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PREFACE 

This study was sponsored by the Lake Erie Regional Transportation 

Authority (LERTA) , Cleveland , Ohio , as a part of the model feas i bility 

investigation being conducted at the U. S . Army Engineer Waterways 

Experiment Station (WES) . The WES investigation , Task 17 of the LERTA 

investigation , is a portion of the second- phase airport feasibility 

study undertaken by LERTA to evaluate proposed airport sites , one of 

which is in Lake Erie near Cleveland . The numerical model feasibility 

study is associated with the selection and preliminary design of the 

necessary numerical models for studying various phenomena considered 

pertinent to an offshore jetport site . 

This report was prepared by Dr . Donald C. Raney , Dr . Donald L. 

Durham , and Mr . H. Lee Butler of the Wave Dynamics Division (WDD) , 

Hydraulics Laboratory (HL) , WES , under the general supervision of 

Dr . R. W. Whalin , Chief , WDD , and Mr . H. B. Simmons, Chief, HL . 

Dr . Raney is a Professor in the Aerospace and Mechanical Engineering 

Department , University of Alabama , and was assigned to WES under terms 

of the Intergovernmental Personnel Exchange Act during conduct of this 

study and preparation of the report . 

The Directors of WES during the conduct of this investigation and 

the preparation and publication of this report were COL G. H. Hilt , CE , 

and COL J . L. Cannon , CE . Technical Director was Mr . F . R. Brown . 
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CONVERSION FACTORS , METRIC (SI) TO U. S . CUSTOMARY AND 
U. S . CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT 

Units of measurement used in this report can be converted as follows : 

Multiply By To Obtain 

Metric (SI) to U. S . Customary 

metres 

kilometres 

metres per second 

square centimetres 
per second 

Kelvins or Celsius degrees 

3 . 280839 

0 . 6213711 

3 . 280839 

0 . 1550 

9/5 

feet 

miles (U . S. statute) 

feet per second 

square inches per second 

Fahrenheit degrees* 

U. S . Customary to Metric (SI) 

inches 

feet 

miles (U . S . statute) 

square feet 

cubic feet 

p8unds (force) per square 
inch absolute 

feet per second 

miles per hour 
(U . S . statute) 

degrees (angle) 

degrees Fahrenheit 

2 . 54 

0 . 3048 

1 . 609344 

0 . 09290304 

0 . 02831685 

6894 .757 

0 . 3048 

1.609344 

0 . 01745329 

5/9 

centimetres 

metres 

kilometres 

square metres 

cubic metres 

pascals 

metres per second 

kilometres per hour 

radians 

Celsius degrees or kelvins** 

* To obtain Fahrenheit (F) temperature readings from Celsius (C) read­
ings , use the following formula : F = 9/5(C) + 32 . To obtain Fahren­
heit readings from Kelvins (K) , use : F = 9/5(K - 273 . 15) + 32 . 

** To obtain Celsius (C) temperature readings from Fahrenheit (F) read­
ings , use the following formula : C- (5/9)(F - 32) . To obtain Kel­
vin (K) readings, use : K = (5/9)(F - 32) + 273 . 15 . 
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LAKE ERIE INTERNATIONAL JETPORT 

MODEL FEASIBILITY INVESTIGATION 

NUMERICAL MODEL FEASIBILITY AND SEICHE STUDY 

PART I : INTRODUCTION 

Background 

1. The Lake Erie Regional Transportation Authority (LERTA) is 

conducting a feasibility and site selection study for a major hub air­

port in the Cleveland Service Area. One of the sites being evaluated is 

offshore in Lake Erie near Cleveland, Ohio . As a part of the feasi ­

bility analysis of an offshore site, the U. S . Army Engineer Waterways 

Experiment Station (WES) is conducting a model feasibility investigation . 
1 Objectives of the WES study are: 

a. Compilation of available data on wave activity (wind waves, 
seiches, and tides) and mass circulation in Lake Erie with 
particular emphasis on effects of these phenomena · in and 
around Cleveland . 

b. Selection and preliminary design of necessary hydraulic 
models for studying various phenomena considered pertinent 
to the jetport site. 

c. Evaluation and preliminary application of analytical and/or 
numerical models of seiching and mass circulation in a lake 
to the jetport study. 

The five study tasks in the WES investigation are: 

a. Synthesis of available data primarily concerning wave 
climate, mass circulation, general shoreline character­
istics, and general features of erosional problems. 

b . Lake seiche analysis. 

c. Wave diffraction and refraction analyses including quali­
tative effects on shore erosion . 

d. Analytical mass circulation analysis. 

e. Preliminary design of necessary hydraulic models . 

This report is the fourth report in the series published under the 

general title "Lake Erie International Jetport Model Feasibility 
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Investigation." The results of study task band a portion of study 

task d are presented. Under study task d only the initial selection of 

the numerical models to be applied is presented in this report . De­

tailed results from application of these numerical models will be pre­

sented in later reports. 

Problem Definition 

2 . An integral part of the feasibility assessment of a proposed 

offshore jetport site near Cleveland Harbor is the investigation of the 

hydrodynamics of Lake Erie to aid in determining effects of the struc­

ture on such phenomena as seiching, storm surge, and lake circulation. 

To assist in determining these effects, the feasibility of using numer ­

ical modeling techniques was investigated. Numerical models that 

appeared capable of predicting the extent and magnitude of hydrodynamic 

changes produced by the proposed jetport were reviewed. Based upon 

this investigation of existing state- of- the- art numerical models, an 

assessment of the feasibility of applying numerical models to the 

problems of seiching, storm surge, and wind- driven circulation in Lake 

Erie is made. Any models selected for this purpose must provide suffi­

cient resolution to allow the hydrodynamic changes induced by the jet­

port to be observable . This survey and evaluation could not cover all 

existing models or models under development; therefore, various models 

available from the literature and personal knowledge of the authors 

were considered at the time of this survey . 

3. One phenomenon investigated during this study is seiching. 

Seiches are long- period oscillations of the lake surface about the 

mean level . These standing waves are formed after a wind blowing 

across the lake subsides and the setup of the water surface is no longer 

maintained by the wind stress. The free oscillations have periods that 

are dependent upon the horizontal and vertical dimensions of the lake, 

friction, and the number of nodes of the standing wave, that is, lines 

where deviation of the free surface from its undisturbed value is zero. 

Seiching affect~ both water level and mass circulation patterns. It was 
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necessary to investigate the periods, mode configurations, and velocity 

regimes for the free oscillations of Lake Erie both with and without the 

jetport structure . This investigation provides relative information for 

comparison of the effects of such a structure on the mode configurations 

and periods of the free oscillations of Lake Er i e . 

4. Another phenomenon somet i mes associated with sei ching i s storm 

surge . Surge is a l ake level fluctuation caused by the wind stress 

accompanying a moving storm system . A wind blowing over the lake exerts 

a horizontal force on the lake surface and induces a surface current 1n 

the general direction of the wind. These currents are impeded in 

shallow- water areas , thus caus i ng the lake level to rise down wind and 

fall at the windward side . Terms used to descri be these fluctuations 

are " set up" and "set down ." The lake surface fluctuations and associ-­

ated currents produced by moving storm systems are considered both with 

and without the jetport structure . 

5. A third phenomenon of importance 1n this investigation is mass 

circulation in the lake . The main driving force producing mass circu­

lation in Lake Erie is the winds . 1 The wind- generated currents can be 

separated into two categories : quasi- steady and time dependent . In a 

precise sense, there are no steady- state currents in the lake since the 

factors causing the currents are usually varying in time . However , 

there are periods when the wind is varying sufficiently slowly to permi t 

a steady- state analysis to be approximately valid. A steady- state 

numerical model based on an extension of the shallow- lake theory of 

Welander2 should be valid during the fall and winter months since the 

lake is well mixed during this period due to wind- driven turbulence and 

thermal convection . 

6. When these well mi xed conditions are not applicable, as in the 

summer months , a stratified model is required to investigate the mass 

circulation. A stratified model provides for a cooler bottom layer 

(hypolimnion) separated from the top layer (epilimnion) by a thin 

thermocline . Of particular interest is any effect of the jetport 

structure on location of the thermocline and the effect on hypolimnion 

and epilimnion circulation produced by typical summer wind conditions . 
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7. The numerical model feasibility study was restricted to the 

consideration of existing state- of- the- art models . No extensive model 

development was undertaken i n this feasibility study ; however , areas 

where additional numerical development are required were identified . 

The theoretical limitations , verification , and accuracy of the model as 

well as the cost of application of the model were considered . 
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PART II : SEICHE ANALYSIS 

8 . In this part of the report, an analytical and numerical study 

of the effects of a jetport in Lake Erie near Cleveland , Ohio, on 

seiches in the lake is presented . For the first five modes of free 

oscillations in Lake Erie , the mode configuration , period , and velocity 

regimes both with and without a jetport are calculated . These data are 

used as relative information for estimating the effects of a jetport 

structure on seiches in Lake Erie . 

Mathematical Formulation 

9. As previously defined , seiches are vertical oscillations of the 

water surface about the mean lake level . For a body of water with 

variable depth and with a maximum depth which is small compared with the 

wavelength of the oscillation , a boundary value problem for seiches in 

Lake Erie can be formulated from the long-wave equation : 

where 

g [L (h an)+ ax ax 
L (h an\] ay ai) 

n(x , y , t) - surface displacement as a function of time and space* 

t - time 

g - acceleration due to gravity 

h(x,y) - water depth 

x,y , z - Cartesian coordinates 

(1) 

The coordinate system is shown in Figure 1 in which the undisturbed free 

surface is the plane z = 0 , where z is the vertical distance , the 

bottom is z = - h(x , y) , and the surface displacement is z = n(x,y,t) · 

For free oscillation in a basin, the surface displacement can be assumed 

to be harmonic in time . 

* For convenience, symbols and unusual abbreviations are listed and 
defined in the Notation (Appendix A). 
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l 

y 

TJ(• , y, •I 

Figure 1. Coordinate system and surface profile 

Thus, n can be represented as: 

n(x,y,t) - Re[~(x,y) exp (-iwtD ( 2) 

where 

Re - real number 

~ - wave amplitude 

i - imaginary number 

w - 2n/T where T = period of oscillation 

Based on Equations 1 and 2, the governing partial differential equation 

for free harmonic oscillations of a body of water becomes 

where A 1s an eigenvalue expressed as 
2 2 A = w /g . 

tion for this problem is that the normal component 

zero. Since Equation 3 

The boundary condi-

of velocity at the 

(special form of the basin boundary be equal to 

Helmholtz equation) is the equation for a standing wave, this boundary 

condition can be expressed as 

~= 0 an 

10 
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where n = unit normal to boundary . Therefore , Equations 3 and 4 are 

the partial differt·ntial equation and the boundary condition, respec­

tively , for the boundary value problem of the free oscillations of a 

body of water . 3 The x and y components of velocity (u and v, 

respectively) can be obtained by integrating over a suitable time 

interval the equations of x and y momentum with the pressure gradjent 

expressed as the gradient of the surface displacement . These components 

can be shown to have the following form : 

u(x ,y) _ _ g fa~(x , y) J. 
w l ax ' 

( 5) 

Thus , a solution to the boundary value problem for the surface displace­

ment or the gradient of the surface displacement having been obtained , 

the velocity components can be calculated from Equation 5. 

Numerical Scheme 

Finite element method 

10 . The boundary value problem of Equations 3 and 4 can be solved 

analytically for basins of simple geometry and topography . However , for 

basins of complex geometry and variable topography such as Lake Erie , 

solutions to thi s problem must be obtained numerically . 

approach chosen to solve this boundary value problem as 

Erie is a variat i onal approach using the finite element 

The numerical 

applied to Lake 
4 

method ( FEM) . 

The FEM is a discrete approximation procedure applicable whenever a 

variational principle can be formed . 5 This principle is expressed as 

an integral over the region under consideration which is discretized 

into small regions known as finite elements . Within each element the 

dependent variable (surface displacement) lS approximated by a local 

Taylor series expansion . Since there are no constraints imposed on the 

shape of each element , the FEM can conveniently and easily solve bound­

ary value problems involving irregularly shaped boundaries . 

11 . The variational formulation for the boundary value problem of 
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the free oscillations of a body of water consists of the functional 

integral 

X -

A 

1 
2 

h(x ,y) ca~~~ ,yr + h(x ,y) [a~~~ ,y)r 

2 2 - A ~ (x , y) dx dy (6) 

where A is the surface area of Lake Erie . For a stat i onary value of 

x (maximum or minimum) with respect to ~(x , y) , the Euler- Lagrange 

condition of the functional integral is identical with Equation 3 . The 

identical boundary condition for Equation 4 is6 

hlS__=O an (7) 

12 . The solution of ~(x , y) for Equation 6 is found by applying 

the finite element techniques developed for what are known as constant 

strain triangles (CST) . The FEM coding for the program was developed 

using linear element geometries 

scribe CST as outlined by Desai 

regions or elements , Ae where 

and interpolation functions that de-
4 

and Abel . Dividing A into N sub-

e = 1 ... n , the shape of an element 

can be defined by a number of nodes (vertices) that connect the element 

to other elements of the grid . Equation 6 can now be expressed at the 

element level as 

where - e 
h = the mean depth for each element . For a triangular- shaped 

element, ~(x , y) can be assumed to be approximated by a Taylor series 

expansion : 

(9) 
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where a.
1 

, 

By defining 

a.2 , and a.
3 

are unknown coefficients of the expansion . 

the matrix vector {s}e as 

and the coordinates of the three nodes forming the elements as (x. ,y . ) , 
l l 

(xj ,yj) , and (xk , yk) where i, j , and k are indices of these nodes , 

Equation 9 can then be expressed in matrix form for each element as : 

lx.y . 
l l a.l 

{ s} e - lx .y . a.2 J J 
lxkyk a.3 

By expressing the a. matrix in terms of the node coordinates , a matrix 

[N] , which is known as the " interpolation" or " shape" function , can be 

defined as 

where 

Ni- [ (xkyj - xjyk) + (yk - yj)x + (xj - ~)y] 2~ and ~-area 

of the element Ae 

Nj , Nk = similar expressions obtained by the cyclical permutation 

of i , j , and k 

Hence s(x,y) (Equation 9) can be expressed for any point within the 

element as 

s(x , y) - [N]{s}e (10) 

Now, with s uniquely and continously defined throughout the region of 

Ae , the functional x can be minimized or maximized with respect to 
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the nodal values of ~ . Substitution of Equation 10 into Equation 8 

and setting the first variation of X with respect to any nodal point 

m equal to zero gives 

n 

- 0 -

e=l 

(11) 

for m = l ... M, where M is the total number of node points . Equa­

tion 11 represents a system of M linear algebraic equations in terms 

of the M values of ~m of the nodal points , in which the values of 

~m form the solution of Equation 3 . The system of equations formed by 

Equation 11 can be expressed in general matrix format for the entire 

region of interest as 

where is the eigenvalue expressed as 

and [K] - element stiffness matrix 

[M] - lumped mass matrix 
I 

(12) 

Details of the expression of individual terms of [K] and [M] matrices 

can be found in Reference 7. After assemblage of Equation 12, the 

boundary condition (Equation 7) is inserted at the appropriate nodal 

values . 

13 . Equation 12 • a form of an eigenvalue problem. Thus , for lS 

real , square matrices of order M there will be n independent 

real eigenvalues , A , where n = 1 ... M , which satisfy Equation 12 n 
and define the natural frequencies of the system . For each A there n 
will be an eigenvector or "mode" { ~} 

. which the relative magnitudes ln 

of nodal displacements are fixed but not their absolute values 
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(solution not unique) . To solve this eigenvalue problem by direct matrix 

procedures requires the conversion of Equation 12 into the standard form 

or 

where 

[H]{Z . } - J. . {Z . } , 1 - 1 , 2 , ... M 
l l l 

[H] [Z] - [A] [Z] 

[H] - M x M square matrix of coefficients 

[Z] - modal matrix , where columns are eigenvectors 

[A] - diagonal matrix of eigenvalues 

(13) 

{Z.} of {H} 
l 

Procedures for reducing Equation 12 to standard form (Equation 13) are 

presented in detail in References 7 and 8. 

14 . Once {~} is obtained for a particular frequency (eigenvalue) 

of osc illation , the velocity components (Equation 5) may be obtained 

from the slope of ~ , which when expressed at the element level is 

a~ 
ay 

where G is the element slope matrix . G is defined as : 

aN . aN . aNk 
l J 

ax ax ax 
G -· 

aN . aN . aNk 
l J 

ay ay ay 

(14) 

(15) 

Thus , {~}e having been calculated and the shape function [N] known , 

the horizontal velocity at any point (x , y) within an element can be 

determined from Equations 14 and 15 . For this study , the velocity was 
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evaluated at the centroid of each element . 

15 . The numerical calculations requi red for the f i nite element 

procedure were performed on a G- 635 Honeywell computer with plotting 

performed on a Calcomp drum plotter . The inputs requi red by the finite 

element code are as follow : 

a . The total number of elements and nodes . 

b . The arrangement of nodes for each element . 

c . The x , y coordinates of each node . 

d . The depth at each node . 

e . The boundary conditions . 

f . The digitized natural boundary of the lake . 

The basic outputs of the finite element code are as follow : 

a . M natural frequenc i es (or eigenvalues) of the l ake . 

b . Normalized surface displacements at every node and 
centroid of each element for each natural frequency . 

c . Normalized x and y velocity components at the centroid 
of each element for each natural frequency . 

Thus , results for the local region of interest (Figure 2) consist of 

normalized surface elevations at each point labeled with an al pha N 

or alpha E and normalized velocity components at each point labeled 

with an alpha E . 

Discretization of Lake Erie 

16 . The surface area of Lake Erie (Figure 3) was appr oximated by 

238 elements with 264 total nodal points . It should be noted that many 

of the elements are quadrilateral in shape, and these elements were 

* represented in the finite element code by four CST ' s . A local region 

of interest near Cleveland , Ohio, is identified by a heavy l i ned bound­

ary in Fig-ure 3 . This area is expanded as Figure 2 for element defi ­

nition of shape with nodes and centroids for elements of part i cul ar 

interest being assigned numbers for future identification in interpret­

ing the results . The choice of the element shapes in the v icinity of 

* J . F. Abel , Memorandum for Record , U. S . Army Engi neer Waterways 
Experiment Station , CE , Vicksburg , Miss . 
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the proposed jetport site was dictated by the configurations of the off­

shore jetport island , its shoreward extension , and shore connection. 

