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Geographical Modeling Systems (GMSs) are
computer-based, dynamic landscape simulation
tools.  As computing power continues to
become cheaper and faster, GMSs will become
increasingly important for the intelligent
management of landscapes.  However, a
number of technical challenges must be met
before GMS capabilities are widely accepted,
several of which are addressed in this research. 
First, because landscape processes occur and
are modeled at a variety of spatio-temporal
scales, it is necessary to support simultaneous
simulation of disparate scales.  Second, current
landscape decision support systems lack the
ability to simulate the behavior of individuals. 
Simulation modeling of populations is
unsuitable

for very low population densities where the
location of individuals on a large, diverse, and
fragmented terrain are important.  Finally, in a
management setting, techniques for linking
distinct landscape models to run
simultaneously are necessary.  All of these
capabilities should run on a common platform
with a consistent user interface.  More
importantly, each submodel should relax its
requirement to hold the landscape constant and
instead share dynamically varying states
between submodels.  This effort develops
fundamental approaches with prototypes for the
simulation of mobile entities within dynamic
landscapes.
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1 Introduction

1.1 Background

This study investigates new approaches in dynamic landscape simulation
techniques that will be helpful in the management of landscapes such as military
training lands.  In particular, it develops and demonstrates fundamental
techniques that allow simulation of the movement of individual entities across a
static or dynamic raster (checkerboard) landscape.  Raster-based landscape
simulation modeling is providing a powerful tool for investigating direct and
indirect impacts of land management decisions. Populations distributed across a
landscape can readily be simulated with distributed differential equations that
capture the dynamics of the population with respect to other populations,
resources, and conditions.  At very low population densities, however, the meaning
of a population becomes lost.

Consider, for example, a density of one individual per hundred hectares being
simulated in a landscape array of 10-meter square cells.  The individuals, captured
as populations in these cells, will result in populations of less than one individual.
Perhaps the individuals are birds and in a particular cell a population of .15 birds
lays a clutch of .743 eggs.  An individual effectively exists across a number of cells.
Within that area there are sites that might be either very favorable, or very
unfavorable, to the success of eggs turning into hatchlings.  With large populations,
the distribution of individuals throughout both areas results in an overall success
probability with relatively low variability.  As the population drops, that variability
increases and it therefore becomes important to simulate the movement and
behavior of individual animals and plant populations.  Various forest models have
recognized the importance of modeling individuals (see section 2.3).

This study shows that, using event-driven object-oriented simulation technologies,
it is now possible to capture knowledge about the life-history and behavior of
individuals in simulation software.  Coupled with raster-based landscape
simulation modeling software, a powerful tool emerges for exploring the behavior
of individuals representing threatened and endangered species, herds, people,
vehicles, and collections of vehicles.  Research described here focuses on fundamen-
tal issues and approaches that (1) facilitate the design and development of mobile
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*
Stella is a desktop modeling tool that uses icons and schematics, linked with equations, as the mechanism to
build models.  It is a product of High Performance Systems, Inc., 400 Lyme Road, Suite 300, 2 Hanover, NH
04755, (800) 332-1202.  Mention of this tool does not imply endorsement by the Department of Defense or the
U.S. Army.

entities within simulated dynamic landscapes, and (2) support interaction of such
entities with raster-based landscape simulations.

Over the past 2 years the author gained experience developing simulation models
for Fort Irwin, CA, landscapes in conjunction with Professor Bruce Hannon
(Department of Geography, University of Illinois at Urbana-Champaign) and three
classes in “Advanced Ecological Modeling.”  Through these classes, we guided an
interdisciplinary group of students and faculty in the design and development of
a dynamic spatial model of a section of the Mojave Desert that focused on habitat
suitability and population densities of the Desert Tortoise.  The Stella* (Hannon
and Ruth 1994) and Spatial Modeling Environment (SME) software (refer to section
3.1.3) were selected for development of the dynamic model.  Landscape maps were
prepared with the Geographic Resources Analysis Support System (GRASS)
geographical information system software (see Appendix A).  For these efforts, a
fixed grid of cells 1 kilometer on a side was selected along with a fixed time step of
1 week.  This combination ensured that tortoises were allowed to move a full
kilometer in the course of a week.  A number of shortcomings associated with this
approach initiated the design effort of the current study.

Simulation restricted to populations.  The Stella programming environment is
designed to accommodate state variables, those variables that change over
time based on the difference equations provided by the user.  It does not easily
allow for the movement of individuals.  The author did coerce Stella into
moving individuals around in a sample model of Sage Grouse behavior on a
landscape (Westervelt et al. 1995).  To manage this (1) only a single Grouse
was allowed to occupy any given cell, and (2) a set of facts about the individual
(i.e., existence, age, time since fertilization, and number of eggs and young)
were packaged into a single state variable.  In any given time-step, this
information was teased out of the single variable for use by system equations.
When the computations were complete, the updated information was then
repackaged for storage in the state variable.  The drawbacks to this approach
were that simulations (1) were relatively difficult and abstract, (2) were
limited with respect to the amount of information that could be stored in a
single number (limited by the number of digital bits used to store numbers),
and (3) were computationally inefficient.
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Forced movement of a full kilometer.  In the SME environment, individual
cells are treated as homogeneous systems.  If an entity moves into the cell, it
then has an equal potential for exiting that cell in any of the available
directions (north, south, east, and west).  This can lead to inaccurate results
if that entity has a home range that is much smaller than the cells.  For
example, the author’s tortoise model (Westervelt, et al. 1998) uses 1-kilometer
cells, but the tortoise home ranges are 100 meters or less.  The 1-kilometer
resolution was chosen because that is the maximum anticipated movement of
a tortoise in a 1-week time-step.

No inter-entity interactions.  Because discrete entities cannot be accommo-
dated, such entities cannot interact with each other.  This includes preda-
tor-prey interactions, mating, grouping or herding, and maintaining
boundaries of home ranges.

The application of modeling and simulating distinct entities on the landscape is
widespread.  The Endangered Species Act (ESA) established that the United States
resolves to take certain steps toward saving identified species.   Many threatened
and endangered species (TES) on the lists reside across broad regions, but exist at
such low densities that every individual within any management area becomes
important.  All government agencies are required to manage the landscapes within
their purview with respect to the ESA.  The Army and Department of Defense
(DoD), as large landowners, have significant responsibilities with respect to such
species because government landscapes often represent dwindling original
communities and ecosystems upon which some endangered species depend.

To address the ESA requirement to increase the numbers of such animals (or
plants), the scientific community seeks to identify the environmental conditions
under which each species will flourish.  The relationships between these conditions
and the anticipated response by individuals, populations, and the species as a
whole form a scientific model.  Models are formulated that connect day-to-day
environmental conditions with the responses of individuals, the year-to-year
conditions with populations, and longer time frames with the genetic status of the
species.  Computer simulations play a crucial role in this process by (1) providing
a framework that facilitates a complete formalization of the model, and (2)
providing feedback to the modeler(s) about the logical consequences of the model.
Through this process, computer simulations allow the scientific community to
further perfect their understandings, which then result in more effective
management of threatened and endangered species.
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The research conducted here focuses on requirements for supporting the modeling
and simulation of threatened or endangered species that exist at very low densities
on the landscape.  Such species include the Red-cockaded Woodpecker, the Desert
Tortoise, and the Sage Grouse, all located on Army installations.  These species are
at sufficiently low densities that modeling them at the level of the individual may
prove to facilitate the design and development of better species management plans.
Focusing on individuals requires that the behavior of the individuals be simulated
with respect to time resolutions on the order of days.  The next section explores,
through an imaginary future scenario, what the existence of a powerful, integrated
ecological simulation software environment might mean to military installation
land management.  It is then followed by a more formal exploration of the reasons
behind advocating the development of ecological land simulations (section 1.3).

1.2 Future Scenario

To help visualize the utility of a geographic modeling system, this section develops
a hypothetical future scenario that involves a simulation challenge at a military
installation.  Imagine that the year is 2003.  Fort Hood, TX has been challenged to
expand training areas into adjacent properties.  This expansion is desired to
accommodate an anticipated expanded tracked vehicle training mission.  The
environmental office is tasked with generating several annual training scenarios
and then evaluating each with respect to the direct and indirect impacts on (1) the
ability to train (2) the effects on Golden-cheeked Warbler populations (3) the effects
on Black-capped Vireo populations, and (4) the effects on local and regional
biodiversity. This effort is part of the environmental assessment (EA) require-
ments.  Management decides that the analysis shall be accomplished by an
interdisciplinary group consisting of individuals from the environmental, training,
and scheduling offices.  They will have at their disposal several workstations that
have recently been used to test the latest version of I-STEMS, the Integrated
Spatio-Temporal Ecological Modeling System.   

Days 1 and 2: Team Assembles

A high-priority meeting is held to assemble and brief the team that will be handling
this assignment.  They are tasked to develop a dynamic training area simulation
model focused on the intended expansion area and adjacent existing Fort Hood
properties.  The resulting model will be used to evaluate the direct and indirect
impacts of a change in mission on a new training area that has been designed for
these areas.  Known concerns that will need to be addressed before this area can
be used for the intended training are: (1) two threatened or endangered species (2)
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potentially sensitive ecosystems and habitats (3) water quality requirements for
drinking water wells down-stream (4) impact on regional biodiversity initiatives,
and (5) timber harvest goals.  The team must provide a working simulation model
and preliminary results within 20 days to support a briefing to visiting dignitaries.
In addition to the workstations at each member’s desk, the main server located in
the environmental office is available  (a $50K machine containing 256 Mbytes of
internal RAM, with four 200-MHz processors, and 20 gigabytes of on-line
hard-disk).  Fort Hood has been connected to the Internet since the mid 1990s and
now has a 10-megabit-per-second connection to the outside world, which provides
them with powerful run-time access to several supercomputer centers including the
thriving National Center for Supercomputing Applications (NCSA).  The team will
be using the latest release of I-STEMS.  

Following the initial briefing, the team meets and establishes the following
subteams:
� Species-specific models
� Weather and climate
� Hydrology
� Communities and ecosystems
� Geographic Information Systems (GIS) and image processing
� Visualization and control
� Training.

Each team is tasked with identifying and evaluating local sources and available
model components distributed across the network.

Day 3:  Available Component Reports

The simulation team meets to brief each other on the information discovered during
a day of exploration.  Potential system components are presented in Table 1.  All
components conform to the I-STEMS standards, which allow them to be readily
integrated.   Team reports are as follows:
� Species-specific team:  Three models of local threatened and/or endangered

species are available.  Population- and individual-based models are available
for the Black-capped Vireo and the Golden-cheeked Warbler.  The team
recommends adopting the population-based model.

� Weather and climate:  Weather and climate models have been identified on
the network.  Both are identified as standard, accepted models and model
outputs.

� Hydrology:  The Saghafian model (Saghafian 1993) was located in I-STEMS
format.  It has now been verified on a wide variety of landscapes.  Also, a new
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soil compaction model conforming to I-STEMS has been located at the U.S.
Army Engineer Waterways Experiment Station (USAWES) server.

� Communities and ecosystems:  The standard plant succession model
developed by the Army Corps of Engineers is available in Beta release 4.2
form.  

� GIS and image processing:  Extensive historical and current geographical
information system and imagery data exists on-site and can be adapted to
I-STEMS.

� Visualization and control:  The Internet server at the University of Illinois
currently offers a wide variety of visualization and control objects for
I-STEMS applications.  These include the traditional meters, sliders, menus,
feedback panels, dials, and buttons.  Several sophisticated new intelligent
controllers are now also available at this site to manage tradeoff options,
various optimization approaches, and collaborative modeling tools.

� Training:  Two training model sets are available.   Fort Hood’s training impact
tables have been used quite successfully for the past decade and relate
training exercises and training areas with degrees of estimated environmental
damage.   The U.S. Army Construction Engineering Research Laboratories’
(USACERL) relatively new set of maps add a spatial dimension to these tables
and provide impact information at a resolution of 30 meters.  The team
decides to adopt these maps and the USACERL approach to developing such
maps.

Day 4:  Register Available Submodels

A new model is established on the server.  This process consists of setting up an
information exchange server that will facilitate communications between different
processes running on different machines.  All participants are told to establish
I-STEMS environments on their individual workstations, which attach to this
server.  Once this is done, all team members can readily query and view any
portion of the developing model as well as establish model components on their own
machine.  Team members then begin to set up the submodels selected from Table
1 on the local machines.  By the end of the day, each member is able to view the
status of the virtual interconnections between the various submodels.  For example,
a query on the status of the hydrologic simulation model yields the report shown
in Figure 1.
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Table 1.  Hypothetically available model components.

Potential 

Component

Source Description dT,dS Inputs Required Outputs 

Available

Black-capped

Vireo

USACERL Population model 

object developed for

Ft. Hood (1998)

1 wk,

1 km

Weather, Topology

Vegetation (grass,

forb, shrub, tree)

Densities in 6 age

classes

Black-capped

Vireo

U of Texas Individual based 

object developed for

the State of Texas

(2001) 

1 day,

100 m

Density of predators

Weather

Topology

Vegetation (5 species)

Location

Health indices (5)

Age, sex, etc.

Golden-

cheeked 

Warbler

Texas

A&M

Population model 

object developed for

Ft. Hood in (1998)

1 wk,

1 km

Weather, Topology

Vegetation (grass,

forb, shrub, tree)

Densities in 6 age

classes

Vegetation 

density maps

USACERL Vegetation, grass,

shrub, forb, and tree

(2002)

N/A,

30 m

N/A N/A

Vegetation 

succession

model

Colorado

State Univ.

20-species succession

model (1999)

1 mo,

100 m

Soil type

Soil compaction

State of starting 

vegetation

Succession

phase

Tracked-vehicle

impact model

USAWES Soil compression

model (1997)

N/A,

N/A

Tracked-vehicle days

per ha, Soil type

Soil compression

Biodiversity

model

INHS 10-keystone species

model (1998)

1 yr,

10 km

Climate, % land in

each of 5 succession

states

Densities for each

species

Genetic variability

for each species

Training models USACERL/

Ft. Hood

Maps created for each

exercise and training

area combination

(2003)

1 day,

30 m

Training exercise

Training area

Average

tracked-vehicle

days per ha.

GIS Ft. Hood Extensive 100+ theme

digital map database.

N/A,

5 m -

100 m

N/A 100+ themes,

some historical

data; extensive

imagery

Hydrology USACERL The Saghafian

finite-difference model

(Saghafian, 1993)

minutes

days,

30 m

Topographic data,

land use and cover

Saturation depth,

velocity, scouring,

and deposition

Weather National

Weather

Service

Historical and average

weather conditions

and probabilities

1 day,

100 m

Day of year Temperature and

rainfall: average,

standard dev.,

and probability
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MAIN MODEL INFORMATION
Name: Ft. Hood Extension Simulation
Main Server:   env.fthood.army.mil
Access Code:   175
SUBMODEL INFORMATION
Name: Hydrologic Simulation
Model Server:   hydro.fthood.army.mil
Access Code:   180
METADATA
Author: Bahram Saghafian
Version: 4.3.1
I-STEMS version:   2.6
Resolution: 30 meters
INPUTS
NAME UNITS          INITIATED BY      SUPPLIED BY      CONVERTER
Elevation meters                GIS                             N/A N/A
Slope percent               GIS                             N/A N/A
Initial saturation   mm                     GIS                             N/A N/A
Soil permeability   mm/day              GIS                             N/A N/A
Manning's K K                        GIS                     Vegetation Model N/A
Water mm/hr                 N/A                           Dummy             mm/inch
OUTPUTS
NAME    UNITS               USED BY SUBMODEL
Soil saturation mm Vegetation
Water depth   mm Vegetation

Golden-cheeked Warbler
Black-capped Vireo
Training

Water velocity Vegetation
Soil scour/deposition mm Vegetation, Succession

Figure 1.  Hydrologic simulation model report.

This report begins by indicating that this submodel has been registered with a
“main model” called “Ft. Hood Extension Simulation,” which is registered on the
machine called env.fthood.army.mil.  Connection to this model is accomplished with
the code: 175 (which is a port or socket type number).  This submodel has registered
itself with the main model and will be running on and accessible through
hydro.fthood.army.mil.  Note that all submodels may run on separate machines.
Underlying information brokers facilitate virtually seamless integration of these
submodels.  Some model metadata is also displayed.  Here, that information
identifies the version number of the submodel and the latest I-STEMS version
under which the model is known to operate.  A section on inputs and outputs
provides information on how the submodel is currently linked to other submodels.
 These links were established using user interfaces that probe the model space for
available variables and then allow the modelers to establish the desired connec-
tions.  The CONVERTER column under inputs identifies which, if any, standard

unit converters were used to establish the connection.  The OUTPUTS section
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identifies the submodels that currently use the available outputs.  The lists of such
submodels will grow and shrink as the different components link themselves with
each other.

The input “water” is identified as being supplied by submodel “Dummy.”  This is
a reserved submodel name that is attached to very simple data generators.  Model
developers are allowed to create dummy inputs defined by fixed values or graphs
that use time (e.g., month) as the independent variable.  The purpose is twofold.
First, inputs that are not being generated by other submodels can be simply
accommodated in this fashion.  Second, during debugging and sensitivity analyses,
input variables can be set to static values.

Each submodel can be probed in a manner that results in a report similar to the
simulation report in Figure 1.  Components other than submodels can be
established and then viewed through this report.  The most important classes are
viewers and controllers.  Viewers are essentially submodels that only access output
from other models; they probe submodels and display information in numerous
fashions.  Generally this means that they provide run-time views of system states
(maps, tables, strip charts, etc.) or dump data to output files for later analysis.
Controllers, similarly, are basically submodels that provide input to other
submodels.  Based on human interactions with graphical user interfaces (GUIs),
they supply values to submodels.  Such inputs are injected into the associated
submodels at the time they are set (typically the receiving submodel controls the
data probe).

Of the numerous other interfaces available to the modelers, two require a brief
mention here.  A main control panel is available for starting and controlling the
model, as a whole.  This interface allows the user to turn any of the various
submodels into ON, OFF, and STATIC modes.  OFF makes the submodel appear
to be nonexistent.  STATIC turns the submodel off, but allows it to generate
predefined static information much like the “Dummy” submodel.  ON causes the
submodel to operate normally during the course of a simulation run.  These are
used to control the view and controller components as well.  The second general
type of important interface is the control panel for supporting simple modifications
to each of the submodels and view/controller interfaces.   For example, a generic
population submodel can cover a wide range of populations by simply allowing the
modeler to “tweak” such attributes as growth rate, consumption rate, fecundity rate
or home-range size.   Alternatively, a user interface might allow a wide variety of
displays for a given series of data:  bar chart, strip-chart, colors, or ranges.
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Days 5-10: Research To Develop Missing Components and To Extend or Modify
Available Components

The team uses a full week to follow the initial assembly of available components
with some development of additional simulation components.   In particular, the
available visualization tools have to be assembled in a manner that maximizes the
match to the current application.  The training submodels need to be upgraded to
reflect the new training scenarios and weapon systems anticipated for the new
landscape.  Each submodel is run independently to identify as many potential
errors as possible.

It is also decided that two models will be developed to help address the overall goals
and objectives.  The biodiversity questions require a time-step and resolution
sufficiently different from the other questions to warrant a separate model.
Outputs from the two models are expected to be used to modify each other as the
underlying systems are being driven by the same engines.

Days 11-14:  Integrate and Debug

This week’s effort involves numerous runs of the simulation model with succes-
sively more components turned on.  As conditions are discovered to move out of
reasonable ranges (negative populations, temperatures over 150 �F, and succession
stages out of line with simulated training), errors in the submodels and data are
discovered and repaired.  Sensitivity analyses are conducted on the more uncertain
inputs — some of which are found to be quite important.  The developed user
interfaces are also tested and improved to remain stable.

Days 15-20:  Management Evaluation of Alternatives – Reports Generated

During the final phase, management representatives are invited to participate in
the final simulation runs.  Some different training schedules are run along with
some updates to potential property boundaries and road network possibilities.
Output videos are generated for playback at future meetings and are captured for
viewing on the Internet.  It appears that more of the objectives than first imagined
can be met through newly recognized arrangements of the planned training
activities.  Key locations, thresholds, and leading indicators are identified for
particular monitoring as a strategy is implemented.  The models are documented
and made available to the management team for use in making decisions within the
chosen strategy.
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This imaginary scenario, based in some fact, suggests that a geographic modeling
system will be useful to landscape managers (here military installation training
range managers) for the rapid design and development of location specific dynamic
simulation models.  These models will simulate various components of the
landscape, simultaneously using appropriate spatio-temporal scales for each.
Long-term and indirect effects and interactions between the various components
will be able for managers to explore.

1.3 Why Build Ecologically-based Land Simulations?

Although some land managers consider ecologically-based land simulations an
attractive idea, others do not.  This research is motivated by the author’s perception
of the needs of individuals at military installations to adequately manage the
installation landscapes.  Why might landscape simulation models be useful in this
context?  To answer that question, we must first ask another: What is a model?
Hall and Day offer three definitions (Hall and Day 1977):
1.  A model is an abstraction or simplification of a system.
2.  A model is a device for predicting the behavior of a complicated, poorly            
      understood entity from the behavior of parts that are well understood.
3.  A model may be considered the formalization of our knowledge about a system.

While one may argue that modeling is inappropriate for a variety of reasons,
modeling is inescapable because we, as humans, must rely on our concepts of
reality to make decisions about how to interact with that reality.  These concepts
are models by Hall and Day’s first and second definitions.  Formalizing these, it
should therefore be reasonable to create models based on the third definition.  That
is, specialists can formalize their concepts of the landscape by capturing their
internal models in equations, logical rules, and systems of equations.  

Turner offers more detailed uses of ecological models (Turner 1989):
1.  Understanding and assessing phenomena.
2.  Generating hypotheses.
3.  Testing the validity of field measurements and assumptions derived from these
     data.
4.  Predicting.
5.  Optimizing for environmental decision-making.

This list indirectly idicates that data collection does not simply precede model
building.  Modeling generates hypotheses (Turner’s use 2), which guide the
selection of data that need to be collected.  Models help us to fold our understand-
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ings together into larger wholes that show us the consequences of those under-
standings.  Below we briefly explore the requirements for land management at
military installations and how modeling, as defined above, can be useful.

Military land managers are confronted with extraordinarily difficult assignments.
They are required to determine how land is used, scheduled, and rehabilitated.
Such decisions must be made with respect to multiple objectives that cover broad
ranges of time and space scales.  Example objectives include:
� Establish satisfactory training of military personnel,
� Sustain the state of the land for support of training over decades and 

centuries,
� Meet legal requirements related to TES, chemical spills and wastes, air and

water pollution, and impacts of noise,
� Maintain the longer-term viability of local ecosystems,
� Manage even longer-term effects on local and regional biodiversity,
� Provide appropriate opportunities for recreation, farming, grazing, timber

harvest, and wildlife preservation, and/or
� Maintain aesthetic qualities.

Land managers are confronted by advocates of these different and often conflicting
objectives.  Because it is virtually impossible to meet the demands of all advocates,
the land manager is put in the difficult position of balancing the objectives in
coherent short, medium, and long-term management plans.  Of course, the
strongest local advocates are those assigned to train on the landscape.  This results
in a stronger impetus to meet the short-term requirements of the trainers.  As a
result, the requirements for long-term sustainability have resulted in reports
demonstrating a general decrease in the ability of military lands to sustain recent
training intensities .

Land managers have to consider scientific studies as well as the interests of various
advocacy groups.  Therefore, they have relatively good understandings of parts of
the whole system.  Traditionally, the results of scientific inquiries provide (1) the
basis for the formal education of land managers, and (2) a permanent record and
reference for land managers.  Through continued experiences and education, the
developing land manager updates and modifies internal landscape models (Hall and
Day’s definition 2).

In most cases, the only tangible components of the professional manager’s
conceptual models are the decisions or recommendations provided by that
individual.  These models meet every one of the definitions offered by Hall and Day
and uses suggested by Turner.  Unfortunately, these processes are private and
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cannot be subjected to formal evaluation, study, and debate.  Even when the best
professional judgment of a land manager is extraordinarily good, the utility of that
individual’s models depends on that person continuing to be available.  Formal
landscape modeling suggests that scientific studies and reports now have a new
role to play in the age of fast computer technology.  Using formalized computer
modeling and simulation, the following inadequacies can be addressed:
� Different models.  Even with measurably identical training, every professional

views (models) the world differently.  The number of available “professional
opinions” can always equal the number of professionals.

� Communication difficulties.  With different conceptions or models, it can be
very difficult for even the “experts” to communicate effectively.

� Different specialties.  Every discipline seems to be disaggregated into
numerous subdisciplines.  Specialists in such disaggregated disciplines can
easily develop understandings (models) of the world that are in direct
competition with each other.  For example, when is it appropriate to view an
animal as an individual; as a member of a population; as a member of a
species; as a member of a guild; as a part of a community or ecosystem; or as
an assemblage of organ systems each responding to the chemistry of the
environment?

� Lack of challenge.  Internal models are difficult to challenge and difficult to
defend.  Senior scientists and managers are often presumed to have the best
internal models and therefore the most defensible statements based on
professional judgments.  If the internal model is not formalized, it cannot be
inspected.

� Non inter-disciplinary.  Internal models are the result of the training and
experience of individuals.  Few individuals are able to master more than one
discipline that provides some knowledge, models, and views on the processes
occurring within ecosystems and landscapes.  It is therefore virtually
impossible for an individual to create internal models that accommodate
information derived from a myriad of disciplines including military science,
psychology, ecology and biodiversity, medicine, toxicology, and others.

� Difficult dynamics.  Internal models or understandings are often very
inadequate for realizing anything more than direct cause-effect relationships.
Strings of causes and effects resulting in a series of indirect relationships are
very difficult for the human mind to comprehend and visualize.

� Difficult to manage spatial relationships.  Metapopulations exist in nature at
all scales of space.  Visualizing simultaneously the ebbs and flows of
population densities of different species occurring at different speeds at
different spatial scales is extremely difficult.
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This report, through an example, advocates the use of computer model simulations
to help the land manager translate internalized models of the environment into
formalized entities.  The objective is to formalize information from an array of
disciplines into a software simulation model.  Such simulations provide the promise
of addressing some of the concerns identified above.  Formal models, like formal
journal articles, are less ambiguous than internal thought models.  They allow
individuals to communicate more precisely, more completely, and more efficiently.
Simulation models provide an environment for establishing connections between
disparate pieces of scientific information, studies, and reports.  Numerous authors
representing different specialties can participate in the construction of models.  As
formal models, they can easily be reviewed and challenged.  This allows not only
the models, but the underlying scientific knowledge to be improved.  Perhaps most
importantly, dynamic simulation models provide an environment for experimenting
with and understanding indirect cause-effect relationships.

