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Waves in shallow water are inherently bhree-dimensional and non- 

linear, Experiments are presented herein which demonstrate the exist- 

ence of a new class of long water waves which are genuinely three- 

dimensional, nonlinear, and of (quasi-) permanent form. These waves are 

referred to as biperiodic in that they have two real periods, both tem- 

porally and spatially, The waves are produced in the laboratory by the 

simultaneous generation of two cnoidal wave trains which intersect at 

angles to one another, The resulting surface pattern is represented by 

a kiling of hexagonal patterns, each of which 1s bounded by wave crests 

of spatially variable amplitude. Experiments are conducted over a wide 

pange of generation parzoleters in order to fully dsclment the waves in 

the vertical and two horizonkal directions. The hexagonal-shaped waves 

are remarkably robust, rebaining their integriby for rnaximnm wave 

heights up to and including breaking and for widely varying horizontal 

length scales. 



The Kadomtsev-Petviashvili (Kg) equation is tested as a model for 

these biperiodic waves. This equation is the direct three-dimensional 

generalization of the famous Korteweg-deVries (KdV) equation for weakly 

nonlinear waves in two dimensions. It is known that the KP equation 

admits an infinite dimensional family of periodic solutions which 

are defined in te~ms of Riemann theta functions of genus N. Genus 2 

solutions have two real periods and are similar in structure to the 

hexagonally-shaped waves observed in the experiments. A methodology is 

developed which relates the free parameters of the genus 2 solution to 

the temporal and spatial data of the experimentally generated waves. 

Comparisons of exact genus 2 solutions with measured data show excellent 

agreement over the entire range of experiments. Even though near- 

breaking waves and highly three-dimensional wave forms are encountered, 

the total rms error between experiment and KP theory never exceeds 20% 

although known sources of error are introduced. Hence, the KP equation 

appears to be a very robust model of' nonlinear, three-dimensional waves 

propagating in shallow water, reminiscent of the KdV equation in two 

dimensions. 



CHAPTER 1 

INTRODUCTION 

The propagation of waves in shallow water is a phenomenon of sig- 

nificant practical importance. Shallow water waves are especially im- 

portant to the field of coastal engineering where their effects on 

beaches, harbors, inlets, coastal structures, etc, are both economical 

and aesthetic concerns. The ability to model realistic wave character- 

istics such as their vertical height distribution, surface pattern, 

fluid velocities, and wave speed is essential for developing engineering 

solutions to problems in the coastal zone. Difficulties in making such 

predictions arise from the fact that the equations governing the physics 

of flow, i.e, the conservation laws of Newtonian physics and the appro- 

priate boundary conditions, cannot be solved exactly. The inability to 

solve these equations in closed form is due to the nonlinear terms con- 

tained in the governing equations. In order to circumvent these diffi- 

culties, a variety of simplifying approximations is made, For example, 

the nonlinear terms are often neglected, giving rise to a linear wave 

theory. Both the omission of nonlinear terms and three-dimensionality 

are especially severe restrictions for nearshore problems and result in 

solutions which do not realistica%ly model many situations, 



Natural waves experience dramatic changes in theis appearance as 

they propagate from deep water into shallow water regions, In the 

shallow areas, the waves become steep with high crests and long shallow 

troughs, This transformation in shape can be attributed primarily to 

the decrease in water depth. Additional boundary conditions, such as 

irregular shoreline features, nonuniform variations in bathymetry, and 

the presence of coastal structures result in the refraction, diffraction 

and reflection of the incident wave; hence, the resulting wave field is 

not only nonlinear in shape but also spatially three-dimensiona3.. For 

wave fields which can be reasonably approximated in two dimensions, 

cnoidal wave theory, first published by Korteweg and deVries (KdV) in 

1895, has been found to be descriptive of the nonlinear features ob- 

served in shallow water, The linear wave approximation, most commonly 

used for three-dimensional coastal engineering applications, assumes 

that the nonlinear terms in the governing equations are negligible, 

Unfortunately, this theory does not predict the nonlinear three- 

dimensional features which are often of importance in shallow water 

regions. Therefore, a realistic analytical model which describes both 

nonlinear and three-dimensional waves in shallow water is not available 

currently, 

A recent advance in the theoretical description of three- 

dimensional, nonlinear waves in shallow water is presented by Segur 

and Finkel (SF, 9985). They present an explicit, analytical solukion 

for three-dimensional, weakly nonlinear wave forms. These solutions 

are biperlodic in that the waves have two independent spatial and 

temporal periods, Biperiodic waves are an exact solution of the 

Kadomtsev-PetviashvU equation (KP, 1970) and represent a natural 



three-dimensional generalization of the two-dimensional cnoidal waves 

of the KdV equation, 

The analytical solution of the KP equation described by Segur and 

Finkel represents a somewhat abstract mathematical formulation which has 

never been applied to actual wavefields. If, in fact, these solutions 

model nonlinear waves accurately, they will represent a significant ad- 

vancement in the field of nonlinear wave mechanics and a powerful new 

tool for the coastal engineer. Herein are presented laboratory experi- 

ments which document the existence of a new class of long water waves 

which are truly three-dimensional, biperiodic and nonlinear, The exper- 

imentally generated waves are used to test the validity of the KP solu- 

tions presented by SF. In order to verify these solutions as a model 

for the experimental wave fields, the mathematical parameters of the 

exact solution first must be related to the physical characteristics of 

the waves measured in the laboratory, Secondly, an experimental program 

must be developed that provides a reasonably comprehensive test a f  KP 

theory. Additionally, parameter limits are sought in order to eskablish 

the stability and range of applicability of the biperiodic so%utions, 

An experimental test of the KP equation as a viable model for 

three-dimensional, periodic, and nonlinear waves requires the success- 

ful completion of several tasks, For example, even though the qualita- 

tive features of the surface pattern for biperisdic waves are docmented 

by Segur and Finkel, procedures are not available which would provide a 

formal basis for applying KP theory to practical sitmatisns, Instead, 

SF present a series 06 conjectures which suggest a methodology for in- 

ferring the free mathematical parmeters of the exact solution from 

certain physical measurements sf? an observed three-dimensional wave 



field. An initial task of this study is to utilize the conJectures 

of SF and develop a technique for calculating exact KP solutions from 

measured wave characteristics. Secondly, an experimental laboratory 

program is developed for generating three-dimensional waves (with two- 

dimensional surface patterns) which are qualitatively similar to those 

presented by Segur and Finkel. Following the generation of the proper 

wave patterns, a methodology is developed for measuring the spatial and 

temporal characteristics of the wave field necessary for determining the 

solution parmeters. Finally, a comparison of measured data and best- 

fit theoretical s~hutiorls is made in order to establish the stability 

and range of validity of KP theory over a wide parameter range. 

