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Modeling with FUNWAVE 
 

by Matt Malej, Jane M. Smith, and Gabriela Salgado-Dominguez 

PURPOSE: The subject of this note is to delineate the U.S. Army Corps of Engineers (USACE) 
needs in near-shore processes and evaluate a new phase-resolving numerical wave model for 
adoption and implementation within Coastal and Hydraulics Laboratory (CHL) numerical 
strategic framework. An additional consideration is the advancement of the state of the art of 
the phase-resolving numerical wave models for the USACE. The areas of applicability include 
near-shore wind-wave propagation, harbor entrances, nonlinear shoaling, runup, overtopping, 
inundation, tsunamis, and ship waves. 

INTRODUCTION: Modeling nonlinear coastal wave processes, such as inundation, wave runup, 
bore propagation, tsunami propagation, harbor resonance, ship wakes, and infragravity waves, 
requires efficient and accurate computing of the evolution of highly nonlinear time-dependent, 
three-dimensional (3D) surface wave fields in complex coastal environments. This is a challenging 
hydrodynamic problem. Most models commonly used for describing nonlinear surface waves are 
far from being complete. They rely on ad hoc models for the physical processes involved, such as 
nonlinear wave-wave interactions, energy dissipation due to wave breaking, or interplay between 
waves and currents. 

An additional complication in modeling coastal waves is that there is a wide range of scales to 
be resolved. The coupling between various modes and thus the energy transfer between 
different spatial and temporal scales lacks thorough understanding. Operational phase-averaged 
wave action balance models suffer from inaccurate prediction of the wave spectrum in shallow 
water. This is often attributed to incomplete modeling of nonlinear interactions (both resonant 
and non-resonant). With improvements in the high performance computing (HPC), phase-
resolving models are becoming more practical to apply. Their primary area of application thus far 
has been a shallow-water environment. Boussinesq-type models are especially attractive in these 
regimes, where weak nonlinearity and low dispersion are prevalent. The USACE has a pressing 
need for a robust and computationally efficient phase-resolving numerical wave model. It is 
important that such a model be efficient and developed with HPC application in mind, without the 
immediate and cyclical need to resort to propriety software packages such as MATLAB. 

Statements of need. Statements of need submitted by USACE Districts and discussions with 
several prominent figures in the Boussinesq-type modeling community (Prof. Patrick Lynett, Prof. 
Andrew Kennedy, Dr. Zeki Demirbilek) have identified several needs for Boussinesq-type models. 
These include 

• coastal and inland breakwater design (complex geometries) 
• inundation mapping – overland propagation and runup 
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• bore propagation, waves on reefs 
• harbor resonance, harbor and marina infrastructure modifications 
• transient waves (tsunamis, sneaker waves) and ship wakes. 

Boussinesq models are essentially shallow-water models with extra dispersive and nonlinear terms. 
They excel under conditions of weak nonlinearity (long waves in shallow depths). Important 
processes that need to be modeled by these systems include nonlinear wave-wave interactions, 
wave-current interactions, wave breaking, nearshore wind-wave propagation, harbor resonance, 
and nonlinear shoaling. 

Unfortunately, Boussinesq models are not presently the best tools for runup and overtopping on 
near-vertical structures or highly variable bathymetries, due to the removal of the third 
dimension via the projection and expansion about an arbitrary water depth. Topological changes 
in the numerical solution of free-surface flows yield some current models obsolete (e.g., Bouss-
2D) for near-vertical walls or for fluid-structure interactions. In addition, the associated numerical 
stability and rates of convergence cannot compete with other more novel numerical schemes 
(e.g., spectral methods or finite volume/element). 

There are many existing Boussinesq models available. Some of these are completely proprietary 
(e.g., Bouss-2D, DHI models) while others are research codes with little documentation, limited 
number of active developers, and limited real-world applications. Boussinesq models tend to be 
very complicated to set up and are not as robust as other types of models. It can be difficult for 
inexperienced users to apply these codes and to identify problems/errors. In addition, having a 
one-dimensional (1D) version of the code makes applications generally more accessible and may 
help promote District applications. 

Moreover, due to computational demands of two-dimensional (2D) free-surface wave models, it 
is imperative that they be implemented for parallel computing. The two Boussinesq-type 
models that are currently of interest and are written in parallel (MPI – Message Passing 
Interface) are COULWAVE and FUNWAVE. Both models utilize a MUSCL-TVD (Monotone 
Upstream-centered Scheme for Conservation Laws – Total Variation Diminishing) finite 
volume scheme, which is superior to the finite-difference scheme utilized in Bouss-2D. Because 
COULWAVE and FUNWAVE have largely identical kernels, in the subsequent sections of this 
report the authors will concentrate exclusively on FUNWAVE. 

An additional consideration is that all of the above-mentioned models rely on proprietary software 
(MATLAB from MathWorks or SMS from AQUAVEO) for grid generation, model initialization, 
postprocessing, and visualization. While these represent good tool suites for the current needs of 
the ERDC modeling community, the financial burdens in obtaining licenses on annual basis are an 
added expense. 

