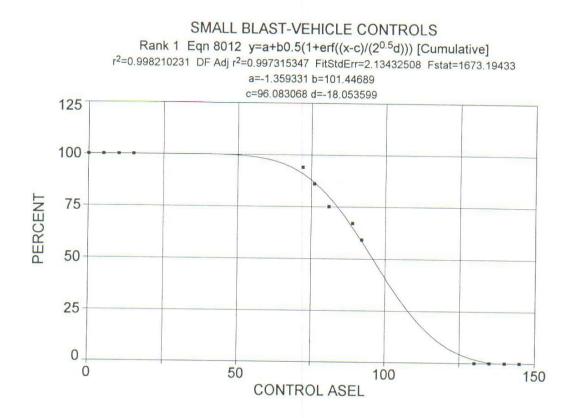
	ef Det		Adj r ²	Fit Std Err	F-value	
0.998	0673971	0.9	971010957	2.2420929594	1549.3106509	9
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	-4.28892	350	2.43711357	3 -1.75983735	-9.81858268	1.240735677
b	103.6308	632	2.88391316	0 35.93411363	97.08744352	
C	104.5913	716	1.69151270		100.7534345	108.4293088
d	-10.1652	480	1.13315488	3 -8.97074898	-12.7363060	-7.59419004
Date		Tim	е	File Source		
Apr 20), 1994	10:0	02:46 PM	c:\tcwin\augh.pr	'n	


November 1992 Test Period Outdoor Measured Acoustical Data

	ef Det 1662398		Adj r ² 972493597	Fit Std Err 2.1207108482	F-value 1632.9826974	4
Parm a b c d	Value -1.301846 101.3688 92.59861 -19.54923	639 535	Std Error 1.36808788 1.80842266 1.01494831 1.59497109	7 56.05374549 5 91.23480868	95% Confide -4.40595240 97.26566532 90.29576072 -23.1681247	ence Limits 1.802260314 105.4720625 94.90146998 -15.9303442
Date		Tim	e	File Source		

ED CALO	1 IIIIo	The obuice
Apr 20, 1994	10:04:39 PM	c:\tcwin\augh.prn

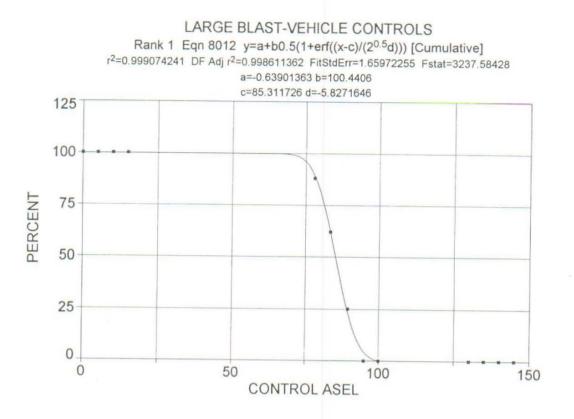
November 1992 Test Period Outdoor Measured Acoustical Data