A brief review sf two-dimensional nonlinear wave theory in shallow 

water is presented in Chapter 2 in order to provide a proper perspective 

for the extension sf the theory into three dimensions, This chapter 

begins with a discussion of the first experimental documentation of per- 

manent form shallow water waves by John  scot^ Russell in 7844. The for- 

mal derivation of the KP equation is presented in Chapter 3 .  The exact 

biperiodic solutions presented by Segur and Finkel 6 1985) are also de- 

scribed in this chapter, Chapter 4 describes the laboratory facilities 

and the experimental procedures developed in order to accomplish the 

goals sf &his study. The experimental procedures include the method 

used to generate three-dimensional wave patterns and the data acquisi- 

tion techniques employed to quantify the resulting wave fields, A 

methodology for relating KP theory to wave measurements is pmaesented in 

Chapter 5, This chapter includes an investigation of the parmeters 

in ttae KP sslutlsn and their relationship to experimental wave eharac- 

teristics, Conclusions sf this study are presented in Chapter 6 .  A 



presentation of the elliptic functions used for the generation of waves 

in the laboratory is shown in Appendix A. All of the spatial and 

temporal data used in this study are presented in Appendix B. 



CHAPTER 2 

LITERATURE REVIEW 

In the middle 1800s, a controversy arose as to whether or not a 

single, localized wave of elevation could propagate at constant velocity 

with permanent form, neither steepening nor dispersing, The argument 

was prompted by the observation in 1834 and subsequent laboratory veri- 

fication in 1844 of a permanent-form wave by John Scott Russell, This 

wave has since been termed the "solitary wave" and, more recently, a 

"soliton," At that time, no known mathematical solutions for the equa- 

tions of fluid motion existed which adequately described the solitary 

wave. Linear (inviscid) theory described a wave form which dispersed 

into sinusoidal spectral components because of the dependence of the 

computed phase speed on the wave length, Although these waves were of 

permanent form, they were not of the shape observed by Russell. The 

existing theory advocated by Airy did account for nonlinearity but did 

not account for dispersion of the wave. This theory described waves of 

elevation which steepened in time but did not disperse; i.e., they were 

not of permanent form and contradicted Russell's observations. Even 

though Russell meticulously documented the existence of the solitary 

wave, his findings were essentially ignored by Airy. In fact, a certain 

mount of csntemptususr~ess and jealousy appears to have existed between 

the two scientists because in 1845, just one year after RusselP's labo- 

ratory verification, Airy published a theory of long waves in which he 



specifically addressed the propagation of small-but-finite amplitude 

waves. Airy's interest in the subject was somewhat biased in that his 

wave theory did not admit permanent form solutions. His attitude was 

reflected in the published theory in which he concluded that solitary 

waves of permanent form, such as those reported by Russell, do not 

exist? 

Fortunately, mathematicians and fluid mechanicians other than Airy 

were interested in the solitary wave which seemed to contradict all pre- 

viously existirlg theories of fluid motion. Subsequently, intense ef- 

forts were directed at deriving an approximate governing equation which 

would successfully model the waves observed by Russell, During this 

time, several theories were advanced which explained the existence of 

solitary waves. Boussinesq in 1871 and, independently, Rayleigh in 1876 

first derived theories which admitted solitary waves as solutions. The 

most concise mathematical treatment for the solitary wave was presented 

in 1895 by Korteweg and deVries. They derived an approximate evolution 

equation for a wave field which admits both solitary and periodic solu- 

tions, This remarkable equation is now known as the Korteweg-deVries 

(KdV) equation and has the form 

fe + 6 ff2 + f-.-.- = 6 , xxx 

The KdV equation was derived as a model for the propagation of a wave 

which is both weakly nonlinear and weakly dispersive. In the nondi- 

mensionalized equation 2.1, f represents a suitably scaled wave 



A 
amplitude, t is time and is the direction of wave propagation. 

The periodic solutions of the MdV equation were termed "cnoidal waves" 

(in analogy with sinusoidal waves) by Korteweg and deVries. These 

periodic solutions can be written in the following form: 

where cn is the Jacobian elliptic cosine runetion and y is a phase 

argument (to be described at a later point), The functions K(m) and 

E(m) represent the complete elliptical integrals of the first and 

second kind. The argument m is the Jacobian elliptical parameter with 

a modulus of the form 0 ( m ( 1 . The amplitude parameter 0 is the 

following function of the nondimensionalized wavelength T, : 

(A presentation sf the complete cnoidal wave solution in an alternate, 

but equivalent, form of Equabion 2,2 is made in Appendix A,) The above 

solution recovers sinusoidal waves as rn approaches zero. As %he wave- 

length becomes infinitely large, m approaches unity and the solitary 

wave sokubion is recovered with the form 

A A 2 
f(x,t) = sech ( y )  , 



The specific point of interest here is that the exact periodic solution 

is written completely in terms of well-known analytic functions and can 

therefore be used for analyzing the characteristics of naturally occur- 

ring two-dimensional waves. The practical application of cnoidal wave 

theory was recognized by Wiegel (1960) who developed a set of figures 

which made the calculation of cnoidal wave solutions in terms of mea- 

surable wave quantities an easy task. This development was a signifi- 

cant contribution to the field of coastal and oceanographic engineer- 

ing since it provided design engineers with the first usable two- 

dimensional, nonlinear, shallow water wave model. Until this time, 

linear wave theory was used primarily for the majority of coastal 

applications, regardless of its applicability to the problem. Even 

though cnoidal wave theory is only two-dimensional, descriptive of one- 

dimensional or long-crested waves, a marked improvement over linear 

solutions was made possible for the practicing engineer. 