Landscape and spatially explicit ecological simulation is not a panacea and should
not be oversold.  While exploratory models might help scientists to discover some
new information, for the most part, such models are no better than the data that
underlie their structures.   Note however, that errors in such models only reflect
gaps in the knowledge upon which the model is based.  This is not a problem with
modeling, for we make decisions based on our internal thought models of systems
and nature.  It is the formal capturing of such internal thought models that opens
them up for recognizing errors that might otherwise go undetected or ignored.  

Formal models, like any formal documentation, provide an education to any who
look closely at the model.  Any time information flows are altered, those who
originally held the information lose some amount of authority and power;  those
who are recipients of the information, on the other hand, gain.  For example, a land
manager might for years understand that some activity has a “very positive” impact
on some piece of land.  In creating a computer simulation, “very positive” must be
quantified, and in attempting to do so it might be discovered that there really is no
quantification available, or that the quantity is much less than expected.  The
manager now has better information and the source of the original judgment (e.g.,
some scientist) has lost a small degree of authority.  Knowledge is power and those
forced to share or reveal knowledge often do so unwillingly.

1.4 Ecological Simulation Context of the Study

This research effort fits into a broader challenge of creating a software modeling
environment to meet the anticipated requirements of the next generation of
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military land managers.  For the purposes of this study, the future system that will
capture the results of this and other efforts will be called I-STEMS, the Integrated
Spatio-Temporal Ecological Modeling System.  Landscape components include
water and air, plant and animal populations and individuals, chemicals, topogra-
phy, and soils.  Modeling environments are required that can capture current best
understandings of landscape processes to illuminate the logical consequences of our
current knowledge, to improve understandings, and to aid in predicting the impacts
of proposed uses, schedules, and changes to the landscape.  The modeling
environment must allow for specifying interactions between a wide variety of
processes operating at different resolutions of time and space.  Following is a
representative list of landscape components that cover the range of required
functionality of the target system:
� Vegetation population.  These populations are relatively static over short

periods of time and can be modeled as entities fixed in space.
� Animal population.  At relatively low spatial resolutions, populations of

animals can be accommodated in a manner identical to that for plant
populations.  At higher spatial resolutions animal populations show a
significant amount of flux across the landscape.  At even higher spatial
resolutions individual animals must be recognized.

� Individual plants.  Where individual plants are important, it becomes
necessary to separate out plants from their populations as in the JABOWA
models (discussed in section 2.2.3).

� Individual animals.  Certain endangered or otherwise locally rare animals
may require modeling with respect to individuals.  The behavior of animals
includes decisions related to physical movement.

� Animals with long-range interactions.  A wolf or a fast-moving raptor involve
changing the state of the system at long distances.  When these distances are
greater than one step in the spatial resolution, they must be accommodated
through other than nearest-neighbor interactions.

� Climate.  Climate involves the average patterns of wind, temperature,
humidity, and solar insolation.  This generally does not vary over shorter time
periods (less than centuries), but can vary over relatively short distances
(hundreds of meters) in mountainous terrain.

� Weather.  The current local rain, temperature, humidity, and solar insolation
state comprises the local weather and is variable at very high spatial and
temporal resolution.  

� Storm events/flooding.  As a result of rainfall, the movement of water across
the landscape is important in the modeling of some systems.

�  Pollen.  While plants are generally static in geographical location, their
scents and pollen can be dispersed quite rapidly by wind.
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� Pheromones.  Similar to pollen, pheromones generated by plants or animals
can be carried rapidly on the wind to affect the state of surrounding areas.

� Birth, death, and reproduction.  Populations and individual animals and
plants spawn new individuals through various processes.  Entities typically
pass from the system as they cease to exist in a particular form.  Birth, death,
and reproduction are key requirements for an entity-based system.

� Metamorphosis.  Some landscape entities are best modeled as one type of
entity for part of the simulation time and as another type of entity during
other times.  For example, some individuals form herds for a particular part
of the migration or feeding seasons and are best treated as a single entity,
only to be disaggregated into individuals during other seasonal times.

� Regular-time state update.  Different components of the landscape change at
different frequencies in time and space.  Some of these changes can be
efficiently captured at fixed time intervals.

� Irregular-time state updates.  Some landscape processes remain dormant
until some infrequent event triggers them.  For example the water content of
the ground or streams may change slowly with respect to insolation and
evapotranspiration and can be updated at a time step appropriate for the
involved vegetation.  A storm, however, results in changes to the state of the
system at a much more frequent interval.  This requires a change in time
step,  or may require an event-driven time step. 

� Food consumption and respiration.  Individual entities must be able to
recognize food in their environment and then be able to consume and use that
food.  Where appropriate, entities must be able to modify their environment
by leaving digestive waste products behind.

� Predator-Prey.  Animals live by consuming other living entities.  This
predator-prey relationship must be a primary option of an animal simulation
environment.

� Disease.  Similarly, diseases mediated by microorganisms provide a driving
force behind many systems.

� Roads.  Paths and roads are created by people and animals and form a key
input to and consequence of human and animal behavior.

� Streams.  Similarly, streams are created by and form a key input to the
dispersion of rainwater.  They also provide boundaries to certain regions and
communication routes for certain people, animals, and plants.

A system that facilitates a general purpose environment for landscape simulation
must accommodate the kinds of entities and processes suggested by this list.  This
document presents an overall paradigm that will be used to create such a system.



24 USACERL  98/94

1.5 Organization of the Study

This study is part of an attempt to bridge gaps between computerized modeling and
simulation systems that reflect differing ecological viewpoints.  Chapter 2 provides
a framework for this study through a review of some of the major perspectives in
ecology.  It attempts to link the various perspectives by presenting them as
proceeding from different locations on a time-space continuum.  Chapter 2 builds
on this framework by reviewing a few modeling and simulation techniques that
sharpen these perspectives.  Contrasting these approaches suggests various
challenges to bridging the gaps between them.  Chapter 3 identifies the particular
challenges taken on by this study in the form of project objectives.  The approach
taken to address these objectives is laid out in Chapter 4 followed by an application
of the approach to a realistic model based on Army objectives in the ecosystem of
the Mojave Desert in Chapter 5.  Chapter 6 evaluates the results of the effort
followed by general conclusions and future research directions discussed in Chapter
7.
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2 Perspectives in Ecological Modeling and
Simulation

Underlying the imaginings of the previous chapter are software concepts firmly
grounded in modern ecological theories.  It is important that such a software
environment reflect and explicitly recognize a broad array of current theories in
ecology.  It will fail if it either focuses on (and therefore facilitates) a small number
of ecological theories, or if it seeks to require ecologists to work with and be
restricted by new theories created by the software authors.  Wu and Loucks (1991)
state, “A hierarchical perspective is appropriate and necessary to unify ecological
concepts and theories.  The unification can be accomplished only by focusing on the
multiplicity of scales of ecological phenomena.  Such a unifying perspective does not
preclude, but builds upon, pluralistic studies at different ecological scales.” 

A literature review covering theories of ecology and past scientific accomplishments
is presented in section 2.1.  This provides the historical context within which
ecological modeling and simulation should be accomplished.  Then, section 2.2
identifies and briefly reviews some ecological modeling systems. 

2.1 Underlying Theories of Ecology

This section provides a brief literature overview of current theories of ecology that
must be recognized when developing new tools for ecologists and land managers
who wish to model and simulate the ecological consequences of land use manage-
ment decisions.  Each section briefly presents a current theory in ecology and then
draws guidelines from this theory for the design and development of ecological
modeling and simulation software.

2.1.1 Equilibrium Theory

In our hypothetical story (section 1.2), the modeling effort is working on the
supposition that the landscape is going to be impacted by a change in land use
patterns and schedules.  The I-STEMS modeling and simulation software used
allows an equilibrium or non-equilibrium approach to landscape simulation.
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Equilibrium theory assumes that a system, when perturbed seeks to return to the
equilibrium state.  Wu reports that Plato and Aristotle provided the first
supraorganismic balance-of-nature concept and Carl Linneaus (1707-1778) called
the balance Oeconomia Naturae (Wu and Loucks 1991).  Clements put forth the
organismic viewpoint of community ecology and advocated a succession process that
leads to a climax state — a state of natural equilibrium.  Analytic approaches to
modeling nature grew from this philosophy.  One of the first was Pierre-Francois
Verhulst’s logistic equation reviewed in Kingsland (1985).  This was joined by
others like the Lotka-Volterra equations, Rozenzweig-MacArthur equations,
Leslie’s predator-prey equations, the Nicholson-Bailey model, and modern
derivatives reviewed in DeAngelis and Waterhouse (1987).  Mostly analytical, these
all have well-defined equilibrium points.  Even those that settle into a dynamic
equilibrium define a final steady state condition.

If equilibrium states can exist in nature, it can be argued that these states are
rarely, if ever, seen in practice because disturbances are continually pulling the
system away from such equilibria.  Following the disturbance, the system then
continues to seek the equilibrium or climax state.  Disturbance theory argues that
ecological systems are continually in a state of flux.  Analytic systems of equations
are only useful for modeling systems that are at or near some equilibrium point
(Reice 1994).  Disturbance is also viewed as a major contributor to diversity, for
through disturbance, additional ecological niches are opened for exploitation.
Disturbance also occurs at various ecological scales (Pickett, et al. 1989).   Systems
from individuals to ecosystems can and are disturbed.  Disturbance can be
described and characterized by spatial distribution, frequency, return interval,
rotation period, area, intensity, severity, and synergism.  It therefore becomes
impossible to adequately characterize ecological systems solely through analytic
approaches.

From equilibrium theory and disturbance theory is drawn the following require-
ment for a general purpose ecological modeling and simulation software environ-
ment:

Allow for model components that seek equilibrium points.  Examples include
carrying-capacity numbers, succession steps, logistic growth, and equations

of Nicholson-Bailey, Lotka-Volterra, Rozenzweig-MacArthur, and Leslie’s
predator-prey.  
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2.1.2 Non-equilibrium Theory

Wiens et al.  (1985) note that studying long-term natural processes is like creating
an entire movie from a few frames.   At human scales it is natural to view nature
at larger scales as systems in equilibrium; or at least systems that move towards
equilibrium.  However, it is not correct to assume that systems that appear to be
stable at human scales are actually at equilibrium.  Equilibrium theory has been
challenged by non-equilibrium theory.  Wu and Loucks (1991) and many others,
recognized that equilibrium states require density-dependent population regulation
and claim that there is little direct evidence for this.  Caswell states, “Equilibrium
theories are restricted to behavior at or near an equilibrium point, while non-
equilibrium theories explicitly consider the transient behavior of the system”
(Caswell 1978).  DeAngelis and Waterhouse  (1987) write that the “...dynamics of
ecological systems at small spatial scales is usually an ephemeral phenomenon with
no equilibrium properties ...”  It is further argued that ecological systems at any
scale demonstrate non-equilibrium processes that appear in equilibrium at larger
scales (O’Neill, et al. 1986; Urban, O’Neill, and Shugart 1987).  For example, fire
is destabilizing at short time intervals, but stabilizing at long time intervals
(Loucks 1970). 

Non-equilibrium theories are grouped by Chesson and Case (1986) into four distinct
types:
1. Those with an “absence of point equilibria.”  Such systems continually

fluctuate in mathematically random and chaotic fashions.  These can be
argued to be in equilibrium in the sense that the possible states of the system
are grouped around chaotic attractors.

2. Those that emphasize “fluctuations in density or environmental variables as
dominant processes.” (Types 1 & 2 are “enlargements of classical competition
theory and its equilibrium extensions.”)

3. Those where the mean of climate fluctuations varies over time so that
historical factors are important.  Here, the scale of centuries and longer
provide the driving context within which an ecological system adapts.

4. Those with competitive displacement.  “Chance and history may be major
factors shaping community structure.”  This is the expect-the-unexpected
viewpoint.  Events that appear random at a given scale may be a predictable
part of a much larger time scale.

From non-equilibrium theory are drawn the following requirements for a general
purpose ecological modeling and simulation software environment:
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Allow for model components that respond without regard for any preset goal.
Such components change over time simply as a function of the state of the
external and internal environments.  No explicit equilibrium is embodied in
the system of equations used to compute future component states.  System
thresholds, non-differentiable relationships, and logical and quantized
responses are all possible.

2.1.3 Hierarchy Theory 

The  predictability of ecological systems is inherently limited and dependent on
scales (Levin 1989; Loucks 1985; May 1986).  The degree to which any given
ecological study identifies the existence or non-existence of processes that allow a
perturbed system to return to some equilibrium state is dependent on the temporal
and spatial scales and the level of organization on which the study focuses.
“Therefore, there is no single correct scale of investigation and thus no universal
law in ecology”  (Wu and Loucks 1991).

Wiens et al. (1985) write “Some of the most vociferous disagreements among
ecologists arise from differences in their choice of scale.”  To illustrate the point,
they suggest how differently ecologists studying the relationships between
jackrabbits and coyotes at five different scales might view their interactions.  These
scales were defined as: (1) the location where the entity lives (2) a local patch
occupied by many individuals (3) many local populations that interrelate through
dispersal (4) a closed system (or approximation thereof), and (5) a biogeographical
scale where different climates and different sets of species exist.  Depending on the
spatio-temporal scale chosen,  two species can appear to be highly interrelated or
completely independent.  Land managers, modelers, and ecologists must always be
willing to back away from their particular models and approaches and view the
system from perspectives arising from different scales in time and space.  This will
ensure that the proper scale is chosen with respect to the particular question or set
of questions being asked.

Hierarchy theory offers a framework within which to view and integrate different
scales.  The theory has matured sufficiently to be documented in several books
(Allen and Starr 1982; O’Neill, Johnson, and King 1989).  There are three
dimensions: time, space, and organization.  Organization refers to organizational
levels of life, which are often viewed as nested.  Atoms are organized into
molecules, molecules into cells, cells into organs, organs into individuals,
individuals into populations, populations into communities, and communities into
ecosystems.  Natural phenomena, which are represented by a large number of
samples at the scale of study (e.g., atoms of an element in a sample or mice in a
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county), can be handled very well through statistical approaches and are called
large number systems.  Phenomena that are represented by very few samples can
be handled by careful and thorough study of each sample (low number systems).
Landscapes, when studied at the human scale, have too few components to treat
statistically and too many components to study each thoroughly.  Such “middle
number” systems are the focus of hiererchy theory (Allen and Starr 1982).

Hierarchy theory links these levels.  Lower organizational levels operate in smaller
partitions of space and shorter periods of time.  Individuals operate on small scales
in time and space, while ecosystems operate on much larger scales in time and
space.  The apparently neat relationship between these three scales has been
discussed and graphically depicted in time-space diagrams.  Ocean hydrodynamics
(Stommel 1963) and processes in landscape ecology (Urban, O’Neill, and Shugart
1987) have been presented in such diagrams showing a clear and simple relation-
ship (see Johnson 1993).  Delcourt and Delcourt (1991) partition time and space
into four domains (overall time and space of interest):

Micro-scale (1-500 yr, 1-106 m2): This domain is the most familiar to ecologists.
Within it exist population dynamics, productivity, competition, and response to
disturbance events

Meso-scale (104 yr, 10 10 m2):   Here landscape mosaics and watersheds dominate.
Animals and plants develop adaptation to disturbance regimes.

Macro-scale (106 yr, 10 12 m 2): This scale involves quaternary studies.  Species
displacements occur on a subcontinental scale, and rates of spread of species and
genetics as well as extinctions define this scale.

Mega-scale (>106 yr, >1012 m2): At this scale, planetary phenomena like develop-
ment of biosphere, lithosphere, hydrosphere, and atmosphere and macro
evolutionary history of life on earth dominate.

According to hierarchy theory, systems result from evolutionary processes that
favor a nested, hierarchical organization.  Each level is constructed from
identifiable subsystems (Johnson 1993).  Hierarchical levels are separated by
conceptual surfaces.  For ecological modeling, the modeler need normally consider
only three levels:  the level dealing with the question being asked of the system, the
next higher level to provide context (constraints), and the next lower level, which
contains the dynamics and structure to be modeled (Johnson 1993).  Dynamics of
even lower level structures in the hierarchy are, for the most part, sufficiently
attenuated to be replaced by average behaviors or even ignored because they are
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captured in an attenuated and aggregated fashion through dynamics occurring in
intermediate levels (O’Neill et al. 1986).  Landscape ecologists, for example,
attempt to capture the complexities at smaller than landscape scales into single
numbers and indices (Turner 1989).  

There is not always a strict hierarchy that proceeds nicely through atoms,
molecules, organs, individuals, etc.   Examples are ecosystems that exist within
individual organisms (intestinal tracts), populations that can exist within
individuals or other populations (diseases), or populations that span a number of
communities (birds).  A general purpose ecological modeling and simulation
package must provide modelers with the ability to nest systems within systems
without forcing the nesting sequence to be strictly hierarchical.  The general
purpose I-STEMS simulation package requires open and multiple time and space
scales that can be simulated individually or concurrently.  

From hierarchy theory are drawn the following requirements for a general purpose
ecological modeling and simulation software environment:

Allow for the simulation of ecological processes occurring at a wide range of
spatio-temporal scales.  A fundamental notion of hierarchy theory is that
different processes happen at different scales in time and space.  Simulation
of the processes is most efficiently captured if the largest spatial and temporal
scales possible are used.

Ensure that multiple scales in time and space can be simulated simulta-
neously.   Short and long time scales; small and large spatial scales.

Allow any given simulation component to alter its operational time and space
scales.  In certain life stages or times of the day biotic and abiotic processes
are more efficiently modeled and simulated at different scales than at other
times.  For example, movement of a herd is best simulated at relatively short
time intervals over perhaps shorter space during times of migration.  Or, the
processes involved in moving water across or through a landscape are
relatively slower during dry periods than during wet and changing periods.

Provide for the capture of processes within processes.  At times it appears
prudent to clump or aggregate ecosystem components; at other times (or to
other people) it seems wise to separate the simulation into its components.
In the latter situation it is important to be able to present the reduced
simulation as a whole to other system components.  For example, it may be
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important to simulate a herd of animals as a herd for certain portions of a
simulation, but as individuals for other portions.

Allow for the simultaneous simulation of multiple scales.  Modeling at the
level of populations, for example, should not preclude the opportunity to
simulate the behavior of an individual (as part of a modeled population) as
well.

Do not force any particular hierarchy.  For example, allow for an ecosystem
to exist within an individual as well as an individual within an ecosystem.

2.1.4 Metapopulation and Patch Theory

A key aspect of the I-STEMS concept is the notion of a spatial distribution of
resources and processes.  The theoretical underpinnings of this approach are found
in the theories of island biogeography (MacArthur and Wilson 1967) and early
arguments supporting notions of metapopulation theory (Andrewartha and Birch
1954; Hanski and Gilpin 1991).  Island biogeography provided a theoretical and
mathematical framework for describing the relationships between a set of stable
populations and areas of unstable populations (islands).    Metapopulation theory
extended the concepts of island biogeography by allowing interactions between
numerous areas containing unstable populations.  It provided a theoretical
foundation describing processes by which similar competitors can coexist in a
patchy environment (Horn and MacArthur 1972; Levins and Culver 1971; Slatkin
1974).

Simple, but powerful, spatially explicit numerical models developed by R. Levins
formed the foundation for a body of literature exploring metapopulation theory and
its relationship to metacommunities, landscape ecology, island biogeography,
patchy environments, and conservation biology.  For a review, see Hanski and
Gilpin (1991).  Metapopulation theory provides a simple mechanism that explains
how it is possible for a landscape to contain a number of direct competitors.  In a
completely homogeneous environment, the most successful competitors crowd out
their inferior competition.  Real systems are patchy at all levels of hierarchical
organization because of perturbations and disturbances.  In such dynamically
heterogeneous environments, metapopulation theory predicts the existence of a
potentially unlimited number of close competitors.  Levins’ basic equations  have
been extended in various different ways.  Hanski (1985) added migration to Levins’
model (to create a 3-state model).  Dynamic complications, caused by immigration,
were demonstrated to result in alternative stable equilibria.  Gilpin (1990)
demonstrated numerical computer models for making predictions of the dynamics
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of real systems using metapopulation theory.  Finally, Gardner, O’Neill, and Turner
(1993) conducted theoretical simulations of competing species with varying
perturbance regimes and harvest schemes.

Dispersal is the key activity driving metapopulation dynamics.  Hansson (1991)
reviews the characteristics of dispersal that influence metapopulation functioning
and identifies three categories of factors influencing dispersion: economic
thresholds, resource conflicts, and inbreeding avoidance.  Economic thresholds for
the population involve the relative availability of essential environmental resources
such as food, shelter, and water.  Resource conflicts often involve these resources
as well as potential mates.  Even when resources may be plentiful, territoriality
behaviors may encourage migration.  Some migratory behaviors seemed to be
associated solely with drives aimed at avoiding inbreeding.  Population size
correlates with dispersion rates of different creatures.

With respect to hierarchies of system organization, Hanski  and Gilpin (1991), in
a historical account of metapopulation theory, define metapopulation scale as part
of the following continuum:

Local scale - the scale at which individuals move and interact with each other
in the course of their routine feeding and breeding activities.  This is the scale
immediately beneath the metapopulation scale that provides the dynamics
behind metapopulations.

Metapopulation scale - the scale at which individuals infrequently move from
one place (population) to another; typically across habitat types that are not
suitable for their feeding and breeding activities, and often with substantial
risk of failing to locate another suitable patch in which to settle.

Geographic scale - the scale of species’ entire geographical range; individuals
have typically no possibility of moving to most parts of the range.  This scale
provides the context within which metapopulation dynamics take place.

While metapopulation theory provides the fundamental basis for accepting that
multiple species competing for the same resources can coexist on a landscape, patch
theory provides a framework for capturing the dynamics in spatially explicit
models.  The patchwork of landscapes and habitats has been shown to be very
important for allowing local extinctions, but global persistence (DeAngelis and
Waterhouse 1987; Kareiva and Anderson 1988; Levin 1988).
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Tilman (1994) argues persuasively for the recognition of spatial arrangements as
important variables in ecological models.  He argues, from the literature, that
colonization limitation is important in succession dynamics.  Succession theory
defines, for any given climate, a succession of vegetative communities.  The
fundamental basis of succession theory was initially laid out by Clements (1936).
The actual trajectory of the succession of plants is not fixed, but is a function of the
available seed sources; the local disturbance regimes as defined by fire, disease,
flood, and other major perturbations; and the physiological capacity of the plants
to respond to the perturbations.

Numerous theoretical demonstrations show that habitat subdivision allows two
species to coexist as metapopulations, stabilizes host-parasite and predator-prey
interactions, and influences the evolution of cooperative behavior (Tilman 1994).
Tilman presents a spatially explicit model based on the work of Levins (1969) and
the extensions by Hastings (1980) and Nee and May (1992).  This model demon-
strates that (1) if a set of species cannot occupy all space in a simulated raster
environment (2) there can exist only a single individual representing a single
species at any cell (3) there is no spatial advantage given to any species for
populating an open cell (species in adjacent cells have no advantage over other
species) and (4) that competitively superior species are poorer distributors; any
number of species can cohabitate.  Using this model Tilman, et al. also demon-
strated that habitat destruction has the greatest effect on the best competitor
(Tilman, et al. 1994).

Spatially explicit models using fixed grids of patches have been used to explain
observations from nature.  Reice demonstrated that when openings in a habitat are
created, the proportions of the species that recolonize are unpredictable (Reice
1994).   Increased levels of disturbance are associated with the increased diversity.
Streams have more diversity over ponds because of more disturbances.  Using 1-,
2-, and 3-patch simulation models, Wu, Vankat, and Barlas simulated source/sink
interactions, persistence, and resilience of populations (Wu, Vankat, and Barlas
1993).  Increased patchiness correlated directly with persistence and resilience.
Such simulation experiments are reflected in experiences with natural systems.
For example, Walde experimented with predator and prey mites on apple trees in
groups of 1, 4, and 16 trees.  The largest population densities, and most persistent
populations were associated with the largest groups of trees (Walde 1991).
Similarly, using patches of meadows, Robinson et al. determined that persistence
of individuals in patches increased with patch size (Robinson et al. 1992).  A scaling
result was also discovered: larger bodied mammals did best on larger patches;
smaller bodied on smaller patches.  Small mammal distribution represents a
source-sink pattern with the smaller patches providing the source of individuals.
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These small mammals competed directly for resources and were able to coexist
simply because of their natural partition of patches by patch size.

From metapopulation and patch theory are drawn the following requirements for
a general purpose ecological modeling and simulation software environment:

Explicitly recognize the heterogeneous distribution of landscape components.
It must be possible to explicitly recognize and be able to simulate the changes
to patterns across a landscape.  At any given spatio-temporal scale, some
processes and landscape components will be best simulated as a single
homogeneous process or entity on the landscape (e.g., weather), while others
must be captured as heterogeneously distributed (e.g., slope, elevation,
streams, and vegetation stands).

Movement between patches.  Movement of animals, propagules, and
chemicals between patches must be possible.

Movement of patches.  Patches must be able to come into existence, disappear,
and be able to grow and recede in any given direction. 

2.1.5 Landscape Ecology

As discussed earlier in section 2.1.3, different natural processes occur at different
temporal and spatial scales.  The objective of the larger program to which this
research is attached is the development of simulation tools to assist land managers.
These professionals typically focus their efforts at temporal resolutions of weeks to
decades and spatial resolutions of hectares to thousands of hectares.   Landscape
ecology is a discipline that shares this focus (Turner 1989; Urban et al. 1987). 
Delcourt and Delcourt recognize the importance of understanding modern
landscapes by reflecting on their changing state over the Quaternary Period (past
1.8 million years) and especially the Holocene Epoch (last 10,000 years).  Landscape
ecology is especially concerned with the human-nature interface at the landscape
scale and tends to take a holistic approach to these processes.  This is reflected in
a large number of landscape indices that attempt to capture the essence of the
entire landscape in a few numbers.  Examples are measures of dominance,
contagion, and fractal dimension (O’Neill et al. 1988).  Several dozen such measures
have been developed.  Many of these change with changing spatial scale (Turner,
et al. 1988)

Another set of indices associated with landscape ecology has come out of percolation
theory.  This theory concerns itself with the patterns of patches on the landscape
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and specifically the probability that patches of certain dimensions and randomness
form corridors that span across the landscape.   Caswell developed the notion of
“neutral models,” simplified computer landscapes that are randomly generated to
provide patterns of suitable and unsuitable habitats (Caswell 1976).  For example,
assume an animal or plant is constrained to live only in the suitable habitat and
has no possibility of even crossing unsuitable areas.  A number of questions can be
posed to such a system.  Gardner, et al. demonstrated that below a landscape
coverage of 0.6 (60 percent) patches are highly fragmented (Gardner et al. 1991).
His simulations demonstrated “... that large differences in species abundance and
habitat utilization are produced by small changes in the maximum possible
dispersal distance.”  Turner, Gardner, and Dale (1989) used percolation models to
evaluate disturbance intensity and frequency on various densities of habitat in
neutral maps.  Disturbance frequency and intensity  had variable impact on neutral
model landscapes.  When the landscape was occupied by less than about 50 percent
of the habitat, that habitat was sensitive to frequency, but demonstrated little
difference in its response to intensity.  Habitats occupying more than 60 percent of
the landscape were less sensitive to frequency, but more sensitive to intensity.
O’Neill, through random models, showed that hierarchically structured landscapes
(vs. random neutral model landscapes) had smaller perimeters, were less clumped
on sparse landscapes and more clumped on dense ones.  This permits percolation
on a broader range of conditions (O’Neill, Gardner, and Turner 1992).

