COASTAL RESPONSE TO A DUAL JETTY SYSTEM AT LITTLE RIVER INLET, NORTH AND SOUTH CAROLINA

by
Monica A. Chasten
Coastal Engineering Research Center
DEPARTMENT OF THE ARMY
Waterways Experiment Station, Corps of Engineers 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

March 1992
Final Report

Approved For Public Release; Distribution Is Unlimited

Destroy this report when no longer needed. Do not retum it to the originator.

The findings in this report are not to be-construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average i hour per response, including the time for reviewing instructionss searching existing data sources, 					
1. AGENCY USE ONLY (Leave	ank)	2. REPORT DATE March 1992	3. REPORT TYPE AND DATES COVERED Final report		
4. title and subtitle Coastal Response to a Dual Jetty System at Little River Inlet, North and South Carolina				5. FUNDING NUMBERS	
6. AUTHOR(5) Monica A. Chasten					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) USAE Waterways Experiment Station, Coastal Engineering Research Center, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199					ORMING ORGANIZATION ort number cellaneous Paper -92-2
9. SPONSORING/MONITORING US Army Engineer PO Box 919, Charl	istr	$\begin{aligned} & \text { Y NAME(S) AND ADDRESS(E } \\ & \text { rict, Charleston } \\ & \text { n, SC 29402-0919 } \end{aligned}$		10. SPC	SORING/MONITORING CY REPORT NUMBER
11. SUPPLEMENTARY NOTES Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.					
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.				12b. D	tribution code
13. ABSTRACT (Maximum 200 words) Little River Inlet is a shallow coastal inlet located on the Atlantic Ocean along the North Carolina-South Carolina border. Construction by the US Army Engineer District, Charleston (SAC) of a dual jetty system at Little River Inlet began in March 1981 and was completed in July 1983. An extensive monitoring program began in March 1981 to evaluate the performance of the jetty system and document its effect on local shorelines. The program included beach profile surveys, inlet hydrographic surveys, aerial photography, structural surveys, site inspections, and Littoral Environment Observation (LEO) data collection. The Coastal Engineering Research Center has conducted an analysis of the monitoring data collected at Little River Inlet between 1978 and 1989. The objectives of this analysis were to summarize initial beach and nearshore response to the project, and assist $S A C$ in developing dredged material management plans, Additionally, the option of opening the weir section of either jetty was evaluated, and recommendations were made on continued project monitoring.					
14. SUBJECT TERMS Inlet stabilization Jetties Tidal inlet					15. NUMBER OF PAGES 253
17. SECURITY CLASSIFICATION OF REPORT UNCALSSIFIED		SECURITY CLASSIFICATION Of THIS PAGE UNCLASSIFIED	19. SEC	CATION	20. LIMITATION OF ABST

PREFACE

The investigation summarized in this report was conducted by the US Army Engineer Waterways Experiment Station's (WES's) Coastal Engineering Research Center (CERC) through a reimbursable study for the US Army Engineer District, Charleston (SAC). Messrs. James Joslin and Millard Dowd were the SAC representatives involved in this study. Funds were provided by SAC.

Work was performed at WES under the general supervision of Dr. Yen-hsi Chu, Chief, Engineering Applications Unit (EAU), Coastal Structures and Evaluation Branch (CSEB), CERC; Ms. Joan Pope, Chief, CSEB; Mr. Thomas W. Richardson, Chief, Engineering Development Division (EDD); Mr. Charles C. Calhoun, Jr., Assistant Chief, CERC; and Dr. James R. Houston, Chief, CERC.

This report was prepared by the Principal Investigator (PI) of the reimbursable study, Ms. Monica A. Chasten, EAU, CSEB. Mr. Don Ward, Wave Dynamics Division, conducted the RCPWAVE and longshore transport analyses. Technical assistance with the data analysis was provided by Mr. Bill Birkemeier, Chief, Field Research Facility; Mses. Kelly Lanier and Karen Pitchford and Messrs. Joseph Curro, III and Darryl Bishop, all of CSEB. Ms. Lanier, Mr. Bishop, and Ms. Janie Daughtry provided assistance in preparing the manuscript and figures. Technical reviewers of the report were Dr. Yen-hsi Chu and Dr. Douglas R. Levin, Assistant Professor of Science, Bryant College, formerly of CERC. The assistance of Mr. Millard Dowd, SAC, throughout the study is greatly appreciated.

A special acknowledgement is extended to Mr. Perry Reed, Civil Engineering Technician, EAU, CSEB who performed much of the bathymetry analysis. Mr. Reed passed away on 4 January 1991.

Dr. Robert W. Whalin was Director of WES. COL Leonard G. Hassell, EN, was Commander and Deputy Director.

Page

PREFACE 1
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT 3
PART I: INTRODUCTION 5
Purpose. 5
Background 5
Physical Setting 6
Project Description. 8
Construction and Dredging History 10
Monitoring Program. 11
PART II: DATA ANALYSIS METHODS AND RESULTS 12
Beach Profile and Inlet Hydrographic Data 12
Historical Shoreline Change Maps 14
Aerial Photography 18
Wave Refraction Analysis 18
LEO Data 31
PART III: SUMMARY OF RESULTS AND DISCUSSION. 35
Longshore Transport Trends 35
Shoreline Response 38
Shoal and Fillet Volumes. 47
Jetty Scour and Channel Migration 48
PART IV: RECOMMENDATIONS 51
Dredged Material Disposal Options 51
Continued Monitoring Efforts 52
Continued Analysis 53
REFERENCES 54
APPENDIX A: BEACH PROFILES A1
APPENDIX B: POST-HUGO BEACH PROFILES B1
APPENDIX C: CUMULATIVE SHORELINE CHANGE C1
APPENDIX D: ABOVE-DATUM VOLUME CHANGE D1
APPENDIX E: BATHYMETRIC CONTOUR MAPS E1
APPENDIX F: NUMERICAL MODEL METHODOLOGY AND LONGSHORE TRANSPORT PLOTS F1
APPENDIX G: LITTORAL ENVIRONMENT OBSERVATIONS G1

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:
$\xrightarrow{\text { Multiply }}$
cubic feet
0.02831685
cubic yards
0.7645549
feet
0.3048
inches 2.54
miles
1.609347

To Obtain
cubic meters
cubic meters
meters
centimeters
kilometers

Figure 1. Study area location map

COASTAL RESPONSE TO A DUAL JETTY SYSTEM AT LITTLE RIVER INLET, NORTH AND SOUTH CAROLINA

PART I: INTRODUCTION

Purpose

1. The Waterways Experiment Station's (WES) Coastal Engineering Research Center (CERC) conducted an analysis for the U.S. Army Engineer District, Charleston (SAC) of the monitoring data collected at Little River Inlet, North and South Carolina from 1979 to 1989. The objectives of this analysis were to summarize initial beach and nearshore response to the Little River Inlet navigation project, and assist SAC in developing dredged material management plans. Additionally, the option of opening the weir section of either jetty was evaluated, and recommendations made on continued project monitoring.

Background

2. Little River Inlet is located on the Atlantic Ocean along the North Carolina-South Carolina border, approximately 23 miles* northeast of Myrtle Beach, South Carolina (Figure 1). The inlet is the ocean entrance to the towns of Little River and Calabash, the Atlantic Intracoastal Waterway (AIWW), and several tidal streams. The back bay serves as a safe coastal harbor for many private, recreational, and commercial fishing boats (US Army Corps of Engineers 1977). Little River Inlet is the only ocean outlet from the AIWW between Shallotte Inlet, NC and Georgetown, SC, a distance of 68 miles.

[^0]3. The inlet is part of the "Grand Strand," an area along South Carolina's northeastern shore consisting of 60 miles of resort beaches. Bird Island, an undeveloped privately-owned area lies to the northeast of the inlet. To the southwest is Waties Island, also privately owned and undeveloped.
4. Historical reviews of Little River Inlet are provided in Seabergh and Lane (1977) and Anders et al. (1990). The first survey of the area in 1735 noted that the inlet was just inside the South Carolina State line (U.S. Army Engineer District, Charleston 1971). Figure 2 indicates that the inlet remained relatively close to the state border (Seabergh and Lane 1977). The farthest known distance from the border was almost one mile west in 1873 (Figure 2). Subsequent shoreline configurations show an easterly migration of the inlet, and a post-1942 widening of the inlet. This increase in width may be due to a larger ebb tidal prism caused by the opening of the AIWW in the late 1930's (Seabergh and Lane 1977). Dynamic changes in the position of the main ebb channel and inlet shoals were historically experienced within the inlet opening. Frequent shifting and migration of the barred channel and extensive sand shoals made the inlet extremely dangerous for navigation. At times, controlling depth in the inlet was 3 ft or less at Mean Low Water (MLW). Due to the instability of the channel, sidecast dredge operations proved ineffective in providing safe navigation through the inlet.
5. Under Section 201 of the Flood Control Act of 1965, a project for the improvement and stabilization of Little River Inlet was authorized by Congress in 1972. Preconstruction planning began in 1974, and final plans and specifications were completed in 1980. Construction of a dual jetty system at the inlet began in March 1981 and was completed in July 1983.

Physical Setting

6. Little River Inlet is located within a geomorphic coastal zone termed the arcuate strand (Brown 1977). Landward,

Figure 2. Historical high water shorelines and inlet locations (Seabergh and Lane 1977)
the strand abuts a mid-Pleistocene beach ridge deposit (Ward and Knowles 1987). The coastline is relatively straight and interrupted by few tidal inlets.
7. Tidal inlet morphology along this portion of the Carolina coast is characterized as mixed-energy (Hubbard et al. 1979) trending toward tide domination (Davis and Hayes 1984). In a mixed-energy inlet, shoals located near the throat are separated by channels of variable depth. Prior to stabilization, the shoals at Little River Inlet were located slightly seaward of the inlet throat.
8. The mean tidal range for this region is 5.0 ft . This range lies within the overlap between the upper end of the microtidal envelope and the beginning of the mesotidal range (Davies 1964). The average significant wave height for the vicinity is approximately 1.8 ft (Jensen 1983). Little River Inlet is somewhat protected from waves generated from the northeast by the Frying Pan Shoals at Cape Fear, NC.
9. Little River Inlet is connected with a marsh area and the AIWW, which in turn is joined to the Waccamaw River. Fresh water inflow from this source averages $1,200 \mathrm{cu} f \mathrm{ft}$ per second, or 53.6 million cu ft per tidal cycle. The total pre-project tidal prism was 505 million cu ft (Seabergh and Lane 1977).

Project Description

10. The authorized stabilization project provides for an entrance channel 12-ft deep, 3,200-ft long, and 300-ft wide across the ocean bar, and an inner channel, 10-ft deep, 9,050-ft long, and 90-ft wide from the entrance channel to the AIWW. The channel is stabilized by two jetties, with sand transition dikes connecting the structures to the shore. A low weir section was built into each jetty, and then subsequently covered with armor stone (Figure 3).
11. Optimum design of the navigation project was determined through the use of a fixed-bed hydraulic model study (Seabergh

Figure 3. Little River Inlet navigation project and vicinity
and Lane 1977). This study examined alignment, length and spacing of the jetties, weir sections, current patterns and magnitudes, sediment movement patterns, effects on the tidal prism, and effects on bay salinities.
12. The two jetties are of typical quarrystone, rubblemound construction. Seven various sizes of stone weighing between 2.5 pounds and 8 tons were used to construct the jetties. The east jetty is approximately $3,300-f t$ long, and the west jetty is approximately 3,800-ft long. Both jetties include a sand dike to anchor the structure to the shore, a weir, and a sand-tight section joining the weir to the sand dike.
13. The hydraulic model study determined that a 1,300-ft weir section at elevation +2.4 ft MLW backed by deposition basins would be the most feasible plan for both jetties. As constructed, this 1,300-ft section was divided into a 650-ft sand-tight section connected to the shore and a 650-ft weir, in order to provide more control of sand overtopping the weir. However, the weirs were subsequently covered with armor units to an elevation of +8 ft MLW. The deposition basins were never dredged.

Construction and Dredging History

14. The first stone was placed on the east jetty 28 July 1981 and the last one was set on 8 June 1982. Initial dredging of the entrance channel to a 300-ft width and 12 -ft depth was performed between June and July 1982. This dredging effort removed $513,000 \mathrm{cu}$ yds of material from the channel, which was subsequently used to construct the west sand dike. Upon completion of the east jetty, construction equipment was mobilized to Waties Island. Stone placement for the west jetty began in June 1982 and finished in early June 1983.
15. Little River Inlet has been dredged only one time since the initial dredging of the channel. This dredging effort was accomplished between December 1983 and February 1984. The total volume removed from the entrance and inner channels was

264,000 cu yds. Most of this material was placed adjacent to the inner side of the west jetty due to migration of the channel towards the jetty.

Monitoring Program

16. The SAC began collecting pre-project baseline data at the Little River Inlet project in 1979. A formal monitoring program was initiated by SAC and CERC in 1981. The primary objectives of this program were to evaluate the performance of the jetty system and document its effects on adjacent shorelines.
17. The first phase of the formal monitoring program began in March 1981 and continued through February 1986. A reduced monitoring effort will continue through 1991. The two phases are summarized below.

Phase I

18. Phase I of the monitoring program consisted of:
a. Beach profiles (quarterly, 58 lines through October 1983, then 48 lines)
b. Inlet hydrographic surveys (quarterly)
c. Aerial photography of shoreline (monthly during and one year after construction, then quarterly)
d. Structural surveys (quarterly)
e. Site inspections (annual, by SAC/CERC personnel)
f. Littoral Environment Observations (LEO) (three sites daily)

Phase II

19. The reduced monitoring program consisted of:
a. Beach profiles (semi-annual, 48 lines)
b. Inlet hydrographic surveys (semi-annual)
C. Aerial photography of shoreline (semi-annual)
d. Structural surveys (annual)
e. Site inspections (annual, SAC/CERC personnel)
f. Littoral Environment Observations (LEO) (three sites daily)

PART II: DATA ANALYSIS METHODS AND RESULTS

20. The CERC has analyzed monitoring data collected at Little River Inlet between 1979 and 1989. This chapter briefly describes the data and the analysis methods used in this investigation. Due to the large volume of data, most results are presented in separate appendices. Limitations of the data and results are discussed in each of the respective appendices.

Beach Profile and Inlet Hydrographic Data

21. Beach surveys were taken along 58 profile lines until October 1983, and 48 lines for the remainder of the program. The profile lines are spaced at 200-ft intervals to approximately 3500 ft from the channel centerline on either side of the inlet (Figure 4). From there, profiles are spaced at 500-ft intervals for a short distance, and then 1000-ft intervals to a distance of about 2.6 miles from the channel centerline. Coverage continues with 5000-ft spacing east to Tubbs Inlet, and west across Hog Inlet to North Myrtle Beach. Starting locations and alignments of the profile lines are provided in Appendix A (Table A-1).
22. Profile data was obtained from SAC and entered into the Interactive Survey Reduction Program (ISRP) (Birkemeier 1984). A description of ISRP, the techniques used to analyze the data, and the plotted results are presented in Appendix A.
23. Hurricane Hugo made landfall on September 21, 1989, just north of Charleston, SC. Post-Hugo profile data (December 1989) at Little River Inlet was plotted separately since the data represents profile changes during an extreme event. Comparison plots were made using surveys from 1988 (Appendix B).
24. Also computed from the profile data were estimations of MLW and Mean High Water (MHW) shoreline change (Appendix C) and calculations of above datum volume changes (Appendix D).
25. The ISRP beach profile and inlet hydrographic survey data for specified dates were input into Radian Corporation's

Figure 4. Beach profile survey lines

Contour Plotting System (CPS-3). Bathymetric contour maps were then generated for annual spring/summer surveys between April 1981 and July 1988 (Appendix E).
26. Shoal and fillet volumes were then computed from the bathymetric maps using CPS-3. Five volume polygons were designated covering the fillets to the west and east of the jetties, a central ebb shoal area, and the shoal areas on the inner side of each jetty (Figure 5). Table 1 and Figures 6 and 7 show the results for each volumetric determination. Additional volume computations were made for the shoal on the inner side of the east jetty (polygon denoted East Inside) to determine potential sources of the shoal's growth. Temporal changes in the shoal size were correlated to changes in other inlet sand bodies that may be sources of sediment supply.

Historical Shoreline Change Maps

27. Maps delineating the shoreline at various points in time (1873, 1924/26, 1933, 1962/63, 1969/70, and 1983) were prepared by the National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), and the South Carolina Division of Research and Statistical Services (DRSS). These maps were then used by Anders et. al (1990) to analyze changes in shoreline position along the South Carolina coast over the past 150 years.
28. A brief review was made of relative historical information found in Anders et al. (1990). Shoreline change measurements were made for map transects corresponding to ISRP Lines 49 through 53 (see Figure 4), a suspected erosional area on the western end of Waties Island. These ISRP profile lines correspond to survey Stations $81+00 \mathrm{~W}$ to Stations $121+00 \mathrm{~W}$, respectively. In order to avoid potential scale distortions, measurements were made on the original mylars, and not on the maps published with Anders, et al. (1990).
29. Shoreline positions along the transects were digitized using a CALCOMP 9000 system, and shoreline changes between

Figure 5. Polygons used in shoal and fillet volume calculations

Table 1
Shoal and Fillet Polygons
Total Volume, million yd^{3}

Date	$\begin{aligned} & \text { West Fillet } \\ & (1,173,100) * \end{aligned}$	$\begin{aligned} & \text { East Fillet } \\ & (1,319,100) * \end{aligned}$	$\begin{aligned} & \text { Center Ebb } \\ & (772,500) * \end{aligned}$	$\begin{aligned} & \text { East Inside } \\ & (203,700) * \end{aligned}$	$\begin{aligned} & \text { West Inside } \\ & (204,900)^{*} \end{aligned}$
April 1981	6.2	4.8	3.3	2.7	1.8
May 1982	5.9	4.9	3.4	2.1	2.3
July 1982	5.5	4.8	3.4	2.3	3.0
May 1983	5.4	4.7	3.5	2.5	2.5
January 1984	4.6	4.5	2.6	2.4	2.4
May 1984	5.3	4.6	3.3	2.7	2.3
June 1985	5.0	4.7	3.1	2.8	2.4
June 1986	5.3	5.0	3.8	3.1	2.5
July 1987	5.5	4.6	3.3	4.1	2.5
July 1988	6.2	5.3	3.2	4.5	2.5

* $(\quad)=$ area, $y d^{2}$

Total Volume in Polygon (M. yd3)

Figure 6. Ebb shoal and fillet polygon volumes

Figure 7. Inner shoal polygon volumes
historical dates were computed. This process was repeated several times to improve quantitative accuracy. Table 2 and Figure 8 provide historical shoreline change analysis results.

Aerial Photography

30. Aerial photography, at a scale of 1 in . $=400 \mathrm{ft}$, of Little River Inlet and the adjacent shorelines was collected monthly during and for one year after construction. Aerials were then taken quarterly for the remainder of the first phase of the monitoring program.
31. Mosaics of the spring photography from 1979 to 1988 were constructed (Figures 9a through 9j). Shoreline change measurements from both the full-size photographs and the mosaics were limited to qualitative analyses, since discrepancies within the photography prevented confident quantitative comparison of the shorelines.
32. Aerial photography of Hog Inlet was visually examined relative to changes on the western end of Waties Island. The inlet has historically demonstrated significant shoreline changes on this portion of Waties Island (Anders et al. 1990). The position of the inlet thalweg and volume of material contained in the ebb shoals were qualitatively evaluated in relation to the beach profile data collected for this area.

Wave Refraction Analysis

33. A pre- and post-project refraction analysis was conducted using the numerical model RCPWAVE (Ebersole et al. 1986). The primary objectives of this analysis were to examine the wave climate in the inlet's vicinity and evaluate longshore transport trends, for both pre- and post-jetty conditions.
34. The Wave Information Study (WIS) conducted a $20-y r$ wave hindcast study for the Atlantic coastlines (Jensen 1983). Phase III WIS data from Station A3108, Sunset Beach, was used along

Table 2
Historical Shoreline Change Measurements
(Taken from Mylars used for NOS/CERC/DRSS maps)

ISRP LineNo.	Shoreline Change (ft)					
	Corresponding Station	1873-1925	1925-1934	1934-1962	1962-1970*	1970-1983*
54	131+00W	-150	+175	+110	E*	E
53	121+00W	-180	+270	+60	E	E
52	111+00w	-130	+300	-50	-75	-170
51	101+00w	+30	+240	-60	-100	-175
50	91+00W	+160	+230	-120	-130	-175
49	81+00w	+300	+230	-250	E	E

* Mylars of shorelines were not available, measurements were taken from the published maps (Anders et al. 1990). Because of the difference in source maps, quantitative comparisons of pre- and post-1962 values is cautioned.
** Measurements were not taken, general visual observations were made of the shoreline status ($\mathrm{A}=$ accreted, $\mathrm{E}=$ eroded, $\mathrm{S}=$ stable)

T-sheets/map from Anders et al. (1990)
Figure 8. Historical shoreline change for map transects corresponding to profiles on Waties Island

with bathymetric data from 1981 (pre-project), 1985, and 1988. A summary of the methods used to run RCPWAVE is given in Appendix F. Potential longshore transport computations were then based on equations found in the Shore Protection Manual (1984). The methodology used to calculate sediment transport, along with plots of annual and monthly sediment transport trends for 1981, 1985, and 1988, are also located in Appendix F.
35. The grid used for Little River Inlet covers an area 5.7 miles alongshore and 1.2 miles offshore (Figure 10). The grid is dimensioned into 200 cells (150 ft wide) along the coast (grid lines $i=1$ to 201, numbered from west to east) by 154 cells (75 ft wide) (grid lines $j=1$ to 155 , numbered from shore seaward). The jetties are located approximately between grid nodes i=94 and $i=102$.
36. The procedure used to calculate longshore transport in this analysis is considered more qualitative than quantitative. Due to the assumptions and limitations of the numerical model and methods used, results should be examined as a transport potential or trend over a range of cells. The jetties and local bathymetry in the vicinity of the inlets are not well interpreted by the model. Transport values in the immediate vicinity of these areas should be disregarded.

LEO Data

37. The LEO program was established by CERC to provide a means of daily monitoring of wave climate in a particular coastal region (Schneider 1981). Visual observations recorded for parameters such as breaking wave height, angle of wave approach, wave period, current direction and speed, and wind information.
38. LEO data was recorded almost daily by observers at three locations; Ocean Isle Beach, NC, Sunset Beach, NC, and Cherry Grove Beach, SC (Figure 11). Since access to both adjacent shorelines is difficult or restrictive, it was

Figure 10. Numerical model grid utilized in RCPWAVE analysis

Figure 11. Littoral Environment Observation (LEO) sites in the vicinity of Little River Inlet
impossible to establish a LEO site in the immediate vicinity of the inlet.
39. The CERC utilizes specially developed computer programs to analyze LEO data and compute statistics of various coastal parameters. LEO data summaries for the stations in the vicinity of Little River Inlet are presented in Appendix G. Included in these summaries are calculations of longshore transport using two different methods; however, these values are considered only qualitative estimates of transport trends at the LEO site (Schneider and Weggel 1980). The LEO data analyzed in this report were examined comparatively to support other data results.

Longshore Transport Trends

40. Historically, the direction of longshore transport in the vicinity of Little River Inlet has been highly variable making it difficult to define a dominant trend. Sediment transport rates and directions appear to vary both spatially and temporally in the vicinity of Little River Inlet. Local bathymetry and shoreline angle controlled drift reversals are common along the South Carolina coast; especially in the vicinity of tidal inlets.
41. A pre-project survey report (US Army Corps of Engineers 1977) estimated a gross transport rate of $300,000 \mathrm{cu} y \mathrm{y} / \mathrm{yr}$ with both northeastward and southwestward moving drift balanced at 150,000 cu yd/yr. This estimation was based on maintenance dredging records at sites such as Georgetown Harbor, SC and Masonboro Inlet, NC.
42. Longshore transport estimations made during project design concluded a gross transport rate of $300,000 \mathrm{cu} y d / y r$ with a net transport of $100,000 \mathrm{cu} y d / y r$ to the west (US Army Corps of Engineers 1977). This estimate was based on the geomorphology and historical evolution of the inlet, and on calculations made using wave data and visual observations at Holden Beach, NC, a site located approximately 15 miles to the northeast of Little River Inlet. Although this was the best available data at the time, these calculations are based on limited assumptions. In addition, Mad, Tubbs, and Shallotte Inlets are located between Holden Beach and Little River Inlet, and probably affect the local calculated longshore transport rates significantly.
43. Pre-project longshore transport analyses for Little River Inlet were also conducted in 1979 and 1980 at the Waterways Experiment Station for the US Army Engineer Division, South Atlantic. Based on hindcast wave climatology for three years (US Army Engineer Waterways Experiment Station, unpublished) and
preliminary Wave Information Study data (Corson and Resio, unpublished), both analyses showed this to be an area with extremely variable transport; but, with a slight net transport to the northeast. An additional analysis conducted by CERC in 1984 (Pope, unpublished) using WIS data (Jensen 1983), also concluded a net northeasterly transport for Phase III stations A3108 (Sunset Beach, NC), A3109 (Crescent Beach, SC), and A3110 (Myrtle Beach, SC).
44. Due to inconsistent longshore transport information, the RCPWAVE analysis presented in Appendix F was conducted to specifically examine transport trends for the pre- and postproject conditions. Determination of longshore transport trends assisted with the examination of beach and nearshore response to the project, and in the evaluation of the weirs of both jetties.
45. Pre-project RCPWAVE results show an overall dominance of longshore sediment transport to the northeast on Waties Island and a slightly less dominant transport to the northeast on Bird Island. Transport on Bird Island is sometimes variable and appears, on occasion, to be opposite to the dominant trends. These reversals tend to occur in the vicinity of Mad and Tubbs Inlets, and are not considered representative of the regional trend of longshore sediment transport.
46. Post-project RCPWAVE analysis results continue to show a general northeasterly longshore transport trend. Figure 12 is a typical plot showing this northeasterly transport trend. Again, transport values should be examined as a qualitative potential or trend over a range of cells. Analysis results also indicate that minor seasonal (September-November) reversals to the southwest may occur on occasion. These reversals may be caused by seasonal waves encountering different shoreline orientations caused by the growth of the west fillet on Waties Island. Geographical variations such as a bulge in the shoreline or change in shoreline angle can cause localized transport reversals by transforming the incoming waves.

NET SEDIMENT TRANSPORT FOR APRIL

47. Methodologies used to quantify longshore sediment transport have been inconclusive. From the RCPWAVE results, fillet volumes, LEO summaries, and other pre-jetty analyses of littoral transport conducted by WES in 1979, 1980 and 1984, there is strong evidence that longshore transport is variable; but, slightly dominant to the northeast. The collection of inshore, directional wave gauge data would improve longshore transport information.

Shoreline Response

48. Beach response to the Little River Inlet jetties was examined through the analysis of beach profiles, bathymetric contour maps, and aerial photography. Due to the large amount of data, overall trends were examined initially. Specific areas were then examined to define trends in more detail.
49. It should be noted that the study area was examined with a data set of beach profiles spanning over an 8 year period. In addition to the construction of a navigation project within this 8 year period, the presence of 4 tidal inlets within less than 7 miles of shoreline (Tubbs, Mad, Little River and Hog Inlets), makes this study area especially vulnerable to cyclic trends and short-term fluctuations. An estimate of the longterm, equilibrium shoreline and rates of change at this point would most likely be premature, and is difficult to separate from the short-term "noise" and initial responses due to jetty construction. Therefore, overall trends and coastal responses to the jetties are examined, without quantitative rates of change or future extrapolations.

Bird Island

50. The Bird Island shoreline between the east jetty and Mad Inlet exhibited an overall accretion of between 50 and 100 $f t$, and the profiles appear to have steepened slightly since jetty construction. This section of shoreline accreted steadily
until middle to late 1984, and then either remained relatively stable or eroded slightly. This initial accretion could be due to the attachment of a portion of the pre-jetty ebb delta, onshore migration of the offshore bar due to wave sheltering by the jetties, and/or stabilization of the east sand dike area. The relative stability of this shoreline may also be attributed to wave sheltering by the jetties and the variability of littoral transport in the Bird Island vicinity.
51. The portion of shoreline between Mad and Tubbs Inlets appears also to have accreted slightly, but is more variable due to its proximity to both inlets. It should be noted that ISRP Profile Line 9 lies immediately to the west and Profile Line 8 immediately to the east of Mad Inlet, accounting for the often dramatic changes seen on these lines.

Waties Island

52. The shoreline to the west of the jetties in the vicinity of ISRP profile lines 49 through 53 has previously been identified as a potential area of project-related erosion (Figure 13), with profile line 52 experiencing the worst recession. This area was examined in detail.
53. Historical shoreline change measurements taken along map transects corresponding to ISRP lines 49 through 54 (Survey Stations $81+00 \mathrm{~W}$ through $131+00 \mathrm{~W}$) show that the western end of Waties Island has naturally been unstable. Along these profile lines, the shoreline has exhibited an overall erosional trend since 1934 (Table 2 and Figure 8). According to Anders et al. (1990), the northeast side of Hog Inlet (western end of Waties Island) experienced $1,970 \mathrm{ft}$ of accretion from 1873 to 1933/34, over 1,380 ft of erosion through 1969/70, and then accreted 200 ft from 1969/70 through 1983. This area has been historically dynamic in nature, experiencing alternating periods of erosion and accretion, and has exhibited periodic trapping and bypassing of significant quantities of material via Hog Inlet.

Figure 13. Suspected erosion area on Waties Island
54. Analysis of the profile data collected in the monitoring program, also shows a dynamic shoreline on this portion of Waties Island. Shoreline changes for the MLW, +3- and $+5-f t$ (MHW) contours were computed to examine different portions of the profiles. The shoreline does not show a consistent erosional trend; but, appears to experience alternating periods of erosion and accretion (for example, see Figure 14). Each bar in Figure 14 represents the MHW shoreline change for ISRP profile line 52 (Station 111+00W) between the preceding survey date and the date where the bar is plotted. It should be noted that the major shoreline recessions are experienced during the fall and winter seasons. Cumulative shoreline change and above datum volume change plots (Appendices C and D) for several of the profile lines in this area tend to show a slight cumulative trend of erosion from approximately the winter of 1983 through the winter of 1987 (Figure 15). Although the beach experienced relative stability or periodic recovery during this three year period, it remained in a net eroded state relative to pre-winter 1983 conditions. The shoreline began to experience accretion from 1987 through the last regular survey date in 1988 (the survey in 1989 was post-hurricane). By 1988, the position of the shoreline in this area was approximately the same as the 1981 pre-project shoreline.
55. Tidal inlets strongly influence the dynamics of adjacent beaches and can cause significant fluctuations in these shorelines (Hayes et al. 1974; Fitzgerald et al. 1978; Fitzgerald 1988). Often, these fluctuations are periodic and associated with natural inlet bypassing of sediment. As evidenced by aerial photography and bar movement along the profile lines, the cyclic trapping and bypassing of large quantities of sediment by Hog Inlet, an unstabilized tidal inlet, appears to be significant to the trends of erosion and accretion on the western portion of Waties Island. This portion of the island appears to accrete periodically from the downdrift lobe of the Hog Inlet ebb delta welding to the beach face (Figure 16, also see Figure 9).

Figure 14. Mean high water shoreline change for ISRP Line 52 showing periodic fluctuations of erosion and accretion

Profile Line 52

Profile Line 53

Cumulative Shoreline Change (ft)

Figure 15. Cumulative shoreline change plots for two profiles on western end of Waties Island

Figure 16. Aerial photo showing ebb tidal delta system at Hog Inlet (February 1984)

Ebb tidal deltas represent a large sand reservoir, and slight changes in the size of the ebb delta can greatly affect the sand supply to nearby beaches (Fitzgerald 1988). From visual observations of aerial photography, wave transformations around the Hog Inlet shoals appear significant, and may also be a factor in the periodic erosion on Waties Island. Wave transformations due to the ebb shoal morphology may create a divergent nodal zone downdrift of Hog Inlet on the western end of Waties Island (possibly in the vicinity of ISRP profile line 52). Nodal zones downdrift of inlets have been observed to be regions of beach erosion (Ashley 1987; Farrell and Sinton 1983; Douglass 1991).
56. Based on an examination of profile data, aerial photography, longshore transport trends, and historical data from Anders et al. (1990), the periodic erosion occurring in this area is more likely due to the dynamic morphology of Hog Inlet and seasonal fluctuations, than due to effects caused by the construction of the Little River Inlet jetties. In most cases, the greatest beach recession is observed after the winter seasons, with periodic recoveries of the beach inbetween. Additionally, there has not been a significant increase in sediment in the updrift fillet on Bird Island. If the jetties were acting as a barrier to sediment supplying the western end of Waties Island, a larger accretion in the east fillet would be observed.
57. The shoreline reach closest to the west jetty (ISRP Lines 33 through 46) accreted dramatically since jetty construction. Most of this accretion is due to the onshore migration and welding of the abandoned (pre-jetty) ebb tidal delta. An additional sediment source for this area was the stabilization of the west sand dike area. These are discussed in the following section on shoal and fillet volumes.
58. Summarizing shoreline change over the study area, Figure 17 shows the net shoreline changes calculated between April 1981 (pre-jetty) through July 1988. Moving from left to right on Figure 17, the plot shows accretion immediately adjacent to Hog Inlet, relatively the same shoreline position on the

Figure 17. Mean high water shoreline change: April 1981 to July 1988.
western end of Waties Island, and then a major accretion in the fillet to the west of the jetties. East of the jetties, the shoreline appears to have accreted approximately 50 to 100 ft overall, with the exception of the profile line at Mad Inlet. This profile line showed major accretion, and is indicative more of a short-term fluctuation (shoal migration). Again, in only a 7 year time period, it is difficult to separate out the shortterm fluctuations and "noise" from the long-term trends; however, this figure gives an indication of the initial shoreline responses experienced since jetty construction. The cumulative plots in Appendix C provide more detailed descriptions of shoreline changes occurring between April 1981 and July 1988.
59. Total volumes of material in the fillets and shoals were computed utilizing the Contour Plotting System. Two areas showing the most accretion were the fillet to the west of the jetties (Figure 6) and the inside jetty shoreline of Bird Island, labeled East Flood (Figure 7).
60. The landward migration of the relict ebb tidal delta and stabilization of the downcoast sand dike are the causes of a major portion of the accretion in the west fillet (see Figure 9d through 9j). Because ebb tidal deltas form due to a balance of tidal and wave forces, confinement of flow between the jetties causes wave dominance of the adjacent pre-jetty ebb tidal delta. Landward bar migration occurs due to wave induced sediment transport. This response of the ebb tidal delta has been observed at other southeast inlets, and is discussed in Hansen and Knowles (1988) and Pope (1991).
61. By 1985, a portion of the abandoned ebb delta which had been trapped between the jetties during construction, had welded onto the western portion of Bird Island inside of the jetties (polygon denoted East Inside). This extent of this sand shoal began to significantly increase from 1987 to 1989. This shoal is probably receiving some sediment deposits from the channel eroding material off of the centrally located flood delta. Additionally, although the jetties have been sand-tightened, a small portion of this increase may be due to sediment passing through or over the jetties. Supplementary volumes were computed for this area in an attempt to determine the sources of this growth, and show that the major volumetric increase is due to the attachment and molding by waves of the old ebb shoal onto this portion of Bird Island. During a field investigation in May 1991, this shoal had developed a significant scarp and appeared to be experiencing erosion due to currents and tidal flow.
62. The dominant direction of littoral drift is to the northeast. With the frequent drift reversals, there still does not appear to be a significant building up the east fillet. If
the jetties were acting as a barrier to sediment supplying the western end of Waties Island, a larger accretion in the east fillet and along would be observed. Aerial photography and supplementary volume calculations indicate that the buildup of the inner shoal within the jetties is mostly due to migration and attachment of a portion of the abandoned ebb shoal. Some of this accretion may be due to wind-blown sand or sand passing from the east fillet through the east jetty; however, this amount is not significant enough to be the major source of sediment for the inside shoal.
63. Examination of volume calculations and hydrographic surveys shows that the ebb tidal delta appears to be slowly rebuilding off of the tip of the east jetty. This shoal is not yet apparent in the aerial photography, and ranges in depth between 8 - to $12-\mathrm{ft}$ below MLW.