Because their location and configuration had not been selected at the 

time of this study , tentative configurations for this study were chosen 

* based on available prefeasibility information. Figure 4 is a schematic 

of these tentative configurations . The finite element representation of 

these assumed configurations and locations of the jetport island are 

shown in Figure 5a , the shoreward extension in Figure 5b , and two shore 

connections in Figures 5c and d . It is emphasized that these four 

configurations and locations are tentative for this study and are sub­

ject to change as LERTA ' s feasibility study continues . 
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Figure 4. Schematic of tentative configurations 

17 . The depth of the lake is represented by discrete values at 

each nodal point . Figure 6 depicts the representative depths at the 

nodal points . These depths were taken from the U. S . Lake Survey 

* "The Lake Erie International Jetport Project ," Pre- Feasibility Tech­
nical Report, March 1971, Greater Cleveland Growth Association . 
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Chart L. S . 3 which is referenced to a low water datum of 570 . 5 ft . * 

18 . 
. 

The volume , surface area , and mean depth for the di scretized 

representation of Lake Erie are represented in the following tabulation . 

Parameter Observed ComEuted 

Volume , cu ft 16 . 8 X 1012 16 . 43 X 1012 

Surface area , sq ft 27 . 6 X 1010 27 . 07 X 1010 

Mean dept h , ft 60 . 7 60 . 69 

For comparison , the factual (observed) values of these parameters for 

Lake Erie are also listed . The computed values , in particular the mean 

depth , agree very well with the observed values . 

Verification 

19 . To verify the application of the numerical procedure outlined 

in the previous sections to the investigation of the effects of a jet­

port on the natural osc i llations of Lake Erie , the natural periods and 

corresponding normal modes of variation in surface elevations f or the 

first five modes of oscillations were calculated for Lake Erie without 

the jetport structure . The calculated natural periods of the free 

oscillations are shown . the following tabulation . 1n 

Computed Observed 
Mode Periods , hr Periods , hr* 

1 14 . 43 14 . 38 

2 9 . 22 9 . 14 

3 6 . 01 5 . 93 

4 4 . 31 4 . 15 

5 3 . 87 - -

* From Reference 9 . 

* A table of factors for converting metric (SI) units of measurement 
to U. S . customary units and U. S customary units to metric (SI) 
units is given on page 4 . 
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Also tabulated are the observed periods for the free oscillations of Lake 

Erie as determined from spectra of records of lake levels by Platzman and 

Rao . 9 The discretized depths in thi s study, discus sed in paragraph 17 , 

were corrected to correspond to actual depths of the lake at time of 

observed oscillations by considering differences in the reference datum 

of Chart 1 . 8 . 3 and mean lake level at times of observation . There is 

relatively good agreement between the observed periods and the periods 

computed by the finite element procedure . In addit ion to the comparison 

of periods , the computed amplitudes of the relative surface variat i on 

for the fundamental mode of seiching for 13 locations around the lake 
10 

were compared with the observed values from Platzman and Rao . The 

relative amplitudes around the lake from this seiche study are normal­

ized amplitudes such that actual seiche amplitudes around the lake can 

be determined , if the seiche amplitude at one location is known , by 

multiplying the relative amplitudes by the known seiche amplitude . For 

example , actual seiche amplitudes around the lake for a 3- ft amplitude 

at Toledo can be estimated by multiplying this 3- ft amplitude by the 

relative amplitudes a r ound the lake . For this case , the actual seiche 

amplitude of the first mode at Cleveland would be 3.0 times 0 . 27 or 

0 . 8 ft . Table 1 shows this comparison , which exhibi ts good agreement 

around the lake . The maximum deviation between computed and observed 

relative amplitudes occurs near Port Clinton . This deviation may 

reflect the reliability of the observations at Port Clinton or , more 

probable , is associated with the numerical representation of the islands, 

topography , and shoreline in the eastern basin of the lake . 

Model Results 

20 . For the full lake and nearshore region without a jetport, mode 

configurations of relative amplitudes and depth- averaged horizontal 

velocities are numerically computed for the first five modes (para­

graph 19) or eigenvalues . Results of these computations for the full 

lake are presented in Figures 7- 16 . For each spatial location in the 

nearshore region, the depth- averaged horizontal velocity is defined as 

22 



1\) 

w 

- N-

HURON 

PORT STANLEY 

\ 
0 

FAIRPORT 

CLEVELAND 

\ 
0 

\ 
0 . 

PORT COLBORNE 

PORT DOVER 

' 0 
.($' 

Figure 7. Mode shape of the first eigenvalue for the full lake without 
jetport (normalized to maximum elevation 1) 





- N-

\ 
0 

' C> . 

Figure 9. Mode shape of the second eigenvalue for the full lake 
without jetport (normalized to maximum elevation 1) 

0 





- N-

Figure 11 . Mode shape of the third eigenvalue for the full lake 
without jetport (normalized to maximum elevation 1) 





f\) 
\0 

- N-

'o . .3 

' 0 
-~ 
~ 

\ 
0 

0 ~ 
• 

Figure 13 . Mode shape of the fourth eigenvalue for the full lake 
without jetport (normalized to maximum elevation 1) 





- N-

0 .,.. 
0 

·~ 

' 0 ·-

0./ 

' 0 . 

Figure 15 . Mode shape of the fifth eigenvalue for the full lake 
without jetport (normalized to maximum elevation l) 





a velocity with constant direction and magnitude over the entire water 

column and whose constant direction and magnitude represent the averaged 

velocity over the entire water column . In addition, the magnitude of 

the depth-averaged horizontal velocity is a normalized variable like 

the relative seiche amplitude (refer to paragraph 19) . The velocity 

magnitudes , which are computed in this study, are normalized to a maxi­

mum seiche amplitude of 1 . 0 ft . For the first mode (fundamental) , the 

magnitude of the normalized velocity vectors in the Cleveland area must 

be multiplied by the actual seiche amplitude at Toledo to obtain the 

actual velocity magnitude . However , for comparison the relative magni­

tudes can be used without scaling . The nearshore results without a jet­

port for the first five modes of oscillation are presented in Figure 17 . 

For four generalized configurations and locations (Figure 5) of the jet­

port , nearshore results of the relative amplitudes and depth- averaged 

horizontal velocities for the first five modes are presented in 

Figures 18- 22 . The calculated periods of the first five modes of free 

oscillations for different jetport configurations are presented in 

Table 2 . 

Conclusions of the Seiche Analysis 

21 . Based upon results of the numerical analysis of the effects of 

a jetport offshore near Cleveland, Ohio, on the free oscillations of 

Lake Erie , several conclusions are apparent . These conclusions hold 

for all five modes of free oscillation unless stated otherwise and are 

as follow : 

a . Periods of the first five modes are relatively unchanged 
by any jetport configuration . There exist slight in­
creases (2 . 5- 5. 0 min . ) in the periods of the first three 
modes with the first mode exhibiting the largest increase 
of 4- 5 min. 

b . Changes in relative seiche amplitudes and horizontal 
velocity are confined within a distance of 4-6 miles from 
the four jetport configurations . 
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c . Changes in relative seiche amplitude due to any of the 
four jetport configurations are equal to or less than 
0.1 ft for a 1 . 0- ft maximum seiche amplitude or no greater 
than 10 percent change in seiche amplitudes . 

d . Changes in relative seiche amplitude and horizontal 
gradients of this amplitude are largest for jetport con­
figuration C and smallest for jetport configuration A. 

e . The largest horizontal veiocities are generated by the 
fundamental or first mode of oscillation , which is the 
most important and dominant mode . For this mode , jetport 
configuration A produces a relative velocity of 0 . 5 fps 
(relative to 1 . 0- ft maximum seiche amplitude) between 
shore and jetport structure, and configuration B produces 
a relative velocity of 1 . 0 fps between shore and jetport 
structure . The relative velocity in this area without a 
jetport is 0 . 25 fps . For the first four modes of oscil­
lation , both configurations A and B increase the hori ­
zontal velocity between the jetport structure and the 
shoreline with configuration B producing the largest . lncreases . 

f . Recurrence intervals1 for Buffalo- minus- Toledo setup 
(seiche wave height) have been computed for the 20- year 
period 1940- 1959 . Using these results , the expected 
frequency of occurrence and absolute values of seiche 
velocity for the fundamental mode were estimated for 
existing conditions and configurations A and B (between 
the jetport structure and the shoreline) . These estimates 
are presented in the following tabulation . 

Recurrence Seiche Velocit~ 2 fEs 
Interval , ~ AmEli tude , ft Existing Plan A Plan B 

0.25 3 0 . 75 1 . 5 3 . 0 

0 . 50 3 . 5 0 . 875 1 . 75 3 . 5 

1 . 0 4 1 . 0 2 . 0 4 . 0 

2 5 1 . 25 2 . 5 5 . 0 

5 6 1 . 5 3 . 0 6 . 0 

20 7 1 . 75 3 . 5 7 . 0 

£ · Jetport configurations C and D block the alongshore flow 
near the jetport configurations with configuration C 
producing the largest decrease in these horizontal 
velocities and creating areas near the shoreline with 
minimum or no circulation . 
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h . Of the four generalized jetport configurations used in this 
study, jetport configuration A has the least effect on 
seiche periods, relative seiche amplitudes , and relative 
horizontal velocities for the first five modes of free 
oscillation in Lake Erie. 

22 . This numerical study was conducted to evaluate quantitatively 

the effects of a jetport in Lake Erie near Cleveland , Ohio, on seiches 

(free oscillations) in the lake . The four jetport configurations used 

in this study are tentative and general in configuration and location ; 

however , these configurations should provide results from which the 

effects of a specific configuration can be extrapolated . The conclu­

sions of this study indicate that the nearshore effects of all jetport 

configurations are minimal for seiche periods and mode configurations . 

However , the horizontal velocity regime is most affected by the jetport 

configurations with the island configuration (configuration A) having 

the least effect on the velocity regime . These results for the velocity 

regime indicate that additional studies are needed to determine the 

nearshore effects of a jetport structure on the velocity regime for 

steady- state and time- dependent wind- driven circulation in Lake Erie . 
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PART III : TWO- DIMENSIONAL DEPTH- AVERAGED 
HYDRODYNAMIC MODELS 

General Formulation 

23 . The generalized three- dimensional differential equations 

governing the motion of an infinitesimal fluid element are readily 

derived from basic considerations of mass and momentum . If the coordi­

nate system shown in Figure 23 is used , the three- dimensional governing 

equations for an infinitesimal fluid element can be expressed in the 

form of momentum and continuity equations :11 

Momentum equations 

au + au + au + au fv 
at u ax v ay w az -

av + u av + v av + w av + fu 
at ax ay az 

aw + aw + aw + W dW 
at U ax V az az 

Continuity equation 

1 
p 

1 
p 

1 
p 

ap + 
az 

ap + 
ax 

ap + 
ay 

2 K(a u + 

ax
2 

2 K( a v + 

ax
2 

* + ~x ( pu) + ~y ( pv) + ~ z ( pw) - 0 

where 

w - velocity in z direction 

f - Coriolis parameter 

p - density 

p - pressure 

K - coefficient of eddy viscosity or diffusivity 

(16) 

(17) 

(18) 

(19) 

In the momentum equations the first term is the local acceleration 

term , the next three terms are the convect i ve or advective acceleration 
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terms , the next term is the Coriolis force term , followed by the 

pressure gradient term and the viscous stress or diffusion terms . The 

continuity equation is simply a statement of the conservation of mass . 

24 . Various simplifying conditions are applied to the three­

dimensional equations to yield a two- dimensional system of equations 

that can be more readily treated by numerical techniques . If applica­

tion is made only to problems consistent with restrictions imposed by 

the various simplifying assumptions , then valuable information can be 

derived from two- dimensional considerations . 

25 . A general procedure for reducing the three- dimensional 

equations to a two- dimensional , depth- averaged formulation will be 

presented . Most two- dimensional , depth- averaged models are very similar 

with the differences due to the specific formulation used for the fric ­

tion and diffusion terms . 

26 . It is normal to simpli fy the continuity equation immediately 

when working with "basically incompressible fluids ." The Boussinesq 

approximation is made , which assumes that density variations are small 

and can be neglected except in the gravity term of the momentum equation . 

Thus , even if the fluid is not considered as strictly incompressible , 

the variation in density is considered as small and the incompressible 

form of the continuity equation is used . Two- dimensional formulations 

almost always consider the flow to be well mixed and the density to be 

constant . Equation 19 reduces to : 

au + av + aw = 0 
ax ay az 

(20) 

27 . The vertical component of the local acceleration , advective 

acceleration , and velocity is assumed to have a negligible effect on 

the momentum equations . This reduces the momentum equation to: 

au + u au + au - fv 
at ax v ay 

1 
p 
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dV dV + dV + 
at + u ax v ay fu -

1 
p 

2 
lE_ + K( a v + 
ay ax2 

! lE. = g 
p dZ 

(22) 

(23) 

Equation 23 is now simply a statement of the hydrostatic variation of 

pressure if density is a constant . The hydrostatic pressure assumption 

is reasonable for shallow-water waves , i . e . long- period waves , where the 

pressure fluctuations due to a wave are transmitted virtually unattenu­

ated from the surface to the bottom . For intermediate- or short- period 

waves the hydr ostatic assumption may not be a good repr esentation of 

the pressure . 

28 . Equations 20- 23 are now 1n the appropriate forms for applying 

the depth averaging process . Integr ating the continuity equation , 

Equation 20 , in the z d i rection over the water depth gives 

T) T) T) 

J au dz 
dX +J dV d - z 

ay +J 
h 

whi ch • turn y i elds 1n 

T) 

J 
h 

At the water surface , 

au dz 
dX 

h h 

T) 

J dV 
+ ay dz 

h 

z = n (x ,y , t) 

must be a str eamline . In other words , 

aw dz -
dZ 

T) 

+ w I - 0 

h 

d~ [z - n (x ,y , t)] - 0 

wh i ch becomes 
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or 

dz 
dt ( an + an + an) _ 0 at u ax v ay 

_ ( an + an + an) = 0 w at u ax v ay 

Therefore , the free- surface boundary condition is 

an + an an t 
w - at u ax + v ay a z = n 

If the so- called rigid lid assumption is made , then the boundary 

condition at the surface reduces to 

(25) 

w - 0 (26) 

The boundary condition at the bottom , z = - h , is similar to that at 

the surface ; however , since 

ah - 0 
at 

the boundary condition reduces to 

w-- (u ah + 
ax 

a h) v 'dy at z = - h 

Substituting Equations 25 and 27 into 24 yields 

n 

- h 

au 
- dz + ax 

n 

- h 

av d - z ay 
au -+ ax v an) + ( u a h + v a h ) = 0 ay ~ ax ay -h z=n z-

(27) 

(28) 

Using differentiation of an integral involving a parameter in the limits 

of the integral , 
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n(x,y) n 
a u dz an + ah au dz ax = u u - + ax ax ax 

- h(x ,y) z=n z=- h 
- h 

or 

n u 
au dz a u dz ah ah - - u - u ax ax ax ax 

- h - h z=n z=- h 

In a similar manner 

n n 
av dz a v dz an ah - - v - u -ay ay ay ay 

- h - h z=n z=-h 

Substituting Equations 29 and 30 into 28 and cancelling terms gives 

a 
ax 

n 

- h 

a 
u dz + ay 

n 

- h 

v dz an 
at 

The u and v components of velocity are assumed to be of the form 

where 

u(x ,y,z,t) - U(x,y,t)[l + u ' (z)] 

v(x ,y,z,t)- V(x ,y,t)[l + v ' (z)] 

n J u' ( z) dz - 0 

- h 

n J v ' (z) dz - 0 

- h 
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and 

U - x- component of depth- averaged horizontal velocity 

u ' - depth- dependent perturbation in horizontal velocity in x 

direction 

V - y- component of depth- averaged, horizontal velocity 

v ' - depth- dependent perturbation in horizontal velocity in y 

direction 

If U(x,y,t) and V(x,y,t) are depth- averaged velocities given by 

n 

u - 1 u dz 
h + n 

- h 

and 

n 
1 

V.= h + n v dz 

- h 

then the continuity equation reduces to 

a [(h + n)V] + ~ ax ay f(h + n )V] an 
at 

(32) 

(33) 

(34) 

29 . From the simpl~fied momentum equation in the z direction, 

Equation 23, 

Integrating from the water surface to an arbitrary depth . z glves 

n n 

dp - f 
z 

pg dz 

z 

and 



or 

Also , it follows that 

and 

pg(n - z) + PI 
n 

~ = pg .£21 + ~, 
ax ax ax n 

~ = an+ ~I 
ay pg ay ay n 

( 35) 

The terms ap/axl and ap/ayl represent the variation of atmospheric n n 
pressure with horizontal distance at the free surface . These terms are 

normally neglected , and the pressure gradient is given by 

and 

an an 
.::....r::... = p g 
ax ax 

.9£ = an 
ay pg ay 

(36) 

(37) 

30 . The momentum equation in the x direction can now be inte­

grated over the depth after substituting from Equation 36 for the 

pressure gradient . 