Potential improvements of FUNWAVE would include expansion of the user and developer base 
to create an active implementation group, which is critical for continuous development efforts. 
Also, an adherence to good software engineering practices such as having a distributed version 
control system (e.g., Git), writing modular code in higher-level languages/scripts is also important. 
Finally, it is also vital to be able to dynamically couple phase-resolving models to not only the 
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phase-averaged models but also full-fidelity Navier-Stokes models. These capabilities are currently 
unexplored in most operational Boussinesq-type models. 

FUNWAVE: Boussinesq wave models have become a useful tool for modeling surface wave 
transformation from deep water to the swash zone, as well as wave-induced circulation inside the 
surfzone. Improvements in the range of model applicability have been obtained with respect to 
classical restrictions to both weak dispersion and weak nonlinearity. Madsen and Sørensen (1992) 
and Nwogu (1993) demonstrated that the order of approximation in reproducing frequency 
dispersion effects could be increased using either judicious choices for the form (or reference 
point) for Taylor series expansions for the vertical structure of dependent variables, or operators 
effecting a rearrangement of dispersive terms in already developed model equations. These 
approaches, combined with use either of progressively higher-order truncated series expansions 
(Gobbi et al. 2000; Agnon et al. 1999) or multiple-level representations (Lynett et al. 2002), have 
effectively eliminated the restriction of this class of model to relatively shallow water, allowing for 
their application to the entire shoaling zone or deeper. At the same time, the use of so-called fully 
nonlinear formulations (e.g., Wei et al. [1995]) and many others) effectively eliminates the 
restriction to weak nonlinearity by removing the wave height to water depth ratio as a scaling or 
expansion parameter in the development of approximate governing equations. This approach has 
improved model applicability in the surf and swash zones particularly, where surface fluctuations 
are of the order of mean water depth at least and which can represent the total vertical extent of the 
water column in swash conditions. Representations of dissipative wave-breaking events, which do 
not naturally arise as weak discontinuous solutions in the dispersive Boussinesq formulation, have 
been developed usually following an eddy viscosity formulation due to Zelt (1991) and have been 
shown to be highly effective in describing surf-zone, wave-height decay. The resulting class of 
models has been shown to be highly effective in modeling wave-averaged surf zone flows over 
both simple (Chen et al. 2003) and complex bathymetries. Kim et al. (2009) have further extended 
the formulation to incorporate a consistent representation of boundary layer turbulence effects on 
vertical flow structure. 

Existing approaches to development of numerical implementations for Boussinesq models include 
a wide range of finite difference, finite volume, or finite element formulations. In this note, there 
is described the hybrid finite-volume and finite-difference numerical approach for the FUNWAVE 
model (Kirby et al. 1998), which has been widely used as a public-domain, open-source code since 
its initial development. FUNWAVE was originally developed using an unstaggered finite 
difference formulation for spatial derivatives together with an iterated fourth-order Adams-
Bashforth-Moulton (ABM) scheme for time-stepping (Wei and Kirby 1995), applied to the fully 
nonlinear model equations of Wei et al. (1995). In this scheme, spatial differencing is handled 
using a mixed-order approach, employing fourth-order accurate centered differences for first 
derivatives and second-order accurate differences for third derivatives. This choice was made in 
order to move leading order truncation errors to one order higher than the O(µ2) dispersive 
terms (where µ is ratio of a characteristic water depth to a horizontal length, a dimensionless 
parameter characterizing frequency dispersion) while maintaining the tridiagonal structure of 
spatial derivatives within time-derivative terms. This scheme is straightforward to develop and 
has been widely utilized in other Boussinesq models. 

Kennedy et al. (2000) and Chen et al. (2000) describe further aspects of the model system aimed 
at generalizing it for use in modeling surf zone flows. Breaking is handled using a generalization 
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to two horizontal dimensions of the eddy viscosity model of Zelt (1991). Similar approaches have 
been used by other Boussinesq model developers, such as Nwogu and Demirbilek (2001), who 
used a more sophisticated eddy viscosity model in which the eddy viscosity is expressed in terms 
of turbulent kinetic energy and a length scale. The presence of a moving shoreline in the swash 
zone is handled using a slot or porous-beach method, in which the entire domain remains wetted 
using a network of slots at grid resolution that are narrow but which extend down to a depth lower 
than the minimum expected excursion of the modeled free surface. Several extensions have been 
made in research versions of the code. Kennedy et al. (2001) improved nonlinear performance of 
the model by utilizing an adaptive reference level for vertical series expansions, which is allowed 
to move up and down with local surface fluctuations. Chen et al. (2003) extended the model to 
include longshore periodic boundary conditions and described its application to modeling long-
shore currents on relatively straight coastlines. Shi et al. (2001) generalized the model coordinate 
system to non-orthogonal curvilinear coordinates. Finally, Chen et al. (2003) and Chen (2006) 
provided revised model equations which correct deficiencies in the representation of higher order 
advection terms, leading to a set of model equations that, in the absence of dissipation effects, 
conserve depth-integrated potential vorticity to O(µ2), consistent with the level of approximation 
in the model equations. 