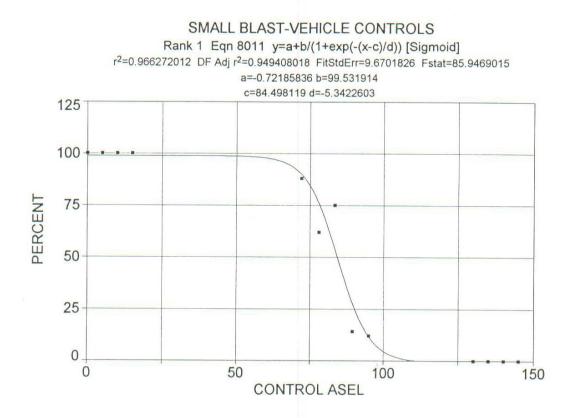
10:11:49 PM c:\tcwin\augh.prn

Apr 20, 1994

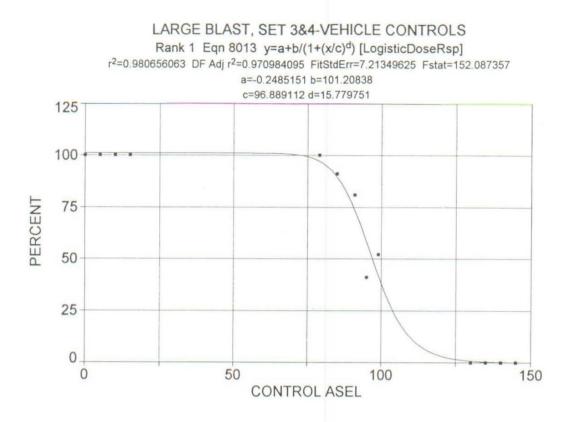
	ef Det 9959421		Adj r ² 334939131	Fit Std Err 5.2689672156	F-value 269.62669966	3
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-1.79482	915	3.85350888	1 -0.46576489	-10.5382012	6.948542929
b	102.1412	677	4.94001226	6 20.67631865	90.93268702	113.3498484
C	98.82026	978	2.59773069	4 38.04099864	92.92618034	104.7143592
d	-17.8592	090	3.86545970	4 -4.62020313	-26.6296968	-9.08872127
Date		Tim	e	File Source		


January 1993 Test Period Outdoor Measured Acoustical Data

	ef Det 2102314		Adj r ² 973153471	Fit Std Err 2.1343250812	F-value 1673.1943283	3
Parm a b c d	Value -1.35933 101.4468 96.08306 -18.05359	858 802	Std Error 1.42611270 1.89048245 1.14033368 1.60379787	6 53.66190280 9 84.25872967	95% Confide -4.59509207 97.15749866 93.49572178 -21.6925164	ence Limits 1.876430050 105.7362730 98.67041426 -14.4146810
Date		Tim	e	File Source		

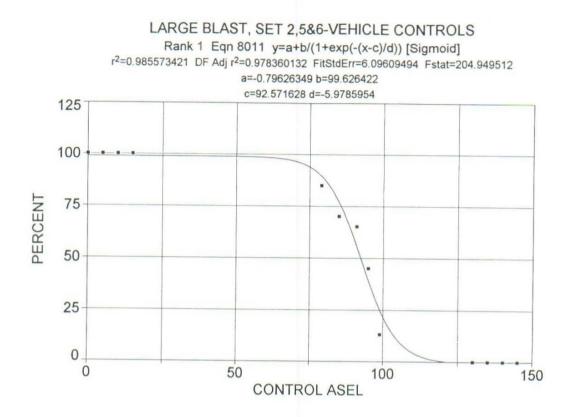

Apr 20, 1994 10:07:35 PM c:\tcwin\augh.prn

January 1993 Test Period Outdoor Measured Acoustical Data

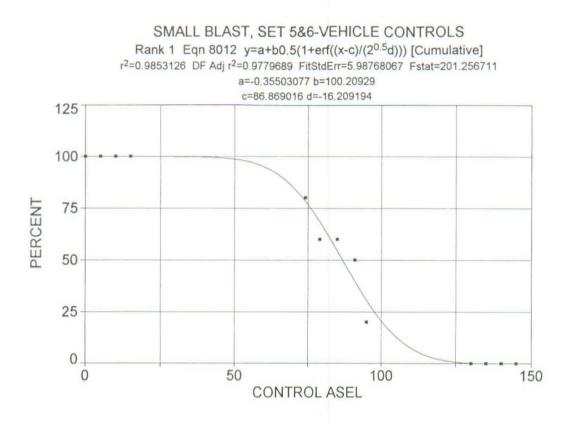


	ef Det		Adj r ²	Fit Std Err	F-value	
0.999	0742410	0.9	986113615	1.6597225463	3237.584277	1
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.63901	363	0.73678936	7 -0.86729487	-2.31074290	1.032715632
b	100.4406	025	1.11907732	6 89.75304939	97.90148565	102.9797194
C	85.31172	636	0.21152047	9 403.3260825	84.83179954	85.79165318
d	-5.82716	462	0.27866697	0 -20.9108550	-6.45944265	
Date		Tim	е	File Source		