- h 

au d + 
at z 

- h 

u au dz + 
ax 

- h 

v au dz 
ay 

- h 

+ K 

- h 
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fv dz 

- h 

a
2

u + a
2
u 

2 ay2 ax 
+ 

g an dz 
ax 

a
2

u dz 
az 2 

(38) 



Considering the individual terms ln this equation and performing the 

indicated integration gives 

n 

- h 

n 

- h 

n 

- h 

n 

- h 

au 
u- dz ­ax 

au 
v - dz ­ay 

n 

~t { U [ 1 + u ' ( z) ] } dz - (h + n) au at 

n 

- h 

n 

- h 

U[l + u ' (z)] au dz - u au (h + n) 
ax ax 

V(l + u ' (z)] au dz ay 

n 

- v au (h + n) ay 

fv dz - f V[l + v ' (z)] dz- fV (h + n) 

- h - h 

n n 

K 
a2

u dz -
2 ax 

[U(l + u ' (z)] dz 

- h - h 

n 

(h + n) 

- h 
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n 

- h 

n 

- h 

where T is stress in the x direction . 
X 

Therefore , the basic momen-

tum equation in the x direction becomes 

where 

au + u au + v au = _ g an + fV + 
at ax ay ax 

T T wx Bx 
p(h + n) - p(h + n) 

+ K 

T - the x- component of wind stress at the water surface 
wx 

TBx - the x- component of bottom friction 

(39) 

31 . In a similar manner the momentum equation in the y direc ­

tion becomes 

where 

av + u av + v av = an 
at ax ay - g ay fU + 

T TB wy y 
p(h + n) - p(h + n) 

+ K 

T - the y - component of wind stress at the water surface 
wy 
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T = the y - component of bottom friction . 
By 

32 . Equations 34 , 39 , and 40 form the basis for most two-

dimensional , depth- averaged models . These equations can be formulated 

in terms of finite difference equations for solution . It should be 

noted that while the equations are formulated in terms of two­

dimensional horizontal velocity components , a pseudo- three- dimensional 

effect is present since actual depths are input to the model . 

Discussion of Specific Models 

33 . The two- dimensional depth- averaged formulation was shown to 

reduce to the system of equations represented by Equations 34 , 39 , and 

40 . These differential equations must be discretized and formulated i n 

terms of finite difference equations for solution by numerical tech­

niques . 12 The finite difference repr esentation of the differential 

equations is not unique ; it can be formulated in terms of backward 

differences , forward differences , central differences , or some combi­

nation of these difference schemes . The problem also can be formul ated 

such that it is expl icit, implicit , or implicit- expli c i t in time . Each 

method of formulation does offer advantages and disadvantages , although 

some formulation schemes have been shown to be completely unsatisfactory . 

In general , the explicit techniques are simpler to formulate and require 

less computer time for a given size time step . The explicit schemes , 

however , have stabil ity criteria that normally require a smaller step 

size than the comparable calculation using an implicit scheme . 

34 . Basically the two- dimensional depth- averaged models are used 

for two different types of problems . In the first case the determi­

nation of circulation patterns is the primary objective with wind or 

tides being the predominant forcing f unction . The second type of 

application is used mainly to calculate the displacement of the free 

surface during storm surge . Experience has shown that the importance 

of the various terms in the governing equations and the boundary condi­

tions vary with the application . For example , the nonlinear advective 

terms and horizontal diffusion terms are normally neglected in the 
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storm surge models while they may be very important in circulation 

models , particularly near the shore . 

35 . Several specific two- dimensional depth- averaged models will 

now be discussed . The departure of each model from the basic formu­

lation of the problem will be outlined . Applications and verification 

of the model will be discussed along with the general conclusions of 

the authors . The models discussed are representative of the many two­

dimensional models available . 

Model ofT . J . Simons 

36 . The two- dimensional numerical model by T . J . Simons13 is a 

straightforward application of the two- dimensional , depth- averaged 

equations . The model is formulated, however , in terms of volumetric 

flow rate per unit width (foot) rather than average velocities . 

n 

(P , Q) = J (u , v) dz 

- h 

(41) 

where P and Q are volumetric flows in x and y directions, 

respectively . The depth- averaged velocities can be obtained by averag­

ing the volume transport over depth . 

(U , V) -
(P ,Q) 
h + n 

(42) 

37 . The equations used in the model to calculate volume transport 

are as follows : 

T 
h an + fQ + wx 

g ax p 

h an 
g ay 

an _ - - -at 

fP + 

ap -ax 
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T 
wy 

p 

TBx 
--=-= + A 

(43) 
p 

(44) 

(45) 



These equations are completely consistent with Equations 34 , 39 , and 40 . 

38 . Simons expresses the bottom stress in terms of a bottom 

friction coefficient and the components of volume transport . 

- BP 

The bottom stress coefficient is considered to be represented by the 

following simple relationships : 

a . B - a/h where a ~ 0 . 01 em/sec 

b . B - b/h2 where b z 100 cm2 /sec 

c . B- ciP ,QI/h
2 

where c~0 . 0025 

(46) 

(47) 

39 . The external forces during circulation are the surface pres­

sure and the wind stress . In these calculations the surface pressure 

is set equal to zero . The surface wind stress is related to the wind 

velocity ; however , this relationship is not considered in this model . 

Instead , more or less typical wind stress fields are specified . The 

wind stress fields are taken to simulate the general behavior of the 

wind following the passage of an atmospheric front . The winds tend to 

increase sharply for a relatively short period of time and thereafter 

vary more slowly . At the same time the wind field will move across the 

lake in the general direction of the wind stress itself . Idealizing 

this situation , a semi- infinite stress band moving with a constant 

translation speed V and having a linear increase of intensity of 
s 

wind stress over a period of time T and a constant intensity after 
s 

time T is used in the model . 
s 

40 . The system of equations is solved using central differences 

and an implicit scheme . A space- staggered lattice is used on which 

velocity , water level displacement , and water depth are described at 

different locations within a grid cell . 



41 . The primary application of the model is to predict circulation 

patterns in lakes . The model has been applied to Lake Ontario both with 

and without the nonlinear advective terms in the equation. A 5- km 
• 

rectangular grid was used, and circulation patterns are shown at various 

times during the passage of a hypothetical wind field. 

42 . Based upon numerical experimentation with the various param­

eters in the model, the following conclusions as to the effects of these 

parameters are presented : 

a . The actual effect of the nonlinear terms does not seem to 
justify the tremendous increase in computational effort. 

b . The nonlinear effects are completely obscured by the 
effects of bottom topography, bottom friction, and 
horizontal diffusion . 

c . Increased efforts should be directed at increasing hori­
zontal resolution and improving numerical treatment of the 
boundaries . 

d . The actual formulation used for the bottom stress coef­
ficient does not have a great effect on the circulation 
pattern as long as a reasonable formulation is used. 

e . The smoothing effect of the horizontal diffusion term 
is considerable. 

f . The vertically integrated or averaged velocities produced 
by the model are not indicative of the actual velocities 
found in a lake . In general , the volume transport model 
tends to underestimate the magnitude of the surface 
velocities , the time variation of the flow, and the 
Coriolis force effect . 

~· A three- dimensional or layered model is needed for 
velocity distributions in a lake . 

Model of George W. Platzman 

43 . 14 . t The primary application of the model by Platzman 1s o 

predict surface displacement during storm surge on lakes. The formu­

lation of the problem is in term of volume transport rather than average 

velocity. The basic equations are essentially identical with those by 

Simons, Equations 43-45, except that the nonlinear advective terms and 

the horizontal diffusion terms are neglected . 

44 . While the equations used by Platzman are similar to those used 

by Simons, the wind stress and bottom friction terms are handled 
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differently . Coefficients that are functions of the Ekman number are 

introduced in such a manner that the solution for steady- state transport 

reduces to the analytical solution obtained by Ekman15 for surface slope 

transport and wind transport . Basically , the bottom friction is rel ated 

to the transport , and wind stress is related to the square of the wind 

speed; however , the various parameters are expressed as a function of 

the Ekman number . 

45 . The system of equations is solved using central differences 

in time and space and a space- staggered lattice upon which velocities , 

water level displacements, and water depths are described at different 

locations within a grid cell . The model provides for a time and spatial 

variation of wind stress by input of actual wind data . 

46 . The model is applied to nine actual extreme storm surge con­

ditions on Lake Erie with wind stress information based upon hourly 

surface wind observations at six weather stations located on the 

periphery of the lake . The wind field on the lake varies with time and 

position and is based upon a weighted average of the wind data from the 

six weather stations . Computed lake- level configurations have been 

compared with observed data for the n i ne extreme storm surge condit i ons 

considered . 

47 . The following conclusions on the applicability of the model 

for storm surge analysis are presented : 

a . The computed wind setup values agree well with observed 
values . 

b . Perhaps the most conspicuous defect of the computations 
is failure to predict the free oscillations of the lake 
after the passing of the storm . 

c . Improvements in the model would probably result from more 
careful consideration of the effect of differences in 
anemometer exposure for the various wind stations used in 
the analysis . 

Model of J . J . Leendertse 

48 . The primary application of the model by Leendertse16 is for 

circulation patterns for tidal flows in bays and estuaries . The basic 

governing equations are identical with Equations 34 , 39, and 40 . The 

horizontal diffusion terms are neglected; while wind stress is included 
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in the formulation , tidal elevations are the primary forcing function . 

The bottom stress term is considered proportional to the squared veloci­

ty and is formulated in terms of the Chezy coefficient , c , as follows: 

TBx - pgU 

- pgV 
2 

u + 2 
v 

(48) 

(49) 

The wind stress is formulated in the normal manner in terms of the 

square of the wind speed . 

49 . An explicit- implicit scheme is used to solve the system of 

equations using a space- staggered grid arrangement where velocities , 

surface displacement , and depths are defined at different locations in 

the grid system . This model has been applied to the North Sea , Jamaica 

Bay , Tokyo Bay and other large bodies of water . The general conclusions 

regarding the model a r e as follows : 

a . For applicat i ons to bays , harbors , inl ets , etc ., where 
tidal elevations are the predomi nant forcing function 
and where a significant volume transport occurs , the 
depth- averaged circulation patterns appear to give reason­
able results . 

b . The model can also be used to model water waves generated 
by nuclear explosions , tsunami waves , and other long­
peTiod wave motion . 

50 . This model has no direct applicability to the problem of wind-

·driven circulation or storm surge on Lake Erie . The implicit- explicit 

numerical scheme used to solve the system of difference equations was 

of primary interest in this model . This basic numerical procedure has 

several desirable features that might prove beneficial if the procedure 

were applied to a model of Lake Erie . This particular solution scheme 

was investigated since it had not been used previously in a lake model . 

Model of Frank D. Masch 

51 . M hl7 . The model by asc 1s primarily intended for application to 

estuaries where significant t idal flat s exist . The basic equations are 
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formulated in terms of volume transport and are essentially identical 

to Equations 43- 45 . The bottom friction term is expressed in terms of 

the Manning friction factor , n 

TBx 
-- -

p 

• 
• 

(50) 

(51) 

Horizontal diffusion is neglected . This model is basically an extension 

of the Reid- Bodine mode1 .
18 

52 . The model contains provisions for flooding of tidal flats , 

such obstructions to flow as weirs or breakwaters , and other phenomena 

somewhat peculiar to tidal flows in estuaries . Several computational 

boundaries can be represented in the model indicating ocean boundaries , 

river inflows , or artificial boundaries established in the estuary for 

computational convenience . This model has been applied to several 

locations including Matagorda Bay and Galveston Bay, Texas , and 

Masonboro Inlet , North Carolina . As a result of these applications , it 

was concluded that : 

a . Surface displacements and volume transport due to tidal 
forces can be predicted reasonably well with the model. 

b . Flooding of tidal flats, underwater obstructions , break­
waters , and similar obstruction to flow can be included 
in the model if step sizes are small enough for the 
necessary spatial resolution . 

53 . This model has no direct application to the problem of wind­

driven circulat i on or storm surge on Lake Erie . This model was investi­

gated because of the detailed treatment of numerical procedures for 

treating breakwaters , weirs , underwater obstructions , flows from streams 

into the region being considered, flooding regions , and other hydro­

dynamic features . These phenomena have not been treated in detail in 

previous lake models, and their use may be necessary in modeling a 
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jetport in Lake Erie and its effect on circulation , particularly in 

Cleveland Harbor . 

Model of David F . Paskausky 

54 . The model by Paskausky19 has its origin in the three­

dimensional equations of hydrodynamics; however, the development of the 

model differs significantly from the models discussed previously . The 

primary application of the model is for storm surge; however, the 

volume transport per unit width (foot) is the model output . A rigid 

lid assumption is made at the water surface . 

55 . The development of this model initially follows the basic 

formulation of the two- dimensional depth- averaged model. Consider 

Equations 20- 23, which are the simplified three- dimensional differential 

equations prior to vertical integration over the water depth . Differ­

entiation of Equation 21 by - a/ay and Equation 22 by a/ax introduction 

of the vorticity component s and shear stress components T and T 
X y 

av 
ax 

au 
ay ' T 

X 

_ K au 
az ' 

T y 
_ K av 

az 

and addition of the two equations yield the vorticity equation: 

-A B 

~ + (f + 
at 

" ) (au + av) + ( u _i + s ax ay ax 

+ av aw 
az ax 

-D 

v a~\ + 
ay } 

-E 

-
F 

--In Equation 52, A • the topographic term, B is the 1S 

- planetary vorticity term, D advection term, c is the 

advection term, E • the lateral friction term, and 1S 

c 
,., ' 

(52) 

horizontal 

is the vertical 
-
F is the net 

torque per unit volume exerted on the top and bottom of a water parcel . 
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The vertical advection term vanishes for a well mixed , constant- density 

application . 

56 . By combining terms and ignoring the vertical advection term , 

Equation 52 can be written in the form : 

a~ (curl T) 

where 
~ ~ 

_,_ 

~h 
• (a/ax ) + j (a/ay) - l 

~ ~ ~ 

vh iu + • - JV 

v2 2 2 (a2/ay2) - (a /ax ) + h 

curl T- (aT /ax) - (aT /ay) 
y X 

(53) 

in which i is unit vector in the x direction and j is unit vector 

in the y direction . Equation 53 is now integr ated over the depth , D , 

to obtain a t wo- dimens i onal depth- averaged model . 

D D 

R at dz + 

0 0 

D 

0 0 

D 

a -.::- (curl T) dz 
dZ 

Considering the individual terms in the equation for the well mixed , 

constant- density condition and assuming the bottom friction stress 

equal to the mass flux multiplied by a bottom friction coefficient a 
. g1ves 

D 

0 

A A 

~ ~ 
at dz - at 

6o 

D 

0 

dz - D ~ 
at 

( 54 ) 



D 

0 

D 

0 

~ 

'iJ • 
h 

~ 

= 'iJ 
h 

D 

D 

0 

D 

0 

17~ ~ dz = [ 1)/ ~ J D 

0 

a (curl T) dz- curl T az 
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- curl T D - curl T 
0 

- curl T 
0 

D 

a - a -
= ax (vDcr) ay (uDcr) - curl T 0 

- Daz;; - curl T 
0 



Where is the horizontal diffusion coefficient , Equation 54 reduced to 

~~ + ~h • ( f + ~) vh 
1 
D curl 

-ar,; (55) 

An Ekman boundary layer approximation for the bottom friction coeffi­

cient is used at the sea bed : 

where K is the vertical diffusion coefficient . 
v 

57 . Integrating the continuity equation (Equation 45) across the 

depth yields 
D 

0 

(
au -+ ax 

av 
-+ ay ~) dz-az - 0 

Using the "rigid lid" boundary condition (Equation 26) at the free 

surface and the bottom boundary condition (Equation 27) reduces to 

a a ax (Du) + ay (Dv) - 0 

A volume transport stream function exists , such that 

In terms of 

~ -- - Dv ax ' 
~ = Du ay 

the vorticity component r,; is given by 

l,; -
av 
ax 

62 

au 
ay 

(56) 

(57) 
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Use of Equation 58 with a knowledge of s from Equation 55 allows 

evaluation of ~ by relaxation subject to appropriate ooundary condi­

tions . The velocity field can then be calculated from Equation 57 . 

58 . The model has been applied to Lake Ontario for a simplified 

storm condition passing along the long axis of the lake . The velocity 

conditions in the lake are calculated at various times during the 

passage of the storm . The model has also been applied to Lake Erie 
20 during the passage of storm Agnes . 

59 . While the results from this model are qualitatively interest­

ing , certain of its assumptions are subject to question . The volume 

transport , which is integrated over the depth of the lake , and hence 

the surface elevations may be reasonably correct; however , these values 

cannot be related to prototype velocity values in the lake , which are 

highly depth dependent . The applicability of the rigid lid assumption 

made in this model is questionable for storm surge . 

Limitations of the Models 

60 . From the literature survey of the various two- dimensional 

hydrodynamic models available and based upon the experience at WES with 

some of these models , the applicability and limitations of these models 

become fairly apparent : 

a . Two- dimensional models will probably yield reasonable 
results in lakes for storm surge (free surface displace­
ment) if a free surface rather than a rigid lid boundary 
condition is used at the lake surface . Free surface 
displacement is basically a function of the total mass 
transport , and two- dimensional models appear reasonably 
capable of representing this phenomenon . 

b . Two- dimensional models will not yield results for depth­
dependent , wind- driven lake currents , which are repre­
sentative of the currents existing in the lake . 

c . Two- dimensional models probably yield reasonable values 
for both surface displacements and currents in estuaries 
and bays if large salinity variations are not present . 

61 . The first and second conclusions appear in conflict at first 

inspection . This apparent conflict can be resolved by considering the 
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difference in surface elevations required to produce a specified veloc­

ity. Very small changes in surface elevation can produce significant 

velocities. Thus, the two- dimensional mathematical model can predict 

values of surface displacement in reasonable agreement with experimental 

data if the total mass transport is approximately correct. At the same 

time very poor representations of the actual currents in the lake are 

produced by the models due to the complex depth- dependent velocities 

existing in the lake . In most freshwater lakes the throughflow is 

small, and wind is the major current- producing forcing function . The 

current pattern is extremely depth dependent, varying in direction from 

surface to bottom by essentially 180 deg . A depth- integrated velocity 

such as produced by the two- dimensional models will generally yield a 

very small average velocity proportional to the lake throughflow and 

completely fail to indicate the very complex depth- dependent velocities 

existing in the lake . 

62 . Since the two- dimensional models have no provisions for a 

return flow along the bottom of the lake , they must establish return 

flow regions in the lake itself when wind is the primary forcing func ­

tion . The depth- averaged flows predicted by the two- dimensional models 

will tend to be in the wind direction in the shallow areas of the lake 

with a return flow in the deeper portions . This flow further distorts 

the current pattern obtained from the two- dimensional model from those 

actually existing in the lake . 