A number of recently developed Boussinesq-type wave models have used a hybrid method 
combining the finite-volume and finite-difference TVD-type schemes (Toro 2009) and have 
shown robust performance of the shock-capturing method in simulating breaking waves and 
coastal inundation (Tonelli and Petti 2009, 2010; Roeber et al. 2010). The use of the hybrid 
method, in which the underlying components of the nonlinear shallow water equations (which 
form the basis of the Boussinesq model equations) are handled using the TVD finite volume 
method while dispersive terms are implemented using conventional finite differencing, provides a 
robust framework for modeling of surf zone flows. In particular, wave breaking may be handled 
entirely by the treatment of weak solutions in the shock-capturing TVD scheme, making the 
implementation of an explicit formulation for breaking wave dissipation unnecessary. In 
addition, shoreline movement may be handled quite naturally as part of the Riemann solver 
underlying the finite volume scheme. 

In contrast to previous high-order temporal schemes, which usually require uniform time-stepping, 
FUNWAVE uses adaptive time-stepping based on a third-order Runge-Kutta method. Spatial 
derivatives are discretized using a combination of finite-volume and finite-difference methods. A 
high-order MUSCL reconstruction technique, which is accurate up to the fourth-order, is used in 
the Riemann solver. The wave-breaking scheme follows the approach of Tonelli and Petti (2009), 
who used the ability of the nonlinear shallow water equations (NLSWE) with a TVD solver to 
simulate moving hydraulic jumps. Wave breaking is modeled by switching from Boussinesq to 
NLSWE at cells where the Froude number exceeds a certain threshold. A wetting-drying scheme 
is used to model a moving shoreline. 

The model was parallelized using the domain decomposition technique. The MPI with 
nonblocking communication is used for data communication between processors. Additional 
details on code parallelization is discussed in the subsequent sections. 

Formulation. In the present FUNWAVE model, a set of Boussinesq equations are accurate to 
O(µ2) in dispersive effects. Where µ is a parameter characterizing the ratio of water depth to 
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wave length and is assumed to be small in classical Boussinesq theory. The dimensional forms 
are retained below but will refer to the apparent O(µ2) ordering of terms resulting from deviations 
from hydrostatic behavior in order to identify these effects as needed. The model equations used 
here follow from the work of Chen (2006). In this and earlier works starting with Nwogu (1993), 
the horizontal velocity is written as 

  α z  2u u u  (1) 

Here, uα denotes the velocity at a reference elevation z = zα, and 

           2 2
2

1
2

u α αz z z A z z B  (2) 

represents the depth-dependent correction at O(µ2), with A and B given by 
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u
 (3) 

The derivation follows Chen (2006) except for the additional effect of letting the reference 
elevation zα vary in time according to 

 αz ζh βη   (4) 

where h is local still water depth, η is local surface displacement and ζ and β are constants, as in 
Kennedy et al. (2001). This addition does not alter the details of the derivation, which are omitted 
below. The depth-integrated volume conservation equation is given by 

 ,tη  0M  (5) 

where: 

  αH  2M u u  (6) 

is the horizontal volume flux. H = h + η is the total local water depth and ū2 is the depth averaged 

O(µ2) contribution to the horizontal velocity field, given by 
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The depth-averaged horizontal momentum equation can be written as 

  ,α t α α g η        1 2 3 0u u u V V V R  (8) 
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where g is the gravitational acceleration and R represents diffusive and dissipative terms includ- 
ing bottom friction and subgrid lateral turbulent mixing. V1 and V2 are terms representing the 
dispersive Boussinesq terms given by 

 

       
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t
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The form of (9) for V1 allows for the reference level zα to be treated as a time-varying 
elevation, as suggested in Kennedy et al. (2001). If this extension is neglected, the terms reduce 
to the form given originally by Wei et al. (1995). The expression (9) for V2 was also given by Wei 
et al. (1995) and is not altered by the choice of a fixed or moving reference elevation. 

The term V3 in (8) represents the O(µ2) contribution to the expression for ω × u = ωiz × u, with 

iz being the unit vector in the z-direction, and may be written as 

 z z
αω ω   3 0 2 2V i u i u  (10) 

where: 
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Following Nwogu (1993), zα is usually chosen in order to optimize the apparent dispersion re- 
lation of the linearized model relative to the full linear dispersion. In particular, the choice α 
=(zα/h)2/2 + zα/h = −2/5 recovers a Pade approximation form of the dispersion relation while 
the choice α = −0.39, corresponding to the choice zα = −0.53h, minimizes the maximum error in 
wave phase speed occurring over the range 0 ≤ kh ≤ π. Kennedy et al. (2001) showed that, 
allowing zα to move up and down with the passage of the wave field, allowed a greater degree 
of flexibility in optimizing nonlinear behavior of the resulting model equations. In the examples 
chosen here, where a great deal of focus is on the behavior of the model from the break point 
landward, the Kennedy et al. (2001) datum invariant form was adopted 

    αz h βH β h βη ζh ζ η       11  (12) 

with ζ = −0.53 as in Nwogu (1993) and β = 1 + ζ = 0.47. This corresponds in essence to a σ-
coordinate approach, which places the reference elevation at a level 53% of the total local depth 
below the local water surface. This also serves to keep the model reference elevation within the 
actual water column over the entire wetted extent of the model domain. 
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Numerical scheme. The generalized form of the conservative Boussinesq equations can be 
written as 

  Ψ
Θ Ψ

t


 


S  (13) 

where Ψ and Θ(Ψ) are the conservative variables vectors and flux vector functions, respectively, 
written as 

  
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 (15) 

For a detailed derivation and expanded forms of Ψ and S, refer to the appendix of Shi et al. 
(2013). 

