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PREFACE

The US Army Engineer Waterways Experiment Station (WES) was authorized
to conduct this study by the US Army Engineer District, Sacramento (SPK), by
Intra-Army Order for Reimbursable Services Nos. SPKED-F-82-2, SPKED-F-82-11,
SPKED -F-82-34, SPKED-F-83-15, SPKED-F-83-17, SPKED-F-84-14, and SPKED-D-
85-12. This report is one in a series of reports which document the seismic
stability evaluations of the man-made water retaining structures of the Folsom
Dam and Reservoir Project, located on the American River, in California. The
Reports in this series are as follows:

Report l: Summary Report

Report 2: 1Interface Report

Report 3

Concrete Gravity Dam Report

Report Mormon Island Auxiliary Dam Report

4
Report 5: Dike 5 Report
Report 6: Wing Dams Report

Report 7: Upstream Retaining Wall Report

The work in these reports is a joint endeavor between SPK and WES.
Messrs. John W. White and John S. Nickell, of Civil Design Section 'A', Civil
Design Branch, Engineering Division (SPKED-D) at SPK were the overall SPK
project coordinators, and contributed to the evaluation of the concrete grav-
ity dam. Messrs. Gil Avila and Matthew G. Allen, of the Soil Design Section,
Engineering Division Geotechnical Branch, (SPKED-F) at SPK, made critical geo-
technical contributions to field and laboratory investigations. Support was
also provided by the South Pacific Division Laboratory. The WES Principal
Investigator and Research Team Leader was Ms. Mary Ellen Hynes-Griffin, of the
Earthquake Engineering and Geophysics Division (WESGH), Geotechnical Labora-
tory (GL), WES. Primary Engineers on the WES team were Messrs. Ronald E. Wahl
and David W. Sykora, both of WESGH, Messrs. Vincent P. Chiarito, R. Stephen
Wright and Robert L. Hall of the Structures Laboratory (SL) at WES, and
Mr. Takashi Tsuchida, on temporary assignment to WES from the Port and Harbour
Research Institute, Yokosuka, Japan. Geophysical support was provided by
Mr. Jose Llopis, WESGH. Additional engineering support was provided by
Messrs. Richard S. Olsen, Joseph P. Koester, and Richard H. Ledbetter, all of
WESGH, and Ms. Wipawi Vanadit-Ellis of the Soil Mechanics Division (WESGE),

GL, WES. Large-scale laboratory investigations were conducted by
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SUMMARY OF STABILITY EVALUATION

The Folsom Dam and Reservoir Project is located on the American River,
20 miles upstream of the City of Sacramento, California. Based on geological
and seismological investigations in the region, the seismic threat was deter-
mined to be an earthquake of Local Mangitude 6.5, at a distance of 15 km, on
the East Branch of the Bear Mountains Fault Zone. The rock outcrop ground
motion parameters used in this evaluation were a peak acceleration of 0.35 g,
a peak velocity of 20 cm/sec, and a duration of ground motion above 0.05 g of
16 sec. The conclusions of this report concerning the earthquake safety of
key features of the project are:

A. Dike 5 and all other dikes are safe from liquefaction and excessive
deformation when subjected to the design earthquake motions and should perform
well in the event of an earthquake. Permanent deformations are expected to be
less than 0.5 meter.

B. The compacted core materials in the Wing Dams, in the vicinity of
the Wing Dam and Concrete Dam Interface and at Mormon Island Auxiliary Dam are
not susceptible to liquefaction and will retain most of their static shear
strength during and immediately after an earthquake.

C. The shells and filter zones of the Wing Dams are expected to remain
stable during and after the earthquake, but they may develop 15 to 30 percent
éxcess pore pressures on the upstream side. Permanent deformation of the
downstream shells should be less than 0.5 meter. The portion of Mormon Island
Auxiliary Dam founded on rock is expected to perform similarly.

D. Analyses of Retaining Wall B show that the wall may slide, but
earthquake-induced sliding is expected to be limited to less than 5 feet.

This corresponds to a drop in crest height of less than 2 ft which can safely
be tolerated in the embankment. In a worst-case scenario in which the retain-
ing wall was assumed to be destroyed it was determined that the embankment
slopes would be stable in the post-earthquake condition.

E. Mormon Island Auxiliary Dam will not be stable in the event of the
design earthquake. Extensive liquefaction is expected in the dredged gravel
foundation which underlies the upstream and downstream shells over an 800-ft
long section of the dam. The undisturbed gravel foundation, which underlies
the shells over an 1100-ft length of the dam, is still under study. Both

upstream and downstream slopes founded on dredged gravel are expected to

5
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SEISMIC STABILITY EVALUATION OF FOLSOM DAM
AND RESERVOIR PROJECT

Report 1: Summary Report

PART I: INTRODUCTION

1. This report summarizes the investigations and results of a seismic
stability evaluation of the man-made water-retaining structures at the Folsom
Dam and Reservoir Project, located on the American River, about 20 miles
upstream of the City of Sacramento, California. This seismic safety evalua-
tion was performed as a cooperative effort between the US Army Engineer
Waterways Experiment Station (WES) and the US Army Engineer District, Sacra-
mento (SPK). Professors H. Bolton Seed, Anil K. Chopra and Bruce A. Bolt of
the University of California, Berkeley, Professor Clarence R. Allen of the
California Institute of Technology, and Professor Ralph B. Peck, Professor
Emeritus of the University of Illinois, Urbana, served as Technical Special-
ists for the study. The Folsom pProject was designed and built by the Corps of
Engineers in the period 1948 to 1956, and is now owned and operated by the
US Bureau of Reclamation. The reservoir has a storage capacity of 1 million
acre-ft at gross pool and includes approximately 4.5 miles of man-made water
retaining structures that have a crest elevation of 480.5 ft above sea level.
At gross pool, Elévation 466 ft, there is 14.5 ft of freeboard. This pool
level was selected for the safety evaluation, based on a review of operation
procedures and hydrologic records for the reservoir which show that the pool
typically reaches Elevation 466 ft about 10% of the time during the month of
June, and considerably less than 10% of the time during the other months of
the year. Under normal operating conditions, the pool is not allowed to
exceed Elevation 466 ft. Hydrologic records show that emergency situations
which would cause the pool to exceed Elevation 466 ft are extremely rare
events. A location map and plan of the project are shown in Figures 1 and 2.

2. A seismological study for the Project was performed by Tierra Engi-
neering, Inc. (1983). The seismic threat was determined to be an earthquake
of Local Magnitude 6.5, at a distance of about 15 km, on the East Branch of
the Bear Mountains Fault Zone. The peak acceleration at the site was deter-
mined to be 0.35g, the peak velocity 20 cm/sec and the bracketed duration

(greater than 0.05 g) 16 sec. Two accelerograms that match these specified
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PART II: DIKE 5 STUDIES

Dike 5 Description

4. Figure 2 shows a plan of the 8 dikes, which have a total length of
11,655 ft. Dike 5 is the largest of these compacted earthfill saddle dikes,
all founded on weathered rock. As the largest, Dike 5 is more likely to have
water against its upstream slope and have saturated zones than the other
dikes, which are typically dry. Since all the dikes are essentially homog-
eneous in section, composed of compacted saprolite, Dike 5 is typical of the
sections for all the other dikes. Consequently, Dike 5 was selected for study
to represent the most critical case for all the dikes. Dike 5 has a crest
length of 1920 ft and haé a maximum height of 110 ft near Station 180+00. The
portion of the embankment whose foundation is above Elevation 450 ft is
founded on the Mehrten Formation, which consists of cobbles and gravel in a
somewhat cemented clayey matrix. This formation was not considered to be sus-
ceptible to liquefaction due to the clay matrix, the cementation, the age, and
the fact that it 1s unlikely to be saturated even with the maximum pool level.
It was not investigated further.

5. Below Elevation 450 ft, Dike 5 is founded on weathered quartz
diorite granite. The embankment is constructed of compacted decomposed
granite scraped from the saprolite exposures in Borrow Area No. 2 (see Fig-
ure 2) and suitable fine-grained materials from the American River channel.
The decomposed granite and the American River materials generally classify as
Silty Sand (SM) according to the Unified Soil Classification System (USCS).
The construction spec1f1cations required that the central portion of the
embankment section, Zone C, contain the finer soils (to the maximum extent
practicable) and receive more compactive effort than the upstream and down-
stream areas, Zone D. Seepage is controlled by a downstream drainage blanket.
A plan of Dike 5 is given in Figure 5, and a typical section is shown in

Figure 6.