63. Because conditions in estuaries and bays normally are more 

consistent with the basic assumptions used in the derivation of two­

dimensional models , the results are in better agreement with prototype 

conditions . For estuaries and bays, the primary forcing function is 

the tide , and significant mass transport does occur . The velocity 

distribution over the depth is generally in approximately the same 

direction and of the same order of magnitude . A depth- averaged veloci­

ty therefore has some physical meaning in the estuary or bay , and nu­

merical velocity results compare more favorably than was the case in 

lakes . 
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PART IV : THREE- DIMENSIONAL HYDRODYNAMIC MODELS 

General Formulation 

64 . The three- dimensional hydrodynamic models have only recently 

been developed to the state where application to complex geometries with 

r easonable resolution appears possible . The delay in developing three­

dimensional models ca n be attributed to the unavailabi lity of extremely 

large , fast computers as wel l as to formulation di fficulties . As previ­

ously indicated , the depth- averaged two- dimensional models have been 

extensively applied to the hydrodynamics of lakes and oceans . The two­

dimensional models have pr ovided valuable quantitative information for 

certain types of problems ; however , for many other problems the two­

dimensional models yield , at best , qualitative results . Certainly the 

many pressing problems associated with pollutant and sediment transport 

require the details of the three- dimensional velocity profile in the 

lake , and such information cannot be obtained from the depth- integrated 

two- dimensional system of equations . The shortcomings of the depth­

averaged models are most apparent when the bottom shear stress is con­

sidered . In the two- dimensional models the shear stress is normally 

related to the net horizontal mass flux . However , for major portions 

of a lake , the flow at the bottom may be a return flow that is not in 

the direction of the net mass flux . 

65 . The three- dimensional models can be broadly classified into 

the following categories : 

a . Constant- density , steady- flow models 

b . Constant- density , unsteady- flow models 

c . Variable- density , unsteady- flow models 

Within each category the models can vary considerably dependi ng upon 

the assumptions that are imposed . Some of the assumptions are common 

to most of the models ; others pertain to a specific model . A variable­

density , steady- flow result can be obtained from model ~and is not 

listed separately since no basically different formulation has been 

developed for problems of this type . The constant- density , steady- flow 
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models can be formulated more simply than the constant-density, 

unsteady- flow models . 

66 . The three- dimensional governing equations for an infinitesimal 

fluid element have been given previously in Equations 16-19 . The basic 

equations for the three- dimensional models are obtained from these equa­

tions subject to certain assumptions that are common to most models . 

67 . The Boussinesq approximation is normally made . This approxi -­

mation assumes that density variations are small and can be neglected 

except in the gravity term of the momentum equation . Thus , even if the 

fluid is not strictly treated as incompressible, the continuity equation 

is reduced to the incompressible form . In addition , for most existing 

models , the vertical component of the local and advective acceleration 

is assumed to have a negligible effect on the vertical momentum equation . 

This assumption reduces the vertical momentum equation to the equation 

for hydrostatic pressure variation in a compressible fluid . 

68 . The basic equations from which the development of most three­

dimensional models proceed are therefore given by 

au + au + v au + w au 
at u ax ay az fv - -

av av av aw - + u - + v - + w - + fu 
at ax ay az 

1 ~ + K 
p ax 

l:_~+ K 
P ay 

au av aw -+-+ - o 
ax ay az 

(59) 

(60) 

(61) 

(62) 

In addition to these equations , an energy equation , a constitutive 

equation for the density and diffusion equations for substances of 

interest, may be required, depending upon the particular problem formu­

lation . The K used in the momentum equation is generally a 
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combination of the molecular viscosity and the eddy viscosity . In 

practice , however , the molecular viscosity is often neglected since it 

is much smaller than the eddy viscosity for lake applications . 

Discussion of Specific Models 

69 . The three- d i mensional models vary considerabl y in their method 

of development ; therefore , no general formulation of the model governing 

equations , such as was possible in the two- dimensional equation , will be 

attempted . Instead , specific models illustrating the various model 

categories will be considered in sufficient detail to indicate the 

formulation procedure as well as the strengths and weaknesses of the 

individual models . In general , the application of three- dimensional 

models to actual lake geometries is still in its infancy . Considerable 

work is still required in this area , and many of the questions concern­

ing the accuracy of the various models can be resolved only when proto­

type data of the required quality and quantity become available . 

Three- dimensional , steady-
state, constant- density 
model of R. T . Gedney and W. Lick 

[0 . 
21 22 . This model ' lS based upon the shallow- lake theory de-

veloped by Welander . The model can account for irregular boundaries and 

variable bottom topography ; it is , however, restricted to constant 

density and steady flow . The primary application of the model is for 

calculation of three- dimensional steady- state velocities when the lake 

is in an unstratified condition . A rigid lid assumption is imposed at 

the surface of the lake to filter out gravity waves . 

[1 . The basic model is capable of describing flows in a lake 

where the depth is comparable to or less than the Ekman layer (shallow 

lake) as well as in a deep lake . Several assumptions result in simpli­

fication of the governing equations when they are applied to shallow­

lake conditions . The model is three- dimensional ; however , the computer 

time requirements are reasonably small . This small requirement is 

possible since the finite difference numerical portion of the model is 
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actually two- dimensional with the variation in flow parameters along 

the vertical or third dimension being obtained from a closed- form ana­

lytical solution . 

72 . The basic starting equations for the model are those listed 

1n Equations 59- 62 . These equations are , however , considerably simpli­

fied by assumptions consistent with the intended application to shallow 

lakes : 

a . The lake is cons i dered to be homogeneous , resulting in 
the density being considered as a constant even in the 
gravity term in the vertical momentum equation . This 
assumption of homogenity in Lake Erie is found to be valid 
approximately from about the middle of fall to the be­
ginning of summer . 

b . The nonlinear i nertial forces are assumed to be small in 
comparison with the Coriolis force and are neglected in 
the momentum equations . The Rossby number is a measure 
of the ratio of the nonlinear inertia forces to the 
Coriolis force and is defined by R = UR/fL , where UR 
is a characteristic velocity in the0 lake , f is the 
Coriolis parameter , and L is a characteristic horizontal 
scale . A calculation using values characteristic of Lake 
Erie shows that except in localized regions where the 
horizontal length scale is smaller than 50 km , the non­
linear inertia terms will be relatively unimportant . 
These terms reduce the governing equation to a linear 
system ; however , the solutions obtained from the model 
near islands and in shallow shore regions should be 
applied with caution . 

c . The effects of the horizontal internal friction of the 
fluid are ignored , which eliminates the terms involving 
the horizontal eddy viscosity . The horizontal Ekman number 
EH is a measure of the relative importance of the hori ­
zontal diffusion terms by comparison wi th the Coriolis 
force and is defined by EH = AH/fL2 where AH is the 
horizontal eddy diffusion coefficient . Typical values 
for Lake Erie indicate that EH is small and can be 
ignored except in the boundary layer near the shoreline . 
The boundary layer near the shore is normally smaller, 
however , than the typical grid size used in the calcu­
lations . 

d . The pressure is assumed to be hydrostatic as a result of 
neglecting vertical acceleration and velocity terms. 
This standard assumption for most numerical models is 
probably justified except near the shoreline where sig­
nificant vertical velocities and accelerations can be 
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present as a result of bringing to rest the velocity 
component normal to the shore . 

e . The turbulence in the lake is modeled by a constant verti ­
cal eddy diffusivity . This assumption is almost certainly 
invalid ; however, lack of reliable information makes this 
assumpt i on necessary since a sat i sfactory model for the 
vertical eddy diffusivity is not available . 

73 . The displacement of the lake surface is assumed to be small 

in comparison with the depth of the lake . This assumption allows the 

complete linearization of the problem , since the surface boundary condi­

tions are now appl ied at the undisturbed water surface rather than the 

instantaneous surface . 

74 . Under the assumptions listed , the governing equations are 

reduced to the linear system : 

Continuity Equation 

au + av + aw - 0 
ax ay az 

(63) 

Momentum Equations 

au --at 
fv 

av 
- + fu 
at 

~ --
az 

.!_~ + A 
p ax v 

- pg 

where A is the vertical eddy diffusion coef ficient . The boundary 
v 

conditions are as follows : 

u , v ,w - 0 at z - - h(x ,y) 

(64) 

(65) 

(66) 

(67) 



T wx 

T 
wy 

w - 0 

at z - 0 (68) 

at z - r;(x ,y) 

75 . The model is made nondimensional by introducing the dimension­

les s variables : 

where 

L -

H -

UR -

r;R -

D -

TwR -

X 
x* -

L 

u* -

' y* 
- y_ 

L 

' 
v 

v* -

p* -
p 
pgH 

m 

T* -
X 

T* -
' y 

' 
Z* - z 

H 
m 

' 

' 

w w* -

t* -

TwR 
pfoHm 

r;R -
T wRL 
pgH ' D = 1f 

m 

characteristic length • the horizontal direction ln 

characteristic length • the vertical direction ln 

characteristic velocity 

reference surface displacement 

frictional depth 

reference wind shear stress 
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WR - reference vertical velocity 

tR - reference time value 

f 
0 

- Coriolis parameters evaluated at mean latitude of Lake Erie 
H - mean depth 

m 
The nondimensional form of the governing equations becomes 

au 
at 

au + av -+ ax ay 
aw -= 0 az 

v- - ~+ ax 

av + u 
at ~ + ay 

~-- - 1 az 

(69) 

(70) 

(71) 

(72) 

where EV = Av/fH
2 

is the vertical Ekman number and the asterisks have 

been dropped for convenience of notation . 

76 . Equation 61 can be integrated over the vertical to give 

p 

0 

.£12.d az z 

0 

p - p = - z 
0 

z 

p - p (x , y) - z 
0 

• 

dz 

(73) 

This equation gives a one- to- one correspondence between pressure and 

surface elevation ; thus, pressure can be eliminated from the governing 

equations . Normally the variation of p
0

(x ,y) with (x , y) is small 

enough to be neglected, Thus , 

71 



~ = ~ 
ax ax and ~=~ ay ay 

Using this equation , the momentum equations in the horizontal are 

written as 

au 
at v - - as + 

ax 

and the vertical momentum equation is eliminated . 

(74) 

(75) 

(76) 

77 . The model is to be applied to steady- state current patterns ; 

therefore , the time dependency in the governing equations is eliminated . 

Thus , basic governing equations for the model are as follows : 

and 

- u - ~ ay 

au + av + aw = 0 
ax ay az 

The nondimensionalized boundary condit i ons ar e as follows : 

1 au 
t -wx 2;\2 az 

at z = 0 

1 av 
t - -
wy 2;\2 az 
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w - 0 

u - v - w - 0 at z = - h(x , y) 

where A , a constant which is proportional to the ratio of water depth 

to frictional depth , is given by A : n H/D . 

78 . Equations 77 and 78 can be combined into a single equation 

by defining the complex quantities : 

T - T + i T w wx wy 

~=~+i~ 
an ax ay 

and a complex variable representing horizontal vel ocity r given by 

r - u ;.. i v 

The complex equat i on for r is then given by : 

-~k 
2 an 

The boundary conditions are 

2 ar 
at 0 T - - - z -w A2 az 

w - 0 at z - 0 

w - 0 at z - - h(x , y) 

and 

r - o at z = -h(x ,y) 

(81) 

(82 ) 

(83) 

This second- order differential equation involving the single arbitrary 

parameter A can be solved subject to the boundary conditions to 

yield 

73 



where 

r - . 
U + lV 

w - (1 + i) /2 

_ - i az;; ( -c_o_sh __ :\_' z_ - l) + 
an cosh :\ ' h 

T A 
w 

2w 
s i nh [ :\ ' ( h + z ) ] 
cosh (:\ ' h) 

z;; - surface displacement as a function of x and y 

:\ ' - w :\ 
h - H/H dimensionless depth 

m 
Z - dimensionless coordinate 

This equation represents a closed form solution for u and v if 

(84) 

az;;/an and T are known ; however , the surface displacement gradient is 
w 

not generally known . A method must first be obtained for evaluating 

this quantity prior to evaluating u and v . 

79 . The horizontal mass flux can be found by 

where a and b 

M 
X 

+ iM y 

0 

r dz 

- h 

are functions only of the local depth and M 
X 

and 

M are the x 
y 

and y components , respectively , of horizontal mass 

flux . 

80 . The continuity equation can be integrated vertically to yield 

0 0 0 

("u + av aw) dz a a 
w(O) 

- + - u dz + - v dz + w 
ax ay az ax ay w( - h) 

- h - h - h 

But w - 0 at z = 0 and z = - h ; therefore , 

a 
ax 

0 

- h 

u dz + a 
ay 

0 

- h 

v dz - _£ (M ) + _£ (M ) - 0 
ax X ay Y 
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Introducing the mass flux stream function ~(x,y) gives 

then 

M 
X 

- ~ 
ay ' M y 

~ 
ax 

M + iM - ~ - i ~ 
X y ay ax 

- 'T a + h ( az.; + 
w ax i ~) b ay 

(86) 

Rewriting a = c + id and b = e + if where c , d , e , and f are 

real functions of local depth gives the following expression for the 

surface gradient : 

~= 
ax 

'T 
wx 
h 

'T 
wx 
h 

'T 
wy 
h 

de ) (87) 
f2 

+ df) (88) 
+ f2 

The surface gradients are linear functions of the stream function 

gradient and the wind shear . These equations allow the surface gradi­

ents to be calculated if the wind stress and stream function are known . 

Substituting back into the expression for the complex velocity allows 

u and v to be calculated . 

81 . In order to have a complete solution for the problem the 

stream function must be determined. Equations 87 and 88 can be com­

bined and the surface displacement z.; eliminated by taking the a/ay 

of the first equation , - a/ax of the second equation and then adding 

the two equations : 
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ah + 
ax 

C ah) ~ - C ( a TWX 
1 ay ay - 3 ax + 

aT ) wy 
ay 

-
ah + 
ax 

T ah ) ( 89) 
wx ay 

where h = Ah and c
1 

, c
2 

, c
3 

, 
-of h . This governing equation for 

c4 , c
5 

, and c6 are functions 

the stream function is a linear , 

elliptic equation and can be solved using the boundary condition that 

the normal mass flux at the shore i s zero or equal to the river inflow 

or outflow. 

82 . It should be noted that the stream function formulation is 

independent of the vertical coordi nate and is thus numerically a two­

dimensional problem . In addition , it should be kept in mind that the 

stream function formulation does involve the vertical eddy diffusivity , 

which is basically a function of the wind speed . 

83 . The stream function equation is solved numerically by replac­

ing the di fferential equation by a finite difference representation . 

This substitution allows the value of the stream function at each dis ­

crete point in the numerical grid to be solved in terms of the values 

at neighboring points and coefficients that are functions of the local 

topography and wind stress conditions . The resulting set of simultane­

ous equations is of the form 

[A] [1/J] = [ c] 

where [A] is a square matrix whose order is equal to the number N of 

the interior grid points, [1/J] is the vector column matrix for the stream 

function, and [C] is the vector column matrix containing the nonhomogene­

ous portion of the difference equations . The matrix [A] is sparse and 

is solved using successive overrelaxation by points (SOR) and by single­

line overrelaxation (SLOR) . 
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84 . Islands in the lake create a multiply connected domain . They 

can be included, however, by requiring that the value of w on each 

island be specified in such a manner that the surface displacement is 

continuous around the island. This treatment increases the computa­

tional time ; however , islands can be included satisfactorily . Because 

of the linearity of the problem, linear interpolation can be used to 

facilitate obtaining solutions for various wind conditions . 

85 . Once the stream function has been obtained, Equations 87 and 

88 are used to evaluate the local slope of the lake surface . Once this 

information 1s known , Equation 84 allows the local vertical profile of 

horizontal velocity to be evaluated . 

86 . The model was initially applied to some simple geometries for 

which analytical solutions were available to allow the effect of various 

parameters in the numerical model to be considered and evaluated . The 

model was verified for real- lake conditions by applying it to Lake 

Erie .
21 

Two uniform wind conditions were considered corresponding to 

winds of 11 . 8 mph and 22 . 7 mph . The numerical grid step used in the 

calculations was 2 miles in the open lake and 0. 5 mile near the islands 

in the western basin . The numerical steady- state calculations of the 

wind- driven currents in Lake Erie were shown to compare favorably with 

current meter measurements made at middepth in the central and eastern 

basins . Many other features of the currents observed by other methods 

are predicted at least qualitatively by the calculations. 

87 . The agreement of calculations and measurements appears to 

indicate that the shallow- lake model that uses a constant eddy viscosity 

is capable of predicting accurately the local three- dimensional veloci­

ties at middepths . Additional prototype data near the surface and 

bottom of the lake in conjunction with measurements at middepths are 

needed to verify the model and the constant eddy viscosity assumption . 

The calculated results show that for a large percentage of Lake Erie the 

bottom stress is not in the direction of the horizontal mass flux . 

These results indicate that for Lake Erie and other shallow lakes there 

may be large errors in solutions obtained from models where the bottom 

stress is made proportional to the net horizontal mass flux . 
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Three- dimensional , time-
dependent , constant- density model 
of A. Haq , W. Lick, and Y. P . Sheng 

88 . The basic formulation of this mode123 is an extension of the 

thr d . · 1 t d t t d 1 f G d d L1. ck . 22 The method ee- 1mens1ona s ea y - s a e mo e o e ney an 

of solution of the model is, however , completely different . This model 

is time dependent , and irregular boundaries and variable bottom topogra­

phy can be handled. It is , however , restricted to constant- density 

flow . The primary application of the model is for storm surge simu­

lation where surface displacements rather than velocities are prime 

considerations . A free surface condition is imposed , rather than the 

rigid lid assumption used in the steady- state model in order that the 

details of the transient behavior are simulated . As with the steady­

state model , the primary application is for shallow lakes with param­

eters in the program closely corresponding to those for Lake Erie . 