A combined finite-volume and finite-difference method was applied to the spatial discretization. 
For the flux terms and the first-order derivative terms, a high-order MUSCL-TVD scheme is 
implemented in the current FUNWAVE model. The high-order MUSCL-TVD scheme can be 
written in a compact form including different orders of accuracy from the second to the fourth 
order, according to Erduran et al. (2005), who modified the Yamamoto et al. (1998) fourth-order 
approach. 

Higher derivative terms in ψx and ψy were discretized using a central difference scheme at the cell 
centroids, as in Wei et al. (1995). The Surface Gradient Method (Zhou et al. 2001) was used to 
eliminate unphysical oscillations. Because the pressure gradient term is re-organized, there is no 
imbalance issue for the high-order MUSCL scheme. 

The third-order Strong Stability-Preserving (SSP) Runge-Kutta scheme for nonlinear spatial 
discretization was adopted for time-stepping. The scheme is given by 
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in which Ψn denotes Ψ at time level n. Ψ(1) and Ψ(2) are values at intermediate stages in the 
Runge-Kutta integration. As Ψ is obtained at each intermediate step, the velocity (u, v) can be 
solved by a system of tridiagonal matrix equations formed by (13). S needs to be updated using 
(u, v, η) at the corresponding time step and iterations are needed to achieve convergence. 

An adaptive time-step is chosen, following the Courant-Friedrichs-Lewy (CFL) criterion: 

 
                          
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, , , , , ,

min ,min
( ) ( )i j i j i j i j i j i j

x yC
u g h η v g h η

 (17) 

where the Courant number and Cmin = 0.5 were used in all validation and verification (V&V) test 
cases. 

The wave breaking scheme follows the approach of Tonelli and Petti (2009), who successfully 
used the ability of NLSWE with a TVD scheme to model moving hydraulic jumps. Thus, the fully 
nonlinear Boussinesq equations are switched to NSWE at cells where the Froude number exceeds 
a certain threshold. The ratio of wave height to total water depth is chosen as the criterion to switch 
from Boussinesq to NLSWE, with threshold value set to 0.8, as suggested by Tonelli and Petti. 

Various boundary conditions including a wall boundary condition, absorbing boundary condition 
following Kirby et al. (1998), and periodic boundary condition following Chen et al. (2003) 
have been implemented in the current FUNWAVE model. Implemented wavemakers include Wei 
and Kirby’s (1999) internal wavemakers for regular waves and irregular waves. For the irregular 
wavemaker, an extension was made to incorporate an alongshore periodicity into wave generation 
in order to eliminate a boundary effect on wave simulations. The technique exactly follows the 
strategy in Chen et al. (2003), who adjusted the distribution of wave directions in each frequency 
bin to obtain alongshore periodicity. This approach is effective in modeling of breaking wave-
induced nearshore circulation such as alongshore currents and rip currents. 

Wind effects are modeled using the wind stress forcing proposed by Chen et al. (2004). The 
wind stress is expressed by 

    10 10U C U Ca
w dw

ρ
R C

ρ
 (18) 

with Cdw = Cd/(h + η), where h + η represent the mean water depth with surface elevation and 
Cd corresponding to a drag coefficient, C is wave celerity, U is the velocity at a corresponding 
elevation, and finally, ρa and ρ represent air density and water density, respectively. The wind 
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stress is only applied on wave crests. A free parameter representing a ratio of the forced crest 
height to maximum surface elevation has also been implemented in the current FUNWAVE model. 

Parallelization. In parallelizing the computational model, a domain decomposition technique 
was used to subdivide the problem into multiple regions and assign each subdomain to a separate 
process. Each subdomain region contains an overlapping area of ghost cells, three rows deep, as 
required by the fourth-order MUSCL-TVD scheme. The MPI with nonblocking communication 
was used to exchange data in the overlapping region between neighboring processors. 

To investigate performance of the parallel program, numerical simulations of an idealized case 
are tested with different numbers of processors on both Linux and Mac OS X multicore local 
machines, as well as ERDC DSRC HPC cluster - Garnet. The test case is set up in a numerical 
grid of 1800 × 1800 cells. Figure 1 shows the model speedup versus number of processors. It can 
be seen that performance scales nearly proportional to the number of processors, with some 
delay caused by inefficiencies in parallelization, such as interprocessor communication time. 

 
Figure 1. Variation in the model performance in number of 

processors versus speedup (scaled by 1 processor 
runtime) for a 1800 × 1800 domain. Dotted line 
indicates arithmetic speedup. Actual performance 
is shown in the dotted-circle line. Deviations 
represent increased communication overhead 
among the processors and less computational 
time per process. 

Model setup. The present FUNWAVE was written using Fortran 90 with the c-preprocessor 
(cpp) statements for separation of the source code. Arrays are dynamically allocated at runtime. 
Precision is selected using the selected real-kind Fortran intrinsic function defined in the Makefile, 
though the default precision is single. The present version of FUNWAVE-TVD includes a number 
of options including 

• choice of serial or parallel code 
• Cartesian or spherical coordinate (Tsunami propagation mode) 
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• samples 
• one-way nesting mode 
• wave breaking index and aging (bubble and foam mode). 