Field and Laboratory Investigations

6. Undisturbed sampling with a Denison sampler and Standard Penetration

Tests (SPT) with trip hammer equipment were performed by WES near
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the input data for the column analyses. The stresses computed from both
accelerograms, referred to as Accelerogram A and Accelerogram B, were very
similar for the centerline column, as shown in Figure 12. Accelerogram A
resulted in somewhat higher stresses than Accelerogram B for the upstream
slope column, as shown in Figure 13.

9. The 1983 and 1984 cyclic strength charts from Seed's work are shown
in Figure l4a and 14b. Figure l4a shows the 1983 plot of cyclic strength ver-
sus normalized blowcounts, Nl’ for various earthquake magnitudes. This chart
was developed from data for relatively clean sands and shows that for M = 6.5
events, the cyclic loading resistance is about 20 percent higher, for any
value of Nl’ than for M = 7.5 earthquakes. Figure l4b provides data for silty
sands with different fines contents, expressing the cyclic stress ratio caus-
ing liquefaction (based on observations of liquefaction in the field), for a
confining pressure of about 1 tsf and for earthquakes with M = 7.5, as a func-
tion of the Nl-value of a soil corrected to a 60 percent energy level, (N1)60'
The cyclic stress ratios from Seed's charts are interpreted to correspond to
development of 1007 residual excess pore pressure. Using the results pre-
sented in Figure 14b, the required field blowcounts for safety factors of one
were calculated from the SHAKE results on the basis of the following:

2. The fines content of the silty sands in Dike 5 can be considered
to be about 15 percent for Zone D and 20 percent for Zone C.

b. The cyclic stress ratio required to cause liquefaction for
M = 6 1/2 earthquakes is about 20 percent higher than that
required for M = 7 1/2 events.

c¢. The blowcounts measured with a trip hammer are about 30 percent
lower than those corresponding to the (N1)60 values shown in
Figure 14b (Seed et al., 1984).

and d. Appropriate corrections must be applied to the cyclic stress
ratios determined from Figure 14b to allow for overburden pres-
sures greater than 1 tsf at depths greater than about 20 ft.
The factor Ko was used to reduce the cyclic stress ratios for higher confining
stresses in accordance with the relationship shown in Figure 15a from Seed and
Harder (1985). The factor CN for a relative density of 60 to 80 percent shown
in Figure 15b was used to normalize blowcounts to a confining stress of 1 tsf.
Values of the SPT blowcount, N, (as measured in the field with trip hammer
equipment) required to provide a factor of safety of one against liquefaction
(ru 1007) determined on these bases are plotted in Figure 16 for the center-

line and Figure 17 for the upstream slope. The measured field blowcounts are

11
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fundamental periods of the dam are computed from the response spectra for the
accelerograms, shown in Figure 4, The parameters listed in Table ]l were
determined by following the maximum acceleration and fundamental period calcu-
lations procedure.

14. These parameters were used to enter the Makdisi~-Seed charts for
dynamic response and displacement shown in Figure 23. From these charts, the
displacements plotted in Figures 24 and 25 were computed for upstream and down-
stream sliding surfaces. The displacements computed by this approach ranged
from 0.05 to 0.35 m, quite similar to those computed by the Sarma-Ambraseys
method.,

Stability Evaluation

15. The liquefaction potential analyses showed that significant excess
pore pressures will not develop as a result of the design earthquake. The
permanent deformation analyses showed that earthquake~induced deformations are
expected to be less than 0.5 m. Based on the method of construction, the
materials involved, the field and laboratory investigations, and the liquefac-
tion and permanent deformation analyses, it was concluded that Dike 5 will per-
form well during and immediately after the design earthquake. Since the other
dikes are founded on weathered rock, were constucted of the same materials and
in the same manner as Dike 5, and since they are typically dry and would not
be saturated at the time of an earthquake, it was further concluded that all
the dikes are expected to perform well during and immediately after the design

earthquake.

13
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Field Investigations

18. Undisturbed sampling with a Denison sampler and SPT borings with
trip hammer equipment were performed at 5-ft intervals at the centerline to
sample core material, and near the downstream edge of the crest to sample
filter and core material at two locations on the Right Wing Dam, near Stations
235 and 270, and one location on the Left Wing Dam, near Station 303. Fig-
ure 26 shows the locations of the field investigatioms. SPT'borings are
denoted SS and undisturbed borings are denoted US. Steel cased borings, shown
as SCB in Figure 26, were drilled with Odex equipment in the downstream gravel
shells. The Odex system consists of a downhole pneumatic hammer with an
expanding bit that pulls a steel casing behind the bit. When the casing is in
place, the bit can be retracted and withdrawn through the casing. The steel
casing used in these investigations had an inside diameter (ID) of 5 in. The
Odex system was selected for installation of cased holes for subsurface geo-
physical testing because it did not require grouting of the gravels, the dis-
turbance to the gravels was relatively minor, and several holes could be
installed within a single work day. Unfortunately, this system does not pro-
vide satisfactory samples of the subsurface materials.

19. The US, S8S, and SCB borings were drilled in pairs for geophysical
crosshole testing. Test pits, shown as TP in Figure 26, were excavated in the
downstream gravel shells at these locations to determine in situ densities and
obtain disturbed samples for laboratory testing. Pairs of undisturbed and SPT
borings were also drilled in core material at the interface area near Sta-
tions 285 and 299.

20. Typically, the SPT blowcounts in the core material exceeded 40 blows
per ft. There were two low blowcounts, 18 at 30 ft and 24 at 60 ft, observed
at Station 235 in the existing embankment material, but index tests later
showed higher fines content in these samples. Shear wave velocities in the
core ranged from about 900 to 1000 fps in the top 20 ft, to about 1100 to
1600 fps at depth. The average dry density from record samples of core mate-
rial was 127 pcf, and the total unit weight was estimated to be 142 pcf. Shear
wave velocities in the shell ranged from 850 fps near the surface of the slope,
to 1350 fps at depth. Large-scale in situ density tests on the gravel shell
and transition material showed average dry densities of 136 pcf for the Right

Wing Dam and 133 pcf for the Left Wing Dam.

15



g weiB010j000Y Joj BNOOdS OSUODSEs yum pPasedwod weq AJenixny puels| UOWIOW JO§ SPolad [BJUSWEDPUN) [BUI4 PUE [BIU] °ZL | ©nbig
ONTJ4HHO IN3J¥3d O ONH S°*2°0 ¥04 3AY¥ND

(SONOJ3S) 00I¥3d
00S"€ 000°€ 00S"2 0002 O00S'1 000°1 O00S°0 000°0

f T T T 1 0°0

ﬂ -
4 AL
g 4L°0 @
e Q
1] =
w
.u.. m
vl 3
2 m

(/7]
- —
3 412 B
e 4, * —
A =
-f —
g 482 @
HNY133dS 3ISNOJIS3IY 3IATIHIIY il w
WHY90¥31333Y -

g8 gy¥023Y
123rodd WOs104

(6v¥ uonelg) 26s £5°0
(ot uonieis) d28s S0
| -
wm
m




b. Calculate initial effective stresses in the shells with static
finite element analyses.

c¢. Calculate earthquake-induced dynamic shear stresses from
dynamic finite element analyses.

d. Compute safety factors against liquefaction from Steps a, b
and c above.

Each of these steps is described below.

Estimates of cyclic strength

23, Cyclic strength of the shell gravels of the Wing Dams was estimated
from in situ and laboratory tests performed on gravels from the shells and
foundation of Mormon Island Auxiliary Dam. These gravels are representative
of Zone B, the transition zone in the Right Wing Dam, and Zone E, the shells
of the Left Wing Dam. The shells of Mormon Island Auxiliary Dam are con-
structed of material from the same borrow pit as the shells of the Left Wing
Dam and in much the same manner, except lift thicknesses at Mormon Island were
18 in. and at the Wing Dams, 24 in. From construction records and photo-
graphs, the thin, loose rockfill, Zone A material, appears to be widely graded
with some fines. In these analyses, the Zone A material is assumed to have
the same cyclic loading characteristics as the Zone B gravels.