The development of an adequate understanding of solitary (ageri- 

odic) and cnoidal (periodic) waves required about 50 years, extending 

from Russell's observations to the publication of KdV theory. The 

explanation given by KdV for the existence of the soliton wave was then 

apparently overlooked by most subsequent researchers. This lack of 

understanding is evidenced in the literature as manifest by the refer- 

ences to the "long wave paradox'' which questions the theoretical basis 

for the propagation of a nonlinear wave that neither steepens nor dis- 

perses. Ursell (1953), apparently unaware of the results of Korteweg 

and deVries, provided a clear explanation of this paradox in terms of 

the parameter (now referred to as the Ursell parameter), 



In  equa t ion  2,4, a  is a  dimensional measure o f  wave ampli tude,  E is 

t h e  dimensional  wavelength, and h  is t h e  depth  o f  water .  UrselZ demsn- 

s t r a t e d  t h a t  t h i s  p a r m e t e r  r ep re sen t ed  a r a t i o  o f  weakly non l inea r  

e f f e c t s  (measured by a / h )  t o  weakly d i s p e r s i v e  e f f e c t s  (measured by 

2 2 h /L ) which can be used t o  d i s t i n g u i s h  between flow regimes. I n t e r -  

p r e t i v e  examples o f  t h e  r e l a t i v e  magnitude o f  t h i s  parameter are common, 

For example, when t h e  wave i n  ques t i on  has  a U r s e l l  parameter o f  o rde r  

u n i t y ,  U = 6(1), then t h e  e f f e c t s  o f  n o n l i n e a r i t y  and d i s p e r s i o n  a r e  

comparable and a balance is p o s s i b l e  between t h e  two e f f e c t s ,  W per-ma- 

nen t  form wave can r e s u l t  when t h e s e  weak e f f e c t s  a r e  balanced.  When 

t h e  parameter is sma l l ,  U < <  1 , n o n l i n e a r i t y  is n e g l i g i b l e  and t h e  

waves are e s s e n t i a l l y  l i n e a r ,  The wave then  d i s p e r s e s  i n t o  s i n u s s i d a l  

components, each o f  which is a  permanent-form s o l u t i o n  o f  l i n e a r  theory .  

M e n  t h e  parameter becomes l a r g e ,  U > >  1 , Che governing equa t ion  is o f  

t h e  type  advocated by Airy (1845) which does n o t  admit permanent form 

s o l u t i o n s .  These non l inea r  waves exper ience  s teepening  and s t r e t c h i n g  

due t o  t h e  e f f e c t  o f  t h e  wave ampli.tude on t h e  wave speed. (Th i s  e f f e c t  

is  known a s  ampli tude d i s p e r s i o n . )  S ince  t h e  Ursell parameter does suc-  

c e s s f u l l y  p r e d i c t  the flow regime f o r  a  wave wi th  given dimensions,  it 

is c o m a n l y  used i n  engineer ing  p r a c t i c e ,  

I t  is i n t e r e s t i n g  t o  no t e  t h a t  Ursell was n o t  t h e  f irst  t o  use t h e  

p a r m e t e r  o f  Equation 2 , 4 .  I n  f a c t ,  t h e  f i rs t  r e f e r ence  t o  t h e  Urscll 

p a s m e t e r  was mush earlier i n  a paper by S tokes  (1847). Stokes  demon- 

s t r a t e d  t h a t  a  second-order ,  permanent-form s o l u t i o n  could be de r ived  

f o r  t h e  f l u i d  motion i f  an approximation nnethod was used i n  sshich t h i s  



parameter is taken to be small. Unfortunately, Stokes apparently did 

not recognize the significance sf his observation for explaining that 

the existence of a permanent-form nonlinear wave in shallow water was 

due to the balance of opposing steepening and dispersion effects. For 

example, in the same paper, he agreed with Airy's conclusion by making 

the statement that "a solitary wave can not be propagated." Although 

Stokes later recognized that this conclusion was erroneous, he never 

again referred to the parameter. The next reference to the Ursell 

parameter was made by Korteweg and deVries (1895) who demonstrated that 

their cnoidal wave solutions reduced to Stokest second-order solution 

when the elliptic modulus became small. Furthermore, KdV related the 

elliptic modulus of their solution to the Ursell parameter and showed 

that a correspondingly small value resulted in a sinusoidal solution. 

This differentiation between wave regimes; i.e., cnoidal or sinusoidal, 

based on the relative size of the Ursell parameter demonstrated that 

Korteweg and deVries were certainly cognizant of the impact of the 

parameter on the resulting wave solution. 

Following the introduction of the KdV equation with its soli.tary 

and cnoidal solutions, no new applications appear to have been reported 

until 1960, at which time the equation re-emerged in a study of 

collision-free hydromagnetic waves (Gardner and Morikawa, 7960) , 

Related studies by Kruskal and Zabusky (1963) again resulted in the 

derivation of the equation. It was in this new research context that 

physicists and mathematicians began to discover applications 0% the KdV 

equation which would significantly impact the scientific comunity. 