Figure 2 represents a standard model setup and flow chart. The model inputs contained in input.txt 
file are given in Table 1. 

Table 1. FUNWAVE-TVD Model Input Contained in input.txt File. 
INPUT CATEGORY OPTIONS (Var. Name) DESCRIPTION 

TEST CASE TITLE TITLE 

• Character string representing 
test case title, only used for 
log file 

HOT START 
HOT_START 
 
FileNumber_HOTSTART 

• (T = hot start, F = cold start) 
 

• Number of a hot start file 
used, e.g., 1,2,3,… 

MULTI-PROCESS 

PX 
 
 
PY 

• number of processors in the 
x- direction 

 
• number of processors in the 

y- direction 

WATER DEPTH 

DEPTH_TYPE 
 
 
FLAT 
 
SLOPE 
 
 
 
 

• DATA from depth file start, F 
= cold start) 

 
• flat bottom, DEPTH FLAT 
 
• plane beach along x-direction. 

It needs three parameters: 
slope,SLP slope starting point, 
Xslp and flat part of depth 

RESULTS FOLDER RESULTS_FOLDER • results directory full path, e.g., 
/home/user/test/ 

GLOBAL DIMENSIONS 
Mglob 
 
Nglob 

• global dimension in the x-dir. 
 

• global dimension in the y-dir. 

TIME 

TOTAL_TIME 
 
PLOT_INTV 
 
 

• simulations time (sec) 
 

• output interval (sec) (NOTE: 
output time is not exact be- 
cause of adaptive dt is used) 

INITIAL CONDITIONS 

INT_UVZ 
 
 
 
ETA_FILE 
 
 
 

• logical   parameter for initial  
condition  T/F - default: 
FALSE 

 
• name of the initial surface 

elevation η file, full system 
path needed 
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INITIAL CONDITIONS (cont.) 

U_FILE 
 
 
 
V_FILE 
 

• name of the initial x-velocity u 
file, full system path needed 
e.g., /home/user/test 

 
• name of the initial y-velocity v 

file, full system path needed - 
e.g., /home/user/test 

WIND EFFECT 

WindForce 
 
 
 
 
 
WIND_FILE 
 
Cdw 
 
 
WindCrestPercent 
 
 

• logical parameter 
representing if the spatially 
uniform field wind effect is 
taken into ac- count (TRUE or 
FALSE) 

 
• file name for wind data 
 
• wind sress coefficient for the 

quadratic formula 
 
• ratio of the forced wave crest 

height to the maximum sur- 
face elevation 

WAVE MAKER TYPE 

WAVEMAKER = INI_REC 
 
 
WAVEMAKER = LEF_SOL 
 
 
WAVEMAKER = INI_SOL 
 
 
 
WAVEMAKER = INI_OTH 
 
 
WAVEMAKER = WK_REG 
 
 
WAVEMAKER = WK_IRR 
 
 
WAVEMAKER = 
WK_TIME_SEREIS 
 
 
 
 
WAVEMAKER = GAUS- SIAN 
 

• initial rectangular hump (need 
Xc, Yc, and WID) 
 
• left boundary solitary wave 

(need AMP, DEP) 
 
• initial solitary wave, WKN B 

solution (need AMP, DEP, 
and XWAVEMAKER) 

 
• other initial distribution speci- 

fied by the user 
 
• Wei and Kirby 1999 internal 

wave maker 
 
• Wei and Kirby 1999 TMA 

spectrum wavemaker  
 
• Fast Fourier Transform time 

series to get each wave 
component and then use Wei 
and Kirby 1999 wavemaker 

 
• initial  Gaussian  wave  hump 

(need AMP, Xc, Yc, WID) 

PERIODIC B.C. PERIODIC 

• logical parameter (T/F), only 
south-north periodic boundary 
conditions were implemented 
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SPONGE LAYER 

SPONGE_ON 
 
Sponge_west_width 
 
 
Sponge_east_width  
 
Sponge_south_width  
 
Sponge_north_width  
 
R_sponge 
 
A_sponge 
 

• logical parameter (T or F) 
 

• width (meters) of west bound- 
ary sponge layer 
 

• width (m) of east boundary 
 

• width (m) of south boundary 
 

• width (m) of north boundary 
 

• decay rate (range 0.85 - 0.95) 
 

• maximum damping magn.  
(∼ 5.0) 

OBSTACLES OBSTACLE FILE 

• name  of  obstacle  file  (1  = 
water/wet point,  0 = 
permanent  dry  point),  
dimensions are Mglob × Nglob 

PHYSICS 

DISPERSION 
 
Gamma1 
 
 
Gamma2 
 
 
Gamma3 
 
 
Beta_ref 
 
 
 
SWE_ETA_DEP 
 

 

• logical parameter (T or F) 
 

• parameter for linear 
dispersive terms 
 

• parameter for nonlinear 
dispersive terms 
 

• parameter for linear shallow 
water equations 
 

• parameter β defined for the 
reference   level   (for   FUN- 
WAVE β = −0.531) 
 

• ratio of height/depth for 
witching from Boussinesq to 
NSWE (default is 0.80) 

BOTTOM FRICTION 

FRICTION_MATRIX 
 
 
 
 
FRICTION_FILE 
 
 
 
 
Cd_fixed 
 
 
 
 

• logical parameter for 
in/homogenous friction field (T 
= inhomogeneous, F = 
homogenous) 

 
• friction  data if FRICTION 

MATRIX is True, file 
dimensions should be Mglob 
× Nglob with the first point as 
the south-west corner. 