24. The results of in situ Becker Hammer Tests (BHT) conducted in the
shells at Mormon Island Auxiliary Dam were used to estimate cyclic strength of
shell gravels for the Wing Dams by translation of the Becker blowcounts, NB,
into equivalent SPT blowcounts (Harder et al., 1986), followed by application
of Seed's empirical procedure. The Becker Hammer field investigations and
cyclic strength determinations are described in more detail in the section of
this report on Mormon Island Auxiliary Dam. The equivalent (N1)60 values for
the Becker blowcounts in shell gravels averaged 23 blows per ft. The fines
content observed in the test pits ranged from 1 to 127 with an average of 57.
The test pits reached a maximum depth of 1l ft in the Right Wing Dam, 20 ft in
the Left Wing Dam, and 19 ft at Mormon Island Auxiliary Dam. Samples from the
Becker soundings at depths of 0 to 40 ft in shell material had fines contents
that ranged from 10 to 28% with an average of 157. Cyclic strengths for the
shell gravel were obtained from Seed's 1984 chart with an assumed average
fines content of about 87. This resulted in a cyclic stress ratio of 0.35

required to generate 100% excess pore pressure in 8 cycles (representative of

17
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28. A computed safety factor of 1.0 against liquefaction, FSL , corre-
sponds to a residual excess pore pressure ratio, Ru » of 100 percent. As
values of FSL increase, the corresponding values of Ru decrease. This
relationship was roughly estimated from the laboratory data. Values of FSL
less than 1.0 are interpreted as the development of Ru = 100%Z during the
earthquake, rather than towards the ead of the earthquake.

29. To demonstrate that the laboratory gradation and density are repre-
sentative of actual field conditione, they are compared with the gradations
and in situ density tests from Test Fits 1, 2, 3 and 4 in Figures 44
through 47. The laboratory gradation generally falls within the observed
gradation ranges shown in Figure 44 for the Right Wing Dam and Figure 46 for
the Left Wing Dam. In situ dry density was observed to change with variations
in gradation. The in situ dry demsities from the test pit data are plotted
versus the corresponding uniformity coefficient (Cu) from the individual
in situ density test gradations in Figure 45 for the Right Wing Dam and Fig-
ure 47 for the Left Wing Dam. Maximum and minimum densities were estimated
from laboratory tests for several gradations with different values of Cu.
Compaction molds of 18 and 36 in. diameter were used in these tests for gra-
dations with maximum particle sizes of 3 and 6 in., respectively. Both
vibratory and impact compaction metlheds were used for maximum laboratory den-
sity. It was found that the laboratcry compaction results underestimated max-
imum dry density, since a few in sirus dry densities exceeded the laboratory
maximum estimates. More representative values of maximum dry density were
estimated as the envelope of all laboratory and in situ results. Figure 45
indicates that the average relative density of the Right Wing Dam gravel shell
material (Zone B) is about 65 percent. Figure 47 indicates that the average
relative density of the Left Wing Dam gravel shell (Zone E) is about 60 per-
cent. The average relative density of the Mormon Island Auxiliary Dam shell
gravel is about 70 percent. The laboratory target dry density of 134 pcf was

selected to model relative densities observed in the gravel shells of both
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32. Evan's work (1987) also indicated that relative pore pressure
development behavior for isotropically consolidated specimens can be observed
in test results that are not corrected for membrane compliance effects.
Cyclic stress levels before the failure level (observed or extrapolated to
1007 in the membrane compliance affected test) at 8 cycles can be associated
wi;h lower excess pore water pressures. These lower cyclic stress levels are
normalized by the failure level to yield safety factors and are plotted with
their corresponding residual excess pore pressure ratios in Figure 52. Labo-
ratory test results on anisotropically consolidated specimens not corrected
for membrane compliance effects indicate higher residual excess pore water
pressures at a given factor of safety against liquefaction than isotropically
consolidated test results. Evan's work (1987) shows that these higher pore
pressures are not observed in anisotropically consolidated test results that
are corrected for membrane compliance effects.

Static finite element analyses

33. Static finite element analyses were performed to determine the pre-
earthquake vertical effective stresses and the initial static shear stresses
on horizontal planes throughout the dam. This information was used to calcu-
late values of o, the ratio of initial horizontal shear stress to initial
effective vertical stress,bso that the appropriate cyclic strength can be
associated with each element. The mesh was developed from a composite of sev-
eral cross sections along the axes of the Right and Left Wing Dams. The
tallest upstream slope occurs near Station 283 near the wrap-around of the
Right Wing Dam with the Concrete Gravity Dam. Only this section has been
analyzed. The field section and the idealized analysis section are shown in
Figure 53, and the finite element mesh used for both the static and dynamic
finite element analyses 1s shown in Figure 54.

34. The static analysis was performed with the program FEADAM, which
models construction of the dam with successive layers and uses a hyperbolic
stress-strain curve. Input parameters were estimated from field (shear wave
velocity and in situ density) and laboratory (drained and undrained triaxial
shear) tests. Table 2 lists the FEADAM hyperbolic input parameters for the
Wing Dam analyses.

35. Figure 55 shows the computed contours of initial vertical effective
stress, Figure 56 shows the computed contours of initial static shear stress

on horizontal planes, and Figure 57 shows contours of q.
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stress of 1 tsf) and a relative density of 70 percent. Since the Right Wing
Dam Zone B gravel actually has a lower relative density, about 65 percent, the
available cyclic strength can be estimated by proportionally adjusting the
value 0.35 to (0.65/0.70) x 0.35 = 0.325. This will result in an 8 percent
reduction in the safety factor values shown in Figure 62. With this adjust-
ment, the safety factors against liquefaction for the Right Wing Dam gravels
are typically greater than or equal to 1.4,

40. For the Left Wing Dam gravels (Dr‘z 60%), a similar adjustment
needs to be made to the available cyclic strength, (0.60/0.70) x 0.35 = 0.30.
This results in a 17 percent reduction of ;he safety factors against liquefac~-
tion shown in Figure 62. For the Left Wing Dam, all the sa%ety factors
against liquefaction are typically greater than or equal to 1.3.

- 4l. The initial fundamental period of the Wing Dam section analyzed was
estimated to be 0.28 sec from Sarma's approximation (Sarma, 1979). Figure 63
shows that the initial fundamental period of the dam falls well within the
high energy portion of the response spectrum of Accelerogram B. This means
that the section selected for analysis will undergo significant earthquake
loading in the numerical dynamic response analysis with Accelerogram B as the
input ground motion. Hence, the analysis section and Accelerogram B are well
suited for the seismic safety evaluation of the Left and Right Wing Dams.

42. During earthquake shaking, the embankment materials undergo shear
straining. Consequently, the shear modulus is reduced in the manner indicated
in Figure 59. The fundamental period of the dam increases as the shear modu-
lus decreases. The fundamental period of the idealized 2-dimensional section
after the earthquake was 0.83 sec, determined from the FLUSH output. Both the
initial and post~earthquake fundamental periods are shown on response spectra

for Accelerogram B in Figure 63.

Post-Earthquake Slope Stability

43. The post-earthquake slope stability of the shells was determined
by: (a) mapping the distribution of excess pore water pressures in the
upstream shell of the dams based on the relationship between factor of safety
against liquefaction and excess pore water pressure given in Figure 52 (the
higher Ru values for a > 0 were used in these calculations), and (b) computing

factors of safety against sliding with effective stress slope stability
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corresgonds to a factor of safety against liquefaction of about 1.3. This
corresﬁonds to a relative density of about 50 percent. For the deeper circle
shown in Figure 65b, the factor of safety against a slide is estimated to be
about 1.45 for the Right Wing Dam (relative density of 65%) and 1.40 for the
Left Wing Dam (relative density of 603%).

46. These studies indicate that the safety factor against sliding for
the Wing Dams immediately after the earthquake is above unity, and the most
critical surfaces are relatively shallow and do not cross the core of the dam
to daylight on the downstream slope.  Consequently, the Wing Dams are expected

to perform well in this failure mode.