Jetty Scour and Channel Migration

64. Sir ${ }^{\text {F }}$ the jetties were constructed, the channel has meandered and migrated relative to the constructed project channel. Scour holes have formed along the west jetty and at the east jetty tip (Figure 18), possibly due to the migrating channel. The scour hole along the west jetty has been documented to run within 50 ft of the toe of the structure to a depth of 25 ft MLW for approximately $2,000 \mathrm{ft}$ (US Army Engineer District, Charleston 1990). The scour hole at the tip of the east jetty is also approximately 20 to 25 ft deep. Comparison of bathymetric contour maps (Appendix E) shows that these scour holes began to develop just after construction was completed. A deep area on the order of 25 to 30 ft also exists further back in the inlet throat near the shoal on the inner side of the east jetty. This scour could possibly be the relict inlet gorge or due to the confluence of the two bifurcating channels that feed the inlet (Kjerve et al. 1979).
65. The SAC is monitoring the erosion and slope steepening at these scour locations in order to evaluate the condition of
and potential risk to the structures. A stability analysis was completed for the west jetty in February 1990. The results indicated an average existing slope of 1 vertical on 2.5 horizontal, with a computed factor of safety of 1.7. The required factor of safety is 1.5 ; corresponding to a minimum acceptable slope of 1 vertical on 2 horizontal. If increased erosion towards the jetty occurs, remedial measures will be required to insure the integrity of the jetty structures (US Army Corps of Engineers 1990).

Figure 18. Locations of scour at the Little River Inlet jetties

Dredged Material Disposal Options

66. The primary objectives of this analysis were to summarize beach and nearshore response to the Little River Inlet navigation project and assist SAC in developing disposal plans for maintenance material to be dredged from Little River Inlet.
67. From the most recent channel surveys, adequate navigable depths exist in the inlet; however the channel has migrated significantly. Based on depth alone, there does not appear to be a critical need for dredging operations within the inlet. If dredging of the inlet does proceed, several alternatives are available for disposal of the dredged material.
a. Beach nourishment for western portion of Waties Island (ISRP Lines 49 to 53 corresponding to survey stations $81+00$ to $121+00$ West). This analysis determined that the periodic erosion occurring at this section of shoreline was primarily caused by frequent trapping and bypassing of material by Hog Inlet and seasonal fluctuations. Placement of dredged material in this area is not an efficient method for disposal. Due to the dynamic nature of the area, the longevity and stability of the nourishment is at high risk. Due to the dominant northeasterly transport trend, this material may shift downdrift into the west fillet and may ultimately reenter the Little River Inlet channel. Also, dredging costs would be excessive since this area is approximately 2 miles to the west of the channel.
b. Placement of material directly to the east of the jetties on Bird Island. Although the direction of longshore transport in the study area is variable, it is slightly dominant to the northeast. However, the east fillet section of the Bird Island shoreline has in fact showed a net accretion over the entire monitoring period, therefore bypassing of the material or disposal of dredged material in this area does not appear to be necessary. Additionally, adding a significant quantity of material to this section of shoreline may effect the natural processes at Mad Inlet.
c. Placement of material in the scour hole at the east jetty tip and along the inner side of thewest jetty. The SAC performed a similar operation after
the December 1983 dredging of the Little River Inlet channel; however, the material did not remain in the scour hole for very long. This option would be a temporary solution to the scour hole problem; but, would not have great longevity and could cause problems with shoaling in the channel.
d. A redirection or modulation of flow through the channel. The deep area that exists adjacent to the inside jetty shoreline of Bird Island could possibly be a factor in the channel meandering in that direction, and then swinging back along the west jetty. Several alternatives may exist for using the dredged material in an attempt to redirect the channel and alleviate scour along the west jetty. Measurement of currents within the inlet system was conducted in May 1991, and analysis of this data would be required before this alternative could be fully defined. Inlet hydrodynamics may be used to evaluate a more stable position for the channel.
e. Stockpiling of the material. The dredged material can be stored in the sand dike areas for future use.
68. Stockpiling the material inside the jetties on the west side of the inlet (in the sand dike area) is the recommended disposal alternative. This analysis has concluded that there is no immediate need for beach nourishment due to project-related erosion. Since a hydraulic pipeline dredge will be used for this operation, material can easily be pumped into this area and stored for future use if it should ever be required. The potential effects of a dredging operation on the inlet system's stability is further justification to stockpile the sand and continue monitoring the project. This aspect is under additional investigation in Phase II of this analysis.

Continued Monitoring Efforts

69. Additionally, this analysis examined if any action should be taken to open the weir sections of either jetty. Due to the relative balance in the fillet and shoal system, there do not appear to be any apparent benefits from uncovering either of the weirs at this time.
70. Continued monitoring of the project at a minimum level is recommended to better define the long-term equilibrium response to the jetty construction. Monitoring should include annual beach profiles, annual aerial photography coinciding with the beach surveys, and periodic structural inspections and hydrographic surveys of the inlet. Continuation of the LEO program at the three sites in the vicinity of Little River Inlet is not recommended. Ten years of LEO data have already been collected, providing an adequate database for this type of information.
71. In addition to routine project monitoring, the collection of wave gage data would improve the accuracy of longshore transport information. Tidal current monitoring and delineation of the inlet hydrodynamics will aid in defining the dynamics of the channel migration and scour problem.

Continued Analysis

72. Subsequent discussions between SAC, CERC, and U.S. Army Engineer, South Atlantic Division representatives have indicated that the channel migration and jetty scour problems are important project concerns relative to dredging and nourishment operations. Additional analyses of the post-jetty thalweg evolution and stability, relative inlet hydrodynamics, and jetty scour have been recommended and approved by SAC.
73. Phase II of this analysis is to perform a reconnaissance level review of the inlet thalweg stability, and develop recommendations for an inlet maintenance and/or monitoring plan which will assist with the proposed dredging of Little River Inlet. These recommendations will attempt to minimize dredging requirements and maximize inlet stability, in order to reduce or prevent scour-induced damage to the jetties due to natural thalweg migration. The field investigation of tidal currents at Little River Inlet and a side-scan sonar survey were conducted in May 1991. Results of these analyses will be available in a subsequent report.

REFERENCES

Anders, F. J., Reed D. W., and Meisburger, E. P. 1990. "Shoreline Movements: Tybee Island, Georgia, to Cape Fear, North Carolina, 1851-1983," Technical Report CERC-83-1, Report 2, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Birkemeier, W. 1984. "A User's Guide to ISRP: The Interactive Survey Reduction Program," Instruction Report CERC-84-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Brown, P. J. 1977. "Variations in South Carolina Coastal Morphology" in Beaches and Barriers of the Central South Carolina Coast, D. Nummedal (ed).

Corson, W. D., and Resio, D. T. 1980. "Yearly Littoral Transport Statistics for Murrells Inlet and Little River Inlet," US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Davies, J. L. 1964. "A Morphogenic Approach to World Shorelines," Zeit, fur Geomorph., Vol. 8, pp. 127-142.

Davis, R. A. Jr., and Hayes, M. O. 1984. "What is a Wave Dominated Coast?" In: Hydrodynamics and Sedimentation in Wave Dominated Coastal Environments, B. Greenwood and R. A. Davis, eds., Vol 60.

Douglass, S. L. 1991. "Simple Conceptual Explanation of Downdrift Offset Inlets," Journal of Waterway, Port, Coastal, and Ocean Engineering, American Society of Civil Engineers, Vol. 117, No. 2.

Ebersole, B. A., Cialone, M. A., and Prater, M. D. 1986. "Regional Coastal Processes Numerical Modeling System: RCPWAVE-A Linear Wave Propagation Model for Engineering Use," Technical Report CERC-86-4, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Farrell, S. C., and Sinton, J. W. 1983. "Post-Storm Management and Planning in Avalon, New Jersey," Proceedings, Coastal Zone ' 83.

Fitzgerald, D. M. 1988. "Shoreline Erosional-Depositional Processes Associated with Tidal Inlets," in Hydrodynamics and Sediment Dynamics of Tidal Inlets, ed. D. G. Aubrey and L. Weisher, Springer Verlag.

Fitzgerald, D. M., Hubbard, D. K., and Nummedal, D. 1978. "Shoreline Changes Associated with Tidal Inlets Along the South Carolina Coast," Proceedings, Coastal Zone 178, American Society of Civil Engineers, San Francisco, CA.

Hanson, M. and Knowles, S. C., 1988. "Ebb-Tidal Delta Response to Jetty Construction at Three South Carolina Inlets," in Hydrodynamics and Sediment Dynamics of Tidal Inlets, ed. D. G. Aubrey and L. Weisher, Springer Verlag.

Hayes, M. O., Hulmes, L. J., and Wilson, S. J. 1974. "Importance of Tidal Deltas in Erosion and Depositional History of Barrier Islands," Abstracts with Programs, 1974 Annual Meeting, Geological Society of America, Miami, FL.

Hubbard, D. K., Oertel, G., and Nummedal, D. 1979. "The Role of Waves and Tidal Currents in the Development of Tidal Inlet Sedimentary Structures and Sand Body Geometry: Examples for North Carolina, South Carolina, and Georgia," Journal of Sedimentary Petrology, Vol 49, pp 1073-1092.

Jensen, R. E. 1983. "Atlantic Coast Hindcast, Shallow Water, Significant Wave Information," WIS Report 9, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Kjerve, B., Shao, C. C., and Staper, F. W. Jr. 1979. "Formation of Deep Scour Holes at the Junction of Tidal Creeks: An Hypothesis," Marine Geology, Vol. 33.

Pope, J. unpublished. "Longshore Transport Trends in the Vicinity of Little River Inlet, South Carolina," US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Pope, J. 1991. "Ebb Delta and Shoreline Stabilization Examples from the Southeast Atlantic Coast," Proceedings, Coastal Zone, 191, American Society of Civil Engineers, Long Beach, CA.

Schneider, C. 1981. "Littoral Environment Observation 'LEO' Data Collection Program," CERC Coastal Engineering Technical Aid 81-S, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Schneider, C., and Weggel, J.R. 1980. "Visually Observed Wave Data at Pt. Mugu, California," Proceedings, 17th International Coastal Engineering Conference, American Society of Civil Engineers, Sydney, Australia.

Seabergh, W. C., and Lane, E. F. 1977. "Improvements for Little River Inlet, South Carolina," Technical Report H-77-21, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

US Army Engineer District, Charleston. 1971. Little River Inlet Brunswick County, North Carolina and Horry County, South Carolina, Survey Report on Navigation, Charleston, SC.

US Army Engineer District, Charleston. 1977. Little River Inlet North Carolina and South Carolina Navigation Project, General Design Memorandum, Charleston, SC.
. 1990. Little River Inlet Navigation Project, Little River Inlet, North and South Carolina, Letter Report of Post-Hugo Damage Assessment, March, Charleston, SC.

US Army Engineer Waterways Experiment Station. unpublished. "Littoral Transport Rates at Murrells and Little River Inlet," Transmittal letter to South Atlantic Division, Vicksburg, MS.

Ward, D. L., and Knowles, S. C. 1987. "Coastal Response to Weir Jetty Construction at Little River Inlet, North and South Carolina," Coastal Sediments 187 . American Society of Civil Engineers.

APPENDIX A:

BEACH PROFILES

APPENDIX A: BEACH PROFILES

1. Beach profile data was obtained from SAC periodically and entered into the Interactive Survey Reduction Program (ISRP). The ISRP is a Fortran program developed by CERC (Birkemeier 1984) which permits interactive reduction, editing, and plotting of field survey notes and the correction of previously entered data. The primary output from ISRP is a two-dimensional distance offshore and elevation data file.
2. The actual baseline survey stations were incorporated into an ISRP numbering system (Table A-1, Figure A-1). The profile data plotted in this appendix is labeled according to the ISRP numbering system. The ISRP also assigns a survey number to each survey date (Table A-2). For example, ISRP profile line 52, survey number 10 corresponds to sta $111+00$, surveyed in April 1983. Table A-3 denotes a number of ISRP line numbers of particular interest.
3. The program STCKPL (Birkemeier, unpublished) was used to plot the ISRP profile data on a VAX computer. The full length of the survey (horizontal scale, $0-6000 \mathrm{ft}$) and a windowed section (horizontal scale, $0-2500 \mathrm{ft}$) were plotted for each profile line. The STCKPL program takes the data for each profile through time and plots each survey (solid line) with the preceding survey (dashed line). The date is written to correspond with the end of the second survey (solid line).
4. Profile data considered questionable or insufficient were marked with an asterisk on the individual plots. Since there was such a large amount of data, if an entire profile line, portions of the line, or individual data points were considered questionable, the data was removed from the analysis. No smoothing was performed on the profiles. Since noisy fathometer data was frequently encountered, the intention of not smoothing the data was to average out the errors in the volume calculations. This was considered a better alternative than making erroneous assumptions of the smoothed profile.

Table A-1
Little River Inlet Beach Profiles
(East to West)

$\begin{gathered} \text { ISRP } \\ \text { Profile No. } \end{gathered}$	$\begin{gathered} \hline \text { Baseline } \\ \text { Station No. } \\ \hline \end{gathered}$	State Plane Coordinates		Bearing
		North	East	
1	195+62	326,626.18	2,761,423.21	S 15 ${ }^{\circ} 10^{\prime} 25^{\prime \prime} \mathrm{E}$
2	$145+62$	325,367.46	2,756,597.52	S $15^{\circ} 10^{\prime} 25^{\prime \prime} \mathrm{E}$
3	135+62	325,094.44	2,755,916.89	S 21 ${ }^{\circ} 51^{\prime} 25^{\prime \prime}$
4	$125+62$	324,497.41	2,755,125.62	S 31 ${ }^{\circ} 10^{\prime} 15^{\prime \prime}$
5	115+62	323,977.29	2,754,271.53	S 31 ${ }^{\circ} 20^{\prime} 25^{\prime \prime}$
6	105+62	323,457.17	2,753,417.43	S 31 ${ }^{\circ} 20^{\prime} 25^{\prime \prime}$
7	$95+62$	322,937.05	2,752,563.34	S 31 ${ }^{\circ} 20^{\prime} 25^{\prime \prime}$
8	$85+62$	322,416.93	2,751,709.25	S 31 ${ }^{\circ} 20^{\prime \prime} 5^{\prime \prime}$
9	$74+70$	321,849.12	2,750,776.83	S 31 ${ }^{\circ} 20^{\prime} 25^{\prime \prime}$
10	65+62	321,376.69	2,750,001.06	S 31 ${ }^{\circ} 20^{\prime} 25^{\prime \prime}$
11	$55+62$	320,856.57	2,749,146.97	S 31 ${ }^{\circ} 20^{\prime} 25^{\prime \prime}$
12	$45+67$	320,339.13	2,748,297.27	S 31 ${ }^{\circ} 20^{\prime} 25^{\prime \prime}$
13	39+94	320,045.52	2,747,860.50	S 16 $6^{\circ} 23^{\prime} 00 \prime$
14	$34+94$	319,904.49	2,747,386.81	S 16 $6^{\circ} 23^{\prime} 001$
15*	32+50	319,835.67	2,747,152.71	S 16 $6^{\circ} 23^{\prime} 001$
16	29+94	319,763.46	2,746,907.11	S 16 $6^{\circ} 23^{\prime \prime} 00^{\prime \prime}$
17*	$27+50$	319,694.64	2,746,673.01	S 16 $6^{\circ} 23^{\prime} 001$
18	$24+94$	319,622.43	2,746,427.41	S 160 $23^{\prime} 001$
19*	22+50	319,553.61	2,746,193.32	S 16 $6^{\circ} 23^{\prime} 001$
20	$19+94$	319,481.40	2,745,947.71	S 16 $6^{\circ} 23^{\prime} 001$
21*	$17+50$	319,028.82	2,745,826.44	S 16 $6^{\circ} 23^{\prime} 00{ }^{\prime \prime}$
22	$14+94$	318,956.60	2,745,580.84	S 16 $6^{\circ} 23^{\prime} 001$
23*	12+50	318,887.79	2,745,346.75	S 16 $6^{\circ} 23^{\prime} 00{ }^{\prime \prime}$
24	9+94	318,815.58	2,745,101.14	S 16 $6^{\circ} 23^{\prime} 001$
25	$8+00$	318,760.86	2,744,915.02	S 16 $6^{\circ} 23^{\circ} 000$
26	$6+00$	318,704.45	2,744,723.14	S $16^{\circ} 23^{\circ} 001$
27	4+00	318,648.03	2,744,531.26	S 16 $6^{\circ} 23^{\prime} 00 \prime$
28	$2+00$	318,591.62	2,744,339.32	S 16 $6^{\circ} 3^{\prime} 001$

(Continued)

* Profile line deleted after October 1983.

Table A-1 (Concluded)

[^1]Table A-2
Little River Inlet, SC
Beach Profile Survey Dates

Survey Date	ISRP Survey Number
April 1981	2
July 1981	3
October 1981	4
January 1982	5
May 1982	6
July 1982	7
October 1982	8
January 1983	9
April 1983	10
July 1983	11
October 1983	12
January 1984	13
April 1984	14
August 1984	15
October 1984	16
June 1985	17
October 1985	18
January 1986	19
June 1986	20
July 1987	21
February 1988	22
July 1988	23
December 1989	25

Table A-3
Notation of Atypical Profile Lines

ISRP Profile No. Description

1
8
9
25-33

29
55

Immediately adjacent to Tubbs Inlet
Immediately east of Mad Inlet
Immediately west of Mad Inlet
Immediately adjacent to and across Little River Inlet channel and jetties Little River Inlet channel centerline

Immediately east of Hog Inlet

APPENDIX B:
POST-HUGO BEACH PROFILES

APPENDIX B: POST-HUGO BEACH PROFILES

1. The post-Hugo survey data (December 1989) was plotted separately since the survey data was collected after an extreme event, as opposed to a representative survey of beach response to the jetties.
2. Similar to the data in Appendix A, the post-Hugo profile data was entered into the Interactive Survey Reduction Program. After correction of suspected erroneous points, the data was plotted using a Turbo-Pascal program. Comparison plots were made using the February 1988 survey; except for ISRP Profile Lines 1, 8, 9, 25-28, 45, and 56 which were compared with the July 1988 survey (due to insufficient data in the February 1988 surveys). Profile Line 46 was dropped because of questionable data on the post-Hugo survey.

APPENDIX C:

CUMULATIVE SHORELINE CHANGE

APPENDIX C: CUMULATIVE SHORELINE CHANGE

1. Mean Low Water (MLW) and Mean High Water (MHW) shoreline position data from the beach profile surveys were used to calculate shoreline change for each profile line. Changes were calculated between successive surveys through time, and were then added cumulatively. Because of the short time period between surveys, shoreline change was examined in units of feet, and not feet/year. Again, profile data that was considered insufficient was removed from the analysis.
2. The data was plotted as cumulative MHW and MLW shoreline change for each ISRP profile line. Shoreline change was computed for ISRP profile lines 2 through 24 and 36 through 55. Profiles between 25 and 35 were omitted since they are taken along the channel between the jetties, or are immediately adjacent to the jetty, and do not provide an accurate measurement of natural beach change.
3. Some of the plotted results in the west fillet area show large variations in the shoreline. These are generally evident of the construction of the west sand dike and of the old ebb shoal welding onto this portion of the beach. The profiles adjacent to Little River, Tubbs, Mad, and Hog Inlets also tend to show large and erratic changes.

Profile Line 2

Profile Line 3

Profile Line 4

Profile Line 5

Profile Line 6

Profile Line 7

Profile Line 8

Profile Line 10

Profile Line 11

Profile Line 12

Profile Line 13

Profile Line 16

Profile Line 20

Profile Line 22

Profile Line 36

Profile Line 40

Profile Line 42

Profile Line 44

Profile Line 46

Profile Line 47

Profile Line 48

Profile Line 50

Profile Line 51

Profile Line 52

Profile Line 54

Profile Line 55

APPENDIX D:

ABOVE-DATUM VOLUME CHANGE

APPENDIX D: ABOVE-DATUM VOLUME CHANGE

1. The program VOLUME-PC was used to calculate above- and below-datum volume changes along each profile line. VOLUME-PC is a program for processing beach and nearshore survey data on an IBM compatible microcomputer, and is a complementary program to ISRP-PC and ISRPSORT.
2. The "shoreline" is defined as the horizontal intercept of the profile data with the datum (in this case, MLW). Although the program actually computes changes in cross-sectional area, changes are presented as volumes based on a uniform length of beach ($\mathrm{yd}^{3} / \mathrm{ft}$). These volumes were then linearly interpolated by multiplying over a normalized distance interval of 250 ft to produce a volume in y^{3} over that "cell."
3. Similar to the shoreline change plots, volume changes were calculated between successive surveys for each profile line through time. Plots were made for cumulative above datum volume changes. Below datum volume changes were computed; however, due to insufficient offshore data on a large number of profile lines, these results were not considered in the final analysis.
4. Again, some of the plotted results in the west fillet area show dramatic increases in volume, which are generally evident of the construction of the west sand dike and of the old ebb shoal welding onto this portion of the beach. The profiles adjacent to Little River, Tubbs, Mad, and Hog Inlets also tend to show large and erratic volume changes due to dynamic inlet morphologies.

Profile Line 2

Profile Line 3

| J |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a |
| n |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |

Profile Line 4

Profile Line 5

Profile Line 7

Cumulative Above MLW Volume Change (yd3)

Profile Line 8

Profile Line 9

Profile Line 11

Profile Line 13

Profile Line 14

Profile Line 16

Profile Line 18

Profile Line 20

Profile Line 22

Profile Line 36

Profile Line 38

Profile Line 40

Profile Line 44

Cumulative Above MLW Volume Change (yd3)

Profile Line 46

Profile Line 47

Profile Line 48

Profile Line 50

Profile Line 51

Profile Line 52

Profile Line 53

Profile Line 54

Profile Line 55

APPENDIX E:

BATHYMETRIC CONTOUR MAPS

Abstract

APPENDIX F: NUMERICAL MODEL METHODOLOGY AND LONGSHORE TRANSPORT PLOTS (Pages F12-F23 represent pre-project longshore transport plots, 1981 bathymetry; pages F24-F36 represent post-project longshore transport plots, 1985 bathymetry; pages F37-F49 represent postproject longshore transport plots, 1988 bathymetry.)

APPENDIX F: NUMERICAL MODEL METHODOLOGY AND LONGSHORE TRANSPORT PLOTS

Selection of Wave Inputs to RCPWAVE Model

1. Selection of wave height, period, and incident angle to define the wave climate in the numerical model RCPWAVE is crucial to obtaining satisfactory results from the program. This appendix describes the rationale used in this study for selection of these criteria.
2. A wave hindcast study has been conducted for the US coastlines through the Wave Information Study (WIS) for the 20-yr period from 1956 to 1975 (Jensen 1983). Using barometric information, the program determined both seas and swells at three-hour intervals at several deepwater locations, then brought the waves shoreward to the a depth of $10 \mathrm{~m}(32.81 \mathrm{ft})$. A separate nearshore station was determined for each $10-\mathrm{mi}$ stretch of shoreline along the Atlantic coast. Station A3108 is the Atlantic coast nearshore station for Sunset Beach on the northeast side of Little River Inlet (Figure $\mathrm{F}-1$); inputs to RCPWAVE were determined from WIS data for station A3108.
3. At each $3-\mathrm{hr}$ interval, WIS provides the significant wave height, period, and incident angle relative to the shore of both the seas and the swell. Thus, for the 20 years of the study there are 58,480 wave conditions for seas, plus 58,480 wave conditions for swell, for a total of 116,960 wave conditions. Because time and cost considerations dictate that only a limited number of wave cases could be run through RCPWAVE, it was necessary to select wave conditions that would produce representative results.
4. A common means of selecting representative wave conditions is to group the data into bands of wave height, period, and angle, determine the percent occurrence of waves falling within the bands, and select the midpoint of the band as representative of those waves. For example, for WIS station

Figure F-1. Locations of Phase III stations for shallow-water wave information along the Atlantic Coast, region 4 (Jensen, 1983)

A3108, 2.061 percent of the waves were predicted to have an angle between 30 and 59.9 degrees with a wave height between 0.50 and 0.99 m , and a period between 7.0 and 7.9 sec (Jensen 1983). Information of this type has been compiled and is presented in Jensen (1983) for the Atlantic coast WIS stations. This listing provides data based on 6 ranges of wave approach angle, 11 ranges of wave height, and 10 ranges of wave period for a total of 660 bands, with waves at station A3108 occurring in about one-third of the bands. This information may then be grouped into larger bands to reduce the number of wave conditions to input into RCPWAVE.
5. While banding of this type is very useful for wave data, it cannot used for sediment transport calculations without biasing the results. As an example, consider using the wave banding to determine wave energy. As wave energy is a function of wave height squared, using the midpoint of a band would underestimate wave energy from the larger waves in the band. While wave energy from smaller waves would be overestimated, calculated energy for the band (assuming an even distribution of wave heights within the band) would always be too low.
6. While it is possible to group wave data based on the square of the wave height to eliminate this bias, sediment transport is a function of the energy flux in the surf zone. This is considerably more complex than a simple function of wave height squared, and includes a function of wave period and angle of incidence. Thus bias is induced in the sediment transport calculations by banding of wave heights, periods, or incident angles. As an added complication, banding typically assumes a uniform distribution across the band, which will seldom be the case in practice.
7. In an attempt to minimize the potential bias, an alternate means of selecting the wave inputs to RCPWAVE was employed. The potential sediment transport for each of the 116,960 wave conditions was determined using standard equations, assuming straight and parallel bottom contours. Wave conditions were then determined that reproduced the average transport rates.

Wave information was then grouped based on potential sediment transport rather than wave height, period or angle. Selected wave conditions were then entered into RCPWAVE to determine the effects of the actual bathymetry in the area. In this manner a reasonable number of inputs for RCPWAVE were determined while minimizing any inherent bias.
8. The first step was to determine the potential sediment transport for each of the 116,960 wave conditions using equations in the Automated Coastal Engineering System (ACES) (Leenknecht and Szuwalski 1990) and in the Shore Protection Manual (1984). These equations solve for the energy flux factor at the surf zone based on known breaking or deepwater significant wave conditions, then determine the longshore transport rate based on an empirical equation with the energy flux factor. Derivation of the equations may be found in either of these references and will not be repeated here, but the equations themselves are written below for reference.
a. Energy flux factor based on breaking wave conditions:

$$
\begin{equation*}
P_{\mathrm{ls}}=(\rho \mathrm{g} / 16) \mathrm{H}_{\mathrm{sb}}^{2} \mathrm{C}_{\mathrm{gb}} \sin \left(2 \alpha_{\mathrm{b}}\right) \tag{1}
\end{equation*}
$$

b. Energy flux factor based on deepwater wave conditions:

$$
\begin{equation*}
P_{1 s}=(\rho g / 16) \mathrm{H}_{\mathrm{so}}^{2} \mathrm{C}_{\mathrm{gb}} \sin \left(2 \alpha_{0}\right) \tag{2}
\end{equation*}
$$

c. Longshore sediment transport rate:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{K} \mathrm{P}_{\mathrm{ls}} \tag{3}
\end{equation*}
$$

where $P_{1 s}$ is the energy flux factor, ρ is the mass density of water, g is the acceleration of gravity, $H_{s b}$ is the significant breaking wave height, $C_{g b}$ is wave group celerity at breaking, α_{b} is the angle of wave advance at breaking, $H_{s o}$ is the significant deepwater wave height, α_{0} is the angle of
deepwater wave advance, Q is the potential sediment transport rate, and K is an empirical coefficient. In non-SSI units, K is equal to 7500 ($\left.\mathrm{yd}^{3}-\mathrm{sec}\right) /(\mathrm{lb}-\mathrm{yr}), \mathrm{P}_{\mathrm{ls}}$ is calculated in units of (ft-lb)/(ft-sec), yielding potential sediment transport in terms of y^{3} / yr.
9. Because WIS information is presented at a depth of 32.81 ft, equations 2 and 3 were used to estimate potential sediment transport based on deepwater wave conditions. Snell's Law was used to refract the wave conditions from 32.81 ft to deepwater conditions, and the potential sediment transport rate was determined for each of the 116,960 wave conditions.
10. To minimize bias which may be induced by the bathymetry, seas and swell conditions were stored separately, and wave conditions causing sediment transport to the left was stored separately from wave conditions causing sediment transport to the right. This created four main groups of data: seas left, seas right, swell left, and swell right.
11. To reduce the number of RCPWAVE inputs to a reasonable number, it was then decided to average the 20 -yrs of sediment transport information by month. As no banding of wave conditions had been employed, the transport rates could be grouped or averaged in any manner, but it was hoped that averaging by month would provide seasonal information. Each month therefore included wave conditions for that month from each of the 20 yrs of data. Thus the WIS information was separated into 48 groups (12 months times 4 main groups).
12. For each group of waves, a single wave condition was sought to input into RCPWAVE. This was determined by finding the average potential sediment transport rate for all wave conditions in a group, then selecting a wave condition that reproduced the average rate. The average potential transport rate was calculated only from those wave conditions that produced sediment transport. Wave conditions with a perpendicular angle of incidence at breaking or with a wave height or period of zero were excluded from the calculations.
13. Rather than randomly select a set of wave conditions to reproduce the average transport rate, it was preferable to select a wave closely represented the actual wave conditions in each group. Therefore, wave conditions in each group were averaged for all wave conditions that produced a potential sediment transport rate within ten percent of the average transport rate. This "average wave" did not reproduce the average transport rate for the same reasons that banding the wave data will bias the transport rates. However, given the average wave period and angle of incidence it was possible to adjust the wave height to determine a "representative wave" that reproduced the average potential sediment transport rate and closely reflected actual wave conditions in the group.
14. Inputs to RCPWAVE were thus reduced to 48 wave conditions, one for each of the 48 groups. Sediment transport was then recalculated with output from RCPWAVE, at which time the frequency of occurrence of wave conditions in each group was taken into account.
15. For the simplified case of uniform sediment characteristics, no currents, and no aeolian transport, sediment transport will be affected by the deepwater wave height, period, and incident angle, and by the bathymetry. Using the equations given above for each wave condition minimized bias from wave height, period, and incident angle. Processing seas and swell information separately, and transport to the east separately from transport to the west, was done to minimize bias caused by bathymetry.

Calculation of Sediment Transport Based on RCPWAVE Output

16. Output at each nodal point from the numerical model RCPWAVE includes water depth, wave angle, wave height, wave period, and an indicator of whether or not the wave has broken. This appendix describes the process used to determine sediment transport at Little River Inlet based on this information and the input bathymetry. The grid used at Little River Inlet was

200 cells 150 ft wide along the coast (grid lines $i=1$ to 201, numbered from west to east) by 154 cells 75 ft wide (grid lines $j=1$ to 155 , numbered from shore seaward), and thus included 30,800 cells covering 5.7 miles along the coast and 1.2 miles in the offshore direction.
17. Shoreline location was determined by reading the bathymetry input file shoreward along each grid line from the offshore edge of the grid. The shoreline was defined as the first location where the zero datum was reached. For the input bathymetry used here, the zero datum was mean low water. Linear interpolation was used to determine the location of the zero crossing between nodal points. Note that depths at each nodal point were determined from the input grid to RCPWAVE rather than from the output. RCPWAVE defaults to a depth of one foot for all depths less than a foot and all positive elevations. This default is reflected in the output, thus no shoreline is indicated in the output file.
18. Shoreline angle was determined by averaging the angle between the shoreline location along a grid line and the shoreline location along both adjacent grid lines. This gave the angle of the shoreline relative to the grid at each grid line.
19. Location of the wave at breaking was determined by first reading the RCPWAVE output file shoreward along each grid line until the first breaker index was encountered. Wave height, period, and angle were then determined at the grid point previous to the one with the breaker index, that is, the next grid point seaward of the one with the breaker index. The wave was then "marched" shoreward in small increments through the cell to more accurately determine the breaking point.
20. The marching algorithm began by determining the bottom slope from the depth at the starting cell (one cell seaward of the breaker index) and the depth at, and distance to, either the next cell shoreward along the grid line or either of the cells adjacent to the next cell shoreward, depending on the incident angle of the wave. That is, the depth was determined for cell (i,j) then, depending on the angle of the wave at the cell, the
depth at cell $(i-1, j),(i-1, j-1)$, or $(i-1, j+1)$ and the distance to the appropriate cell were used to determine the bottom slope. This next cell was termed the "target cell."
21. Each step in the marching algorithm advanced the wave one-tenth the distance between the starting cell and the target cell. At each step, the wave was refracted and shoaled and compared to a breaking criteria. Due to refraction at each step, it was possible that a wave would require more than ten steps to traverse the distance to the target cell, therefore fifteen steps were allowed. If the wave had not met the breaking criteria within fifteen steps, the location of the target cell was taken as the breaking point.
22. With the breaking point determined, the depth, breaking wave height, and wave angle at the point were also known. The angle between the wave and the shoreline was then determined, and the sediment transport could then be calculated by equations 1 and 3, above.
23. It should be noted that numerous offshore bars were located in the ebb tidal delta at Little River Inlet. By stepping shoreward along a grid line, it was very possible to cross an offshore bar along one grid line and miss the bar on the adjacent grid line. In these cases, the shoreline locations differed significantly causing a very steep shoreline angle. This then had a significant effect on the sediment transport calculations at that location. Thus at a given cell, or small group of adjacent cells, a significant change or reversal in the calculated sediment transport might be seen. This is misleading and does not reflect the actual sediment transport at that point. It is important to realize that due to this and other effects, the sediment transport calculations should be averaged over a range of cells and used only to determine trends in the transport. The procedure described herein is considered more qualitative than quantitative, and any individual numbers should be used with caution.

REFERENCES

Jensen, R. E. 1983. "Atlantic Coast Hindcast, Shallow Water, Significant Wave Information," WIS Report 9, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Leenknecht, D. A., and A. Szuwalski. 1990. "Automated Coastal Engineering System, Technical Reference, Version 1.05," US Army Engineer Waterways Experiment station, Vicksburg, MS.

Shore Protection Manual. 1984. 4th ed., 2 vols. US Army Engineer Waterways Experiment Station, Vicksburg, MS.