 
• fixed bottom friction coefficient 
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NUMERICS 

Time_Scheme 
 
 
 
HIGH_ORDER 
 
 
 
 
CONSTRUCTION 
 
 
CFL 
 
 
FroudeCap 
 
 
MinDepth 
 
 
 
MinDepthFrc 
 
 
SHOW_BREAKING 
 
 
 
 
 
Cbrk1 
 
Cbrk2 
 

• time stepping schemes 
(Runge Kutta or Predictor 
Corrector) 

 
• spatial scheme option 

(FOURTH, THIRD, SECOND 
- not suggested for 
Boussinesq modeling) 

 
• construction method (HLL or 

averaging scheme) 
 
• CFL (Courant-Friedrichs- 

Lewy) condition ~ 0.5 
 
• cap for Froude number in 

velocity calculation (5 ~ 10) 
 
• minimum water depth 

(meters) for  wetting and 
drying scheme 
 

• minimum water depth 
(meters) to limit bottom friction 

 
• logical parameter to calculate 

wave breaking index using 
shock capturing scheme 
based on Kennedy et al. 
(2000) 
 

• parameter C1 in Kennedy et 
al. (2000) 
 

• parameter C2 in Kennedy et 
al. (2000) 
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OUTPUT VARIABLES 

NumberStations 
 
 
 
U 
 
 
V 
 
 
ETA 
 
 
MASK 
 
 
MASK9 
 
 
 
SourceX 
 
 
 
SourceY 
 
 
 
P 
 
 
 
Q 
 
 
 
Fx 
 
 
 
Fy 
 
 
 
Gx 
 
 
 
Gy 
 
 
AGE  
 
 

• number of station outputs. If 
NumberStation > 0, need 
input i, j in STATION_FILE 
 

• logical parameter for x-
velocity output u (T or F) 

 
• logical parameter for y-

velocity output v (T  or F) 
 
• logical parameter for surface 

elevation η output (T or F) 
 
• logical parameter for wetting- 

drying output MASK (T or F) 
 
• logical parameter  for  out- put 

MASK9 – switch from 
Boussinesq to NSWE (T or F) 

 
• logical parameter for output of 

source terms in the x-direction 
(T or F) 

 
• logical parameter for output of 

source terms in the y-direction 
(T or F) 

 
• logical parameter for output of 

momentum flux in the x- 
direction (T or F) 

 
• logical parameter for output of 

momentum flux in the y- 
direciton (T or F) 

 
• logical parameter for output of 

numerical flux F in the x- 
direction (T or F) 

 
• logical parameter for output of 

numerical flux F in the y- 
direction (T or F) 

 
• logical parameter for output of 

numerical flux G in the x- 
direction (T or F) 

 
• logical parameter for output of 

numerical flux G in the y- 
direction (T or F) 

 
• logical parameter for output of 

breaking age (T or F) 
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OUTPUT VARIABLES (... cont.) 

HMAX  
 
 
 
UMAX 
 
 
 
VORMAX 
 
 
 
MFMAX 
 

• logical parameter for output of 
recorded maximum surface 
elevation (T or F) 

 
• logical parameter for output of 

maximum recorded velocity (T 
or F) 

 
• logical parameter for output of 

maximum recorded vorticity (T 
or F) 

 
• logical parameter for output of 

recorded maximum 
momentum flux (T or F) 

NUMERICAL EXPERIMENTS: The FUNWAVE model has been extensively verified and val- 
idated since its early developments. Important processes like wave shoaling and breaking have 
been discussed in the FUNWAVE manual by Kirby et al. (1998). Shi et al. (2013) carried out a 
series of additional verification cases correlated with physical models, remote sensing, and lab- 
oratory experiments. These included breaking waves on the beach based on the work of Hansen 
and Svendsen (1979), random wave shoaling and breaking on a sloped bottom topography from 
Mase and Kirby (1992), wave propagation over a shoal from Berkhoff et al. (1982), solitary wave 
incident on conical island from the works of Briggs et al. (1994), as well as solitary wave runup 
on a shelf with an island from experimental work carried out in a large wave basin at the Oregon 
State University’s O.H. Hinsdale Wave Research Laboratory (Shi et al. 2013). 

For additional analysis, other test cases were performed, which were based on the work of Beji 
and Battjes (1993), investigating a wave propagation over a submerged bar. The bathymetry is 
seen in Figure 3. A setup code script, in open-source Python language, was created to vary the 
bathymetry’s characteristics, such as the height and length of the beach and bar. As in the Beji and 
Battjes’s experiment the total length of the bathymetry is 37.7 m, the water depth is 0.40 m, the 
bar height is 0.30 m and the beach height is 0.75 m. Eight gauges situated at length L = 6, 11, 12, 
13, 14, 15, 16, and 17 m collect time-series of surface elevation. Random linear wave train and 
solitary wave wavemakers were used to generate incident waves. 