Permanent Deformation Estimates

47. Excess pore water pressures will not develop in the downstream
shell of the Wing Dams because they are not saturated. A comservative perma-
nent deformation analysis was performed to estimate an upper bound on Newmark-
type deformations that could develop during sliding. In these analyses, yield
accelerations were computed for the upstream slope with a pool elevation of
466 ft, and with a 207 reduction in strength of the materials in the shells
and in the core. The program used was ARCEQS, based on Sarma's method. The
upstream slope at Station 285 with the pool at Elevation 466 ft was analyzed
rather than a downstream slope since it would represent the lowest possible
yield acceleration for any downstream slope. For symmetrical upstream and
downstream slopes, the yield acceleration, ky of a fully submerged upstream
slope is less than that of the downstream slope, and the ratio of the two
yield accelerations is approximately equal to the ratio of buoyant unit
weight, Yy » to total unit weight, Y, » @ value of about 0.5 to 0.6. For
the Wing Dams, the effect of submergence more seriously reduces computed val-
ues of yield acceleration than the relatively small difference in slope angle
(generally 1 V on 2.25 H for the upstream slopes and 1 V on 2.0 H for the
downstream slopes). As seen in the section on Dike 5, where the slope angles
are 1 V to 3.25 H upstream and 1 V to 2.25 H downstream, the largest permanent
deformations are generally computed for upstream surfaces. For Station 285, a
yield acceleration of 0.18g was computed for a deep circular surface passing
through the core and the upstream shell. Yield accelerations for other sur-

faces ranged from 0.9 to 0.29.
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deformation analyses, it was concluded that the Wing Dams will perform well

during and immediately after the design earthquake.
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subsurface conditions, specifically, the geometry of concrete pours and exca-
vated bedrock trenches at the bases of the enveloped monoliths. Construction
photographs also showed actual construction procedures, which were compared to
construction specifications for concurrence. In particular, these photographs
showed equipment and procedures used in the compaction of core material,
including material adjacent to the concrete gravity dam.

55. Following review of this information, there was some concern about
the adequacy of compaction in areas inaccessible to large equipment. These
areas were primarily located at the bases of the enveloped concrete monoliths.
Figure 69 is a photograph from construction dated 6 August 1953. It shows a
25-ft wide trench at the downstream bases of concrete monoliths 1, 3, 4,
and 6. Interviews with construction inspection personnel verified that

inaccessible areas were carefully compacted with hand-held equipment,

Field and Laboratory Investigations

56. To examine core material placed in contact with the end monoliths
at higher elevations, pairs of undisturbed and SPT borings were drilled at
either end of the concrete gravity dam. Figure 26 shows the locations of
these borings in plan and the sampled depths. Laboratory efforts were aimed
at index testing. The logs, index test results, and blowcounts for the SPT
borings are shown in Figures 70 through 73. The estimated N1 values typically
averaged about 30 blows per ft, and the index tests showed that the core mate-
rials were slightly plastic, with an average fines content of 20 to 25 percent

passing the No. 200 sieve.

Liquefaction Potential Evaluation

57. For non-plastic soils, an estimated value of (N of about 20 to

1)60
23 is required at this location. The dynamic finite element results from

Figure 61 were used to estimate required values of (N Although there are

1)60'
occasional measured values of (Nl)60 less than or equal to the required value,
it was concluded that in general, the core materials at this location were
adequately compacted. In consideration of the decomposed nature of saprolite,
the method of placement, the fines content, the plasticity of the fines, the

measured blowcounts, and the typically unsaturated condition of the core
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PART V: RETAINING WALL STUDIES

Retaining Wall Description

~59. Three retaining walls were constructed in the wrap-around area par-
allel to the river. Downstream retaining walls were constructed on both the
Right and Left wrap-around areas. Upstream, only the Right wrap-around area
required a retaining wall, denoted Retaining Wall B in Figure 26. Failure of
the downstream walls would not result in immediate, catastrophic loss of the
reservoir, consequently they did not receive further study. The upstream wall
is of concern since the embankment shell is saturated and the intake ports for
the powerhouse are located riverward of the wall, and could be blocked if the
wall and embankment slid due to the design earthquake. The seismic safety
evaluation of the wall was aimed at determining whether the integrity of the
embankment wrap-around was threatened if the wall were to fail. If excessive
sliding were to occur, the freeboard could be lost and the reservoir contents
could escape, leading to catastrophic failure of the dam.

60. Retaining Wall B is 406 ft in length, and the crest of the wall is
controlled by its intersection with the slope of the Right Wing Dam envelop-
ment. Detailed plans and sections of Retaining Wall B are shown in Figures 74
and 75. The wall's maximum height is 82 ft neér wall axis Station 0429, and
its lowest height is 27 ft at wall axis Station 4+35. Part III of this report
contains descriptions of the materials which form the backfill behind the
wall, specifically the Zone A rockfill, the Zone B gravel and the Zone C core.
Figure 76 is a construction photograph dated 16 April 1954 which shows the
completed wall with Zone A backfill in place. This photograph shows that a
two-lane construction road exists at the base of the riverward face of the
wall. Thus, the wall can undergo at least 20 ft of horizontal displacement
without falling into the river channel.

61. Horizontal displacements on the order of 20 ft or more, along with
a deep-seated sliding failure surface through the embankment fill would seri-~
ously threaten the integrity of the envelopment area and reduce the crest
elevation to the pool level. It is estimated that 10 ft of horizontal dis-
placement could safely be tolerated since this corresponds roughly to a 5 ft

reduction in crest height, leaving a freeboard of about 10 ft, and since a
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_friction angle at the base of the wall was conservatively estimated as
30 degrees.

65. A homogeneous backfill with a total unit weight of 152 pcf was used
in the Mononobe-Okabe calculations. The problem was solved as if the wall and
backfill were not submerged. Then the resulting yield acceleration, ky*, was
multiplied by the ratio of buoyant unit weight to total unit weight to deter-
mine ky’ the yield acceleration that accounts for the effect of submergence.
In this way, horizontal loads are computed with the total unit weight of the
backfill but effective or buoyant unit weight controls the vertical stresses
and hence shear strength along the critical sliding surface. The ratio of
buoyant unit weight to total unit weight is 0.6 for the Zon; A and gravel
transition backfill,

66. In the Mononobe-Okabe procedure, there is a condition that ¥y, the
arctan of- the horizontal seismic coefficient, must be less than or equal to
the friction angle, ¢, minus the slope angle, i. Values larger than this cor-
respond to a non-equilibrium condition, and backfill material would fail by
ravelling and sliding until the slope angle i was reduced to the limiting
value of ¢-y. Over the range of backfill strengths investigated, the condi-
tion that y be less than or eqﬁal to ¢~i was maintained for all computed yield
accelerations without changing the slope angle 1.

67. The backfill strengths were selected to correspond to excess pore
pressure levels uniformly distributed throughout the backfill. With no excess
pore pressure, r, = 0, the effective friction angle of the Zone B gravel and
that assumed for the Zone A rockfill is 43°, as presented earlier in Part III.
The simple p-q diagram construction shown in Figure 79 was used to determine
that backfill friction angles of 43°, 37.9°, 33.1° and 29.9° correspond to
excess pore pressure levels of 07, 107, 20%Z and 257, respectively. These
strengths were used to determine the yield accelerations listed in Table 3.

68. It was estimated in the Wing Dam studies that the upstream shell of
the Right Wing Dam may develop an average Ru about equal to or slightly less
than 24 percent. The minimum yield acceleration was ky = 0,025g, computed for
section A-A with an excess pore pressure field of 25 percent (¢ = 29.9°). The
corresponding failure surface is inclined at an angle of 34° which intercepts
the core as shown in Figure 80a. The minimum yield acceleration computer for
section C-C was 0.034 for the excess pore pressure field of 25 percent. This

failure surface is inclined at 34.5° and also intercepts the core, as shown in
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31.1° and ¢ = 0. This failure surface is inclined at 34° and intercepts the
core. A more representative, yet conservative UTEXAS2 analysis of section A-A
with a shell strength of ¢ = 29.9° and ¢ = 0, and a core strength of ¢ =0 and
¢ = 4000 psf (less than half the measured laboratory R-strength), resulted in
a yield acceleration of 0.073g and a failure surface that does not intercept
the core, but is confined to the upstream shell.

72. A degree of conservatism is called for in the analysis of Retaining
Wall B due to a lack of well-documented case histories of submerged retaining
walls subjected to seismic loading, variability in Newmark-type displacement
calculations, and uncertainties in the material properties of the embankment
fill, particularly Zone A, which construction records show is a rockfill with
considerable fines dumped in 12-ft lifts. In view of these uncertainties, and
to determine an upper bound for Newmark-type displacement of the wall and
backfill, the displacement calculations were carried out with ky = 0.025g,
with the understanding that the actual displacements in the field should be

less than the computed values.