NET ANNUAL SEDIMENT TRANSPORT

NET SEDIMENT TRANSPORT FOR DECEMBER

HET ANNUAL SEDIMENT TRANSPORT

NET SEDIMENT TRANSPORT FOR MAY

NET SEDIMENT TRANSPORT FOR AUGUST

NET SEDIMENT TRANSPORT FOR NOVEMBER

APPENDIX G:
 IITTORAL ENVIRONMENT OBSERVATIONS

(Pages G3-G22 represent data for LEO Station 39098, Ocean Isle Beach, NC; pages G23-G42 represent data for LEO Station 39099, Sunset Beach, NC; pages G43-62 represent data for LEO Station 48002, Cherry Grove Beach, SC)

LEO Data Summary: Sta 39098. Ocean Isle Beach, North Carolina
Latitude $33^{\circ} 51^{\prime} 10.8^{\prime \prime}$. Longitude $78^{\circ} 26^{\prime} 7.8^{\prime \prime}$.
Data Collected from 29 Jul 80 to 31 Dec 80

		JAN	FE3	MARCH	APRIL	May	June	JuLr	AUG	SEPT	OCT	Nov	DEC	total
	SURF OESERVATIONS													
	NUMBER OF OBSERVATIONS	0	0	0	0	0	0	2	23	30	29	30	31	150
	NuMger of calm obs.	0	0	0	0	0	0	0	0	0	2	0	0	2
	HIGHEST WAVE RECORDED	.00	. 00	. 00	.00	. 00	.00	1.50	3.00	2.00	4.50	4.50	5.00	5.00
	AVG. WAVE HEIGHT(FT) (1)	. 00	. 00	. 00	. 00	. 00	. 00	1.25	1.14	1.08	1.62	2.27	2.29	1.69
	Standard deviation	. 0	. 00	. 00	. 00	. 00	. 00	. 25	. 54	. 23	1.15	1.14	1.20	1.07
	LONGEST PERIOD RECORDED	.00	. 00	.00	. 00	. 00	. 00	6.00	12.80	10.00	13.50	16.40	12.00	16.40
	AVG WAVE PERIOD(SEC) (1)	. 00	.00	.00	.00	. 00	. 00	6.00	7.74	7.27	6.27	6.07	5.13	6.46
	Standard deviation	.00	.00	. 09	.00	. 00	. 00	. 00	2.28	1.27	3.30	3.37	2.14	2.73
	wave directon													
	NUMBER OF OBSERVATIONS	0	0	0	0	0	0	2	28	30	27	30	31	143
	PERCENT OCCURRENCE >90	. 0	. 0	. 0	. 0	.9	. 0	50.0	67.9	66.7	33.3	13.3	19.4	39.9
	$=90$. 0	. 0	.0	. 0	. 3	. 0	. 0	21.4	20.0	14.8	6.7	. 0	12.2
	<90	.0	.0	. 0	. 0	. 0	.0	50.0	10.7	13.3	51.0	80.0	80.6	48.0
	AVG. ZONE WIDTH (FT) (2)	0	0	0	0	0	0	15	34	22	168	210	208	129
	NUMBER OF OBSERVATIONS	0	0	0	0	0	0	2	27	29	27	30	31	146
	WIND OBSERVATIONS				'									
	HIGHEST WIND RECORDED	. 0	. 0	. 0	. 0	. 0	. 0	7.0	13.0	10.0	13.0	10.0	13.0	13.0
	AVG. WIND SPEED (MPH) (1)	. 0	. 0	. 0	. 0	. 0	. 0	6.0	7.0	6.0	7.0	6.8	5.9	6.5
	STANDARD OEVIATION	. 0	. 0	. 0	. 0	. 0	. 0	1.0	2.3	1.6	2.2	2.7	3.2	2.5
	NUMBER OF OGSERVATIONS	0	0	0	0	0	0	2	28	29	30	30	31	150
	percent occurrence from													
	NORTH	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	10.0	16.7	41.9	14.0
	northeast	. 0	.0	.0	. 0	. 0	. 0	. 0	. 0	. 0	10.0	10.0	3.2	4.7
	EAST	. 0	. 0	. 0	. 0	. 0	. 0	.0	. 0	.0	. 0	6.7	3.2	2.0
	southeast	- 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	20.0	16.7	. 0	7.3
	SOUTH	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	25.3	10.0	9.7	8.7
	SOUTHWEST	. 0	. 0	.0	. 0	. 0	. 0	100.0	100.0	100.0	30.0	16.7	29.0	54.7
	WEST	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	3.3	6.7	3.2	2.7
	NORTHWEST	. 0	. 0	. 0	. 0	. 0	. 0	.0	. 0	. 0	3.3	16.7	3.2	4.7
	CALM	. 3	.0	. 0	. 0	.3	. 0	. 0	. 0	.0	. 0	. 0	6.5	1.3
	CURRENT OBSERVATIONS													
	AVG TO LEFT (FT/SEC) (2)	. 00	.00	. 00	. 00	.00	. 00	-. 12	-. 61	-. 79	-. 90	-. 73	-1.26	-. 79
	STANDARD DEVIATION	. 00	.00	. 00	. 00	. 00	.00	. 00	. 58	. 41	. 28	. 30	. 53	. 50
	NUM. OF OBS. (TO LEFT)	0	0	0	0	0	0	1	26	30	10	13	10	90
	AVG TO RIGHT(FT/SEC) (2)	. 00	. 00	.00	. 00	. 00	. 00	. 00	1.00	.00	1.06	1.20	1.06	1.09
	STANDARD DEVIATION	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 67	. 00	. 46	. 79	. 48	. 58
	NUM. OF OBS. (TO RIGHT)	0	0	0	0	0	0	0	2	0	18	14	19	53
	AVG. AET CURRENT (2) (3)	. 00	.00	. 00	. 00	.00	. 00	. 00	-. 57	-. 79	. 36	. 27	. 26	-. 09
	NUMBER OF OBSERVATIONS	0	0	0	0	0	0	1	28	30	28	27	29	143
	NUMGER OF CALM OBS.	0	0	0	0	0	0	0	0	0	2	0	2	4
	(Continued)													

(Concluded)

FORESHORE SLOPE OBSERVATNS	JAN	FEB	MARCH	APYIL	MAY	JUNE	july	$A \cup G$	SEPT	OCT	Nov	DEC	Total
maximum slope	0	0	0	0	0	0	4	14	4	5	4	6	14
MINIMUM SLOPE	0	0	0	0	0	0	4	1	2	1	1	1	1
AVERAGE SLOPE (2)	. 0	. 0	- 0	. 0	- 0	- 0	4.0	3.5	3.0	2.0	2.0	2.3	2.6
NUMBER OF OBSERVATIONS	0	0	0	0	0	0	2	28	30	24	30	31	145
SEDIMENT TRANSPORT VOLUME (CUBIC YARDS)(4)METHOD 1													
NEt cubic yards	0	0	0	0	0	0	1770	-9179	-1591	6357	66046	82114	145517
NUM OF OBSERVATIONS	0	0	0	0	0	0	2	28	30	27	30	31	148
total lfey cubic yds	0	0	0	0	0	0	-565	-9415	-2244	-30602	-11002	-17597	-71425
NUM OF 2 SS TO LEFT	0	0	0	0	0	0	1	19	20	9	4	6	59
total rght cubic yos	0	0	0	0	0	0	2336	235	653	36959	77049	99711	216943
NUM OF OBS TO RIGHT	0	0	0	0	0	0	1	3	4	14	24	25	71
METHOD 2													
NET CUBIC YARDS	0	0	0	0	0	0	-164	-2255	-1708	25635	-17385	-80761	-76588
Num of observations	0	0	0	0	0	0	1	27	29	26	27	29	139
total left cubic yds	0	0	0	0	0	0	-164	-2790	-1708	-36118	-79809	-188778	-309367
NuM Of obs to left	0	0	0	0	0	0	1	25	29	10	13	10	88
TOTAL RGAT CUBIL TDS	0	0	0	0	0	0	0	534	0	61803	62424	108017	232778
NUM OF OBS TO RIGHT	0	0	0	0	0	0	0	2	0	16	14	19	51

(1) CALMS, If any, included in average calculation
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS CDESCRIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPM) A ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSDORT TO THE LEFT.
METHOD 1. THIS METHOD IS GASED ON EQUATIONS 4-33 ANO 4-50B FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST CALCULATED FDR ONLY THE DAYS OF THE MONTH WHERE WAVE MEIGHT AND ANGLE OF APPROACH HAVE BEEN RECORDED, THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUESTITUTED INTO EQUATION $4-5 O B$ AND DIVIDED BY 12 TO get the net monthly sediment transport volumes. the yearly sediment transport volume is calCULATED GY SUMMING THE MONTHLY VALUES
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52, AND 4-SOB FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF IONE, LONGSHORE CURRENT, AND DISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF. 006 SHOULD BE USED IN EQUATION $4-52$.

	JAN	FEB	MARCH	APRIL	may	JUNE	July	AUG	SEPT	OCT	NOV	DEC	total
SURF OBSERVATIONS													
number of observations	31	27	31	30	31	30	31	30	30	30	30	31	362
Numaer of Calm obs.	0	0	0	0	0	0	0	0	0	0	0	0	0
highest wave recorded	4.00	5.00	3.50	4.00	3.50	3.00	3.00	5.00	3.50	3.50	4.50	4.50	5.00
AVG. Wave height (ft) (1)	2.02	2.30	1.92	2.20	2.21	2.02	1.84.	1.85	1.87	2.05	2.10	2.35	2.06
Staidoard deviation	. 87	1.20	. 77	. 73	. 70	. 50	. 54	. 83	. 53	.73	1.02	. 92	. 82
LONGEST PERIOD RECORDED	9.00	9.50	8.50	16.50	8.60	8.00	6.90	8.60	9.80	8.60	8.60	8.60	16.50
AVG Wave period (SEC) (1)	5.11	4.98	4.74	5.18	5.66	5.12	5.14	5.88	6.13	5.63	5.74	5.56	5.41
Standard deviation	1.77	1.95	1.87	2.26	1.32	. 83	. 58	1.25	1.32	1.11	1.20	1.14	1.53
WAVE DIRECTON	31	27	31	30	31	30	31	30	30	30	30	31	362
PERCENT OCCURRENCE >90	. 0	11.1	22.6	60.0	45.2	60.0	53.1	36.7	56.7	33.3	50.0	58.1	41.2
$=90$. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0
<90	100.0	88.9	77.4	40.0	54.3	40.0	41.9	63.3	43.3	66.7	50.0	41.9	58.8
AVG. ZONE WIOTH (FT) (2)	251	323	322	304	279	297	313	307	300	314	289	318	301
NUMBER OF OBSERVATIONS	31	28	31	29	30	29	31	31	30	31	30	31	362
WIND OBSERVATIONS	12.0	10.0	20.0	20.0	20.0	21.0	16.0	20.0	15.0	18.0	20.0	18.0	21.0
AVG. WIND SPEED(MPH) (1)	4.7	0.2	9.5	10.9	9.3	8.1	8.9	9.7	10.0	11.5	9.1	10.4	9.0
STANDARD DEVIATION	3.7	2.6	4.5	4.9	3.7	3.5	3.0	4.3	2.4	3.5	4.4	4.0	4.2
NUMBER OF OBSERVATIONS PERCENT OCCURRENCE FROM	31	28	31	30	31	30	31	31	30	31	30	31	365
NORTH	3.2	7.1	6.5	3.3	6.5	3.3	. 9	. 0	6.7	12.9	13.3	6.5	5.8
NORTHEASt	19.4	10.7	6.5	3.3	12.7	. 0	9.7	32.3	33.3	38.7	20.0	16.1	17.0
EAST	.0	17.9	. 0	. 0	3.2	16.7	6.5	3.2	6.7	6.5	6.7	. 0	5.5
SOUTHEAST	. 0	7.1	6.5	33.3	16.1	6.7	16.1	9.7	6.7	12.9	. 0	6.5	10.1
SOUTH	. 0	10.7	12.9	13.3	9.7	10.0	25.8	. 0	16.7	. 0	13.3	9.7	10.1
SOUTHWESt	29.0	17.9	41.9	30.0	38.7	60.0	35.5	41.9	23.3	19.4	23.3	19.4	31.8
WEST	3.2	7.1	6.5	13.3	12.9	3.3	3.2	. 0	. 0	6.5	6.7	9.7	6.0
NORTHWESt	16.1	14.3	19.4	3.3	. 0	. 0	3.2	3.2	6.7	3.2	13.3	29.0	9.3
CALM	29.0	7.1	. 0	. 0	. 0	. 0	. 0	9.7	. 0	. 0	3.3	3.2	4.4
CURRENT OBSERVATIONS (${ }^{\text {a }}$. 00	-1.18	-1.00	-1.00	-1.21	-. 95	-1.08	-1.27	-1.11	-1.33	-1.34	-1.19	-1.15
AVG TO LEFT (FT/SEC) (2)	. 00		- 22	. 29	.31	. 24	. 29	. 50	. 40	. 45	. 44	. 39	. 41
STANDARD DEVIATION NUM. OF OBS. (TO LEFT)	- 0	- 4	- 3	-29 16	-15	-12	$\stackrel{-20}{ }$	10	15	13	15	18	146
AVG TO RIGHT(FT/SEC) (2)	. 94	.91	. 85	1.19	1.24	. 98	1.06	1.10	1.46	1.36	1.09	1.19	1.10 .44
STANDARD DEVIATION	. 39	. 39	. 37	.71	. 24	. 32	. 37	. 39	. 43	. 35	. 40	. 42	244
NUM. OF OBS. (TO RIGHT)	27	17	20	14	16	17	11	21	15	19	14	13	203
avg. net current (2)(3)	. 94	. 51	. 32	. 02	. 05	.18	-. 32	. 33	.17	. 23	-. 16	-. 19	16 349
NUMBER OF DBSERVATIONS	27	21	23	30	31	29	31	31	30	31	29	31	
Number of calm obs.	4	7	2	0	0	1	0	0	0	0	1	0	15

(Continued)
(1) CALYS, IF ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPJRT VOLUMES ARE GIVEN IN CUSIC YARDS. TWO METHODS (DESCRIBED IN SECTION 4 OF THE "SHOPE PROTECTION MANUAL" (SPM) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSPORT TO THE LEFT.
METHOD 1. THIS METHOD IS GASED ON EQUATIONS 4-38 AND 4-509 FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIPST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF APPROACH HAVE BEEN RECJFDED, THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATEO, AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUSSTITUTED INTO EQUATION $4-S O B$ AND DIVIDED BY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALculated by summing the monthly values.
METHOD 2. THIS METHOD IS BASED ON EJUATIONS 4-51, 4-52, AND 4-5OB FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT, AND DISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD i. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF. OO6 SHOULD EE USED IN EQUATION 4-52.

(Conc1uded)

(1) CALMS, If ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VGLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS CDESCRIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSPORT TO THE LEFT.
METHOD 1. THIS METHOD IS GASED ON EQUATIONS 4-38 AND 4-50日 FROM THE SPM. A LONGSHORE ENERGY FLUX (E QUATION $4-38$) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND angle of approach have geen recorded. then an average flux for each month is calculated. and FINALLY THESE MONTHLY VALUES OF FLUX ARE SUBSTITUTED INTO EQUATION $4-50 B$ AND DIVIDED $3 Y$ Y 12 to get the net monthly sediment transport volumes. the yearly sediment transpiort volume is calCULATED gY SUMMING the monthly values.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52, AND 4-50B FROM THE SPM, USING RECORDED OBSERVA TIONS OF WAVE HEIGHT. WIDTH OF SURF ZONE, LINGSHORE CURRENT, ANO OISTANCE TO OYE PATEH FROM SHORELINE AND FOLLOWING THE SAME DROCEDURE AS METMOD T. NOTE: RECENT fINDINGS INDICATE A
FRICTION FACTOR OF .OO6 SHOULD JE USED IN EQUATION 4-52.

LEO Data Summary: Sta 39098. Ocean Isle Beach, North Carolina
Latitude $33^{\circ} 51^{\prime} 10.8^{\prime \prime}$, Longitude $78^{\circ} 26^{\circ} 7.8^{\prime \prime}$,
Data Collected from 1 Jan 83 to 31 Dec 83

SURF OBSERVATIJNS	JAN	FEB	MARCH	APRIL	May	JUNE	JULY	AUS	SEPT	OCT	NOV	DEC	TOTAL
Number jf ogservations	31	29	31	30	31	30	31	31	30	31	29	31	364
NUMBER JF Calm obs.	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0
highest have recorded	3.50	4.00	4.00	3.50	3.50	3.00	2.50	3.00	3.50	4.00	3.50	3.50	4.00
AVG. WAVE HEIGHT(fi) (1)	1.87	1.96	2.53	2.13	2.44	2.00	2.02	2.00	1.88	1.98	1.93	2.21	2.08
STANDARD DEVIATION	. 72	. 95	. 91	. 78	. 67	. 47	. 45	. 44	. 64	. 82	. 78	. 80	.75
LONGEST PERIOD RECORDED	8.60	8.63	7.60	7.60	6.80	8.60	8.60	8.60	8.60	8.60	8.60	8.60	8.60
avg wave period (SEC) (1)	6.05	5.76	5.45	5.44	5.59	5.98	6.10	5.53	5.66	5.86	6.12	5.60	5.78
STANDARD DEVIATION	1.01	1.09	. 80	. 35	. 93	1.11	. 76	. 85	. 91	1.21	1.36	1.07	1.03
WAVE DIRECTON													
NUMBER OF OBSERVATIONS	31	28	31	30	31	30	31	31	30	31	29	31	364
PERCENT OCCURRENCE >90	19.4	21.4	51.6	50.0	32.3	20.0	29.0	25.8	23.3	19.4	24.1	51.6	30.8
$=90$. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0
<90	80.5	78.6	48.4	50.0	67.7	80.0	71.0	74.2	76.7	80.6	75.9	48.4	69.2
AVG. ZONE WIDTH (FT) (2)	241	275	372	331	350	274	297	319	295	305	281	320	305
Number of observations	31	28	31	30	31	30	29	31	30	30	30	31	362
WIno observations													
HIGHEST WIND RECORDED	18.0	18.0	20.0	18.0	18.0	18.0	14.0	12.0	18.0	18.0	18.0	18.0	20.0
AVG. WIND SPEED (MPH) (1)	9.4	10.9	11.7	10.7	11.5	9.3	9.1	8.9	9.3	9.5	3.9	10.7	10.0
Standard deviation	3.8	4.3	4.2	3.8	4.0	2.8	3.1	3.2	4.1	4.1	4.0	4.2	4.0
Number of observations	31	23	31	29	31	30	31	31	30	31	30	31	364
PERCENT OCCURRENCE FROM													
NORTH	19.4	17.9	3.2	. 0	. 0	3.3	6.5	3.2	3.3	6.5	6.7	19.4	7.4
NORTHEAST	25.3	32.1	22.6	. 0	6.5	13.3	16.1	13.1	33.3	29.0	16.7	12.9	18.7
EAST	3.2	7.1	. 9	3.4	3.2	3.3	3.2	. 0	. 0	. 0	. 0	9.7	2.7
southeast	6.5	7.1	9.7	6.9	16.1	43.3	. 0	9.7	3.3	25.8	13.3	. 0	11.8
SOUTH	3.2	. 0	16.1	37.9	41.9	10.0	29.0	12.0	16.7	6.5	6.7	9.7	15.9
SOUTHWEST	9.7	7.1	9.7	20.7	22.6	16.7	38.7	51.6	35.7	12.9	33.3	29.0	24.2
WEST	6.5	7.1	16.1	10.3	9.7	3.3	3.2	. 0	. 0	6.5	10.0	9.7	6.9
NORTHWEST	25.3	21.4	22.5	20.7	. 3	6.7	. 0	3.2	3.3	9.7	6.7	6.5	10.4
CALM	. 3	. 0	. 0	. 3	. 0	. 0	3.2	3.2	3.3	3.2	6.7	3.2	1.9
current observations													
AVG TO LEFT (Ft/SEC) (2)	-1.15	-1.14	-1.31	-1.37	-1.19	-1.28	-1.10	-1.05	-1.50	-1.03	-1.23	-1.18	-1.23
Standard deviation	. 34	. 34	. 39	. 26	. 34	. 37	. 25	. 31	. 24	. 41	. 42	. 42	.37
NUM. OF OBS. (TO LEFT)	5	6	16	15	9	5	11	3	7	6	7	16	111
avg to right (ft/sec) (2)	. 92	. 96	1.30	1.18	1.04	1.03	. 8 ?	1.07	. 96	1.06	. 95	1.01	1.02
STANDARD DEVIATION	. 34	.42	. 40	. 40	. 42	. 34	. 27	. 32	. 37	. 39	. 43	. 39	. 39
NUM. OF OBS. (TO RIGHT)	26	22	15	15	21	25	20	21	23	25	22	15	250
AVG. NET CURRENT (2)(3)	. 59	. 51	-. 05	-. 10	. 37	. 04	. 17	. 49	. 37	. 65	. 43	-. 12	. 33
NUMBER OF OBSERVATIONS	31	23	31	30	30	30	31	29	30	31	29	31	361
NUMEER OF CALM OBS.	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0
(Continued)													

(Concluded)

FORESHORE SLOPE OBSERVATNS	JAN	FE8	MARCH	APPIL	MAY	JUNE	JULY	$A \cup G$	SEPT	OCT	Nov	DEC	total
Maximum slope	2	2	2	2	4	2	2	4	2	2	2	2	4
MINIMUM SLOPE	1	2	2	2	2	2	2	2	2	2	2	2	1
AVERAGE SLOPE (2)	2.0	2.0	2.0	2.0	2.1	2.0	2.0	2.1	2.0	2.0	2.0	2.0	2.0
NUMGER OF OBSERVATIONS	31	28	31	30	31	30	31	31	29	31	30	31	364
sediment transport volume METHOD 1	cous:c	YARTS)(4)											
NET CUBIC Yards	13262	-4217	-33854	-26638	-8552	6334	-2721	4420	-11545	5707	-1062	-37442	-96058
NUY Of observations	31	23	31	30	31	30	31	31	30	31	29	31	364
TOTAL LEFT CUBIC YDS NUM OF OSS TO LEFt	$\begin{array}{r} -13634 \\ 6 \end{array}$	$\begin{array}{r} -31331 \\ 6 \end{array}$	$\begin{array}{r} -67766 \\ 16 \end{array}$	$\begin{array}{r} -47681 \\ 15 \end{array}$	$\begin{array}{r} -43327 \\ 10 \end{array}$	$\begin{array}{r} -18183 \\ 6 \end{array}$	$\begin{array}{r} -24072 \\ 9 \end{array}$	$\begin{array}{r} -19450 \\ 8 \end{array}$	$\begin{array}{r} -29106 \\ 7 \end{array}$	$\begin{array}{r} -22428 \\ 6 \end{array}$	$\begin{array}{r} -25423 \\ 7 \end{array}$	$\begin{array}{r} -57215 \\ 16 \end{array}$	$\begin{array}{r} -400716 \\ 112 \end{array}$
total rght cuaic ros NUM Of OBS to aight	$\begin{array}{r} 26876 \\ 25 \end{array}$	$\begin{array}{r} 27113 \\ 22 \end{array}$	$\begin{array}{r} 33912 \\ 15 \end{array}$	$\begin{array}{r} 20993 \\ 15 \end{array}$	$\begin{array}{r} 35274 \\ 21 \end{array}$	24818 24	$\begin{array}{r} 21951 \\ 22 \end{array}$	23871 23	$\begin{array}{r} 17560 \\ 23 \end{array}$	$\begin{array}{r} 28135 \\ 25 \end{array}$	$\begin{array}{r} 24360 \\ 22 \end{array}$	19773 15	$\begin{array}{r} 304656 \\ 252 \end{array}$
$\text { METHOD } 2$ NET CUBIC YARDS NuM Jf observations	97195 31	$\begin{array}{r} 90080 \\ 29 \end{array}$	8602 31	$\begin{array}{r} -83225 \\ 30 \end{array}$	92379	$\begin{array}{r} 106006 \\ 30 \end{array}$	$\begin{array}{r} -12079 \\ 29 \end{array}$	$\begin{array}{r} 91008 \\ 23 \end{array}$	$\begin{array}{r} -58965 \\ 30 \end{array}$	$\begin{array}{r} 154566 \\ 30 \end{array}$	$\begin{array}{r} 114837 \\ 29 \end{array}$	$\begin{array}{r} -143947 \\ 31 \end{array}$	$\begin{array}{r} 456457 \\ 357 \end{array}$
total left cueic yds NUM OF OBS TO LEFT	$\begin{array}{r} -45834 \\ 5 \end{array}$	$\begin{array}{r} -124769 \\ 6 \end{array}$	$\begin{array}{r} -332345 \\ 15 \end{array}$	$\begin{array}{r} -266573 \\ 15 \end{array}$	$\begin{array}{r} -181340 \\ 9 \end{array}$	$\begin{array}{r} -53408 \\ 5 \end{array}$	$\begin{array}{r} -120397 \\ 11 \end{array}$	-93702	-193121	-93692 6	-101687 7	$-296998-1$ 16	$\begin{array}{r} -1903866 \\ 111 \end{array}$
TOTAL RGHT CUBIC YDS NUM OF OSS TO RIGHT	$\begin{array}{r} 143029 \\ 26 \end{array}$	$\begin{array}{r} 214849 \\ 22 \end{array}$	340948 15	183347 15	273720 21	159415 25	108317 18	184710 20	134155 23	248259	$\begin{array}{r} 216524 \\ 22 \end{array}$	$\begin{array}{r} 153051 \\ 15 \end{array}$	$\begin{array}{r} 2360324 \\ 246 \end{array}$

(1) CALMS, If ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVEQAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT
no sign indicates current movement to the right
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUEIC YARDS. TWO METHODS (DESCRIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPM)) ARE USED TO GALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSPORT TO THE LEFT.
METHOD 1. THIS METHOD IS BASED ON EQUATIONS 4-38 AND 4-503 FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE Of APPROACH HAVE 3EEN RECORDED. THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUSSTITUTED INTO EQUATION 4-50B AND DIVIDED BY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALculated ay summing the monthly valués.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52, AND 4-5OB FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURPENT, AND OISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF . OOS SHOULD BE USED IN EQUATION 4-52.

	JAN	F¢9	MARCH	APRIL	MAY	June	JULY	AUG	SEPT	OCT	nov	DEC	total
SURF OESERVATIONS													
NUMBER OF OBSERVATIONS	31	29	31	30	31	28	33	29	29	31	30	31	360
NUMBER OF CALM 09S.	9	0	0	0	0	0	0	0	0	0	0	0	0
highest wave recorded	3.50	3.50	3.50	4.50	3.50	3.00	3.50	3.00	5.00	4.50	4.00	3.50	5.00
AVG. WAVE HEIGHT(FT) (1)	1.82	2.12	2.00	2.32	2.26	1.82	1.98	1.64	2.02	2.03	2.12	1.95	2.01
Standard deviation	. 69	. 93	. 85	. 82	. 75	. 57	. 59	. 60	. 90	. 78	. 96	.92	. 82
LONGEST DERIOD RECOROED	8.60	8.60	8.60	8.60	8.60	8.60	8.60	8.60	8.60	8.80	8.60	8.60	8.80
avg Wave period (SEC) (1)	6.06	6.02	6.01	6.16	6.05	6.43	6.15	6.99	6.50	6.77	6.49	6.36	6.33
Standard deviation	1.11	1.34	1.12	1.37	1.08	. 91	. 90	1.27	1.49	1.35	1.47	1.24	1.27
WAVE DIRECTON NUMBER OF OBSERVATIONS	31	29	31	30	31	28	30	29	29	31	30	31	360
PERCENT OCCURRENCE >90	32.3	41.4	51.6	43.3	33.7	35.7	53.3	37.9	24.1	29.0	33.3	35.5	33.1
- $\quad 90$	82.0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0
<90	67.7	53.5	48.4	56.7	61.3	64.3	46.7	62.1	75.9	71.0	66.7	64.5	61.9
AVG. ZONE WIDTH (FT) (2)	244	305	275	319	309	233	255	207	282	263	285	258	268
NUMBER OF OBSERVATIONS	31	20	31	31	31	30	30	30	28	31	29	31	362
WIND OBSERVATIONS													
HIghest Mind recorded	12.0	19.9	18.0	20.0	20.0	12.0	18.0	12.9	20.0	18.0	18.0	18.0	20.0
AVG. WIND SPEED(MPH) (1)	10.1	3.7	12.1	11.4	12.0	9.3	10.7	7.3	9.7	7.7	8.5	8.0	9.7
Standard deviation	4.4	4.7	4.6	5.0	3.7	2.3	2.8	3.4	5.3	4.8	5.6	4.0	4.6
nUMBER OF OBSERVATIONS PERCENT OCCURRENCE FROM	31	29	31	31	31	30	30	30	29	31	30	31	364
north	29.0	6.9	22.6	. 0	5.5	. 0	. 0	3.3	5.9	3.2	10.0	9.7	8.2
NORTHEAST	19.4	17.2	9.7	12.9	3.2	3.3	6.7	6.7	24.1	12.9	26.7	22.6	13.7
East	3.2	3.4	3.2	6.5	. 0	3.3	. 0	. 0	. 0	3.2	. 0	. 0	1.9
SOUTHEAST	. 0	13.3	9.7	15.1	3.2	16.7	15.7	6.7	20.7	22.6	. 0	. 0	10.4
SOUTH	6.5	13.8	25.8	6.5	38.7	13.3	23.3	10.0	20.7	19.4	10.0	12.9	16.8
southwest	16.1	6.9	6.5	29.0	32.3	60.0	53.3	46.7	17.2	16.1	16.7	19.4	26.6
WEST	9.7	13.8	6.5	25.3	9.7	3.3	. 0	3.3	3.4	3.2	6.7	19.4	8.8
NORTHWEST	12.0	13.8	12.9	. 0	6.5	. 0	. 0	13.3	3.4	6.5	10.0	9.7	7.4
CALM	3.2	10.3	3.2	3.2	. 0	. 0	. 0	10.0	3.4	12.9	20.0	6.5	6.0
CURRENT OBSERVATIONS		-1.04	-1.03	-. 95	-. 90	-. 75	-. 32	-. 73	-. 69	-. 97	-. 93	-. 79	-. 89
AVG TO LEFT (FT/SEC) (2) STANDARD DEVIATION	-.92 .29	-1.06 .35	-1.03	-.95 .32	-.90 .27	-. .17	. .27	. 20	. 10	. .34	. 31	. 25	. 31
NUM. OF OBS. (TO LEFT)	10	11	17	12	12	9	18	11	7	9	10	10	136
AVG TO RIGHT(FT/SEC) (2)	. 82	. 35	. 69	. 78	.73	. 68	. 67	. 69	. 92	. 76	. 84	.77	. 77
Standard deviation	.25	. 36	. 15	. 23	. 19	.17	. 15	. 10	. 30	. 19	. 29	. 23	. 24
NUM. OF OSS. (TO RIGHT)	20	17	14	18	19	18	13	18	22	22	20	20	222
Avg. NET CURRENT (2)(3)	. 24	. 11	-. 24	. 09	. 10	. 22	-. 19	. 15	. 53	. 26	. 23	. 25	- 14
NUMBER OF DASERVATIONS	30	28	31	30	31	28	31	29	29	31	30	30	358
NUMBER OF CALM OBS.	1	0	0	0	0	0	0	\bigcirc	0	0	0	1	2
(Continued)													

(Concluded)

(1) CALMS, IF ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES GURRENT MOVEMENT TO THE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUSIC YARDS. TWO METHODS CDESGRIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPMI) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSPORT TO THE LEFT.
METHOO 1. THIS METHOD IS BASED ON EQUATIONS 4-38 AND 4-5OB FROM THE SSM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS first CALCULATED for ONLY THE DAYS OF the month where wave height and ANGLE OF APPROACH HAVE GEEN PECORDED, THEN AN AVERAGE FLUX FOR EAGH MONTH IS GALCULATED, AND finally these monthly values of flux are subsilituted into equation $4-503$ and divided by 12 to get the ney monthly sediment transport volumes. the yearly sediment transport volume is calCULATED BY SUMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52, AND 4-50B FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURPENT. AND DISTANCE TO DYE PATCH FROM SHORELINE AND fOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF . 006 SHOULD $3 E$ USED IN EQUATION 4-52.

LEO Data Summary: Sta 39098. Ocean Isle Beach, North Carolina
Latitude $33^{\circ} 51^{\prime} 10.8^{\prime \prime}$, Longitude $78^{\circ} 26^{\circ} 7.8^{\prime \prime}$.
Data Collected from 1 Jan 85 to 31 Dec 85

	JAN	FE3	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC	total
SURF OSSERVATIONS													
number of obseqvations	31	28	31	30	30	30	31	31	30	30	29	31	362
Number of calm obs.	0	0	0	0	0	0	0	0	0	0	0	0	0
HIGHEST WAVE RECORDED	4.50	4.50	4.50	3.50	3.50	3.50	3.50	3.50	5.50	3.50	3.50	3.50	5.50
AVG. Wave height (fi) (1)	2.08	2.30	2.26	2.15	2.32	1.92	2.31	2.05	2.35	2.23	1.67	1.83	2.12
Standard deviation	. 93	. 92	. 88	. 75	. 77	. 75	. 69	. 72	1.07	.73	. 61	. 76	. 84
LONGEST PERIOD RECORDED	8.60	3.60	8.60	8.60	8.60	8.60	8.60	8.60	8.80	8.60	9.60	8.60	3.80
avg wave period (SEC) (1)	6.52	6.41	0.02	6.33	5.92	6.62	5.75	6.74	6.25	5.99	7.02	6.68	6.37
Standard deviation	1.33	1.26	1.12	1.35	1.23	1.23	1.05	1.28	1.34	1.05	1.38	1.41	1.31
Wave directon													
NUMEER OF OBSERVATIONS	31	28	31	30	30	30	31	31	30	30	29	31	362
PERCENT OCCURRENCE >90	45.2	39.3	35.5	26.7	40.0	26.7	51.6	35.5	26.7	10.0	41.4	54.8	36.2
$=90$. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0
<90	54.8	60.7	64.5	73.3	60.0	73.3	43.4	64.5	73.3	90.0	58.5	45.2	63.3
AVG. ZONE WIDTH (FT) (2)	271	294	296	286	300	221	300	259	271	273	186	226	266
NUMEER OF OBSERVATIONS	31	28	31	30	30	30	31	31	30	31	29	31	363
WIND OBSERVATIONS													
HIGHEST WIND RECORDED	18.0	18.0	16.0	18.0	18.0	20.0	18.0	18.0	18.0	18.0	16.0	16.0	20.0
AVG. WIND SPEED(MPH) (1)	11.2	9.7	9.7	10.5	10.3	8.7	10.8	9.3	9.9	10.0	8.5	8.3	9.8
Standard deviation	3.2	4.5	3.3	4.6	3.8	4.3	3.3	4.0	3.6	3.8	4.3	3.9	4.0
Number of observations	31	23	30	30	30	30	31	30	30	31	29	31	361
PERCENT OCCURRENCE FROM													
NORTH	12.9	14.3	10.0	10.0	. 0	. 0	6.5	10.0	6.7	9.7	. 0	12.9	7.8
northeast	6.5	3.6	6.7	6.7	23.3	3.3	5.5	10.0	33.3	54.8	24.1	16.1	16.3
EASt	. 3	. 0	10.0	13.3	13.3	. 0	3.2	10.0	3.3	6.5	6.9	3.2	5.8
Southeast	6.5	3.6	3.3	6.7	3.3	16.7	3.2	13.3	16.7	3.2	13.8	3.2	7.8
SOUTH	3.2	17.9	3.3	3.3	10.0	13.3	16.1	. 0	. 0	6.5	. 0	3.2	6.4
SOUTHWESt	22.6	25.0	30.0	25.7	40.0	46.7	51.6	45.7	26.7	12.9	34.5	19.4	31.9
WEST	16.1	21.4	30.0	23.3	. 0	6.7	. 0	3.3	3.3	. 0	6.9	16.1	10.5
NORTHWEST	32.3	7.1	3.3	5.7	3.3	3.3	6.5	6.7	6.7	. 0	. 0	19.4	8.0
CALM	. 0	7.1	3.3	3.3	6.7	10.0	6.5	. 0	3.3	6.5	13.8	6.5	5.5
CURRENT OBSERVATIONS (-. 95	-1.05
AVG TO LEFT (FT/SEC) (2)	-1.03		-1.16 .29	-1.15 .22	-1.11 .27	-1.10	-1.17 .19	-1. 21	-. 37	. .30	. .38	. .34	. 30
STANDARD DEVIATION NUM. OF OBS. (TO LEFT)	13	-11	11	3	12	8	16	12	7	3	11	17	129
AVG TO RIGHT(FT/SEC) (2)	. 80	.91	.92	. 85	. 90	. 87	. 93	. 73	. 97	. 99	.72	. 76	. 87
Standard deviation	. 30	. 32	. 27	. 29	. 34	. 27	. 38	.23	. 31	. 34	. 20	. 20	-31
NU:A. OF OBS. (TO RIGHT)	17	17	20	22	19	21	15	19	22	28	13	14	231
Avg. net current (2)(3)	. 01	. 15	. 18	. 32	. 10	. 32	-. 15	. 02	. 54	. 79	. 12	-. 18	. 18
NUMGER OF OBSERVATIONS	30	28	31	30	30	29	31	31	29	31	29	31	360
NuMber of calm obs.	0	0	0	0	0	0	0	0	0	0	0	0	0

(Continued)
(Concluded)

FORESHORE SLOPE OBSERVATNS	5 JAN	FEg	MAPCH	APRIL	May	JUNE	juey	AUS	SEPT	OCT	NOV	DEC	total
Maximum Slope	4	2	2	2	2	2	2	2	2	2	2	2	4
MINIMUM SLOPE	2 ${ }^{2}$	2	2	2	2	2	2	2	2	2	2	2	2
AVERAGE SLOPE (2)) 2.1	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
NUMEER OF OBSERVATIONS	30	27	31	30	30	30	31	31	30	30	29	30	359
SEDiPENT TRANSPORT vOLUME METHOD 1	scuait	YARDS)(4)											
NET CUBIC YARDS	-32892	-17032	-22151	-11925	-20667	-7020	-26295	-17763	23304	36941	-11733	-39034	-146267
NUM OF OBSERVATIONS	31	28	31	30	30	30	31	31	30	31	29	31	363
total left cubic yos	-53057	-40231	-50235	-38024	-49467	-28494	-51346	-38521	-23395	-7573	-24196	-47430	-465969
NuM of ozs to left	14	11	11	9	12	8	16	11	8	3	12	17	131
total rght cubic yos	20164	32198	28083	26098	28800	21474	25050	20753	51699	44515	12463	8396	319698
NUY OF OBS TO RIGHT	17	17	20	22	18	22	15	20	22	28	17	14	232
METHOD 2													
NET CUBIC YARDS	-56855	14188	-17849	722	-49312	-11162	34961	-101194	234704	268934	-37548	-124907	154682
NuM Of observations	30	28	31	30	30	29	31	31	29	31	29	31	360
total left cubic yos -	-192850	-182221	-174610	-152257	-206095	-99109	-155364	-173542	-23633	-17189	-74554	-153882-	1605306
Num of obs to left	13	11	11	8	12	8	16	12	7	3	11	17	129
TOTAL RGHT CUBIC YDS	135095	196410	156760	152979	156783	87947	190325	72347	258337	286124	37005	28974	1759986
NUM OF OBS TO RIGHT	17	17	20	22	18	21	15	19	22	28	18	14	231

(1) CALMS, If any, included in average calculation
(2) CALMS NOT INCLUDEO IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT
(3) SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE SIVEN IN CUBIC YARDS. TWO METHODS (DESCRISED IN SECTION 4 OF THE "ShORE PROTECTION MANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSPORT TO THE LEFT.
METHOD 1. THIS METHOD IS BASED ON EQUATIONS 4-38 AND 4-50日 FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS fIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE heIGHt and angle of approach have been recorded. then an average flux for each month is calculated, and FINALLY THESE MONTHLY VALUES OF FLUX ARE SUBSTITUTED INTO EQUATION $4-50 B$ AND DIVIDED BY 12 TO GET THE NET MONTHLY SEDIMENT TQANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALCULATED BY SUMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOD IS BASED ON EOUATIONS 4-51. 4-52. AND 4-50E FROM THE SPM, USING RECORDED OBSERVAtIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT, AND OISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOO NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF . 006 SHOULD GE USED IN EQUATION 4-52.