These discoveries led to the formulation and development of the Inverse 

Scattering Transform ( IST) by Gardner , Green, Kruskal and Miura ( 1967),  



Their landmark paper outlined a revolutionary solution technique which 

can be used to predict the exact number of solitary waves, or "soli- 

tons," which emerge from arbitrary aperiodic initial conditions. In 

fact, solutions that describe any finite nwnber of interaction solitons 

can also be expressed in closed form, 

The significance of the IST was far more profound than was initi- 

ally realized, Zakharov and Shabat (1972), using a technique introduced 

by Lax (1968) ,  demonstrated that the IST provided an exact solution for 

the nonlinear Schrddinger equation, which describes nonlinear waves in 

deep water, Their work demonstrated that the solution technique was not 

an accident which was only applicable to the KdV equation. Soon, many 

physically significank nonlinear partial differential equations (PBEs) 

were found t a  be solvable by the IST, firmly demonstrating the power and 

versa%ilfty of the solution technique, Ablowitz, Kaup, Mewell, and 

Segur ( 1973,19'74) extended the applicability of the transform by 

employing Lax's (4968) approach "c develop criteria which made it 

possible to derive equakisns which could be solved by the SST. An 

enormous mount of theoretical interest had been generated by the 

introduction of the transform, so much so, that specialized research 

applications were beginning to emerge, One area of particular impor- 

bance to %he study herein relates to the case of periodic boundary 

eondikions and solutions, 

An iaportant csnbribution to the theory of nonlinear equations with 

periodic boundary conditions was made by McKean and van Moerbeke (4975) 

and Marehenko (4977).  Their work established a connection between the 

spectral theory of operators with periodic coefficients and algebraic 

geometry, $he theory of finite-dimensional completely integrable 



Hamiltonian systems and the theory of nonlinear equations of the KdV 

type (Dubrovin, 1981). They showed that the KdV equation admitted an 

infinitely dimensional family of solutions which could be written in 

terms of Riemann theta functions of the form 

where 9 is a theta function of genus N. The theta function contains 

N one-dimensional (in the horizontal plane) phase variables and a 

scalar parameter B. They showed that the genus 1 solution was equi- 

valent to the cnoidal solution shown in Equation 2.2 and was the only 

permanent form solution of the KdV equation. 

The generalization and extension of this theory to three- 

dimensional systems was made by Krichever (19'76). He developed a 

methodology for solving the three-dimensional generalization of the MdV 

equation, the Madsmtsev-Petviashvili (KP) equation, This equation, 

which was first proposed by KP (1970) and is formally derived in 

Chapter 3, can be written in the scaled form: 

where ( & , $ I  are orthogonal coordinates in the plane of the quiescent 

water surface with 4 representing the primary direction of wave propa- 

gation, The equation is based on the assumptions of weak nonlinearity 



and weak dispersion, as in the derivation of the KdV equation, and on 

weak three-dimensionality. Each effect is assumed to be of an equal 

order of magnitude. The previous statement that the KP equation is s 

direct three-dimensional generalization of the KdV equation can be 

seen, The equation reverts to the KdV equation when no crest,-wise or 

A variations in the y-direction occur, 

Krichever (1976) showed that the KP equation admits an infinitely 

dimensi.onal Emiby of exact periodic (or quasi-periodic) solutions, The 

concepts employed by Krichever in his solution methodology were adapted 

and further exkended by Dubrovin (9981) in order to express these 

periodic solutions in the following form: 

where 6 is a Riemann theta function of genus N, composed of' N two- 

dimensional phase variables $ and an N X M symmetric Riemxnn matrix 

B. Genus 1 solutions are exactly equivalent to cnoidal waves; i,e,, 

they awe singly periodic, two-dimensional, nonlinear waves which propa- 

pate a& some angle to the $-direction. Genus 2 solutions are the sub- 

Jest s% the investigation herein. These solutions are biperiodic, truly 

khree-dimensional, nonlinear waves which propagate with permanent form 

at a constant velocity. The resulting two-dimensional surface paktern 

therefore appears stationary to an observer translating with the waves 

at the correct velocity. Genus 3 and higher order solutions are multi- 

periodic solutions which cannot be characterized as permanent form since 



no translating coordinate system exists that allows the solutions to 

become stationary, 

Dubrovin's detailed treatment of the subject culminated, for our 

purposes, in an analysis of the genus 9 ,  2, and 3 solutions to the KP 

equation, He presented a series of theorems, lemmas, and corollaries 

which proved the existence and uniqueness of solutions to the KP equa- 

tion. He also developed the basic guidelines which are required for 

actually constructing genus 1 and genus 2 solutions although he pre- 

sented no explicit examples for doing so. Dubrovin's paper laid the 

theoretical foundation for extending the theory from a highly abstract 

mathematical proof into a computationally effective tool. The formid- 

able task of util.iaing Dubrovin's theory in the development of an analy- 

tical wave model capable of yielding exact, truly three-dimensional, 

biperiodic genus 2 solutions of the KP equation was successfully accom- 

plished by Segur arid Einkel (1985). A detailed description of the math- 

ematical machinery developed by SF far genus 2 KP solutions is presented 

in Chapter 3 ,  

Although exact biperiodic wave solutions for shallow water have 

only recently been presented, three-dimensional approximations have been 

studied and reported in the literature. Solutions for interacting waves 

have been reported by Miles (1977),  Bryant (19821, Melville (1980), and 

Roberts and Schwartz (1983). Each of these investigations show non- 

linear coupling of two intersecting waves which are in qualitative 

agreement with the exact solutions and with the observed behavior sf 

interacting waves, Since each of these resulks is produced by approx- 

imation methods, they are not relatable to the observed characteristics 

of intersecting waves, The exact solutions presented by Segur and 



Finkel. described herein represent the first exact biperiodic solution 

which can be quantitatively compared t~ observed waves. 



CHAPTER 3 

THE MADOMTSEV-PETVIASHVILI (KP) EQUATION 

This chapter is intended to provide a background for the study of 

genus 2 solutions of the KP equation. I t  begins with a formal 

derivation of the KP equation in order to document the procedures used 

and the assumptions underlying this approximate model equation, Follow- 

ing the derivation, a complete presentation of the analytical genus 2 

solution, as derived by Segur and Finkel (1985),  is presented. The po- 

tential relevancy of this solution as a wave model is made through the 

presentation of several graphical examples demonstrating the three- 

dimensional nonlinear structure of these exact solutions. The following 

sections provide the background for developing the experimental portion 

of the study and the determination of the correspondence between exact 

solutions and measured waves, 

3.1 

The KP equation was first proposed, but not formally derived, by 

Kadomtsev and Petviashvili (1970). Their interest in the equation was 

a consequence of their study on the stability of solitary waves to 

transverse (crest-wise) perturbations. The formal derivation of $he 

MP equation, which closely parallels that of the KdV equation, begins 

by defining the fluid and its boundaries, Consider for example a three- 

dimensional, inviscid, incompressible, flow domain as shown in 

Figure 3.1, 



Figure  3.1 Schematic diagram o f  flow domain 

The equa t ions  governing t h i s  flow are E u l e s s s  equa t ions  f o r  t h e  

conserva t ion  o f  l i n e a r  momentum 

and t h e  c o n t i n u i t y  equa t ion  f o r  t h e  conse rva t ion  of mass 