Permanent Deformation Estimates

73. Earthquake-induced permanent displacements were estimated with
three methods: Makdisi-Seed, Sarma-Ambraseys and modified Richards-Elms. The
Makdisi-Seed and Sarma-Ambraseys methods explicitly include embankment ampli-
fication effects in the displacement calculations. The modified Richards-Elms
approach is more approximate with regard to ground motion amplification, but
due to the modifications developed by Whitman and Liao (1985) it quantita-
tively accounts for the many uncertainties in Newmark displacement calcula-
tions such as theoretical deficiencies in the sliding-block model, the random
nature of earthquake ground motions, uncertainty in parameters characterizing
the backfill, wall and foundation, and other, poorly understood deficiencies
of the simple sliding block model. Each of these methods was applied to the
retaining wall problem to estimate the range of earthquake-induced displace-
ments consistent with the conservatively computed minimum yield acceleration
of 0.025g. As discussed earlier, the wall and wrap-around backfill should be
able to easily tolerate displacements of about 10 ft.
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0.025/0.80 = 0.03. The corresponding upper-bound displacement is 7.2 ft.

With the compounded conservatism of lower-bound yield acceleration and upper-
bound seismic coefficient and displacement values, it is expected from this
application of the Makdisi-Seed procedure that movement along the failure sur-
face will occur, but be limited to less than 7 ft.

Sarma-Ambraseys calculations

77. This procedure involves the following parameters:

a. The yield acceleration, ky (fixed at 0.025)
b. The fundamental period of the system, To
¢. The amplification factor a, from which the maximum earthquake

seismic coefficient (A, defined as the maximum embankment
acceleration averaged over the sliding mass) is determined as
A = a x peak bedrock acceleration.

d. The ratio y/h as defined above. For this case, y/h = 1.0.

Values of amplification factor a were computed with SEISCOE for both earth-
quake records A and B for a range of fundamental periods, T0 = 0.1 to 4 sec.,
and are shown in Figure 20 for several values of y/h. The maximum value of a
from Figure 20 is 2.25 for y/h = 1.0, and occurs over the range To = 0.20 to
0.25 sec. The fundamental period of the Wing Dam section computed with FLUSH
was 0,83 sec. At To = 0.83 sec, the amplification factor a is 1.0. The fun-
damental period of the concrete gravity dam, including foundation stiffness
and the presence of the reservoir, is approximately 0.3 sec, and the corre-
sponding amplification factor 1is approximately l1.75. The maximum value of
a = 2.25 was used for the displacement calculations.

78. Newmark displacement charts were calculated for earthquake records
A and B for several values of ky/A, and are shown in Figure 19. For ky =
0.025 and A = 2,25 x 0.35 = 0.79, ky/A = 0.32. The corresponding chart dis-
placement, UC, is 91 cm (3 ft) for record A and 36 cm (1.2 ft) for record B.
The field displacement, Uf is calculated as a x a X Uc' The factor o is a
term from the solution to the equations of motion for relative displacement of
the sliding block (see Hynes-Griffin and Franklin, 1984), and is a function of
the inclination of the sliding surface (34°) and the friction angle of the
backfill (29.9°). The factor a is equal to cos(34° - 29.9°)/cos(29.9°) =
1.15. The resulting field displacement for record A is Uf =1.15 x.2.25 X
91 cm = 235 cm (7.7 ft), and for record B, Uf =1.15x 2.25 x 36 cm = 93 cm
(3 ft). As seen with the Dike 5 permanent displacement calculations, the
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Post-Earthquake Stability Studies

80. A study was made of the consequences of complete wall failure by
investigating two worst-case scenarios. In one case, the wall is assumed to
have toppled, and the backfill slope is still approximately 1 vertical to
2 horizontal but the shell strength is reduced to a residual value of 1800 psf
(based on an estimated (Nl)60 of 19 for the envelopment shell from adjusted
Becker data, and a corresponding residual strength from Seed (1986) shown in
Figure 115). In this extreme case, the slope has a factor of safety of 1,12
against post-earthquake sliding. In the other case, the retaining wall and
all of Zone A are assumed to be lost, leaving the gravel transition Zone B
exposed at a slope of 1 vertical on 1.5 horizontal, with a residual strength
of 1800 psf. In this extreme case, the factor of safety against post—
earthquake sliding was 1.07. Since the safety factors against liquefaction
typically exceed 1.4 in the Right Wing Dam, the post-earthquake stability of
the wrap-around slope will be greater than that for the residual conditions
listed above, and the deformations associated with development of soil

strength will be considerably less than those needed for residual conditions.

Stability Evaluation

81. The Makdisi-Seed, Sarma-Ambraseys and modified Richards-Elms '
approaches all gave earthquake-induced permanent displacement estimates of
Retaining Wall B and Right Wing envelopment fill of less than 10 ft. These
Newmark sliding~block analyses indicate that some damage to the wall is
expected but the deformations will be limited. Worst-case scenario investi-
gations show the slopes will be stable even with total failure of the wall.
Catastrophic loss of the reservoir is not expected as a result of the damage

to the upstream retaining wall and envelopment fill.
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the dam vary according to the foundation conditions, with the flattest slopes
in the vicinity of the dredged tailings. The downstream slopes of the dam

vary between 1 vertical to 2 horizontal and 1 vertical to 3.5 horizontal, and
the upstream slopes vary between 1 vertical to 2 horizontal and 1 vertical to

4.5 horizontal.

Field Investigations

85. Field investigations were concentrated at the tallest section of
the dam where the dredged tailings form the foundation for the shells. Field
investigation of the shell and foundation tailings was confined to the down-
stream area. It is assumed that the information observed downstream is also
representative of the material upstream of the core of the dam. The program
included SPT and undisturbed sampling of the core, geophysical tests, test
pits and shafts to obtain disturbed samples and determine in situ density, and
Becker Hammer testing. With the exception of limited surface geophysical test-
ing, the undisturbed alluvium was excluded from the investigations. The loca-
tions of the various field investigations are shown in Figures 85, 86 and 87.
The results of these investigations are discussed below.

SPT results in Zones 3 and 4

86. Two pairs of holes were drilled in the vicinity of Station 449+75.
Each pair consisted of an undisturbed hole, denoted US in Figure 85, spaced
10 ft along the dam axis from a SPT hole, denoted SS in Figure 85. Borings
US-6 and SS-6 were drilled through the Zome 4 core materials at the dam cen-
terline and borings US-7 and SS-7 were drilled at the downstream edge of the
dam, mainly through Zone 3 compacted decomposed granite. SPT samples were
obtained with trip hammer equipment and drilling fluid, and undisturbed sam-
ples were obtained with a Denison sampler. The blowcounts are shown in Fig-
ure 88. Record samples show the core is a mixture of clay, sand, and gravel.
The average core gradation has about 7 percent gravel, 57 percent sand, and
36 percent plastic fines. The average plasticity index is 20 and the average
liquid limit is 40. Record samples of the Zone 3 decomposed granite show an
average gradation of 7 percent gravel, 73 percent sand, and 20 percent silty.
fines with no to low plasticity, typically a liquid limit (LL) of 28 and a
plasticity index (PI) of 4.
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90. The test pits reached a maximum depth of about 8 ft in the dredged
tailings. The materials were oven~dried to determine in situ dry densities.
Several of the observed gradations were reconstructed in the laboratory to
determine maximum and minimum dry densities. Since no well established proce-
dure exists to determine these values for gravels, both impact and vibratory
loads were applied to samples in a range of mold sizes from 11 in. to 36 in.
in diameter. The laboratory estimates of maximum and minimum density are
shown in Figure 92. Since several of the measured in situ dry densities
exceeded the laboratory maximum values, the maximum dry density was estimated
as an envelope of all the data. The relationship between maximum and minimum
dry densities and gradation, expressed by the uniformity co;fficient, Cu’ is
shown in Figure 92. It is estimated that the in situ relative density is
about 35 percent. Specific gravity tests were performed on the plus-No. 4 and
minus-No. 4 fractions. Both fractions had an average value of Gs equal
to 2.83.

91. The average fines content of the foundation gravel was 6 percent
(LL = 33, and PI = 15) for the first test pit series and 5 percent (LL = 29,
and PI = 11) for the second. Due to the method of deposition of dredged tail-
ings and the observations from construction, it is known that the fines con-
tent increases significantly with depth. Further evidence of this was provided
by the Becker Hammer samples discussed later in this section.