Latitude $33^{\circ} 51^{\prime} 10.8^{\prime \prime}$. Longitude $78^{\circ} 26^{\circ} 7.8^{\prime \prime}$.

Data Collected from 1 Jan 86 to 31 Dec 86

	J AN	FEB	MARCH	APRIL	May	JUNE	JULY	AUS	SEPT	OCT	NOV	DEC	total
SURF OGSERVATIONS													
NUMBER OF OBSERVATIONS	31	27	31	30	31	31	31	31	29	31	30	31	364
NUMBER OF CALM OBS.	0	0	0	0	0	0	0	0	0	0	0	0	0
HIGHEST WAVE RECORDED	3.50	4.00	3.50	3.50	3.00	3.50	3.00	3.50	3.50	3.50	3.50	5.00	5.00
AVG. WAVE HEIGHT(ft) (1)	1.89	2.04	2.10	1.68	1.87	2.37	1.73	1.86	1.97	1.67	1.74	1.90	1.90
Standard deviation	. 69	. 87	. 30	. 60	. 55	. 79	. 54	. 68	. 66	. 65	. 69	1.17	. 77
LONGEST PERIOD RECORDEJ	8.90	3.60	8.60	8.50	8.60	6.60	8.50	8.60	8.60	8.60	8.60	8.60	8.80
AVG WAVE PERIOD(SEC) (1)	6.52	6.70	6.45	6.63	8.44	5.83	6.16	6.29	5.32	6.86	7.09	7.28	6.54
Standard deviation	1.32	1.43	1.16	1.17	1.14	. 42	1.10	. 89	1.01	1.41	1.41	1.40	1.25
WAVE DIRECTON NUMBER OF OBSERVATIONS		27	31	30	31	31	31	31	29	31	30	31	364
PERCENT OCCURRENCE >90	69.3	48.1	32.3	36.7	59.6	51.6	45.2	38.7	13.8	22.6	6.7	12.9	35.2
- $\begin{aligned} & \\ &=90\end{aligned}$. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0
<90	38.7	51.9	67.7	83.3	48.4	48.4	54.8	61.3	86.2	77.4	93.3	87.1	64.8
AVG. ZONE WIDTH (FT) (2)	233	248	238	173	180	256	156	187	189	160	173	179	199
NUMBER OF OBSERVATIONS	31	27	31	30	31	31	31	31	29	31	28	31	362
WIND OBSERVATIONS													
HIGHEST HIND RECORDED AVG. WIND SPEED(MPH) (1)	18.0 9.5	16.0 9.0	18.0 10.2	19.0 10.3	18.0 8.5	16.0 10.8	15.0 9.2	14.0 10.0	18.0 11.0	16.0 8.5	18.0 9.5	22.0 7.7	22.0 9.5
Standard deviation	3.6	3.3	3.0	4.2	4.0	3.4	3.4	3.0	3.2	4.7	4.6	4.6	3.9
NUMBER OF OBSERVATIONS percent occurrence from	30	27	30	30	31	31	31	31	30	31	30	31	363
NORTH	10.0	3.7	13.3	. 0	3.2	. 0	. 0	. 0	20.0	3.2	3.3	12.9	5.8
northeast	16.7	3.7	10.0	. 0	6.5	6.5	3.2	16.1	20.0	19.4	26.7	32.3	13.5
EAST	3.3	19.5	3.3	. 0	6.5	3.2	. 0	3.2	10.0	. 0	3.3	3.2	4.4
SOUTHEASt	. 0	3.7	16.7	10.0	25.8	9.7	3.2	19.4	6.7	9.7	33.3	9.7	12.4
SOUTH	6.7	14.8	3.3	3.3	. 0	. 0	. 0	. 0	6.7	12.9	. 0	3.2	4.1
southmest	30.0	33.3	26.7	40.0	45.2	77.4	71.0	19.4	26.7	16.1	10.0	6.5	33.6
WEST	26.7	7.4	. 0	3.7	. 0	. 0	9.7	25.8	5.7	22.6	3.3	. 0	9.1
NORTHWEST	6.7	11.1	25.7	36.7	9.7	. 0	9.7	10.1	. 0	9.7	13.3	22.6	13.5
CALM	- 0	3.7	. 0	3.3	3.2	3.2	3.2	. 0	3.3	6.5	6.7	9.7	3.6
CURRENT OBSERVATIONS													
AVG TO LEFT (FT/SEC) (2)	-. 76	-.97 .84	-1.01 .27	. .99 .26	.884 .22	-.95 .24		-.74 .16	. .96 .27	-.79 .18	-.70 .10	-.83 .29	-.90 .25
STANDARD DEVIATION NUM. Of OBS. (TO LEFT)	.24 18	. 24	- 27 10	- 11	.22 14	.24 16	- 14	-11	- 4	-18	- 2	- 4	123
Avg to right (ft/SEC) (2)	.71	. 70	. 78	. 65	. 80	. 85	.76	. 85	. 36	.76	. 88	. 78	-79
StANDARD DEVIATION	. 18	. 22	. 25	.13	.21	. 26	. 20	. 25	. 26	. 22	. 29	. 32	. 25
NUM. Of OSS. (TO RIGHT)	13	14	21	19	16	14	16	20	25	24	28	26	236
AVG. NET Current (2)(3)	-. 26	-. 10	. 20	. 05	. 04	-. 11	. 02	. 29	. 61	. 45	. 78	. 57	. 21
NUMBER OF OBSERVATIONS	31	27	31	30	30	30	30	31	29	30	30	30	359
NUMBER OF CALM OBS.	0	0	0	0	0	0	0	0	0	0	0	0	0
(Continued)													

(Conc1uded)

FORESHORE SLOPE OBSERVATNS	S JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	$A \cup G$	SEPT	OCT	NOV	DEC	total
MaxIMUM SLOPE	2	2	2	4	2	2	4	2	2	2	2	2	4
MINIMUM SLOPE	2	2	2	2	2	2	2	2	2	2	2	2	2
AVERAGE SLOPE (2)) 2.0	2.0	2.0	2.1	2.0	2.0	2.1	2.0	2.0	2.0	2.0	2.0	2.0
NUMBER OF OBSERVATIONS	31	27	31	30	31	31	31	29	30	30	30	31	362
sediment transport volume METHOD 1	ccualc	YARDS)(4)											
NET CUBIC Yaros	-38941	-54211	-13620	-14783	-14389	-25243	-24245	8179	23668	8852	26148	35970	-87620
NUM OF OgSERVATIONS	31	27	31	30	31	31	31	31	30	31	30	31	365
TOTAL LEFT CuBic yos	-47742	-64366	-41594	-26344	-29574	-54433	-32647	-16300	-8783	-11075	-1915	-9307	-344100
NuM Of O3S TO LEFt	19	13	10	11	16	16	14	12	4	7	2	4	128
TOTAL RGHT CUBIC YDS	8300	10154	22973	11555	15204	29190	8491	24479	32452	19928	28063	45277	256476
NUM OF OBS TO RIGHT	12	14	21	19	15	15	17	19	26	24	28	27	237
METHOD 2													
NET CuBIC Yards -	-108068	-164633	-18566	-47215	10991	-22702	-33961	87634	65366	46716	101646		32065
Num of observations	31	27	31	30	30	30	30	31	28	30	28	+ 30	356
TOTAL LEFT CUBIC YdS - NUM OF OBS TO LEFT	-141705 18	-196251 13	$\begin{array}{r} -114393 \\ 10 \end{array}$	-70430 11	-44264 14	-143738 16	-50756 14	-15703 11	-13618 4	-13689	-639 1	-27829	$\begin{array}{r} -836015 \\ 122 \end{array}$
TOTAL RGHT CUBIC YOS NUM OF OGS TO RIGHT	$\begin{array}{r} 33636 \\ 13 \end{array}$	$\begin{array}{r} 31613 \\ 14 \end{array}$	$\begin{array}{r} 95826 \\ 21 \end{array}$	23264	55246 16	$\begin{array}{r} 121036 \\ 14 \end{array}$	16744 16	$\begin{array}{r} 104387 \\ 20 \end{array}$	78984 24	60405 24	$\begin{array}{r} 102286 \\ 27 \end{array}$	$\begin{array}{r} 144651 \\ 26 \end{array}$	$\begin{array}{r} 868078 \\ 234 \end{array}$

(1) CALMS, IF ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) a minus sign (-) indicates current movement to the left

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIG YARDS. TWO METHODS (DESCRIBED IN SECTION 4 OF THE "Shore protection manual" (SPM)) are used to calculate the transport volume negative VALUES INDICATE TRANSPORT TO THE LEFT.
METHJD 1. THIS METHOD IS BASED ON EQUATIONS 4-38 AND 4-50B FROM THE SPM. A LONGSHORE ENERGY FLUX GEQUATION 4-3B) IS FIRST CALCULATED FOR ONLY THE OAYS OF THE MONTH WHERE WAVE HEIGHT AND angle of approach have been recorded. then an average flux for each month is calculated. and FINALLY THESE MONTHLY VALUES OF FLUX ARE SUBSTITUTED INTO EQUATION $4-5 O Z$ AND DIVIDED OY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALCULATED BY SUMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOD IS BASED ON EQUATIOVS 4-51, 4-S2, AND 4-5OB FROM THE SPM USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT, AND DISTANCE TO OYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROGEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF .OO6 SHOULD BE USED IN EQUATION 4-5?.

LEO Data Summary: Sta 39098. Ocean Isle Beach, North Carolina

Latitude $33^{\circ} 51^{\prime} 10.8^{\prime \prime}$, Longitude $78^{\circ} 26^{\circ} 7.8^{\prime \prime}$.
Data Collected from 1 Jan 87 to 31 Dec 87

	JAN	FE3	March	APPIL	MAY	JUNE	July	AUG	SEPT	OCT	NOV	DEC	total
SURF osservations													
NUMBER OF OBSERVATIONS	31	28	31	30	31	30	31	31	29	31	30	31	364
NUMBER OF CALM OBS.	0	0	0	0	0	0	0	0	1	0	0	0	1
HIGHEST WAVE RECORDED	3.50	4.50	3.50	3.50	3.50	3.50	3.50	3.50	4.50	2.50	4.50	3.50	4.50
AVG. WAVE HEIGHT(FT) (1)	2.06	2.34	1.68	1.73	1.71	1.75	1.77	1.82	1.76	1.48	2.17	2.00	1.89
STANDARD DEVIATION	. 83	. 95	. 79	. 75	. 67	. 63	. 61	. 72	.93	. 43	. 97	. 89	. 81
LONGEST PERIOD RECORDED	3.65	8.60	8.60	8.60	8.60	8.60	8.60	3.60	8.60	8.60	8.60	8.60	8.60
AVG WAVE PERIOO(SEC) (1)	6.47	6.17	6.86	0.20	6.54	6.50	6.25	6.34	6.23	6.66	6.33	6.63	6.44
Standard deviation	1.21	. 94	1.27	. 92	1.11	1.04	. 78	. 89	1.66	1.22	1.09	1.23	1.15
WAVE directon NUMBER OF OBSERVATIONS	31	23	31	30	31	30	31	31	28	31	30	31	363
PERCENT OCCURRENCE >90	64.5	39.3	19.4	46.7	32.3	76.7	61.3	32.3	39.3	22.6	30.0	45.2	42.4
- ${ }^{\text {a }} 0$. 0	. 0	. 0	. 0	. 0	. 3	. 0	. 0	. 0	. 0	- 0	. 0	. 0
<90	35.5	60.7	80.6	53.3	67.7	23.3	38.7	67.7	60.7	77.4	70.3	54.8	57.6
AVG. LONE WIOTH (FT) (2)	220	256	172	192	162	167	188	178	175	125	221	204	188
NUMBER OF OBSERVATIONS	31	28	31	30	31	29	31	31	27	31	30	31	363
WIND OGSERVATIONS HIGHEST WIND RECORDED	20.0	18.0	18.0	18.0	18.0	22.0	12.0	18.0	18.0	15.0	18.0	18.0	22.0
AVG. WIND SPEED(MPH) (1)	10.1	9.6	7.9	11.1	7.5	11.2	8.7	10.1	8.0	9.0	7.2	7.6	9.0
Standard deviation	6.5	4.9	4.4	4.5	4.7	4.2	2.2	3.9	4.6	4.1	4.3	5.1	4.8 365
NUMBER OF OBSERVATIONS PERCENT OCCURRENCE FROM	31	28	31	30	31	30	31	31	30	31	30	31	365
NORTH	12.9	7.1	19.4	. 0	. 0	. 0	. 0	- 3	. 0	- 0	. 0	3.2	3.6
northeast	16.1	29.6	12.9	6.7	6.5	6.7	3.2	- 0	13.3	29.0	10.0	12.9	12.1
EASt	6.5	10.7	. 0	20.0	- 0	6.7	. 7	6.5	3.3	2.0	${ }_{33}{ }^{\circ}$	-0	4.4 19
southeast	9.7	21.4	12.9	16.7	29.0	23.3	9.7	22.6	30.0	22.6	33.3	6.5	19.7
SOUTH	3.2	. 0	. 0	. 0	6.5	13.3	. 0	12.9	. 0	3.2	. 0	.	3.3
Southwest	9.7	17.9	19.4	26.7	29.0	33.3	71.0	29.0	16.7	3.2	6.7	16.1	23.3
WEST	6.5	. 0	3.2	16.7	3.2	10.0	. 0	9.7	6.7	. 0	3.3	12.9	6.0
NORTHWEST	19.4	3.6	16.1	10.0	9.7	6.7	12.9	12.9	16.7	29.0	30.0	32.3	16.7
CALM	16.1	10.7	16.1	3.3	16.1	. 0	3.2	6.5	13.3	12.9	16.7	16.1	11.0
CURRENT OGSERVATIONS											-. 74	-1.04	-. 87
AVG TO LEFT (FT/SEC) (2)	-. 98	-. 86	-. 84	-.84 .32	. .73 .16	-.83 .26	-. 88	-.82 .25	-. 86	. .30	. .23	. 34	. 29
STANDARD DEVIATION	35 .30	- 28 11	. 22	.32 14	-16	.26 23	. 19	- 10	- 11	- 8	- 8	14	154
NUM. OF O9S. (TO LEFT)													
AVG TO RIGHT(FT/SEC) (2)	. 92	. 97	. 71	. 75	. 79	. 73	. 93	. 84	. 89	. 73	.92	.75	. 82
Standard deviation	. 34	. 30	. 19	. 23	. 23	. 19	. 27	. 28	. 34	. 20	. 29	- 27	- 28
NUM. OF OBS. (TO RIGHT)	11	17	25	16	21	7	11	20	18	22	20	15	204
AVG. NET CURRENT (2)(3)	-. 30	. 25	. 41	. 01	. 30	-. 46	-. 21	. 29	.23	. 29	. 45	-. 08	.09 358
NUMSER OF OBSERVATIONS	31	. 28	31	30	31	30	30	30	29	30	23	30	358
NUMBER Of CALM OBS.	0	0	0	0	0	0	0	0	1	0	0	1	2

(Continued)
(Concluded)

FORESHORE SLOPE OBSERVATNS	S JAN	FE9	MARCH	APRIL	MAY	June	JULY	AUS	SEPT	OCT	NOV	DEC	total
Maximum slope	2	2	8	2	2	2	2	2	2	4	4	2	8
MINIMUM SLOPE	2	2	2	2	2	2	2	2	2	2	2	2	2
AVERAGE SLOPE (2)) 2.0	2.0	2.2	2.0	2.0	2.0	2.0	2.0	2.0	2.1	2.1	2.0	2.0
NUMBER OF ORSERVATIONS	31	23	30	29	31	30	31	31	29	31	30	30	361
SEDIMENT TRANSPORT VOLUME METMOD 1	cousic	YARDS)(4)											
NET CUBIC YARDS	-3208s	6021	103	-15002	17137	-35524	-23564	15804	4010	4616	29232	-29982	-58635
NUM Of OGSERVATIONS	31	28	31	30	31	30	31	31	28	31	30	31	363
total left cubic yos	-50836	-35301	-19054	-34240	-6905	-41402	-38710	-19074	-21486	-8293	-15661	-47913	-330875
NUM OF OSS TO LEFT	20	11	6	14	10	23	19	10	11	7	9	14	154
total regt cubic yos	18749	41922	99158	19238	24043	5877	15145	26378	25497	12910	44894	17931	272242
NUM OF OBS TO RIGHT	11	17	25	16	21	$?$	12	21	17	24	21	17	209
METHOD 2 NET CUBIC YARDS NUM OF OBSERVATIONS	$\begin{array}{r} -28350 \\ 31 \end{array}$	$\begin{array}{r} 143892 \\ 28 \end{array}$	$\begin{array}{r} 23218 \\ 31 \end{array}$	$\begin{array}{r} -10782 \\ 30 \end{array}$	$\begin{array}{r} 77146 \\ 31 \end{array}$	$\begin{array}{r} -61407 \\ 29 \end{array}$	$\begin{array}{r} -5648 \\ 30 \end{array}$	$\begin{array}{r} 93410 \\ 30 \end{array}$	$\begin{array}{r} 70042 \\ 29 \end{array}$	$\begin{array}{r} 9459 \\ 30 \end{array}$	$\begin{array}{r} 173560 \\ 28 \end{array}$	$\begin{array}{r} -71615 \\ 30 \end{array}$	$\begin{array}{r} 417925 \\ 357 \end{array}$
TOTAL LEFT CUBIC ydS - NUM OF OGS TO LEFt	$\begin{array}{r} -132686 \\ 20 \end{array}$	$\begin{array}{r} -84472 \\ 11 \end{array}$	-48484	$\begin{array}{r} -83865 \\ 14 \end{array}$	$\begin{array}{r} -5779 \\ 10 \end{array}$	$\begin{array}{r} -73233 \\ 22 \end{array}$	$\begin{array}{r} -53212 \\ 19 \end{array}$	$\begin{array}{r} -14102 \\ 10 \end{array}$	$\begin{array}{r} -41122 \\ 11 \end{array}$	$\begin{array}{r} -13399 \\ 8 \end{array}$	$\begin{array}{r} -11246 \\ 8 \end{array}$	$\begin{array}{r} -146685 \\ 14 \end{array}$	$\begin{array}{r} -709335 \\ 153 \end{array}$
total rght cusic yos NUM of oas to RIGHT	$\begin{array}{r} 104336 \\ 11 \end{array}$	$\begin{array}{r} 228365 \\ 17 \end{array}$	$\begin{array}{r} 71702 \\ 25 \end{array}$	$\begin{array}{r} 73083 \\ 16 \end{array}$	$\begin{array}{r} 83926 \\ 21 \end{array}$	11875 7	$\begin{array}{r} 47564 \\ 11 \end{array}$	$\begin{array}{r} 112513 \\ 20 \end{array}$	$\begin{array}{r} 111164 \\ 18 \end{array}$	$\begin{array}{r} 22859 \\ 22 \end{array}$	$\begin{array}{r} 184807 \\ 20 \end{array}$	$\begin{array}{r} 75069 \\ 16 \end{array}$	$\begin{array}{r} 1127263 \\ 204 \end{array}$

(1) Calms, If any. included in average calculation
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT
ates current movement to the pight
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUGIC YARDS. TWO METHODS (DESCRIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VOLUME NEGATIVE VALUES INDICATE TRANSPORT TO THE LEFT
METHOD 1. THIS METHOD IS BASED ON EQUATIONS 4-38 AND $4-509$ FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE MEIGHT AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUBSTITUTED INTO EQUATION 4-5OB AND DIVIDED BY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VCLUME IS CALCULATED GY SUMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52. AND 4-50B FROM THE SPM, USING RECORDED OSSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT. AND DISTANCE TO JYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF . 006 SHOULD $9 E$ USED IN EQUATION 4-52.

FORESHORE SLOPE OBSERVATNS	S JAN	FE 3	MARC4	APRIL	MAY	JUNE	july	aug	SEPT	OCT	Nov	DEC	TOTAL
Maximum slope	2	2	2	2	2	2	2	2	2	2	2	2	2
MINIMUM SLOPE	2	2	2	2	2	2	2	2	2	2	2	2	2
AVERAGE SLOPE (2)) 2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
NUMBER OF OBSERVATIONS	31	29	31	30	31	29	31	31	30	31	30	31	365
sEDIMENT TRANSPORT VOLUME METHOD 1	ccubic	YARDS)(4)											
VET CUSIC Yards	-6283	-44743	-20420	-69539	-20505	-924	-24537	-27822	9158	-5056	-24680	-13299	-248700
num of ogservations	31	29	31	30	31	30	31	31	30	31	30	31	366
total left cubic yos	-35464	-62506	-47913	-82573	-36257	-23478	-45576	-70027	-16376	-34813	-45942	-33536	-534481
NUM OF OBS TO LEFT	\bigcirc	13	14	15	12	9	16	14	10	10	9	10	141
TOTAL RGHT CUBIC YDS	29180	17753	27492	13033	15751	22554	29999	42205	25554	29756	21262	20236	285775
NuM OF OBS TO QIGHT	22	16	17	15	19	21	15	17	20	21	21	21	225
METHOD 2 NET CUBIC YARDS	-18272	-74139	-2567	-199714	-42186	65869	-2670	-61799	67692	12391	-91937	-42076	-389408
NUM OF OgSERVATIONS	30	28	30	30	31	30	31	30	30	31	30	29	360
total left cubic yos NUM OF OSS TO LEFT	$\begin{array}{r} -109334 \\ 9 \end{array}$	$\begin{array}{r} -116824 \\ 12 \end{array}$	$\begin{array}{r} -118881 \\ 13 \end{array}$	$\begin{array}{r} -233412 \\ 15 \end{array}$	-82753 12	-36332	-77118 16	-231347 14	$\begin{array}{r} -22374 \\ 10 \end{array}$	-94743 10	-142314	-104676-1 10	$\begin{array}{r} -1370108 \\ 139 \end{array}$
TOTAL QGHT CUBIC YOS NUM OF OBS TORIGHT	91062 21	42684	115314 17	33697 15	40566 19	102202 21	74488 15	169547 16	90067 20	107135 21	50376 21	62600 19	$\begin{array}{r} 980698 \\ 221 \end{array}$

(1) CALMS, IF ANY, INCLUDED IV AVERAGE CALCULATION
(2) CALMS NOT INCLUOED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS CDESCRIBED IN SECTION 4 OF THE "SHORE PROTECTION YANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSOORT TO THE LEFT.
METHOD 1. THIS METHOD IS BASED ON EQUATIONS $4-38$ AND $4-50 B$ FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST (ALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF APPROACH HAVE BEEN RECOPDED, THEN AN AVERAGE FLUX FOR EACH MONTH TS CALCULATED, AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUGSTITUTED INTO EQUATION G-SOB AND DIVIDED BY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPOR
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-5i, 4-52. AND 4-SOB FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT, AND DISTANCE TO DYE OATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: PECENT FINDINGS INDICATE A FRICTION FACTOR OF .OOS SHOULD SE USED IN EQUATION 4-S2.

LEO Data Summary: Sta 39098, Ocean Isle Beach. North Carolina
Latitude $33^{\circ} 51^{\prime} 10.8^{\prime \prime}$. Longitude $78^{\circ} 26^{\circ} 7.8^{\prime \prime}$.
Data Collected from 29 Jul 80 to 31 Dec 88

(Concluded)

(1) CALMS, IF ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A minus sign (-) indicates current movement to the left

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS (DESCRIEED IN SECTION 4 OF the "Shore protection manual" (Spm)) are used to calculate the transport volume. negative values indicate transport to the left.
METHOD 1. THIS METHJD IS BASED ON EQUATIONS 4-38 AND $4-503$ FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-3B) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT ANO angle of approach have been recorded, then an average flux for each month is calculateo. and
 GET THE NEY MONTHLY SEOIMENT TRANSPORT VOLUMES. THE YEARLY SEOIMENT TRANSPORT VOLUME IS LALCULATED GY SUMMING THE MONTHLY VALUES
METHOD 2. THIS METHOD IS EASED ON EZUATIONS 4-S1, 4-SZ, AND 4-SOB FROM THE SPME USING RECORDED OBSERVA IIONS OF WAVE HEIGHT. WIDTH OF SURF ZONE, LONSSHORE GURRENT, AND OISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDITATE A FRICTION FACTOR OF .OO6 SHOULD BE USEO IN EQUATION 4-52.

Data Collected from 19 May 80 to 31 Dec 80

SURF OBSERVATIONS	JAN	F¢9	MARCH	APRIL	may	JUvE	JULY	aug	SEPT	OCT	Nov	DEC	total
NUMAER OF OBSERVATIONS	0	0	0	0	11	19	30	30	25	26	18	31	190
NUMBER OF CALM OBS.	0	0	0	0	0	0	0	0	0	1	0	0	1
HIGHEST WAVE RECORDED	. 00	. 00	. 03	. 00	2.50	2.50	3.00	2.50	2.50	2.50	2.00	3.00	3.00
AVG. WAVE HEIGHT(FT) (1)	. 00	. 00	. 00	.00	1.73	1.85	1.33	1.23	1.30	1.23	1.44	1.10	1.33
STANDARD DEVIATION	. 00	. 00	. 00	. 00	. 30	. 48	. 64	. 59	. 49	. 62	. 47	. 60	. 59
LONGEST PERIOD RECORDED	. 00	. 00	. 00	. 09	15.20	8.20	8.20	8.20	7.20	8.70	7.40	12.00	15.20
AVG WAVE PERIOD(SEC) (1)	. 00	. 00	. 00	.09	9.30	6.59	6.20	5.84	5.64	6.12	6.04	7.66	6.50
STANDARD DEVIATION	. 00	. 00	. 00	. 00	3.35	. 93	. 57	. 69	. 76	1.56	.78	2.18	1.73
Wave directon													
NUMBER OF OBSERVATIONS	0	0	0	0	11	19	30	30	25	25	18	31	189
PERCENT OCCURRENCE >90	. 0	. 0	. 0	. 0	18.2	15.8	6.7	20.0	8.0	. 0	16.7	22.6	13.2
$=90$.0	. 0	. 0	. 0	63.5	47.4	76.7	43.3	68.0	84.0	66.7	22.6	57.7
<90	.0	.3	. 0	. 2		36.8		36.7	24.0	16.0	16.7	54.8	29.1
AVG. LONE WIDTH (FT) (2)	9	0	0	0	200	171	149	144	125	125	104	78	131
Number of osservations	0	0	0	0	11	19	30	30	25	25	18	31	189
WIND OBSERVATIONS													
HIGHEST HIND RECORDED	. 0	. 0	. 0	. 0	9.0	18.0	18.0	18.0	14.0	16.0	14.0	19.0	19.0
AVG. WIND SPEED(MPH) (1)	. 0	. 0	. 0	. 0	6.5	10.7	10.6	9.5	6.7	5.1	7.1	6.7	7.9
STANDARD DEVIATION	. 0	- 0	. 0	. 0	1.3	3.3	4.5	4.3	3.1	3.4	2.9	3.4	4.1
NUMEER OF OBSERVATIONS PERGENT OCCURRENCE FROM	0	0	0	0	11	19	30	30	26	27	18	31	192
NORTH	- 0	. 0	- 0	. 0	- 0	. 0	3.3	. 0	. 0	18.5	5.6	32.3	8.7
northeast	. 0	- 0	. 0	- 0	9.1	10.5	5.7	6.7	7.7	33.3	22.2	22.6	15.1
EASt	. 0	. 0	. 0	- 0	$\bigcirc .1$	10.5	. 0	. 0	. 0	7.4	5.6	. 0	3.1
southeast	. 0	. 0	. 0	. 0	. 0	. 0	6.7	23.3	34.6	7.4	33.3	. 0	13.5
SOUTH	. 0	. 0	. 0	. 0	18.2	. 0	. 0	13.3	19.2	11.1	. 0	3.2	7.8
Southwest	. 0	. 0	. 0	. 0	54.5	78.9	76.7	50.0	26.9	3.7	33.3	38.7	44.3
WEST	. 0	.0	. 0	. 0	9.1	. 0	. 0	. 0	. 0	. 0	. 0	3.2	1.0
NORTHWEST	. 0	. 0	. 0	. 0	.0	. 0	. 0	. 0	. 0	. 0	.0	. 0	. 0
CALM	. 0	. 0	. 0	. 0	. 3	.0	6.7	6.7	11.5	18.5	.0	. 0	6.3
CURRENT OBSERVATIONS													
avg to Left (FT/SEC) (2)	. 03	. 00	. 00	. 00	-. 23	-. 38	-. 78	-. 80	-. 78	-. 58	-. 78	-. 34	-. 60
Standard deviation	. 0.0	. 00	. 00	.00	. 21	. 21	. 43	. 19	. 15	.12	.31	. 19	. 35
Num. Of OBS. (TO LEFT)	0	0	0	2	8	9	11	14	3	3	6	6	60
AVG TO RIGHT(FT/SEC) (2)	. 00	. 00	. 00	. 00	.77	. 67	.70	.90	. 89	. 76	. 77	. 38	. 71
STANDARD DEVIATION	. 30	.00	. 00	. 00	. 27	. 20	. 34	. 35	. 28	. 20	. 25	. 27	. 33
NUM. OF OBS. (TO RIGHT)	0	0	2	0	2	\bigcirc	13	15	21	18	11	24	113
AVG. NET CURRENT (2)(3)	. 03	. 00	. 00	.00	-. 03	.14	. 14	. 03	. 68	. 57	. 22	. 24	.27
NUMBER OF OBSERVATIONS	0	0	0	0	10	18	29	29	24	21	17	30	178
NU:MBER OF CALM OBS.	0	0	0	0	1	1	1	1	2	5	0	1	12
(Continued)													

	FORESHORE SLOPE OBSERVATNS	JAN	FES	MAPCH	APRIL	May	JUNE	July	AUG	SEPT	OCT	NOV	DEC	total
	maximum slope	0	0	0	0	3	3	3	3	3	2	2	2	3
	MINIMUM SLOPE	0	0	0	0	3	3	3	3	2	2	2	1	1
	AVERAGE SLOPE (2)	. 0	. 0	. 0	. 0	3.0	3.0	3.0	3.0	2.2	2.0	2.0	2.0	2.5
	NUMBER Of OBSERVATIONS	0	0	0	9	11	19	30	30	26	27	18	31	192
	SEDIRENT TRANSPORT VOLUME (CUBIC YARDS)(4) METHOD 1													
	NET CUBIC Yards	0	0	0	0	2743	-3894	1303	373	846	306	-616	4559	5620
	NuM of observations	0	0	0	0	11	19	30	30	26	25	18	31	190
	TOTAL LEFT CUBIC YDS	0	0	0	0	-1560	-6177	-131	-909	-67	0	-889	-722	-10547
	NUM OF O3S TO LEFT	0	0	0	0	2	3	2	6	2	0	3	7	25
	total rght cubic yos	0	0	0	0	4303	2284	1434	1373	914	306	272	5231	16167
	NUM OF O日S TO RIGHT	c	0	0	0	2	7	5	11	6	4	3	17	55
	METHOD 2													
	NET CUBIC YARDS	0	0	0	0	-12145	8978	8702	-5805	23566	18491	-1352	5045	43480
	Num of observations	0	0	0	0	10	18	29	29	24	20	17	30	177
	total left cubic yos	0	0	0	0	-18981	-10125	-10261	-18263	-2186	-3548	-10597	-574	-74535
	NuM OF OBS TO LEFT	0	0	0	0	8	9	11	14	3	3	6	6	60
	TOTAL RGHT CUEIC YDS	0	0	0	0	6835	19104	16963	12458	25752	22040	9245	5619	118016
$\begin{aligned} & \text { Q } \\ & \AA \end{aligned}$	NUM Of O3S TO RIGHT	0	0	0	0	2	9	18	15	21	17	11	24	117

(1) CALMS, IF ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALYS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS (DESCRIBED IN SECTION 4 OF THE "SHOPE PROTECTION MANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE
METHOD 1. VALUES INDICATE TRANSPORT TO THE LEFT. (EQUATION $4-33$) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT ANO ANGLE OF APPROACH HAVE BEEN RECORDED, THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUSSTITUTED INTO EQUATION $4-50 Z$ AND DIVIDED $3 Y$ Y 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALCULATED BY SUMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOO IS BASED ON EQUATIONS 4-51. 4-52. AND 4-50S FROM THE SPM, USING RECORDED OBSERVAIONS OF WAVE HEGHT, WIDTH OF SURF LONE, LONGSHORE CURRENT, AND DISTANCE TO DYE PATCH FROM POOCEDURE AS METHOD 1. NOTE: RECENT FIVDINGS INDICATE A FRICTION FACTOR OF . OJ6 SHOULD GE USED IN EQUATION $4-52$.