89 . Equations 63- 66 and the boundary conditions given by Equa­

tions 67 and 68 form the basic system of equations for the model . These 

equations are put in a nondimensional form with some slight changes from 

the nondimensionalization process used by Gedney and Lick . The non­

dimensional variables are introduced as follows : 

x* - X 

L ' 

u* -

p* -

T* -
X 

u 
u ' 

R 

p 

' 

y* - ;[_ 

L ' 

v 
v* - u ' 

R 

gz; 

z 
z* -

H 

w* -

z; * - fU L ' 
R 

t * - ft 

T* -
y 
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90 . The nondimensionalized forms of the governing equations 

become 

and 

au 
at - v - - ~ + E ax v 

av + ~ + at u == - ay 

2.£ == -az 

where the asterisks have been dropped for convenience . 

91 . The dimensionless boundary conditions are : 

u ,v ,w - 0 at z = -(~) 

au 
- == T az X 

at z == 0 

av 
- == T az y 

at z == 0 

w - at z == 0 

(91) 

(92) 

(93) 

(94) 

(95) 

92 . The hydrostatic Equation 94 is integrated over the lake depth 

to obtain 

p - p (x,y) + ~ - gH z 
o fURL 

(96) 
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Assuming that the atmospheric pressure is uniform results in 

.£E=R 
dX dX 

~=R 
()y ()y 

Substituting into Equations 92 and 93 results in 

and 

and 

dU 
at v = -

93 . Equation 91 is further modified by defining 

0 

u - u dz 

h --
H 

0 

v- v dz 

--
H 

(97) 

(98) 

(99) 

(100) 

(101) 

The continuity equation is then integrated over the depth of the lake 

to obtain 
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0 0 0 

au av aw dz - dz + - dz + - 0 ax ay az 

- h - h - h -
H H H 

0 0 0 

+ au av d w - dz + - 0 ax ay Y 

-h - h - h 
H H H 

For nondimensional var iables the continuity equation becomes 

or 

~+ 
at 

au + av = 0 ax ay 

(
au + av)= 0 ax ay) (102 ) 

94 . Equations 98 , 99 , and 102 must be solved to obtain the veloc ­

ity field and surface elevations , ~ , in the lake us1ng this model . 

These equations are subjected to the boundary conditions given by 

Equation 95 . The model as formulated does not provide for a mass flux 

inflow or outflow through the boundaries of the lake . 

95 · To insure no loss of accuracy in the numerical computation in 

the shallow regions of the lake , a more convenient coordinate system is 

introduced . The desired transformation maps the bottom of the lake on­

to a constant a surface where a is a transformed vertical coordi­

nate . A uniform a grid is then used in the (x ,y ,a) system that 

corresponds to a nonuniform vertical grid in the (x ,y , z) system . The 

new a system is obtained by replacing the vertical coordinate in the 

(x , y , z) system by 
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z 
a = 1 + h(x,y) 

where h(x ,y) is the dimensionless local depth . 

where 

96 . The governing equations can then be written as 

au 
at v = -

av 
- + u -­at 

R + at 
s (au + av) _ 0 ax ay 

s -

and the horizontal mass fluxes U and V are defined by 

1 

U - h(x ,y) u do 

0 

1 

V - h(x ,y) v do 

0 

The boundary conditions are 
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(105) 

(106) 
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~ 

u - v - 0 

au 
- = hT 
da X 

av -= a a hT 
y 

~ 

at a = 0 

at a = 1 (108) 

at a = 1 

and V - 0 
n 

at the shoreline where V 
n 

is velocity normal to shore-

line . 

97 . The finite difference grid is set up using constant grid 

spacings ~x , ~y , and ~a and generally ~x equals ~y . The 

variables are defined as shown in Figure 24 . The staggering of the 

variables simplifies the representation of the required derivatives . 

Centered differences in space and forward differences in time are used 

in the numerical calculations . Values for variables are sometimes 

needed at points at which they are not defined . These values are 

obtained by linearly interpolating from the values immediately adjacent 

to the point under consideration . 

98 . Equations 103-105 are wr i tten in a finite difference form 

using forward time and centered space differences and for stability 

consideration a modified DuFort - Frankel scheme for the vertical dif­

fusion terms . The formulation is explicit . In addition , the mass 

fluxes U and V are evaluated by numerically integrating Equa-

tions 106 and 107 using Simpson ' s rule . The finite difference equations 

at time tn+l can then be written as 

un1·+
1
J·+l/2 k - (1! a) unl. ,J. +l/2,k + ~t [v~i,J., +l/2 , k> - (~;\ :i ,j+l/2> 

' ' :) 

+ -~-~ 0~ . j +l/2,k+l n - 1 
- u I i , j +l 2,k 

for 1 < k < KM(surface) 
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y 

4 

• i .~ t ..... 
A(J" .. ..... T l ... ... ... 

..... ..... ..... ..... 
... • 

.JA. .A ... 
• • . "' X 

LEGEND 
X POINTS DEFINING u,u (DEFINED AT i, J + Yz, k) 

0 POINTS DEFINING v,v (DEFINED AT . I . k) I+ Vz, J, 

0 POINTS DEFINING ~ (DEFINED AT i ty2 , jty2 , k) 

v POINTS DEFINING l..l 

A POINTS DEFINING v 

Figure 24 . Spatial grid used i n the numer i cal computations 
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n 
u. I + ~t l , j +1 2 , KM 

n - 1 

n (as)n 
v<i , j+112,KM> - ~ 

X <i , j +112> 

a (2un +-
~t i , j +112 , KM- 1 - u + i , j +112 , KM (110) 

v~:i/2 , j ,k = ( 1 ! ") vn + ~t [- u n - ( ~ \ n 
i +1l2 , j , k <i+112 , j , k> ay) <i+

112
, j> 

where 

a ( n +- v 
~t i +112 , j , k+1 - v~+112 J. k + vnl.+112 , J· , k- 1) 

l ' ' 
(111) 

for 1 < k < KM (surface) 

n (as)n 
- v<i+1I2 , J.,KM> - ()y 

<i+112 , j> 

+ ~t (2v~+l/2 , j , KM-l .n- 1 
- v I + i +1 2,j , KM 

2yT ) y 
h~o 

n+1 n 
si+112 , j +112 - si+1l2 , j+112 - s~t 

n+1 tf.+1 11i +1 , j +112 - i , j +112 
~X 

a = Evlltl(h2~o2 ) 

+ 

~+1 - ~+1 
i +1l2 , j +1 i +1l2 , j 

~y 

KM corresponds to o - 1 ( surface) 

y - Trl(pURHf) 
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< > points at which variables must be interpreted since they are 
not evaluated in the staggered grid 

99 . Thus, the numerical procedure can be summarized as follows: 

a . 

b . 

c . 

d . 

Assume that the values at 
at t

1 
, u = v = ~ = 0) . 

Use Equations 108 and 109 

time t 
n 

are known (initially 

n+l 
to calculate u • 

n+l 
Use Equations 111 and 112 to calculate v . 

Evaluate ~+l and ~+l by numerically integrating 
Equations 106 and 107 . 

e . Set U and V equal to zero on appropriate boundary 
segments . 

f . Evaluate 
n+l s from Equation 113 . 

The calculation is completed at time tn+l and the computation for the 

next time step can now be started with step a . 

100 . The numerical model consists of a system of five differential 

equations together with two numerical integrations . The stability of 

the system is found to be limited only by the well known limitation on 

surface gravity waves . 

101. The model was initially verified by applying it to some simple 

lake geometries : an infinitely long lake , a square basin with constant 

depth, and a constant bottom slope basin . The numerical solutions were 

compared with analytical solutions to determine the effects of changes 

in the eddy diffusivity, lake geometry, and bottom topography . 

102 . The Wilson formulation
24 

for the wind stress is used in the 

model: 

T - p cdlw lw w a a a 
(114) 

where pa is the density of the air, Cd is the drag coefficient (Cd = 
0.00273 for winds > 6 m/sec and Cd = 0 . 00166 for winds < 6 m/sec), and 

w 
a 

is the wind velocity at 10 m above the water surface . 

spatially varying and time-varying wind stress, the stress 

For a 

at any point 

in the lake is obtained by interpolating from the known value at a few 

velocity measuring stations around the lake. The method of 
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interpolation is similar to that used by Platzman . 14 

103 . The numerical model has been applied to Lake Erie for two 
22 

cases . The first case is for a uniform wind blowi ng along the long 

axis of the lake . The actual verification of the model is obtained by 

calculating the flow in the lake during storm Agnes . The calculated and 

measured values for the surface displacement at Cleveland and at Port 

Stanley are found to be i n good agreement . Also , the spatial variation 

of the sur face displacement is consistent with the l i mited amount of 

data that are ava i lable. 

104 . In applying the model to Lake Erie , it should be noted that 

much of the western basin and regions very close to shore become very 

shallow. In such regions , the assumption that the surface displacement 

is small compared with the depth may be inadequate , and the linearized 

theory is likely to be inaccurate . The minimum depth considered in the 

numerical model was 1 . 8 m. In addition , the islands separating the 

western and central basins of Lake Erie are neglected in the present 

model . 

105 . A uni form horizontal grid with x = y = 6. 4 km is used in 

the entire lake for the Lake Erie calculations . In the vertical direc ­

t i on , the region from the top to the bottom (a = 0 to a = 1) is 

divided into five equal intervals of a • In actual physical variables , 

the lengths of these i ntervals are smaller in shallow regions and larger 

in the deep regions of the lake . The time step used in the calculations 

for Lake Erie was 50 sec , and the results showed no evidence of 

instability. 

106 . Calculations were made for 

25 cm2/sec and 40 cm2/sec . For A -
v 

eddy diffusivity values of 
2 25 em /sec the numerical results 

for surface displacement as a function of 

favorably with the measured values of the 

surface displacement va l ues for A - 40 
v 

from those 

time for storm Agnes compare 

surface displacement . 
2 

em /sec 

for A 
v 

are indicated 
2 = 25 em /sec 

The 

as being 

indi-practically indistinguishable 

eating that the magnit ude and direction of the wind velocity dominate 

the flow . This situation would not exist after the storm , as the sur­

face oscillates and decays to an equilibrium position . The accuracy 
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of velocities predicted by the model cannot be properly evaluated 

because of a lack of appropriate prototype data . 

107. The authors reference the numerical model study of storm 

Agnes on Lake Erie by Paskausky~O whose model is vertically integrated 

and contains a rigid lid assumption . Paskausky ' s values of setup at 

Cleveland and setdown at Port Stanley are indicated as being con­

sistently lower than the measured values . The authors attribute this 

difference to the use of the rigid lid assumption combined with a 

greater minimum allowable depth (24 ft) in Paskausky ' s model . To ver i fy 

their conclusions , the authors made several calculations with a verti ­

cally integrated model using a minimum allowable depth of 6 ft . This 

model predicted much better agreement with measured values than did that 

of Paskausky ' s . 

Three- dimensional variable-
density model by Jan J . Leendertse , 
Richard C. Alexander , and Shiao- Kung Liu 

108 . This mode125 lays the foundation for the development of a 

layered model to be used for numerical simulation of the fluid flow in 

water bodies with irregular boundaries and nonisotropic density distri ­

bution. Work on the model is not complete , and only very limited appli ­

cations and attempts at model verification are reported . The model is 

intended for application to estuaries and coastal seas. Some of the 

assumptions and formulation procedures are not immediately adaptable 

to freshwater lakes , where density variations are due to temperature 

variations rather than to salinity variations . The general formulation 

procedures can be extended , however, to be applicable to freshwater 

lakes . 

109 . The conservation form of the governing equations is used to 

allow the preservation of certain integral conservative relations of 

the continuum equation in the finite difference formulation of the 

problem. This form insures that mass, momentum , or other variables are 

neither created nor destroyed as a result of the computational scheme . 

The fluid density is assumed to vary with salinity. The basic governing 

equations for the formulation are those given by Equations 59- 62 . 
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110. In addition, because the density is considered as a function 

of salinity , S, a constitutive equation and salinity transport and 

diffusion equation are required. 

Salinity transport and diffusion 

as a(us) 
at + ax + 

_a ..:.._( v_S..:_) + a ( wS ) 
ay az _j_ (n ~) _j_ 

ax X ax - ay 

Constitutive equation 

where 

P- P + p'(S) 

S - salinity 

D , D , D 
X y Z 

- eddy diffusion coefficients of salinity in 
and z directions 

p - constant reference density 

p' - departure from p depending on salinity 

(115) 

(116) 

X ' y ' 

111 . For a more general constitutive equation, a density depend­

ence on temperature as well as on salinity would be required . This 

more general formulation would require an additional equation governing 

the energy balance for the system . Diffusion equations for the various 

other substances of interest would also be required. The actual numeri ­

cal simulation of the three- dimensional flow problem in this model is 

considerably more complex than for the previous models that have been 

considered. Fewer simplifications of the basic equations are made, and 

the resulting model is highly nonlinear with the accompanying diffi­

culties of formulating the nonlinear terms . 

112. The basic approach in the layered model is to visualize the 

fluid motion in horizontal slices . Within each horizontal slice the 

equations are integrated over the height of the layer to obtain at any 
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horizontal position depth- averaged fluid properties for the slice . For 

any slice , this approach is essentially identical with the two­

dimensional depth- averaged model formulation . The layers are not inde­

pendent, however , since there is an exchange of mass , momentum , and 

salinity between layers . The air- water interface is the boundary for 

the system ' s upper layer , and the bottom defines the boundary condition 

for the bottom layer . At these boundaries the mass and salinity fluxes 

are zero . Only momentum is transferred, at the surface as a driving 

force by wind and at the bottom as a diss i pative effect due to fr i ction. 

113. Figure 25 shows a sample layout of the ver tical grid . The 

surfaces z = 

of thickness 

constant are levels separating the var ious layers 

The thickness h
1 

will generally vary in space and 

time due to wave action . The intermediate thicknesses are constant over 

the region while the bottom layer will vary with x and y according 

to the prescribed bottom topography . The number of layers will vary 

from one position in the horizontal plane to another depending on the 

depth . 

114 . The governing equations are integrated over the thickness 

of the layer in the same manner as was worked out in detail previously 

for the two- dimensional depth- averaged models . The momentum equations 

for the kth layer become 

k- 1/2 

k+l/2 

au 
- dz + 
at 

k- 1/2 

k- 1/2 k- 1/2 

a 
ax (uu) dz + 

k+l/2 k+l/2 

k- 1/2 k-1/2 

dz - fv dz + 1 ll2. dz 
p ax 

k+l/2 k+l/2 k+l/2 

and 
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k-1/2 

a 
ay (uv) dz + a~ ( uw) 

k+l/2 

1 c~ aT 
h ) _ XX + xy 

+ a~z dz p ax ay - 0 
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Figure 25 . Location of variables of the vertical grid 
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k-1/2 

k+1/2 

av 
- dz + at 

k+1/2 

k- 1/2 

k-1/2 

a ( uv) dz + ax 
k+1/2 

k-1/2 

k- 1/2 

a 
ay (vu) dz 

k- 1/2 

+ 
a 
~ (vw) dz + fu dz + 

1 an 
- ..::....!;:. d z 
P ay 

k+1/2 

or defining 

k+1/2 k+1/2 

k- 1/2 

k+1/2 

< > 
k 

k+1/2 

1 
(

aT 
- yx + 
p ax 

k- 1/2 

( ) dz 

aT 
yY 

ay 
aT ) + yz = 0 
az 

The equations can be written in the form: 

a a a 
- <u> + - <uu> + ~y <uv> + (uw) - (uw) - f <v> 
at ax a k+1/2 k+1/2 

+ L <.£.£. > 
P ax 

k 

1 
-- < "' 

aT 
XX 

> -ax 1 ( xz xz ) 
- pk Tk- 1/2 - Tk+1/2 = O 

and 
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a 
at <v> + 

a a 
ax <uv> + ay <vv> + (vw)k- 1/2 - (vw)k+l/2 + f <u> 

1 
-< ,.. 

1 
- < ,.. 

where is the depth- averaged density for the Kth layer . 

115 . Some approximations are necessary at this point . The second 

and third terms represent integrals of products of velocities . These 

terms are replaced by products of integrals . 

a a - <uu> -
ax ax 

Similarly 

and 

k- 1/2 

k+l/2 

a 1 uu dz ,....., _ _....., ax h 

k- 1/2 

k+l/2 

--- ~ [ 1 <u> <u:l 
- ax h j 

a ( uv) 
ay 

a ( uv) _ ~ ( 1 < > < >) 
ax - ax h u v 

a (vv) 
ay 

- ~ ( l <v> <v>) 
- ay h 

k- 1/2 

u dz u dz 

k+l/2 

(118) 

The density is considered to vary only with horizontal position within 

each layer . The differentiation and integration processes are taken 
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as interchangeable in the momentum diffusion terms and are approximated 

by: 

aT 
XX < >-

ax -
a 

<T > 
ax XX 

a 
- <T > 
ay xy 

a 
- <"( > 
ax yx 

a 
- <T > 
ay YY 

(119) 

116 . In integrating the hydrostatic pressure variation across the 

layer 

k- 1/2 

k+l/2 

~d + az z 

k- 1/2 

pg dz - 0 

k+l/2 

approximations must be introduced since p and p are not defined at 

the interface between elements but at the center of the elements . 

Therefore 

can be approximated by: 

k- 1/2 

k+l/2 

ap dz 
az 



p - p 
k k- 1 

where Pk th is the layer- averaged pressure of the k layer and 

k- 1/2 

pg dz 

k+l/2 

is approximated by 

The same principle is extended to represent all the interface values of 

dependent variables as the two point averages of the adjacent layer 

values for the same variable; for example, 

(120) 

where Uk is the layer- averaged U- component of velocity . 

117 . From the hydrostatic pressure variation an expression for p 

can be obtained : 

.£E + 0 az pg -

p ~pg dz + f(x,y) 

or simply 

p J pg dz 
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if the variation in atmospheric pressure over the water body is neg­

lected. A change in pressure at a particular location.can therefore 

occur as a result of an effective change in depth (change in ~ ) or as 

a result of a variation in density . 