In addition, the assumption of irrotational motion yields the following 

equalities : 

In the above dimensional equations, € represents time and u, v ,  

and w represent the Euleri.an velocity components in the orthogonal 

9 ,  and 2 directions. Additional terms include the fluid density 

p, the fluid pressure p ,  and the acceleration of gravity g, It fol- 

lows from Equation 3.3 that the velocity field is derivable from a po- 

tential 4 which can be written in the following form: 

A kinematic boundary conditions for the free surface sf the flow regime 

shown in Figure 3.1 can be written as 



whereas the corresponding boundary condition for a horizontal bottom is 

written as 

where c represents the elevation of the free surface measured from the 

quiesent fluid level. A dynamic condition for the free surface boundary 

can be written by combining Equations 3.1 through 3.4 to find 

where the linear operator v = ( a w ,  a-, ap) is used and the pressure on 
X Y  

the free surface is assumed constant. (Since this constant value can be 

absorbed into the velocity potential, the pressure is conveniently set 

to zero in the above derivation.) 

The equations can now be consolidated to define a boundary value 

problem for the motion of the fluid domain shown in Figure 3.1 subject 

to the defined boundary conditions. For example, equations 3,2 and 3.4 

are combined to yield Laplacefs equation for the velocity potential 

which determines the three-dimensional velocity distribution of the 

fluid domain; i.e,, 



The fluid motion defined by the velocity potential is not only 

required to satisfy equation 3.8 at all points in the flow domain but 

also to satlsify the boundary conditions defined by Equations 3.5, 3.6, 

and 3.7 on the upper and lower boundaries. These conditions are rewrit- 

ten in terms of the velocity potential and surface elevation to yield 

the kinematic free surface boundary condition 

the kinematic bottom boundary condition 

and the dynamic free surface boundary condition 

1 2 q + ~  lo41 + g c = O .  on(T,y,h+r,E) 3.11 

The governing equations and associated boundary conditions repre- 

sented by Equations 3.8 through 3.11 cannot be solved analytically in 

their present form; however, a solution can be obtained if certain sim- 

plifying assumptions are made. For example, if all of the nonlinear 



terms in the governing equations and boundary condition equations are 

assumed negligible, the resulting linear system of equations becomes 

solvable, Of course, this results in linear wave theory in which 

velocities and surface elevations are constructed in terms of the 

noranal.-mode solutions; i,e,, sine and cosine functions. 

The derivation of the nonlinear KdV and KP equations requires a 

more systematic approach since the nonlinear subtleties of these soku- 

&ions are lost in the linear approximation, The decision as to which 

terms are retained and which are omitted is made through a systematic 

study sf the relative magnitude of each term in the equation based on 

the existence and subsequent ordering of certain small parameters, This 

approximation is accomplished through the use of power series expansions 

in ternns of the small paraueters. 

The formal derivation of the KP equation first requires the scaling 

0% ail dimensional quantities by introducing the following sqscales." A 

global length scale  for the wave, usually considered to be the wave- 

length, is defined as I,, for which a corresponding wavenumber k - 2n/% 
is defined, For three-dimensional flow, k represents a vector wave- 

number with '2 and components, The magnitude of this wavenumber 
, 1/2 

is defined by the relationship 1k1 = (12 + m-) where k represents 

the %-direskion wa.venmber and m represents that in the 7-direction, 

An mplitude scale, descriptive of the wave crest height, is defined 

as a, A ver$icaX scale h is defined as the depth sf flow in which 

$he wave is propagating. 

These three representative scales (k, a, and h )  are similar t o  

those used by Stokes (9847), Korteweg and deVries (1895), and UrseLl 

(1953). Owe additional scale is introduced in order to define a 



reference speed of propagation for the wave. This scale is simply de- 

fined as the celerity of a shallow water wave, as found in linear wave 

theory; i.e., 

The purpose of defining representative scales for a given flow 

regime is to enable one to characterize the wave behavior in a systema- 

tic manner similar to the approach described by Ursell (1953). This 

characterization is made by analyzing the relative magnitude of selected 

eombinations sf the representative scales f'or %hat wave. Three of these 

eombinations are used for defining the characteristics sf the KP equa- 

tion. Each of these resulting "scaled parameters" will be used in the 

formal derivation in order to insure that the derived evolution equation 

will describe a wave field which will behave in a manner consistent with 

the defined relative magnitudes of the scaling parameters. The first of 

these parameters, given below, 

defines a wave mplitude to depth parameter which provides an indication 

of the degree of nonlinearity of the wave. Smallness of this param- 

eter implies weak nonlinearity and, in the limit a -+ 0 , linear wave 



theory is recovered. The second parameter 

provides a measure of the length of the wave with respect to the depth 

of flow in which the wave is propagating, Smallness of this parameter 

implies shallow-water conditions so that dispersion is weak. The third 

parameter provides a measure of the three-dimensionality of the wave, 

This parameter, shown below, 

indicates the direction of propagation of the wave field with respect to 

a defined orthogonal coordinate system. Smallness of the parameter, for 

example, indicates that the primary direction of propagation is in the 

%-direction and that the wave is weakly three-dimensional, W e n  the 

parameter vanishes, the flow becomes the two-dimensional flow field 

governed by the KdV equation. 

The formal derivation of the KP equation is based on the assumption 

$ha$ each of the defined parameters are small (i,e. < <  9 )  whish implies 

a weakly nonlinear, weakly dispersive, and weakly three-dimensional 

flow, The relative magnitudes of each of these parmeters will be 

chosen in a subsequent analysis, The derivation begins with the scaling 



of the governing equation and associated boundary conditions. This is 

accomplished by introducing the following non-dimensional quantities: 

Substitution into Laplaceis equation (Equation 3.8) results in the 

following relationship: 



In a similar manner, the kinematic free surface boundary condition 

of Equation 3.9 is written 

and the corresponding kinematic bottom boundary condition of Equa- 

tion 3,10 takes the form 

The dynamic free surface boundary condition of Equation 3.11 b€Xxmes 

Equations 3.18-3,21 now represent the complete nondimensional equations 

governing the flow. 