Latitude $33^{\circ} 52^{\prime \prime} .6^{\prime \prime}$. Longitude $78^{\circ} 30^{\prime} 28.8^{\prime \prime}$.
Data Collected from 1 Jan 81 to 31 Dec 81

SURF OBSERVATIONS	JAN	859	MARC4	APRIL	may	June	juty	AUG	SEPT	OCT	NOV	DEC	total
Number of observations	30	27	31	23	30	30	31	31	30	30	30	24	
NUMBER OF CALM OBS.	0	0	0	0	0	0	0	0	0	0	0	24 0	347
HIGHEST WAVE RECORDED	2.50	3.00	4.50	2.50	3.50	3.00	4.00	4.00	3.50	4.00	3.00	3.50	4.50
AVG. WAVE HEIGHT(FT) (1)	1.33	2.07	2.00	1.37	2.18	1.73	2.39	2.25	2.30	2.40	2.25	3.50 2.23	4.50 2.09
STANDARD DEVIATION	. 65	.74	. 79	. 54	. 65	. 56	. 68	. 275	. 60	. 85	.59	2.84 .84	2.09
LONGEST PERIOD RECORDED	15.00	11.80	16.00	11.00	12.50	9.20	8.80	10.00	9.00	8.80	8.70	15.20	16.00
AVG WAVE PERIOD(SEC) (1)	8.66	7.66	7.39	7.50	7.10	6.21	6.46	7.00	7.30	6.87	6.94	7.64	7.21
Standard deviation	2.61	2.03	2.18	1.54	1.52	.94	1.06	1.13	1.01	. 62	. 85	2.12	1.70
Wave directon													
NUMBER OF OBSERVATIONS	30	27	31	23	30	30	31	31	30	30	30	24	347
PERCENT OCCURRENCE >70	40.0	25.7	25.3	30.4	30.0	63.3	61.3	25.8	20.0	16.7	43.3	45.8	35.7
$=90$	20.0	18.5	20.0	26.1	40.0	13.3	16.1	22.5	40.0	30.0	30.0	25.0	25.9
<90	40.0	55.6	45.2	43.5	30.0	23.3	22.6	51.6	40.0	53.3	26.7	29.2	38.3
AVG. ZONE WIDTH (FT) (2)	87	70	71	78	68	67	85	83	83	99	77	66	78
Number of observations	30	25	31	24	31	30	31	29	29	30	29	24	343
WIND OBSERVATIONS													
HIGHEST WIND RECORDED	10.0	10.0	16.0	13.0	20.0	19.0	14.0	16.0	14.0	12.0	12.0	20.0	20.0
AVG. WIND SPEED(MPH) (1)	5.4	4.6	8.1	8.5	9.0	7.7	7.2	7.1	5.7	6.3	5.7	7.3	6.9
STANDARD DEVIATION	2.8	2.4	3.5	4.1	4.2	4.2	2.9	3.5	2.8	2.9	3.0	4.6	3.7
number of observations PERCENT OCCURRENCE FROM	30	28	31	24	31	30	31	31	30	31	30	25	352
NORTH	36.7	21.4	22.6	4.2	25.8	3.3	3.2	9.7	16.7	12.9	3.3	12.0	14.5
northeast	3.3	7.1	6.5	. 0	6.5	. 0	16.1	32.3	23.3	45.2	26.7	28.0	16.5
EAST	3.3	10.7	6.5	8.3	. 0	13.3	9.7	9.7	10.0	6.5	13.3	. 0	7.7
SOUTHEASt	. 0	10.7	. 0	25.0	15.1	10.0	12.9	. 0	0.7	. 0	3.3	8.0	7.4
SOUTH	. 0	10.7	19.4	15.?	6.5	16.7	3.2	12.9	23.3	9.7	3.3	. 0	10.2
Southwest	36.7	28.6	32.3	37.5	38.7	53.3	54.8	29.0	13.3	16.1	20.0	24.0	32.1
WEST	6.7	7.1	6.5	4.2	. 0	. 0	. 0	. 0	. 0	3.2	10.0	4.0	3.4
NORTHAEST	3.3	. 0	3.2	4.2	6.5	. 0	. 0	. 0	3.3	6.5	16.7	16.0	4.8
CALM	10.0	3.6	3.2	. 0	. 0	3.3	. 0	6.5	3.3	. 0	3.3	8.0	3.4
CURRENT OBSERVATIONS													
AVG TO LEFT (FT/SEC) (2)	-. 53	-. 35	-. 34	-. 32	-. 23	-. 33	-. 44	-. 45	-. 28	-. 40	-. 36	-. 41	-. 39
STANDARD DEVIATION	-19	-14	. 15	- 29	. 16	. 24	. 31	. 24	. 25	. 33	. 24	. 23	. 25
NUM. OF OBS. (TO LEFT)	17	7	13	11	8	15	16	10	6	5	13	9	130
AVG TO RIGHT(FT/SEC) (2)		. 35				. 45	. 42	. 48	. 37	. 40	. 61	. 50	. 40
STANDARD DEVIATION	. 36	. 18	. 18	. 16	.17	. 34	. 35	. 39	. 32	.36	. 54	. 25	. 32
NUM. OF OBS. (TO PIGHT)	13	15	13	11	14	11	10	16	21	20	8	7	159
AVG. NET CURRENT (2)(3)	-. 13	. 13	. 00	. 00	- 10	. 00	-. 11	. 12	.22	. 24	. 01	-. 01	. 05
NUMBER OF OBSERVATIONS	30	22	26	22	22	26	26	26	27	25	21	16	289
number of calm obs.	1	6	5	2	9	4	5	5	3	5	9	9	63

(Continued)

FORESHORE SLOPE OBSERVATNS	JAN	FEB	MARCH	APRIL	MAY	June	Juty	$A \cup G$	SEPT	OCT	NOV	DEC	total
MaxImum SLOPE	3	2	2	2	2	1	1	1	1	1	1	1	3
MINIMUM SLIOPE	1	1	2	1	1	1	1	1	1	1	1	1	1
AVERAGE SLOPE (2)	1.2	1.1	2.0	1.4	1.4	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2
NUMBER OF OBSERVATIONS	29	27	31	24	31	30	31	31	30	31	29	25	349
SEDIMENT TRANSPORT VOLUME METHJD	ccusic	ARDS)(4)											
NET CUBIC Yards	199	18341	10588	13099	2662	-3250	-3052	7602	2444	13488	-2202	-53	59866
NUM OF OBSERVATIONS	30	27	31	23	30	30	31	31	30	31	30	25	349
TOTAL LEFT CUBIC YDS NUM OF OBS TO LEFT	$\begin{array}{r} -3999 \\ 12 \end{array}$	-5258 7	$\begin{array}{r} -3628 \\ 8 \end{array}$	-3453 7	-3619 9	$\begin{array}{r} -7665 \\ 19 \end{array}$	$\begin{array}{r} -17087 \\ 19 \end{array}$	$\begin{array}{r} -9505 \\ 8 \end{array}$	$\begin{array}{r} -3749 \\ 6 \end{array}$	$\begin{array}{r} -3442 \\ 5 \end{array}$	$\begin{array}{r} -10675 \\ 13 \end{array}$	$\begin{array}{r} -10569 \\ 12 \end{array}$	$\begin{array}{r} -82658 \\ 125 \end{array}$
total rght cugic yos NUM OF OBS TO RIGHT	$\begin{array}{r} 4199 \\ 12 \end{array}$	$\begin{array}{r} 23610 \\ 15 \end{array}$	$\begin{array}{r} 14217 \\ 14 \end{array}$	$\begin{array}{r} 15553 \\ 10 \end{array}$	6280 9	4414	$\begin{array}{r} 14034 \\ 7 \end{array}$	$\begin{array}{r} 17108 \\ 16 \end{array}$	$\begin{array}{r} 6193 \\ 12 \end{array}$	$\begin{array}{r} 16931 \\ 17 \end{array}$	$\begin{array}{r} 8473 \\ 8 \end{array}$	$\begin{array}{r} 10515 \\ 7 \end{array}$	$\begin{array}{r} 142527 \\ 134 \end{array}$
METHOD 2 NET CUBIC YARDS NUM OF OBSERVATIONS	$\begin{array}{r} 28122 \\ 29 \end{array}$	$\begin{array}{r} 14796 \\ 20 \end{array}$	730 26	$\begin{array}{r} 13151 \\ 22 \end{array}$	$\begin{array}{r} 5917 \\ 22 \end{array}$	$\begin{array}{r} -2118 \\ 25 \end{array}$	$\begin{array}{r} -6743 \\ 26 \end{array}$	1688 24	6269 27	$\begin{array}{r} 21427 \\ 24 \end{array}$	4304 21	$\begin{array}{r} 227 \\ 16 \end{array}$	$\begin{array}{r} 87770 \\ 282 \end{array}$
total left cubic yds Num of obs to left	$\begin{array}{r} -9171 \\ 17 \end{array}$	-1825 7	$\begin{array}{r} -3631 \\ 13 \end{array}$	-3223 11	-2429 8	-4174 14	-13473	-5150 9	-1235	-1054 4	-5715 13	-7501 9	-58581 127
TOTAL RGHT CUSIC YOS NUM OF OZS TO RIGHT	$\begin{array}{r} 37293 \\ 12 \end{array}$	$\begin{array}{r} 16621 \\ 13 \end{array}$	$\begin{array}{r} 4361 \\ 13 \end{array}$	$\begin{array}{r} 96374 \\ 11 \end{array}$	8347 14	2056 11	6730 10	6839 15	7504 21	$\begin{array}{r} 22481 \\ 20 \end{array}$	$\begin{array}{r} 10019 \\ 8 \end{array}$	7728 7	$\begin{array}{r} 146353 \\ 155 \end{array}$

(1) CALMS, IF ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVEQAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES GURRENT MOVEMENT TO THE LEft
no sign indicates curaent movement to the right
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS. TWO METHOOS CDESCRIBED IN SECTION 4 OF fhe "Shore protection manual" (Spy)) are used to calculate the transport volume. negative VALUES INDICATE TRANSPORT TO THE LEFT.
METHOD 1. THIS METHJD IS BASED ON EQUATIONS 4-38 AND 4-509 FROM THE SDM. A LONGSHORE ENERGY FLUX (EGUATION 4-38) IS first calculated for only the days of the movth where wave height and ANGLE OF APPROACH HAVE BEEN RECORDED. THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCJLATED, AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUBSTITUTED INTO EQUATION 4-5OS AND DIVIDED BY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALCULATED ZY SUMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52, AND 4-SOB FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT, AND DISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF. OOS SHOULD GE USED IN EQUATION $4-52$.

SURF OBSERVATIONS	JAN	FED	MARCH	APRIL	May	june	JJLY	AUG	SEPT	OCt	NOV	DEC	TOTAL
NUMBER OF OBSEQVATIONS	29	29	30	30	30	28	30	31	30	30	15	31	343
NUMBER OF CALM OBS.	0	0	0	0	0	0	0	0	0	0	0	0	0
highest wave recorded	4.00	3.50	3.00	3.50	2.50	2.00	2.50	2.50	3.00	4.00	3.00	3.50	4.00
AVG. WAVE HEIGHT(FT) (1)	2.24	2.17	1.80	1.82	1.43	1.30	1.40	1.40	1.82	1.82	1.73	2.02	1.75
STANDARD DEVIATION	. 70	. 63	. 67	. 72	. 50	. 45	. 51	. 65	. 58	. 88	. 65	. 26	. 73
LONGEST PERIOD RECORDED	11.00	12.00	11.90	10.00	9.40	9.70	8.40	7.80	7.30	7.20	7.40	10.10	12.00
AVG WAVE PERIOD(SEC) (1)	7.23	8.52	7.90	7.04	7.84	7.09	7.21	6.30	6.75	6.36	6.45	6.23	7.14
Standard deviation	1.45	1.39	1.73	. 91	. 96	1.12	. 85	. 65	. 63	. 43	. 47	1.36	1.32
Wave directon													
NUMBER OF OBSERVATIONS	29	29	30	30	30	28	30	31	30	30	15	31	343
PERCENT OCCURRENCE >90	44.8	17.2	13.3	40.0	46.7	42.9	56.7	32.3	16.7	3.3	13.3	19.4	29.4
- $\quad=0$	13.8	20.7	16.7	13.3	40.3	14.3	23.3	12.9	10.7	36.7	20.0	35.5	22.2
<0	41.4	62.1		46.7				54.8	66.7	60.0	66.7	45.2	48.4
AVG. LONS WIDTH (FT) (2)	101	70	63	71	70	77	84	80	67	59	63	76	74
Number of observaticns	30	28	31	29	31	27	30	31	29	31	15	31	343
WIND OBSERVATIONS													
HIGHEST WIND RECOPDED	12.0	12.0	12.0	16.9	12.0	15.0	16.0	12.0	12.0	18.0	6.0	20.0	20.0
AVG. WIND SPEEO (MPH) (1)	6.1	5.0	3.0	5.5	5.5	5.7	5.6	5.3	5.2	4.7	3.9	4.9	5.4
STANDARD DEVIATION	3.1	3.3	2.7	3.0	2.4	3.2	3.8	2.4	2.7	3.7	2.0	4.8	3.3
number of observations	30	29	≥ 1	30	30	27	30	30	30	31	14	30	342
PERCENT OCCURRENCE FROM													
NORTH	13.3	27.6	3.2	13.3	3.3	7.4	3.3	. 0	16.7	25.8	7.1	23.3	11.4
NORTHEAST	16.7	20.7	9.7	13.3	. 0	11.1	6.7	6.7	20.0	29.0	57.1	20.0	15.8
EAST	6.7	.0	12.9	. 0	3.3	11.1	3.3	6.7	10.0	9.7	7.1	13.3	7.0
Southeast	3.3	. 0	15.1	46.7	36.7	14.8	6.7	30.0	16.7	9.7	. 0	. 0	15.8
SOUTH	16.7	3.4	12.9	10.0	20.3	29.6	30.0	13.3	10.0	. 0	. 0	10.0	13.5
SOUTHWEST	10.0	13.8	35.5	10.0	26.7	14.8	43.3	40.0	20.0	9.7	14.3	13.3	21.3
WEST	16.7	3.4	. 0	. 5	6.7	. 0	3.3	. 0	. 0	. 0	. 0	. 0	2.6
NORTHWEST	10.0	20.7	6.5	13.3	3.3	3.7	. 0	. 0	3.3	3.2	. 0	3.3	5.8
CALM	6.7	10.3	3.2	3.3	. 0	7.4	3.3	3.3	3.3	12.9	14.3	16.7	6.7
CURRENT OBSERVATIONS													
AVG TO LEFT (FT/SEC) (2)	-. 56	-. 30	-. 47	-. 35	-. 27	-. 29	-. 54	-. 30	-. 14	-. 33	-. 31	-. 27	-. 37
Standard deviation	. 36	.16	. 26	. 26	. 15	.18	. 31	.15	. 04	. 00	. 07	. 03	. 26
NUM. OF OBS. (TO LEFT)	12	5	6	ε	11	12	13	7	3	1	4	5	89
AVG TO RIGHT(FT/SEC) (2)	. 35	.33	. 35	.41	.27	. 47	. 26	. 38	. 34	. 45	. 49	. 42	. 38
Standard deviation	.21	. 23	.19	. 24	. 06	. 30	.13	. 16	. 12	. 20	. 17	. 19	. 21
NUM. OF OBS. (to pight	12	17	22	15	5	11	7	15	20	20	3	21	173
AVG. NET CURREVT (2) (3)	-. 10	.13	.17	. 14	-. 10	. 07	-. 25	. 13	. 29	.42	. 22	. 29	. 13
NUMZER OF OBSERVATIONS	24	22	28	23	16	23	20	24	23	21	12	26	262
NUMESR OF CALM 095.	6	6	3	7	15	4	10	6	6	10	2	5	80

foreshore slope ogservatns	JAN	FEE	MAPCH	APRIL	MAY	juve	july	aus	SEPT	OCT	NOV	DEC	TOTAL
Maximum slope	4	3	3	2	1	1	1	2	1	1	1	1	4
MINIMUM SLOPE	1	2	2	1	1	1	1	1	1	1	1	1	1
AVERAGE SLOPE（2）	2.0	2.0	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.4
NUMBER OF OSSERVATIOVS	30	20	31	30	31	29	30	31	30	31	15	31	347
sediment transport volume METHOD 1	ccueic rar	YARDS）（6）											
NET CUBIC Yards	1516	8617	6470	1675	－698	－232	－5195	127	3658	3627	8834	7598	46017
NUM OF Oaservations	30	27	30	30	31	23	30	31	30	30	15	31	345
total left cueic yds	－8201	－2720	－970	－45？1	－2210	－3119	－5397	－4149	－1201	－207	－1913	－1779	－36787
NLY OF OES TO LEFT	13	5	4	12	14	12	17	10	5	1	2	6	101
total rght cusic yds	9717	11338	7341	6196	1521	2356	701	4277	9869	3835	10747	9377	82805
NUM OF 03S TO RIGHT	13	1\％	21	14	5	12	6	17	20	18	10	14	168
METHOD 2													
NET CUGIC YARDS	－8691	4866	15847	2536	－1791	－407	－5965	256	4713	7442	1148	5881	24696
NuM of observations	24	21	28	23	16	22	20	24	22	21	12	26	259
Total left cubic ros Num of obs to left	$\begin{array}{r} -14605 \\ 12 \end{array}$	$\begin{array}{r} -1211 \\ 5 \end{array}$	$\begin{array}{r} -1683 \\ 6 \end{array}$	$\begin{array}{r} -2500 \\ 8 \end{array}$	$\begin{array}{r} -2932 \\ 11 \end{array}$	$\begin{array}{r} -3294 \\ 12 \end{array}$	$\begin{array}{r} -3018 \\ 13 \end{array}$	-2330 9	-192 2	-86 1	$\begin{array}{r} -1991 \\ 4 \end{array}$	$\begin{array}{r} -1522 \\ 5 \end{array}$	$\begin{array}{r} -40419 \\ 88 \end{array}$
total rght cubic yos	5914	5377	17538	5096	1140	2887	1051	2636	4906	7528	3139	7404	65118
NUM OF OFS TO RIGHT	12	15	$? 2$	15	5	10	7	15	20	20	8	21	171

（1）CALMS，IF ANY，INCLUDEO IN AVERAGS CALCULATION
（2）CAL＇AS NOT INCLUPED IN AVERAGE CALCULATION
隹 THE FIGHT
（4）ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS．TWO METHODS CDESCRIBED IN SECTION 4 OE THE＂SHOPE PROTECTIJN＂ANUAL＂（SDM））ARE USED TO CALCULATE THE TRANSPJRT VOLUME．NEGATIVE HALUES TMDICATE TRANSPOPT TS THE LEFT．
METHOD 1．THIS METHOD IS BASED ON EJUATIONS 4－39 AND 4－5O3 FRDM THE SPY．A LJNGSYOZE EVERGY FLUX （EJUATION 4－33）IS FIRST CALCULATED FDP ONLY THE DAYS OF TME MONTH WHERE WAVE HEIGHT AND AVGLE OF APPRJACH HAVE BEEN DECORDED，THEN AN AV：RAGE FLUX FOD EAGH MONTH IS GALCULATED，AND FINALLY THESE MONTHLY VALUES OF FLUX AGE SUヨSTITUTED INTO EJUATIOV $4-50$ A AND DIVIDED $9 Y$ Y 12 TO GET THE NET MONTHLY SEOIMENT TPAASPORT VOLUMES．THE YEARLY JEDIMENT TRANSPORT VCLUME IS CAL－ CULATED BY SUMMINJ THE YOVTHLY VALUES．
METHOD 2．THIS METHOO IS JASED JN EQUATICNS 4－51，4－シ2，AND 4－50E FROM THE SPM，USING RECORDED OBSEAVA－ TIONS OF WAVE HEIGHT，WIDTH OF SUPF ZDNE，LONGSHORE CURRENT，AND DISTANCE TO DYE PATCH FROM SHJRELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1．NOTE：PECENT FIVDINGS INDICATE A FRICTION FACTOR OF ．ODS SHOULD JE USED IN EQUATION $4-52$.

LEO Data Summary; Sta 39099, Sunset Beach, North Carolina
Latitude $33^{\circ} 52^{\prime} .6^{\prime \prime}$, Longitude $78^{\circ} 30^{\circ} 28^{\prime \prime} 8^{\prime \prime}$.
Data Collected from 1 Jan 83 to 31 Dec 83

(Concluded)

	JAN	FEB	MARCH	APRIL	May	JUNE	JULY	Aug	SEPT	OCt	NOV	DEC	total
FORESHORE SLOPE OGSERVATNS													
MAXIMUM SLOPE	1	1	0	0	0	0	0	0	0	1	1	2	2
MINIMUM SLOPE	1	1	0	0	0	0	0	0	0	1	1	1	1
AVERAGE SLOPE (2)	1.0	1.0	. 0	. 0	. 0	. 0	. 0	. 0	- 0	1.0	1.0	1.5	1.1
NUMEER OF OBSERVATIONS	31	25	0	0	0	0	0	0	0	22	29	31	138
SEDIMENT TRANSPORT VOLUME METHOD 1	çualc	RDS)(4)											
NET CUGIC Yards	8728	7532	13926	-470	-5952	11774	-1484	894	3544	12677	-732	7000	57427
NUM OF OGSERVATIONS	31	28	31	30	15	30	31	31	29	30	29	30	345
total left cusic yos	-1893	-1776	-5290	-9216	-7592	-2308	-8334	-6350	-2717	-3948	-4102	-2302	-55818
Num of ojs to left	4	3	9	15	\bigcirc	5	13	14	11	9	16	6	111
TOTAL RGHT CUBIC YOS	10622	9309	19206	8745	1630	14082	6849	7245	6262	16625	3369	9303	113248
NUM OF O9S TO RIGHT	22	19	9	7	5	17	12	9	11	20	4	15	150
METHOD 2 NET CUEIC YARDS NUM OF OGSERVATIONS	6579 26	7693 21	18504 20	-581 22	-2026 9	1667 23	877 25	-325 23	536 21	1824 27	61 17	$\begin{array}{r} -1703 \\ 20 \end{array}$	$\begin{array}{r} 35226 \\ 254 \end{array}$
total left cubic yos NUM OF OBS TO LEFT	$\begin{array}{r} -4447 \\ 4 \end{array}$	$\begin{array}{r} -2091 \\ 3 \end{array}$	-1644	$\begin{array}{r} -3682 \\ 15 \end{array}$	$\begin{array}{r} -2833 \\ 4 \end{array}$	-1051 6	-866 11	$\begin{array}{r} -1578 \\ 14 \end{array}$	$\begin{array}{r} -742 \\ 9 \end{array}$	$\begin{array}{r} -241 \\ 6 \end{array}$	$\begin{array}{r} -734 \\ 13 \end{array}$	-2624	$\begin{array}{r} -22333 \\ 101 \end{array}$
TOTAL RGHT CUBIC YDS	11046	11785	20249	2901	806	2719 17	1743 14	1253	1278 12	2066 21	796 4	921 13	$\begin{array}{r} 57563 \\ 153 \end{array}$
NUM OF OBS TO RIGHT	22	18	11	7	5	17	14	9	12	21	4	13	153

(1) CALMS, IF ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEfT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VCLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS CDESCRIBED IN SECTION 4 OF the "Shore protection manual" (spm)) are used to calculate the transport volume. negative values indicate transport to the left.
METHOD THIS METHOD IS BASED OV EQUATIONS 4-3B AND $4-50 B$ FROM THE SPM. A LONGSHORE ENERGY FLUX ANGLE Of APPROACH HAVE GEEN REGORDED, THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUBSTITUTED INTO EQUATION 4-5OB AND DIVIDED EY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALCULATED BY SUMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52, AND 4-5OB FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHJRE GURRENT, AND DISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE FRICTION FACTOR OF . OOG SHOULD BE USED IN EQUATION 4-52.

SURF OSSERVATIONS	JAN	FE	MARCA	APRIL	may	june	JULY	Aus	SEPT	OCT	NOV	DEC	TOTAL
NUMAER OF OBSERVATIONS	31	27	31	30	31	27	31	31	29	31	30	21	
NUMBER OF CALM OBS.	0	0	0	0	0	0	0	0	0	0	0	0	35 0
HIGHEST WAVE RECORDED	3.50	3.59	3.50	3.50	3.00	3.00	2.00	3.00	4.50	3.00	4.00	3.50	4.50
AVG. WAVE HEIGHT(FT) (1)	1.85	1.86	1.79	1.85	1.66	1.33	1.13	1.42	1.74	1.77	2.12	2.14	1.71
Standard deviation	. 06	. 85	. 70	. 67	. 63	. 59	. 43	. 57	. 81	. 65	. 80	. 62	. 73
Longest period recorded	7.10	6.90	6.80	7.20	6.90	6.90	6.70	6.80	6.70	6.80	6.70	6.50	7.20
AVG WAVE PERIOD(SEC) (1)	6.05	6.93	5.97	3.11	6.10	6.27	0.12	6.22	6.07	6.04	5.99	5.97	6.08
Standaro deviation	. 54	. 50	. 43	. 40	. 35	. 31	. 35	. 25	. 32	. 38	. 38	. 26	. 39
wave directon NUMBER OF OBSERVATIONS	31	29	31	30	31	27	31	31	29	31	30	21	352
PERCENT OCCURRENGE >90	29.0	27.6	45.2	50.0	54.8	44.4	74.2	64.5	34.5	35.5	40.0	61.9	46.6
$=90$	35.5	41.4	16.1	26.7	19.4	13.5	6.5	0.5	27.6	38.7	26.7	14.3	23.3
<90	35.5	31.0	38.7	23.3	25.3	37.0	19.4	29.0	37.9	25.8	33.3	23.8	30.1
AVG. ZONE WIDTH (FT) (2)	27	27	25	29	27	25	21	19	25	24	25	27	25
NUMBER OF OSSEPVATIONS	31	29	31	29	31	27	31	31	28	31	30	21	350
WIND OBSERVATIJNS													
HIGHEST WIND RECORDED	22.0	18.0	18.0	15.0	10.0	10.0	12.0	99.0	12.0	8.0	12.0	12.0	99.0
AVG. WIND SPEED(MPH) (1)	4.4	4.8	6.0	7.1	5.1	4.9	5.7	7.6	5.7	3.7	4.2	4.3	5.3
STANDARD DEVIATION	4.0	3.9	3.6	3.0	2.4	2.3	2.0	16.8	2.9	2.1	3.1	3.2	5.9
number of orservations PERCENT OCCURRENCE FROM	31	29	31	29	30	27	31	31	29	31	29	21	340
NORTH	35.5	6.0	16.1	3.4	20.0	. 0	. 0	6.5	20.7	16.1	37.9	23.8	15.5
northeast	19.4	3.4	9.7	10.3	. 0	7.4	. 0	16.1	17.2	9.7	6.9	9.5	9.2
EAST	. 0	13.8	6.5	10.3	3.3	3.7	6.5	6.5	10.3	12.9	10.3	4.8	7.4
southeast	3.2	13.8	16.1	13.9	. 0	14.8	16.9	. 0	. 0	. 0	. 0	. 0	6.6
SOUTH	6.5	13.3	6.5	24.1	25.7	40.7	19.4	6.5	6.9	25.8	6.9	4.8	15.8
SOUTHWEST	12.9	27.6	25.8	24.1	26.7	25.9	51.6	45.2	24.1	19.4	10.3	23.8	26.6
WEST	. 0	3.4	9.7	. 0	. 0	. 0	. 0	. 0	3.4	. 0	3.4	4.8	2.0
NORTHWEST	3.2	6.9	3.2	3.4	3.3	. 0	. 0	3.2	13.8	. 0	3.4	4.8	3.7
CALM	10.4	10.3	3.5	10.3	20.0	7.4	6.5	15.1	3.4	16.1	20.7	23.8	13.2
CURRENT OBSERVATIONS													
AVG TO LEFT (FT/SEC) (2)	-. 30	-. 31			-. 23	-. 22	-. 32	-. 23	-. 21	-. 14		-. 19	-. 25
STANDARD DEVIATION	. 24	. 16	. 07	. 10	. 10	. 08	. 18	. 09	. 17	. 04	. 25	. 07	. 15
NUM. OF OBS. (TO LEFT)	7	12	12	17	15	12	20	20	9	7	10	10	151
AVG TO RIGHT(FT/SEC) (2)	. 29	. 32	. 29	.27	. 23	. 31	. 26	. 26	. 35	. 32	.27	.30	. 29
Standard deviation	. 13	. 17	. 10	.12	. 09	.17	. 06	.10	. 12	.21	. 10	.12	. 14
NUM. OF OSS. (TO RIGHT)	13	10	14	7	7	8	5	9	11	10	11	8	114
AVG. NET CURRENT (2)(3)	. 09	-. 03	. 06	-. 10	-. 07	. 00					. 01	. 03	
NUMEER OF OBSERVATIONS	20	22	26	24	22	20	26	29	20	17	21	18	265
NUMEER OF CALM OSS.	11	7	4	6	9	6	5	2	9	11	8	2	79
(Continued)													

(1) CALMS, if any, included in average calculation
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATEs Current movement to the left no sign indicates current movement to the right
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YardS. TWO METHODS COESCRIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE
METHOD 1. THIS METHJD

- THIS METHOD IS BASED ON EQUATIOVS 4-38 AND $4-50 B$ FROM THE SPM. A LONGSHORE ENERGY FLUX EEGUTION 4 IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF APDROACH HAVE BEEN PECORDED. THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUSSTITUTED INTO EJUATION $4-50 B$ AND DIVIDED EY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALCULATED BY SUMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52. AND 4-503 FROM THE SPM USING RECORDED DBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT. ANO DISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF .OO6 SHOULD SE USED IN EQUATION 4-52.

SURF OBSERVATIONS	JAN		MARCH	APRIL	May	JUNE	July	Aug	SEPT	OCT	NOV	DEC	total
NuMEER OF observations	31	21	31	30	31	30	31	31	30	31	28	31	356
NUMBER OF CALM OES.	0	0	0	0	0	0	0	0	0	0	0	0	0
highest wave recorded	3.50	6.00	5.00	3.00	3.00	3.00	3.00	4.00	4.00	4.00	4.00	3.00	6.00
AVG. WAVE HEIGHT(FT) (1)	2.11	2.29	2.37	1.77	1.63	1.50	1.48	1.53	1.75	2.24	1.73	1.56	1.82
Standard deviation	.74	. 98	. 37	.73	. 58	. 62	. 57	. 80	. 85	. 91	. 97	. 62	. 84
LONGEST PERIOD RECORDED	0.83	0.50	6.50	6.40	6.30	6.40	6.20	6.20	6.00	5.80	6.30	6.10	6.80
AVG WAVE PERIOD(SEC) (1)	5.99	5.92	5.31	5.75	5.71	5.76	5.55	5.50	5.38	5.22	5.48	5.42	5.62
Standard deviation	. 33	. 31	. 35	. 43	. 30	.39	. 25	. 35	. 25	. 27	. 40	.33	. 40
Wave directon													
NuMber of observations	31	21	31	30	31	30	31	39	30	31	28	31	356
PERCENT OCCURRENCE >90	80.6	33.3	54.8	50.0	71.0	63.3	83.9	45.2	50.0	35.5	42.9	51.6	55.9
$=90$	9.7	42.9	22.6	13.3	22.6	10.0	3.2	3.2	3.7	22.6	39.3	22.6	17.4
<90				36.7	6.5	26.7	12.9	51.6	43.3	41.9	17.9	25.8	26.7
AVG. ZONE WIDTH (FT) (2)	28	30	34	36	32	31	33	33	28	34	38	34	32
NUMBER OF OBSERVATIONS	31	21	31	29	31	30	31	31	30	31	28	31	355
WIND OBSERVATIONS													
HIGHEST WIND RECORDED	12.0	20.0	12.0	12.0	10.0	10.0	12.0	13.0	10.0	12.0	12.0	14.0	20.0
AVG. WIND SPEED(MPH) (1)	6.0	5.2	5.0	4.8	4.4	4.7	5.3	5.6	6.1	5.2	3.1	4.6	5.0
STANJARD DEVIATIJN	3.0	4.7	3.2	2.7	2.0	2.5	2.4	2.6	2.9	3.1	3.2	3.5	3.1
NUMAER OF OBSERVATIONS PERCENT OCCURRENCE FROM	31	21	31	30	31	30	31	30	30	31	27	31	354
NORTH	22.6	33.3	9.7	3.3	12.9	3.3	. 0	10.0	16.7	15.1	. 0	19.4	11.9
NORTHEAST	3.2	. 3	12.9	3.3	6.5	6.7	. 0	16.7	26.7	12.9	7.4	3.2	8.5
EAST	. 0	14.3	6.5	16.7	9.7	6.7	3.2	. 0	20.0	12.9	3.7	. 0	7.6
southeast	. 0	. 0	. 0	3.3	12.9	23.3	6.5	23.3	6.7	9.7	11.1	. 0	8.2
SOUTH	9.7	9.5	12.9	33.3	19.4	20.0	9.7	6.7	3.3	19.4	11.1	. 0	13.0
SOUTHWEST	22.5	14.3	29.0	20.0	22.6	16.7	67.7	40.0	20.0	9.7	25.9	35.5	27.4
WEST	9.7	. 0	. 2	10.0	9.7	10.0	3.2	. 0	. 0	. 0	. 0	. 0	3.7
NORTHIEST	25.8	4.8	12.9	3.3	3.2	. 0	. 0	. 0	. 0	. 0	3.7	22.6	6.5
CALM	5.5	23.8	15.1	6.7	3.2	13.3	9.7	3.3	6.7	19.4	37.0	19.4	13.3
CURRENT OASERVATIONS													
AVG TO LEFT (FT/SEC) (2)	-. 28	-. 44	-. 44	-. 33	-. 31	-. 26	-. 28	-. 29	-. 20	-. 25	-. 32	-. 38	-. 31
STANDARD DEVIATION	. 15	. 36	. 21	. 16	. 20	. 14	. 10	. 10	. 05	. 12	. 15	.13	. 16
NUM. OF OBS. (TO LEFT)	24	4	13	13	17	17	24	17	11	7	11	10	169
AVG TO RIGHT(FT/SEC) (2)	. 38	. 24	. 29	.33	.29	. 34	. 22	. 34	.45	. 26	.23	. 25	. 30
STANDARD DEVIATION	. 07	. 11	. 15	. 20	. 14	. 10	. 06	. 13	. 17	. 15	. 06	. 09	. 15
NUM. OF 03S. (TO RIGHT)	5	12	14	14	9	3	6	14	16	17	8	17	140
AVG. NET CURRENT (2)(3)	-. 17	. 07	-. 06	. 01	-. 10	-. 07	-. 18	. 0	.19	. 11	-. 09	. 02	-. 03
Number of obseqvations	29	16	27	27	26	25	30	31	27	24	19	27	308
NUMEER OF CALM OBS.	1	5	4	3	5	4	1	0	3	7	9	4	46
(Continued)													

(Concluded)

FORESHORE SLOPE OBSERVATNS	JAN	FEB	MARCH	APRIL	MAY	June	july	AUG	SEPT	OCT	Nov	DEC	total
MAXIMUM SLOPE	1	1	1	1	1	1	1	1	1	11	1	1	11
MINIMUM SLOPE	1	1	1	1	1	1	1	1	1	1	1	1	1
AVERAGE SLOPE (2)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.3	1.0	1.0	1.0
Number of observations	30	20	31	30	31	30	31	31	30	31	28	31	354
SEDIMENT TRANSPORT VOLUME METHOD 1	ccuerc	YARDS)(4)											
NET CUBIC Yards	-17433	-19852	-1842	1750	-6882	-6452	-9795	-3312	4423	8039	-6669	-6970	-64005
NUM OF OBSERVATIONS	31	21	31	30	31	30	31	31	30	31	28	31	356
total left cubic yos	-17893	-22875	-10483	-6365	-7183	-7320	-895?	-6977	-6141	-4658	-7087	-9282	-115221
NUM OF OBS TO LEFT	25	7	17	15	22	19	26	14	15	11	12	16	199
total rght cugic yos	400	3022	8640	8116	300	367	161	3664	10564	12748	417	2311	51210
NUM OF OBS TO RIGHT	3	5	7	11	2	8	4	16	13	13	5	8	95
METHJD ?													
net cusic yards	-1140	-1287	-808	164	-564	-717	-902	-728	1277	1134	-1259	-456	-5286
Num of observations	29	16	27	26	26	25	30	31	27	24	19	27	307
total left cuaic yos	-1455	-21s3	-1807	-1180	-1065	-1074	-1070	-1158	-330	-407	-1656	-1178	-14544
Num of oas to left	24	4	13	13	17	17	24	17	11	7	11	10	168
total rght cusic yos	316	875	998	1344	501	356	168	429	1607	1541	396	722	9253
NUM OF OBS TO RIGHy	5	12	14	13	9	8	6	14	16	17	8	17	139

(1) CALMS, If ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMEVT TO THE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS CDESCRIBED IN SECIION 4 Of THE "SHORE DROTECTION MANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSPORT TO THE LEFT.
METHOD 9. THIS METHOD IS BASED ON EQUATIONS 4-38 AND 4-5OB FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF APPROACH HAVE BEEN RECORDED, THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES JF FLUX ARE SUESIITUTED INTO EQUATION G-SOB AND DIVIDED BY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VCLUME IS CALCULATED by SUmming the monthly values
METHOD 2. THIS METHOD IS GASED ON EQUATIONS 4-5i, 4-52. AND 4-SOB FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURQENT, AND OISTANCE TO DYE PATCH FROM (NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF . OOS SHOULD SE USED IN EQUATION 4-52.