Clearly a modern ecological modeling environment must provide the modeler with
opportunities to develop spatially explicit systems.  The patchwork found in the
matrix of landscapes is an essential component to the processes that determine
population densities.  This importance of patches is probably important at every
spatial scale, although most research has focused at a scale in which individuals or
metapopulations are resolved.  

From landscape ecology are drawn the following requirements for a general purpose
ecological modeling and simulation software environment:

Provide the ability to analyze heterogeneous landscapes.  The response of an
ecological component to a pattern on the landscape might be accomplished
either through a brute-force simulation of other entities within the pattern
using very short time intervals, or by a single response to knowledge about
the landscape pattern as captured in such measures as provided by percola-
tion theory.
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2.2 Ecological Simulation Software

Ecological principles, theories, and experimental data have resulted in a large
number of computer-based models and modeling environments.  This section briefly
explores the extent of this development effort.

2.2.1 Animal Simulations

Computer-based simulations of animals can be grouped into three main categories:
(1) individual-based simulations for the study of behavior, genetics, and evolution
(2) theoretical metapopulation models (see section 2.1.4), and (3) population-based
models for landscape and region management.  Several individual-based models for
exploring fish population responses have been developed by DeAngelis and others
(1993a, 1993b).  These efforts are also associated with the development of new
techniques to improve computational efficiency when dealing with large numbers
of individuals in a population (Sheffer et al. 1995).  Individual-based modeling has
also been used to capture the behavior and energetics of the wood stork on 15-
minute time intervals (Fleming et al. 1994).  Such models are part of a growing
trend in applying current computational capabilities to individual-based models.

Population modeling is more typical of landscape ecologists.  One example is the
Ecosystem Management Model which integrates ARC/INFO with a FORTRAN-
based ecosystem landscape model developed to help manage Elk Island National
Park in central Alberta (Buckley et al. 1993). It consists of an integrated set of
submodels.  There is a spatially explicit process-oriented model of vegetation
productivity and growth and ungulate submodels, which take care of population
dynamics, predation, parasitism, and animal condition.  Cuddy, Davis, and
Whigham (1993), reported on a military landscape management program called the
Land Management Advice System (LMAS), which simulates the movement of
tracked vehicles.  In this system, an expert system called ARX (Whigham and Davis
1989) is the primary program.  During a simulation run, it makes calls to
ARC/INFO, which feeds back landscape information and facilitates landscape
analyses.  These two examples are typical of how animals have been simulated as
populations.

The new discipline of artificial life explores the notions of genetic evolution through
experimentation with computer programs that simulate competition between
different computer programs.  These programs are allowed to reproduce, move in
a virtual space, mutate, and develop into processes much different from the original
programs.  Several popular and powerful environments are currently available to
researchers of artificial life.  The Tierra simulator is a system for studying
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ecological and evolutionary dynamics (Ray 1994a; Ray 1994b).  It is a virtual
computer and operating system that allows the execution of machine code that can
evolve and compete with other programs.  The architecture of the virtual computer
can be changed and users are provided a wide range of opportunities for developing
software programs that operate within this environment.  Swarm is a similar
environment for developing and exploring the emergent behavior of simulated life
forms (Hiebler 1994; Minar 1995).  The goal of Swarm is to have a standardized set
of tools for exploring complexity.  The concept of a swarm is that sets of similar
entities can be grouped together and treated as a unit.  This unit itself may be
combined with similar units to form hierarchies of swarms.  Each entity in the
swarm operates independently; behavior is based on the internal and external
system states.  PolyWorld is being developed by Sun computers as a single,
powerful artificial life system that “attempts to bring together all the principal
components of real living systems into a single artificial living system” (Yaeger
1993).  It offers a wide range of behaviors (eating, mating, fighting, moving,
turning, focusing, lighting) and provides its simulated life with neural network
learning capabilities.  Its intended audience is evolutionary ecologists.  These and
other artificial life programs can be explored and accessed on the Internet.  The
MIT Artificial Intelligence Laboratory and The Santa Fe Institute are excellent
starting points (Bodelson and Butler-Villa 1995; Thau 1995).

From animal simulation software the following requirements are drawn:

Provide for the simulation of individual entities. Although the ability to
simulate individual entities is not found in landscape management models,
the software advances made by the artificial life community provide a good
indication of the latent potential.

Allow system components to learn and evolve.  The artificial life systems
identified enable model components to learn and evolve.  In the context of
landscape management, evolution is not a significant factor.  However, the
evolution of behavior patterns based on learning is important where
intelligent animals are concerned.

2.2.2 Storm Simulations

Simulating the hydrologic movement of water across landscapes after storm events
is a very active area of research and development motivated by potential losses to
property, loss of life, and threats to health due to nonpoint source pollution.   To
accomplish such simulations on complex landscapes, researchers have chosen
recently to integrate geographic information system (GIS) technologies with flow
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simulation models.  The simplest interconnection affording this combination is to
export starting conditions from a GIS into the simulation.  Using this type of
approach, Battaglin, Kuhn, and Parker (1993) divided the Gunnison River Basin
into 20 smaller watersheds and then used a GIS to generate land cover and
topography reports for these areas.  The results were fed into a precipitation-runoff
modeling system. The GIS was used to automate extraction of physical data.
Similarly, storm flooding has been simulated for Hong Kong (Brimicombe and
Bartlett 1993).

Nonpoint source pollution simulations have involved the linkage of various
simulation packages with geographic information systems.  For example,
ANSWERS (Areal Nonpoint Source Watershed Environment Response System) has
been linked with GIS (Krummel et al. 1993; Rewerts and Engel 1991).   Hay,
Knapp, and Bromberg (1993) have integrated graphical user interfaces, statistical
analysis packages, and GIS.  For the simulation of the Texas Gulf basin, Srinivasan
combined a GIS with the SWAT (Soil and Water Assessment Tool) simulation
software. Several different water quality (WQ) models from the Agricultural
Research Service, Natural Resources Conservation Service (NRCS) have been
captured within the GRASS GIS (Cronshey, Theurer, and Glenn, 1993).  DePinto
linked the geographically-based WAMS (Watershed Analysis and Modeling System)
model with the ARC/INFO GIS to simulate watershed loading, groundwater
contaminant transport, and dissolved oxygen in rivers (DePinto et al. 1993).

In many cases, water flow simulation software has been developed and integrated
for the purposes of a single project.  For example, D’Agnese established a rather
complicated mix of several software packages to develop a series of groundwater
simulations for an area near Death Valley (D’Agnese, Turner, and Faunt 1993).
Frederickson,Westervelt, and Johnston (1994) integrated GIS, HEC1, HEC2
(hydrologic software), and a GUI to develop a flood impact prediction prototype for
the U.S. Army Corps of Engineer’s Omaha District.

Instead of using the GIS only as a data source, new approaches process raster GIS
data in their native cellular format.  For example, a general purpose finite-element
approach to watershed overland flow simulation has been designed and developed
within the GRASS GIS called r.fea (Gaur and Vieux 1992; Vieux and Westervelt
1992; Vieux, Farajalla, and Gaur 1993).  A finite-difference approach (CASC2D in
GRASS) has been developed by Saghafian (1993).  

The Hydrologic Engineering Center’s (HEC) series of river flow simulation models
are being replaced with object-oriented simulation environments.  A recent software
design effort using object-oriented approaches for simulating watersheds has been
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developed by Bennet, Armstrong, and Weirich  (1993).  In MHMS (the modular
hydrologic modeling system), developed with an object approach, user’s pick and
choose from hydrological components to develop new simulation models for specific
areas (Leavesley, et al. 1991; Leavesley, et al. 1993).

In all cases noted here, hydrologic simulation models have been linked in some
manner to GIS databases.  Approaches to such linkages vary from exporting GIS
data into files and formats read by the models to more fully integrated linkages
where GIS data are accessed directly in their native formats.  The meaning of
linking these environments is covered well by Maidment (1991; 1993). 

From existing storm software are drawn the following requirements for a general
purpose ecological modeling and simulation software environment:

Use existing simulation models.  Significant efforts have gone into the
research and development that has resulted in a number of very good
simulation models.  If at all possible, model integration should first use such
models intact.

Support the movement of water across landscapes.  The movement of storm
water across a landscape is very important for establishing location-specific
erosion and soil moisture content.

Support the simulation of water movement through stream and river
networks.  Once water becomes a part of established streams and rivers, the
simulation of the behavior of water in these bodies is crucial to the prediction
of flood events.

Accommodate the subsurface movement of water.  In many environments, the
movement of water through aquifers is critical to the prediction of
above-ground plant and animal communities.

Support scouring, deposition, and chemical transport.  At some spatio-temporal
scales, it is the movement of large amounts of material via moving water that is
critical to the larger system.  In others, the movement of chemicals through
different soil types, textures, and chemistries is important.

2.2.3 Landscape Simulations

Simulation of ecological processes at the level of the landscape has also resulted in
a significant number of models and modeling approaches.  Forest ecologists have
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been very active in this area, producing a number of modeling environments. An
example is the JABOWA model (Botkin, 1977; Botkin, Janak, and Wallis 1972).  It
is an individual-based model that tracks the growth of trees and their effects on
their neighbors within a small area (about 10 meters square).  The loss of large
trees within such an area leaves a gap in the forest canopy.  More recent versions
of gap models simulate a large number of “gaps” that match cells in a raster GIS.
One such model is ZELIG; a dynamic simulation environment that divides
landscapes into cells that are divided into gap-scale plots (Urban, Bonan, and
Smith 1991).  The plots are identified with the proportion of total area in different
cover types.  Another example is LANDIS, a JABOWA/FORET model simulta-
neously run for each cell in a large raster matrix, developed by Mladenhoff, Host,
and Broeder (1993).  Individual trees are modeled as part of cells that consider the
size, location, type, and state of all member trees.  Models in neighboring cells are
allowed to dynamically affect each other using this approach. 

A large number of modeling approaches based on patch theory (section 2.1.4) are
represented by the following examples.  PatchMod is (1) a spatially explicit age- and
size-structured patch demographic model and (2) a multiple species plant
population dynamic model used to model the Jasper Ridge serpentine grassland.
 Gopher mounds provide the primary patch-generating disturbance (Wu and Levin
1994).  The ARC/INFO GIS and a FORTRAN-based ecosystem landscape model
were combined through an ecological modeling interface to address vegetation and
ungulate management objectives.  The natural system is divided for model
development purposes,  into 12 primary submodels (Buckley et al. 1993).

Numerous estuarine and river basin models have been developed through a cellular
modeling approach to assist land managers and politicians in selecting the best
long-term land use decisions (Costanza and Maxwell 1991; Costanza, Sklar, and
White 1990; Costanza, Sklar, and Day, Jr. 1986).  More recently, the approach has
been used to develop a Patuxent landscape model (Costanza et al. 1993), and an
Everglades landscape model (Costanza et al. 1992).  The software supporting these
models is called the Spatial Modeling Environment (SME) and is currently under
development by its author  (Maxwell 1995).

Another application for cellular-based simulation models is forest fire modeling
(Clarke, Olsen, and Brass 1993; Kessell 1993; Rothermel 1972).  Such models are
typically cell-based and employ relevant physics-based governing equations and
appropriate stochastic functions to capture uncertainty in such things as the
lobbing of embers from exploding logs and shifts in swirling winds.  Fire enters a
cell where it burns available fuels, expands to neighboring cells based on fire
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intensity, local slope and elevation, and the current wind, temperature, and
humidity conditions.

From existing landscape simulation software are drawn the following requirements
for a general purpose ecological modeling and simulation software environment:

Provide for simulation of individual plants and trees.  JABOWA and FORET
type models focus on the response of individual plants to the existence and
state of surrounding individuals.  Such models have been well developed and
similar capabilities must be available in any general purpose landscape
simulation capability.

Support the simulation of landscape patches.  As discussed in Section 2.1.4.

Accommodate the simulation of fire.  This could be at scales that capture the
minute-to-minute behavior of a fire as well as scales that capture the
development of fuel buildup over years, the stochastic occurrence of fire, and
the effects of fire on the patchwork established on the landscape.

Allow modeling of individuals.  While the JABOWA and FORET families of
forest models provide for simulating forest dynamics at the level of the
individual tree, few significant discrete mobile entity simulation capabilities
have been identified in the context of ecological simulation.  One notable
exception is efforts to anticipate Army training impacts on a landscape by
simulating the anticipated movement of vehicles (Cuddy, Davis, and Wigham
1993).  Facilitating the capture of the behavior of individual animals is the
principal focus of the research documented here.

2.2.4 General Purpose Simulation Packages

A number of general purpose simulation packages have been developed by the
research community and many are currently available via anonymous ftp access.
Several of these systems are reviewed briefly below with respect to their capabili-
ties in the context of this effort.  They are explored as two distinct sets: nonspatially
and spatially oriented.  The common thread in both sets is their explicit focus on
simulating processes through time.

While any basic programming language is suitable for developing simulation
software, the overhead of managing time and for updating state variables in a
variety of methods (Euler, Runga-Kutta, etc.), is significant.  Researchers began to
identify a standard set of software routines that could be used for any number of
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dynamic simulations.  One such package was SIMPACK: a SIMulation PACKage.
It is a set of C and C++ libraries that can be used by a programmer for developing
continuous and discrete event simulation software (Fishwick 1992).  The available
routines take care of the timing of execution for system components.  Some
programming staffs found that even with such libraries, the amount of code
necessary to put together dynamic simulations could be dramatically reduced by
specifying new languages.  For example, MODSIM, a MODeling and SIMulation
package, is a programming language that supports discrete-event simulation
(Belanger, Donovan, et al. 1989; Belanger, Mullarney, et al. 1989).  Software
programmers write discrete-event simulation software using the MODSIM
language, which is translated by the MODSIM software into C code, which is then
compiled into executable programs.  The advantage of the MODSIM language over
C is that the programmer (1) need not worry about the management of event
timing, and (2) can focus on the development of objects without the burden of
keeping track of C++ syntax overheads.  During the early 1990s, the U.S. Army
Construction Engineering Research Laboratories enhanced the MODSIM language.
This enhancement was called “persistent MODSIM” because it provided simulation
persistence.  That is, objects and other data would persist between runs in a
manner invisible to the simulation programmer (Herring, Kalathil, and Teo 1993).
Experiences with ehancing MODSIM led toward the design and development of an
intended replacement: IMPORT/DOME (Integrated Modular Persistent Object
Representation Translator/Declarative Object Manipulation Engine) (Morrison
1995).  This language is further discussed in section 3.1.4.

Through the past decade, spatially explicit modeling and simulation packages have
been developed and explored.  These add an extra dimension to the simulation
capabilities explored above.  A general purpose cellular automaton program
developed in the late 1980s was called CELLSIM (Langton and Hiebeler 1990).  It
supported a GUI that allowed users to specify cellular automaton rules, specify
initial conditions, and graphically explore the evolution of simple 2-D landscapes.
During this same time period, Ronald Shattuck designed and developed CUTM, the
Computer Understandable Terrain Model (Shattuck 1993).  This research,
conducted at George Mason University, combined traditional GIS technology with
knowledge about landscapes that resulted in the development of “smart maps.”
With simple controls, landscapes could be viewed as they might appear in different
seasons or under different land-use and weather conditions.  A primary focus of the
CUTM  research was the creation of user interfaces that allowed an individual to
easily explore the system’s capabilities.  Another system under development at that
time (and whose development is continuing) was the Spatial Modeling Program
which has recently been renamed the Spatial Modeling Environment (SME)
(Costanza and Maxwell 1991; Maxwell 1995; Maxwell and Costanza 1993).  SME
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focuses on the flexibility in specifying landscape rules and on the ability to rapidly
simulate large landscapes using parallel processing technologies.  While the user
interface of CUTM  is very attractive and easy to use, it is the design flexibility that
attracted the author to SME as a foundation for the research of this paper. 

The current research effort pulls together the advantages of the IMPORT/DOME
language and the SME approach to simulating landscape processes.

2.2.5 Additional Software Challenges

The author has briefly reviewed some of the underlying theories and concepts of
modern ecology along with a number of simulations captured in software.  From
these were drawn a number of guidelines and goals to be addressed by the
I-STEMS research.  Following, however, is a list of some additional requirements
demanded by general software development objectives.  

Use existing code.  The software development process is very complex and requires
a hierarchical approach.  While it is arguably true that almost any piece of software
could be improved by rewriting it, reformulating key data structures, and  using
modern software development paradigms (e.g., “object-oriented programming”), the
constraints of time and resources generally will not allow wholesale code rewriting
and systems integration.  As with any hierarchical systems, there will be
components that persist because, though perhaps not especially efficient or elegant,
they work very well and are reliable.  They  continue to show up in future
generations of the software because the cost of redevelopment outweighs the
benefits even though individual developers and designers may feel overly
constrained because of the continued existence of such components.  This argument
can hold true for small and very large system components.  System integration
efforts must allow, for example, individual systems to be adopted as unchanged
whole and complete units.  Modifying working code can result in a decreased ability
of the original authors to help debug future problems, errors in other parts of the
system that relied on the exact behavior of the code fragments before modification,
and loss of the ability to easily capture future versions of the integrated code
without similar upgrades.  For further arguments refer to Frysinger (1993) and
Frysinger, Copperman, and Levantino (1995).

Minimize the number of authors of any given module.  Software tends to be
developed as interconnecting parts.  The individual parts may be at different stages
of “health.”  That is, some parts may be very solidly written, while others have not
been fully thought through.  Also, a good piece of software is often asked to
accomplish more by its users than intended by its writers.  In commercial settings
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that support large user communities, it becomes very important that the thoughts,
concepts, expectations, algorithms, and assumptions behind software be thoroughly
documented to improve the efficiency of a person who is new to the code and
assigned to fix or improve that software.  In research settings however, the lack of
a user community makes it possible to experiment more and to actually develop
more software in a given amount of time.  Experimentation and development are
more important than having solid pieces of software in these settings.  To
compensate for the lack of support documentation, it becomes important that the
original authors of software components retain control of those components for as
long as possible.  That is, if fixes or upgrades are required, the original author (who
posseses the understandings of the concepts, algorithms, and assumptions
associated with the code to be fixed or upgraded) is afforded the opportunity to
make the necessary changes.  If a second author makes changes without the benefit
of this knowledge shared through good documentation or close collaboration, the
changes may result in a product not fully understood by either the original or the
second author.  It would not be unusual for a third author, assigned to make
changes or improvements, to simply decide to completely rewrite the entire module
as that could be judged to be more efficient than to take the time to understand the
thinking of the original and secondary authors.  Hence, in a research environment,
it becomes important for the original author to “retain ownership” of whatever
software they develop until that software is fully documented.  If full documenta-
tion is to occur, it often is not developed until near the end of the associated project.

The design and development of a modeling environment must also pay attention to
certain principles, objectives, and approaches to modeling in addition to considering
the theoretical foundation of the associated discipline.  The opportunities provided
to a modeler in a software environment are important in the process of model
construction.  Overton (1977), for example, lists the following as required steps: 
5. List the model objectives. 
6. Identify submodels and subobjectives. 
7. Construct and validate submodels. 
8. Assemble the submodels into the complete model and validate. 
9. Attempt to address the questions identified in step 1.
10. Examine the general behavior of the model: identify behaviors of interest.
11. Conduct sensitivity analyses; identify the structure and parameters that are

causal for the behaviors of interest and validate those causal structures and
parameters.

The author has found (independently, through classroom experiences with students
participating in the construction of large dynamic, spatial ecological simulation
models) that a superset of these steps is necessary.  Specifically: 
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1. Identify available resources.  This includes equipment, expertise, participants
and their availability, existing and available models and model components,
and costs involved in utilizing all resources. 

2. Identify the reasons for constructing a model.  Explicitly list questions that
the model will be designed to address.  The process for identifying questions
typically involves first creating an extensive wish list of questions from which
the objectives will be chosen.  Participants must understand that the final
simulation model should not be expected to address questions that did not
make the final list.  Much of the long-term success of a project rests on
establishing reasonable expectations at the outset.

3. Identify potential components and interactions.  With respect to steps 1 and
2, identify the likely pieces or components of a final model.  Identify the
required inputs, outputs, and development efforts associated with each.

4. Make fundamental time and space resolution decisions.  What will be the
model’s actual or potential resolutions in time and space?  What will be the
extent of time and space?  The answers to these questions must be based on
the results of 1 through 3 and will constrain the possibilities in the following
steps.

5. Develop a conceptual model.  This step is similar to creating an outline and
provides the same function.  The entire team should participate in this step
and the end result should be a clear and agreed on superstructure for the
modeling effort.  In the course of this effort, the development of several
competing overall models should be encouraged.  The group should collectively
evaluate the ideas and pull together a single overall structure.

6. Divide the conceptual model into distinct subcomponents.  The result may be
a hierarchy of submodels.  At the lowest level are components that can be
completed through individual or very small group (3 or fewer people) efforts.

7. Identify submodel requirements.  The input requirements and output
possibilities for each submodel must be identified and then matched against
the rest of the submodels.  For each input and output, estimates should be
made regarding the anticipated errors associated with each.  Unresolved
input requirements must be addressed.  Similarly, unused outputs might not
require development.  The team(s) then rework the design of the submodels
accordingly and repeat the process until all data requirements are covered.
Also, any state variables that need to be initialized must have associated
input data and input data paths for which someone is responsible.

8. Develop full-model proxy.  In the next step, submodels will be developed.
These must be developed with respect to the anticipated combinations of
system states that will be defined collectively by the outputs of the multiple
submodels.  Each submodel team must therefore create simple anticipated
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time-series samples of anticipated output.  It is against this anticipated
information that submodels will be developed. 

9. Develop submodels.  At this point, submodel groups can develop and test their
submodels independently.  During this period the only interaction that will
be required between submodel development groups is when groups identify
new inputs or significant difficulties in being able to generate outputs within
the promised error constraints

10. Develop full model.  The full model is developed by piecing together and
testing submodels.  This should be accomplished one submodel at a time until
the entire model is assembled.

11. Conduct sensitivity analyses.  Important components should be analyzed with
respect to their contribution to simulation model output error.  These include
initializing data as well as parameters.  With respect to the known error in
the model components, the overall reliability of the full model must be
evaluated.

12. Address the objectives identified in step 2.

The author has found these steps to be critical in the design and development of
large simulation models designed by relatively large teams for assisting managers
in making land management decisions.

Hence, for general purpose modeling and simulation software:

Set up user interfaces that facilitate and encourage the outlined steps.  The
software environment must work with the modeler(s) to address the needs of
these steps in an order that minimizes development time and maximizes the
utility of the final model.

Standardize systems integration.  A general purpose systems integration
environment must be designed for rapidly linking existing and disparate
simulation systems.  The primary effort in this study links two major
simulation environments.

Sensitivity analysis of large simulations.  The ability to analyze the sensitivity
of a simulation or of components of a simulation is crucial in simulation
modeling.  The complexity of conducting full analyses increases exponentially
as the number of coefficients in the model increases.   Traditional methods
employing Monte Carlo simulations, signal infusion, statistics, and exhaustive
model runs become impractical.  New approaches need to be researched and
developed.
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2.3 Summary: Ecological Modeling in Time and Space

This project is a component of a large research and development effort that is
intended to result in the development of a next-generation general purpose
geographic modeling and simulation environment.  This future system is being
called I-STEMS, the Integrated Spatio-Temporal Ecological Modeling System.
Sections 2.1 and 2.2 explored theories and systems (respectively) that must guide
efforts designed to help reach this larger objective.  The focus of the current
research is on (1) the design and development of a mobile animal simulation
environment and (2) the integration of that environment with SME, a raster-based
landscape simulation environment.  Following is a subset of the general guidelines
developed in this chapter that apply to the particular focus of the current effort:
� Provide for the simulaton of individual entities.  This is a main objective of the

research project.
� Allow system components to learn and evolve.  This will not be addressed in the

current research, but will become a key component of future development.
� Allow for model components that respond without regard for any predefined

equilibrium.  This is fundamental to the capturing of animal ethologies.  At the
level of the individual there is no equilibrium for an animal is born, lives, and
dies with the possibility of only transient equilibria.

� Allow for the simulation of ecological processes occurring at a wide range of
spatio-temporal scales and ensure that multiple scales in time and space can
be simulated simultaneously.  For example, the raster-based landscape
simulation might occur with a spatial resolution of 100 meters and a time-step
of a week while the individual animals are simulated at spatio-temporal scales
more appropriate for the behavior being modeled.

� Allow any given simulation component to alter its operational time and space
scales.  The SME simulation approach fixes its spatio-temporal scale, but the
design of the animal-based simulation environment should offer the opportunity
to dynamically alter scales.

� Provide for the capture of processes within processes.
� Do not force any particular hierarchy.  The general purpose simulation

environment must allow for the development of a wide variety of hierarchies.
It must be possible to develop, for example, an ecosystem within an animal as
well as an animal within an ecosystem.

� Explicitly recognize the heterogeneous distribution of landscape components.
This is inherent to SME and to the notion of simulating individual entities.

� Allow movement between patches.  Animals must be able to move across the
landscape and encounter the differences associated with different locations.

� Allow modeling of individuals.  This is central to the research effort.
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� Use existing code.  Clearly, the use of SME supports this requirement, but
Chapter 3 will identify the use of other existing software as well.

� Standardize systems integration.  

These overall design goals must be addressed in the design and development of
software to support mobile entities and with the integration of that capability with
SME.  The next chapter will then build upon these guidelines with more specific
objectives.
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3 Objectives and Framework

The primary objectives of this work are to design and demonstrate concepts that
will be able to facilitate future development of entity-based spatially explicit
ecological simulation models (developed below in section 3.2) and to then explore
requirements and techniques for linking such entities with population-based
spatially explicit ecological simulation models (described in section 3.3).  Require-
ments and objectives for these efforts must recognize and respond to the overall
objectives developed in Chapter 2.  Finally, the effort must recognize and work
within the constraints (and opportunities) provided through software already
selected to be part of the exploration of the larger effort.  These are described in
section 3.1.