Test pits in downstream shell

92. A shaft approximately 15-ft deep was excavated in the downstream
shell to measure in situ densities and gradations of the Zone 1 gravel. The
range of these gradations is shown in Figure 93. The average of the founda-
tion gradations was almost identical to the average of the shell gradationms.
This combined average gradation, scalped to a maximum particle size of 3 in.
was used in subsequent laboratory tests. The test results indicate the
in situ relative density of the shell gravel is approximately 70 percent, as
shown in Figure 94. .The fines were found to be somewhat plastic, with average
plasticity index of 1l and liquid limit of 28. The average fines content was
about 5 percent. Both the plus-No. 4 and the minus-No. 4 fractions had an
average'GS equal to 2.83.

Becker Hammer tests

93. A detailed description of the Becker Hammer investigations is given

by Allen (1984). Summary details are described in this section. Figures 85
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representative of the dredged tailings beyond the upstream and downstream toes
of the dam. Beneath the dam, an increase in (N1)60 with depth was observed in
the foundation gravels (see Figures 95 and 96). It is estimated that the
foundation gravels have densified under the embankment load. The effect was
most pronounced in.the closed-bit sounding, BDT-3. 1In an effort to best
represent the field conditions, this strength increase was included in the
characterization of the foundation gravels beneath the embankment shells. The
higher foundation blowcounts observed in BDT-3 were extrapolated to other
locations beneath the shells by consideration of the vertical effective stress
contours from the static finite element analyses. Table 4 lists the estimated

(Nl)60 values and Figure 101 shows the assumed distribution of (N values

1)60
throughout the foundation gravels.

Liquefaction Potential Evaluation of Zone 4
Core and Zone 3 Filter Materials

98. Due to the plasticity of the fines, the high fines content, the
method of material placement, and the high degree of compaction of Zone 4,
this material was considered not to be susceptible to liquefaction and no sig-
nificant excess pore pressures are expected to develop in the core. The
Zone 3 decomposed granite filter is also well compacted and has a large fines
content. It was concluded from the studies on the Wing Dams and Dike 5 that
this material would also not be susceptible to liquefaction, and no signifi-

cant excess pore pressures are expected to develop.

Liquefaction Potential Evaluation of
Shell and Foundation Gravels

99. The steps to evaluate liquefaction susceptibility and post-
earthquake slope stability described in the Wing Dam Studies were also used to
evaluate the seismic stability of Mormon Island Auxiliary Dam. As mentioned
earlier, the shells of Mormon Island Auxiliary Dam were compacted in 18-inch
lifts and are denser than the Right and Left Wing Dam shells which were com-
pacted in 2 foot lifts.
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shell gravels with o equal to zero. The pore pressure curve for & = 0 shown
in Figure 52 was used to estimate Ru for the foundation gravels.

104. Consolidated undrained triaxial compression tests on laboratory
specimens compacted to a relative density of 40 percent show that the founda-
tion gravel has an effective friction angle of about 4l degrees before and
after cyclic loading.

Static finite element analyses

105. FEADAM was used to calculate the initial effective stresses in the
foundation and shells of Mormon Island Auxiliary Dam. In these analyses, the
foundation was first formed in layers to develop a level ground foundation for
the shells, but the excavated portion was not included, resulting in a notched
geometry. The embankment was then built up in layers to fill the excavation
and complete the dam. This simulated construction sequence improved the accu-
racy of the computed stresses. The mesh is shown in Figure 103, and the
hyperbolic input parameters are shown in Table 7. The reservoir and tailwater
loads are applied as nodal forces against the core. These loads are shown
schematically in Figure 104. The computed vertical effective stress contours
are shown in Figure 105, the horizontal effective stress contours are shown in
Figure 106, the initial static shear stresses on horizontal planes are shown
in Figure 107, and the o contours are shown in Figure 108.

Dynamic finite element analyses

106. The same mesh from the static finite element analyses was used in
the dynamic finite element analysis with the program FLUSH and Accelerogram B.
Preliminary SHAKE analyses indicated that Accelerogram B resulted in about the
same to slightly higher dynamic stresses than Accelerogram A. The distribu-
tion of shear wave velocities in the section was discussed earlier, and the
zones are shown in Figure 89. To develop appropriate input ground motions,
Accelerogram B, a rock outcrop record, was input to SHAKE to compute corre-
sponding bedrock ground motions at the base of a free field soil column taken
from the first column of elements in the finite element mesh. As with the
Wing Dams, the average sand modulus degradation curve was used. Figure 109
shows contours of computed maximum cyclic shear stresses on horizontal planes
multiplied by 0.65. The computed accelerations for several points in the sec-
tion are shown in Figure 110. The computed shear strain levels are shown in

Figure 111.
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Post-Earthquake Slope Stability

111. The safety factor contours from Figure 113 were associated with
corresponding residual excess pore water pressure ratios, Ru’ from Figure 52,
Contours of estimated residual excess pore pressure ratios are shown in Fig-
ure 114. The residual strength of the liquefied soils was estimated from
(N1)60 values from Seed's chart (Seed, 1986) shown in Figure 115, For the
portions of the embankment with safety factors against liquefaction greater
than 1.0, the residual excess pore pressures were used to estimate the avail-
able effective strength. The section was zoned with the strength parameters
shown in Figures 116 and 117 for post-earthquake slope stability analyses with
UTEXAS2,

112, Both upstream and downstream failure surfaces were investigated.
No cracks were incorporated in the computations. Since several surfaces have
safety factors against sliding less than one for both upstream and downstream
slopes, the objective in the search was to find the approximate location of
potential failure surfaces with safety factors against sliding equal to unity,
and thus estimate the volume of material involved in initial post-earthquake
sliding.

113. Figure 118 shows two post-earthquake failure surfaces computed for
the upstream slope. The safety factors against sliding (FPES) are 0.96
and 0.63. Surfaces passing through materials above and downstream of the sur-

face with FP = 0.96 have safety factors against sliding of less than one.

ES
Surfaces that are deeper and involve materials further downstream of the sur-

face with FPES = 0.96 have safety factors against sliding greater than one.

The surface with FPES = 0.96 deeply cuts into the core and exits approximately

at the pool elevation on the downstream slope. For general information pur-

poses, static safety factors against sliding before the earthquake (F ) for

STA
the same surfaces are also shown.

114. Figure 119 shows similar information for the downstream slope.
Surfaces that intercept material upstream of the post-earthquake sliding sur-

face marked FPES'= 1.02 have safety factors against sliding greater than one.

Surfaces that pass through materials shallower and downstream of the surfaces

marked FPES = 1.02 have safety factors less than one. The static (pre-

earthquake) safety factors are also shown. The critical surface, = 1.02,

FPES
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Stability Evaluation

118. Mormon Island Auxiliary Dam is 4820 ft long. From the right end
of the dam to Station 439, and from Station 458 to the left end of the dam,
the embankment dam is founded on rock. From similarity to the Wing Dams, it
is expected that these portions of Mormon Island Auxiliary Dam founded on rock
will perform well during and immediately after the earthquake. Although some
excess pore pressures may develop in saturated portions of the shells, they do
not pose a stability problem, and permanent deformations are expected to be
tolerable, less than 0.5 m.

119. From Station 446 to Station 454, the channel alluvium has been
dredged for its gold content, and this dredged material forms the foundation
for the upstream and downstream shells of the dam. Extensive liquefaction and
slope instability is expected in this portion of the dam and foundation.
Catastrophic loss of the reservoir is expected. Remedial or hazard-mitigating
measures should be enacted immediately.

120. No analysis has been made of the portion of the dam with shells
founded on undisturbed alluvium. Initial fundamental periods for these sec-
tions are estimated to range from 0.25 to 0.4 sec. This range brackets the
peak of the response spectra for Accelerogram B. Further field investigation
and analysis is necessary to determine whether the remedial work needs to
include the undisturbed alluvium in addition to the dredged tailings. As of
this writing, SPK has initiated this additional field work and complementary

laboratory work as part of the remedial action design process.
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lean and rich concrete are in very good condition and the aggregate is of very
good quality. Specimens for laboratory testing were selected from these
cores. A limited large-scale coring program was also carried out om the crest
and downstream face and in the galleries to obtain 12-in. diameter specimens
for laboratory strength testing.