Nexk, each of the dependent variables is represented in a power 

series expansion in terms of a small parameter. For the velocity poten- 

tial, we assme the following form 



which is substituted into Equation 3.18. Collecting all terms with mul- 

tipliers of like order of powers of 6 yields the form below. 

w I 
6 

+ 6 (@Oxx + Q, Oyy + Q  Izz ) 

Since each sum of terms in Equation 3.23 is ordered by powers of the 

small parameter 6, the overall equation is satisfied if, and only if, 

each sum of terms is zero. Hence, the ariginal single equation in terms 

of Q is replaced by an infinite set of equations far rm. The equa- 

tions resulting from Equation 3.23 are shown below. 

0 O(B ) effects: 
10zz = 0 

1 0(8 ) effects: @Oxx + Q  c Q oyy 1zz = 0 

0(6') effects: Q~~~ + Q 4 Q) lyy 222 
= 0 

Integration of Equation 3.24 with respect to z yields 



where G(x,y, t) and mo(xly, t) are integration constants. Application 

of the bottom boundary condition of Equation 3.20 (i.e. oZ = 0) 

requires 

so that 

Similar integrations of Equations 3.25 and 3.26 and application of the 

bottom boundary condition result in the following two relationships: 

and 



Substitution of these results into equation 3.22 yields the following 

expansion for @, the velocity potential, correct to the third order. 

The further analysis requires the introduction of a slow time scale. 

This new time scale will permit the suppression of secular terms that 

arise in the analysis of the dynamic free surface boundary condition. 

Define 

where E represents the small parameter defined previously. In addi- 

tion, we will make a Galilean transformation to a uniformly translating 

coordinate system by letting 

Differentiation between the different length scales in the x-, y- and z- 

directions will also be made by explicitly defining the following: 



The new scales of Equations 3.31 through 3.34 are substituted into Equa- 

tion 3.30 to obtain the following slow time representation for the 

second order correct velocity potential. 

We now introduce the following power series expansion representation of 

the free surface displacement in terms of the new slow time scale 

parmeter. 

The kinematic and dynamic free surface boundary conditions of Equa- 

tions 3.19 and 3.21 respectively can now be written in terms of the slow 



time scale. This substitution results in the following two equations 

for the velocity potential and surface displacement: 

and 

Note that the new governing equations now contain all three small param- 

eters (a, 6 ,  and E ) which have been introduced to allow for the 

specific ordering of the final wave solution. The key to the derivation 

of the KP equation is the assumption that each of the parameters are of 

an equivalent order of magnitude. This assumption is made by letting 

Substitution of the series expansions for the velocity potential and the 

free surface displacement (Equations 3.35 and 3.36) into the boundary 

equations 3.37 and 3.38, expansion, and cons~lidation of ordered terms 

in E yields the following two relationships: 



and 

0 Analysis of the O ( E  ) terms show that 

'1 A similar analysis of the O ( E  ) terms yields 

- - ' 4  - 1 @2 
'1 - m l ~ = - ' ~ ~  2 OXXX 2 OX 

and 

Now equating the partial derivative (with respect to X) of Equation 3.43 

with Equation 3.44, again taking the X partial derivative of the entire 

result, and consolidating terms yields 



Substitution of Equations 3.4, and 3.42 into Equation 3.45 results in 

the Kadomtsev-Petviashvili equation, 

where u - 
0 - 4~~ = q0 . A final transformation of variables is now 

required in order to write Equation 3.46 in the form used by Segur and 

Finkel (1984). Let 

The substitution sf these variables into Equation 3.45 results in t he  

following form of the KP equation which will be used extensively in the 

remainder of this study. 



3.2 Solutions of the KP Equation in terms ofiemann Theta Functions of 
Genus 2 

Krichever ( 1876) showed that the KP equation admitted an infinitely 

dimensional family of exact quasi-periodic solutions which could be 

written in terms of Riemann theta functions of genus N. The techniques 

employed by Krichever were extended by Dubrovin (1981) to specifically 

address the genus I ,  2, and 3 solutions. The solutions relevant to this 

study are the biperiodic genus 2 solutions which are truly three- 

dimensional and have two real periods, both spatially and temporally, 

Dubrovin provided the necessary existence and uniqueness criteria re- 

quired for computing these solutions. The task of actually applying 

Dubrovin's criteria and solution approach to compute an exact genus 2 

solution of the KP equation was first completed by Segur and Finkel in 

1985. This, of course, required the development of a considerable 

mount of mathematical machinery to implemei?t Dubrovinqs outline. The 

purpose ~f this section is to present, and describe, the machinery which 

was presented by SF to compute these genus 2 solutions. 

Genus 2 solutions of the KP equation can be written as 

where 0 is the genus 2 Riemann theta funckion, composed of a 2- 

component phase variable and a (2 X 2) real-valued Riemann matrix B. 



The construction of this solution begins with the introduction of the 

two phase variables 

and 

The parameters p u2 and v v are wave numbers in the $- and 9- 
1 '  2 

directions, respectively, while w 
1 ' u2 represents the angular fre- 

quencies of the wave with respect to the translating coordinate system 

in which the KP equation operates. The constants $10' $20 represent 

a constant shift in phase and are of no dynamical significance, A much 

more thorough description of these coefficients will be presented later. 