3.1 I-STEMS Components

This section discusses the software already chosen for the I-STEMS design and
prototype development.  These now form a set of constraints for the subprojects, of
which the current study is one.  In total, they provide a very fertile environment,
offering few real constraints to the imagination and the research objectives.

3.1.1 UNIX

The UNIX operating system has been chosen for the design and development of
software within the larger program.  It is a solid commercial product that
commands a significant amount of attention in the research and development
communities at major universities.  Most existing significant ecological simulation
software has been designed and developed for the UNIX environment.  The UNIX
operating system provides the backbone for networking across the Internet and
running the majority of platforms that serve information to that network.   All of
the other software components listed below as choices for the design and
development program run under UNIX and most were developed for the UNIX
environment.  Some developers anticipate that the operating system that is likely
to be more available to potential markets for the software products that emerge
from this program over the next 5 to 10 years will be Windows NT.  Migration to
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that environment should be relatively easy because it borrowed heavily from the
UNIX experience. 

3.1.2 GRASS

The Geographic Resources Analysis Support System (GRASS) is a general purpose
geographical information system supporting both vector and raster import/export,
analysis, and graphical cartographic output (Westervelt, et al. 1992).  Recent
additions to GRASS as well as ongoing research make this software environment
very attractive to landscape modelers.  Such additions, existing and planned,
include support of real numbers in raster maps, thin-plate spline surface
interpolations, perturbation of data fields for performing sensitivity analyses,
establishment of a NULL value associated with maps, and development of
multi-dimensional raster data to support 3-D and time-series data.

GRASS is an extensive public domain GIS that is enhanced with commercial
extensions.  Drawing from the framework of the UNIX environment, GRASS
consists of a large number of command-line driven spatial analysis programs.  This
document cannot adequately describe the GRASS programs (or any other public
domain or commercial GIS package), but a few key defining capabilities make this
software very interesting to the modeler.  These are discussed individually below.

GRASS, like UNIX, forms a programming language.   The GRASS programs, in this
respect, provide an extensive library of spatial analysis subroutines. Traditional
GIS operations (Burrough 1986; Star and Estes 1990; Tomlin 1990) can be mixed
and matched to form sophisticated terrain analyses.  When performed iteratively,
the GIS turns into a dynamic spatial modeling system.  GRASS is especially well
adapted to this type of modeling because it merges seamlessly with the UNIX
shell-script approach to programming.  This approach is much more accessible to
land analysts than the much more difficult FORTRAN or “C” programming.

r.mapcalc is a particularly useful GRASS program as it provides a very flexible
environment for performing a huge variety of GIS analyses.  This program accepts
a series of equations that use map names as variables.  Each map contains a single
value for each cell in a raster map.  When the equations are executed by r.mapcalc,
the program operates on one cell at a time.  Map names in the equations are
replaced with values corresponding to the current cell in that map.  The results of
the computation (or series of computations) are then placed into a result map.  This
map becomes part of the database and may be used as input to a GIS analysis
program.  In this manner, r.mapcalc (as well as other GRASS programs), when
used iteratively, can generate a time-series of modeling output maps.
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Figure 2.  SME process.

3.1.3 Spatial Modeling Environment (SME)

The Spatial Modeling Environment was introduced in sections 2.2.4 and 2.2.3. It
has been under continual design and development for at least 5 years by Dr.
Thomas Maxwell (Maxwell 1995; Maxwell and Costanza 1993).  It is a raster-based
landscape simulation environment that facilitates the simultaneous operation of
cellular models in any number of cells.  SME combines intuitive model building
environments, parallel processing software capabilities, and state-of-the-art
hardware environments to create a powerful spatial modeling environment
(Maxwell and Costanza 1993).  Figure 2 provides a graphical overview of the SME
processes.

The basic characteristics of this modeling environment are as follows:
1. The modeling paradigm is cellular.
2. Time steps are of fixed length (user definable).
3. Models are constructed graphically.
4. Software programming is required for inter-cell movement of information.
5. A single cellular model is run on all cells in the spatial system simultaneously.
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The SME process steps are performed on a combination of Macintosh and UNIX
software and hardware environments.  When run completely in a Macintosh
environment, a Hypertext interface guides the user through the model development
and execution process.  Work is underway to completely migrate the entire process
to the UNIX and X-windows environment.  The final model can be run in a variety
of parallel processing environments.  Each step of the process is described below:

Step 1: Create cellular model.

Step 1 in Figure 2 is where the basic cellular model is prepared by the modeler.  At
this stage the process is owned by the person who understands the landscape
interactions that will be modeled.  The modeling can be completed by a team, but
the interface does little to facilitate serious collaborative efforts.  The interface is
provided through two different dynamic simulation software packages that run
exclusively in the Macintosh hardware environment: Stella and Extend.  Parts of
previous models can be recovered to form the basis of new models, especially with
the Extend software, which facilitates the development and maintenance of objects.
Neither Stella nor Extend provide mechanisms for facilitating spatially explicit
models.  This requires the user to resort to more tedious code development to
facilitate inter-cell exchange of information.

Step 2: Model translator.

Once the cellular model is developed, the model must be translated into a language
that can be compiled in several different hardware/software environments (step 2,
Figure 2).  Different versions of SME provide interfaces to FORTRAN, C, and C++.
Generally the cellular models are completely developed and mostly debugged in
their native software system environments.

Step 3: Inter-cell movement.

Inter-cell movement is not facilitated by the software available in step 1.  Step 3
(Figure 2) is accomplished through the traditional approach of writing computer
code (in FORTRAN, C, or C++ depending on the version of SME in use).  The
modelers must communicate their requirements to someone familiar with software
programming.  The resulting code is then ready for the next step.

Step 4: Compile.

Once the cellular model and the inter-cell movement software have been generated,
they are compiled (step 4, Figure 2). This is accomplished with some more



USACERL  98/94 53

programmer-generated code and the standard process of compiling the various
pieces and loading them all together into a single executable.  The compilation
process can be modified slightly depending on the targeted parallel processing
environment.  Potential targets include:
� A transputer array attached to a Macintosh.
� An array of Sun or IBM 6000 UNIX machines.
� A CM-5 Connection Machine.
� A CM-3 Connection Machine.
� A single UNIX workstation.

Step 5: Prepare maps.

A series of maps must be generated (step 5, Figure 2) to  provide system state
initialization for individual cells.  Of course, the modeler must be cautious to ensure
that the input is meaningful and properly matched with the model requirements.

Step 6: Run model.

Finally, the model can be run (step 6, Figure 2).  Because the combination of the
various submodels, inter-cell information exchange, and map input creates
something distinct from any of the parts, a significant amount of full system
debugging must be expected by any modeling team.  The operation of the model can
generate a tremendous amount of output in the form of system state maps.
Generally only some of the available state information will be selected for some
time steps.  For example, water salinity might be selected from several dozen state
variables for sampling every tenth time step.  The output provides the principal
window into the operation of the model and may be perused with any number of
different scientific data set visualization tools.

3.1.4 IMPORT/DOME (I/D)

IMPORT/DOME, the Integrated Modular Persistent Object Representation
Translator/Declarative Object Manipulation Engine (Morrison 1995) has been
under development at USACERL and the University of Illinois at Urbana-
Champaign.  It was designed to be a powerful, flexible, and easy-to-use simulation
language that is object-oriented, persistent, and event driven.  IMPORT is a
procedural language that allows programmers to specify object classes and the
behavior of those classes.  All actions are specified in the usual precise manner
required by procedural coding approaches (used traditionally in Basic, FORTRAN,
C, and C++).  DOME provides a declarative side to the IMPORT/DOME language.
It is based on concepts captured originally in the PROLOG language (Bratko 1990).
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Here, the programmer does not identify sequences of actions to be taken, but
instead provides statements of fact and statements of logical connections between
and inferences from those facts.  Expert systems are often built with such
programming approaches.  The combination of both procedural and declarative
programming capability into a single language results in a very powerful and
efficient environment for supporting dynamic simulations. 

A fundamental aspect of IMPORT/DOME is its ability to simulate the passing of
time by allowing objects to schedule the activities of objects in the system.  An
asynchronous “TELL METHOD” is used to facilitate this important capability.
Effectively, during the operation of a compiled IMPORT/DOME program, a
calendar of events is maintained.  Activities are scheduled.  During the operation
of any given activity, the associated object may schedule other activities to take
place at other times.

All variables used in IMPORT are strongly typed.  That is, every variable must be
declared where it is instantiated and wherever it is shared with other program
components.  It is virtually impossible to compile code that identifies something as
one type and then attempts to use it as another type elsewhere.  Multiple uses of
a variable name are permitted; the context of the use of the variable establishes
which meaning of the variable name is used.

3.1.5 C++

The C++ programming language provides the fundamental environment for all
software development within this project.  The SME package operates completely
with C++.   IMPORT/DOME code is translated into C++ code before it is compiled
into operational code.  This makes it possible to build SME and IMPORT/DOME
capabilities into the same operational program.

3.1.6 Related I-STEMS Research and Development

The research effort discussed in this document focuses on the facilitation of discrete
entity simulations in ecological modeling (see section 3.2).  A number of associated
efforts are planned or underway.  Each addresses a subset of the goals developed
in section 2.1 and 2.2.  

Multi-processor and multi-computer - A major goal of the larger program under
which this project is taking place is the ability to easily integrate a number of
separately running simulation programs.  At present, separate programs exist to
simulate or model (1) landscape state, through GIS (2) overland water flow (3) flow
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of water through stream networks (4) movement of subsurface water (5) forest
growth (6) fire spread in natural systems (7) spread of diseases or pests, and other
activities.  Each simulation artificially holds constant state variables simulated by
the other programs.  Being able to link a number of simulations would help remove
this requirement.  Running such simulations will require the use of multiple
processors and multiple computers.  From this requirement comes the need for
software that can move information efficiently between the simultaneously running
simulations as well as keep the simulations running synchronously.

User Interface - Existing software simulations (listed above) are accompanied by
their own user interfaces.  Linking such programs into a common framework
requires the construction of a common user interface, which helps to tie the various
capabilities together for an end user.  Software developed with a model-view-
controller (MVC) approach is easily adapted as the view and control software are
already developed as replaceable modular components.  Other simulation models
may require extensive efforts to turn off the existing user interface and replace it
with the ability to look into and affect the simulation from programs running
separately.

3.2 Facilitating Discrete Entity Simulations

As presented at the outset of Chapter 1, there exists a need in landscape-based
ecological modeling and simulation to be able to deal with populations at low
densities as individuals.  SME (section 3.1.3 ) provides an excellent environment
for capturing the simulation of populations represented as separate
metapopulations associated with each cell in a regular grid-cell array.  The author’s
experience with trying to capture the movement of individual entities (Westervelt
et al. 1994) provided the impetus for searching beyond the Stella/SME software for
a better and more complete approach for the simulation of distinct entities
(individuals and spatially connected sets of individuals).  Following are a set of
defined objectives associated with this need.  It is these objectives that are
addressed by the current research. 

Entity Ownership Retention - When designs become too large for a single individual
to author, the project must be split into smaller components.  These parts are
assigned to individuals or to small groups.  To maximize the potential success of the
project, the authors (owners) of the individual components must retain ownership
throughout the completion of the design and implementation.  With any software
development it is often necessary that the design be turned over to a programmer.
The programmer is not a specialist in the application area and cannot be expected
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to thoroughly understand the design.  Too often ownership is lost by the original
designer to the programmer.  During debugging and modification phases it is the
programmer who must not only change the software implementation, but must
change the design.  The resulting product may not be recognizable by the original
designer — even if that person could decipher the software.

It is important that the designer retain direct ownership of the design and its
implementation as far into the overall system development as possible.  No amount
of documentation can make up for the training, experience, and background upon
which the designer bases decisions.

Variable Time Resolution - Mobile entities must be able to operate at variable time
steps.  The reasons for this objective are two-fold.  First, limited computational
powers require the smart use of CPU cycles.  While it may be important to update
an entity’s position on an hourly basis during the day, a several-hour time step may
be appropriate at night; a several-day or several-week time step might be adequate
during times of hibernation.  Secondly, different activities and actions occur at
different time scales.  For example, over the course of hours an animal might move
around with respect to local food sources; over the course of days an animal may
respond to changes in temperature; over the course of months, movement may
include migrations or other large-scale movements; and over the course of decades
change in spatial patterns of genetic material may reflect climate changes.

Variable Space Resolution - Similarly, space must be accessible at a variety of
spatial resolutions.  This requirement is linked with the variable time resolution
requirement; in general, as the resolution of time increases, there is a correspond-
ing increase in the resolution of space.  For example, an animal that traverses X
amount of space in time Y can traverse 2X space in 2Y time.  Hence, doubling the
time resolution is associated with doubling the spatial resolution.  As any given
entity changes its rate of movement across a landscape, the simulation environ-
ment should be able to compensate by adaptively changing the spatial resolution.
Also, at any given time during a simulation, entities must be able to view and
interact with varying resolutions of space as a function of their particular ethology.
This requirement primarily addresses the need for computational efficiency.  It
also, however, reflects actual differences in the way different entities actually
interact with their environment.

Mobility - It is imperative that entities have the ability to move across a landscape.
Movement speeds and directions must be unique to each simulated entity.
Movement is controlled by decision-making software algorithms developed as a part
of each entity and is based on some combination of current and past internal and
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external states.  External states include the perceived state of surrounding entities
and the physical characteristics of the surrounding space.  It is anticipated that the
DOME component of the IMPORT/DOME language will be used to capture
expert-system information and analysis capabilities to facilitate movement
decisions.

Scan and Evaluate Surrounding Entities - As entities move around their simulated
landscapes, they must be able to detect and probe other entities in their immediate
area of influence.  To avoid reprogramming existing entities, each entity must come
equipped with personalized rules for evaluating other entities.  It is anticipated
that interesting working simulations will attract the addition of new entities.  Such
additions should not require the return of all working system components to their
authors for updates to deal with the new entity.

Entity Maintenance of Knowledge - As entities move about and interact with the
landscape and other entities, they should develop and maintain knowledge about
their environment.  Knowledge provides an important role in computation efficiency
(caching), and is important to the behavior of an animal.  A home range, for
example, can be thought of as an area that not only contains the requirements for
sustaining an entity, but is known sufficiently well by that entity to allow for
efficient collection of required resources (i.e., food and water).

Create New Entities - During the course of a simulation, entities must be able to
“create” or instantiate other entities.  This operation may come into play with the
generation of propagules or offspring.  It also occurs when an animal transforms
from one type of entity into another.  The dynamic creation of new entities during
a simulation is critical.

Interactions With Other Dynamic Entities - Individual dynamic entities should
have virtually unlimited potential for interaction with other entities.  All of the
different interactions found in nature should be possible within the fundamental
design of the simulation environment.  These include, but are not limited to
predator-prey, mating, communications of all types, symbiosis, pollination, and
movement of material and information.

User Control - Once a system is designed and created by an interdisciplinary group
of scientists, the end user must have numerous opportunities to change the course
of the simulation.  This includes, but is not limited to initial system configurations,
land-use scheduling, and run-time adjustments of various system components,
including individual entities.
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Sensitivity Analysis - Developers and users at all levels are continually responsible
for participating in the analysis of the most important components of a simulation.
Users must be able to experiment with various system components to determine
future data requirements and system performance and utility improvements.

Tracking and Saving Entity States - During the operation of a simulation, various
methods of tracking and saving of entity states must be available to the user. 

Model Design via User Interfaces - This effort will not result in the development of
sophisticated user interfaces, but such interfaces must be considered in the design
of the system capabilities.

The approach used to address these objectives is presented in section 4.3.

3.3 Linking To Cell-based Landscape Simulations

In the future, mobile entities will be interacting with other simulated landscape
components including vegetation, human activities, weather, storms and floods,
and plumes of gasses, dusts, and pollens.  A related effort in the design and
development of I-STEMS is the creation of specifications for a software fabric that
will allow disparate simulation software to  run simultaneously.  As that fabric
does not yet exist, the current effort must rely on the creation and use of special
purpose capabilities to link the dynamic and mobile entities with a dynamic SME-
created landscape.

It is important that the mobile entities be developed and tested within a static
landscape context.  This reduces the number of variables to a level that allows
efficient software debugging.  Hence, the approach taken in this effort is to develop
both a method for simulating the entities on a static as well as dynamic landscape.
In both situations, however, the entities must be able to access information about
and the status of the landscape.  In particular, entities will want to receive a
snapshot of the state of a current location.  This information, combined with the
entities’ knowledge of other local entities and the internal state of the entity, will
then affect the behavior and future state of the entity.  Section 4.4 discusses the
design used to link the dynamic entities with a dynamic landscape.
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3.4 Summary

This chapter has drawn from the general objectives identified in Chapter 2 to
develop specific requirements for the current research.  For the support of discrete
animal entity design and development, the research must support variable space
and time resolutions, animal mobility, interaction with other dynamic entities, the
creation of new entities, and the abilities to find and evaluate neighboring animals,
to maintain information about other entities, and to track and save entity states.
Consideration must also be given to sensitivity analyses support, the capturing of
entity states, and the ability to view and control the simulation.  Chapter 4
addresses these objectives, while the completed system is evaluated with respect
to the objectives in Chapter 6.



60 USACERL  98/94

Figure 3.  Overall design.

4 Design

The objectives of this research as described in Chapter 3, and couched in a broader
perspective presented in Chapter 2, are addressed through the approachs described
in this chapter.  These approaches recognize the design constraints and opportuni-
ties established with the current selection of certain software environments for
I-STEMS described in section 3.1.   The concepts of the overall design are developed
in section 4.1.  Sections 4.2 through 4.5 describe the approach to the development
of key portions of software used in support of demonstrating the concepts.

4.1 Overall Design

The overall design is based on a merging and integration of two disparate
simulation environments (see Figure 3).  The well developed Thomas Maxwell
product called SME (the Spatial Modeling Environment) provides an excellent
environment for designing dynamic spatially explicit population models (section
3.1.3).  IMPORT/ DOME offers a programming language perfect for capturing
behaviors of discrete entities (section 3.1.4).  These two environments must then
be intermingled in a manner that ensures a standard simulation time frame and
sufficient inter-system exchanges of information. 

The primary focus of this effort is on the development of design specifications that
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Figure 4.  Overall IMPORT/DOME design.

allow for the efficient development of mobile entities that can interact with static
GIS maps as well as dynamic SME population models.  Dynamic landscape
modeling in SME is already available; the present work focuses on the other two
boxes in Figure 3.  Efforts involved within the top-right box in that figure are
expanded in Figure 4, which are then developed in the following subsections.  Note
the main headings: Model Classes, View Classes, and Controller Classes.  The
classes are not only grouped easily under these categories, but this approach to
software development provides easy upgrade paths to those components of the
software that are most volatile: view and control.  Separating the model from
details involved with user input and output affords the opportunity to extend the
life of the model when new input and output capabilities become available.
Further, any given model may act as a controller for any other model.  To facilitate
this programming philosophy, each model object is developed with explicit calls
(IMPORT methods) that provide for the input and output of information.  Input
calls are connected to controllers and output calls to viewers.

Classes involved with intra- and inter-animal communications are covered in
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Figure 5.  Approach to development of demonstrations.

section 4.3.  Animal to landscape interaction classes are presented in section 4.4.
View classes are discussed completely in section 4.5.  In addition, a number of
classes that provide more primitive capabilities required for this effort are
presented in section 4.2.  Figure 5 provides a framework presented from a model
developer’s perspective.  Boxes are arranged in three rows and three columns.  The
top row captures capabilities that a modeler uses to develop models and are
assumed to remain fixed for the complete community of system users.  “GRASS
Interface Libraries” and “SME’s Stella to C++ Translation Code”  were developed
outside of the current effort and are adopted unchanged.  The middle box in the top
row represents all of the IMPORT/DOME classes depicted in Figure 4.  Users of the
combined capabilities (as demonstrated through sample models in Chapter 5)
develop model components represented in the second row.  These involve the
development of static landscape maps in GRASS, optional development of Stella
models to capture landscape dynamics using Stella and SME, and the development
of animal classes and the main models using IMPORT/DOME represented by the
middle box.  The result is a set of programs that simulate the behavior of the
designed entities within static and, optionally, dynamic landscapes (box in the last
row of Figure 5).

Figure 6 expands the IMPORT/DOME section of Figure 5 into an object relation-
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ship diagram.  Readers should continually refer to this figure as the individual
parts are discussed in the remainder of this chapter.  A large number of IM-
PORT/DOME support object classes developed for this project, like GraphFunction,
LinkedList, and GaussRandomGraph, and various viewer classes, are not shown
in Figure 6.  Readers unfamiliar with object-oriented programming approaches
need only be aware of a few concepts.  First, classes are descriptions of objects.
When the program is running, an object is instantiated (comes into existence) when
memory is dynamically allocated based on a class.  A class can be used to
instantiate or create any number of objects of that class type. Classes can inherit
other classes.  For example, a class called animal may be inherited by a class called
dog and also by another class called cat.  The animal class provides the code that
represents common processes between all animals.  The dog and cat classes are
subclasses of animal (which is a superclass of both).  A dog is a (ISA in ob-
ject-oriented terms) animal.  Classes can also instantiate objects based on other
defined classes for their own use.  If it is important to simulate the behavior of the
dog’s heart, a heart class could be defined.  Using this class, a heart object could be
instantiated each time a dog class is instantiated and then be associated with that
dog.  In this case the dog has a (HASA) heart.  If, for some reason, the cat needs to
directly affect the dog, it is possible for the cat to know about the heart class in
general and a dog’s heart object in particular.   Read the Figure 6 legend to
distinguish among these different relationships that exist among the various object
classes.

4.2 Design and Implementation of General Purpose IMPORT/DOME Classes

IMPORT/DOME (I/D), being a new programming language, offered few objects in
support of simulation design and development.  These included libraries of
rudimentary graphics, random number generators, string manipulations, file input
and output, list operations, and basic math and trigonometric operations.  For this
research a number of additional I/D classes were developed to support general
purpose simulation.  Appendix B provides a programmer reference for the following
IMPORT/DOME support classes developed for this research:
� GaussRandom - A random number generator whose output distribution fits a

gaussian distribution.
� GRASS - IMPORT/DOME code that encapsulates the C++ based

GRASS_interface and GRASSMap code listed below.
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� GRASS_interface -  C++ code that in-turn encapsulates the GRASS C
subroutines for availability to IMPORT/DOME.

� GRASSMap - Associated closely with the GRASS_interface class, this class,
written in C++,  provides access to individual GRASS maps.   Each map is
treated as a separate object.

� GraphFunction - Class that allows model developers to express functions of a
single variable through a series of line segments.

� SME - Encapsulation of complete SME-generated spatial landscape simulations
based on Stella models.  Forms the basis of the dynamic version of the
MapManager, which is directly interchangeable with MapManagers developed
and based on the GRASS classes (above).

� LINKEDLIST -  Class for the creation, management, and access of linked lists.
� LINK - Link class used by LINKEDLIST objects.
� StripChart - Object that generates pen plot type graphical output based on data

dynamically sampled from running simulations.  Up to ten pen plots can be
supported on any one strip chart.  The horizontal axis is time and the vertical
axes are user defined.  (Described in section 4.5.1.)

� PenPlot - Up to ten of these objects are managed and displayed by a single
StripChart object.

� RandNormGraph - Provides a one-step approach to a graph-type function.  A
RandNormGraph object is instantiated with any number of graph coordinates
pairing an independent variable with a mean and a standard deviation of the
dependent output variable.  The independent variables must be monotonically
increasing.  Calls to the ReturnValue method returns a random number chosen
with respect to the normal and standard deviation associated with the input
value.  This is valuable for generating stochastic temperature, rainfall, and
other environmental data.

� Region - Class that provides an efficient means for keeping track of the
whereabouts of all mobile entities.  Individual entities can query the region for
a list of entities within a range (provided by the querying entity).

� RasterManager - Class that provides the standard link between instantiations
of entities and the static and dynamic versions of MapManager (below).

� Register - Object class that feeds unique numbers used to distinguish between
individual entities in the simulation environment.

� TimeManager - Object class that provides information regarding the current
time (day, month, year) and associated simulation time steps for each of these
units.

� Precip - Object class that provides the means to generate stochastic precipita-
tion amounts for any time of the year.  Uses the RandNormGraph class to
generate variable storms based on information about storm frequency and
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intensity as well as average rainfall and associated standard deviations.  A
single precip object is used to generate rainfall for an entire region.

� Temperature - Object class that generates temperature based on knowledge of
local averages and standard deviations.

� ButtonXGraph - Subclass based on the IMPORT/DOME standard (but
primitive) XGRAPH.  XGRAPH provides a handful of METHODS for generating
graphics through UNIX X-windows.  ButtonXGraph essentially adds the ability
to place very simple buttons on the screen providing primitive GUI control.
Additions to the IMPORT/DOME standard C++ routines underlying the
XGraph object were made to support the operation of these buttons.  Hsuan Chi
Lu contributed to the development of this code and has developed newer
capabilities that are now eclipsing these primitive efforts with much more
complete and more flexible GUI capabilities in support of IMPORT/DOME
developed simulations.

In addition, the following simulation support objects, though not sufficiently
standard for inclusion in a general purpose library, are easily modified to support
a wide variety of simulations.
� MapManager - IMPORT/DOME object class that provides interface to

simulation-specific landscape information.  For the demonstrations documented
in Chapter 5, the MapManager is a superclass of the more general purpose
RasterManager.  All access and modification of maps are facilitated through the
MapManager.  Two versions of the MapManager (they provide identical
METHODS) can be created: one for access to static raster maps and another for
access to SME generated dynamic maps.  For the demonstrations in Chapter 5,
the initial version of the MapManager developed to support interface with the
dynamic SME maps was written by Douglas Briggs.

� MapView - An object class that displays the current location and, optionally,
states of the dynamic entities.  Entities are displayed on a static picture
backdrop derived from a raster GIS image.  Slightly different versions are used
in the demonstrations presented in Chapter 5.  (Described in section 4.5.3.)

� AnimalView -  A viewport into the current state and current environment of
mobile entities.  It probes AnimalInfo objects as well as the simulation’s
RasterManager for information to display in bar chart format.  (Described in
section 4.5.2.)

� WeatherView - A viewport using the StripChart object to view the weather
(precipitation and temperature).