LEO Data Summary: Sta 39099. Sunset Beach, North Carolina

Latitude $33^{\circ} 52^{\prime} .6^{\prime \prime}$, Longitude $78^{\circ} 30^{\prime} 28^{\prime \prime} 8^{\prime \prime}$,

Data Collected from 1 Jan 86 to 31 Dec 86

	JAN	fE 3	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC	total
SURF OBSERVATIONS													
NUMBER OF OBSERVATIONS	30	23	27	30	31	30	29 0	31 0	28 0	31 0	23 0	31 0	349
NUMEER OF CALM OBS.	0	0	0	0	0	0	0						
HIGHEST WAVE RECORDED	3.50	3.50	4.00	3.09	3.00	3.50	3.00	3.00	2.50	3.00	4.00	4.00	4.00
AVG. WAVE HEIGHT(FT) (1)	2.12	1.90	1.54	1.42	1.21	1.58	1.64	1.61	1.25	1.85	1.76	1.84	1.83
Staidoard deviation	. 61	. 54	. 69	. 63	. 58	. 75	. 63	. 66	. 53	. 64	. 69	. 77	. 70
LONGEST PERIOD RECORDED	5.80	5.70	5.60	5.70	5.80	5.80	5.70	5.90	5.70	5.90	5.50	6.00	6.00
AVG Wave Period (SEC) (1)	5.25	5.23	5.33	5.27	5.23	5.13	5.27	5.25	5.40	5.37	5.25	5.41	5.28
Standard deviation	.21	. 20	. 19	. 23	. 25	. 24	. 24	. 26	. 24	. 26	. 17	. 26	. 25
WAVE DIRECTON	30	28	27	30	31	30	29	31	28	31	23	31	340
PERCENT OCCURRENCE >90	55.7	46.4	40.7	63.3	45.2	43.3	62.1	29.0	17.9	22.6	21.7	22.6	39.5
$=90$	25.7	45.4	18.5	23.3	25.3	26.7	31.0	35.5	28.6	22.6	34.8	41.9	30.1
<90	16.7	7.1	43.7	13.3	29.0	30.0	6.9	35.5	53.6	54.8	43.5	35.5	30.4
AVG. ZONE WIDTH (FT) (2)	35	34	33	31	34	34	36	37	35	34	35	34	34
NLMEER OF OBSERVATIONS	31	28	28	30	31	30	$2{ }^{\circ}$	31	27	31	21		348
WIND OBSERVATIONS HIGHEST WIND RECJRDED	14.0	12.0	14.0	14.0	15.0	14.0	16.0	12.0	8.0	12.0	8.0	14.0	16.0
AVG. WIND SPEED(MPH) (1)	4.6	4.2	4.8	5.9	5.9	6.7	7.0	6.3	4.1	5.1	3.2	3.8	5.2
Standard deviation	3.7	3.1	3.5	3.5	3.0	2.8	2.9	2.7	1.9	3.5	2.6	3.0	3.3
NUMBER OF D日SEZVATIONS PERCENT OCCURPENCE FROM	30	23	23	30	31	29	29	31	23	31	23	31	34.
NORTH	6.7	10.7	7.1	10.0	9.7	3.4	3.4	3.2	. 0	9.7	21.7	19.4	8.6
Northeast	16.7	3.6	10.7	6.7	9.7	13.8	. 0	12.9	10.7	19.4	21.7	32.3	13.2
EAST	3.3	3.6	7.1	3.3	3.2	10.3	10.3	16.1	10.7	\bigcirc	4.3	12.9	7.2
southeast	6.7	10.7	7.1	3.3	12.9	10.3	. 0	16.1	10.7	6.5	8.7	12.9	13.2
SOUTH	3.3	10.7	3.5	23.3	9.7	17.2	27.6	17.4	10.7	12.9	4.3	12.9 3.2	32.1
southwest	23.3	35.7	39.3	36.7	48.4	41.4	59.7	25.8	50.0	22.6	4.3	3.2 .0	32.1 2.0
WEST	6.7	3.6	. 0	. 0	3.2	3.4	3.4	. 0	- 0	3.2	-	- 0	3.0
NORTHWEST	13.3	3.6	7.1	10.0	. 0	- 0	3.4	. 0	- 0	.	3.8	19.0	13.2
CALM	20.0	17.9	17.9	6.7	3.2	. 0	. 0	6.5	10.7	25.8	34.8	19.4	13.2
CURRENT OBSERVATIONS	-. 26	-. 15	-. 20	-. 23	-. 23	-. 27	-. 29	-. 20	-. 18	-. 25	-. 21	-. 25	-. 23
AVG TO LEFT (FT/SEC) (2) STANDARD DEVIATION	-. 12	. .15	. 207	. 07	.09	. 11	. 09	. 08	. 08	. 08	. 04	. 06	. 09
NUM. OF OBS. (TO LEFT)	13	12		17	9	7	14	9	5	7	2	4	108
AVG TO RIGHT(FT/SEC) (2)	.26	. 1 ?	. 21	. 16	. 25	.24	. 21	. 25	.23	. 28	. 26	. 30	. 24
STANDARD DEVIATION	. 07	. 08	. 07	. 05	-12	. 09	. 05	. 03	. 09	- 09	. 18	- 22	198
NUM. OF OBS. (TO RIGHT)	15	9	18	9	17	19	12	13	19	22	18	22	
AVG. NET CURRENT (2) (3)	. 01	-. 02	. 07	-. 10	. 07	. 10	-. 06	. 10	. 14	. 16	. 22	. 21	. 08
NUMBER OF OBSERVATIONS	23	21	27	26	26	26	26	27	24	29	20	26	306
NUMEER OF CALM OBS.	3	7	1	4	5	3	3	4	2	2	2	5	41

[^2](ConcIuded)

FORESHORE SLOPE JBSEqVATNS	JAN	FEg	MARCH	APRIL	MAY	JUNE	july	aug	SEPT	OCT	NOV	DEC	total
MAXIMUM SLOPE	1	1	1	1	1	20	1	1	1	1	1		20
MINIMUM SLOPE	1	1	1	1	1	1	1	1	1	1	1	1	20
AVERAGE SLOPE (2)	1.0	1.3	1.0	1.0	1.0	1.6	1.0	1.0	1.0	1.0	1.0	1.0	1.1
number of observations	31	29	27	30	31	30	29	31	28	31	23	31	350
SEDIMENT TRANSPORT VOLUME METHOD :	ccubic	YARDS)(4)											
NET CUBIC Yaqds	-3552	-4129	1302	-6188	-908	1326	-1854	5231	12586	28434	8789	2322	44459
NUM OF OBSERVATIONS	30	28	27	30	31	30	29	31	28	31	23	31	349
total left cubic yos	-9243	-4842	-3398	-6602	-2153	-1722	-2624	-803	-5681	-1967	-1876	-1489	-41200
NuM Of oss to left	17	13	11	19	14	13	18	9	5	7	5	7	138
total rght cuaic yds	4581	712	4790	413	1344	3049	770	6835	18268	30402	10665	3812	85661
Num of oss to right	5	2	11	4	9	9	2	11	15	17	10	11	106
METHOD 2													
NET CUSIC YAROS	1560	-113	3345	-683	166	623	-201	947	729	1304	1339	1474	10485
num of observations	28	21	27	28	26	26	26	27	23	29	18	26	303
total left cubic ros Num of dos to left	-834 13	-435 12	-233	-843 17	-410 9	-399 7	-746 14	-285 9	-135 5	-275 7	-117 2	-301	-5050 108
total rght cubic yos	2394	373	3579	155	582	1022	545	1213	364	1580	1457	1776	15540
NuM of oas to alght	15	9	18	9	17	19	12	18	18	22	16	22	195

(1) Calms, if any included in average calculation
(1) CALMS, IF ANY INCLUDED IN AVERAGE CALCULAT
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURAENT MOVEMENT TO THE LEFT

NO SIGN INDICATES CURRENT MJVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VGLUMES ArE GIVEN in cubic yards. TWO methods coescribed in section 4 of THE "SHORE DROTECTION MANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE values indicate transport to the left.
METHOD 1. THIS METHOD IS gASEO ON EMUATIONS 4-38 AND $4-503$ from the SPM. A LONGShORE ENERGY fLUX (EQUATION $4-38$) IS FIRST GALCULATED FOR ONLY ThE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF ADDRJACH HAVE GEEN RECORDED, YHEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUSSTITUTED INTO EQUATION $4-S O B$ AND DIVIUED BY 12 TO GET THE VET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEOIMENT TRANSPJRT VOLUME IS CALCULATED OY SUMMING THE MOVTHLY VALUES.
METHOD 2. THIS METHOD IS GASED ON EJUATIONS 4-Si。 $4-52$, AND $4-50$ F FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF IDNE, LONGSHORE CURRENT, AND DISTANCE TO DYE DATCH FROM SHORELINE AND FOLLJWING THE SAME PROGEDURE AS METHOD I. NOTE: RECENT FINOINGS INDICATE A FRICTION FACTOR OF . OOG SHOULD EE USED IN EQUATION $4-52$.

	JAN	FE3	MARCH	ADPIL	may	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC	TOTAL
SURF OBSERVATIONS					26	25	31	31	24	28	27	28	337
NUMEER OF ORSERVATIONS NUMBER OF CALM OGS.	31 0	25	31	30	26 0	25	0	0	24	0	0	0	0
HIGHEST WAVE RECORDED	4.09	4.00	3.00	2.00	2.00	3.00	2.00	3.00	3.00	3.50	4.00	4.00	4.00
AVG. WAVE HEIGHT(FT) (1)	2.19	1.76	1.58	1.22	1.13	1.48	1.24	1.61	1.44	1.89	1.96	1.72	1.61
STANDARD DEVIATION	.90	.71	.75	. 40	. 43	. 56	. 42	. 59	. 70	. 62	. 95	. 99	. 78
LONGEST PERIOO QECORDED	6.00	6.20	6.20	6.10	5.09	5.90	5.90	5.80	6.00	6.00	6.20	5.90	6.20
avg wave period (SEC) (1)	5.43	5.57	5.65	5.65	5.61	5.50	5.51	5.40	5.42	5.61	5.50	5.47	5.53
Standard deviation	. 32	.33	. 31	. 19	. 18	. 25	-19	. 24	. 24	. 16	. 26	. 20	. 26
WAVE directon				30	26	25	31	31	24	28	27	28	337
NUMBER OF OBSERVATIONS	31	20^{25}	6. 5	30.0	38.5	68.0	45.2	61.3	37.5	21.4	18.5	25.0	34.4
PERCENT OCCURRENCE >PO	41.9	20.0	8.5 58.1	30.0 50.0			45.2	29.0	41.7	35.7	63.0	50.0	41.8
$=90$	35.5	32.0	58.1 35.5	50.0 20.3	30.8 30.3	4.0	4.7	9.7	20.8	42.9	18.5	25.0	23.7
<90	22.5	48.0	35.5										
AVG. 2ONE WIDTH (FT) (2)	36	35	33	35	36	34	34	36	31	33	33	32	34
NUMEER OF OBSERVATIONS	31	25	30	30	26	25	31	31	24	28	27	28	336
WIND OBSERVATIONS HIGHEST WIND RECORDED	14.0	16.0	12.0	12.0	10.0	12.0	12.0	12.0	10.0	12.0	14.0	14.0	16.0
AVG. WIND SPEED(MPH) (1)	5.8	5.8	4.1	4.9	5.2	6.2	4.9	6.2	5.0	5.1	4.7	4.6	5.3
Standard deviation	4.2	3.7	3.0	2.7	1.8	3.0	2.8	3.2	2.6	2.7	3.5	3.6	3.2
NUMBER OF OBSERVATIONS PERCENT OCCURRENCE FROM	30	25	31	30	26	25	31	29	24	27	27	28	333
NORTH	20.0	12.0	6.5	13.3	3.3	. 0	5.5	13.3	. 0	25.9	11.1	25.0	11.7
NORTHEAST	16.7	23.0	16.1	16.7	3.8	4.0	12.9	10.3	8.3	33.3	14.8	14.3	15.0
EASt	. 0	15.0	9.7	5.7	11.5	. 0	9.7	3.4	29.2	11.1	14.8	. 0	9.0
southeast	3.3	. 1	17.4	16.7	23.1	20.0	. 0	6.9	12.5	3.7	7.4	3.6	9.6
SOUTH	6.7	. 0	6.5	10.0	17.2	24.0	12.9	13.3	12.5	3.7	3.7	3.6	9.6
SOUTHWEST	16.7	32.0	22.5	20.0	38.5	48.0	51.6	41.4	29.2	. 0	7.4	25.0	27.6
WEST	3.3	. 0	. 0	6.7	. 0	. 0	. 0	- 0	. 0	. 0	7.4	. 0	1.5
NORTHAEST	0.7	4.0	3.2	3.3	. 0	. 0	. 3	- 3	4.2	14.8	11.1	14.3	5.1
CALM	26.7	3.3	10.1	6.7	. 0	4.0	6.5	10.3	4.2	7.4	22.2	14.3	10.8
GURRENT OGSERVATIONS										. 00	-. 22	-. 27	-. 26
AVG TO LEFT (FT/SEC) (2)	-. 30	-. 33	- 00				. .107	. 12		. 00	. 04	. 07	. 09
STANDARD DEVIATION	- 08	-14	- 00	- 00	. 04	- 8	- 4	- 3	- 2	- 0	3	7	46
NUM. OF OBS. (TO LEFT)	10	3	,		2								
AVG TO RIGHT(ft/SEC) (2)	. 34	. 34	. 25	. 21	. 22	. 25	. 23	. 27	.27	. 27	. 24	. 26	. 26
STANDARD DEVIATIJN	. 14	. 09	. 10	. 05	. 07	. 09	. 07	. 09	- 10	. 06	-11	- 08	-19
NUM. OF OBS. (TO QIGHT)	21	21	25	18	15	11	19	22	14	24	19	18	229
AVG. NET CURRENT (2)(3)	. 14	. 25	. 25	. 14	.17	. 04	. 14	. 10	.21	.27	.18	. 11	-18
NUMAER OF OBSERVATIONS	31	24	25	22	19	19	23	25	16	24	22	25	
NUMEEP OF CALM OBS.	0	1	6	8	8	6	5	6	8	3	5	3	62

[^3]| FORESHORE SLOPE OBSERVATNS | JAN | f® 3 | MARCH | APRIL | MAY | JUNE | JULY | aug | SEPT | OCT | NOV | DEC | total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum slope | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| MINIMUM SLOPE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| AVERAGE SLOPE (2) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| NUMGER OF OBSERVATIONS | 31 | 25 | 31 | 30 | 26 | 25 | 31 | 31 | 24 | 28 | 27 | 28 | 337 |
| SEDIMENT TRANSPORT VOLUME
 METHOD 1 | cougic | ROS)(4) | | | | | | | | | | | |
| NET CUBIC Yards | -3697 | 6735 | 3396 | -314 | 326 | -7919 | -3733 | -8769 | 2135 | 1227 | 13815 | 4056 | 7208 |
| NUM OF OBSERVATIONS | 31 | 25 | 31 | 30 | 26 | 25 | 31 | 31 | 24 | 28 | 27 | 28 | 337 |
| total left cubic yos | -12002 | -2574 | -307 | -847 | -1127 | -7965 | -4117 | -12340 | -7421 | -2870 | -1306 | -6908 | -59806 |
| NUM Of OBS TO LEFT | 13 | j | 2 | 9 | 10 | 17 | 14 | 19 | , | 6 | 5 | 7 | 116 |
| total rght cubic yos | 8304 | 9330 | 3703 | 533 | 1455 | 45 | 334 | 3571 | 9557 | 4098 | 15122 | 10964 | 67016 |
| NUM JF OGS TO RIGHt | 7 | 12 | 11 | 5 | 8 | 1 | 3 | 3 | 5 | 12 | 5 | 7 | 80 |
| METHOD 2 | | | | | | | | | | | | | |
| NET CUSIC YARDS | 1435 | 1737 | 1426 | 464 | 850 | 373 | 351 | 884 | 1036 | 1648 | 1391 | 503 | 12108 |
| NUM OF OSSERVATIONS | 31 | 24 | 24 | 22 | 18 | 19 | 23 | 25 | 16 | 24 | 22 | 25 | 273 |
| total left cubic yds | -724 | -331 | 0 | -164 | -100 | -447 | -324 | -372 | -107 | 0 | -212 | -555 | -3336 |
| NUM OF OaS to Left | 10 | 3 | 0 | 4 | 2 | 8 | 4 | 3 | 2 | 0 | 3 | 7 | 46 |
| total rght cubic yos | 2159 | 2058 | 1426 | 628 | 961 | 821 | 675 | 1257 | 1144 | 1648 | 1604 | 1059 | 15450 |
| NUM OF OBS TO RIGHT | 21 | 21 | 24 | 13 | 16 | 11 | 19 | 22 | 14 | 24 | 19 | 18 | 227 |

(1) CALMS, If ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT
(4) NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS (DESCRIBED IN SECTION 4 OF the "Shore protection manual" (sdm)) are used to calculate the transport volume. negative VALUES INDICATE TRANSDORT TO THE LEFT.
METHOD 1. THIS METHOD IS BASED ON EJUATIONS 4-38 ANO 4-SOB FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST CALCULATED FOR CNLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF APPROACH HAVE BEEN RECORDED, THEN AN AVERAGE FLUX FOR EACH MONFH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES OF FLUX APE SUBSTITUTED INTO EQUATION $4-503$ ANO DIVIDED gY 12 TO GET THE NET MUNTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALCULATED SY SUMMING THE MONTHLY VALUES.
METHJD 2. THIS METHOD IS SASED ON EJUATIONS 4-51, 4-52. AND 4-50B FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH JF SURF ZONE, LONGSHORE CURRENT. AND DISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF . OOS SHOULD BE USED IN EQUATION $4-52$.

LEO Data Summary; Sta 39099. Sunset Beach, North Carolina
Latitude $33^{\circ} 52^{\prime} .6^{\prime \prime}$, Longitude $78^{\circ} 30^{\prime} 28^{\prime \prime} 8^{\prime \prime}$,
Data Collected from 1 Jan 88 to 30 Sep 88

	JAN	fe 3	MARCH	APRIL	may	june	JULY	aug	SEPT	OCT	Nov	DEC	total
SURF OBSERVATIONS													
NUMBER OF OBSERVATIONS	31	26	26	24	26	24	28	15	28	0	0	0	228
NUMEER OF CALM OSS.	0	0	0	0	0	0	0	0	0	0	0	0	0
HIGHEST WAVE RECORDED	4.50	2.50	2.50	3.00	2.50	3.00	1.50	3.00	3.50	. 00	.00	. 00	4.50
QVG. WAVE HEIGHT(FT) (1)	1.89	1.54	1.21	1.15	1.25	1.38	1.25	1.27	1.88	. 00	.00	. 00	1.45
standard deviation	. 70	. 59	. 52	. 55	. 50	. 58	. 25	. 63	. 66	. 00	.00	. 00	. 67
LONGEST PERIOD RECORDED	6.30	0.20	6.30	6.20	6.00	5.90	5.70	5.70	5.80	. 00	. 00	. 00	6.30
avg wave period (SEC) (1)	5.62	5.59	5.49	5.49	5.44	5.45	5.38	5.42	5.40	. 00	. 00	. 00	5.48
STANDARD DEVIATION	. 27	.27	. 33	. 23	. 27	. 29	. 18	. 18	. 26	. 00	. 00	. 00	. 27
WAVE DIRECTON NUMEER OF OZSERVATIONS	31	26	26	24	26	24	28	15	28	0	0	0	228
PERCENT OCCURRENCE >90	12.9	30.8	11.5	29.2	15.4	29.2	53.6	53.3	25.0	- 0	. 0	. 0	27.6
PERCENT OCCURRENCE $\begin{aligned} & \\ &=90\end{aligned}$	67.7	61.5	85.4	62.5	09.2	62.5	40.4	40.9	64.3	. 0	. 0	. 0	61.0
<90	17.4	7.7	23.1	8.3	15.4	8.3	. 0	6.7	10.7	. 0	. 0	. 0	11.4
AVG. ZONE WIOTH (FT) (2)	32	33	31	31	30	30	30	31	28	0	0	0	30
NUMEER OF OBSERVATIONS	31	26	26	24	26	23	27	15	27	0	0	0	225
WIND OgSERVATIONS				12.0	8.0	10.0	14.0	10.0	8.0	. 0	. 0	. 0	14.0
HIGHEST WIND RECORDED AVG. WIND SPEED(MPH) (1)	14.0 6.3	4.4	12.0 5.8	12.0 5.1	4.5	4.9	6.3	5.5	4.3	. 0	. 0	. 0	5.2
Standard deviation	4.0	2.3	3.3	2.7	1.9	2.0	2.3	2.1	2.4	. 0	- 0	. 0	2.8
NUMBER OF OBSERVATIONS	31	26	27	24	25	24	26	15	28	0	0	0	227
percent occurrence from NORTH	35.5	23.1	7.4	9.3	7.7	4.2	. 0	. 0	. 0	. 0	- 0	- 0	10.6
NORTHEAST	16.1	. 0	3.7	4.2	3.3	. 0	. 0	. 0	14.3	. 0	- 0	. 0	5.3
EAST	5.5	11.5	11.1	8.3	3.8	8.3	7.7	. 0	. 0	. 0	. 0	. 0	6.6
southeast	. 0	. 0	11.1	25.0	11.5	4.2	. 0	33.3	17.9	. 0	. 0	. 0	10.1
SOUTH	. 0	. 0	11.1	4.2	3.8	33.3	30.8	13.3	7.1	. 0	. 0	- 0	11.0
SOUTHMEST	16.1	19.2	25.9	33.3	53.8	37.5	61.5	46.7	28.6	. 0	. 0	- 0	34.8
WEST	. 0	. 0	- 0	- 0	. 0	. 0	- 0	- 0	. 0	- 0	- 0	. 0	${ }^{.0} 5$
NJRTHHEST	9.7	34.6	14.8	8.3	7.7	8.3	. 0	. 0	14.3	- 0	- 0	- 0	11.5
CALM	16.1	11.5	14.8	8.3	7.7	4.2	. 0	6.7	17.9	. 0	. 0	. 0	10.1
CURRENT OBSERVATIONS (${ }^{\text {a }}$. 00	-. 21	. 00	-. 17	. 00	. 00	. 00	-. 26
AVG TO LEFT (FT/SEC) (2) STANDARD DEVIATION	-.33 .12	-.32 .02	. .00	-. 21.34	.00	. 00	. 04	. 00	. 00	. 00	. 00	. 00	. 10
Num. OF OBS. (TO LEFT)	3	2	0	2	0	0	2	0	1	0	0	0	10
avg to righteft/sec) (2)	. 31	. 28	. 26	. 26	.22	. 24	. 23	. 26	. 26	. 00	. 00	. 00	. 26
STANDARD DEVIATION	.11	. 08	. 06	. 06	. 06	. 08	. 03	. 06	- 09	. 00	. 00	-00	-08 +153
NUM. OF OBS. (TO RIGHT)	23	20	19	14	19	15	13	13	18	0	0	0	153
Avg. NET CURRENT (2)(3)	. 24	. 23	. 26	. 20	.22	. 24	.17	. 26	.24	. 00	. 00	. 00	. 23
NUMEER OF OESERVATIONS	26	22	18	16	19	15	15	13	19	0	0	0	
	5	4	8	3	7	9	12	2	-	0	0	0	64

(Conc1uded)

FORESHORE SLOPE OBSERVATNS	JAN	FES	March	APRIL	MAY	June	JULY	AUS	SEPT	OCT	Nov	DEC	total
MAXIMUM SLOPE	1	1	1	1	1	1	1	1	1	0	0	0	1
MINIMUM SLOPE	1	1	1	1	1	1	1	1	1	0	0	0	1
AVERAGE SLOPE (2)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	. 0	. 0	. 0	1.0
Number of observations	31	26	27	24	26	24	28	14	28	0	0	0	228
sediment transport volume METHOD 1	CCUBIC	ROS)(4)											
NET Cugic yards	-1402	-2783	-179	-1302	-759	263	-2672	-1221	-1757	0	0	0	-11812
num of observations	31	23	26	24	26	24	28	15	28	0	0	0	228
total left cubic yos NUM OF OBS TO LEFT	$\begin{array}{r} -3755 \\ 4 \end{array}$	$\begin{array}{r} -3361 \\ 8 \end{array}$	$\begin{array}{r} -654 \\ 3 \end{array}$	$\begin{array}{r} -1692 \\ 7 \end{array}$	$\begin{array}{r} -1398 \\ 4 \end{array}$	$\begin{array}{r} -1613 \\ 7 \end{array}$	$\begin{array}{r} -2672 \\ 15 \end{array}$	$\begin{array}{r} -1643 \\ 8 \end{array}$	$\begin{array}{r} -4732 \\ 7 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	$\begin{array}{r} -21535 \\ 63 \end{array}$
TOTAL RGHT CUBIC YOS NUM OF OBS TO RIGHT	$\begin{array}{r} 2353 \\ 6 \end{array}$	$\begin{array}{r} 577 \\ 2 \end{array}$	$\begin{array}{r} 434 \\ 6 \end{array}$	$\begin{array}{r} 399 \\ 2 \end{array}$	$\begin{array}{r} 639 \\ 4 \end{array}$	$\begin{array}{r} 1876 \\ 2 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 426 \\ 1 \end{array}$	$\begin{array}{r} 2974 \\ 3 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0 0	$\begin{array}{r} 9718 \\ 26 \end{array}$
METHOD 2 NET CUBIC YARDS NUM OF OBSERVATIONS	1875 25	1109 22	6476 16	694 16	704	989 15	636 15	812 13	1166 18	0 0	0 0	0 0	14451 159
total left cubic yds NUM OF OSS TO LEFT	-205 3	-153 2	0	-112 2	0 0	0	-103 2	0 0	-61 1	0 0	0	0 0	-644 10
total rght cubic yos	2080	1273	3476	797	734	989	739	812	1227	0	0	0	15097
NUM OF OBS TO RIGHT	22	20	16	14	19	15	13	13	17	0	0	0	149

(1) CALMS, If any, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NJT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS (DESCPIPED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPM)) ARE USED TO (ALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSPORT TO THE LEFT.
METHOD 1. THIS METHOD IS BASED ON EQUATIONS 4-33 AND 4-509 FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS F:RST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND angle of apprjach have géen pecorded. then an average flux for each month is calculated, and finally these monthly values of flux are sugstituted into equation m-sos and oivided by iz to get the net monthly seoiment transport volumes. the yearly sediment transport voluye is calCulated ay summing the monthly values.
METHOD 2. THIS METHOD IS SASED ON EQUATIONS 4-51, 4-S2. AND 4-5OB FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT, AND OISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWYNG THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE FRICTION FACTOR OF . 006 SHOULD GE USED IN EQUATION 4-52.

	JAN	FEg	March	APRIL	MAY	June	JULY	AUS	SEPT	OCT	Nov	DEC	total
SURF OBSERVATIONS													
NUMBER OF OBSEPVATIONS	244	213	238	227	231	243	272	262	253	237	200	227	2847
NUMEER OF CALM O3S.	0	0	0	0	0	0	0	0	0	1	0	0	1
HIGHEST WAVE RECORDED	4.50	6.00	5.00	3.50	3.50	3.50	4.00	4.00	4.50	4.00	4.00	4.00	6.00
AVG. WAVE HEIGHT(FT) (1)	1.98	1.91	1.83	1.61	1.53	1.54	1.55	1.59	1.69	1.90	1.84	1.78	1.72
STANDARD DEVIATION	. 78	.79	. 83	. 70	. 64	. 60	. 67	.71	. 73	. 82	. 82	. 85	. 76
LONGEST DERIOD RECORDED	15.00	12.00	16.00	11.00	15.20	10.20	8.80	10.00	9.00	8.80	8.70	15.20	16.00
AVG WAVE PERIOD(SEC) (1)	6.41	0.47	6.35	6.20	6.33	6.10	6.05	6.08	6.01	5.99	5.97	6.18	6.17
STANDARD DEVIATION	1.63	1.53	1.55	1.08	1.49	. 97	. 85	. 90	.87	. 82	. 75	1.49	1.21
Wave directon													
NUMBER OF OSSERVATIONS	244	213	236	227	231	243	272	262	253	236	200	227	2846
PERCENT OCCURRENCE >90	39.3	26.3	29.6	43.6	42.4	44.0	54.0	41.2	27.7	21.2	34.0	32.2	36.6
$=90$	23.3	35.2	33.2	29.5	35.5	25.9	29.4	23.3	34.4	33.1	38.5	30.8	31.2
<90	32.0	38.5	33.2	26.9	22.1	30.0	16.5	35.5	37.9	45.8	27.5	37.0	32.2
AVG. ZONE WIOTH (FT) (2)	56	50	48	47	51	53	57	57	50	53	47	48	52
NUMBER OF OBSERVATIONS	246	209	238	225	233	241	271	260	249	237	197	227	2834
WIND OgSERVATIONS													
HIGHEST WIND RECORDED	22.0	20.0	20.0	18.0	20.0	18.0	18.0	99.0	14.0	18.0	14.0	34.0	99.0
AVG. WIND SPEED (MPH) (1)	5.5	5.1	5.7	5.9	5.7	6.1	3.4	6.5	5.3	5.2	4.5	5.3	5.6
STANDARD DEVIATION	3.6	3.4	3.6	3.4	3.0	3.4	3.4	6.6	2.7	3.1	3.2	4.3	3.8
NUMBER OF OBSERVATIONS percent occurrence from	244	213	241	227	230	241	270	256	255	239	197	228	2841
NORTH	35.9	30.1	13.4	9.4	13.3	4.6	3.0	5.5	9.4	16.7	13.7	21.5	14.4
NORTHEAST	17.3	9.9	11.1	8.4	5.0	6.6	5.3	14.5	20.5	29.3	17.3	18.9	13.8
EAST	4.7	13.9	11.7	12.0	6.9	13.8	8.3	5.1	11.8	8.4	7.6	5.7	9.2
SOUTHEAST	2.0	5.2	12.5	25.6	19.4	12.9	5.9	25.1	16.4	5.0	8.1	2.2	11.8
SOUTH	5.7	6.6	13.7	19.0	18.6	35.4	28.1	18.9	14.6	10.9	5.1	4.8	15.5
SOUTHWEST	25.5	28.7	38.5	35.3	52.5	45.9	67.3	54.2	34.7	12.1	19.8	24.1	37.6
WEST	5.3	3.3	2.1	3.5	3.0	1.7	1.1	. 0	. 4	. 3	3.0	1.8	2.1
NORTHWESt	13.4	22.4	12.0	9.8	5.5	3.9	. 7	. 4	8.3	3.3	5.1	7.9	7.5
CALM	13.5	14.8	15.3	9.4	6.8	6.7	3.7	9.6	12.1	13.4	20.3	13.2	11.8
CURRENT OBSERVATIONS													
avg to left (fitsec) (2)	-. 38	-. 27	-. 32	-. 28	-. 26	-. 29	-. 39	-. 35	-. 28	-. 29	-. 35	-. 30	-. 32
Standard deviation	. 24	. 18	. 19	. 18	. 16	. 18	. 27	. 24	. 21	. 19	. 25	. 15	. 22
NUM. OF OBS. (TO LEFT)	90	48	62	87	74	86	115	76	49	36	62	58	863
AVG to righteftsec) (2)	. 34	.32	. 30	. 29	.27	. 35	. 36	.39	. 40	. 39	. 38	. 33	. 35
STANDARD DEVIATION	-19	. 18	$\cdot 17$. 18	. 14	. 22	. 25	. 28	. 28	. 25	. 28	. 19	. 23
NUM. OF OBS. (TO RIGHT)	124	123	135	95	94	109	105	131	152	152	87	131	1438
AVG. NET CURRENT (2) (3)	. 04	. 15	. 10	. 02	. 03	. 07	-. 03	. 07	. 24	. 28	. 08	. 14	. 10
NUMEER OF OBSERVATIONS	214	171	197	182	153	195	220	227	201	188	149	189	2301
NUMEER OF CALM OBS.	31	41	42	43	64	44	50	34	51	46	47	37	533
(Continued)													

(Conc1uded)

(1) CALMS, IF ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDIGATES CURRENT MOVEMENT TO THE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE SIVEV IN CUQIC YARDS. TWO METHODS CDESCRIBED IN SECTION 4 OF the "Shore protection manual" (SPM)) are used to calculate the transport volume. negative Valuss indicate transoort to the left.
METHOD 1. THIS METHOD IS BASED OY EQUATIONS 4-39 AND 4-509 FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST CALCULATED FDR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT ANO ANGLE OF APPROACH HAVE GEEN RECORDED, THEN AN AVERAGE FLUX FOR EACH MONTH IS CALGULATED, AND FINALLY THESE MJNTHLY VALUES OF FLUX ARE SUBSTITUTEO INTO EJUATION $4-50 J$ ANO DIVIDED BY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEAPLY SEDIMENT TRANSPORT VOLUME IS CALCULATED GY SUMMING THE MONTHLY VALUES.
METHJD 2. THIS METHOD IS BASED ON EJJATIONS 4-5i, 4-52. AND 4-SOB FROM THE SPM, USING RECORDED OBSERVA TIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE GURRENT, AND OISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOS 1. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF . OOS SHOULD SE USED IN EQUATION 4-52.

LEO Data Summary: Sta 48002. Cherry Grove Beach, South Carolina

Latitude $33^{\circ} 49^{\prime} 43.8^{\prime \prime}$. Longitude $78^{\circ} 37^{\circ} 58.2^{\prime \prime}$.

Data Collected from 20 May 80 to 31 Dec 80

(ConcIuded)

Foreshore slope observatns	JAN	FE.	MARCH	APRIL	MAY	June	JULY	AUG	SSPT	OCT	Nov	DEC	TOTAL
Maximum slope	0	0	0	0	3	3	9	2	2	2	2	2	9
MINIMUM SLOPE	9	0	0	0	1	1	9	1	1	1	1	1	1
AVERAGE SLOPE (2)	. 3	. 0	. 0	. 0	1.7	1.6	1.5	1.5	1.4	1.4	1.3	9.3	1.4
Number of observations	0	0	0	0	12	29	31	30	30	30	30	31	223
SEDIMENT TRANSPORT VOLUME (CUSIC YARDS)(4)													
METHJD 1 ,													
NET CUBIC Yards	0	0	0	0	27551	-96314	-1776	-328	-4587	11373	22468	15309	-26806
num of ogservations	0	0	0	0	12	29	30	29	30	22	27	27	206
total left cusic yos	0	0	0	0	-8420	-104024	-17527	-9719	-8228	-10670	-9029	-5904	-173519
Num of obs to left	0	0	0	0	2	24	14	11	9	5	8	9	82
total rght cueic yos	0	0	0	0	35971	7210	15751	9390	3639	22043	31496	21214	146714
NuM of OBS to right	0	0	3	0	6	2	2	5	8	5	9	8	45
METHOD 2													
NET CUBIC Yards	0	0	0	0	-7134	-32829	-17137	3741	-1603	24769	3171	7607	-14415
NUM Of OSSERVATIONS	0	0	0	0	10	23	13	14	15	12	18	20	125
total left cuaic yos	0	0	0	9	-7315	-39826	-23389	-5044	-6166	-6964	-5487	-2312	-96503
NUM OF OBS TO LEFT	0	0	0	0	9	20	12	9	7	5	6	9	77
TOTAL RGHT CUBIC YDS NUM OF OBS TO RIGHT	0	0	0	0 0	181 1	6996 3	6252	8756 5	4563 8	31734	13659 12	9920	82091

(1) CALMS, If any, INCLUDED in average calculation
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) IND.CATES CURRENT MOVEMENT TO THE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE PIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUES ARE GIVEN IN CUBIC YAROS. TWO METHODS (DESCRIBED IN SECTION 4 OF THE "SHOPE PROTECTION MANJAL" (SPY)) ARE USED TO GALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSPORT TO THE LEFT.
*. TOD 1. THIS METHOD IS GASED ON EOUATIONS 4-3B AND 4-5OB FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF APPROACH HAVE BEEN RECCRDED, THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES JF FLUX ADE SUBSTITU GET THE NET MONTHLY SEOIMENT MCANSPORT VOLUMES.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-59, 4-52, AND 4-508 FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT. WIDTH OF SURF ZONE, LONGSHORE CURRENT, AND OISTANCE TO DYE PATCH FROM TIONS FRICTION FACTOR OF. 006 SHOULD GE USED IN EQUATION 4-52.