The input file variables contained in the input.txt file are listed in Tables 2 and 3, and the key 
parameters are highlighted below: 

• TOTAL TIME = 25 seconds (sec) 
• WAVE TYPE = Random Linear Wave Train or Solitary Wave 
• MEAN WATER DEPTH = 0.40 meters (m) 
• WAVEMAKER LOCATION = 2.0 meters (m) 

Figure 4 shows the simulated time-series during a 24 sec simulation at seven gauge locations. The 
input parameters/variables used to run the random waves example case are listed in Table 2. As 
the waves propagate up the slope of the bar from gauge #2 to #4 (11–13 meters), they increase in 
height (shoaling) and decrease in wavelength. From gauge #5 to #6 (14–15 m), the wave height 
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diminishes. This suggests possible spilling breakers at the top of the bar. Shoaling and breaking 
can also be seen as the waves propagate up the beach slope. Gauges #9 to #12 (27–30 m) recorded 
beach run-up of approximately 2–4 centimeters (cm). 

 
Figure 2. FUNWAVE model flow chart. UBAR (ū), VBAR (v̄), 

ETA (η), represent horizontal x-coordinate velocity, y-
coordinate velocity, and the surface elevation as a 
function of (x, y, t), respectively. 

Table 2. Model input from the simulated input.txt file for the Random Waves run of 
FUNWAVE. 
VARIABLE VALUE UNITS or INFO 
TITLE RANDOM_WAVES  
HOT START F  
PX 4 or use multiple of 4 w.r.t. Mglob 
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PY 1  
DEPTH_TYPE DATA  
DEPTH_FILE depth.txt  
RESULT_FOLDER /Users/YourName/tmp example - set this to a desired 

folder on user’s machine 
Mglob 755 multiple of PX - 1 
Nglob 3  
TOTAL_TIME 25.0 seconds 
PLOT_INT 0.05 example - set this to a desired 

folder on user’s machine 
PLOT_INTV_STATION 0.05 seconds 
DX 0.025 meters 
DY 0.05 meters 
INI_UVZ F  
WAVEMAKER WK_TIME_SERIES  
XWAVEMAKER 2.0 meters 
NumWaveComp 1505  
PeakPeriod 1.0 seconds 
WaveCompFile Wavemk_per_amp_pha.txt  
Xc 756  
Yc 756  
Time_ramp 1.0  
Delta_WK 0.4 width parameter (0.3-0.6) 
DEP_WK 0.4 meters 
Xc_WK 2.0 meters 
Ywidth_WK 10000.0 meters (not used for 1D [2D 

transect] run) 
PERIODIC F  
SPONGE_ON T  
Sponge_west_width 2.0 meters 
Sponge_east_width 0.0 meters 
Sponge_south_width 0.0 meters 
Sponge_north_width 0.0 meters 
R_sponge 0.90  
A_sponge 5.0  
DISPERSION T  
Gamma1 1.0  
Gamma2 1.0  
Gamma3 1.0  
SWE_ETA_DEP 0.80 meters 
Friction_Matrix F  
Time_Scheme Runge_Kutta  
HIGH_ORDER FOURTH  
CONSTRUCTION HLLC  
CFL 0.5  
FroudeCap 10  
MinDepth 0.001 meters 
MinDepthFrc 0.001 meters 
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SHOW_BREAKING F  
Cbrk1 0.1  
Cbrk2 0.075  
NumberStations 8  
STATIONS_FILE Gauges_004.txt  
DEPTH_OUT T  
ETA T  
ALL OTHER OUTPUT VARIABLES F  

 
Figure 3. Bathymetry setup as in Beji and Battjes (1993) – Experimental investigation of wave 

prop- agation over a bar. 

 
Figure 4. Random waves input based on Beji-Battjes 1993 – Experimental investigation of 

wave prop- agation over a bar. 

Similar to Random Wave input, Python scripts have been written to postprocess the results of 
the Solitary Wave simulation. Figure 5 demonstrates the Solitary Wave evolution over the bar. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Length (m) 
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As the solitary wave propagates up the slope of the bar (approximately t = 2 sec to t = 6 sec) 
from gauge #2 to #5 (11–13 m), it increases in amplitude and decreases in wavelength until the 
onset of breaking. After gauge #6 located at the top of the bar (15 m), the wave starts to disperse 
into smaller waves (approximately t = 8 sec to t = 10 sec), thereby transferring energy to other 
(shorter) waver components. This suggests amplitude dispersion and weakly nonlinear wave-wave 
interaction. Figures 6 and 7 show the Solitary Wave evolution at the beach, where shoaling and 
breaking is also observed. Gauges #9 to #12 (27–30 m) recorded beach runup of up to 10 cm. The 
obtained results compare favorably with those obtained by Beji and Battjes (1993). 