� ViewControl - A simple interface that allows the user to generate AnimalViews
and WeatherViews during a simulation.  The ButtonXGraph is the superclass
supporting the graphical display.
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Figure 7.  Set of classes to support a mobile entity type.

� Control - Similarly simple, it provides a simple pause/start capability for
rudimentary simulation control.

4.3 Classes Supporting Mobile Entities 

This work focuses on facilitating the design, development, and operation of mobile
entity simulations.  At the center is the specification of the software components
that, together, allow the instantiation, control, and simulation of entities.  Figure
7 (a subset of Figure 6) graphically depicts the basic classes developed to support
and demonstrate the mobile entities.  Each animal class is developed as a subclass
of an AnimalInfo and a LandInfo class.  Its power is discussed in section 4.3.1.  The
rest of the object classes are developed individually for each animal, although
developed classes can be used as templates for the development of classes
supporting other animal classes.  The LandInfo class is required if the animal
interacts with the static or dynamic landscape information captured in GIS maps
or Stella/SME cellular models.  Animals developed as part of this work incorporated
the LandInfo as a superclass.  The remaining classes identified in Figure 7 are
optional, and indeed suggestive of a wide variety of objects used by the animal
class.  These are discussed in section 4.3.2.
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4.3.1 The AnimalInfo Class

A main goal of the effort was to facilitate the rapid development of animal entities.
The approach used in this study was to divide the animal into a set of classes, each
of which becomes either a superclass of the animal class through multiple-
inheritance or an associated class either instantiated by or simply known by the
animal class.  The advantage of this approach is that any given animal may be
constructed with any number of different parts, or building blocks.  There may be
more than one version of any given building block, thereby providing the model
developer with a rich set of components from which to choose.  There is one main
superclass, AnimalInfo, developed for this project.   It provides two fundamental
capabilities intended to be used by all animals.  First it is a single location for
accessing and changing certain standard facts associated with a given animal type.
This cache of facts provides a common area for the animal support classes discussed
in 4.3.2 to communicate with one another.  Second, it provides the window into the
facts associated with all other animal entities in a simulation.  Associated with this
window is a primitive query capability.

The following facts are currently maintained by the AnimalInfo class:
� Region - This is a pointer to the simulation’s region manager that accepts the

registration and re-registration of the location of individual entities.  It is used
by AnimalInfo to register the location of the associated animal and is used to
query for a list of animals within a certain range of the animal.

� RegionKey - A pointer to the Region’s stored information about the animal
which is used to unregister the animal as it moves or dies.

� NorthVel - The current velocity in meters per day of the animal in the
north-south axis.

� EastVel - The current velocity in meters per day of the animal in the east-west
axis.

� ID - A unique number assigned to the animal for individual labeling and
identification.

� Prey - The Easting location (meters) of the last prey item (or 0).
� PreyN - The Northing location (meters) of the last prey item (or 0).
� E - The Easting location (meters) of the animal (or 0).
� N  - The Northing location (meters) of the animal (or 0).
� Sex - The sex of the animal.
� Mass - The animal’s mass in grams.
� Range - The radius in meters of the smallest circle bounding the animal’s home

range.
� Age - Age in days.
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� Length - Length in mm.
� Carniv - A 0-100 index; 0 is completely vegetarian and 100 is completely

carnivorous.
� DT - Time between animal updates in IMPORT/DOME simulation time units.
� Stress - A 0-100 index; 100 is very stressed (as determine by animal-specific

software).
� dStress - The most recent change in stress per day.
� Satis - A 0-100 index; 100 is very satisfied (as determine by animal-specific

software).
� dSatis - The most recent change in satis per day.
� Dead - Set to TRUE if the animal is dead and FALSE if alive.
� Name - A string representing the type of animal.  This can be used to recognize

others of the same type.
� Activity - A string describing the current activity of the animal.  No standard

activities have been chosen.  Currently used for labels and for animals
recognizing their current activity state and modifying behaviors accordingly.

� Neighbors - A list of other animals within a specified range returned on demand
from the Region manager.

� Fertile - The simulation day on which the animal was fertilized (or 0).
� QueryResult - List of animals (via AnimalInfo information) meeting the query

specifications identified.
� Color - Color used for displaying animal.  The UNIX X-windows program

“showrgb” lists some optional colors.
� QueryLengthHi - The highest length accepted in a query. 
� QueryLengthLo - The shortest length accepted in a query. 
� QueryMassHi - The heaviest mass accepted in a query. 
� QueryMassLo - The lightest mass accepted in a query. 
� QueryFemale - Whether or not females are desired.
� QueryMale - Whether or not males are desired.
� QueryAgeHi - The oldest age accepted in query.
� QueryAgeLo - The youngest age accepted in query.
� QueryCarnivHi - The highest carnivorous index sought in query.
� QueryCarnivLo - The lowest carnivorous index sought in query.
� QueryDeath - Whether or not the query is seeking live or dead animals.

Another one of the design goals of this project was to facilitate the ability to add
new entities to an environment without explicitly revisiting all existing simulation
entities for the purpose of “teaching” each about the new entity.  It is possible to
develop entities that respond to other entities based on their name.  For example,
dog entities could be developed to react to cats because they are called cats.   Using
this approach, dog entities must be explicitly reprogrammed if another animal (e.g.,
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a raccoon) is added to the simulation.  Alternatively, if the dog entity was developed
to respond to the characteristics of creatures it encounters, then the new raccoon
objects might not require a reworking of the dog object.   The raccoon, like the cat,
would be asked to reveal certain features about itself (captured in the AnimalInfo
fact list) and the dog would respond accordingly.  The AnimalInfo class provides all
animals with a consistent set of facts through which animals can evaluate each
other.  The management, updating, and use of that information will be peculiar to
each individual animal.

A second way that animals can communicate with one another is to act on each
other.  There are two approaches currently available to facilitate this kind of
communication.   First, the information maintained by the AnimalInfo class can be
modified by any animal.  This is not recommended for general practice.  However,
a common approach used in the demonstrations (Chapter 5) is for one animal to kill
another by setting the other’s “Dead” variable in AnimalInfo to TRUE.  Another
way is to provide METHODS in AnimalInfo that allow an animal to respond to
some action initiated by another animal.  For example, the AnimalInfo class
provides a method called BeAttackedBy, which takes as an argument the
AnimalInfo object of the attacking animal.  By default, the METHOD simply
returns “TRUE” to indicate that the attack has resulted in death.  IMPORT/DOME
allows the animal classes (as a subclass of AnimalInfo) to override this method and
provide a BeAttackedBy, METHOD that might evaluate the current terrain
potential for hiding or evasion, the motivation of the attacker, along with its size,
weight, and carnivorous rating before deciding the outcome of the attack.  The
results of unsuccessful attacks might be saved in a memory database that provides
a persistent knowledge associated with the type of animal that attacked.  In
addition to attacks, a whole series of other actions of one animal upon another will
certainly be developed.  Such actions will include feeding, protecting, communicat-
ing, and intraspecific fighting.

4.3.2 Optional Animal Classes

The previous section covered the important and required AnimalInfo class.  Figure
7 shows this class along with an assortment of optional classes that are used by,
but not superclasses of, an animal class.  Figure 8 shows these classes as optional
building blocks for the construction of various animal classes.  These optional
“ANIMAL CLASS BUILDING-BLOCKS” operate as stand-alone objects which,
because they all communicate with other animal building-blocks through the
shared AnimalInfo class, are interchangeable.  For example, if a newly developed
cat class uses a “health” class that is better than the equivalent class developed for
dogs, then the dog class can be readily switched to use the cat-developed health
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Figure 8.  Animal class hierarchy schema.

object class.  Ideas for the functionality of some of these optional classes are
developed below.

� Eating and Drinking - Eating and drinking are fundamental activities for all
animals.  Such activities are handled here.  The desire to eat and drink may be
managed within this object class and may be further based on food opportuni-
ties locally available as a function of the current location.

� Health - The health class will manage animal stress levels based on food and
water intake, current and historical temperatures, and stressful interactions
with other entities.  Stress levels may be captured by any number of simulated
indicators ranging from fat reserves, blood chemistry, or even psychological
measures.

� Learn Surroundings - Animal movement is undertaken in response to a picture
or view of the surroundings.  Knowledge of the surroundings is based on both
the information available to be known and the time invested in learning.  This
class manages how much is known about the surroundings; the results are then
available to other classes for making decisions.  In particular, the movement
classes will rely on what is known about the surroundings.

� Movement - Movement is a key component of animal simulations.  A movement
class captures the rules for movement which are, in turn, a function of a
potentially large number of facts about both external (environmental) and
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internal states.  These facts can be processed through an expert system defined
through DOME-captured rules and facts, or through procedural algorithms
expressed in IMPORT.

� Reproduction - The reproduction class captures the generation of propagules,
the laying of eggs or bearing of young, and the change from one life stage into
another.  It also may capture behaviors, feedings, or other energy expenditures
involved in the rearing of young or maintenance of social bonds. 

� Activity - This class can be construed as a helper class to “movement.”  It
provides the analysis to identify whether an animal is active or resting through
hibernation or aestivation.

Notice in Figure 8 the explicit opportunity for developed animal classes to be used
as superclasses.  The design approach and object-oriented programming principles
provide the opportunity for model developers to create generic animal classes that
are then slightly modified through inheritance to capture peculiar details
associated with different animals.

4.4 Animal-to-Population Interaction Classes

The previous section dealt with the abilities provided for entity-to-entity interac-
tions.  These entities, in a landscape setting, must be able to recognize differences
across a heterogeneous surface.  Figure 9  (a portion of Figure 6) diagramatically
shows the relationship between the classes involved in this process.  The main
IMPORT/DOME program instantiates a single RasterManager and any number of
Animals (and possibly any number of different kinds of animals).  The
RasterManager uses either the static or the dynamic MapManager as a SuperClass
that provides information associated with the landscape.  Remember that the static
version is preferred for the initial design, development, and testing of animal
classes because of significantly increased simulation speeds and a decrease in the
number of variables changing simultaneously.  Each instantiated animal has its
own LandInfo as a superclass that provides the animal’s link to the map informa-
tion through the single instantiated RasterManager.  Through this link, land
information can be queried and could be modified (e.g., a herbivore decreasing the
cover of vegetation).  Each of these key classes is discussed individually below.

4.4.1 LandInfo Class

The LandInfo class is developed specifically for each particular animal class.  It
may simply fetch information directly from the RasterManager as required by the
animal.  However, it exists to provide a key information preprocessing step for
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Figure 9.  Interaction between animal and landscape classes.

converting the mapped information before providing the information to the animal.
For example, an animal may simply want to ask of the landscape how much
herbivorous food is available, but the RasterManager (through its MapManager
superclass) is simply able to provide percent land cover for grass, forbs, and trees.
The LandInfo may then fetch this information and through an algorithm developed
specifically for that animal convert this information into available food.  If
appropriate, an index on food quality could also be generated.

4.4.2 RasterManager Class

Information about the landscape is received by the LandInfo class through the
RasterManager class.  A single RasterManager object is instantiated at simulation
start-up time.  Its address is provided to each instantiated animal (of any and every
type) and then associated with the LandInfo superclass.  The RasterManager is a
library class and is used unchanged in any simulation.  The actual access of raw
landscape information is facilitated through either a dynamic or static
MapManager superclass described below.  The METHODS provided by the
RasterManager are generic and allow such things as map coordinate conversions,
map extent information, and the averaging of raw data across the circular ranges
associated with animals.  Details on these METHODS are found in Appendix B.
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4.4.3 MapManager Class

The class MapManager provides the single interface to static or dynamic landscape
information.  Currently these classes must be developed specifically for each
simulation.  Versions can of course be cloned from working simulations and
modified to access the particular landscape information that will be supplied to the
simulated entities.   In the development of landscape simulations with entities,
typically a static and a dynamic version of the MapManager will be created.  These
versions must appear identical to the rest of the system with respect to MODULE,
OBJECT, and METHOD names.  Being identical in this manner, they can be
interchanged with one another without any modifications to any other part of the
simulation software.  METHODS associated with the MapManager class provide
(1) access to information about certain data associated with the landscape (2)
optionally, metadata associated with this information, and (3) whether or not a
given coordinate is within the area being simulated.   

For the demonstrations developed in Chapter 5, both static and dynamic
MapManagers were developed.  The static version opens, at run-time, the following
GRASS maps, which are then randomly accessed during a simulation:

Elevation
Study area
Percent brown vegetation
Percent green vegetation.

The dynamic version opens a Stella/SME simulation, which in-turn uses the
following GRASS maps taken from the same region as the maps accessed through
the static version of RasterManager (some maps are reproduced in Appendix A):

Vegetation density
Elevation
Slope
Aspect
Average water content
Study area.

Both versions then return the same information to the rest of the simulation:
temperature, precipitation, slope, aspect, elevation, percent green cover, and
percent brown cover.  However, they may provide that information through
different processes.  Elevation is a constant for both RasterManagers and is merely
pulled from the elevation map for the static version and from static information
maintained by the dynamic version.  Slope and aspect are also static information
in both and are accessed in the same manner as elevation in the dynamic version.
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The static version of MapManager uses an IMPORT/DOME function to convert
elevation information to slope and aspect data.  This could easily be changed to
access information directly from GIS-based slope and aspect maps.  Percent green
and brown vegetation is retrieved by the static version directly from GIS maps and,
in the dynamic version, from dynamic stock variables maintained by the
Stella/SME model.  Finally, temperature and precipitation are dynamically
computed by Stella/SME for the dynamic MapManager.  Because of the key role
that can be played by temperature and precipitation in entity simulations, the
static MapManager actually uses specially developed temperature and precipitation
objects to compute precipitation and temperature regionally.  The regional
temperature is further adjusted to take into account latitude, slope, and aspect of
any given location.

4.4.4 Synchronizing SME and IMPORT/DOME Simulations

Besides facilitating the exchange of information between Stella/SME and
IMPORT/DOME, the dynamic version of the MapManager provides another key
requirement associated with the merging of these two software environments.
Figure 10 diagrams the two fundamental needs associated with merging
concurrently running simulations: information exchange and timing control.   This
figure suggests four different simulations running concurrently: a raster-based
simulation (like Stella/SME), a mobile object simulation (like that developed here
with IMPORT/DOME), traditional GIS analyses, and perhaps some other
simulation (overland water flow simulation, economic simulation, or some geologic
process).  The user and the individual models communicate with one another
through a master calendar and one or more information brokers.

Individual models can be designed and developed using the Stella/SME
environment and the IMPORT/DOME language.  Each simulates the passage of
time for the model using software control techniques.  When combined, a single
time manager must synchronize time for both simulation components.  In
collaboration with this project, Dr. Thomas Maxwell modified SME in such a
manner that the main controlling (timer) routine could be separated from the
system update code.  This main program is relatively simple because time, for SME
code, passes in fixed time steps.  A very short main routine simply initializes the
simulation and then loops through a user-specified number of time steps.  The C++
routines used to accomplish these tasks were encapsulated in the SME object class
(details in Appendix B).  This then allows the “Master Calendar and Control”
requirement (Figure 10) to be accommodated through IMPORT/DOME.
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Figure 10.  Conceptual layer interaction.

4.5 View Classes

The Model-View-Controller system development paradigm being used in this effort
requires that model objects not communicate directly with user peripherals.
Instead, each class offers external objects the opportunity for various inputs and
outputs.  This provides the opportunity for developed “view” classes to probe objects
and then provide the returned information to a human operator through
appropriate visualizations.  It is anticipated that these classes will be the most
volatile and short-lived classes of the system.  As distinct objects they can be
removed and replaced without any requirements to modify the model objects being
visualized.

View classes can be numerous because of the multi-dimensional nature of dynamic
simulations.  The system generally works with 2-D landscapes, but may involve the
third dimension of elevation.  Time provides a key dimension.  Every state variable
is associated, through a simulation, with a time-series of values.  Each object is
associated with a number of state variables, equation constants, and interim
computations.  Further, each object may be composed of a hierarchy of other
objects; and each object may be associated with other objects in a variety of ways.
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Figure 11.  Stripchart viewer example.

Allowing the user to visualize key components of the system in an efficient manner
is the challenge that results in a number of view classes.

The following classes were developed.  Each is discussed with respect to its
intended utility and its particular “slicing” of the information space.

4.5.1 Stripchart

Visualizing change over time is very important and is facilitated here with a
stripchart simulation object.  Up to ten variables using a variety of colors can be
plotted over time.  A series of data can be plotted as continuous lines or as points.
In a typical simulation run, a number of stripcharts may be displayed — each
rendering information about a number of key system parameters.  Figure 11 shows
an example stripchart viewport actually generated by a StripChart object.  In this
case, temperature in units “degrees C” are plotted along with rainfall in units
“mm”.  Any number of these objects can be instantiated.

4.5.2 Bar Chart

For visualizing the state of a given entity in the system at any given time, a bar
chart object is provided.  Any number of values associated with the internal and/or
external state of an entity are displayed as changing values printed in text
juxtaposed with a dynamic bar providing a quick visual rendering of the current
magnitude of the value.  A sample bar chart visual is shown in Figure 12.  

4.5.3 Map

Perhaps the first visualization that landscape simulation developers consider is a
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Figure 12.  Bar chart viewer example.

dynamic representation of the landscape in a map format.  Within this effort, a
relatively simple map version allows overlaying the current positions of selected
objects on a picture of the landscape.  Entities are represented by preprepared
small images.  For this effort, those images are simple renderings of different
colored marbles.  When it is time to update the image, the backdrop is laid down
followed by the placement of the marble images centered on the location of the
various entities.  Different colors may be used to represent different information
about the entities (e.g., type, age, health).   Figure 13 shows an example snapshot
of the position of a single entity displayed on a shaded-relief picture of the
associated terrain.  Any image representing some set of landscape characteristics
could be displayed as a backdrop.

4.5.4 Desired Viewers

The viewers identified above can be augmented in the future with additional
capabilities that might include the following:
� Charts - Like the stripchart graphics, this viewer would provide time series

information about a number of system variables, but would display the
information in tabular form.
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� Dynamic maps -  The current map object uses a preprepared picture of the
landscape as a backdrop.  Rendering the landscape by dynamically displaying
variable landscape information will be important to most system users.

� Time-series maps for playback -  All current viewers provide snapshot views of
the state of the system.  None of the information is stored (except for some
amount of recent historical information associated with the stripcharts).
Mapped information can be saved by SME and viewed at the end of a
simulation.  Because simulations can take a very long time to complete, users
will want to peruse time-series output during the simulation.

� Time-series state-variables for playback - Similarly, time-series information
associated with the state of system objects is important to review during and
after a simulation.

4.6 Summary
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Figure 13.  Dynamic map viewer example.

The design components of the system described here address the requirements
specified in Chapter 3.  As designed, animal objects can move around a landscape,
update their positions at dynamically set time intervals, and interact with as much
surrounding terrain as is appropriate at any given time step.  In this design,
animals are able to use dynamically varying circular home ranges to query the
landscape and the surrounding entity space.  Interaction with other entities is

accomplished through sharing, between entities, of a fixed set of information about
the animals.  Any animal encountering a second animal is able to probe (and when
appropriate change) this data set.  Entities are permitted to instantiate (give birth
to) new entities.  User interfaces are provided to give examples of how the
dynamically changing entities can be viewed in simulation time.  Other viewers can
be created to easily capture system state in files for post-simulation viewing and
analysis.  The following chapter demonstrates some of these capabilities through
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proof-of-concept demonstrations.  Evaluation of the functionality of the design is
then discussed.
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5 System Demonstration

Through a series of “proof-of-concept” demonstrations, this chapter discusses the
capabilities and flexibilities of the concepts designed and developed in Chapter 4.
These demonstrations were developed to be realistic for the purpose of readily
communicating the potentials of the designs.  The reader is cautioned not to view
these examples as ecologically defensible or as having any substantive utility in
making land management decisions.  It is anticipated, of course, that future
collaborations between the author, ecologists, and land use managers using the
design concepts developed here will result in simulation capabilities that are useful
in making future land-use management decisions.

To test and evaluate the design approaches, proof-of-concept demonstrations were
developed.  They were inspired by recent work on the Mojave Desert being
conducted by Dr. Anthony Krzysik, USACERL, Dr. Bruce Hannon, University of
Illinois,  and myself (refer to Appendix C).   A sample landscape was selected  from
an area near the southern border of Fort Irwin,CA, in the Mojave Desert.  The
region occupies the south-central portion of the installation with the following
Universal Transverse Mercator (UTM) coordinates in the zone covering California:

UTM north 3898600
UTM south 3886600
UTM west 533000
UTM east 545000
Cell resolution 60 meters
Rows 200
Columns 200

The region was chosen because of its combination of available data, diverse terrain,
relatively high densities of desert tortoises, and related local efforts focused on
modeling and simulating the tortoise habitats in this area.  While a related effort
to simulate tortoise populations (Westervelt et al., 1998) worked with 1-kilometer
cells covering the entire installation, a 60-meter resolution was adopted for this
effort.



USACERL  98/94 83

The efforts required to create these demonstrations are captured in the middle row
of boxes in Figure 5.  This involved the development of static raster maps (left box
of that row), the development of a dynamic landscape simulation model using Stella
and SME (right box), and the development of animal entities and simulation control
software (middle box).  The activities accomplished with each of these efforts are
discussed in the following sections, which led to a number of working
demonstration models.  Development of each of the models followed a common
approach outlined in section 5.1.  Sections 5.2 through 5.5 discuss the unique
development and output associated with a number of demonstrations.  Finally,
section 5.6 provides comments on these proof-of-concept demonstrations.

5.1 Common Development

The proof-of-concept demonstrations developed for this project are presented
individually beginning with the next section.  They were all developed within a
common framework that begins with the specification of digital landscape maps for
a subsection of Fort Irwin as described above.  The common elements of these
demonstrations include GIS maps (section 5.1.1), a dynamic landscape model
developed with Stella (section 5.1.2), static and dynamic RasterManager classes
(section 5.1.3) and simulation specific viewers (section 5.1.4).

5.1.1 GIS Maps

A set of raster GIS maps provides both a picture of the landscape used in the static
demonstration and a starting point for the dynamic demonstration’s landscape.
The maps, their uses, and their sources are indicated below.  Many of these digital
maps are reproduced as images in Appendix C.
� Elevation, slope, and aspect.  These maps were derived from U.S. Geological

Survey (USGS) digital elevation models (DEM) from 7.5-minute quadrangles.
Douglas Youngs, working for USACERL in 1992, processed the raw data to
combine maps delivered in both feet and meters into a single DEM representing
all of Fort Irwin at a post spacing of 30 meters. The GRASS 4.1 program
r.surf.sor was also used to interpolate across all data dropout areas resulting
from original raw data errors, and any incomplete data where edges of raw
maps were sewn together.  Slope and aspect maps were created using the
GRASS 4.1 r.slope.aspect program.

� Vegetation density maps.  Vegetation maps did not exist or were not available
at the outset of this project.  Access was available, however, to LCTA (Land
Condition Trend Analysis) program data.  LCTA is an Army standard program
that collects detailed landscape information on randomly located 100-meter by
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6-meter transects at military installations (Tazik et al. 1992).  Field teams visit
these sites annually to record such details as densities of plant species, amount
of disturbance, and some animal information.  Shrub, grass, forb, and overall
vegetation density data derived from LCTA data were available for 168 of the
176 transects.  To full-coverage maps of the study area, these ground
measurements were correlated to Thematic Mapper (TM) satellite imagery,
elevation, shade, distance from roads, and total upstream area using a back
propagation neural network simulation program (Westervelt 1990; Westervelt
1994).  To meet the objectives of the Stella/SME-based landscape simulation
models, these maps were converted to “brown” and “green” vegetation maps (see
Figure 14) required by the tortoise habitat simulation model developed by
Westervelt et. al. (1998).

� Tortoise density map.  Development of the tortoise population model used by
the Stella/SME simulation model, which provided the precursor to the
landscape simulation component of the demonstration models, required
initialization with estimates of desert tortoise densities.  Such maps did not
exist, but like the requirement for vegetation density maps, density
measurements from random transects did exist.  Anthony Krzysik led field
teams during the 1980s to collect tortoise density estimates at Fort Irwin
(Krzysik 1994; Krzysik and Woodman 1991).  Using the neural network
technique, tortoise densities measured in 1989 were converted to full-coverage
maps (Wu and Westervelt 1994).  These maps guided the placement of tortoises
in the simulation models developed and described below.

5.1.2 Stella/SME Model Review

To provide a demonstration of replacing a static landscape with one that is
dynamic, the vegetation and weather components of the static map are replaced
with dynamic models running in the SME environment.  These were borrowed from
a study I oversaw with Bruce Hannon, and conducted at the University of Illinois
(Westervelt et al. 1998; Westervelt et al. 1995).  A large raster-based cellular model
was developed as a number of submodels.  These included general precipitation
(Figure 15), temperature (based on time of year, slope, aspect, elevation, and
latitude), surface water, soil moisture, vegetation community composition, and
brown/green vegetation (Figure 14). Each figure depicts a Stella sector that has
been used to capture the dynamics of a different submodel.  Solid rectangles are the
stock, or state, variables, which are carried over from one time-step to the next.
Stocks are changed with flows (in and/or out) represented by lines with arrows
connected to circles, which represent “valves.”  The opening of the valve is
controlled by an equation associated with each valve (not seen in these diagrams).
Each equation is a function of a number of stocks, constants, or other equation
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Figure 14.  Vegetation submodel developed in Stella.

results represented by arcs flowing from the source of the information to the circles.
Some circles are not associated directly with flows and are called converters.  The
results of their equations provide input to other equations.  In Stella, the equations
are accessed by a double-click on the associated icon.  They are typed in by the
modeler for any single convertor or “valve” after it is selected.  Stella is effective in
multidisciplinary efforts as it provides an easy-to-learn language that can be
mastered by people with a wide variety of professional backgrounds.  

5.1.3 MapManager, Static and Dynamic

The static MapManager provides the dynamic entities with a landscape framework
within which to behave.  It is designed to provide a static landsurface within which
to design, develop, and test entities that will eventually interact with a dynamic
landscape simulation.  Once animal objects are performing properly on the static
landscape, the static MapManager class is replaced with a dynamic MapManager
class that provides a set of class METHODS with identical names and calling
syntax.  The modeler provides the following capabilities in the MapManager:
� Access to landscape conditions.  These conditions are mostly static and are

provided through direct and indirect access of GRASS raster maps, which are
read during the simulation.  For the demonstration, percent land cover maps
for shrubs, grasses, and forbs are read directly from a native GRASS database.
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Figure 15.  Precipitation submodel developed in Stella.