LEO Data Summary; Sta 48002, Cherry Grove Beach, South Carolina

Latitude $33^{\circ} 49^{\prime} 43.8^{\prime \prime}$, Longitude $78^{\circ} 37^{\circ} 58^{\prime \prime} 2^{\prime \prime}$.
Data Collected from 1 Jan 81 to 31 Dec 81

	JAN		MAPCH	APRIL	May	June	JULY	aug	SEPT	OCT	Nov	DEC	total
SURF OSSERVATIONS													
number of observations	23	22	30	30	31	29	29	30	30	30	30	30	344
number of calis oas.	0	0	0	0	1	0	1	0	0	0	1	2	5
HIGHEST WAVE RECORDEO	1.50	4.50	5.50	2.50	3.50	1.50	2.50	3.50	4.50	3.50	4.50	4.50	5.50
AVG. WAVE HEIUHT(FT) (1)	. 80	1.23	1.10	1.01	. 83	. 94	1.27	1.36	1.15	1.43	1.43	1.53	1.18
STANDARD DEVIATION	. 32	. 95	1.04	. 55	. 63	.37	.62	. 67	1.05	73	1.05	. 99	. 83
lungest oeriod recorted	4.50	4.00	4.50	4.53	4.53	4.50	4.50	5.00	4.73	4.50	4.50	4.50	5.00
AVG WAVE PERIOD(SEC) (1)	4.28	4.34	4.71	4.33	4.13	4.33	4.28	4.42	4.32	4.33	4.10	3.93	4.26
Standard deviation	. 25	. 23	.is	. 32	. 82	. 24	. 33	. 23	. 25	. 24	. 80	1.09	. 58
Wave directon Number of orservations	23	22	30	33	30	29	28	30	30	30	29	28	339
PERCENT OCCURRENCE >OC	34.8	9.1	26.7	26.7	33.3	27.6	53.6	16.7	10.0	13.3	20.7	28.6	25.1
PERCNT OCCURENE $\begin{aligned} & =00\end{aligned}$	53.5	53.5	60.0	63.3	60.0	58.6	35.7	20.0	60.0	46.7	48.3	50.0	51.6
<70	8.7	27.3	13.3	10.7	6.7	13.8	10.7	63.3	30.0	40.0	31.0	21.4	23.3
AVG. LONE WIDTH (FT) (2)	$6 ?$	75	30	98	30	100	138	150	124	158	169	184	119
NUMESR OF ORSERVATIONS	23	24	30	30	30	30	28	30	30	30	29	28	342
WIND OBSERVATIONS									14.0	16.0	29.0	11.0	29.0
HIGHEST WIND RECORDED	12.0	15.0		10.0 3.5	13.0 3.0	3.5	4.6	18.0 5.9	3.2	6.3	3.9	4.8	4.2
AVG. WIND SPEED(MPH) (1) STANDARD DEVIATION	3.7 3.9	4.9	3.1 4.5	3.5 3.1	4.7	2.4	3.5	4.5	4.1	4.7	5.8	3.4	4.3
NUMAER OF OBSERVATIONS	31	$2 ?$	31	30	31	30	31	30	30	31	30	31	364
PERCENT OCCURRENCE FROM NORTH	6.5	10.7	. 0	3.3	. 0	. 0	- 0	. 0	. 0	3.2	. 0	6.5	2.5
NORTHEAST	29.0	32.1	12.9	3.3	3.2	. 0	3.2	46.7	23.3	35.5	30.0	32.3	20.9
EASt	. 0	7.1	. 0	. 0	. 0	3.3	. 0	3.3	${ }^{16.0}$. 0	. 0	3.0	1.1
SOUTHEASt	. 0	10.7	6.5	10.0	19.4	10.0	6.5	16.7	16.7	12.9	6.7	3.2	9.9
SOUTH	. 0	. 0	6.5	23.3	3.2	50.0	25.8	3.3	3.3	19.4	. 0	- 0	11.3
SOUTHWEST	22.5	7.1	19.4	23.3	22.6	16.7	48.4	13.3	6.7	9.7	15.7	12.9	18.4
WEST	. 0	. 0	6.5	. 0	. 0	3.3	. 0	3.3	. 0	. 0	. 0	. 8	3.6
NORTHWEST	6.5	3.6	. 0	6.7	. 0	. 0	. 0	. 0	- 0	. 0	.	25.8	3.6
calm	35.5	28.6	48.4	30.0	51.5	16.7	15.1	13.3	50.0	19.4	40.7	19.4	31.3
CURRENT OGSERVATIONS									-. 44	-. 20	-. 25	-. 22	-. 33
AVG TO LEFT (FT/SEC) (2)	-. 28	-. 33	-.39 .23	-. 4.44	-.33 .20	-. 27	-.39 .13	. .12	. 20	. 06	. 15	. 11	. 20
STANDARD DEVIATION NUM. OF OBS. (TO LEFT)	-10	-12 3	- 8	- 7	- 8	8	15	5	,	4	8	9	87
	. 25	. 34	. 33	.27	. 25	. 33	. 25	. 25	. 20	. 35	. 26	. 23	. 28
STANDARD DEVIATION	. 06	. 11	. 25	. 14	. 05	. 06	. 12	. 11	. 05	. 08	. 16	. 14	-13
NuM. Of OES. (TO RIGHT)	4	13	4	7	5	,	3	20	11	13	9	9	102
AVG. NET CURRENT (2)(3)	-. 12	. 21	-. 14	-. 11	-. 11	-. 07	-. 29	.11	. 06	.22	. 02	. 00	.00
NUMESR OF OBSERVATIONS	13	16	12	14	13	12	18	25	14	17	17	18	
Number of calm obs.	18	12	17	15	18	18	12	5	16	14	13	13	174

(Conc1uded)

FORESHORE SLOPE OBSERVATNS	$J A N$	FEB	MARCH	APRIL	May	June	JULY	AUG	SEPT	OCT	NOV	DEC	total
MAXIMUM SLOPE	2	2	2	2	2	2	2	$?$	3	3	3	3	3
MINIMUM SLOPE	1	1	1	1	1	1	1	1	1	2	3	3	1
AVERAGE SLOPE (2)	1.2	1.4	1.2	1.0	1.4	1.1	1.5	1.5	2.1	2.6	3.0	3.0	1.8
NUMBER OF OBSERVATIONS	31	23	31	30	31	30	31	30	30	31	30	31	364
SEDIMENT TRANSPORT VOLUME METHOD 1	(CU:ic	$4 R 0 S)(4)$											
NET CUGIC YaODS	-1155	13237	5776	-1157	-7375	-786	-5273	163	-9827	4830	3739	-3175	-1964
Num of ogservaticns	こ5	22	30	30	30	29	25	30	30	30	29	28	341
total left cubic yos	-1426	-504	-7728	. -2434	-7564	-1887	-9796	-6310	-11583	-2615	-7695	-7054	-65586
NUM OF OBS TO LEFT	9	2	8	8	10	8	15	5	3	4	6	8	86
total rght cuaic ros	261	13741	13504	1277	187	1101	2512	6474	1756	7496	11435	3879	63623
NUM OF OBS TO RIGHT	2	6	4	3	2	4	3	19	9	12	9	6	79
METHOD 2													
NET CUBIC YARDS	-615	6432	5720	-402	-18014	-1553	-17044	555	-16171	15798	20650	-1424	-6158
NUM OF OBSERVATIONS	13	16	12	14	13	12	18	25	14	17	17	18	189
total left cugic yds NUM OF OBS TO LEFT	$\begin{array}{r} -1091 \\ 9 \end{array}$	-485 3	$\begin{array}{r} -9890 \\ 8 \end{array}$	$\begin{array}{r} -3974 \\ 7 \end{array}$	$\begin{array}{r} -18782 \\ 8 \end{array}$	$\begin{array}{r} -3030 \\ 3 \end{array}$	$\begin{array}{r} -18591 \\ 15 \end{array}$	-9342	$\begin{array}{r} -23580 \\ 3 \end{array}$	-2167 4	$\begin{array}{r} -18310 \\ 8 \end{array}$	$\begin{array}{r} -11406 \\ 9 \end{array}$	$\begin{array}{r} -119638 \\ 87 \end{array}$
TOTAC RGHT CUBIC YDS NUM OF OBS TO RIGHT	475	$\begin{array}{r} 6917 \\ 13 \end{array}$	14500	3481 7	767 5	1477	1547	9898 20	7408 11	17966 13	38981	9982	$\begin{array}{r} 113479 \\ 102 \end{array}$

(1) CALYS, If any, included in average calculation
(2) CALMS NOT INCLUDED IN AVEqAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE PIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUEIC YARDS. TWO METHODS (DESCRIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPM)) ARE USED TO CALCULAYE THE TRANSPORT VOLUME. NEGATIVE values indicate transport to the left.
METHOD 1. THIS METHOD IS BASED JN EQUATIONS 4-38 AND $4-50 B$ FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF APPROACH HAVE SEEN RECORDED, THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUSSTITUTED INTO EQUATION $4-503$ AND DIVIDED BY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS GALCULATED EY SUMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52, AND 4-5OB FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT. AND DISTANCE TO DYE PATCH FROM Shoreline and following the same procedure as method i. note: recent findings indicate a FRICTION FACTOR OF. 000 SHOULD BE USED IN EQUATION $4-52^{\circ}$.

LEO Data Summary: Sta 48002. Cherry Grove Beach. South Carolina

Latitude $33^{\circ} 49^{\prime} 43.8^{\prime \prime}$, Longitude $78^{\circ} 37^{\prime} 58.2^{\prime \prime}$.
Data Collected from 1 Jan 82 to 31 Dec 82

	JAN	FE 3	MARCH	APRIL	May	JUNE	JULY	AUG	SEPT	OCT	nov	DEC	total
SURF OSSERVATIONS													
NUMBER OF OBSERVATIONS	30	28	29	30	31	29	29	31	30	31	30	31	359
NuMger of calm oss.	1	0	0	0	1	0	0	1	0	1	0	0	4
highest wave pecorded	4.50	3.50	3.00	4.50	3.00	5.00	6.00	4.00	3.00	6.50	4.00	4.50	6.50
AVG. WAVE HEIGHT(FT) (1)	1.56	2.05	1.50	2.00	1.19	1.88	1.69	1.68	1.37	2.16	2.22	2.42	1.81
Standard deviation	1.02	. 79	. 6 ?	1.19	.60	1.17	1.27	. 86	. 55	1.44	. 78	. 81	1.04
LONGEST PERIOD RECORDED	5.00	4.50	4.50	5.00	4.80	5.00	5.00	4.53	4.50	5.00	5.00	4.50	5.00
avg wave period (SEC) (1)	4.12	4.34	4.14	4.32	4.27	4.43	4.26	4.21	4.23	4.32	4.47	4.29	4.28
Standard deviation	.8?	. 23	. 26	. 27	. 81	. 25	.28	.90	. 25	. 84	. 26	. 25	. 53
WAVE DIRECTON NUMBER OF OZSERVATIONS	29	29	29	30	30	29	29	30	30	30	30	31	355
PERCENT OCCURRENCE >90	20.7	17.9	6.9	16.7	33.3	37.9	48.3	23.3	6.7	6.7	3.3	22.6	20.3
	51.7	50.0	62.1	53.3	53.3	44.8	44.8	46.7	63.3	60.0	36.7	41.9	50.7
<0	27.6	32.1	31.0	30.0	13.3	17.2	6.9	30.0	30.0	33.3	60.0	35.5	29.0
AVG. ZONE WIDTH (ET) (2)	175	213	156	243	158	222	220	224	169	279	271	296	220
NUM3ER OF OBSERVATIONS	29	28	23	30	30	29	29	30	30	30	30	31	355
WIVD OBSERVATIONS													
HIGHEST WIND RECORDED	17.0	15.0	13.0 4.0	22.0 6.6	10.0 3.4	22.0 6.4	25.0 5.6	16.0 4.6	10.0 3.7	22.0 6.1	18.0 5.1	12.0 5.1	25.0 5.0
AVG. WIND SPEED (MPH) (1)	4.0	3.4	4.0	6.6 7	3.4	6.4 6.4	5.6 6.3	4.6 4.2	3.7 3.0	6.1	5.1 5.1	5.1 4.1	5.0 5.2
STANDARD DEVIATION	3.8	4.4	3.6	7.7	3.1	6.4	6.3	4.2	3.0 30	7.1 31	5.1 30	4.1	5.2 365
NUMGER OF OGSERVATIONS PERCENT OCCURRENCE FROM	31	28	31	30	31	30	31	31	30	31	30	31	365
NORTH	. 0	10.7	. 0	. 0	. 0	. 0	. 0	. 0	3.3	6.5	. 0	. 0	1.6
NORTHEASt	45.2	35.7	35.5	3.3	9.7	. 0	3.2	19.4	50.0	32.3	43.3	48.4	27.1
EASt	. 0	. 0	. 0	. 0	. 0	3.3	. 0	. 0	6.7	. 0	- 0	. 0	- 8
SOUTHEASt	3.2	. 0	3.2	23.3	12.9	23.3	6.5	12.9	. 0	3.2	6.7	6.5	8.5
SOUTH	. 0	. 0	. 3	10.0	19.4	10.0	19.4	16.1	3.3	3.2	. 0	6.5	7.4
SOUTHWEST	9.7	10.7	12.9	13.3	19.4	33.3	35.5	16.1	6.7	6.5	6.7	9.7	15.1
WEST	9.7	. 0	. 0	. 3	3.2	. 0	. 0	. 0	. 0	. 0	. 0	- 0	1.1
NORTHWEST	. 0	17.9	15.1	6.7	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	3.3
CALM	32.3	25.0	32.3	43.3	35.5	30.0	35.5	35.5	30.0	48.4	43.3	29.0	35.1
CURRENT OGSERVATIONS		-. 20	-. 14	-. 35	-. 15	-. 41	-. 28	-. 21	-. 27	-. 23	-. 42	-. 21	-. 25
STANDARD DEVIATION	-. .105	. .09	. 03	. 16	. 02	. 28	. 21	.13	. 05	. 13	.00	. 07	. 18
NUM. OF OBS. (TO LEFT)	6	4	4	7	9	11	15	,	2	2	1	11	80
avg to right (fi/sec) (2)	.13	. 20	. 16	. 28	.13	. 28	. 15	. 26	. 16	.26	. 24	.21	.21
STANDARD DEVIATION	. 07	. 12	. 05	.17	. 01	.08	. 02	. 09	. 06	. 17	. 07	. 05	.117
NUM. OF OBS. (TO RIGHT)	11	11	9	7	4	6	2	8	16	15	17	11	117
Ave. Net current (2)(3)	. 03	. 09	.07	-. 03	-. 07	-. 17	-. 23	. 02	.11	. 21	.21	. 00	. 02
NUM3ER OF OBSERVATIONS	17	15	13	14	13	17	17	16	18	17	18	22	197
NUMEER OF CALM OBS.	14	13	18	16	18	13	14	15	12	14	12	9	168

(Concluded)

FORESHORE SLOPE OBSERVATNS	J 4 N	fee	MARCH	APRIL	MAY	June	JULY	AUG	SEPT	OCT	NOV	DEC	total
MAXIMUM SLOPE	3	3	3	2	2	2	3	3	4	6	6	4	6
MINIMUM SLOPE	3	3	1	2	2	2	2	3	3	3	4	4	1
AVERAGE SLOPE (2)	3.0	3.0	2.4	2.0	2.0	2.0	2.9	3.0	3.2	4.3	4.7	4.0	3.0
NUMSER OF OBSETVATIONS	31	23	31	30	31	30	31	31	30	31	30	31	365
sediment transport volume YETHOD 1	CCU3IC	ODS)(4)											
NET CLEIC YARD	-90	5726	4375	-1924	950	-32182	-26:73	1774	2823	18585	15557	1005	-7567
NUM OF O3SEFVATİNS	27	28	23	32	30	29	$2 \geqslant$	30	30	30	30	31	355
tatal left cjaic yos	-4323	-4075	-317	-13767	-1703	-35446	-26543	-7133	-1139	-19035	-2151	-10575	-127403
num of C3s io leaf	-	5	?	5	10	11	14	7	2	2	1	7	72
total aght cusic yju	4729	10333	5213	11562	2743	3263	364	8908	3963	37721	18708	11580	119837
NuM Of OYS TO GIGHt	3	9	,	\bigcirc	4	5	2	9	9	10	18	11	103
METHOD 2 NET CUEIC YAPDS	-3175	16473	4234	-17842	1263	-120928	-145851	2449	4897	139502	29635	-6865	-95938
Num of oss mrvations	17	15	13	14	15	16	17	16	18	17	18	22	196
total left cueic yas	-9990	-5885	-1793	-61505	-3057	-127996	-146357	-19319	-1809	-11260	-7278	-20765	-416014
NUM OF OFS TJ LEFT	6	4	4	7	9	10	15	8	2	2	1	11	79
TOTAL RGHT CUSIC YOS	5814	22358	6047	43662	4321	7067	755	21768	6706	150762	36913	13900	320073
NUM OF OBS TO RIGHT	11	11	9	7	4	6	2	8	16	15	17	11	117

(1) CALMS, IF ANY, INCLUDED IN AVEQAGE CALCULATION
(2) GALMS NOT INCLUDED IA AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO ThE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TPANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS CDESCRIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORY VOLUME. NEGATIVE VALUES INDICATE TRANSDORT TO THE LEFT.
METHJD 1. THIS METHOD IS BASED ON EJUATIONS 4-38 AND $4-50 B$ FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST CALCULATED for only the days of the month where wave heiaht and ANGLE OF APDROACH KAVE GEEN RECJRDED. THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED. AND FINALLY THESE MONTHLY VALUES CF FLUX ARE SUBSTITUTED INTO EQUATION 4-SOB AND DIVIDED $9 Y$ Y 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VCLUME IS CALCULATED GY SUMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52, AND 4-SOS FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT, AND DISTANCE TO DYE PATCH FROM SHORELINE AND fOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINOINGS INDICATE A FRICTION FACTOR OF . OOG SHOULD SE USED IN EQUATION 4-52.

LEO Data Summary; Sta 48002, Cherry Grove Beach, South Carolina
Latitude $33^{\circ} 49^{\prime} 43.8^{\prime \prime}$. Longitude $78^{\circ} 37^{\circ} 58.2^{\prime \prime}$,
Data Collected from 1 Jan 83 to 31 Dec 83

(Concluded)

FCRESHORE SLOPE OGSERVATNS	JAN	FER	MARCH	APRIL	MAY	June	JJUY	AU3	SEPT	OCT	NOV	DEC	TOTAL
MAXIMUM SLIOPE	4	3	3	3	4	4	5	5	5	5	4	5	5
MINIMUM SLOPE	3	1	1	1	3	4	4	4	4	4	4	4	1
AVERAGE SLOPE (2)	3.9	1.7	1.6	2.2	3.6	4.0	4.1	4.5	4.8	4.2	4.0	4.0	3.6
NUMSER OF OSSERVATIONS	31	25	31	30	31	30	31	31	+ 30	4	$\begin{array}{r}40 \\ \hline\end{array}$	43	3.6
SEDIMENT TRANSPORT VOLUME	ccuelc r	YARDS)(4)											
METHOD 1													
NET CUSIC YARDS	30377	40499	3709	-6395	-17889	3696	-15110	-9339	-1982	-9299	-24840	-17290	-18864
NUM OF OBSERVATIONS	31	27	31	30	31	30	31	31	30	31	30	31	364
total left cueic yos	-3678	-4606	-17340	-19381	-30809	-9402	-15110	-10755	-10192	-18476	-28456	-31162	-199367
NuM OF OBS TO LEft	3	3	6	11	17	6	15	13	8	10	14	13	119
total rght cueic yos	34055	45105	21049	12984	12919	18099	0	1416	8209	9177	3615	13871	180500
NUY Of OBS TO RIGHt	16	\bigcirc	6	6	8	12	0	1	9	7	2	7	83
METHOD 2													
NET CUBIC YARDS	56055	170379	7507	-53275	-58610	-1609	-57355	-23256	-7050	55808	6131	-21694	82531
Num of cbservations	18	14	18	21	27	20	15	12	18	17	17	20	217
TOTAL LEFT CUBIC YOS NUM OF OGS TJ LEFT	$\begin{array}{r} -5346 \\ 3 \end{array}$	-5736 3	$\begin{array}{r} -70108 \\ 11 \end{array}$	$\begin{array}{r} -73837 \\ 14 \end{array}$	$\begin{array}{r} -83 c 56 \\ 18 \end{array}$	-51771	$\begin{array}{r} -57355 \\ 15 \end{array}$	$\begin{array}{r} -26793 \\ 11 \end{array}$	-19705	$\begin{array}{r} -2262 \\ 2 \end{array}$	$\begin{array}{r} -31385 \\ 8 \end{array}$	$\begin{array}{r} -53305 \\ 13 \end{array}$	$\begin{array}{r} -481709 \\ 114 \end{array}$
TOTAL PGHT CUEIC YDS NUM OF OBS TO RIGHT	61902 15	185606 19	77615 7	20531	24445	50161 13	0	3537 1	12655	58070 15	37517	$\begin{array}{r} 32110 \\ 7 \end{array}$	$\begin{array}{r} 564239 \\ 103 \end{array}$

(1) CALYS, IF ANY, INCLUDED IN AVERASE CALCULATION
(2) CALMS NCT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEFT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARF GIVEN IN CUBIC YARDS. TWO METHODS CDESCRIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE

METHOD 1. THIS METHJD IS GASED ON EQUATIONS $4-38$ ANO $4-509$ FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF APGROACH HAVE GEEN RECOFDED, THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED. AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUSSTITUTED INTO EOUATION 4-5OB AND DIVIDED BY 12 TO get the net monthly sediment transport volumes. the yearly sediment transport volume is calCULATED BY SUMMING THE MCNTHLY VALUES.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52, AND 4-50S FROM THE SPM, USING RECORDED OBSERVATIONS CF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT, ANO DISTANGE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF .OOG SHOULD JE USED IN EQUATION 4-52.

LEO Data Summary: Sta 48002. Cherry Grove Beach. South Carolina

Latitude $33^{\circ} 49^{\prime} 43.8^{\prime \prime}$. Longitude $78^{\circ} 37^{\prime} 58.2^{\prime \prime}$,
Data Collected from 1 Jan 84 to 31 Dec 84

Surf ozservations	JAN	FE 3	MARCH	APRIL	may	June	JULY	aus	SEPT	OCT	Nov	DEC	total
number of observattons	31	29	31	30	31	30	31	31	30	31	30	31	366
NUMBER OF CALM OBS.	0	0	0	0	0	0	3	0	0	0	0	0	0
highest wave recorded	4.50	4.59	8.50	5.50	6.00	3.00	4.50	3.50	8.50	5.50	5.00	3.50	8.50
AVG. WAVE HEIGHT(FT) (1)	2.76	2.48	2.77	2.93	2.85	2.02	2.98	2.83	3.32	2.35	3.15	2.21	2.71
STANDARD DEVIATIJN	. 83	1.12	1.55	1.07	. 93	. 64	. 56	. 67	1.80	1.04	.72	. 72	1.10
LONGEST PERIOD RECORDEO	5.00	5.00	4.50	4.50	4.50	4.50	4.50	4.50	4.50	5.00	4.50	4.50	5.00
avg wave period (SEC) (1)	4.34	4.53	4.10	4.02	4.21	4.48	4.35	4.42	4.08	4.24	4.13	4.40	4.28
StANDARD DEVIATIJN	. 27	. 41	-3?	. 35	. 35	. 09	. 23	. 18	. 45	.31	. 22	. 20	. 34
WAVE DIRECTON													
NUMBER OF OGSERVATIONS	31	29	31	3.9	31	30	31	31	30	31	30	31	366
PERCENT OCCURRENCE >70	41.9	20.7	33.7	13.3	35.5	10.0	54.8	32.3	6.7	12.9	30.0	41.7	28.4
=90	48.4	48.3	32.3	70.0	38.7	70.0	41.9	61.3	40.0	45.2	50.0	58.1	50.3
<0	9.7	31.0	29.0	15.7	25.8	20.0	3.2	6.5	53.3	41.9	20.0	. 0	21.3
AVG. ZONE WIDTH (FT) (2)	324	303	325	348	327	238	333	274	375	283	355	256	312
NUMGER OF OBSERVATIONS	31	20	31	30	31	30	31	31	30	31	30	31	366
WIND OBSERVATIONS													
HIGHEST WIND RECORDED	13.0	14.0	19.0	12.0	15.0	3.0	14.0	6.0	32.0	12.0	12.0	8.0	32.0
AVG. WINO SPEED(MPH) (1)	4.1	3.7	4.1	3.5	4.0	2.1	4.4	1.6	5.8	3.2	5.7	2.4	3.7
Standard deviation	3.5	4.7	4.9	3.8	3.9	2.6	3.5	2.2	6.8	3.6	3.7	2.8	4.2
NUMBER OF OSSERVATIONS	31	29	31	30	31	30	31	31	30	31	30	31	366
PERCENT OCCURRENCE FROM													
NORTH	3.2	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 3
NORTHEAST	16.1	6.9	19.4	20.0	12.9	. 0	3.2	6.5	36.7	35.5	16.7	22.6	15.4
EAST	. 0	. 0	3.2	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 3
SOUTHEASt	. 0	3.4	. 0	. 0	9.7	10.0	16.1	. 0	26.7	6.5	. 0	. 0	6.0
SOUTH	. 0	. 0	. 0	. 0	6.5	23.3	9.7	12.9	. 0	3.2	3.3	. 0	4.9
southwest	15.1	27.5	32.3	2. 3	35.5	13.3	45.2	19.4	3.3	3.2	26.7	22.6	23.2
WEST	. 0	. 0	3.2	. 0	. 0	. 3	. 0	. 9	. 0	. 0	. 0	. 0	. 3
NORTHWEST	32.3	10.3	. 0	3.3	. 0	. 0	. 0	. 0	. 0	3.2	33.3	. 0	6.8
CALM	32.3	51.7	41.0	43.3	35.5	53.3	25.8	61.3	33.3	48.4	20.0	54.8	41.8
CURRENT OBSERVATIONS													
AVG TO LEFT (FT/SEC) (2)	-. 25	-. 43	-. 33	-. 22	-. 33	-. 23	-. 26	-. 13	-. 19	-. 20	-. 36	-. 26	-. 29
Standard deviation	. 03	. 20	. 16	. 05	. 15	. 08	. 10	. 04	. 04	. 02	. 11	. 06	. 13
num. of OaS. (TO LEFT)	4	6	13	6	12	3	21	7	2	3	9	6	92
AVG TO RIGHT (FT/SEC) (2)		. 30	. 28	.41	. 18	. 23	. 20	. 20	. 40	. 28	.37	. 30	. 30
STANDARD DEVIATION	. 05	. 09	. 11	. 16	. 05	. 07	. 00	. 04	. 20	. 10	- 12	. 05	. 14
NUM. OF OBS. (TO RIGHT)	16	10	9	6	9	6	1	5	20	13	7	7	109
AVg. Net curaent (2)(3)	.14	. 02	-. 03	. 10	-. 11	. 08	-. 23	-. 02	. 34	.19	-. 04	. 04	.03
NU.MBER OF OBSERVATIJNS	20	15	22	12	21	9	22	12	22	16	16	13	201
Number of calm obs.	11	13	9	18	10	21	。	19	8	15	14	18	165

(Conc1uded)

	JAN	feb	MARCH	APRIL	MAY	JUNE	JuLY	aue	SEPT	OCT	nov	DEC	total
FORESHORE SLOPE OBSERVATNS													
MAXIMUM SLOPE	5	5	5	5	5	5	5	5	6	4	5	4	δ
Minimum slope	4	4	4	3	3	5	5	6	3	3	3	4	3
AVERAGE SLOPE (2)	4.1	4.5	4.7	4.2	4.5	5.0	5.0	4.5	4.5	3.0	4.0	4.0	4.3
NUMEER OF OESERVATIONS	31	29	31	? 0	31	30	31	31	30	31	30	31	366
SEDIMENT TRANSPJRT VOLUME METHJD 1	ccueic	YADDS)(4)											
NET CUEIC YARD:	-16378	2413	-30904	12036	-214>0	1017	-24405	-8756	90154	17768	-11765	-16267	-5657
NUM OF OBSERVATIONS	31	29	31	30	31	30	31	31	30	31	30	31	366
total left cuaic yos	-17590	-16963	-4266?	-5313	-23793	-3954	-27312	-12255	-2927	-3228	-24809	-16267	-203878
NUM OF OBS TO LEFT	13	6	12	4	11	3	17	10	2	4	9	13	104
total rght cugic yos	3211	19276	11757	18255	7322	4871	2907	3498	93081	20996	13043	0	198217
NUM OF OBS to fight	3	7	9	5	8	6	1	2	16	13	6	0	78
METHOD 2													
NET CUBIC YAPDS	22121	790	-78061	47039	-56580	3406	-42903	-820	225136	33651	4426	11974	170229
num of observations	20	10	21	12	21	9	22	12	22	16	16	13	200
TOTAL LEFT CUSIC YOS NUM OF OSS TO LEFT	-7186	-33110	$\begin{array}{r} -94442 \\ 12 \end{array}$	-15867	$\begin{array}{r} -63304 \\ 1 ? \end{array}$	-8948 3	$\begin{array}{r} -45450 \\ 21 \end{array}$	$\begin{array}{r} -10520 \\ 7 \end{array}$	-2465	-4196 3	-34279 9	-11078 6	$\begin{array}{r} -335845 \\ 91 \end{array}$
TOTAL RGHT CUAIC yos	29308	39901	15381	62907	6724	12355	2547	9700	227659	37848	38706	23053	506081
NUM OF O3S TO RIGHT	16	10	\%	6	9	6	1	5	20	13	7	7	109

(1) CALMS, IF ANY, INCLUDCD IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT YJVEMENT TO THE LEFT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IV CUEIC YARDS. TWO METMODS CDESCRIBED IN SECTION 4 OF the "SHORE DROTECTION MANJAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSPDRT TO THE LEFT.
METHOD 1. THIS METHOD IS SASED OV EQUATIOVS 4-38 AND 4-5OB FROM THE SPM. A LONGSYORE ENERGY FLUX (EQUATION 4-3) IS FIRST CALCULATED FOQ ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF APPRCACH HAVE BEEN RECORDED, THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES OF FLUX ARE SUBSTITUTED INTO EQUATION G-5O3 AND DIVIDED BY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALCULATED GY SUMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOD IS 3ASED ON EQUATIONS 4-5i, 4-52, AND 4-5OB FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT, AND DISTANCE TO DYE PATCH FROM SHORELINE AND fOLLOWING THE SAME PROCEDURE AS METHOD 1 . NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF. OO6 SHOULD GE USED IN EQUATION 4-52.

LEO Data Summary: Sta 48002. Cherry Grove Beach. South Carolina

Latitude $33^{\circ} 49^{\prime} 43.8^{\prime \prime}$. Longitude $78^{\circ} 37^{\prime} 58^{\prime \prime} 2^{\prime \prime}$.
Data Collected from 1 Jan 85 to 31 Dec 85

(Concluded)

	J AN	FEe	MARCH	APRIL	May	June	july	AUG	SEPT	OCT	Nov	DEC	total
Foreshore slope odservatns													
Maximum slope	4	5	4	4	4	4	4	4	5	4	4	4	5
minimum slope	4	4	4	3	3	3	3	3	4	3	3	3	3
average slope (2)	4.0	4.5	4.0	3.3	3.5	3.4	3.7	3.6	4.6	3.3	3.9	4.0	3.8
NUMEER OF OESERVATIONS	31	23	31	30	31	30	31	31	30	31	30	31	365
SEDIMENT TRANSPORT VOLUME METHOD 1	coubic	YARDS)(4)											
VET CUBIC Yards	-36051	-44077	-1954	-16351	1245	-9704	-23697	-580	25049	21675	6934	-222	-77733
NUM OF OBSERVATIONS	31	23	31	30	31	30	31	31	30	31	30	31	365
total left cubic yds	-37463	-46437	-15503	-20803	-7104	-15466	-25622	-7895	-776	-2309	-5318	-7451	-192277
NuM Of cas to Left	17	16	11	11	8	12	14		3	3	4	8	194
total pght cuaic yos	1411	2479	13548	4542	8350	5762	1925	7305	25825	23985	12252	7228	114542
NUM OF 035 TO RIGHT	2	4	5	3	4	4	3	10	17	16	9	5	84
METHOD 2													
NET CUSIC YARDS	-53122	-74882	2065	-31053	1124	-8599	-51728	-3727	33794	52049	14100	-5376	-131065
Num of observations	20	22	10	14	11	15	19	18	20	19	15	15	207
TOTAL LEFT CUBIC ydS NuM Of OBS TO LEFt	$\begin{array}{r} -57074 \\ 16 \end{array}$	-77344	-25959 12	$\begin{array}{r} -43733 \\ 11 \end{array}$	$\begin{array}{r} -17658 \\ 7 \end{array}$	-21948 11	$\begin{array}{r} -54146 \\ 16 \end{array}$	-18621	-192 1	$\begin{array}{r} -3258 \\ 3 \end{array}$	-10565	$\begin{array}{r} -13543 \\ 9 \end{array}$	$\begin{array}{r} -344041 \\ 116 \end{array}$
TOTAL QGHT CUBIC YOS NUM Of OBS TORIGHT	3951 4	$\begin{array}{r} 2651 \\ 4 \end{array}$	$\begin{array}{r} 28025 \\ 7 \end{array}$	11769	18782	13348	2418 3	9893 10	$\begin{array}{r} 33987 \\ 19 \end{array}$	55308 16	$\begin{array}{r} 24666 \\ 11 \end{array}$	8167	212975

(1) CALMS, IF any, INCLUDED in averaje calculation
(2) CALMS NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TJ THE LEFT

No SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS CDESCRIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPN)) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE VALUES INDICATE TRANSPORT TO THE LEFT.
METHOD 1. THIS METHOD IS GASED ON EQUATIONS 4-38 AND 4-5OB FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND
 GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES THE YEARLY SEDIMENT TRANSPORT VOLUME IS CAL culated by summing the monthly values. METHOD 2. THIS METHOD IS SASED ON EQUATIONS 4-51, 4-52, AND 4-50B FROM THE SPM, USING RECORDED OBSERVA TIONS JF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT. AND DISTANCE TO DYE PATCH FRICTION FACTOR OF . 006 SHOULD GE USED IN EOUATION $4-52$.