118. The horizontal pressure gradient term for the upper layer 

can then be approximated by: 

aP "' - apl l "' ~ + ! h - gpl ax ax 2 g 1 ax 

(121) 

aP "' - apl 1 "' ~ l - gpl +- gh 
ay ay 2 1 ay 

The pressure gradient for the other layers is given by 

aP aP A 

- - apk- 1/2 k k- 1 
+ g~-1/2 -ax ax ax 

k - 2,3 , -• • • B 
- -' 

aP ~ (122) 
aPk apk- 1/2 k- 1 

+ ghk- 1/2 -ay ay ay 

-where the total number of layers B is a function of local depth . 

or 

119 . When the continuity equation is integrated over layer k , 

k-1/2 

k+l/2 
(

aw - + 
az 

wk- l/2 - wk+l/2 + 

au -+ 
ax 

k- 1/2 

k+l/2 

av) dz - 0 
ay 



Interchanging the differential and integral operators 

k- 1/2 

a w - w + --
k - 1/2 k+l/2 ax 

k+l/2 

for a particular layer gives 

At the bottom w - 0 ; therefore 

u dz + a 
ay 

At the water surface w - az;:/at and therefore 

az;: + 
at 

1=1 

reflects the free- surface conditions . 

k - 1/2 

k+l/2 

- 0 

v dz - 0 

(123) 

(124) 

(125) 

120. Horizontal momentum diffusion terms are expressed as gradi-

ents of Reynolds stresses evaluated by means of eddy viscosity coef-

ficients 

"[ 
XX 

"[ 
xy 

_ A au 
XX ax 

_ A au 
x:y ay 
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A av 
T - -
yy yy ay 

(126) 

A av 
T -yx yx ax 

These terms are further approximated by assuming only a single eddy 

viscosity coefficient characteristic of the u and v components of 

velocity, • 
1 . e. , 

A au 
T -

XX X ax 

(127) 

T 
xy 

T yx 

T 
yy 

A au - -
X ay 

- A av 
y ay 

121 . The final governing equations for the kth layer are 

a ( hu) + a ( huu) + 
at ax 

a(hvu) ( ) h ~ 
ay + (wu)k- 1/2 - wu k+l /2 - fhv + p ax 

a(hA au) a (hA ~) 
1 

+ -;::- T 
1 
-T "' xz 

1 x ax 
ax 

1 Y oY = o 
P ay 

(128) 
"' 

p xz k+l/2 p k- 1/2 p 

a a(huv) + ~hvv) ( ) h ~ 
at (hv) + ax ay + (wv)k- 1/2 - wv k+l/2 + fhu + p ay 

1 1 
a(hA av) 

1 
a(hA ~) 

+ 1 X dX y _ 3y 
0 -;:-T -;:-T - -

"' dX "' ay p yz p yz p p 

k+l/2 k- 1/2 
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a ( hS ) + a ( huS ) + 
at ax 

a(hvS) 
ay 

a (hD .££) 

+ (wS)k- l/2 - (wS)k+l/2 - a~ ax 

a(hD 38 ) 
Y ay 

ay + 
K(as) 

az k+l/2 -
(130) 

where T and T are the x- and y- components of interfacial shear 
xz yz 

stress . At the bottom 

and at the surface 

as + 
at 

- -

l=l 

(131) 
ax 

l=k 

- 0 (132) 
ax 

122 . The boundary stresses are handled in a conventional manner . 

At the bottom the stress is related to the Chezy coefficient C . 

gu/ u
2 

+ 
2 

PB v 

TBx -
c2 

(133) 

gvJu
2 2 

PB 
+ v 

TBy - 2 
c 

At the surface the shear stress is formulated in terms of the quadratic 

law, 
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2 

where u - mean wind speed 

123. The equation of state is taken as 

p -
Po 

A '-~ p 
0 0 

(134) 

(135) 

While A' can be expressed as a function of both temperature and sa­

linity , p is considered to vary only with salinity within this par­

ticular problem formulation . 

124 . A space- staggered grid was selected for the finite difference 

representation of Equations 128-132 . The grid structure is shown in 

Figures 26 and 27 . 

125 . Because of the nonlinear nature of the problem , the finite 

difference formulation is complex and cumbersome . Sum and difference 

operations are introduced as an aid in formulating the finite difference 

scheme . For an arbit rary variable 

F - F (i6x , j6y , k6z , n6t) 

The following sum and difference operators are adapted for representing 

the function at (i , j , k , n) : 

~ - ! r F[(i + ~)~x , j~y , k~z , n~t ] 

+ F[(i - ;)~x , j~y , k~z , n~t]J (136) 

- F[(i - !)~x , j~y, k~z, n~t] J (137) 
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Figure 26 . The location of u ( - ) , v (1) , and other 
parameters (+ ) in the space- staggered grid 
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Figure 27 . Relative position of the variables in the model 
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Similar operations are defined for y , z and t . The special 

notation used for shifting time levels is 

F+ = F [i 6x , j 6y , k 6z , (n+l) 6t] 

F - F [i 6x , j 6y , k 6z , (n- 1) 6t] (138) 

126. The finite difference approximations of Equations 128- 132 

used for integration become 

!:' t 

- X 
p 

j, n 

- z ( - z- x) h 0 u w 
z 

( 
1 -'XZ) ( 1 xz) 

- Pxz T _ k+l/2 + Pxz T _ k-1/2 

(139) 

(140) 

at i + 1/2, j , k, n 

- y (- Z-Y) - h 0 v W' 
z 

1 h- y ~ ( 1 yz) + ( 1 yz) - up - T T 
- y y - yz - - yz -
p p k+l/2 p k+l/2 

+ .L 
- y 
p 

+ oJ FlA/oyv)_ (141) 

at i , j + p , k , n 
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+ o ( hxD o s' + o ( hYD o s) + hzo (ko s) 
X X x ;_ y y y Z Z -

(142) 

at i, j , k , n 

These finite difference equations in the compact notation , which was 

used , have the same appearance as the differential equations . 

127 . ·The density is computed with the equation of state as follows : 

P - (A + Q p ) at i , j, k , n + 1 
0 0 

(143) 

128 . The following fini te difference equations are used to compute 

derived variables: 

0 w 
z 

at i , j , k , n + 1 

o p - g(pxo s) + 1/2 (hxo p) 
X X X 

at i + 1/2 , j , 1 , n + 1 

o p - g(pyo s) + 1/2 (hyo p) 
y y y 

at i , j + 1/2 , 1 , n + 1 

- z - z 
o (o p) - g h o P 

Z X X 

at i + 1/2 , j , k + 1/2 , n + 1 

at i , j + 1/2, k + 1/2, n + 1 
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Boundary stress and inter­
facial stress term formulations 

129. At the surface , the stress term can be computed from 

where 

C* 

Pa 
w 

a 
<P 

( 
1 xz) 

Pxz T _ k- 1/2 

( 
1 yz) 

pyz T _ R- 1/2 

Pa 2 
- C* - w 

- x a p 

Pa 2 
- C* - w 

- y a 
p 

- resistance coefficient 

- atmospheric density 

- wind speed at 10- m level 

sin <P 

cos <P 

- angle between wind direction and 

at i + 1/2 , j , 1 , n 

at i , j + 1/2 , 1 , n 

• y - aXlS 

(149) 

(150) 

Similarly, the stress term at the bottom (in layer B) can be computed 

from Equation 133 . 

gu_[u
2 r /2 

( l XZ) 
+ (v~y)2 

Pxz T_ k+l/2 
- (151) (Cx)2 

at i + 1/2, • B, n J ' 

I , 2 2]
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gv_L(u~) + v_ . 
(152) 

at i , j + 1/2 , B, n 

130. Since estuary motions are mostly turbulent , the effects of 

eddy viscosity play a significant part in controlling stresses between 

adjacent layers with different velocities . Mass and momentum transfers 

are the result, and these transfers tend to equalize relative velocity 

differences in both the lateral and the vertical directions . If the 
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quadratic r elationship between the interlayer stresses and the velocity 

differences is assumed applicable , the following expressions for the 

interlayer stresses can be used . 

( 
1 xz) 

Pxz T _ k+l/2 (153) 

at i + 1/2 , j, k + 1/2 , n 

(154) 

at i , j + 1/2 , k + 1/2 , n 

where v is the coefficient of interfacial friction . 

131 . The equations used in the numerical integrations are second­

order approximations in time and space , except that the evaluation of 

the momentum diffusion by use of Equations 153 and 154 in Equations 140 

and 141 is not central in time , but at a lower time level , since other­

wise the computation would become unstable. For the same reason the 

dispersion terms in Equation 142 are taken at the lower time level. 

132 . In describing the progress of the computation , it is assumed 

that the computation has progressed to a time level n . At this time 

the velocity component s u and v , the salinity S , and the pressure 

p are all determined for each point of the grid and available for 

computation . These variables are also available at the previous time 

step n - 1 . The water levels are available for computation at time 

level n and n - 1 . 

133 . At the boundaries of the water body to be computed , all 

diffusion coefficients are zero, as are the velocities perpendicular 

to the boundary . In this manner, no mass fluxes or diffusive transports 

of salt will result . The boundaries of the horizontal layers also 

satisfy a no-slip boundary condition . 

134 . With this information, the prediction equations 139- 142 are 
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used to advance the computational field of s , u , v , and S . 

For the evaluation of the boundary and interfacial stress terms in these 

equations, Equations 149- 154 are used . These are all explicit oper- , 

ations for each of the variables resulting in computed values of s , 
u , v , and S at time level n + 1 . 

135 . Subsequently , the vertical velocities, the densities , and the 

pressures required for the next step of the integration are computed . 

For the vertical velocity , Equation 143 is used , starting at the bottom 

layer and proceeding upward with the computation. In this manner the 

vertical velocity at the lower interface is known, and the other verti­

cal velocities can be determined explicitly. 

136 . The density for each grid point can be computed by using 

Equation 135 from the salinity data now available at time n + 1 . As 

water levels and densities are known at time level n + 1 , the pressure 

gradients in the x and y directions can now be computed by using 

Equations 145-148 . In this case , the gradients at the surface layer , 

and subsequently the other layers , proceeding downward , are computed 

by using Equations 145 and 148 . In this manner the horizontal pressure 

gradient in the upper layer of the two layers involved in Equations 147 

and 148 is known , and the horizontal pressure gradient in the lower 

layer can be determined explicitly . 

137 . The computational cycle is now ready to be reported, and s , 
u , v , and S can be computed for time level n + 2 , as all vari ­

ables are now determined for time level n + 1 . To start a compu­

tation , information at two time levels is required. 

138 . The model was initially applied to several simple cases to 

test the computational procedure . These test cases were characterized 

by an increasing complexity in both boundary geometry and hydrodynamic 

behavior of the process . These test cases included 

a. A seiche oscillation in a rectangular basin (density 
constant) . 

b. Wind- driven circulation in a rectangular basin with wind 
direction along the axis of the rectangle (density 
constant) . 
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c . Wind- driven circulation is a rectangular basin with a 
diagonal wind stress (density constant) . 

d . Wind- driven circulation in a rectangular basin with a 
density gradient . 

e . Wind- driven circulation in Lake Michigan with a constant 
density . 

The model results for the test case appear reasonable and verify the 

general operating pr inciples of the model . No attempt has been made 

however to simulate real events using observed field data . It should 

also be noted that no model results are indicated for the general prob­

lem of variable geometry , variable topography , and variable density . 

Work on this model is still progressing . To make the model applicable 

to engineering invest i gations , the following development work is recom­

mended : 

a . Formulate and develop the computational code for bounda­
ries , such as those that occur at the bottom , sides , and 
the seaward ends of the model , based upon realistic 
formulations of the local physical processes and 
conditions . 

b . Investigate the transfer of energy from one frequency 
range to another in the model by analyzing properties of 
the finite difference scheme and by exper imenting with 
different formulations of the advective terms in the 
equations of motion . 

c . Develop methods for graphically representing results . 

d . Incorporate the transport of heat in the model , together 
with the interaction of temperature distribution with 
the fluid flow . 

139. This model presently provides for a variation of density only 

with salinity and thus is not directly applicable to Lake Erie as a 

variable density model . It could be applied to Lake Erie as a three­

dimensional constant density model . The other alternative , as far as 

application to Lake Erie , is to introduce the energy equation and con­

vert the model to treating density as a function of temperature if a 

variable density lake model is desired . The author indicates that this 

modification is presently being investigated . 
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Model of J . Paul , 
W. Lick, and R. T . Gedney 

140 . A time- dependent , three- dimensional , viscous , variable­

density , heat - conducting model is presently being developed by J . Paul 

and W. Lick of Case Western Reserve University and R. T . Gedney at 

National Aeronautics and Space Administration (NASA) Lewis Research 

Center . This model is not yet completely operational ; however , it is 

an extension of an operational model for thermal plumes and river dis ­

charges developed by Paul and Lick .
26 

The thermal plume and river dis ­

charge model was developed for studying the near field surrounding the 

point of discharge of a river or power plant discharging into a body of 

water . Application of the thermal plume model required establishing 

computational limits in the body of water to which the plume is being 

discharged and appropriate boundary conditions on the computational 

boundaries . In the new model , the plume model will be coupled with a 

variable density model for a freshwater lake to allow the entire lake 

and the plume to interact . Changing lake conditions will then be re­

flected in an appropriate change in the plume . 

141 . The formulation for the lake model is not available at 

present ; it must , however , be consistent with the thermal plume model 

where the two solutions are meshed together . The actual model formu­

lation is more involved than any model discussed previously in this 

report due to the introduction of an energy balance equation . 

142 . While the complete formulation of the model is not available 

at present , the plume model will be discussed as illustrating some of 

the methods and techniques required in the model . The governing equa­

tions for the plume model are derived from the time- dependent , three­

dimensional equations of motion for a viscous , compressible , heat­

conducting fluid with a linear stress- strain relationship . 

143 . The time- dependent , three- dimensional equations of motion 

for a viscous, compressible , heat-conduting fluid with a linear stress­

strain relationship are as follows : 
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- - -- (au - au - au w- au) p --=-+ u -=-+ v -=-+ -at ax ay az 
- -

- E + ~ (- ~) + ~ ( ~ ~) + ~z (,1 ~z) ax ax l.1 ax ay ~ ay a ~ a 

(155a) 

- - -- (av - av - av - av) - -
_ E + ..L ( ~ ~vx) a - av + L ( ~ 2.!) p -=-+ u -=-+ v -=-+ w -=--at ax ay az ay ax a + ay ( }.l ay) a z ~ a z 

(155b) 

- - -- raw - aw - aw - aw) p,--+ u ---+ v --=-+ w---at ax ay az 2!. + .L. (- ~) + L (- ~) + L ( ~ ~) 
az ax }.l ax ay }.l ay az az 

(155c) 

-1! + h (ou) + ~ (pv) + ~z (pw) - o (156) 

- - - - - -- (aT - aT - aT - aT) pCP -;--t + u ~ + v - + w ---
a ax ay az - - !(~)P(E. + u .£f + v E. + w -£f) 

e aT at ax ay az 

where 

-
+ L (k a ~ ) + L (k 21-) + L (k aT) + <I> + Q* 

ax ax ay ay az az 

p - B' (T) 

-P - density 

l1 - absolute viscosity 

C - specific heat at constant pressure 
p 
-T - absolute temperature 
-k - thermal conductivity 

<I> - heat dissipation 

Q* - heat source and/or sink 

B' (T) - equation of state 

Note that 
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~ - - [ aui ( aui + auj ) -
~ axj axj axi i, j - 1 , 2 , 3 

where 

ul - u 
-

u2 - v 

u3 - w 

xl - X 

x2 - y 

x3 - z 

The density . taken to be dependent lS only upon the temperature . 

144 . 
and h 

0 

The geometry of the plume is shown in Figure 28 where 

are width and depth , respectively , of river discharging 

b 
0 

the 

plume . In obtaining the governing equations for the plume model, the 

following assumptions are made : 

a . The pressure is assumed to vary hydrostatically , and 
therefore 

aP - = pg 
az 

b . The rigid lid approximation is made , i . e . , w(z=O) = 0 . 

c . The Boussinesq approximation is made. 
assumes that the density variations are 
neglected except in the gravity term . 

This approximation 
small and can be 

d . Heat sources and/or sinks in the fluid are neglected . 

e . Eddy coefficients are used to account for the turbulent 
and molecular diffusion effects in both the momentum and 
energy equations . The horizontal coefficient is assumed 
to be constant, but the vertical coefficient is assumed 
to be dependent on the local vertical temperature gradient . 

f. The variations in the bottom topography are assumed to 
be gradual . 

All of these assumptions except d and ! along with their consequences 

have been discussed previously in connection with other models . All 

heat inputs and outputs to the model are assumed to occur at the 

boundaries of the model . As a consequence, heat transfer by radiation 

to the water is treated as a surface heat flux . 

110 



--
--~ 

-
__________ , 

-----r---....J _.,.._ 

GRAVITY 

y 
It 

Z, W 
h (X, y ) z 

-
Fi gure 28 . Geometry for three- dimensional jet 

111 



27 Paul and Lick presented in a previous study the following 

detailed mathematical description of their plume model . 

The present numerical model allows variations in 

the depth of the basin which the outfall discharges 

into. A standard numerical procedure to fit the 

variable depth into a model is to vary the number of 

vertical points in the computational mesh according 

to the local depth . [2B] A seemingly more complicated 

procedure, although a lot simpler in many aspects , 

is to stretch the vertical coordinate with respect to 

the local depth . The equations are transformed 

according to 

X +-+ X , 

y +-+ y , 

a +-+ z /h ( x, y) . 

The equations to be solved are more complicated look­

ing because of the appearance of the depth in the 

equation , but they are solved for a basin of constant 

depth in the transformed system . This greatly reduces 

the programming complexities of the model and makes 

the inclusion of depth variations simpler. 