DEM data is read in this simulation as feet above sea level and converted to
meters above sea level to be consistent with requirements elsewhere in the
model.  Slope and aspect could be accessed directly from GRASS maps, but for
this demonstration, IMPORT/DOME routines convert elevation information to
slope and aspect data as required.  The MapManager also reads a GRASS map
that identifies where, within a rectangular area on the landscape, the current
model should actually operate, and then provides this information to the
simulated entities upon request.

� Access to weather information.  This takes the form of temperature and
precipitation and is provided through a set of superclasses (Temperature and
Precip) that form part of the “Simulation Support Object Classes” (see Figure
4).  Details on these superclasses may be located in Appendix B.  Such weather
simulation capabilities will probably be useful to any modeler developing mobile
entities that behave differently under different temperature and precipitation
conditions.  Having weather simulated in this “static” environment should
reduce the time necessary to debug entity simulation software operating later
in a dynamic landscape environment.  
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� Coordinate information.  It is often necessary to locate objects within the
simulated space with row and column coordinates and with UTM coordinates.
The MapManager provides METHODS that allow for converting between these
two systems as well as keeping track of the extent of the study area.

All of the information and processes found in the MapManager are specific to the
simulation model and therefore must remain the responsibility and burden of the
modeler.

To facilitate the switch from a static landscape to a dynamic landscape, the
MapManager that supports the static data must be swapped out and replaced with
one that accesses the SME-driven dynamic data.  To the rest of the
IMPORT/DOME code, the dynamic MapManager must look identical to the static
version.  That is, the METHODS that define the MapManager module must be
identically named and require the identical data types in the method calling
arguments.  All references to GRASS format data are simply replaced with
references to SME dynamic data as seen in Figure 4.  While access to GRASS data,
at this point, requires linking the executable code only with GRASS libraries,
access to SME data requires linking with Stella models translated by SME into
executable libraries.  Each such library is simulation dependent.  At run-time, the
dynamic version of the MapManager is responsible for initializing the SME-
managed dynamic landscape code and for then updating the dynamic landscape at
appropriate simulation intervals.  

5.1.4 Modeler Developed

Once the MapManager and the entity classes are developed, they need to be pulled
together with each other and also with chosen controller and viewer classes.  For
this demonstration the following visualization classes were created: MapView,
WeatherView, and AnimalView.  The MapView viewport provides a running
snapshot of the state of the system in a 2-D map format.  The one developed for
these demonstrations displays a fixed picture derived from a digitally generated
shaded relief map of the region (refer to the top-left viewport in Figure 16).  It
provides the viewer with a sense of location.  Against this backdrop the location and
state of individual mobile entities can be displayed during the course of a
simulation.  The meaning of the particular symbolism is discussed as part of each
of the demonstrations.  The WeatherView class is based on the library StripChart
class (section 4.5.1) developed for the project.  It provides a historical view in a
stripchart format of recent temperature and precipitation.  See the lower right
viewport in Figures 16, and 17.  Note in Figure 17 that sufficient time has passed
to allow the display of 1 year of temperature (jagged upper plot) and precipitation
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(plot with spikes indicating intensity of rain events).  Finally, the AnimalView class
was created to view the changing internal condition of individual entities along
with the state of their surrounding environment.  The upper right viewport in
Figure 16 is an example.  These classes are used throughout all of the
demonstrations described below.

The “Main” class is finally constructed to pull all of the components together into
a well-orchestrated whole.  It instantiates the various viewers and entities and then
allows the simulation to unfold. 

5.2 Static Example

The purpose of this static example is to demonstrate the ability to generate a
dynamic entity that interacts with static GRASS maps accessed directly from
native GRASS databases.  This demonstration, like the rest, uses the GRASS data
and IMPORT/DOME general purpose support classes described earlier.  The animal
class for this demonstration was inspired by the Desert Tortoises found in the
region represented by the raster maps.  This class uses optional support classes like
those described in section 4.3.2, including health, movement, activity, and
“LearnSurround” objects.  

The key focus of this simulation is the behavior of the 50 instantiated animal
objects with respect to the weather and the landscape.  The simulation begins by
opening up the associated GRASS maps and initializing objects that generate the
various viewports.  It also instantiates support objects including a Region manager,
a TimeManager, and an animal Register.  Each of the viewports is associated with
an internally defined update frequency; these objects schedule their first update.
The simulation then instantiates a number (here 50) of animals.  Associated with
each animal are a number of support objects, instantiated for each individual
animal, that includes movement, health, and activity.  Each animal schedules itself
for updating.  

When an animal updates itself it goes through the following steps.  First it checks
to see if it is still alive.  If not, the animal does nothing and does not schedule itself
for any further updates.  It then collects information about its surroundings
including the other animal entities that fall within its defined home range radius.
This range is represented by a circle surrounding each animal in the MapManager
generated viewport (top left window in Figures 16 and 17).  Other information
includes the average slope, elevation, temperature, and precipitation in the home
range area.  Then, based on temperature, the activity of the animal is determined
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by the Activity object.  If too hot, the animal aestivates and if too cold it hibernates.
In either case the animal dynamically sets its update interval to a week; otherwise
it is set to a day.  It then, through its associated Health object, eats, drinks, and
determines changes to its age, weight, length, stress index, and satisfaction index.
The Health object maintains information about the current state of the animal’s
hunger and blood concentration.  If the stress level of the animal gets too low it can
die based on a death potential that rises with increasing stress.  A LearnSurround
object then adjusts the animal’s satisfaction with the surroundings by allowing it
to “learn” a little more about its surroundings.  This object simulates the ability of
an animal to come to “know” its local terrain over time.  Finally the “Move” object
then facilitates movement of the animal based on its home range and motivation
to move, which is a function of stress and satisfaction.  After all this is
accomplished, the animal schedules itself for another update at a later time in the
simulation.  The delay time is a function of the animal’s activity as determined by
the Activity object.

Look now at the two snapshots of the dynamic simulation that result from the
above code representing day 48 (Figure 16) and day 407 (Figure 17), a span of about
a year.  This demonstration shows that individual entities can be instantiated,
placed on the landscape, and then interact with the landscape as defined by static
GRASS maps accessed directly out of the GRASS database structure.  Some of
animals have died and are indicated by locations in the second figure that have lost
their “home range” circle.  Some of the animals have moved very little and others
quite a bit reflecting different satisfactions of the animals with their initial
positions.  

5.3 Dynamic Example

The next demonstration is identical to the previous, except that the static landscape
maps are replaced with the dynamic landscape simulation defined by the model
reviewed in section 5.1.2.  This model was converted into C++ code using the SME
software (section 3.1.3).  Access to the model was facilitated by a dynamic
MapManager class (see sections 4.3.5 and 5.1.3).  

Figure 18 provides two snapshots of the landscape simulation running with SME-
generated output.  The output options are quite flexible.  This figure shows how
three user-selected variables are displayed in map form and in time-series graphs
for a single cell in the map.  Several other display possibilities are available,
including tabular and time-series movie formats.
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The combination of the simultaneously running Stella/SME landscape model and
the dynamic entity model described in the previous section is represented by Figure
19.  Also, Figure 16 is representative of the state of this simulation in its earlier
stages.  Compare the static and dynamic landscape based simulations after about
a year of simulation (Figures 17 and 19).  Note the differences between the weather
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stripchart viewports.  While weather is recalculated by IMPORT/DOME weather
objects in the static landscape example, it is generated by the Stella/SME code in
the dynamic landscape example.  Because the Stella/SME portion of the program
updates every month (30 days), the temperature stays constant for 30 days at a
time.
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Animal behavior is also slightly different.  Fewer animals have died in the dynamic
landscape version.  Also, different animals have been motivated to move different
distances.  This is probably due to different changes in vegetation densities as
generated by the simulation over time.

5.4 Reproduction Example

This demonstration adds reproductive behavior to the example of section 5.2.
Animal behavior is facilitated by the identical activities described in that section.
In addition, animals have been distinguished as male or female and have been
assigned different behaviors accordingly.  This was facilitated by a new animal
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support object called Reproduction.  During the course of an animal update, if it is
of appropriate age, it engages in reproductive activity.  For males this means
fertilizing females of age who are not already fertilized and exist within his “home
range.”  The probability of fertilizing a female is based on the distance between the
female and the center of the male’s range and the age of the male.  More distant
females are less likely to be encountered by the male and therefore less likely to be
fertilized.  Males who have just entered their reproductive years are less likely to
succeed in fertilizing a female than males in the middle of those years.  Similarly,
fertilization success decreases as a male gets very old.  Fertilized females then “give
birth” after a preset number of days required for “gestation.”  In the Desert
Tortoises the babies are provided no parental care after birth.

Inspect the snapshot of simulation day 155 in Figure 20.  A significant amount of
variability and information can be seen in this image.  Male animals are given
unique numbers preceded by the letter “M”; females by “F.”  As before, deceased
animals are represented by animals with no “home range” circles.  Note a number
of animals with very small home range circles representing the “baby” tortoises.
By day 155 (about May) a number of the animals have died (represented by the dots
that are red in color images) as in the previous demonstrations.  However, females
have been fertilized and have “given birth” to animals represented by very small
home range circles.  At this point there is only one fertilized female, number F-15,
who is about a quarter of the image up from the bottom and a third of the way
across from the left.  (Her range circle is slightly lighter in grey-scale images and
green in color images.)

5.5 Predator/Prey Example

Like the previous example, the predator/prey example is also based on the first
demonstration (described in section 5.2).   The animals of that demonstration have
been turned into prey animals.  They have relatively short lives and have been
given asexual reproductive ability.  They still must live off the vegetation
represented by the static GRASS green and brown vegetation maps and can die of
starvation as well as old age.   A new predator animal has also been developed for
this demonstration.  It is larger, has a bigger range, and its hunger, stress, and
satisfaction indices are adjusted to represent a predator.  Attacks always result in
death to the prey in this demonstration, but that is a decision made by the prey
itself.  Future demonstrations could easily allow prey to avoid being killed in an 
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Figure 20.  Reproduction simulation (day 155).

attack based on their local terrain, the weather, the predator itself, or other factors
peculiar to that animal.

Figures 21 (day 13) and 22 (day 285) are taken from the dynamic landscape
simulation based on the predator and prey animals developed.  Note on day 13 that
the single predator (F-51) has a much larger home range compared to the prey
animals.  The prey have varying sizes of home ranges based upon their ages which
are initialized at random.  One prey animal, F-38, located just south of the predator
has been killed by the predator and is associated with a pink dot (very light grey
in gray-scale images), indicating a predator death.    By day 285 the predator has
killed a good number of prey and quite a few other prey have died (either of
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Figure 21.  Predator/prey simulation (day 13).

starvation or old age).  The prey items have increased in density in some areas of
the simulation area, and are completely absent from others.  This makes it difficult
for the predator to locate prey, but once located it can remain nearby and feed for
quite a while.  Patterns of prey patches are developing based on a combination of
food availability for the prey and predation patterns.
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Figure 22.  Predator/prey simulation (day 285).

5.6 Summary

This chapter discussed an existing dynamic landscape model developed with Stella
and converted to a spatial simulation using the SME package.  Then, using the
components designed to support dynamic animal entities and interface with the
SME model, four demonstrations were reported.  The first demonstrated
interactions between a very simple mobile animal entity that interacted with a
static landscape.  Demonstrated were the fundamental capabilities of animal
movement, interaction with the landscape (through eating available vegetation),
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dynamically changing time steps, and management of internal animal information
shared by different object classes, which facilitated animal health, movement, and
activity.  The demonstration also introduced the use of several runtime viewports,
which provide the user with a visualization of the behavior of the model during a
simulation.  In the second demonstration, the static landscape was replaced with
the SME dynamic landscape.  Here, the dynamic landscape model provided
information about the landscape and updated that landscape at a different time
step and spatial resolution than the interacting animals.

The final two demonstrations showed the ability for animals to interact with each
other through reproduction and multispecies interactions respectively.  Through
the reproduction demonstration animals were identified as male and female, each
of which behaved differently with respect to reproductive behavior.  Males
encountered females and, assuming they were the correct age and the encountered
female was also of a reproductive age and was not already pregnant, fertilized the
female.  The probability of mating was a function of several factors including
distance between the pair, their level of reproductive “interest” based on age and
time of year, and the health of each.  Pregnant females gave “birth” to a single
offspring after a set “gestation” period.  The baby animals were instantiated with
defined internal variables, one of which was a relatively small “home range.”
Finally, a predator-prey demonstration established the ability to design multiple
animal types (species) that interact with one another through evaluation of each
other’s characteristics.  A predator species killed (and ate) a prey species.
Probability of a successful kill was based on proximity of the prey to the predator
and predator health and hunger.  The single predator helped establish patches of
prey, which eventually made the prey hard enough to find that the predator starved
and died.  These demonstrations establish a basis for further design and
development of multispecies simulations in which the participating animals are
provided with a very wide range of interaction capabilities.  The following chapter
evaluates these demonstrations with respect to the design goals established in
Chapter 3.
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6 Evaluation

This effort has addressed objectives laid out in Chapter 3 within the constraints
described in section 3.1.  Both the general and the detailed approaches used are
critically evaluated in this chapter.  We begin with a look at the overall approach
followed by particular solutions used to address specific objectives.

6.1 Overall Approach and Constraints

From the broadest perspective, the objective of this study was to explore design
components that could be useful in the design and development of individual-based
simulation models linked to raster-based landscape ecological simulation models.
This section evaluates the object-oriented programming, IMPORT/DOME, and SME
constraints.  This is followed by a review of the overall design approach.

6.1.1 Object-oriented Programming

Object-oriented programming was chosen as the programming paradigm used to
capture the simulation of individuals.  This approach to programming has become
popular over the past decade because it provides a hierarchical programming
framework composed of distinct self-contained components.  These components can
be easily designed, developed, and tested as distinct pieces separate from other
pieces.   This allows software development efforts to match typically human
hierarchical conceptualizations of the real world, thereby providing a direct
mapping between the requirements of scientists and the tools of programmers.
Scientists seek generalizations with the idea that any particular instance of the
object of study is simply a more specialized version of the generalization.  In
object-oriented programming, general objects are inheritied by more specialized
objects.  Dogs and cats could be generalized to a four-legged animal object, which
then forms the shared basis of more specialized dog and cat objects.  This is called
inheritance.  It is also possible that the cat object simultaneously inherits from a
class called night-predators.  This semantically matches the way things are
typically defined.  A cat is a (ISA, in object-oriented jargon) four-legged night
predator.  Assuming the reader understood the definition, the concept of cat would
begin to emerge.  Similarly, assuming that objects existed for each of the pieces of
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the definition, a cat object (inheriting from each of the definition objects) could be
created.  

Object-oriented programming allowed the mobile entities to be developed in a
manner that facilitates efficient upgrades, modifications, and improvements.
Because the approach mirrors the natural human conceptualization process,
building interfaces to the various object classes will be straightforward.  User
interfaces will present system options that are associated with object classes, which
are easy for a system user to grasp.  User interface screens will be able to have a
one-to-one match with the underlying system classes.  The system paradigm
presented to the end user is virtually identical to the organizational paradigm used
by the software developer.  This results in a clean system design.

6.1.2 IMPORT/DOME

The IMPORT/DOME language was chosen as the implementation language for the
mobile objects because of its powerful integration of objected-oriented programming
with procedural and declarative coding possibilities, its fundamental event-driven
dynamic simulation core, and its ability to integrate C++ code.  All of these features
have been exploited within this enterprise.  The language is still under
development and has not been tested in the commercial marketplace yet.  It is also
not yet stable enough to guarantee that the code developed here will compile under
future releases of IMPORT/DOME.  

6.1.3 GRASS

The GRASS geographical information system has proven to be a good choice for
testing the design concepts.  It is a completely wide-open software environment
allowing for even fundamental changes to the source code.  For use in
IMPORT/DOME,  fundamental GRASS subroutines written in C were encapsulated
into C++ objects, which in turn were encapsulated as IMPORT/DOME objects.  As
a result, the interface to GRASS format raster maps from the IMPORT/DOME
environment is very easy.  The encapsulation process can be duplicated with
virtually any raster-based GIS as long as there is access to the subroutines that
control map access.

6.1.4 Spatial Modeling Environment

The Spatial Modeling Environment is a powerful cell-based landscape simulation
package which, like IMPORT/DOME is under continual development and, as yet,
is unstable.  It is extremely powerful from the standpoint of model design
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flexibility, distributed parallel processing capabilities, and extendibility.  The most
significant limitations involve fixed time steps and fixed spatial resolution.  Newer
versions promise to offer multiple time steps wherein each portion of a model (a
sector) may be attached to a different, yet fixed time step.  The underlying spatial
resolution currently must be fixed to a single non-varying value.  

6.1.5 Overall Design

Several overall system design decisions were made and need to be addressed here.
Some of these flow directly from the constraints identified above, while others do
not.   First, this project generated modeling capabilities and dynamic landscape
simulations that were captured in a single program that ran on a single CPU on a
single machine.  Current hardware platforms combined with experimental
compilers may provide the possibility to relax all of these restrictions — each one
opening possibilities not explored in this effort.   Future design and development
efforts in support of dynamic, spatial, ecological modeling and simulation will
probably adopt a client-server approach for supporting some ecological system
component interactions.  Additionally, using shared-memory approaches on single
machines will allow some components to run as separate programs, and yet remain
tightly connected.  Figure 23 shows the current design of the capability as
developed in this project.  Users enter simulation model specifications via Stella for
landscape unit models and IMPORT/DOME code for mobile entities.  These are
processed into C++ code through the SME Translator and IMPORT/DOME
“Compiler” respectively.  The resulting C++ code is compiled together into a single
program, which is then executed as a whole.

It is recommended that the approach depicted in Figure 24 be evaluated as a
superior alternative to the current approach.  In this approach, individual entities,
groups of entities, landscape simulations through SME, and other simulations can
be run as separate programs that query and interact with common information
through shared memory.  That is, each program works simultaneously with the
same computer memory to allow for rapid communication and efficient sharing of
important information.  This approach will help facilitate the addition of new
system components with little or no modification of an existing system.  An
important result of this approach is that full ownership of the simulation model
components is maintained, which is important for maintaining the integrity of a
large software product.
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Figure 23.  Current overall design.

Figure 24.  A future overall design.
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SME and IMPORT/DOME are two separate, stand-alone capabilities.  Each is a
dynamic simulation environment that contains a unique approach to time
management.  As discussed immediately above, the current effort combined the two
capabilities into a single software program.  The IMPORT/DOME management of
time superseded the internal SME time manager.  IMPORT/DOME deals with time
through an event-driven approach, making it possible to work with virtually any
timing scenarios.  SME requires that time steps be defined initially and remain
fixed throughout a simulation run.  IMPORT/DOME therefore has the more flexible
timing capabilities and was selected to perform the role of master timekeeper.

As additional dynamic simulation capabilities are merged, it will be necessary to
formalize more completely the way in which time is managed.  For example, the
proposal depicted in Figure 24 may result in potentially many different programs
running simultaneously with other programs.  The current working approach in
this effort is sufficient for connecting disparate simulation programs and therefore
will need to be rethought.

6.2 Variable Time

6.2.1 Syncronizing Time Between I/D and SME

IMPORT/DOME (I/D) was used to manage the passage of time for all of its objects
and for SME components of the model.  An I/D encapsulation of several key SME
functions was developed to provide an interface between the dynamic mobile
entities and dynamic landscape models.  This took the form of an IMPORT/DOME
object that allowed for (1) the initialization of an SME model (2) the execution of a
number of time steps of the model, and (3) the querying of the state of the SME
model at any location within the geographical extent of the model.  This approach
worked quite well.  SME models could be developed outside the combined
environment and, when working properly, could be compiled into an
IMPORT/DOME program that controlled and used that SME model as a backdrop
to the simulation of the mobile entities.  Section 6.1.2 discusses the limitations
associated with extending this approach to encompass still other simulations that
may be distributed across a number of CPUs or computers.

6.2.2 Event-driven Time In I/D Objects

The design of this system must accommodate variable time steps.  This was
accomplished using IMPORT/DOME’s fundamental event-driven time management
scheme.  Any given object in a simulation updates its internal state and position at
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intervals dynamically determined by the simulation as a whole.  In the sample
system, entities modified their update frequency based on whether or not they were
in “hibernation” or “aestivation.”  During these times, the time step was set to
longer intervals to improve simulation performance.  Different objects could update
at different frequencies.  The objects were not tied to the fixed time step associated
with the SME part of the simulation.

6.3 Variable Space

Variable space has been accommodated in several different ways in support of
dynamic entities.  Because different ecological components interact with their
surrounding space at different resolutions, it is important to provide for varying
ranges of resolutions.  If a resolution is too small, computational efficiency may
suffer; if it is too gross, the probability of some important component in the space
being overlooked during a simulation is increased.  Sometimes it is important for
some particular landscape component to be available at a number of different
resolutions.

Spatial resolution and temporal resolution are tightly intertwined.  Any objects that
move should avoid skipping across portions of the landscape without interacting
with those portions.  For example, an animal that traverses the landscape at 100
meters per hour should not be modeled on a landscape with a time resolution of 1
hour and a spatial resolution of 50 meters.  This will require that the animal skip
over cells when moving at full speed.  The spatial resolution could be decreased to
100 meters or more.  Alternately, the time resolution could be decreased to 30
minutes.   Decreasing the spatial resolution by 100 percent will decrease the
computation requirements by 25 percent, but this runs the risk of losing important
landscape simulation details.   Increasing the temporal resolution by 100 percent
will double the computational requirements, but this runs the risk of slowing the
simulation with no significant increase in functional utility.  Another animal
moving at a top speed of 10 meters per hour has yet a different pair of optimal
spatial and temporal resolutions with which to interact.  SME offers, as of this
writing, a single spatial resolution and a single time step.  These must be chosen
so that the most rapid landscape process can be appropriately captured.   Future
releases of SME will relax this restriction enough to allow different portions of the
simulation to run at unique, but still fixed, time steps.

The remainder of this section reviews the various ways the current study
accommodated notions of variable space and suggests possible improvements.
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Figure 25.  The LocationManager role.

6.3.1 LocationManager Object

It is important for entities to be able to scan those entities in their immediate
vicinity.  This provides, along with raster-based simulation data, a picture of the
environment to which the animal must respond.  As the environment gets larger
and more complex, it becomes increasingly less reasonable for each entity to
consider every other entity in the simulation.  A LocationManager class was
developed to facilitate the ability to address this potential information overload.
As entities move around the simulation space, they register and reregister their
current location with the LocationManager (Figure 25).  This manager provides
query capabilities that will return a list of objects that exist within a certain
distance of any given location.   An entity may want to consider its response to
other entities within 10 meters of its location, while one of those entities will
consider all others within 100 meters.  The LocationManager assists in narrowing
down the list of all entities in the simulation to those that might be within range.
While excellent in reducing the search and entity analysis time that any given
entity must perform to evaluate its surroundings, it does carry the burden that
each entity must responsibly register its location on a regular basis. 

A LocationManager can easily store and retrieve information at a wide variety of
resolutions.  Information is indexed internally to the LocationManager through a
quad-tree indexing approach.  Although only a single LocationManager was used
in all of the test models, multiple LocationManagers can be used in future models
if there are clear sets of objects that never need to know about other objects.  It was
designed for and is most useful when used with objects that are located as points.
It was not designed to work with extended objects that cover regular or irregular
shapes on the landscape.  For example, the programming approach for individual
entities described here is suitable for modeling herds of animals if the spatial
extent of the herd is a fraction of the spatial resolution of the simulation.  Once the
extent spills across space, say two or more times as large as the simulation
resolution, the current software environment will be inadequate.
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6.3.2 Potential Extensions for Supporting Variable Space Resolution

The current software environment interacts with a fixed raster resolution through
the GIS and SME interfaces.  This betrays a fundamental restriction associated
with raster-based geographical information systems.  Spatial data are generally
retrievable only at the resolution at which they were stored.  The GRASS GIS
compromises this limitation to some extent by resampling the stored data at
run-time using a nearest-neighbor resampling approach (Shapiro et al. 1993).  This
always works well when the resampling is at the same or higher resolution than
the stored data.  If, however, the resampling is at a lower spatial resolution, much
of the stored data is lost.  This can be a problem if there are important features that
exist at or below the resampling resolution.  The process of bringing out small
features when sampling at a lower resolution is often case dependent.   In some
cases the smallest feature should be identified.  In other cases, the user may wish
to prioritize the importance of various features that should be stored in a particular
map layer.  This could ensure that when a patch of digital landscape is sampled at
a lower resolution than the stored data, the most important information in that
location is returned.  Alternately, any given map might be opened a number of
times, each time ignoring all information except for one particular landscape
feature.  For each map, the particular feature will be identified as occurring within
a referenced cell if, in the stored map, that feature exists anywhere within that cell.

6.4 Scan and Evaluate Surrounding Entities

6.4.1 Scanning Entities

Once a given entity has acquired a list of nearby entities from the
LocationManager, the entity must evaluate these neighbors and determine how to
act with respect to this evaluation.  The first step is scanning these entities for
information about them.  There are two facets of this operation.  First, actions that
any entity takes on any other entity can be remembered by the receiving party.  For
example, if entity A attacks B, B may maintain a memory of that attack, which may
persist for some amount of simulation time.  Second, an entity, after receiving a list
of nearby entities from the LocationManager can ask each of those entities to
provide a predetermined set of basic entity information.  This set includes, length,
mass, and a “carnivorous rating.”  The collected information may be retained in
entity memory for some period of time.  Unique entity identification codes, attached
to each entity, can allow for the scanning of an entity to occur only occasionally.  It
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may also allow information to be “forgotten” if that entity is not part of the local
environment for some period of time.

6.4.2 Evaluate Entities

Once the information about the surrounding entities is scanned, that information
must be evaluated.  Objects have access to a simple generic querying capability for
creating lists of entities that meet specified criteria.  For example, if an entity
needs to respond to potential predators, it might scan its surrounding entities to
identify all that are larger than a certain size and have a carnivorous rating above
a certain index. 

The entity knowledge available is quite limited; hence the evaluation potential of
entity objects is also limited.  Extending the amount of available information,
though straightforward, would conflict with other design objectives.  These
objectives are (1) maintain the ability to add new objects to a simulation without
modifying existing objects, and (2) allow for objects not mutually recognizing each
other’s class type.  In response to both of these objectives, a set of characteristics
has been created that any given object can access about any other given object.
Currently, this is the only guaranteed information that can be shared between any
two objects and the only mechanism for doing so.  If some future object requires
access to different information, the current design makes it possible to add this
information to the generic list.  This will result in the need for every existing object
class to be modified to both provide and deal with this information.  Here lies the
conflict between two opposing objectives.  If there is no reasonable set of minimal
characteristics that every entity must provide, then the requirement that we be
able to add new objects to a working simulation will be in jeopardy.  If the latter
requirement cannot be relaxed, then we will need to accept limitations in mutually
available information.