124. Six NX-size core holes were drilled 20 ft into the foundation rock
from locations within the foundation grouting gallery. These locations are
shown in Figures 124 and 125. Table 9 lists the length of concrete and rock
obtained from these holes, as well as average core recovery and average Rock
Quality Designation (RQD). Inspection of the rock cores showed that the
granodiorite rock is only slightly weathered near the surfaze, and is gener-
ally unweathered below the top few feet of rock. Rock core recovery was typi-
cally 100 percent, with a low of 91 percent in one hole. Average RQD for the
cores indicate that the intensity of fracturing in the rock decreases (and RQD
increases) in going from the right abutment to the left abutment. Average RQD
values ranged from 36 (poor rock quality) to 96 (excellent rock quality).

125. Goodman Jack tests were performed in the NX holes to determine
in situ moduli at depth intervals of 2, 10 and 20 ft from the top of rock.
Modulus of deformation and modulus of elasticity were calculated from the
field measurements. The measured modulus of deformation ranges from 0.2 to
3.9 psi x 106, and averages about 1.65 psi x 106. The measured modulus of
elasticity ranges from 0.6 to 7.5 psi x 106, and averages about 2.1 psi x 106.
The modulus of elasticity of the rock was also estimated from the geophysical
data obtained at several locations along the embankment dams (Sharp and Curro,
1987). Based on the geophysical data obtained at this site and measured com-
pression-wave velocities at other similar sites, and published results of
modulus, unit weight, and Poisson's ratio, the compatible set of rock proper-
ties listed in Table 10 was determined. The geophysical test results and rea-
soning indicate the modulus of elasticity of the rock ranges from 5.8 to
11,0 psi x 106, with a best estimate value of 7.9 psi x 106. These values are
consistent with the in situ borehole jack measurements, since the geophysical
tests involve a higher loading rate and lower strain levels than the Goodman
Jack tests.

126. Static and dynamic laboratory tests were performed on 6- and
12-in. diameter samples of rich and lean concrete (summarized in Raphael,

1987). It was observed in the laboratory that 90 percent of the concrete
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predominant modes of vibration and to accurately evaluate the stresses
throughout the monolith. Since the critical tensile stresses in the dam
result entirely from the dynamic effects of the earthquake loading, the modu-
lus of elasticity for the concrete used in the analyses corresponds to the
dynamic value, 5.9 x 106 psi. Poisson's ratio is taken as the average of the
static and dynamic values, 0.19. The response analyses were conducted with
the three sets of rock properties shown in Table 10 to assess the sensitivity
of the results to the foundation stiffness.

130. Energy dissipation in the dam and foundation materials is repré-
sented by hysteretic damping with damping factor n. A constant hysteretic
damping factor ng = 0.1 for the dam concrete and np = 0.1 for the foundation
rock are assumed (Fenves and Chopra, 1984).

131. The absorptive nature of the reservoir bottom is characterized by
the wave reflection coefficient a. It is difficult to determine exact values
of a, since the bottom materials generally are composed of variable layers of
exposed rock, alluvium, and other sediments. For analysis of proposed or
recently impounded reservoirs, where sedimentation is slight, o = 0.90 or 1.0
is recommended. For older dams where reservoir bottom deposits are more sub-
stantial, a = 0.75 or 0.90 is perhaps more appropriate (Fenves and Chopra,
1986). Since Folsom Dam was completed in 1956, it is likely that a value of o
no greater than 0.90 is justified. However, given the uncertainty in the val-
ues of @, analyses using both a = 0.90 and 0.99 were conducted.

Earthquake ground motions

132. The two horizontal accelerograms provided by Bolt and Seed (1983)
for the seismic safety evaluation and designated elsewhere in this report as
Record A and Record B are designated in this section as EQIH and EQ2H, respec-
tively. The accelerograms are shown in Figure 3 and the response spectra are
shown in Figure 4. The peak acceleration of these records is 0.35 g which
occurs at 6.12 sec in EQlH and at 1.92 sec in EQ2H. Two vertical accelero-
grams, EQLV and EQ2V, were generated from the corresponding horizontal record
by increasing the frequency content by a factor of 1.5 and by multiplying the
amplitudes by 0.6.

133. Because the monolith geometry and static loading is nonsymmetric,
the static and earthquake-induced stresses on the upstream and downstream
faces are not equal. In one case, the earthquake-induced forces are directed

downstream in order to calculate the principal stresses in the dam. In the
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137. It is worthy to note that for all analyses, the latest time of
occurrence of the maximum principal tensile stress is 6.23 sec. It is clear
from this result that the 10.24 sec duration of the response history is satis-
factory. For these relatively stiff structures, the peak response is expected
to occur slightly later than the maximum ground acceleration which, for the
horizontal record of EQl, occurs at 6.12 sec. Since the horizontal acceler-
ations produce greater seismic effects than the vertical, the result that the
maximum stresses occur at 6.23 sec is consistent.

Analysis results

138. As indicated previously, a total of eight sets of ground motions
result when the different combinations of directions are considered for both
earthquakes. To assess the critical ground motion, analyses were made for
each set of foundation rock properties shown in Table 10. In these analyses,
the material properties of the concrete were an elastic modulus of 5.9 x
106 psi, a Poisson's ratio of 0.19 and a unit weight of 158 pcf. The reser-
voir bottom reflectivity was taken as 0.90 and the hysteretic damping factors
for the dam and foundation rock were 0.10. The results of these analyses are
summarized in Table 1l which shows the maximum principal tensile stresses on
the upstream and downstream faces. As shown in Table 11, the absolute maximum
stresses (identified by asterisks) for each foundation condition arise on the
downstream face. For the low foundation modulus, earthquake EQl, directions
H-V, produce a maximum tensile stress of 633 psi. For the intermediate and
high moduli, the critical ground motion is EQ2, directions -HV, and the maxi-
mum stresses are /27 psi and 916 psi, respectively. On the basis of these
findings, EQlH-V is used for further study for the low modulus foundation, and
EQ2-HV is employed for the average and high moduli.

139. Table 12 presents the maximum stresses which result for the two
reservoir bottom reflectivity values a = 0.90 and 0.99, for each foundation
modulus. Note that a = 0.99 corresponds to essentially a totally reflective
reservoir bottom. For comparison, the maximum stresses for a = 0.90 from
Table 11 are included in Table 12. The results in Table 12 show that the
greatest principal stress occurs for the case in which the foundation modulus
and reservoir bottom reflection coefficient are the largest. In recognition
of the age of the Folsom reservoir and the likelihood of substantive sedimen-
tation, the appropriate results to consider are those in which a = 0.90. For

the average foundation modulus (Case 3), Table 12 shows a maximum principal
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tensile stress. As indicated earlier, these stresses occur at a location of
73.8 feet down from the crest. Following the procedure of Mlakar (1986) and
employing the results of a recent probabilistic study of sliding blocks on
soil and rock sites (Lin and Whitman, 1986), the expected permanent displace~
ment of the cracked upper portion of the monolith is 6.3 inches, 1 percent of
the width of the monolith at the crack elevation. The conclusion is that even
if the monolith cracks completely through the section, the permanent displace-

ments are small, and the dam will remain stable.

Stability Evaluation

143. The analytical studies show that for the range of parameters most
likely to represent the conditions of the dam, foundation, and reservoir, the
computed earthquake~induced stresses in the monolith approach the apparent
tensile strength of the concrete when the gravity dam is subjected to the
design earthquakes. Even under the most unfavorable conditions, the analyses
indicate that if cracking occurs, it will be limited in extent and depth of
penetration. In the remote possibility of complete cracking through the mono-
lith at the location of the maximum principal tensile stresses, a sliding
block analysis indicates a small permanent displacement of the cracked upper
portion of the dam. Based upon these findings, it is concluded that the
Concrete Gravity Dam will maintain its structural integrity during and after

the design earthquake.
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Analyses of the Concrete Gravity Dam show that if cracking
occurs at all, it will be limited in extent and depth of
penetration. In the remote possibility of complete cracking
through the dam at the location of the maximum principal
tensile stresses, a sliding block analysis indicates a small
permanent displacement of the cracked upper portion of the
dam. Based upon these findings, it is concluded that the
Concrete Gravity Dam will maintain its structural integrity
during and after the design earthquake.
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Table 1

Parameter Values for Makdisi-Seed Fundamental Period

Estimation Procedure

Parameter Record A
Fundamental Period (TO) 0.34 sec
Maximum Crest

Acceleration (a__ ) 1.27 g
max
Strain Compatible
Damping (A) 13.5%
Strain Compatible
Shear Modulus (G) 2249 ksf

Strain Compatible
Shear Wave Velocity (VS) 790 fps

Record B

0.32 sec

1.11 g

12.6%

2456 ksf

790 fps
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Figure 88. SPT blowcounts measured in core (Zone A, Boring 8S8-6) and
fliter (Zone 3, Boring 88-7) materiais.