The second ingredient involves the specification of a symmetric, real- 

valued, negative definite 2 X 2 Riemann matrix of the form shown below, 

Negative definiteness is assured by requiring 



The role of the phase variables and the Riemann matrix in the specifi- 

cation of the theta function can now be shown, A genus 2 Riemann theta 

function can be defined by a,double Fourier series (Segur and Finkel, 

1985) 

-8-1^41 

0 (i19V29 B )  - exp J-fe~*s 2 + im$ 3.52 
111 z-m m z - m  

1 2 

where-$ r (ml, m a )  and the products are defined by 

and 

The theta function requires two additional refinements in order to 

assure a unique genus 2 solution. For example, SF (198%) showed that 

two different Riernann matrices could result in identical theta func- 

tions. These two matrices are therefore equivalent and can be related 

to each other by the appropriate transformation. The existence of equi- 

valent matrices rshic1a produce identical solutions introduces a question 

as to whether or not $he solution is unique. In order to resolve this 

mbiguity, SF (1485) introduced the corncept of a basic Riemann matrix. 

They chose the following parmeters be, be natural representations for a 

basic Riemann matrix: 



3 7 

b = max (b,,, b22) 

d = det B/b 

where both b and d are negative and X is real. Segur and Finkel 

(1984) chose the basic Riemann matrix to be of the form 

where the requirement that the matrix is basic and negative definite is 

satisified by 

Under these conditions, a basic Riemann matrix generates one and only 

one theta function. Another difficulty with the general definition of 

the theta function as given by Equation 3.52 results when the off diag- 

onal terms of the matrix become zero. Diagonal matrices are referred to 

as decomposable, otherwise, they are indecomgosable. Dubrovin (1981) 

proved that nontrivial genus 2 solutions of the KP equation only result 



from indecomposable matrices. Although Dubrovir1 (9981) gave an explicit 

test for decomposability, Segur and Finkel (1985) provided a simpler 

test in terms of their parameters for a basic Riemann matrix. A basic 

Riemann matrix is decomposable if, and only if, X = 6 . 
A real-valued, negative definite, indecomposable theta functisn has 

been associated with its corresponding basic Riemann matrix of the form 

given by Equation 3.54. The requirements imposed on that matrix, are 

that the parameters b ,  d, and X are seal, and that X is non- 

zero, The basic definition of a genus 2 Riernann theta function can now 

be written in ternas of these new parameters, 

@ ( a , ,  $,, 1 
R) = exp - b ~n + krn2 

m .-03 
2 ( 1 

2 

x cos (mlU1 + m2P2) 

The above defialitisn assures the existence of a real. valueci, indecompos- 

i b l e  theta function, but it does not assure that the resulting theta 

function will. provide a solution to %he KP equation. This assurance re- 

quires the development of two additional concepts as noted by Dubrovin 

(1981), The new ingredients are theta-constants and two additional 

phase variables, 

The concept of Lheta-constants begins with the definition of a two 

- 
component vehtsr p which can assume any one of the following four 

values : 



These values correspond to the four half-periods of a theta function 

(Bubrovin, 1981 ) . Every Riemann matrix generates a four-component 

theta-constant (SF, 1985) which can be written in the following form 

* 
where m = (m m2). Equation 3.58 can be written in terms of the 

basic parameters as 

I = exp / dP2 + y212 
m =-.. 

2 

where each theta-constant is differentiable with respect t o  the param- 

eters b, d, and A .  

Secondly, two new phase variables 
$3 

and IJ are defined in 4 
terms of the previous phase variables according to 



where 

Wavenmbers and angular frequencies for these new phase variables can be 

written analogous to Equations 3.60 as 

All sf the csmpor~ents needed to state Dubrovinss main theorem have now 

been established. The theorem requires that a function in the form of 

Equation 3,48 is a solution to the KP equation if, and only if, the 

following matrix equation is satisified: 

where the components of this matrix notation are 



and 

The parameter D shown in Equations 3.64 represents a constant of inte- 

gration with no physical significance. The system of four equations 

represented by Equation 3.63 can always be solved if the Riemann matrix 

is indecomposable. The matrix equations sf Equation 3.63 can be in- 

verted to yield the following four relationships corresponding to the 

four possible values of the two component vector 6 . The resulting 

relationships are 



where the parameters on the right hand side ( P I ,  Pa ,  P3, Pli) represent 

well-defined four th  order polynomials in the variable / (The 4 1 '  

polynomials in Equations 3.66 are obtained by inverting M.) *The con- 

stant sf integration B is arbitrary so that its equation can be ignored. 

The two angular frequencies, ol and o can be eliminated from Equa-. 4 
tions 3,66  to yield the fallowing single relationship: 

where P6 is a well-defined polynomial of degree 6. The left hand side 

sf Equation 3.67 is real-valued; therefore, in order for Equation 3.67 

to be satisified, the polynomial must be positive or zero; i.e., 



All existence and uniqueness criteria have now been presented for 

genus 2 solutions of the KP equation. The results are summarized as 

follows: Equation 3.48 represents a real-valued solution of the KP 

equation if,and only if, the associated Riemann theta function satisfies 

the criteria that 1 )  the phase variables, defined by Equations 3.49 are 

reah-valued, 2) the associated Riemann matrix is basic and indecompos- 

able, and 3) the polynomial relationships represented by Equations 3.63 

are satisified. Provided these criteria are met, the following section 

demonstrates the computation of genus 2 solutions, 

3.3 The Construction and Properties of Genus 2 Solutions 

The construction of a genus 2 solution of the KP equation requires 

the specification of the following eleven parameters: 

The first eight of these parmeters define the phase variables of Equa- 

tions 3.49 while the remaining three are contained in the basic Riemann 

matrix defined by Equations 3.54. Dubrovin's theorem of Equation 3.63 

provides three relationships among the eleven parameters; hence, there 

are only eight independent parameters required to specify a genus 2 

solution. Of these, and serve only to determine the origin 

of the coordinate system and do not impact the dynmics of the solukion. 