6.5 Interactions with Dynamic Entities

Once a given entity scans and evaluates surrounding entities, it applies its own
unique rules to decide how to respond to those entities.  Interactions can take
several forms within this system: change of positions, change of internal state, and
attacks on and potential death of other entities.  Actions on other entities generally
require two steps: (1) notice of action on another, and (2) reaction by that other.
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6.5.1 Actions on Others

In this limited demonstration, actions on others can be passive or active.  Passive
actions occur when a single entity responds to the perceivable location and state of
another entity.  For example, a female entity may consider itself fertilized if the
season and her health are appropriate and if any male of her own species of mating
age is present.  The male need not actually do anything within the model except be
available.  Indeed, whatever he might do is likely to be associated with a time scale
that is not being directly simulated.  Similarly, if shelter is present for a given class
of objects, it may be presumed that objects of that class use the shelter.  The
shelter, if simulated as an entity, need not act upon the animal objects.  Active
actions in the current prototype can only take the form of an “attack” message.
This is an index value between 0 and 100 that indicates the intensity of the “attack”
and is processed by a generic superclass, which must be associated with each
animal object.  Information of the “attack” is immediately processed and a kill
(true) or no-kill (false) message is returned to the attacker.  The information is also
stored for processing by the recipient of the attack at a later time.

6.5.2 Reaction to Others

Reaction to “attacks” currently takes two different forms.  First, the attack is
evaluated by the recipient in a synchronous (immediate) manner to (1) identify if
the attack was sufficient to kill, and (2) to store information about the attack for
processing at a later time.  Second, the next time the receiving entity is scheduled
to update its internal state and location, the stored attack information may be used
to modify health, movement motivation, and other parameters.  Note that the time
scale of the current demonstrations is on the order of days to weeks.  It is
impossible, therefore, for the simulation to capture rapid movements and other
interplays between the predator and the prey.  Instead, the sum-total of
interactions over the course of the time between entity updates must be considered
as a day-long (or week-long) set of actions.

6.6 Create New Entities

Object-oriented approaches to software development provide a fundamental
capability that allows the objects to be created and destroyed.  Every
IMPORT/DOME object is associated with creation and destruction instructions that
are used as explained in this section.
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6.6.1 Entity Death

Mobile objects are associated with classes that allow them to be destroyed, in a
software sense.  That is, all memory allocated for a given instantiation of a class
can be erased and deallocated.  Problems however can arise if this is done too
hastily.  If, for example, an object is queued, through a TELL method, to do
something at time step 20, but is deallocated at time step 10, the entire simulation
will die abruptly at time step 20.  For the purposes of this study, objects are never
deallocated; instead, they are marked as inactive or “dead.”  When an object is
asked to respond through a TELL method, the object does nothing when in this
state.  Future improvements will require that the object more cleverly deal with
this situation so that memory can be freed.

6.6.2 Generating New Entities

Entities must be able to create new entities.  This is important in reproduction, and
sometimes important in development if the object changes form significantly (e.g.,
caterpillar to butterfly).  IMPORT/DOME provides a simple approach, which
involves using a “NEW” call.  Any class can be instantiated into a new object in this
manner.  The object that is instantiating another object must “know” about the
class type of the new object.  This means that during compilation, the second class
must have been processed by the compiler either before or during the processing of
the first class.  In some cases an object is part of a life-cycle which may involve (at
a minimum) adults and eggs.  If the adults are to create eggs and the eggs to create
adults, the egg and adult classes must be developed as part of the same
IMPORT/DOME module.  Basically, all life phases being simulated for a single
animal must be developed within the same module.   This can be a significant
drawback if the different objects are developed separately from each other, for
example, by different research teams.

6.7 Interactions with Static and Dynamic Maps

Interactions with information captured in a GIS or dynamically simulated with the
SME environment provide needed links between population and mobile entity
simulations, a primary goal of this effort.  Interactions were facilitated by compiling
the different software components into a single program.  Subroutines (METHODS)
were developed that allowed the request for and exchange of information.  
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6.7.1 Interactions with Static Maps

Mobile landscape objects are able to retrieve information from static GIS maps
through an IMPORT/DOME object class called MapManager.  This object is
instantiated once for a simulation and is made known to all mobile entities.  It is
responsible for opening the GIS maps and for providing both raw GIS data, and
information derived from these data.  In the case of the model developed for this
effort, a single METHOD provides the main viewport into the GIS data:
ReturnCellData.  Input covers the current day of the year and the current location.
Output covers raw GIS data (elevation and densities of shrubs, forbs, and grasses),
derived GIS data (slope and aspect), and derived weather data (precipitation and
temperature that has been adjusted for slope, aspect, and elevation).  MapManager,
in this design, must be modified by the simulation builder because the information
it retrieves is very specific to the simulation at hand.  Future design updates should
break out the components that must be modified by the builder of a particular
simulation from the generic code required for all simulations.

Matching dynamic entity simulation to static GIS maps requires two key steps.
First, the compilation of the simulation must include fundamental GRASS software
libraries.  Second, at run-time, the user must be running GRASS.  This requires
that a number of environment variables be set and that the maps that will be used
exist within the GRASS database selected.  The north, south, east, and west edges
of the area within which the mobile entities are allowed to roam must be identical
to the edges of the working area selected through the GRASS programs.  All of
these conditions must be met by the user and are not yet automated.  Future
upgrades of this environment can make this a more automatic and foolproof
procedure.

6.7.2 Interactions with Dynamic Maps

Once dynamic landscape objects are functioning properly with the static GIS maps,
they are ready to be attached to the dynamic maps managed by the SME software.
This is accomplished by simply swapping out the GRASS-specific objects with SME-
specific objects.  Both objects use identical object names (MapManager) and provide
identical IMPORT/DOME METHODS, thus providing a simple swapping
capability.  Completely different activities are performed by radically different code
underneath these names however.  The end result is two “drivers,” which are
interchangeable at system compile time.

Matching dynamic entity simulation to dynamic SME landscape requires certain
steps that are very different from those required for the static GIS maps.  The SME
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simulation must (1) be working properly as a stand-alone SME process (2) provide
the maps that IMPORT/DOME code references (3) use the proper units within the
maps (4) have north, south, east, and west boundaries that precisely match those
in the IMPORT/DOME simulation, and (5) be compiled as a C++ library.  This
library is then compiled with IMPORT/DOME wrappers, which have calls that map
precisely to the SME maps.  Finally, the IMPORT/DOME mobile objects and SME
timing software are compiled into an integrated IMPORT/DOME and SME
simulation.  This procedure may, in the future, be matched with software that
checks for incompatibilities and completely automates this process.

6.8 Recommended Improvements

6.8.1 Interaction Between Simulation Software

Currently the GIS, SME, and IMPORT/DOME environments are carefully attached
through software that provides weak links among them.  Each environment is
currently developed with different funding and is driven by different objectives.
Although more tightly intertwined research and development efforts are desirable
from the standpoint of some objectives, the degree of coordination required can be
too costly.  A common approach to facilitating interoperability is to identify a set
of standards that define what is minimally required to coordinate efforts.  

An approach to facilitating multiprogram and multicomputer-based dynamic
simulations is graphically depicted in Figure 26.  Static or dynamic maps are
managed by one or more programs running on one or more machines.  Simulations
of individual entities across the landscape are managed by one or more other
programs running on one or more computers.  These may be the same computers
running the static or dynamic maps, or they may not.  Here the goal is to be flexible
with respect to which processes are managed by which programs.  These programs,
in turn, may run on a variety of machines.  Interactions between model components
are carried out at the lowest level possible.  For example, components running
within the same program may simply use the same memory allocated to that
program.  When the components are running within different programs on the
same machine, memory that is shared between the two programs is used.  An
associated information “QueryManager” facilitates requests for information.  If the
information being requested is associated with a process running on another
machine, the query manager fetches that information from locations identified by
the “Master Memory Information” manager running in a master control program
(Machine B in Figure 26) and stores it in local shared memory (acting as a data
cache) and lets the process that requested the data know where and how this



112 USACERL  98/94

information can be accessed.  A “Master Timer/Calendar” provides the timing
control (under run-time user control) which keeps the entire simulation
synchronized.  This approach will require significant design efforts upfront to
ensure the efficient exchange of information between a wide variety of processes
managing a wider variety of information.

6.8.2 Improve Object Ability to Learn

A significant challenge to the future utility of simulating individual entities is the
need to improve the simulation of the learning process.  Mobile entities may be
endowed with intelligence — the power to learn and adapt.  If the time and space
scale is small enough, learning becomes important in the simulation.  The examples
demonstrated in this effort involve animals that are being simulated with a time
resolution on the order of a day and a space resolution on the order of tens of
meters.  The process of learning and forgetting is important with such entities at
this scale.  The current software is very weak in its ability to capture this process.
Generic entities do scan their surroundings at some prescribed distance and can
store information about the noted objects.  While this may be construed as learning
and forgetting, it is simply a programming approach to speed up the system by
caching information.  Learning is simulated by simply allowing an object to
perceive an increasing percentage of the available information as it remains in an
area.   A viewer of the system may notice that an animal may move quite rapidly
through a perfectly suitable habitat when it is initially displaced from an area.
This is because the animal is not allowed to become familiar enough with the area
to “know” that it would be a good area to remain in.  Mathematically this is similar
to a gradient descent algorithm with momentum.
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Figure 26.  Proposed network shared memory interaction.

The complexities involved with perception, learning, and forgetting and the
physiological impacts on these processes are difficult.  The practical application of
simulating learning behavior will continue to remain very limited in landscape
simulations.  Not only is the software expected to be relatively demanding, but
required data will not be available.  Instead, learning models will rely on the
compilation of huge amounts of field work that statistically measure how behaviors
follow one another and are triggered by external and internal variables.  Such data
is also currently very limited.

6.8.3 Sensitivity Analysis

An important component of dynamic simulations is the ability to perform
sensitivity analyses.  This takes many forms starting with the selection of
simulation components to Monte Carlo (and other) simulations to determine the
importance of different system variables.  As created, the current capabilities
provide only the ability to run a simulation with one set of preset variables.  Only
by changing these variables and rerunning the simulation can one begin to evaluate
the overall system behavior.  For each run, of a set of runs, the system can be (1)
fundamentally changed by adding or subtracting different components (2) started
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with slightly different states, and (3) run with different sets of parameters that
control behavior of individual components.  

6.8.4 Tracking and Saving Entity States

Dynamic simulations involve rapidly changing system states with very large
numbers of state variables.  For example, a system that contains 300 by 300 cells
with 100 state variables per cell attached to 100 mobile entities each containing 100
variables, has approximately  9.1x106 variables at any given time.  If the system
ran with a fixed time step of 1 week and completed 100 years, we are left with
4.7x1010 data points.  Assuming these are all 32-bit floating point values, we have
something on the order of 1.9x1011 bytes of data.  That is approximately 200
gigabytes of data per run.  Clearly, only a very limited amount of the information
can be reasonably stored for later viewing and analysis.  More commonly, the user
identifies a set of information to be displayed visually during a simulation run and
other information stored on disk.

The demonstrations developed for this effort allow for various pieces of information
to be visualized during a run.  Additional simple “viewers”  in the form of
IMPORT/DOME objects can be simply generated to probe portions of the simulation
and store this information in files for later analysis. 

6.8.5 Graphical User Interface

The need for graphical user interfaces has been discussed in the objectives and
evaluation chapters (3 and 6).  Graphical user interfaces must be developed to
remove the need for simulation developers to edit text files containing software
code, to configure entities, and to configure simulation and run-time behaviors.
User interfaces must be provided to allow powerful run-time probing and analysis
of system behaviors during simulation.  Finally, post-processing analyses of system
parameters after simulation runs are essential.  Such interfaces may take many
forms and will depend on target users and the extent to which the capabilities are
merged with other simulation capabilities.

Controller classes connect the simulation model classes to user input devices.
Limitations with GUI possibilities provided throughout the IMPORT/DOME
language prevented the design and development of more sophisticated user
interfaces.  Some simple beginnings to the development of general purpose GUIs
for the management and control of a running simulation and its entities are
presented here.
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Model classes provide methods that accept input from outside the object.  These
may be accessed based on user intervention during the course of a simulation. 
Access is not direct because model objects are not being allowed to communicate
directly with computer input peripherals.  The controller classes suggested here
demonstrate basic approaches to user run-time command and control of a
simulation.   These controllers are also view classes in that they do provide
feedback directly to the user through visualizations.

GUI control of simulations in the current demonstrations is intentionally limited
and weak.  Some very limited controls (Figures 27 and 28) are suggested for the
purpose of providing rudimentary control and helping to visualize what might be
possible with the underlying simulation capabilities.  User interfaces must be a
function not only of the underlying software, but more importantly of the
capabilities and intentions of the user.  If other capabilities are being connected, it
is the domain of the GUI builder to provide an apparently seamless integration of
the software engines behind the interface.  

Interfaces are probably the most volatile component of any software.  To ensure
longer-term viability of software, it is important to separate the code that drives
user interface peripherals (most notably keyboards and monitors) from the
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Entity list for:
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4
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80

1000

60

Default Change

20

10

10

Variables

Name

Age

Mass

Length

Carniv Rating

Stress

Fecundity Rate

Units

years

grams

mm

0-100 index

0-100 index

eggs/month

1000

100

New Value

Figure 27.  Sample entity controllers.

Entity list for:

ID number

2

3

4

BC SC

animals
Displayable Variables

Range

Lo Name

Age

Mass

Length

Carniv Rating

Stress

Fecundity Rate

Hi Units

years

grams

mm

0-100 index

0-100 index

eggs/month

0 1000

1000

Figure 28.  Sample entity controllers.

underlying models.  In general, a software development approach called
Model-View-Controller (MVC) has been utilized in the current design.  For the
purposes of this effort, this effectively means that no model objects communicate
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directly with any peripherals.  METHODs are used to accept input and provide
output through arguments.  Other user interface specific objects mediate between
the model objects and the peripherals.  These can easily be replaced as user
interfaces develop further or must be replaced to meet the needs of a different user
community or different application.  Because model objects provide only input and
output capabilities through METHODs, other model objects can play the role of
viewer or controller.  

Control of entities during a simulation is important for experimenting with system
reaction to small changes in the state of entities.  For this purpose, each entity
class should be associated with an entity control class.  Figure 27 is an example
interface that allows an entity to be chosen from a list of like entities and then
allows key constants and variables (stocks) to be modified during the course of a
simulation.

Each entity class should be associated with a view control class.  A single object
representing this class would be instantiated for each simulation run and could
then be used to manage which entities are being viewed through associated
StripChart and BarChart objects.  Using the mouse, the user could scan through
a list of currently running objects and select those for visualization in this manner.
A viewport for this control is depicted in Figure 28.  This represents an entity list
of class animals.  It shows the unique identification (ID) numbers assigned to each
animal object and which objects are currently being displayed using BarChart
objects (BC) and StripChart objects (SC).  The check mark next to ID 4 indicates
that the right side of the viewport shows which variables are selected for stripchart
display and what the anticipated range of values is for each variable.

6.9 Summary

There are three main objectives associated with this study: (1) simultaneous
simulation of multiple scales (2) enabling mobile entity simulation, and (3)
integrating disparate landscape simulations.  The demonstrations show that a
fundamental ability exists here to support simultaneous simulation of multiple
scales.  Dynamic entities exist within a dynamic home range and also interact with
their environment at dynamic time scales.  The size of the home range is a function
of current activity, health, size, and type of animal.  Dynamic temporal scales are
established based upon the animal’s activity level.  In these demonstrations,
aestivating or hibernating animals updated themselves on a weekly basis while
active animals performed daily updates.  While the animals interact, the landscape
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itself updates at a fixed 1-month interval using a fixed spatial scale.  Finally,
integration of disparate landscape simulations was demonstrated by linking the
Stella/SME simulation environment with the IMPORT/DOME programming
language environment.  Dynamic entities developed in the latter were able to
identify the state of their surroundings as established with static GIS maps read
in their native GRASS format or through probing the simultaneously running
Stella/SME simulation of the dynamic landscape.  The interaction was facilitated
by combining the two environments into a single software program.  This approach
should be replaced with one that allows the programs to remain separate, but
retain the ability to communicate with each other at run-time. 
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7 Conclusions

This project has developed a fundamental approach to facilitate modeling of
dynamic mobile entities in combination with either static or dynamic, raster-based
landscape simulations.  The approach provides significant flexibility in specifying
a wide variety of entities captured as classes in the IMPORT/DOME object-oriented
dynamic simulation language.  At a more general level, an ecological landscape
modeling paradigm has been demonstrated that not only allows, but encourages,
the capturing of natural processes within simulation environments based on
different software.  This is the fundamental advantage that must be expected from
future geographic modeling systems (GMS).  The various simulation components
operate separately, but communicate with each other during simulations.

This approach differs from the gap-based forest models wherein individual trees are
simulated within square landscape patches, which themselves are arrayed upon the
landscape.  In those models a neighboring tree is treated differently based on
whether or not it falls within the same patch.  The square patches are imposed
upon the fundamental data structure of the system that captures the location of
and relationships between trees.  In contrast, the approach to landscape simulation
used in this project allows two disparate software simulation environments to be
used, each for what it is best designed to do, yet communicate with each other as
appropriate.  A powerful raster-based landscape simulation environment was used
to capture the dynamics of weather, soil saturation, and vegetation densities, while
an equally powerful object-oriented simulation language was used to capture the
dynamics associated with individual animals acting within and upon the landscape.
Neither environment is suitable for both applications, although a force fit is
certainly possible.  Neither is captured within the context of the other; each is
provided equal status.  Future GMS will provide a wide variety of interacting, yet
distinct landscape simulation capabilities.  Modelers and landscape managers will
be able to match landscape processes with the most appropriate simulation module.

The two simulation environments joined were SME, the Spatial Modeling
Environment, and the new system developed here to support the simulation of the
behavior of individual animals.  The latter was developed with the IMPORT/DOME
dynamic simulation language.  Specific capabilities included:
� Dynamic, object specific time steps
� Animal reproduction
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� Interaction between animals, including predator-prey and reproduction
� An efficient search mechanism for finding neighbors
� Generic means for evaluating neighbors
� Recognition through evaluation of characteristics
� Ability to add new animals without reprogramming others
� Interaction with static or dynamic landscapes.

Nature, as presented in Chapter 2 operates at a variety of different spatial and
temporal scales, organized at a number of hierarchical levels.  Using the integrated
combination of SME and IMPORT/DOME, systems can be developed that explicitly
simulate the behavior of organ systems through communities.  The simulation focus
here is the landscape, a “middle-number” system, which is not analyzed well with
statistics, because it lacks a large enough sample size and is not easily simulated
as a small set because there are too many distinct parts.  The approach developed
in this work embraces the hierarchy theory approach to dealing with middle
number systems.  System components at multiple hierarchy levels can be
simultaneously simulated using software approaches that reflect the
spatio-temporal scale of each level.  No one level dominates the simulation.
Instead, each is allowed to communicate with other simulations being conducted
at different scales.  For example, a simulated individual animal belonging to species
A may interact with a population model of species A, an individual model of species
B, or a population model of species B.

The power and potential of this combination of simulation approaches opens the
door to completely new classes of dynamic, spatial, ecological models.  Further, this
new simulation environment opens the options for integrating knowledge and
results gained through disparate environmental studies.  It provides an
interdisciplinary forum for formally capturing this information in a manner that
increases its potential for affecting land management practices.
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Appendix A: GRASS Maps

The following pages contain renderings of the GRASS maps used either directly by
the static MapManager IMPORT/DOME object class, or indirectly by the dynamic
MapManager object class.  In the later case, the GRASS maps are used to initialize
the dynamic landscape simulation designed through Stella and translated into a
raster-based landscape simulation C++ program by the Spatial Modeling
Environment (SME).  All maps have a resolution of 60 meters per cell with 200 cells
in both axes yielding a full 40,000 cells.  The area covers a central southern portion
of Fort Irwin’s National Training Center that is about 7.5 miles square.
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Appendix B: Import/Dome Object Classes

B.1 General Purpose Objects

The objects described here provide general purpose support for dynamic spatial
modeling and simulation.  They can be viewed as extensions to the Import/Dome
standard runtime libraries.  

___________________________________________________________________

GaussRandom = OBJECT(Random)

MODULE GAUSSRANDOM

IMPORTED MODULES:

RANDOM

DESCRIPTION
Generates random numbers that collectively form a gaussian distribution

with a normal of 0 and a standard deviation of 1.  This is a subclass of the

IMPORT/DOME Random class.

METHODS
CONSTRUCTOR METHOD GaussRandom()

Instantiates an instance of the gaussian random number generator

ASK METHOD ReturnValue() : REAL

Returns a random number that is part of a distribution with a normal of 0

and a standard deviation of 1.

___________________________________________________________________

GraphFunction = OBJECT

MODULE GRAPHFUNCTION

IMPORTED MODULES:

None

DESCRIPTION
Used in situations where a dependent variable is derived from a single

independent variable using a series of x,y coordinates that represent a

graph.  For values between explicitely provided dependent variables, a

linear interpolation between the next highest and next lowest associated

independent variables is used to return the dependent value. 

METHODS
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CONSTRUCTOR METHOD GraphFunction(IN Independent, Dependent:

LIST)

Inputs are IMPORT lists that contain REAL values.  The length of the two

lists must be greater than two and the Independent list must be 

monotonically increasing.

ASK METHOD ReturnValue(IN X : REAL) : REAL 

Any X value will be converted to a corresponding dependent variable

value.  This is accomplished with a linear interpolation between the pair

of numbers in the input list  (Independent) that bracket the input value.  Input

values that are lower than the lowest value in the In list will cause this

lowest value to be returned.  Simlarly, an input that is higher than the

highest number on the theIn list returns that highest number.

_____________________________________________________________________

GRASS_interface = OBJECT INTERFACE(pointers to C++ code)

MODULE GRASS_INTERFACE

IMPORTED MODULES:

None

DESCRIPTION  

Encapsulates the C++ code, which in-turn encapsulates the GRASS C

subroutines for availability to IMPORT.  The GRASSMap object is defined

in the same module.  These provide access to GRASS and can readily be

extended to provide support for other GRASS capabilities.  It is not

recommended that model programmers use these objects directly, but

rather access the capabilities through the GRASS object.

METHODS
CONSTRUCTOR METHOD GRASS_interface();

Initializes GRASS through the GRASS G_gisinit() C subroutine.

ASK METHOD SetWindow(IN N, S, E, W, NS_res, EW_res : REAL) ;

Sets the GRASS region, through which maps will be accessed, to these

values.  Note that this affects the current process only and is remembered.

ASK METHOD GetWindow(OUT N, S, E, W, NS_res, EW_res : REAL) ;

Returns the current GRASS region.

_____________________________________________________________________

GRASS = OBJECT(GRASS_interface)

MODULE: GRASS

IMPORTED MODULES:

GRASS_INTERFACE

LINKEDLIST

DESCRIPTION
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Provides the primary IMPORT interface to GRASS.  It is used to initialize

GRASS and then provides the ability to instantiate GRASSMap objects

that provide

IMPORT access to raster maps.  Underlying C++ code 

encapsulates access to GRASS data through standard GRASS libraries

written in C.  Use of GRASS in this, and any other, environment requires

that certain GRASS environment variables and files in the users home

directory be properly established.  One way to ensure this is to run the

compiled IMPORT/DOME code that uses this object from within GRASS.

METHODS
CONSTRUCTOR METHOD GRASS()

Initializes the GRASS C subroutines.

ASK METHOD OpenMap(IN MapName: STRING): GRASSMap 

With map names in the standard GRASS map name format, the

associated 

map is opened and initialized.  GRASS maps are opened as “segmented” 

maps.  This process requires that a GRASS map be reformatted at 

run-time into a form that provides an efficient method of paging sections

of the map into core memory.  There is an up-front reformatting cost that

is indicated at run-time with a running percentage completion output while

each map isopened.  This METHOD should be modified to provide the

opportunity to open maps in this manner as well as (1) reading the map

into core memory and (2) not reformatting the map at all, but relying on

standard GRASS map reads for each data request.

ASK METHOD CloseMap(IN Map: GRASSMap)

Maps are closed and allocated memory is deallocated.

ASK METHOD CheckForMap(IN MapName: STRING): GRASSMap

Queries an internal list of currently opened maps, returning the 

GRASSMap object if the map is found to be opened and available.  

Returns NULL otherwise.

ASK METHOD ListMaps()

Lists to standard error all of the currently opened maps.  

_________________________________________________________________________________

GRASSMap = OBJECT INTERFACE(Pointers to C++ code)
MODULE GRASS_INTERFACE

IMPORTED MODULES:

None

DESCRIPTION
Low-level IMPORT encapsulation of C++ code which in-turn encapsulates

the GRASS C routines that open, close, read and write GRASS maps. 

GRASS maps should be opened through the GRASS object, which returns
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a GRASSMap object, but may then be manipulated through the

METHODS 

available to GRASSMap objects.

METHODS
CONSTRUCTOR METHOD GRASSMap(IN NapName: STRING) ;

Opens a GRASS map and prepares the data for rapid random access.

Subsequent map reads and writes are with respect to the random access

segment map.

DESTRUCTOR METHOD GRASSMap() ;

Closes the associated GRASS map and deallocates memory.

ASK METHOD GiveName() : STRING ;

Returns the name of the maps used to open it initially.

ASK METHOD GetValue(IN E, N : REAL) : REAL ;

Returns a value at the Easting and Northing value specified.  E and N are

in the native units of the GRASS database currently being used.  Value is

in units of the associated GRASS map, but always cast as a REAL.

ASK METHOD PutValue(IN E, N : REAL; IN Value : REAL):  INTEGER ;

Changes the value in the GRASS map at the given coordinates to the

given value. 

ASK METHOD WriteOut(IN MapName : STRING): INTEGER ;

Writes the map back out under the specified name.

____________________________________________________________________

SME = OBJECT INTERFACE(Pointers to C++ code)

MODULE SME

IMPORTED MODULES:

None

DESCRIPTION
Low-level IMPORT encapsulation of C++ code that open, run, and close

SME simulations and  read and write SME maintained simulation maps.

METHODS
CONSTRUCTOR METHOD SME() ;

Opens the SME simulation associated with the compiled IMPORT/DOME

program.  

DESTRUCTOR METHOD SME() ;

Closes the associated SME simulation.

ASK METHOD Update(IN steps : INTEGER);

Runs the SME simulation through “steps” dT steps.

ASK METHOD GetValue(IN Index, Row, Col : INTEGER) : REAL ;

Returns a value of map associated with index value “Index” at the row and

column coordinate  specified.  Row and Col are provided in the SME
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coordinate system that places the 0,0 position at the northwest corner of

the study area.