LEO Data Summary: Sta 48002. Cherry Grove Beach. South Carolina

Latitude $33^{\circ} 49^{\circ} 43.8^{\prime \prime}$, Longitude $78^{\circ} 37^{\prime} 58.2^{\prime \prime}$

Data Collected from 1 Jan 86 to 31 Dec 86

	JAN	FEq	MARCH	APRIL	MAY	June	Juty	AUG	SEPT	OCT	NOV	DEC	total
SURF C3SERVATIONS													
number of observations	31	23	32	30	31	30	31	31	30	30	29	31	364
NUMEER OF CALM ORS.	1	0	0	0	0	0	0	,	0	0	0	0	0
HIGHEST WAVE PECERDED	4.50	3.517	3.50	4.00	3.50	3.50	3.50	4.00	3.50	4.00	4.50	6.50	6.50
AVG. WAVE HEIGHT(FT) (1)	2.44	2.23	2.19	2.13	2.19	2.23	2.26	2.53	2.23	2.40	2.98	2.48	2.36
Standard deviation	. 80	. 57	. 65	- 5	. 39	. 74	. 72	. 54	. 68	. 64	. 66	. 94	. 75
LONGEST DERIOD RECORDED	4.50	4.53	5.03	5.00	4.50	5.00	4.50	4.50	4.50	4.50	4.50	4.50	5.00
AVG WAVE PERIJO(SEC) (1)	4.34	4.61	4.41	4.65	4.39	4.32	4.38	4.37	4.43	4.45	4.36	4.44	4.40
Standard deviation	. 23	.12	.23	. 24	. 21	.74	. 31	. 21	. 17	. 15	. 22	. 21	. 29
WAVE directon													
NuMger of observations	31	28	32	39	ミ1	30	31	31	30	30	29	31	364
	45.2	17.9	9.4	63.3	48.4	36.7	64.5	35.5	3.3	13.0	6.9	6.5	29.1
$=20$	41.9	$60 . ?$	62.5	33.3	33.7	40.0	32.3	48.4	50.0	43.3	27.6	71.0	45.9
	12.9	21.4	28.1	3.3	12.9	23.3	3.2	16.1	40.7	46.7	65.5	22.6	25.0
AVG. ZONE WICTA (FT) (2)	256	246	239	243	239	256	254	269	253	268	336	283	262
NUMBER OF OBSERVATIONS	31	23	32	30	31	30	31	31	30	31	30	31	366
WIND O9SERVATIONS													
HIGHEST WIND RECURDED	10.0	11.0	9.0	16.0	11.0	12.0	11.0	8.9	7.0	11.0	3.0 2.8	9.0	
AVG. WIND SPEEO (MPH) (1)	4.2	2.6	2.7	3.7	3.5	4.5	3.7	2.9	2.4	3.0	2.8 2.9	1.4 2.7	3.1 3.2
STANDARD DEVIATION	3.4	3.1	2.7	3.9	3.5	3.6	3.4	2.4	2.4	3.1	2.9	2.7	3.2
NUMBER OF OBSERVATIONS PERCENT OCCURRENCE FROM	31	23	32	30	31	30	31	31	30	31	30	31	366
NORTH	. 0	. 0	. 0	. 0	. 0	. 0	. 3	. 0	. 0	. 0	. 0	3.2	. 3
northeast	3.2	28.6	15.6	5.7	3.2	. 0	. 0	12.9	46.7	41.9	43.3	16.1	18.0
EAST	. 0	. 3	. 0	. 0	.0	. 0	. 0	. 0	- 0	. 0	. 0	. 0	. 0
southeast	. 0	. 0	21.9	3.3	. 0	20.0	. 0	. 9	. 0	. 0	. 0	3.2	4.1
SCUTH	0.7	. 0	. 0	. 0	3.2	16.7	12.9	12.9	3.3	9.7	- 0	3.2	6.0
southwest	29.0	14.3	15.6	33.3	38.7	30.0	54.3	38.7	3.3	6.5	6.7	. 0	22.7
WEST	. 0	. 0	. 0	. 0	3.2	. 0	3.2	. 0	. 0	. 0	. 0	. 0	. 5
northwest	25.9	7.1	. 0	20.0	9.7	3.3	. 0	. 0	4.0	3.2	3.3	7.0	6.0
CALM	32.3	50.0	46.0	34.7	41.9	30.0	20.0	35.5	46.7	38.7	46.7	74.2	42.3
CURRENT OGSERVATIONS													
AVG to Left (FT/SEC) (2)	-. 29	-. 18	-. 24	-. 25	-.26 .09	-.30 .10					. 27	. 00	. 10
STANDARD DEVIATION NUM. OF OES. (TO LEFT)	. 14	. 05	. 08	-119	- 15	$\cdot 11$	19 -17	- 11	-1	-03	- 2	1	108
AVG to right (ft/SEC) (2)	. 22	. 18	. 26	. 18	. 23	. 26	. 28	. 23	.23	.19	. 24	.21	. 23
STANDARD DEVIATION	. 06	. 05	. 06	.21	.10	. 07	. 00	. 03	. 05	. 06	. 09	.13	. 08
NUM. OF OBS. (TO RIGHT)	5	6	9	2	4	6	1	5	14	15	19	9	95
Avg. NEt current (2)(3)	-. 15	.010	. 96	-. 21	-. 16	-. 10	-. 25	-. 03	. 20	. 13	. 20	-17	-.03
NUMSER OF OESERVATIONS	17	12	15	21	19	17	20	15	15	18	21	10	203
NUMBER OF CALM OBS.	12	16	17	9	12	13	11	15	15	13	9	21	163
(Continued)													

(Concluded)

FORESHORE SLOPE OBSERVATNS	JAN	FE3	YARCH	, APQIL	May	June	July	AUG	SEPT	OCT	NOV	DEC	total
MAXIMUM SLOPE	5	5	4	4	5	4	4	5	5	4	4	4	5
minimum slope	4	4	3	3	4	3	3	4	3	3	3	2	2
AVERAGE SLOPE (2)	4.5	4.7	3.9	3.9	4.3	3.7	3.3	4.5	3.6	3.6	3.7	2.1	3.8
NUMBER OF OBSFRVATIONS	31	23	32	30	31	29	31	31	30	31	30	31	365
SEDIMENT TRANSPORT VOLUME (CUBIC YARDS)(4) METHOD 1													
NET CUPIC YaRts	-19153	-1034	5366	-19720	-11376	-3605	-18551	-3883	17723	13869	30426	27125	17897
NUM OF OBSERVATIONS	31	28	32	30	31	30	31	31	30	30	29	31	364
total left cuaic yos	-22014	-6579	-4116	-20251	-14455	-11726	-20033	-11700	-531	-2386	-4451	-1713	-120855
NuM of 03S TO LEFT	14	5	3	10	15	11	20	11	1	3	2	2	106
TOTAL FGHT CUGIC yos	3960	5545	9483	531	3078	3120	2082	7817	13254	16256	34877	23839	138742
NUM OF OSS TO RIGHT	4	6	\bigcirc	1	4	7	1	5	14	14	19	7	91
METHOD 2													
NET CUAIC YARDS	-22039	-1445	3396	-20860	-18016	-12235	-25738	-3032	25944	15557	37782	59686	29129
NUM OF OESERVATIONS	19	12	15	21	17	17	20	16	15	18	21	10	203
total left củic ros	-28082	-9711		-31004	-22378	-22394	-28519	-16792	-377	-2713	-4618	-1706	-180042
NUY OF OSS TO LEFT	14	6	6	10	15	11	19	11	1	3	2	1	108
total qght cubic yos NUM OF OBS TO RIGHT	$\begin{array}{r} 5072 \\ 5 \end{array}$	3265	14955	1233	4362 4	10158 6	2891	$\begin{array}{r} 12860 \\ 5 \end{array}$	$\begin{array}{r} 26321 \\ 14 \end{array}$	$\begin{array}{r} 18270 \\ 15 \end{array}$	$\begin{array}{r} 42400 \\ 19 \end{array}$	61392	$\begin{array}{r} 209169 \\ 95 \end{array}$

(1) CALMS. IF ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUJED IN AVERAGE CALCULATION
(3) A MINUS SIGN (-) INDICATES CURRENT MOVEMENT TO THE LEfT

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGMT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUYES ARE GIVEN IN CUBIC YARDS. TWO METHODS CDESCRIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VCLUME. NEGATIVE VALUES INDICATE TRANSOORT TO THE LEET.
METHOO 1. THIS METHOD IS BASED ON EJUATIONS 4-3. AND 4-5OB FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-3B) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF APPROACH HAVE ZEEN RECORDED. THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, ANO FINALLY THESE MONTHLY VALUES OF FLUX ARE SUBSTITUTED INTO EQUATION $4-50 B$ AND DIVIDED BY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VCLUME IS CAL
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-5i, 4-52, AND $4-503$ FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT, AND DISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE A FRICTION FACTOR OF . 006 SHOULD BE USED IN EQUATION 4-52.

	JAN	FE3	MAPCH	APRIL	MAY	June	JULY	aug	SEPT	OCT	NOV	DEC	total
SURF OBSERVATIONS													
number of observations	31	23	31	30	31	31	31	31	30	31	30	31	366
NUMEER OF CALM OGS.	0	,	0	0	0	0	0	0	0	0	0	0	0
highest wave recorded	a. 00	5.00	6.50	4.50	4.00	5.50	4.00	4.50	5.50	3.00	4.00	4.50	8.00
AVG. WAVE HEIGHT(FT) (1)	3.42	?. 83	3.23	2.05	2.58	3.08	2.32	2.71	2.39	1.68	2.57	2.35	2.73
standard deviaticin	1.20	1.12	. 27	. 72	. 74	. 89	. 99	1.66	. 91	. 74	. 81	1.08	1.04
LONGEST PERIOD RECORDED	4.50	5.07	4.50	4.50	4.50	5.00	5.00	5.00	4.50	5.00	5.00	5.50	5.50
avg wave period (ee) (1)	4.24	4.35	4.74	4.40	4.40	4.44	4.44	4.37	4.40	4.63	4.47	4.53	4.42
STANDAPD UEVİTiJM	. ${ }^{\text {c }}$.27	.77	. 30	. 20	. 25	. 25	. 28	. 20	. 25	. 22	. 31	. 27
WAVE DIRECTON													
NUMBER OF OBSERVATIONS	31	23	31	63	31	51	31	32^{31}	30 6	31	30	12.9	366 208
PERCENT OCCUPRENCE >PO	29.0	. 3	19.4	60.0	29.0	54.8	3.2	32.3	6.7	. 0	. 0	12.9	20.8
- $=$ 0	41.9	71.4	16.1	20.0	41.9	35.5	64.5	43.4	80.0	77.4	50.0	45.2	49.2
<93	29.0	29.5	34.5	20.0	29.3	9.7	32.3	10.4	13.3	22.6	50.0	41.9	30.1
AVG. ZONE WIDTH (FT) (2)	306	33.	357	309	282	337	251	296	318	183	295	254	298
NUMBER OF Qaseavations	31	23	≥ 1	30	31	31	31	31	30	31	30	31	366
WIND OBSERVATIONS		21.0	12.0	12.0	9.0	15.0	13.0	12.0	11.0	11.0	10.0	16.0	21.0
AVG. WIND SPEED(MPH) (1)	5.2	24.3	3.1	8.1	3.6	5.4	2.2	3.4	2.0	1.6	3.0	3.9	3.9
STANDARD DEVIATION	4.3	5.6	3.8	3.4	3.2	4.5	3.1	3.8	3.5	3.0	3.5	4.0	4.1
nUMBER OF OBSERVATIONS PERCENT OCCURRENCE FRJM	31	29	31	30	31	31	31	31	30	31	30	31	366
NORTH	. 0	. 0	6.5	. 0	. 0	. 0	. 0	. 0	. 0	. 0	3.3	. 7	. 8
northeast	25.3	17.9	35.5	20.0	3.2	- 0	6.5	- 0	10.0	19.4	36.7	9.7	15.3
EASt	. 0	. 0	. 0	. 0	. 0	.0	. 0	- 0	. 0	- 0	. 0	. 0	- 0
southeast	. 0	. 0	3.2	. 0	25.8	9.7	22.6	16.1	6.7	. 0	. 0	3.2	7.4
SOUTH	. 0	. 0	. C	6.7	3.2	3.2	6.5	3.2	6.7	3.2	. 0	. 0	2.7
SOUTHWEST	22.6	3.5	12.0	60.0	32.3	58.1	6.5	32.3	6.7	3.2	. 0	6.5	20.5
WEST	. 0	3.3	. 0	. 0	. 0	. 0	. 0	. 0	- 0	. 0	. 0	25.8	2.5
	16.1	21.4	22.5	. 0	. 0	. 0	. 0	. 0	. 0	. 0	6.7	12.9	6.6
CALM	35.5	53.6	17.4	13.3	35.5	29.0	58.1	48.4	70.0	74.2	53.3	41.9	44.3
CURRENT OBSERVATIONS AVG TO LEFT (FT/SEC) (2)	-. 31	-. 18	-. 27	-. 31	-. 26	-. 31	-. 18	-. 23	-. 23	. 00	. 00	-. 27	-. 28
STANDARD OEVIATION	. 08	. 00	. 12	. 11	. 07	. 11	. 00	. 08	. 07	. 00	. 00	. 08	. 10
NUM. OF OBS. (TO LEFT)	,	1	6	19	10	16	2	12	3	0	0	4	81
AVG TO RIGHT(FT/SEC) (?)	. 31	. 35	. 28	. 29	. 18	. 20	.22	. 26	. 34	.22	.27	. 26	. 26
STANDARD DEVIATION	.14	. 09	. 08	.11	. 04	. 06	. 06	. 07	. 11	. 04	. 07	. 04	. 111
NJM. OF OBS. (TO RIGYT)	10	3	20	6	10	4	10	6	5	7	14	11	111
qug. net current (2)(3)	. 01	. 29	. 15	-. 96	-. 04	-. 21	. 15	-. 07	. 13	. $2 ?$.27	.19	. 03
NUMBER OF OESERVATIONS	19	9	26	24	20	20	12	18	8	7	14	15	192
NUMEER OF CALM OSS.	12	19	5	6	11	11	19	13	22	24	16	14	172
(Continued)													

(Concluded)

FORESHORE SLOPE OSSERVATVS	$J A N$	FEe	MERCH	APRIL	May	juve	JULY	AUG	SEPT	OCT	nov	DEC	total
maximum slope	4	4	5	5	4	4	4	4	4	3	4	4	5
MINIMUM SLIJPE	2	4	4	3	2	4	3	3	3	3	3	4	2
AVERAGE SLOPE (2)	2.3	4.0	4.1	3.9	2.7	4.0	3.3	3.3	3.8	3.0	3.8	4.0	3.6
NUMEER OF OBSERVATIONS	31	29	31	30	31	30	31	31	30	31	30	31	365
SEDIMENT TRANSPORT VOLUME YETHOD 1	scuelc	$Y A O D S)(4)$											
NET CUBIC Yaqdi	23567	? 2323	13225	-19719	-1107	-36158	15615	-7799	11220	7207	27184	13230	85893
NUM JF OBSEPVATIONS	31	23	31	3 r	31	31	31	31	30	31	30	31	365
total left cjaic re;	-2134	0	-176?1	-30196	-13245	-40171	-807	-20422	-5155	0	0	-8299	-159420
NuM of jas to left	\bigcirc	0	6	19	9	17	1	10	2	0	0	4	76
total rght cugic ras	55012	30328	32910	10474	12139	4012	16.512	12622	16376	7207	27184	21529	245311
NUM OF OBS TO RIGHT	\bigcirc	8	20	6	9	3	10	6	4	7	15	13	110
METHOD NET CUSIC YAqOS	59190	117543	9440	-27263	-6878	-60537	24355	-8487	59716	22943	48224	13279	252521
NUM OF OBSEPVATIONS	19	9	25	24	20	20	11	18	8	7	14	15	190
total left cuaic yos Num of ozs to left	$\begin{array}{r} -34209 \\ 9 \end{array}$	$\begin{array}{r} -2892 \\ 1 \end{array}$	$\begin{array}{r} -27978 \\ 5 \end{array}$	$\begin{array}{r} -30405 \\ 18 \end{array}$	$\begin{array}{r} -17330 \\ 10 \end{array}$	$\begin{array}{r} -65621 \\ 16 \end{array}$	$\begin{array}{r} -3412 \\ 2 \end{array}$	$\begin{array}{r} -23361 \\ 12 \end{array}$	$\begin{array}{r} -17656 \\ 3 \end{array}$	0 0	0	$\begin{array}{r} -13956 \\ 4 \end{array}$	$\begin{array}{r} -250910 \\ 80 \end{array}$
total rght cusic yds NUM OF OBS TO RIGHT	$\begin{array}{r} 84491 \\ 10 \end{array}$	$\begin{array}{r} 120425 \\ 8 \end{array}$	$\begin{array}{r} 37418 \\ 20 \end{array}$	$\begin{array}{r} 12137 \\ 6 \end{array}$	$\begin{array}{r} 10460 \\ 10 \end{array}$	5083 4	27768	$\begin{array}{r} 19873 \\ 6 \end{array}$	87372 5	22943	48224	$\begin{array}{r} 27236 \\ 11 \end{array}$	$\begin{array}{r} 503429 \\ 110 \end{array}$

(1) CALMS, IF ANY, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT INCLUDED IN AVERAGE CALCIJLATION
(3) A Minus sign (-) indicates current movement to the left

NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPJRT VQLUAES ARE GIVEN IN CUBIC YGRDS. TWO METHODS CDESCRIBED IN SECTION 4 OF the "Shore protiction manual" (Spm)) are used to calculate the transport volume inegative values indicate transport to the left.
METHOD 1. TYIS METHOD IS GASED ON EQUATIONS 4-3R AND 4-SOB FROM THE SPM. A LONGSHORE ENERGY fLUX GEOUATION 4-38) IS FIRST CALCULATED FOR ONLY THE OAYS OF THE MONTH WHERE WAVE HEIGHT AND angle of aporcach have reev recgrdeor then an average flux for each month is calculated. and FINALLY THESG MONTHLY VALUES JF FLUX ARE SUBSTITJTED INTO EQUATION $4-50 Q$ AND DIVIDED $9 Y 12$ TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALculated ay summing the monthly values.
METHOD 2. THIS METHOD IS SASED ON EQUATIONS 4-51, 4-S2, AND 4-5OA FROM THE SPM, USING RECORDED ORSERVATIONS OF WAVE HEIGHT. WIDTH OF SURF ZONE, LONGSHORE CURRENT, AND DISTANCE TO DYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: RECENT FINDINGS INDICATE A GRICTION FACTOR OF .OO6 SHOULD AE USED IN EQUATION 4-52.

LEO Data Summary: Sta 48002. Cherry Grove Beach, South Carolina
Latitude $33^{\circ} 49^{\prime} 43.8^{\prime \prime}$. Longitude $78^{\circ} 37^{\prime} 58^{\prime \prime}$. .
Data Collected from 1 Jan 88 to 31 Dec 88

Surf observations	JAN	FE?	MARCH	APRIL	MAY	June	July	AUS	SEPT	OCT	nov	DEC	total
NuMEER OF observations	31	20	31	30	31	30	31	31	30	31	30	31	366
NuMEER OF CALM JRS.	0	0	0	0	0	0	0	0	0	0	0	0	0
HIGHEST WAVE RECJRDED	4.30	4.00	4.50	4.50	4.00	4.00	4.50	6.00	3.50	4.00	4.50	3.50	6.00
AVG. WAVE HEIGHT(FT) (1)	2.65	2.26	2.05	2.27	2.37	2.22	2.50	2.32	2.08	2.31	2.25	2.16	2.28
STANDARD DEVIATION	. 90	. 8.3	1.15	. 88	. 79	. 80	. ${ }^{7}$	1.07	.72	. 80	. 92	. 78	. 90
LONGEST PERIJo recorted	5.00	5.00	5.00	5.01	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
AVG WAVE PERIOO(jEC) (1)	4.50	4.49	4.50	4.52	4.47	4.53	4.47	4.45	4.50	4.48	4.48	4.56	4.50
STANDARD DEVIATIJN	. 22	.21	. 35	. 20	. 25	. 26	. 28	. 27	.13	. 20	. 24	.17	. 24
WAVE directon NuMaEr of observations	31	20	31	33	31	30	31	31	30	31	30	31	366
PERGENT OCCUORENCE >90	. 0	20.7	6.5	20.0	16.1	16.7	51.6	16.1	10.0	19.4	10.0	29.0	18.0
$=70$	51.6	$6 ? .1$	74.2	40.0	67.7	60.0	49.4	61.3	53.3	54.8	50.0	35.5	54.9
< 0	48.4	17.2	19.4	40.3	15.1	23.3	. 0	22.6	36.7	25.8	40.0	35.5	27.0
AVG. LONE WIDTH (FT) (?)	300	251	230	253	202	235	275	259	245	248	256	238	254
NUMBER OF OBSERVATIONS	31	29	31	37	31	30	31	31	30	31	30	31	366
WIND OGSERVATIONS													
HIGHEST WIND PECORDED	9.0	9.0	9.0	13.0	11.0	10.0	13.0	13.0	11.0	9.0	14.0	9.0	16.0
AVG. WIND SPEEJ(MPH) (1)	3.6	2.8	9.5	3.4	2.2	1.7	4.1	3.0	2.4	2.7	2.7	3.2	2.3
STANDARD DEVIATION	2.9	3.1	2.7	4.3	3.9	2.9	4.1	3.9	3.1	3.0	3.9	3.1	3.5
NUMAER OF OBSERVATIONS PERCENT OCCURRENCE FROM	31	20	31	30	31	30	31	31	30	31	30	31	366
NORTH	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0
NORTHEAST	29.0	6.7	3.2	13.3	3.2	. 0	. 0	3.5	13.3	12.9	20.0	12.9	10.1
EAST	. 0	. 0	. 0	3.3	. 0	. 0	. 0	. 0	. 0	. 0	. 0	3.2	. 5
southeast	. 0	. 0	. 0	6.7	9.7	3.3	.0	12.9	10.0	. 0	3.3	. 0	3.8
SOUTH	. 3	. 0	3.2	3.3	3.2	. 0	3.2	9.7	3.3	3.2	. 0	6.5	3.0
SOUTHWESt	. 0	10.3	9.7	13.3	12.9	16.7	51.6	16.1	16.7	12.9	10.0	19.4	15.8
WEST	12.9	17.2	3.2	. 0	. 0	3.3	. 0	. 0	. 0	6.5	. 0	. 0	3.6
NORTHWEST	25.8	17.2	5.5	10.0	. 3	6.7	. 0	. 0	. 0	12.9	6.7	19.4	8.7
CALM	32.3	48.3	74.2	50.0	71.0	70.0	45.2	54.9	56.7	51.6	60.0	38.7	54.4
current orservations													
AVG TO LEFT (FT/SEC) (2)	. 00	-. 27	-. 25	-. 24	-. 29	-. 16	-. 28	-. 29	-. 23	-. 21	-. 28	-. 15	-. 24
STANDARD DEVIATION	. 00	. 08	. 07	. 04	. 07	. 04	. 06	.14	. 09	. 05	.11	. 05	. 09
NUM. OF JBS. (TO LEFT)	0	2	4	5	5	6	15	5	5	6	3	9	66
avg to right (fi/SEC) (2)	. 23	. 25	.29	. ? ?	. 29	. 14	. 00	. 20	. 23	. 22	. 23	. 18	.23
STANDARD DEVIATIJN	.06	. 36	.13	.11	. 14	. 04	. 00	. 05	. 07	. 09	. 07	. 07	. 109
NUM. OF jss. (TO RIGHT)	19	10	6	12	5	6	0	7	11	8	12	11	106
AVG. NET GURRENT (2)(3)	. 23	.15	. 09	. 10	.00	-. 01	-. 28	. 00	. 08	. 04	. 12	. 03	. 05
NuMEER OF OBSERVATIONS	19	12	10	19	10	12	15	12	16	14	15	20	172
NUMBER OF CALM OgS.	13	17	21	12	21	18	15	19	14	17	15	11	194
(Continued)													

(Concluded)

FORESHORE SLOPE ORSERVATNS	JAN	FE3	MARCH	APRIL	Mar	JUNE	july	AUG	SEPT	OCT	nov	DEC	TOTAL
MAXIMUM SLOPE	4	4	4	4	4	4	5	5	4	4	2	3	5
MINIMUM SLOPE	3	3	3	3	3	4	4	4	4	2	2	2	2
AVERAGE SLOPE (2)	3.7	3.8	3.5	3.6	3.3	4.0	4.7	4.1	4.0	3.0	2.0	2.3	3.6
NUMBER OF OBSERVATIONS	31	29	31	30	31	30	31	31	30	31	30	30	365
SEDIMENT TRANSPORT VOLUME METHOD ?	coubic	RDS)(4)											
NET CJBIC Yards	26082	-204	5642	10433	-1420	2524	-28694	-5772	9794	5661	15430	6817	46118
NUM OF OGSERVATIONS	31	29	31	30	31	30	31	31	30	31	30	31	366
TOTAL LEFT CUBIC yos	0	-3323	-432\%	-5344	-9238	-2507	-28694	-14413	-3213	-5521	-4946	-6368	-92590
Num of obs to left	0	6	2	ϵ	5	5	16	5	3	6	3	9	66
total rght cubic yos	26032	8028	9965	16283	7817	5031	0	8640	12917	11182	19576	13185	138706
NUM OF OBS TO RIGHT	15	5	6	12	5	7	0	7	11	8	12	11	99
METHOD 2 NET CUBIC YARDS	37847	28787	17744	21943	-3884	128	-53164	-33552	9027	12092	22842	7489	67299
NuM Jf ObSERVATIONS	18	12	10	1 \%	10	12	15	12	16	14	15	20	172
TOTAL RGHT CUJIC YOS NUM OF OGS TJ RIGHT	$\begin{array}{r} 37847 \\ 19 \end{array}$	$\begin{array}{r} 33335 \\ 10 \end{array}$	$\begin{array}{r} 32848 \\ 6 \end{array}$	$\begin{array}{r} 20330 \\ 12 \end{array}$	25492	4572 6	0 0	14798	17735 11	20883 8	$\begin{array}{r} 31087 \\ 12 \end{array}$	$\begin{array}{r} 12335 \\ 11 \end{array}$	$\begin{array}{r} 260272 \\ 106 \end{array}$

(1) CALMS, If any, includeo in average calculation
(2) CALMS IF NOT INCLUDED IN AVERAGE CALCULATION
(3) A MINUS SIG: (-) INDICATES CURRENT MOVEMENT TO THE LEFT
(3) SIGN INDICATES CURRENT MCVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUBIC YARDS. TWO METHODS CDESCAIBED IN SECTION 4 OF THE "SHORE PROTECTION MANUAL" (SPM)) ARE USED TO CALCULATE THE TRANSPORT VOLUME. NEGATIVE METHOLUES INDICATE TRANSPORT TJ THE LEFT.
METHOD 1. THIS METHOD IS BASED ON EQUATIONS 4-33 aND 4-5O3 FROM THE SPM. A LONGSHORE ENEPGY FLUX (EQUATION 4-38) IS FIRST CALCULATED FOR ONLY THE DAYS OF THE MONTH HHERE WAVE REIGHT AND angle of approach have been qecorded. then an average flux for each month is calculated, and FINALLY THESE MONTHLY VRLUES JF FLUX ARE SUBSTITUTED INTO EGUATION G-SO3 AND DIVIDED $9 Y$ I 12 TO GET THE NET MONTHLY SESIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALCULATED BY SUMMING THE MONTHLY VALUES.
METHCD 2 . THIS METHOD IS BASED ON EZUATIONS 4-51, 4-S2. AND 4-5OS FROM THE SPM, USING RECORDED OSSERVA TIONS OF WAVE HEIGHT, WIDTH OF SURF ZONE, LONGSHORE CURRENT. AND DISTANCE TO OYE PATCH FROM SHORELINE AND FOLLOWING THE SAME PROCEDURE AS METHOD 1. NOTE: PECENT FINDINGS INDICATE A FRIGTION FACTOR OF. 006 SHOULD 3E USED IN EQUATION 4-52.

	JAN	FE3	varch	ADOIL	may	June	july	AUS	$S E P T$	OCT	NOV	DEC	TOTAL
SURF OSSERVATIONS													
NUMGER of ogservations	237	220	245	240	260	265	266	267	270	268	263	273	3077
VUMzer of Calm ozs.	1	1	\bigcirc	0	2	0		1	0		1	2	10
HIGHEST HAVE RECJRDEs	8.00	6.00	8.50	5.50	6.00	6.00	6.00	6.00	8.50	6.50	5.00	6.50	8.50
AVG. WAVE HEIGHT(FT) (1)	2.43	2.35	2.26	2.20	2.10	2.13	2.18	2.11	2.07	2.15	2.45	2.20	2.22
Standard deviation	1.17	1.12	1.24	1.11	. 99	1.02	. 97	. 93	1.19	1.00	. 93	. 97	1.07
LONGEST PERIOD RECORDED	5.00	5.00	5.50	5.00	6.00	6.00	5.50	5.00	5.00	5.00	5.00	5.50	6.00
AVG WAVE PERIOD(SEC) (1)	4.31	4.39	4.34	4.37	4.36	4.46	4.36	4.37	4.34	4.38	4.32	4.38	4.36
Standard deviation	. 40	. 42	. 33	. 3 ?	. 53	. 42	- 39	. 38	. 30	. 39	. 42	. 46	40
WAVE DIRECTON NUMEER OF OFSERVAIIONS	239	219	246	240	253	265	265	266	270	267	262	271	3067
PERCENT OCCURRENCE >90	29.4	19.6	20.3	34.2	33.7	36.2	47.5	29.3	12.2	13.9	17.9	26.6	26.8
Percer occurnence $\begin{aligned} & =03\end{aligned}$	45.8	54.8	52.0	47.1	46.9	44.9	44.2	46.6	51.1	51.7	44.3	43.3	48.1
<80	24.3	25.5	27.5	19.3	19.4	18.9	8.3	24.1	36.7	34.5	37.8	25.1	25.2
AVG. ZONE WIDTH (FT) (2)	272	259	253	250	239	232	245	234	236	242	275	245	248
NUMBER OF OBSERVATIONS	232	221	246	240	258	264	264	266	266	270	263	271	3067
\cdots IND OBSERVATIONS						22.0	25.0	18.0	32.0	22.0	29.0	16.0	32.0
HIGHEST WIND RECORDED AVG. WIND SPEED(MPH) (1)	17.0 4.6	27.0 4.5	19.9	22.0 4.4	18.0	22.0 4.1	3.7	3.2	3.1	3.6	3.8	3.7	3.8
STANDAPD DEVIATION	3.8	4.5	4.3	4.8	4.0	4.1	4.0	3.6	3.8	4.3	4.0	3.7	4.1
Number of observations	248	226	249	240	260	270	279	277	270	279	264	279	3141
percent occurrence from NORTH	3.2	3.1	- 3	. 4	. 8	. 0	. 0	. 4	. 4	1.1	. 4	2.9	1.1
NORTHEASt	36.7	26.1	23.4	14.3	7.3	3.3	2.2	12.4	32.3	35.4	39.8	26.5	21.6
EAST	. 0	1.3	. 4	1.4	. 0	2.6	, 0	15.4	11.9	-0180	.0 5.1	1.2 2.2	7.8
SOUTHEAST	. 4	2.7	5.5	9.6	14.1	12.7	7.5	15.5	11.9	6.1	5.1	2.2 4.8	6.8
SOUTH	1.2	. 3	2.5	7.6	8.2	14.1	11.9	10.0	3.8	6.5	3.0 15.0	4.8 22.3	6.3 25.3
SOUTHWEST	16.1	17.4	23.?	35.1	32.7	35.4	52.9	27.5	14.7	10.0	15.2	22.3 2.9	25.3 2.4
WEST	6.3	9.2	3.7	. 9	- 3	1.6	1.1	1.4	. 0	2.3	. 4	2.9	2.4
northwest	24.9	13.2	3.6	8.3	1.2	3.2	. 0	. 0	2.2	5.3	8.0	13.7	${ }_{5}{ }^{\text {. }} 8$
CALM	38.4	53.7	50.5	52.9	61.1	53.0	40.2	57.3	59.9	57.9	54.2	48.3	53.8
CURRENT OESERVATIONS							-. 29	-. 27	-. 28	-. 25	-. 34	-. 27	-. 30
AVG TO LEFT (FT/SEC) (2) STANDARD DEVIATION	-.30 .10	-. 32	-.29 .15	-.38 .18	-. .14	. .18	. 14	. 12	. 14	. 12	. 15	.13	. 15
NUM. OF OES. (TO Left)	-61	$\stackrel{4}{4}$	64	89	94	75	133	76	33	28	41	71	824
AVG TO RIGHT(FT/SEC) (2)	. 23	. 28	. 23	. 29	. 23	. 29	. 24	. 25	. 27	. 31	.29	. 26	. 27
Standaro oeviation	. 09	. 12	. 13	. 14	. 11	. 24	-10	. 10	.14	-17	-13	. 14	814
NUM. OF OBS. (TO RIGHT)	83	73	71	50	52	52	21	67	113	109	110	82	
AVG. NET Current (2)(3)	. 01	. 06	. 01	-09	-. 10	-. 12	-. 22	-. 02	. 14	.19	-12	- 01	. 1700
NUMEER JF OBSERVATIONS	164	116	135	139	146	147	151	143	146	137	151	153	1707
Number of calm obs.	104	110	114	102	114	122	126	133	124	142	107	123	1421

(Concluded)

Foreshore slope observatis	J AN	$F \leq 9$	MARCH	APRIL	may	JUNE	JULY	AUG	SEPT	OTT	Nov	DEC	total
MAXIMUM SLOPE	5	5	5	5	5	5	9	5	6	6	6	5	9
MINIMUM SLOPE	1	1	1	1	1	1	1	1	1	1	1	,	1
AVERAGE SLOPE (2)	3.4	\cdots	3.2	3.1	3.2	3.2	3.3	3.4	3.6	3.2	3.4	3.2	3.3
NUMGER OF OBSERVATIONS	243	226	24.	240	260	268	279	277	270	278	270	278	3143
SEDIMENT TRANSPORT VOLUME	(CUEIC YATDS $\times 1900)(6)$												
METHOD 1													
NET Cusic yards	2	6	1	-5	-t	-18	-16	-4	16	10	9	3	0
Num of observations	≥ 40	219	240	240	258	268	273	275	270	257	265	272	3093
total left cusic yos	-14	-11	-16	-15	-14	-25	-19	-11	-5	-7	-10	-11	-156
NuM of OSS TO LEft	71	43	50	82	87	97	126	79	33	37	47	73	825
total pght cuzic yds	17	17	15	10	8	6	5	7	20	17	19	13	154
NUM OF OSS TO PIGHT	59	56	68	45	50	50	22	64	99	92	99	68	772
methjo 2													
NET CUSIC Yards	11	23	-7	-16	-25	-30	-46	-7	44	44	21	4	16
num of oaservations	144	116	133	138	144	144	150	143	146	137	151	153	1699
total left cuzic yos	-19	-23	-37	-36	-36	-43	-49	-19				-16	-304
num of oes to left	61	43	52	98	93	92	130	76	33	28	41	71	818
rotal qght cubic yos	30	46	30		11	13	4	13	52	49	35	20	324
NUM OF O3S TO RIGHT	83	73	71	50	51	52	20	67	113	109	110	82	881

(1) CALMS. IF any, INCLUDED IN AVERAGE CALCULATION
(2) CALMS NOT included in average calculation
(3) A MINUS SIGN (-) INOICATES CURRENT MOVEMENT TO THE LEFT NO SIGN INDICATES CURRENT MOVEMENT TO THE RIGHT
(4) ESTIMATED SEDIMENT TRANSPORT VOLUMES ARE GIVEN IN CUAIC YARDS. TWO METHODS (DESCRIBED IN SECTION 4 OF the shJre protection manual" (SPM)) are used to calculate the transport volume. negative VALUES indicate transport to the left.
METHOD 1. THIS METHJD IS JASED ON EQUATIONS 4-33 AND 4-5OB FROM THE SPM. A LONGSHORE ENERGY FLUX (EQUATION 4-38) IS FIPST CALCULATED FOR ONLY THE DAYS OF THE MONTH WHERE WAVE HEIGHT AND ANGLE OF APPROACH HAVE $3 E E N$ RECORDED, THEN AN AVERAGE FLUX FOR EACH MONTH IS CALCULATED, AND FINALLY THESE MONTHLY VALUES OF ELUX ARE SUBSTITUTED INTO EJUATION G-SJB AND DIVIDEO BY 12 TO GET THE NET MONTHLY SEDIMENT TRANSPORT VOLUMES. THE YEARLY SEDIMENT TRANSPORT VOLUME IS CALCULATED BY SJMMING THE MONTHLY VALUES.
METHOD 2. THIS METHOD IS BASED ON EQUATIONS 4-51, 4-52, AND 4-503 FROM THE SPM, USING RECORDED OBSERVATIONS OF WAVE HEIGHT, MIDTH OF SURF ZONE, LONGSHORE CURRENT, AND DISTANCE TO DYE PATCH FROM SHORELINE AND FOLLONING THE SAME RROCEDURE AS METHDD 1. NOTE: RECENT EINDINGS INDICATE A FRICTION FACTEQ OF. 006 SHOULD 3 E USED IN EQUATION 4-52.

[^0]: *A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3.

[^1]: * Profile line deleted after October 1983.

[^2]: (Continued)

[^3]: (Continued)