The assumption of gradual variations in the 

depth allows a reduced form for the transformed 

diffusion terms to be used . The transformation used 

is not conformal and so the transformed diffusion 

terms involve cross- derivatives of the spatial 

coordinates . The terms containing derivatives of 

the depth are neglected with respect to those terms 

containing only the depth. This approximation is 

used in meteorological problems when topographic 

variations are included . [29 , 30] 

The resulting system of transformed equations, 

1n nondimensional form, are the following : 
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Re 
Fr2 

1 a ( hu) + 1_ a ( hv) + ~ = 0 h ax h ay acr ' 

+ l a(huv) + anu] 
h ay acr 

+ Rov = aP + 1 [1 a (h au) a ( au~ 
- ax h h ax ax + ay h ay )j 

a~p dcr 
ax + ~~ (f 6pdcr -

0 

av + R [ 1 a(huv) + 1 a(hv
2

) anv ] _ R 
at e h ax h ay + aa ou 

a~p dcr 
ay 6pdcr - cr 6p )] 

(
b0 )

2 
1 a ( av) 

+ h
0 

h2 aa Y acr 

Rei~ a(hu~T) + 1 a(hv~T) 
~ ax h ay 

+ an~TJ 
a a 

= 1 l _L (h a~T ) + _L (h 
h Lax ay ay 

1 aP --= h acr 
Re (1 + ~P) 
Fr

2 
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where 

11p - f ( /1T) 

a = z/h(x ,y) 

ah + 
ax 

u v u - v -
u ' u ' 0 0 

wb 
0 X w - X -u h ' b ' 0 0 0 

L z y - z - -b ' h ' 
0 0 

p - Po PRe p /1p - 2 ' -
Po p gh Fr 

0 0 

- -T - TE t~ 
11T t -

' 
-

2 ~ TE b 
A 0 

v 
~v y -

~' 6 - -
BH 

kb 
2 

u 
0 0 - -Ro 
~ ' 

Fr 
~ gho ' 

~ Pr -
' BH 

p
0 

= p(TE) and 

u - reference velocity , 
0 

u b 
Re 0 -

~ 

b - horizontal reference length , 
0 

h - vertical reference length , 
0 

~ - horizontal eddy viscosity , 

Ay - vertical eddy viscosity , 

BH - horizontal eddy diffusivity , 

BV - vertical eddy diffusivity , 
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TE - equilibrium temperature 

k - Coriolis parameter , 

f(~T) - equation of state and 
-

( ) - refers to dimensional quantity . 

The equilibrium temperature is defined as the 

temperature at the surface for which there is no heat 

transfer. 

The conservative form of the convect i ve 

is used as this has been found by Arakawa [3l] 

terms 

to be 

advantageous for numerical computations . The density 

is taken as only a function of temperature . The energy 

equation is nondimensionalized in terms of temperature 

differences . The effect of round- off error will be 

less in the evaluation of the derivatives if the dif-

ferences are used . 

The rigid- lid condition is difficult to apply 

in a numerical solution of the above system of equa­

tions . To alleviate this difficulty , an additional 

equation , a Poisson equation for the pressure , which 

contains the rigid- lid condition , can be derived . 

This is accomplished by taking the divergence of the 

vertically integrated horizontal momentum equations 

and using the vertically integrated continuity and 

hydrostatic pressure equations . The Poisson equation 
• lS : 

a 
- h 
dX 

d (jp s d 
+ - h - - - h -;;-t r2 ( o=O) ay ay o 

+ ( bo ) 2 .L (1 au) -(1 Y 
h

0 
dX h y dO o=l h 

au) 
ao · 

o=O 

0 2 d 1 dV 1 dV 
( b ) ( ) ( ) 

+ h
0 

ay h Y ao o=l - h Y ao o=O 

115 



1 

a I [ (1 ahu
2 

1 ahuv 
ax h Re h -ax- + h ay 

0 

ahuv 
ax 

1 ahv
2 

+ h ay 

anu) + aa + Rov -
1 .E_ h au 
h ax ax 

t.pdcr - a ~~ t.p)] do 

anv) + - Rou -
dO 

t.pdcr - a ~~ t.p)] do 

The term 

from the 

p 
s 

is the integration constant resulting 

vertical integration of the hydrostatic 

pressure equation and is the surface pressure , i . e. , 

the pressure at the surface z = 0 . It is a function 

of both x and y . This surface pressure can be 

interpreted in terms of the equivalent height of 

water above or below the surface z = 0 required 

to provide the prescribed pressure . In this way , 

surface displacements of water, neglecting gravity 

waves , can be compared between this rigid- lid model 

and the equivalent free surface model . 

The vertical velocity at the surface z = 0 

has not been set to zero in the right - hand- side of 

the Poisson equation for the surface pressure . This 

is because a corrective procedure[ 32 ] is used in the 
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numerical solution to eliminate accumulative error 

in the satisfaction of the continuity equation. 

The following boundary conditions are used with 

the above system of equations: 

River outflow 

Shore 

Bottom 

Surface 

Outer Boundary 

either au 
--0 
an 

u - gl(y,z) 

v - g2(y,z) 

~T - g3 ( y' z) 

u - 0 

v - 0 

a~T 

an - 0 

u - 0 

v - 0 

w - 0 

a~T 
0 -az 

au 
- T az wx 

av - T az wy 

a~T 
K~T -az 

w- 0 

or 
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av 
-= 0 an 

abT 
an - 0 

Pressure Conditions 

or 

or bT - f 
3 

~~ = integrated x or y momentum equation, 
specify pressure level at one point. 

The functional forms and are 

the specified velocity and temperature profiles across 

the river outfall. The bottom and shore are taken as 

no-slip, impermeable, insulated surfaces. A heat 

transfer condition proportional to the temperature 

difference[ 32 ] and a wind-dependent stress are imposed 

at the surface. The normal derivative pressure boundary 

conditions are derived from the appropriate vertically 

integrated momentum equation. The pressure must be 

specified at one point to make its solution unique. 

The boundary conditions applied at the outer x and 

y boundaries are either that the normal derivatives 

of the velocity and temperature are zero, or that the 

velocity and temperature are specified. 

146. The general arrangement of variables in the grid system for 

the plume model is almost identical with that used previously by Paul 

and Lick .. 26 The horizontal velocities are defined at integral nodal 

points, the vertical velocity is defined at half-integral nodal points, 

the temperature is defined at half-integral nodal points in the hori­

zontal and integral nodal points in the vertical, and the surface pres­

sure is defined at half-integral nodal points in the horizontal. Fig­

ure 29 indicates typical horizontal and vertical grid sections and 

shows the relative positions of the various variables. For the deri­

vation of the finite difference equations, variables are sometimes 
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required at points where they are not defined . In these circumstances, 

the undefined quantity is taken as the simple average of the neighboring 

values . 

147 . The Euler explicit time scheme is used exclusively in the 

present model in which the time derivative is written as a simple for ­

ward time difference and the rest of the equation is evaluated with the 

previously calculated values . 

148 . The following scheme is used for the solution of the differ­

ence equations for the plume model : 

a . It is assumed that values from the previous time step are 
available . 

b . The surface pressure is calculated with the right side 
of the equation evaluated from the previous time step 
values . 

c . The temperature is calculated by the explicit time 
scheme . 

d . The density is calculated from the equation of state . 

e . The horizontal velocities are calculated by the explicit 
time scheme . 

f . The vertical velocity is calculated by vertically inte­
grating the continuity equation from the bottom . 

£ · The present time step is now complete . 

At each time step the Poisson equation in the surface pressure has been 

solved . This is solved by the alternating- direction- implicit (ADI) 

th d 33 , 34 me o . 

149. After the temperatures are calculated by the explicit time 

scheme , they are checked to see if static stability is satisfied, i . e ., 

if the temperatures decrease monotonically downward (assuming that 

density increases with decreasing temperature) . When a static insta­

bility is encountered , an infinite mixing procedure is used . This 

procedure merely averages the temperature over an unstable region . 

150 . The thermal plume model has been applied for the Point Beach 

Power Plant thermal outfall and for the Cuyahoga River entering Lake 

Erie . In the vicinity of the inlet , the grid spacing is constant , then 

increases with distance from the inlet , and finally becomes constant in 

each direction . Such a grid system is used to pick up details of the 
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flow near the inlet where quantities change rapidly and to avoid an 

excessive number of points away from the inlet where quantities are 

changing much more slowly . Constant spacing is used in the vertical 

direction . 

151 . The vertical eddy coefficient is taken as dependent on the 

local vertical temperature gradient (aT/az) . The actual form used is 

similar to that used in an application of the numerical model to the 

wind- driven and thermally driven circulation in a small pond . 35 

A 
v 

aT 
- a - S az 

where a and S are constants dependent on the local conditions of 

the problem . The constant a is chosen so that in the absence of 

temperature gradients , the eddy coefficient is equal to that which would 

be used in a constant eddy coefficient model . 

152. The stress acting on the water surface due to the wind is 

calculated by the formulae developed by Wilson . 24 These formulae have 

been used successfully in numerical calculations of wind- driven circu-
22 23,35 lations in lakes and small ponds . ' 

153. The results obtained from the plume model for these two 

indicated applications appear reasonable; however , no comparison with 

prototype data is available . The complete lake and plume model has not 

as yet been applied to any actual physical geometries. 
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PART V: RECOMMENDED HYDRODYNAMIC MODELS 

Storm Surge 

154 . From a review of available literature , accurate storm surge 

surface elevations in lakes apparently can be obtained from the two­

dimensional depth- averaged models if a free surface boundary condition 

is used . If hydrodynamic quantities other than surface elevations are 

desired , however, the two- dimensional storm surge model is of little 

use and three- dimensional models must be used . The changes in circu­

lation patterns produced by structures can be obtained only from three­

dimensional models . 

155 . The three- dimensional models are usually more expensive to 

operate than the two- dimensional models . This expense suggests the 

use of two- dimensional models in the preliminary storm surge calcu­

lations followed by application of the three- dimensional models for 

final detailed analyses . 

156 . Several satisfactory two- dimensional storm surge models with 

a free surface condition are available . The three- dimensional storm 

surge model developed by Haq , Lick , and Sheng23 appears the most promis­

ing of a limited number of three- dimensional models and should be avail­

able in a matter of months with initial application to Lake Erie for 

storm Agnes . 

Wind- Driven Circulation 

157 . The two- dimensional models provide very little useful infor­

mation relative to lake circulation . The velocity predictions obtained 

from the two- dimensional models are interesting only in a rough, quali ­

tative manner . The detailed hydrodynamic variables required to deter­

mine the complex velocity structure in a lake can be obtained only from 

a three- dimensional model . 

158. The three- dimensional numerical models presently available 

and in the development stage by Dr . Wilbert Lick and associates at 
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Case Western Reserve University appear to be the most promising models 

for wind- driven circulation in freshwater lakes . These models are 

particularly appropriate for Lake Erie applications since the models 

have previously been applied to Lake Erie and much lake information is 

already available in a convenient format for input into the model. 

159 . A three- dimensional steady- state circulation model is pres­

ently operational at Case Western Reserve University . 22 This model has 

been applied to Lake Erie with some degree of verification based on 

prototype data . A three- dimensional stratified circulation model is 

presently under development and should be operational in the near 

future . 
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PART VI : MODEL VERIFICATION 

General Verification Procedures 

160 . A hydrodynamic mathematical model is a discretization of the 

actual physical system . As such , the mathematical model is somewhat 

limited in the resolution of actual physical details . In a mathematical 

model based upon finite difference techniques , any physical detail 

smaller than the grid size cannot be directly represented . In a similar 

manner , the results of the mathematical model cannot resolve small- scale 

local circulation patterns or eddies unless the condition extends over 

an area covering several grid points . In addition, since the depths are 

indicated in a discrete manner , the numerical model tends to smooth or 

average the bottom topography and eliminate local undulations . At the 

same time , changes in the boundary configuration are made in a step 

manner rather than a gradual change . 

161 . The mathematical modeler must therefore select a grid s1ze 

and orientation of the coordinate system that will allow the desired 

phenomena to be resolved . He must also use judgment and experience in 

the selection of system boundaries and the representation of the topog­

raphy . These details represent part of the "art " as opposed to 

" science" of mathematical modeling and must be accomplished prior to 

actually "running" the model . Unfortunately , although very important , 

these details are some of the lesser problems associated with mathe­

matical models . 

162 . The mathematical model formulation contains parameters that 

are not well defined quantities . Bottom friction , the horizontal eddy 

viscosity , the vertical eddy viscosity coefficient , and the wind speed­

surface stress relationship are examples of model input that are very 

much dependent upon the specific model application . The bottom friction 

is basically a function of the bottom surface, i . e . sand , mud, rubble, 

grass, etc . The eddy viscosity coefficients are functions of the degree 

of turbulence , the density variations , the wind condition , the local 

ship traffic , etc . The wind speed- surface stress relationship presents 
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problems primarily due to difficulties associated with extrapolating 

known wind conditions at some fixed land site to obtain a wind speed 

at some location in the lake . 

163 . The nature of the parameters in the mathematical model are 

such that model verification is required prior to using the model as a 

predictive tool . Order of magnitude values of the parameters are known ; 

however , these values are not sufficient for the model applications . 

The model parameters must be adjusted in such a manner that the numeri ­

cal model results agree with existing prototype conditions . Once agree­

ment with existing prototype condition has been obtained , the values of 

the parameters required to obtain the agreement are considered to be 

the appropriate values of the parameters . These values of the parame­

ters are then used when the model is applied to predict changes result­

ing from some proposed modification of the existing condition . 

164 . Sufficient prototype data for existing conditions must be 

known to allow the mathematical model to be verified . The degree of 

verification , and hence confidence , in the model results depend upon 

the amount of prototype data available for verification of the model . 

For complete model verification , prototype data should exist for all 

hydrodynamic variables under investigation , and the data should be 

available at a number of locations extending over the ar ea to which the 

model will be applied. If less than this amount of prototype data is 

available for model verification, a corresponding decrease in confidence 

in the model results must be accepted . 

Verification Status of Recommended Models 

Storm surge 

165 . The two- dimensional storm surge models are the most exten­

sively verified of the recommended models . While there are some differ­

ences between the various models , the basic formulation procedure is 

the same and similar results are obtained from all the models . The 

surface elevations predicted by the two- dimensional models have been 

compared with measured values for several actual storm systems . For 
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example , Platzman
14 

has investigated several extreme storm surge con-
20 

ditions on Lake Erie ; Paskausky 

surge associated with storm Agnes ; 

has investigated the Lake Erie storm 

and Re i d and Bodine
18 

have investi-

gated storm surge in Galveston Bay during hurricanes Carla (1961) and 

Cindy (1963) . The surface elevations predicted by the two- dimensional 

models display a reasonable agreement with measured tidal elevations . 

166 . The recommended three- dimensional storm surge model has been 

partially verified by application to Lake Erie during storm Agnes . 23 

The calculated and measured values for the surface displacement at 

Cleveland and at Port Stanley were found to be in good agreement . There 

has been no known effort to verify the calculated velocities , due pri­

marily to a lack of reliable prototype velocity data . 

Wind- driven circulation 

167. The recommended three- dimensional , steady- state , constant­

density model of Gedney and Lick
22 

has been verified to a limited 

extent. The model has been applied to Lake Erie for a constant wind 

condition and the calculated velocities compared with measured veloci­

ties observed whenever the wind was fairly steady for two or more days . 

The results show that the velocities vary greatly from position to 

position and depend strongly on the bottom topography and boundary 

geometry . The calculated velocities are compared with a limited number 

of continuous current meter measurements at 10 and 15 m below the sur­

face . Good quantitative agreement between the meter measurements and 

calculations were found to exist whenever the wind was fairly steady for 

two or more days . Qualitative agreement with lakebed drifter and sur­

face drift measurements has also been observed . 

168 . The three- dimensional, variable- density model , which is 

recommended, is not yet completely operational; and no model verifi -

cation efforts have been conducted . This model • 1s , however, an exten-

sian of a thermal plume model to which some verification efforts have 

been directed . 

169. The recommended models have not been verified to the extent 

needed for detailed quantitative results . This situation is particu­

larly true for the velocity fields predicted by the three- dimensional 
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models . Additional Lake Erie prototype data , especially for the region 

near Cleveland , are required to verify the models and to enhance their 

operational mode as a predictive tool . 
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PART VII : RECOMMENDED PROTOTYPE DATA ACQUISITION SYSTEM 

Prototype Data Requirements 

170. A review of available data by WES as a part of the Lake Erie 

International Jetport Model Feasibility Investigation indicated that 

sufficient prototype data near Cleveland were not available to verify 

e i ther a physical or analytical lake mass circulation model . Other 

areas where insufficient data exist include wave regime definition , 

littoral transport , and harbor flushing . Limited current data are 

available at four stations near Cleveland for several months during the 

summer of 1965 , from a 1964- 65 Environmental Protection Agency (formerly 

the Federal Water Pollution Contr ol Agency) current metering pr ogr am . 

The data from these stations are not continuous over the recording 

period and, for three of the stations, are available for one depth only . 

171 . A prototype data acquisition and analysis program is proposed 

by WES to obtain sufficient prototype data for verification of analyti­

cal and physical circulation models of the effects of a jetport on the 

hydr odynamics of Lake Erie near Cleveland , Ohio . This program has two 

modes: (a) time- series data in the lake proper and (b) synoptic data 

near and in the commerical harbor and river navigation channel . For the 

time- series mode , water velocity , water temperature , mean water level , 

wave height , wind velocity , and air temperature will be monitored ; and 

in the synoptic survey , water vel ocity, water temperature , and dye 

concentration will be monitored . 

Proposed Time- Series Data Acquisition System 

172. In the time- series mode of data acquisition , the hydrological 

parameters to be recorded are the x- y components of water and wind ve­

locities, water and air temperature, wave height , water elevation, and 

barometric pressure . A data acquisition system to collect these data 

can be subdivided into the transducer conditioner , transmitter , re­

ceiver , conditioner for recording , and recorder subsystems . 
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173 . Four instrument towers are proposed to be installed in Lake 

Erie near Cleveland . The transducer , conditioner , and transmitter sub­

systems are to be mounted on these towers and shall be capable of oper­

ating at rated specifications in the ambient environmental conditions . 