ASK METHOD SetValue(IN Index, Row, Col : INTEGER; IN Value : REAL):

IINTEGER ;

Changes the value in the SME map at the given coordinates to the given

value.  Note that coordinates are in row and column values.

____________________________________________________________________

LINKEDLIST = OBJECT

MODULE LINKEDLIST

IMPORTED MODULES:

None

DESCRIPTION
Together with object LINK, LINKEDLIST provides a  utility for storing and

retrieving data in linked lists.  The user instantiates the list and 

adds/removes links with LINKEDLIST methods.  The LINK object is used

for traversing the list and for retrieving stored objects associate with each

link.

METHODS
CONSTRUCTOR METHOD LINKEDLIST()

Instantiates a new, empty list.

ASK METHOD AddLink(IN Item: TAGGED) : LINK

Adds a new link to the end of the list and returns that link.

ASK METHOD GetFirstLink() : LINK

Returns the first link in the list.  This provides the first step in traversing a

list.

ASK METHOD RemoveLink(IN Link: LINK) 

Deletes a link from the list.

______________________________________________________________________

LINK = OBJECT

MODULE LINKEDLIST

IMPORTED MODULES:

None

DESCRIPTION
Together with object LINKEDLIST,  LINK provides a utility for storing and

retrieving data in linked lists.  The user instantiates the list and adds/

removes links with LINKEDLIST methods.  The LINK object is used for

traversing the list and for retrieving stored objects associate with each link.

METHODS
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CONSTRUCTOR METHOD LINK(IN NewItem : TAGGED; IN theList :

LINKEDLIST)

This is intended to be used exclusively by the LINKEDLIST object when

it is requested to add a link.  

ASK METHOD SetPreviousLink(IN Link : LINK)

Used by LINKEDLIST to establish the link within a list.

ASK METHOD SetNextLink(IN Link : LINK)

Used by LINKEDLIST to establish the link within a list.

ASK METHOD ReturnItem() : TAGGED

Returns the item associated with the link.

ASK METHOD ReturnPreviousLink() : LINK

Identifies the previous link in the linked list; NULL if there is no link.

ASK METHOD ReturnNextLink() : LINK

Identifies the previous link in the linked list; NULL if there is no link.

ASK METHOD ReturnList() : LINKEDLIST

Returns the linked list with which this link is associated.

__________________________________________________________________

PenPlot = OBJECT

MODULE STRIPCHART

IMPORTED MODULES:

Xgraph

ASSOCIATED OBJECTS:

StripChart

DESCRIPTION  

PenPlot objects are instantiated with calls to StripChart objects.  They are

the “pen objects” associated with a stripchart.  It is recommended that only

the AddPoint METHOD be used directly.

METHODS
CONSTRUCTOR METHOD PenPlot(IN low, high: REAL; IN Units, Color:

STRING; IN Connect: BOOLEAN): PenPlot

This  instantiates a new “pen” on the stripchart.  Establish its low and high

range to be “low” and “high” ; set the pen color to “Color”, and identify

through the Boolean “Connect” whether data points shall be connected to

form a continuous line or be displayed as dots.  This METHOD should not

normally be used; instead, access it indirectly through the StripChart

object.  This is because the StripChart class does the actually drawing and

does so by querying each PenPlot object.  By using StripChart to 

instantiate a PenPlot, StripChart maintains a list of all associated PenPlots.

ASK METHOD AddPoint(IN data: REAL) ;
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The value of “data” is associated with the current time which the object

accesses through the SIMTIME() method.  Only the last 256 data points

are retained.  Only those that fit within the time-range originally established

with the creation of the associated StripChart are actually displayed.

ASK METHOD Plot() ;

Causes all of the data in the current plot to be updated on the display.

This i s

normally not called except via the Plot method associated with the 

associated StripChart object.

____________________________________________________________________

RandNormGraph = OBJECT(GaussRandom)

MODULE RAND_NORM_GRAPH

IMPORTED MODULES:

GRAPHFUNCTION

GAUSSRANDOM

DESCRIPTION
Provides a one-step approach to a graph-type function which is associated

with a running series of normals and standard deviations paired with a

dependant value.  Calls to the ReturnValue method returns a random

number chosen with respect to the normal and standard deviation

associated with the input value.  This is valueable for generating stochastic

temperature, rainfall, and other environmental data.

METHODS
CONSTRUCTOR METHOD RandNormGraph(IN Independent, Dependent,

StDev: LIST)

Each of these lists of REAL values must be of the same length; the nth

values of each are associated with each other.  The “Independent” values

must be monotonically increasing and might typically represent the day (or

month) of a year.  The “Dependent” LIST values provide the normal values

of the output variable.  Actual output values are perturbed in a gaussian

fashion with the “StDev” LIST values that are the “one standard-deviation”

values associated with the associated average value.

ASK METHOD ReturnValue(IN Independent: REAL) : REAL

A dependent value associated with the input “Independent” value is

established and then perturbed based on the standard-deviation value also

associated with the “Independent” value.

_____________________________________________________________________

RasterManager = OBJECT(MapManager)
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MODULE RASTERMANAGER

IMPORTED MODULES:

MAPMANAGER

DESCRIPTION
All access to landscape maps (and some derived information) is provided

to animal objects through the RasterManager.  It, in-turn, accesses raw

map information and region data through a static or dynamic MapManager.

METHODS
CONSTRUCTOR METHOD RasterManager(OUT N, S, E, W, NS, EW: REAL)

Instantiates the associated MapManager superclass.

ASK METHOD ReturnAreaData(IIN mapname: STRING; IN DayOfYear:

INTEGER; IN CenterE, CenterN, range: REAL) : REAL

Returns the average value for the cells within a circle of given location and

radius for the identified map.

ASK METHOD ConvertEtoCol(IN east: REAL) : REAL

Converts an Easting UTM valueto a raster column value.

ASK METHOD ConvertNtoRow(IN north: REAL) : REAL

Converts a Northing valueto a raster rowvalue.

ASK METHOD ReturnN() : REAL

Returns the value of the northernmost edge of the simulation area.

ASK METHOD ReturnS() : REAL

Returns the value of the southernmost edge of the simulation area.

ASK METHOD ReturnE() : REAL

Returns the value of the easternmost edge of the simulation area.

ASK METHOD ReturnW() : REAL

Returns the value of the westernmost edge of the simulation area.

ASK METHOD ReturnNS() : REAL

Returns the value of the north-south cell resolution of the simulation area.

ASK METHOD ReturnEW() : REAL

Returns the value of the east-west cell resolution of the simulation area.

_____________________________________________________________________

REGION = OBJECT

MODULE REGION

IMPORTED MODULES:

unknown

DESCRIPTION
This class provides an efficient means for retrieving lists of entities that

exisit within an arbitrary rectangular landscape space.  The principal

methods allow landscape objects to register themselves and query for a

list of nearby objects.   It uses a quad-tree approach internally to register
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objects.  The number of levels in the quad-tree is specified in the 

CONSTRUCTOR METHOD.  The total number of cells at the lowest level

is 4 raised to the number of levels.  5 levels results in 1024 (45) cells at the

lowest level (level 0).

METHODS
CONSTRUCTOR METHOD REGION(IN levels: INTEGER; IN N, S, E, W :

REAL)

If the level is not 0, four sub-quads are instantiated, otherwise a leaf node

is established.  This method is used recursively to create a multi-level tree.

DESTRUCTOR METHOD REGION()

Deallocates all quads associated with the region.

ASK METHOD AssignEntity(IN entity: TAGGED; IN E, N : REAL) : LINK

Sends the TAGGED object to the first-level quad, which continues to pass

it on until a level 0 quad finally adds the object to its list.  

ASK METHOD RemoveEntity(IN LinkID TAGGED)

Entity is identified in the quad-tree and removed.  The LinkID is the link

address returned by the call to AssignEntity, which originally stored the

location.

ASK METHOD GetEntityList() : LIST 

Returns a LIST of all the entities currently stored in the region.

ASK METHOD GetEntityListInRectangle(IN N, S, E, W: REAL) : LIST 

Returns a LIST of all the landscape objects associated with all 0 level

quads that overlap the rectangular area.  This LIST is guaranteed to

contain all the desired objects but may contain others as well.  This is

because all objects in a 0 level quad are added to the list if the quad

overlaps the desired rectangle at all.

ASK METHOD ConvertCoorsToQuad(IN E, N : REAL) : INTEGER 

Identifies the 0 level quad that contains the coordinate.

ASK METHOD ShowStatus()

A debugging METHOD that lists the contents of all 0 level quads.

_____________________________________________________________________

StripChart = OBJECT

MODULE STRIPCHART

IMPORTED MODULES:

Xgraph

ASSOCIATED OBJECTS:

PenPlot

DESCRIPTION  
This object provides the ability to view, in stripchart form, the recent

historical values of up to ten variables.  Each variable is associated with
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its own color and upper/lower limits  Each can be plotted as a continuous

line or as discrete dots.  Its purpose is to allow for the observation of

time-series values at run-time.  The PenPlot object works in conjuncton

with the StripChart object.  PenPlot objects accept data to be plotted.

StripCharts are intended to be superclasses of view objects that probe

models for system status information and then render that information via

the stripchart.

METHODS
CONSTRUCTOR METHOD StripChart(IN UnitSteps, SimstepsPerUnit:

INTEGER;  IN Units: STRING);

Instantiates a stripchart and sets the total amount of time units, the number

of simulation steps per unit, and the name of the unit.

ASK METHOD OpenNewPlot(IN low, high: REAL; IN Units, Color: STRING;

IN Connect: BOOLEAN): PenPlot

This call tells the penplot to instantiate a new “pen” on the stripchart. 

Establish its low and high range to be “low” and “high” ; set the pen color

to “Color”, and identify through the boolean “Connect” whether data points

shall be connected to form a continuous line or be displayed as dots.  This

METHOD returns a PenPlot object that is subsequently used to feed in

data.

ASK METHOD SetColors(IN Background, Text, Graph: STRING) ;

Each of these are strings recognizeable by X-windows as colors. 

Background defines the color of the main background of the graphic

object; Text is

the color of text; and Graph is the color of the “paper” portion of the 

stripchart.

ASK METHOD SetMarkings(IN frequency: REAL; IN Color: STRING) ;

By default, there are no markings on the “paper.”  This method established

markings.  “Frequency” sets up how far apart markings will be in the units

established in the Constructor method.  “Color” identifies the color used

for these

markings.

ASK METHOD Plot() ;

Causes all of the data in the current plots to be updated on the display.

ASK METHOD ClosePlots() ;

DISPOSE’s all of the currently active PenPlots.

_____________________________________________________________________

Register = OBJECT()

MODULE REGISTER

IMPORTED MODULES:
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None

DESCRIPTION
A single instantiation of this object is made available to all objects that

generate landscape objects.  Its purpose is to provide every landscape

entity with a unique identification number.

METHODS
CONSTRUCTOR METHOD Register()

Instantiates the generator and sets the next number to 1.

ASK METHOD ReturnNum() : INTEGER

Returns the next available integer.
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_____________________________________________________________________

TimeManager = OBJECT

MODULE TIMEMANAGER

IMPORTED MODULES:

None

DESCRIPTION
The time manager provides a query point for landscape objects to access

the information that associates model simulation time with Simtime() time

steps. The later is an IMPORT/DOME METHOD which returns an integer

representing simulation time.  The CONSTRUCTOR METHOD provides

information to allow conversion of this time to days, months, and years.

METHODS
CONSTRUCTOR METHOD TimeManager(IN StepsPerYear, StartDay,

StartMonth, StartYear: INTEGER)

This object works with 360 day years.  The self-defined input values allow

for the computation of the day, month, and/or year at any given time.

ASK METHOD ReturnSimStepsPerYear() : INTEGER

Returns the number of SIMTIME() simulations steps associated with a full

year as provided through the CONSTRUCTOR method.

ASK METHOD ReturnSimStepsPerMonth() : INTEGER

Returns the number of SIMTIME() simulations steps associated with a

30-day month.

ASK METHOD ReturnSimStepsPerDay() : INTEGER

Returns the number of SIMTIME() simulations steps associated with a day.

ASK METHOD ReturnDay() : INTEGER

Uses SIMTIME() and returns the current day in the year (1-360).

ASK METHOD ReturnYear() : INTEGER

Uses SIMTIME() and returns the current year.

B.2 Animal SuperClass Object

The objects listed here provide the fundamental building blocks for constructing
animal objects.  These provide the functionality to support eating, health, prey
activity, general facts, and entity knowledge.  It is expected that multiple versions
of each of these will develop over time in support of an increasingly broad spectrum
of animals.  The knowledge object is of particular interest as it provides the animal
with its view of surrounding animals.  This object addresses one of the key design
goals: that it be possible to add new entities and entity types to an ecosystem
simulation without reworking each existing entity to recognize the new entity type.
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_____________________________________________________________________

AnimalInfo = OBJECT

IMPORTED MODULES

ANIMALINFO

REGION

IMEMANAGER 

RASTERMANAGER 

LINKEDLIST 

REGISTER 

DESCRIPTION
Common object known to all animals and auxiliary animal support objects.

It provides a location for sharing information about and between animals.

METHODS
CONSTRUCTOR METHOD(IN Register: Register ; IN theRegion: REGION;

IN Time: TimeManager; IN atE, atN: REAL; IN IsMale: BOOLEAN ; IN

AgeIn: INTEGER ; IN LengthIn : REAL ; IN MassIn : REAL ; IN RangeIn:

REAL ; IN StressIn : INTEGER ; IN SatisIn: INTEGER ; IN DTIn: 

INTEGER)

Internal variables are set based on the supplied initializing information.

ASK METHOD ReturnLocation(OUT e, n: REAL)

ASK METHOD ReturnPreyLoc(OUT e, n: REAL)

ASK METHOD ReturnNVel(): REAL

ASK METHOD ReturnEVel(): REAL

ASK METHOD ReturnName() : REAL

ASK METHOD ReturnColor(): REAL

ASK METHOD ReturnID(): INTEGER

ASK METHOD ReturnIsMale() :BOOLEAN

EXPORT ASK METHOD ReturnAge(): REAL

EXPORT ASK METHOD ReturnLength(): REAL

EXPORT ASK METHOD ReturnMass(): REAL

EXPORT ASK METHOD ReturnRange(): REAL

EXPORT ASK METHOD ReturnCarniv(): INTEGER

EXPORT ASK METHOD ReturnDT(): INTEGER 

EXPORT ASK METHOD ReturnStress(): INTEGER

EXPORT ASK METHOD ReturnSatis(): INTEGER

EXPORT ASK METHOD ReturndStress(): INTEGER 

EXPORT ASK METHOD ReturndSatis(): INTEGER

EXPORT ASK METHOD ReturnSelf(): TAGGED

EXPORT ASK METHOD ReturnActivity(): STRING

EXPORT ASK METHOD ReturnNeighbor(): LIST
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EXPORT ASK METHOD ReturnQuery(): LIST

EXPORT ASK METHOD ReturnDead(): BOOLEAN

EXPORT ASK METHOD ReturnFertile(): INTEGER

EXPORT ASK METHOD SetLocation(IN atE, atN: REAL)

EXPORT ASK METHOD SetPreyLoc(IN atE, atN: REAL)

EXPORT ASK METHOD SetNVel (IN x:REAL   ) 

EXPORT ASK METHOD SetEVel (IN x:REAL   )

EXPORT ASK METHOD SetName(IN x:STRING )

EXPORT ASK METHOD SetColor (IN x:STRING )

EXPORT ASK METHOD SetID(IN x:INTEGER)

EXPORT ASK METHOD SetIsMale  (IN x:BOOLEAN)

EXPORT ASK METHOD SetAge     (IN x:REAL   )

EXPORT ASK METHOD SetLength(IN x:REAL   )

EXPORT ASK METHOD SetMass(IN x:REAL   )

EXPORT ASK METHOD SetRange(IN x:REAL   )

EXPORT ASK METHOD SetCarniv (IN x:INTEGER) 

EXPORT ASK METHOD SetDT (IN x:INTEGER)

EXPORT ASK METHOD SetActivity(IN x:STRING )

EXPORT ASK METHOD SetDead (IN x:BOOLEAN) 

EXPORT ASK METHOD SetStress(IN x:INTEGER)

EXPORT ASK METHOD SetSatis(IN x:INTEGER)

EXPORT ASK METHOD SetFertile (IN x:INTEGER)

EXPORT ASK METHOD UpdateNeighbors()

EXPORT ASK METHOD ResetQuery()

Resets the query parameters (set by the SetQuery methods) to a state that

is intended completely unrestricted.

EXPORT ASK METHOD SetQueryDeath(IN death: BOOLEAN)

EXPORT ASK METHOD SetQuerySex(IN doMales: BOOLEAN)

EXPORT ASK METHOD SetQueryLength(IN lo, hi: REAL)

EXPORT ASK METHOD SetQueryAge(IN lo, hi: INTEGER)

EXPORT ASK METHOD SetQueryMass(IN lo, hi: REAL)

EXPORT ASK METHOD SetQueryCarniv(IN lo, hi: INTEGER)

EXPORT ASK METHOD RunQuery() : INTEGER

Searches through the list of nearby entities and creates a new list of those

that meet the restrictions established by the SetQuery methods above.

EXPORT ASK METHOD BeAttackedBy(IN animal: AnimalInfo) : BOOLEAN

Returns TRUE, to indicate that the associated animal has been killed in

the attack.

Set up to be overridden by an animal SUBCLASS method that 

allows the individual animal to respond to the attack in its own way. 
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B.3 Weather Support Objects
_____________________________________________________________________

Precip = OBJECT(RandNormGraph)

MODULE PRECIP

IMPORTED MODULES:

RAND_NORM_GRAPH

DESCRIPTION
Provides the means to generate stochastic precipitation amounts for any

time of the year.

METHODS
CONSTRUCTOR METHOD Precip(IN Days, Precip, PrecipDev: LIST)

Days, Precip, and PrecipDev are Import/Dome lists containing equal

numbers of list items of type REAL.  Days is considered to be the

independent variable; Precip the dependent value perturbed in a gaussian 

random form with respect to the PrecipDev value.  “Days” is monotonically

increasing and generally covers the range 0-360 as there are 360 days in

the simulated year.

ASK METHOD GetPrecip(IN DayofYear: INTEGER) : REAL

Returns a precipitation value given the DayOfYear independent variable.

_____________________________________________________________________

Temperature = OBJECT(RandNormGraph)

MODULE TEMPERATURE

IMPORTED MODULES:

RAND_NORM_GRAPH

DESCRIPTION
Provides the means to generate stochastic temperature values for any

time of the

year.

METHODS
CONSTRUCTOR METHOD Temperature(IN Days, Temp, TempDev: LIST)

Days, Temp, and TempDev are Import/Dome lists containing equal

numbers of list items of type REAL.  Days is considered to be the

independent variable; Temp the dependent value perturbed in a gaussian

random form with respect to the TempDev value.  “Days” is monotonically

increasing and generally covers the range 0-360.

ASK METHOD UpdateTemp(IN DayofYear: INTEGER)

Computes the base temperature for the simulation area for the given day.

This can be adjusted to a local temperature with ReturnAdjustedTemp.
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ASK METHOD ReturnTemp(): REAL

Returns the last base temperature computed with the UpdateTemp

method.

ASK METHOD ReturnAdjustedTemp(IN DayofYear: INTEGER; IN latitude,

tau, 

LapseRate, elevation, slope, aspect, BaseElevation: REAL) : REAL

Returns a local temperature adjusted for solar insolation differences

caused by the inputs.  Latitude, slope and aspect are in radians.  Elevation

and BaseElevation are in feet.  “tau” is the rate of temperature change with

solar azimuth angle.  “LapseRate” is the increase in temperature 

(Fahrenheit) with every 100 ft of descent.

B.4 Sample Main Simulation Objects

The following objects provide an example of how the objects presented above can
be used to assemble a working dynamic simulation environment.  
____________________________________________________________________
Main = OBJECT

MODULE MAIN

IMPORTED MODULES:

MAPMANAGER

REGION

REGISTER

TIMEMANAGER

MAPVIEW

ANIMALVIEW

ANIMAL (Each animal module that identifies animals that shall be

instantiated at the beginning of the simulation)

DESCRIPTION
The main object, as expected, establishes the initial state of the system

and then begins running the objects.  All initial user oriented viewers and

controllers are also initialized.

METHODS
CONSTRUCTOR METHOD Main()

This is the only method and provides all of the instructions required to start

the simulation.

___________________________________________________________________

MapView = OBJECT

MODULE MAPVIEW
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IMPORTED MODULES:

XGRAPH

ANIMALINFO

RASTERMANAGER

REGION

DESCRIPTION
Provides a viewport of the spatial layout of the landscape.  An xpm graphic

file derived from a GIS database provides a backdrop.  Small icons move

around this backdrop to provide a visualization of the location of the

entities on that

landscape.

METHODS
CONSTRUCTOR METHOD MapView(IN TM: TimeManager; IN RM: 

RasterManager; INRegion : REGION; IN daysteps: INTEGER; IN scene :

STRING)

Initializes a graphic viewport through which the positional location of

entities on the landscape appear.  The single TELL METHOD provides the

loop that keeps the visualization running during the course of the 

simulation.

ASK METHOD IdentifyState() : BOOLEAN

Returns whether or not the instantion step completed properly.

TELL METHOD Run()

A self-calling method that renders an image of the current state of the

system.

______________________________________________________________________

MapManager = OBJECT(GRASS, Temperature, Precip)

MODULE MAPMANAGER

IMPORTED MODULES:

GRASS

GRASS_INTERFACE

TEMPERATURE

PRECIP

DESCRIPTION
The raster manager s intended to be the single entry point into the raster

landscape.  This object shall have two versions.  One version provides a

run-time interface to static GIS (GRASS) data; another provides run-time

interface capabilities to an external dynamic landscape simulation.  Only

one MapManager object is instantiated for all of the entities that might exist

on the landscape.

METHODS
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CONSTRUCTOR METHOD MapManager(OUT N, S, E, W, NS, EW: 

REAL)

Connections to all GIS (or dynamic maps) are established.  Regional

weather data is prepared for the simulation.

ASK METHOD ReturnCellData(IN DayOfYear: INTEGER; IN E, N: REAL;

OUT temp, precip, slope, aspect, elev, grass, forb, shrub: REAL): REAL

The arguments to this method will be different for each simulation model

developed.  Essentially, all information associated with a current point in

the simulation space is returned.  The DayOfYear is used to compute the

temperature and precipitation.

ASK METHOD ReturnCellData(IN mapname: STRING; IN DayOfYear:

INTEGER; IN E, N: REAL): REAL

Returns the value of the given map at the given location.

ASK METHOD CheckIfOnMap(IN E, N: REAL): BOOLEAN

Returns TRUE or FALSE depending on whether the given location falls

within an active cell.
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Appendix C: Associated Mojave Desert
Efforts

The demonstration model development effort associated with this research relies
heavily on the accomplishments of a number of different projects and individuals.
They include the development of a comprehensive geographical information data
set for Fort Irwin, the combination of this mapset with field measurements using
neural networks to yield density maps for tortoises and vegetation, and sample
dynamic landscape simulation models developed for predicting Desert Tortoise
habitat.

C.1 GIS Maps

Raster- and vector-based GIS maps have been developed for Fort Irwin over the
years using the GRASS geographical information system.  The author’s experience
dates back to the development of early raster-based GIS software that he used to
develop perhaps the first GIS database of Fort Irwin, California.   Since then much
more detailed databases that incorporated satellite imagery, vector maps of roads,
ownerships, and boundaries, and many other themes were developed for Fort Irwin.
Existing map layers include Landsat and SPOT satellite imagery, vegetation,
geology, digital elevation models (DEM), and DEM-derived data such as watershed
delineation, slope, and aspect.  Vector maps include roads of various different types,
ownership boundaries, and edges of training areas.  Much of the digital data
development was accomplished between 1978 starting with the author’s first digital
database of the area (Westervelt 1978) and the present at the U.S. Army
Construction Engineering Research Laboratories (USACERL).  Currently Fort
Irwin maintains and develops its own database through on-location efforts,
contractors, and government laboratories.  A resource that needs to be tapped in
the future is a legacy of remote sensing data using military satellites dating back
perhaps 50 years and archived at the U.S. Army Corps of Engineers Topographic
Engineering Center (TEC).  GIS maps that are used in both the current effort and
the concurrently developed Desert Tortoise population model effort (Westervelt et
al. in press) initialize the raster data using digital elevation models, slope, aspect,
tortoise density, vegetation density, soil properties, and geology maps stored in
GRASS raster formats.
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C.2 Transect Data and Neural Networks

In the development of spatially explicit tortoise population models for the classes
taught with Professor Hannon, it was determined that initial tortoise densities and
initial vegetation densities were desired for the landscape.  The only data available
consisted of density approximations derived from transect measurements.  Dr.
Anthony Krzysik of USACERL provided tortoise densities at approximately 400
transects walked in 1989 (Krzysik and Woodman 1991) scattered across Fort Irwin.
Similarly, an Army  program called the Land Condition Trend Analysis (LCTA)
provided vegetation densities for transects scattered randomly across Fort Irwin.
The simulation models required density approximations in a full-coverage map
form while the collected data provided data for only sets of transects.

To convert the transect data to full-coverage maps, a back-propagation neural
network was used to correlate a selected set of GIS map (and imagery) layers to the
ground-based transect observations.  Details of the approach used for each set of
transects are discussed in Wu and Westervelt 1994; Westervelt, Krzysik, and Seel
1995; and Westervelt 1995.  

C.3 Existing Raster Simulation Models

The demonstration models were built upon a pure SME population model designed
and developed through University of Illinois Geography 495 classes offered during
the Spring semesters of 1994 and 1995 (Westervelt et al. in press; Westervelt et al.
1995).  The questions that were being asked of the modeling effort involved
predicting short and long-term impacts of military training on populations of
Desert Tortoise at Fort Irwin, California.  A fixed time step of a week was chosen;
this corresponded to a cellular spatial resolution of 1 kilometer (the farthest
practical distance that a tortoise might traverse in a week).  Students participating
in the class provided a multidisciplinary team that covered biology, ecology,
geography, regional planning, landscape architecture, civil engineering, and even
pre-law and philosophy.  In each class students divided into a number of teams that
were assigned to different components of the modeling effort.  Components included
tortoise life stages and accompanying growth and death rates, tortoise migration,
hydrology, climate and weather, vegetation, and human impacts.  These were
developed using the Stella graphical programming language.  This simulation
model was used as the basis for the demonstration of the I-STEMS software
concepts and designs as discussed in section 5.1.2.
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