Sep 7, 1994 8:50:57 AM c:\tcwin\augh.pm



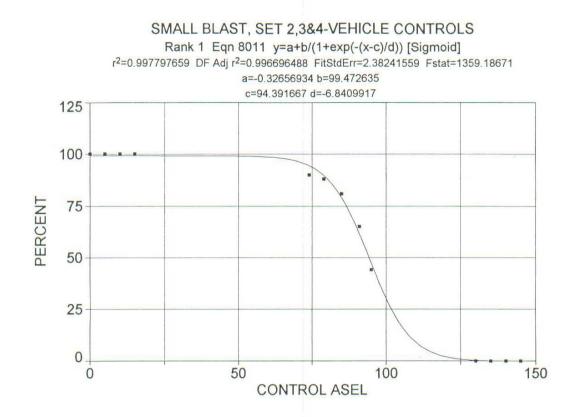
r ² Co	ef Det	DF	Adj r ²	Fit Std Err	F-value	
0.966	2720123	0.9	494080184	9.6701825966	85.946901460	C
Parn	n Value		Std Error	t-value	95% Confide	ence Limits
а	-0.72185	836	4.76437257	3 -0.15151174	-11.5319235	10.08820680
b	99.53191	437	6.80109094	7 14.63469834	84.10066184	114.9631669
C	84.49811	901	1.63788105	2 51.58989959	80.78186873	88.21436929
d	-5.34226	032	1.40655243	4 -3.79812383	-8.53364035	-2.15088030
Date		Tim		File Source		
Sep /	7, 1994	8:5	1:58 AM	c:\tcwin\augh.pr	'n	



Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Co	ef Det	DF	Adj r ²	F	it Std Err	F-value	
0.980	6560634	0.9	709840951	7	.2134962541	152.08735668	3
Parm	Value		Std Error		t-value	95% Confide	ence Limits
а	-0.24851	510	3.78637571	13	-0.06563403	-8.83956619	8.342535988
b	101.2083	796	5.30472419	97	19.07891453	89.17229018	113.2444690
C	96.88911	173	1.37843023	38	70.28945614	93.76153922	100.0166842
d	15.77975	070	4.26777896	52	3.697415175	6.096425567	25.46307584
Date		Tim	е	F	ile Source		
Sep 7	, 1994	9:33	3:04 AM	C	tcwin\augh.pr	n	

r ² Coe	ef Det 5734213		Adj r ² 783601319	Fit Std Err	F-value	
0.905.	5754215	0.97	03001319	6.0960949408	204.94951190)
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.796263	349	3.06399901		-7.74828676	6.155759772
b	99.62642	174	4.32774637	3 23.02039287	89.80703428	109.4458092
C	92.57162	818	1.04210775	5 88.83114794	90.20715047	94.93610589
d	-5.97859	539	1.06108793	7 -5.63440143	-8.38613795	-3.57105283
Date		Tim	e	File Source		
Sep 7	1994	9:39	27 AM	c:\tcwin\augh.pr	n	



9:51:53 AM

Sep 7, 1994

	ef Det 3126001		Adj r ² 779689001	Fit Std Err 5.9876806705	F-value 201.25671090	D
Parm	Value		Std Error	t-value	95% Confide	ence Limits
a	-0.35503	077	3.06419392	8 -0.11586433	-7.30749629	6.597434747
b	100.2092	875	4.31133399	4 23.24322070	90.42713875	109.9914363
C	86.86901	606	1.56155782	1 55.62971469	83.32593844	90.41209367
d	-16.2091	941	2.90860874	0 -5.57283416	-22.8086465	-9.60974173
Date		Tim	е	File Source		

c:\tcwin\augh.prn

r ² Coe 0.997	ef Det 7976587		Adj r ² 966964881	Fit Std Err 2.3824155868	F-value 1359.1867084	4
Parm	Value		Std Error	t-value	95% Confide	ence Limits
а	-0.32656	934	1.21676239	6 -0.26839204	-3.08732757	2.434188885
b	99.47263	489	1.71881246	8 57.87288417	95.57275626	103.3725135
C	94.39166	734	0.56843791	6 166.0544884	93.10191705	95.68141764
d	-6.84099	171	0.65747603	2 -10.4049294	-8.33276395	-5.34921947
-		-				

Date	lime	File Source
Sep 7, 1994	10:02:40 AM	c:\tcwin\augh.prn

Acronyms

- ADNL A-weighted day-night sound level
- ANSI American National Standards Institute
- APG Aberdeen Proving Ground, MD
- ASEL A-weighted sound exposure level
- B&K Brüel and Kjær
- CCMS Command Control and Monitor System
- CDNL C-weighted day-night sound level
- CEC Council of European Communities
- CSEL C-weighted sound exposure level
- DoD Department of Defense
- HVAC heating, ventilating, and air conditioning
- NATO North Atlantic Treaty Organization
- SEL sound exposure level

USACERL U.S. Army Construction Engineering Research Laboratories