Location of the towers and the instrumentation to be attached to each 

tower are shown in Figures 30 and 31 . The towers will be similar in 

configuration and brac ing to triangular communication towers mounted on 

land . They will be 80 ft in height and installed in a water depth of 

about 60 ft . Two sets of guy wires will be included as shown in Fig­

ure 32 . The power requir ements shall be kept at a minimum to ensure 

the longest battery life possible . The analog output of the velocities 

and temperature transducers shall be digitized and conditioned for radio 

transmission . 

174 . The receiver , conditioner for recording , and recording sub­

systems shall be located in an office area where air conditioning , 

regulated power , and general laboratory conditions are available . These 

subsystems need meet only laboratory type specifications . 

Specifications for transducers 

175 . The transducer subsystem will require various sensors that 

are specialized to collect the required data at specified sampling rates . 

Such instruments are highly specialized and will be d i scussed below as 

to the required data types . 

176 . Water velocity . A magnetic current meter capable of measur­

ing the x - y components of the water velocity shall be used . This type 

meter was selected because of its small size , accuracy , and no moving 

parts , which would requ1re constant attention . The meter range is 0 to 

+ 10 fps + 0 . 07 fps or 2 percent of reading . Increased accuracy to 

+ 0 . 02 fps can be obtained at additional cost . The resolution shall ·be 

0 . 03/IT fps where T is the time constant . The standard time constant 

is 1 sec with optional values from 0 . 2 sec to 20 sec . There shall be 

a recorder output of + 5 v full scale . The current meter sensor , which 

will be mounted vertically, is approximately 10- 1/2 in . long and 1 in. 

in diameter . 

177 . Wind velocity. The wind velocity shall be measured with two 
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perpendicularly mounted propeller- type anemometers that respond only to 

that component of wind parallel with its axis of rotation. When the 

wind is exactly perpendicular to the axis of the propeller, it will stop 

rotating . The propeller responds as a function of its orientation to 

the wind; this response very closely approximates the cosine law . Each 

sensor measures both forward and reverse air movement, providing a 

signal whose magnitude is proportional to propeller speed and whose 

polarity indicates direction . The range shall be 90 mph head on and 

70 mph at all angles . The threshold shall be 0.3- 0 . 5 mph . The pro­

peller shall have 0 .96 revolutions per foot of air movement . The 

d - c tachometer output shall be 
0 0 

+500 mv DC at +1800 rpm . 1. 

178 . Water elevation . The water elevation transducer shall con-

sist of a mechanically driven encoder , a float, tape, pulley, and 

counterweight . The float shall operate in a cylinder that is vented 

to the lake through a small hole near the bottom of the cylinder . The 

water level in the cylinder is the mean water elevation of the lake and 

will not vary with wave action . As the water level changes, the float 

system rotates the encoder input shaft. The encoder shall have binary 

coded decimal output with a resolution and accuracy of one part in 

10 , 000 . Full range shall be 99.99 ft. 

179. 'Hater temperature . The temperature sensor shall be capable 

of measuring temperature over 0 4 0 a range of 0 C to 0 C to an accuracy of 
0 +0 . 15 c. The output of the device shall be no less than 1 v full 

scale . 

180 . Air temperature . The air temperature sensor shall be capable 
0 0 

of measuring temperature over a range of - 10 C to 30 C to an accuracy 

of +0 . 25°C . The sensor shall be mounted in a structure to shield it 

from direct sun . The output shall be 5 v full scale . 

181 . Wave height . Wave heights will be measured with two trans­

ducers, one at a shallow depth for small waves and one at a greater 

depth for large waves . Each wave height transducer will be an absolute 

pressure transducer. This transducer will have no moving parts exposed 

to the lake water. The pressure transducer will be encased in a con­

tainer 6 . 5 in . OD and 15 in . long. The pressure port will be in the 
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top of this container , and the case will be made of plastic or some non­

corrosive , nonmetallic material . The shallow- depth pressure transducer 

range will be 58 ft absolute, from which the barometric pressure must be 

subtracted, leaving about 25 

transducer range will be 116 

ft for wave variations . The greater- depth 

ft absolute , with about 80 ft for wave 

variations . The operating temperature will be 35°F to 75°F . The output 

will be 0 . 28 to 7 . 5 MHz with linearity and hysteresis being 0 . 05 percent 

of full scale from best straight line between 15 psia and full scale . 

The repeatability will be 0 . 02 percent full scale with a long- term accu­

racy of 0 . 25 percent . The frequency analog output will be connected to 

an above- the- surface unit that will convert the frequency to a 12- bit 

natural binary output . 

182 . Sampling rates . The sampling rates of each instrument will 

vary depending upon the phenomena to be sampled . The anticipated sam­

pling rates are as follow : 

a . Temperature . 

(1) Air: instantaneous value every 20 min . 

(2) Water : instantaneous value every 20 min. 

b . Velocity. 

(1) Air: 20- min average of 1- sec digital valves . 

(2) Water : 20- min average of 1- sec digital valves . 

c . Waves . 

(1) Deep : four per second for 20 min every 3 hr. 

(2) Shallow : four per second for 20 min every 3 hr . 

d . Lake level . Instantaneous value every 20 min . 

183 . Analog- to- digital converter (ADC) . The ADC converts the 

analog voltage outputs of the various transducers to a 2 ' s complement 

binary code . A 16- channel analog multiplexer will be an integral part 

of the ADC unit . The analog input levels are +5 v . The input im­

pedance will be 109 ohms . The transfer characteristics will have an 

accuracy and linearity of 0.023 percent full scale + least significant 

bit . The temperature coefficient will be no greater than 0 . 044 per-
o 

cent/ C. The acquisition time will be no greater than 150 ~sec . The 

system throughput rate will be no greater than 450 ~sec . The ADC unit 
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will operate from a 12- v storage battery . The binary output will be 

positive true logic and be transistor-true- logic compatible. 

184 . Conditioning and transmission . The output of the ADC will be 

connected to shift registers where it will be stored until ready for 

radio telemetry . The average values of velocity could be made at the 

transducer location and then conditioned and transmitted by radio te­

lemetry to the central station . Alternatively , the average velocity 

values could be made after transmission , if deter mined to be more feasi ­

ble and economical . The radio telemetry network shal l have the capa­

bility of multiplexing all data channels , either parallel or serial . 

Block diagrams of these systems are shown in Figures 33 and 34 . 

185 . Central station . The telemetry signals are received and con­

verted to a digital format compatible with a 1/2- in . magnetic tape re­

corder . These magnetic tapes will , in turn , be compatible with a large 

General Electric computer at WES and will be shipped to Vicksburg , 

Mississippi , at regular intervals for analysis and data reduction . All 

of the parameters shall be recorded on the magnetic t ape . There shall 

be a digital clock which shall keep time in day of the year , hour , 

minute , and second . This clock shall have a binary c oded decimal out­

put compatible with the magnetic tape recorder . The clock shall keep 

time for the entire system . From its output , timed sync signals shall 

be transmitted to the remote stations . These sync signals shall time 

the acquisition and transmission of data . 

186 . The velocity , temperature , water elevation , barometric 

pressure , and time data shall be printed out on paper for a "quick look" 

to determine if these channels are working . The water wave data will 

be recorded on a strip chart recorder . The strip chart recorder shall 

be turned on and off with the systems clock . A block diagram of the 

central station is shown in Figure 35 . 

Summary 

187 . The transducers have been given more time and consideration 

because it is felt that methods of detection and sensors are of prime 

importance . The technique and hardware for the conversion , handling , 

transmission , reception , and recording of these data can be designed 
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fully after a prototype study has been authorized. The block diagrams 

(Figures 33-35) depicting the initial concept of the acquisition system 

and the receiving and recording system at the base station are illustra­

tive in purpose, are preliminary in nature , and do not constitute the 

final design of the systems . 

Proposed S~noptic Survey 

188 . The parameters to be monitored in each of the two synoptic 

surveys are current velocity , water temperature, and dye concentration . 

Observations of these parameters will be taken at 2- hr intervals over 

a 12- hr period for 8 days . These data will be monitored at three depths 

for 32 stations . Location of these stations is indicated in Figure 36 . 

The stations will be marked by buoys anchored to the lake bottom . The 

surveys will be made during a typical spring or fall condition and 

during a typical summer stratified condition . 

• • 
• 

• 
•• • 
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• 
• • 
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Figure 36 . Location of synoptic survey stations 
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189. Dye concentrations during the survey will be obtained after 

point release of a known quantity of dye in the Cuyahoga River near its 

outflow into the harbor. The concentrations in water samples from each 

station will be determined using a fluorometer. Current velocity will 

be measured using low-threshold electromagnetic current meters (required 

for the low magnitudes of currents typical of the lake circulation). 

190. The prototype data monitored during the survey will be tran­

scribed from field observations to a format compatible with the WES 

computer prior to analysis of the data. Analyses of these data basi­

cally consist of determining the flushing rate and/or time required for 

conservative constitutents to move out of the present harbor, estimating 

local horizontal and verticaJ eddy diffusivity coefficients, and obtain­

ing statistical information on the movement of the outflow plume of the 

Cuyahoga River. 

191. As a part of the survey, surface temperature patterns and, if 

present, the location of the Cuyahoga River sediment plume, could be 

obtained by overflights conducted by the NASA Lewis Research Center. 

Initial inquiries by WES have been conducted with NASA to define WES's 

requirements and NASA's support capabilities for this survey. Initial 

efforts indicated an existing potential for cooperative efforts, but 

further study definition and coordination will be required in advance of 

any field study. 
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PART VIII : CONCLUSIONS AND RECOMMENDATIONS 

192 . Current state- of- the- art numerical models and numerical 

models that may become available in the time frame necessary for appli­

cation to the Lake Erie Jetport study can provide much useful hydrody­

namic information . The presently available seiche models and two­

dimensional wind- driven circulation models have been operational for 

several years and within their recognized limitations appear to yield 

valid information . A three- dimensional , constant- density , steady- flow 

model for Lake Erie was reported in the literature in 1972 by Gedney 

and Lick .
22 

Dr . Wilbert Lick and associates at Case Western Reserve 

University are working on three- dimensional storm surge models23 and 

three- dimensional variable- density models . 26 ,32 The three- dimensional 

storm surge models should be available in an operational form in a 

matter of months . The time schedule on the three- dimensional , variable­

density model is less well defined due to the complexity of the model ; 

however , it can hopefully be made available within the time frame when 

application to the jetport study will be possible . 

193 . In general , the numerical models have not been verified to 

the extent desirable . If they are applied to the jetport study , addi­

tional model verification will be necessary for which sufficient proto­

type data are not available . 

194 . The following recommendations are the result of the numerical 

model feasibility study : 

a . 

b . 

c 0 

d . 

Obtain for the jetport study operational mathematical 
models which have been recommended earl ier in this 
report . 

Insure the expedient development of needed three­
dimensional models , which are presently in a development 
state, by contracting with Case Western Reserve Uni­
versity to provide these models with preliminary appli­
cation to the jetport study . 

Provide the necessary prototype data for proper verifi ­
cation of numerical models (and/or future physical 
models) by initiating the prototype data acquisition 
program outlined earlier in this report . 

Estimate the effects of a proposed offshore jetport on 
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I 

storm surge and lake circulation in Lake Erie , particu­
larly in the vicinity of Clevel and, Ohio , by conducting 
the following recommended numerical studies : 

(1) Investigate th~ near- field and far - field effects of 
a jetport island on the steady- state wind- driven 
circulation in Lake Erie for well mixed (nonstrati ­
fied) lake conditions . Circulation patterns with 
and without a jetport should be defined for average 
and extreme winter wind speeds and several wind 
directions . 

(2) Investigate the effects of a jetport island on the 
storm surge along the shoreline from Fairport to 
Lorain , Ohio . Time- dependent wind fields for at 
least two severe storms on Lake Erie should be used 
to estimate surge elevation and velocity fields for 
well mixed lake conditions . 

(3) Investigate the effects of a jetport island on the 
stratified lake circulation (epilimnion and hypo­
limnion) around the jetport and in the Cleveland 
Harbor with typical Cuyahoga River outflows and 
steady- state , summer wind fields . 
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Table 1 

Relative Amplitude Comparison 

Observed Relative Computed Relative Location Amplitude* Am:Qlitude 
Buffalo - 0.70 - 0.72 
Port Colborne - 0.66 - 0. 69 
Dunkirk - 0. 66 - 0. 66 
Port Dover - 0. 60 - 0. 63 
Erie - 0. 50 - 0. 48 
Port Stanley - 0.19 - 0. 09 
Fairport 0.13 0. 09 
Erieau 0. 27 0. 21 
Cleveland 0. 25 0. 27 
Huron 0. 49 0. 54 
Port Clinton 0. 52 0.86 
Toledo 1 . 00 1 .00 
Monroe 0. 95 0. 99 

* Based on results of spectral analysis of observed lake level 
variations (Reference 9) . 

No 

No 

Table 2 

Periods for First Five Modes of Oscillation for 

Different Jetport Configurations 

Period hr 
Mode of Oscillation 

Configuration* l 2 3 4 

Jetport--Observed 14 . 38 9.14 5.93 4.15 

Jetport--Calculated 14 . 43 9. 22 6. 01 4. 31 

A 14 . 50 9. 28 6. 06 4. 32 

B 14 . 51 9 . 28 6. 05 4.33 

c 14 . 52 9. 28 6. 07 4. 33 

D 14 . 52 9. 27 6. 06 4. 33 

* Letters refer to configurations shown in Figure 5. 
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APPENDIX A: NOTATION 

A Surface area of Lake Erie 

[A) Square matrix whose order is equal to the number N of the 
interior grid points · 

Ae A divided into N subregions (elements) 

~ Horizontal eddy diffusion coefficient 

Av Vertical eddy diffusion coefficient 

b Horizontal reference width of river discharging the plume 
0 

B Bottom stress coefficient 

C Chezy coefficient 

[C) Vector column matrix containing the nonhomogeneous portion 
of the difference equations 

C* Resistance coefficient 

Cd Drag coefficient 

C Specific heat at constant pressure 
p 

D Frictional depth; water depth in Paskausky's model 

D ,D ,D 
X y Z 

f ' (T) 

f 
0 

g 

G 
w 

h 

h(x,y) 

Eddy diffusion coefficients of salinity in x , y , and 
z direction 

Horizontal Ekman number 

Vertical Ekman number 

Coriolis parameter 

Equation of state 

Coriolis parameter evaluated to mean latitude of Lake Erie 

Acceleration due to gravity 

Element slope matrix 

H/H , dimensionless depth 
n 

Water depth 

Al 



- e h Mean depth for each element 

h Vertical reference depth of river discharging the flume 
0 

H Characteristic length in the vertical direction 

[H] M x M square matrix of coefficients 

H Mean depth of Lake Erie 
m 

i Imaginary number 

i Unit vector in x direction 

i ,j ,k Indices of nodes of each element 

-+ 
j Unit vector in y direction 

-k Thermal conductivity 

K Coefficient of eddy viscosity or diffusivity 

[K] Element of stiffness matrix 

Kh Horizontal diffusion coefficient 

K Vertical diffusion coefficient 
v 

L Characteristic horizontal scale ; characteristic length in 
the horizontal direction 

m Nodal point 

M Total number of node points 

[M] Lumped mass matrix 

~ Horizontal mass flux 

M x - component of horizontal mass flux 
X 

M y- component of horizontal mass flux 
y 

n Unit normal to boundary 

n Manning friction factor 

[N] Interpolation or shape function 

A2 



N. 
l 

Value of interpolation 
index i and is equal 

(xj - xk)y]/2~ where 

function at element node with 
to [(~yj - xjyk) + (yk - Y.)x + 
" · J e u 1s the area of the element A • 

Similar expressions obtained by the cyclical permutation of 
i , j , and k 

p Pressure 

P Volumetr ic flow in the x direction 

Layer- averaged pressure of the layer 

Q Volumetr ic flow in y direction 

Q* 

Re 

R 
0 

s 

t 

-T 

Heat source and/or sink 

Real number 

Rossby number 

Salinity 

Time 

Reference time value 

Period of oscillation 

Absolute temperature 

T 
s 

Period of time during which intensity of wind stress 
increases linearly across the stress band 

u Velocity in x direction 

u Mean wind speed 

u ' Depth- dependent perturbations in horizontal velocity in 
x direction 

u x- component of depth- averaged , horizontal velocity 

uk Layer - averaged u- component of horizontal velocity 

UR Characterist i c velocity in Lake Erie 

v Velocity in y direction 

A3 



v ' Depth- dependent perturbations in horizontal velocity in 
y direction 

V y- component of depth- averaged, horizontal velocity 

-+ 
V Velocity normal to shoreline 

n 

V Constant translation speed of wind field 
s 

w Velocity in z direction 

Reference vertical velocity 

Wind velocity at a certain height above the water surface 

x,y , z Cartesian coordinates 

[Z) Modal matrix , where columns are eigenvectors { Z. } of [H] 
1 

Coefficients of Taylor ' s expansion 

r u + iv , a complex variable representing horizontal velocity 

s Surface displacement as a function of x and y 

sR 

n(x , y , t) 

Vertical component of vorticity 

Reference surface displacement 

Surface displacement as a function of time and space 

An eigenvalue expressed as w
2

/g ; nH/D a constant which 
is proportional to the ratio of water depth to frictional 
depth 

A' Function of both temperature and salinity 

[A] Diagonal matrix of eigenvalues 

~ Absolute viscosity 

v Coefficient of interfacial friction 

Wave amplitude 

p Density 

p Constant reference density 

p ' Departure from p depending on salinity 

A4 



Pa Density of the air; atmospheric density 

Depth- averaged density for the kth layer 

a Transformed vertical coordinate 

a Bottom friction coefficient 

T T 
~'~ 

T ,T 
X y 

T T xz' yz 

x- and y- components , respectively, of bottom friction 

Reference wind shear stress 

x- and y- components, respectively, of wind stress at the 
water surface 

x and y components of shear stress 

x- and z- components of shear stress interfacial 

x Functional integral 

[~] 

~(x , y) 

Volume transport stream function 

Vector column matrix for the stream function 

Mass flux stream function 

Angle between wind direction and y- axis 

Heat dissipation 

w 2 TI/T 

< > Points at which variables must be interpreted since they 
are not in the staggered grid 

A5 