Table 3
Summary of Yield Accelerations for Retaining Wall B

Corresponding
‘ Residual Effective .
| Excess Friction Yield Accelerationm, ky (g)
' Pore Angle of AL -
Pressure Backfill* Section A-A Section C-C
' Mononobe- Mononobe-
| Ty ¢ (°) Okabe UTEXAS2%% Okabe UTEXAS2%**
‘ 0 43 0.15 0.13 0.15 0.16
10 37.9 0.10 0.11 0.11 0.125
20 33.1 0.05 0.08 0.06 0.09
25 29.9 0.025 0.06 0.03 0.065

* For gravel shell, C =0
** Core strengths are C = 0, ¢' = 31.1°.
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Table 8

Six-Inch Concrete Core Samples

Depth Lengths of Core Samples One Foot or Greater
Core_Hole1 (Feet) (feet)
1C-1 7.0 2.1, 2.9
1C-2 6.1 2.0, 1.2, 1.2
1C-2A 2.0 2.0
1C-3 6.0 1.7, 1.3
1C-3A 3.4 1.3, 1.4
1C-4 6.4 1.9, 1.3, 1.3, 1.7 )
1C-5 7.0 1.8, 1.0, 2.3, 1.7
1C-5%* 1.7 1.4
1C-5%A 3.6 1.6, 1.7
1C-6 6.4 1.9, 1.2, 1.8, 1.4
1C-7 10.8 1.5, 2.0, 1.1, 1.0
1C-8 8.7 2.3, 2.6, 2.0
1C-9 5.65 1.8, 1.5, 2.35
1C-~-10 8.4 1.8, 2.2, 1.0
1C-11 6.0 1.2, 1.8, 3.0
1C-12 7.5 1.7, 2.8, 3.0
1C-13 6.8 1.8, 3.2, 1.6
1C-14 6.9 1.8, 2.0, 3.1
1C-15 6.3 1.25, 1.75, 3.3
1C-16 12.8 1.2, 1.2,1.7,1.7, 1.0, 1.0, 1.0, 1.5, 1.5
1C-17 17.1 1.2, 2.5, 2.8, 1.4, 1.1, 1.3, 1.7, 2.7, 1.7
1C-18 10.8 1.8, 2.3, 2.5, 2.7, 1.4
ic~-19 15.9 1.9, 1.4, 1.7, 1.8, 1.5, 1.6, 1.4, 1.8, 1.7
1Cc~20 9.0 1.9, 1.2, 1.0, 1.9, 2.0
1C~20A 8.4 .7, 2.0, 2.4, 2.2
1C-20B 5.5 1.6, 1.5
1Cc-20C 4.1 1.0, 1.3, 1.6
1C-21 15.9 l.1, 1.2, 1.2, 1.4, 1.4, 1.4, 1.0, 1.0, 1.0,
1.4, 1.7, 1.2
Note

l. For hole locations refer to Figures 124 and 125.
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Table 10

‘Compression~ Total Unit
Wave Velocity Poisson's Weight Young's Modulus
Vp Ratio Y E
(fps) \Y _pef psi Remarks
14,000 0.30 167 5.8 x 106 Lower Bound
16,000 0.25 171 7.9 x 106 Average
18,000 0.20 174 1.1 x 107 Upper Bound
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Table 12
Summary of Maximum Principal Stresses:
Mg = Ng = 0.10

F
Foundation Modulus Reservoir Bottom Maximum Principal
Case (million psi) Reflectivity, o Stress (psi)
1 5.8 0.90 633
2 5.8 0.99 656
3 7.9 0.90 727
4 7.9 0.99 804
5 11.0 0.90 916
6 11.0 0.99 974
Table 13
Summary of Maximum Principal Stresses: EQ2-HV,
EF = 11.0 million psi, and o = 0.99
Fougi:;ig; stteretic D;:mHisteretic Maximum Principal
Case > F ping, ng Stress (psi)
1 0.10 0.10 974
2 0.25 0.10 814
3 0.25 0.14 738
4 0.25 0.20 636
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VARIATION OF PERMANENT DISPLACEMENT WITH
YIELD ACCELERATION - MAGNITUDE 6-1/2
EARTHQUAKE

Esbankment Characteristics for Magnitude €-1/2 Earthquake

Embankment Height Base Acceleration e L Kmax

Case ¢ Description (£e.) (g) ° (g) Symbol
1 Example Case 150 0.2 0.8 (a) 0.31 'Y
- slope = 2;1 {Caltech record) {b) 0.12 | ]
-k = 60
2max
2 Exarple Case 150 0.8 l1.08 (a) 0.4 °
- slope = 2:1 (Caltach record) (b) 0.18 a
-k, - 60 .
max
3 Example Case 150 6.5 0.84 {a) 0.133 [-]
~ slope = 2:1 (Lake Hughes record) (b) 0.16 a
- anlx = 80
4 Example Case 150 0.5 0.95 (a) 0.49 o]
« slope = 2-1/2:1 (Caltech record) (b) 0.22 A4
- kz = 80
H Example Case 75 0.5 0.6 (a) 0.86 [}
~ slope = 2:1 (Caltech record) (v} 0.26 a
-k = 60
_ . 2max

(@8] 1‘0 = Calculated first natural period of the embankment.

(2) k x = Maximum value of time history of:
{a) crest acceleration
(b) averagqe acceleration for sliding mass extanding through full height of
rmbankment .,

Figure 82. Variation of permanent displacement with yield acceleration for

Magnitude 6.5 earthquakes (from Makdisi and Seed, 1977).
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Figure 81. Locations of critical failure surfaces from UTEXAS2 calculations

for sections A—A and C—C with fu =25% in shell.
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Figure 80. Locations of critical failure surfaces from Mononobe —0Okabe
caleulations for sections A—A and C—C with r, =25%.
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Figure 3. Acceleration histories used in the analysis
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Figure 73. Summary of field and laboratory index data for Boring L—4, Leit Wing Dam Interface area
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Figure 69. Construction photograph FOL. 1256, dated 8/6/53 showing geometry of rock trench
at base of enveloped concrete monoliths, Right Wing Dam
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Figuré 20. SEISCOE amplification factors from records A and B for embankments
founded on rock :
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(1984) end Seed et al. (1970) with laboratory test data on Folsom gravels.
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Figure:24. Permanent displacements computed for potential upstream
failure masses using Makdisi-Seed Method , Dike §
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Figure 48. Cyclic strength envelopes for Folsom Dam.

Shell gravels determined from 6ycllc triaxial
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MAXIMUM INDUCED SHEAR STRESS, PSF
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Figure 37. Maximum earthquake-induced shear stresses In centerline profile of STA 235
of Right Wing Dam. -
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DEPTH, FT
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Figure 38. Maximum earthquake induced shear stresses in centerline profile at
STA 270 of Right Wing Dam.



SPT DATA FOR LEFT WING DAM
BORING SS~4 - STA 303
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Figure 43. Field observed blowcounts from Boring SS-4 compared with contours
of safety factor against liquefaction of 1.0 and 1.5.
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Figure 39. Maximum earthquake-induced shear stresses in centerllne profile at
STA 3083 of Left Wing Cam. -



SPT DATA FOR RIGHT WING DAM
o BORING SS~3 - STA 270

T
\\ \‘
B
| \\
20 Y >ﬂ
\\ \
\
\
\\' \ B<_
!
E ) 1 !
| 1
I Sl l“: \
N il e
0L 2 &
1] mll IR
0 60 |
\
\ \\ <
-
L
% \\ \ 1 e |
\
Lo B‘#
. -
!
100
0 20 4

60 80
BLOWS/FT

Figure 42. Field observed blowcounts from Boring SS-3 compared with contours
of safety factor against liquefaction of 1.0 and 1.5.
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Figure 40. Relationships between stress ratio causing liquefaction and (Nylgo—values
for silty sands with M=7 1/2 earthquakes (from Seed, Tokimatsu, Harder,

and Chung, 1984).
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Figure 41. Field observed blowcounts from Boring SS-9 compared with contours
of safety factors against liquefaction of 1.0 and 1.5.