Table 3. Model input from the simulated input.txt file for the Solitary Wave run of 
FUNWAVE. 
VARIABLE VALUE UNITS or INFO 
TITLE SOLITARY_WAVES  
HOT START F  
PX 4 or use multiple of 4 w.r.t. Mglob 
PY 1  
DEPTH_TYPE DATA  
DEPTH_FILE depth.txt  
RESULT_FOLDER /Users/YourName/tmp example - set this to a desired 

folder on your machine 
Mglob 755 multiple of PX - 1 
Nglob 3  
TOTAL_TIME 25.0 seconds 
LAGTIME 5.0 seconds 
PLOT_INT 0.05 seconds 
DX 0.05 meters 
DY 0.05 meters 
WAVEMAKER INI SOL  
XWAVEMAKER 2.0 meters 
AMP 0.20 meters 
WID 100.0  
Xc 756  
Yc 756  
DEP 0.4 meters 
PERIODIC F  
SPONGE ON T  
Sponge_west_width 2.0 meters 
Sponge_east_width 0.0 meters 
Sponge_south_width 0.0 meters 
Sponge_north_width 0.0 meters 
R_sponge 0.90  
A_sponge 5.0  
DISPERSION T  
Gamma1 1.0  
Gamma2 1.0  
Gamma3 1.0  
SWE_ETA_DEP 0.80 meters 
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Friction_Matrix F  
Time_Scheme Runge_Kutta  
HIGH_ORDER FOURTH  
CONSTRUCTION HLLC  
CFL 0.5  
FroudeCap 2.0  
MinDepth 0.001 meters 
MinDepthFrc 0.001 meters 
SHOW_BREAKING T  
Cbrk1 0.65  
Cbrk2 0.35  
DEPTH_OUT T  
ETA T  
ALL OTHER OUTPUT VARIABLES F  

CONCLUSIONS: For any numerical model that aspires to be robust in an operational sense, it 
is important that it is well verified and validated. FUNWAVE has been extensively tested against a 
good set of example cases discussed in the previous section. In addition, Shi et al. (2013) have put 
together a well-balanced user manual, which aids in development of new example cases, such as 
the one discussed above based on the work of Beji and Battjes (1993). In the subsequent write ups, 
there will be explored more intricate example cases to push the envelope on the robustness of the 
FUNWAVE model. Based on the work presented in this technical note, the following conclusions 
can be drawn: 

 
Figure 5. Solitary wave input based on Beji and Battjes (1993) – Experimental investigation of 

wave prop- agation over a bar. 
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Figure 6. Solitary wave input based on Beji and Battjes (1993) – Experimental investigation of 

wave prop- agation over a bar. 

 
Figure 7. Solitary wave input based on Beji and Battjes (1993) – Experimental investigation of 

wave prop- agation over a bar. 
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• The FUNWAVE Boussinesq-type, phase-resolving wave model performs qualitatively well 
in relatively shallow water environments, where weak nonlinearity and low dispersion are 
prevalent. In particular, when analyzing random and solitary wave propagation over the bar, it 
replicates the contrasted work rather well (Beji and Battjes 1993) and produces convincing 
qualitative results. 

• In the identified statements of needs, the FUNWAVE model excels in the cases of runup with 
overtopping and can be of direct use for inundation mapping work. However, it is not ideal 
for nearly vertical walls due to removal of the third dimension (canonical variables like the 
surface elevation ζ and velocity potential φ are projected onto and expanded about a fixed 
depth). 

• Its open-source code framework allows for greater user base and development team while 
being in line with the CHL numerical modeling strategy. 

• The model is written in a low-level language (Fortran90), with parallel (MPI) 
implementation, albeit the parallelization has to be optimized to allow for various 
combinations of work-load distribution in the dominate and transverse direction. Meaning, 
currently FUN- WAVE requires that each process contains a full row of the transverse 
direction data and that the discretization (Mglob) be an exact multiple of the processes (PX). 

• Additional items for future considerations are deployability (less platform dependence) and 
friendly user interface to allow for widespread use of the product, without relying on a suite 
of tools working seamlessly on every machine. The authors are exploring the use of IPython 
Notebooks to allow users to connect to remote servers and run their desired example cases 
in serial or in parallel on a remote cluster. 

• Also, it is equally important to develop a nonproprietary suite of setup and postprocessing 
tools. There have been developed initial scripts for the test cases discussed above in an 
opensource Python language and its extension modules. 

• In addition, input and output need to be standardized and allow for more robust data 
encapsulation. It is recommended that FUNWAVE adopts XDMF data format for its output. 

• A use of distributed version control system to aid in code development is a necessity for any 
evolving code base, and there has already been an investment into Git through Github in 
order to adhere to proper software carpentry practices. 

• Finally, it is imperative that model applicability guidance be created and distributed with any 
operational code release. A matrix/table of model use recommendations is needed for the 
USACE applications so that standard model use does not require an expert to set up and run 
the code or that the model is not inadvertently being applied in wrong scenarios that cannot 
be resolved by FUNWAVE. 

ADDITIONAL INFORMATION: This CHETN is a product of the A Boussinesq-type Wave 
Modeling Work Unit of the Flood and Coastal Research Program being conducted at the U.S. 
Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory. 
Questions about this technical note can be addressed to Dr. Matt Malej (Voice: 601-634-3742; 
email: Matt.Malej@usace.army.mil). For information about the Flood and Coastal Research 
Program, please contact the Flood and Coastal Program Manager, Dr. Cary A. Talbot (Voice: 
601- 634-2625; email: Cary.A.Talbot@usace.army.mil). This technical note should be cited as 
follows: 
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