Thus, the most general genus 2 solution of the KP equation contains only 

six dynmical parameters which may be chosen freely. In order to 



provide insight into the structure of the genus 2 solutions and to be 

able to assess the effect of each parameter on the wave form, it is 

useful to specify the six dynmical parmeters and calculate some typi- 

cal solutions, In the experiments to follow, spatial and temporal 

symmetry will be exploited in order to expedite the measurement program, 

The symmetry of the generated waves provides three additional relation- 

ships among the six free parameters of the genus 2 solution; i.e., 

so that only three free parameters are available for specification. In 

addition, the experimental measurements make it convenient to choose b ,  

and X for the free parameters. Making use of these additional 

constraints on the family a% genus 2 solutions, two exaunples are calcu- 

Sated and presented in Figures 3,2 and 3.3. These figures show perspec- 

tive views sf the water surface at a fixed time when the parameter b is 

varied while and X are held constant. ( A  more detailed examina- 

tion of the  solution sensitivity to each of the free parameters will be 

presented in Chapter 5,) 

The exact solutions shown in Figures 3.2 and 3 , 3  are typical of all 

of the symmetric subfmily of genus 2 solutions, The surface wave pat- 

tern consists of a single, basic structure which repeats in a tiling of 

the entire waber surface, A typical, basic structure can be isolated as 

in Figuse 3,4 by the esnstruction of a "period parallelogram," Inside 

the period pasallelogrm the wave crests form two V-shapes, pointing in 



Figure 3.2 Example genus 2 solution ( b  = -1-5,  = 0.5, X = Q , 1 )  

Figure 3 ,3  Exxt~pbe genus 2 solution ( b  s -3.5, IJ = 0 . 5 ,  A = 0,1) 



o p p o s i t e  d i r e c t i o n s ,  arnd connected by a s i n g l e ,  s t r a i g h t  crest.  Here- 

af ter ,  t h e  V-shaped r e g i o n  w i l l  be r e f e r r e d  t o  as t h e  " s a d d l e  r e g i o n w  

w h i l e  $he s t r a i g h t  crest between t h e  VPs w i l l  be termed %he BDstem,w 

(The m o t i v a t i o n  f o r  b o t h  names w i l l  become a p p a r e n t  s h o r t l y , )  Mote t h a t  

crest m p l i t u d e s  a r e  l a r g e s t  i n  t h e  stem r e g i o n ,  The e n t i r e  wave p a t -  

t e r n  p r o p a g a t e s  a t  a c o n s t a n t  speed i n  a d i r e c t i o n  normal t o  t h e  stem 

r e g i o n ,  The s i d e s  o f  t h e  p e r i o d  p a r a l l e l o g r a m  c o i n c i d e  w i t h  l i n e s  o f  

c o n s t a n t  phase  d e f i n e d  by t h e  phase  p a r a m e t e r s  no ted  i n  F i g u r e  3.4. The 

p e r i o d i c i t y  i n  each  o f  t h e s e  two d i r e c t i o n s  is i n c r e a s e d  by 2 a c r o s s  

t h e  p e r i o d  p a r a l l e l o g r a m .  S p e c i f i c  r e l a t i o n s h i p s  between o t h e r  mathema- 

t i c a l  p a r m e t e r s  and t h e  wave s t r u c t u r e  ir1si.de t h e  p e r i o d  p a r a l l e l o g r a m  

have n o t  been e s t a b l i s h e d  f o r  t h e  g e n e r a l  e a s e .  However, SF examine t h e  

l i m i t  case of b ,d  0 and prove t h a t  t h e  a c t u a l  wave c r e s t s  of t h e  sad-  

d l e  r e g i o n  c o i n c i d e  with l i n e s  o f  c o n s t a n t  q3 and $ The wave p a t -  4" 
%ern  i n  t h e  l i m i t  b ,d  9 0 is similar t o  t h a t  o f  F i g u r e  3.2; mathema- 

t i c a l l y ,  t h e  s o l u t i o n  a p p e a r s  as two KdV s o l i t o n s ,  p r o p a g a t i n g  a t  a n g l e s  

t o  one a n o t h e r  and producing a t h i r d  wave ( t h e  s tem r e g i o n )  i n  a manner 

t h a t  is w e l l  known from o t h e r  i n v e s t i g a t i o n s  ( e . g .  s e e  Mi les ,  1977).  I n  

a d d i t i o n  t o  t h e  e x a c t  correspondence of $ and $y with  i n d i v i d u a l  
3  

wave c r e s t s  i n  %he s a d d l e  r e g i o n ,  t h e  i n t e r p r e t a t i o n  of t h e  genus  2 

s o l u t i o n s  as two irn.bersecting wave t r a i n s  is e s p e c i a l l y  impor tan t  t o  

t h e  e x p e r i m e n t a l  s t u d y  and t o  t h e  a p p l i c a t i o n  of t h e s e  s o l u t i o n s  t o  

a c t u a l  ocean waves. ( I n t e r e s t i n g l y ,  a s t im~.alus  f o r  t h e  i n t e r e s t  by 

Segrdr i n  these waves was exper iments  on i n t e r s e c t i n g  Naves by H m a c k ,  

'1980.) The e x m i n a t i o n  of t h e  t w o - s o l i t o n  l i m i t  s o l u t i o n  a l s o  e s t a b -  

l i s h e d  t h a t  t h e  two paramete rs  X and a r e  a measure of t h e  r o b a t i o n  

of t h e  i n d i v i d u a l  wave c r e s t s  from t h e  d i r e c t i o n s  sf p e r i o d i c i t y ;  i , e . ,  
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Figure 3.4 A basic period parallelogram 



9, and $2. A l t e r n a t i v e l y ,  t h i s  r o t a t i o n  is r e l a t e d  t o  t h e  amount o f  

"phase s h i f t "  a wave expe r i ences  as a consequence o f  pa s s ing  through a 

reg ion  sf i n t e r a c t i o n  w i th  ano the r  wave. A l l  sf t h e s e  a s p e c t s  of t h e  

genus 2 s o l u t i o n  w i l l  be made more e x p l i c i t  i n  Chapter 5. 



CHAPTER 4 

LABORATORY FACILITIES AND EXPERIMENTAL PROCEDURES 

This chapter describes the laboratory facilities and experimental 

procedures used to generate the three-dimensional wave fields for com- 

parison with exact genus 2 solutions of the KP equation. This chapter 

begins with a detailed description of the wave basin and wave generator. 

A basic knowledge of the wave making capability is essential to the for- 

mulation of an approach for generating candidate waves for comparison 

with genus 2 solutions. The wave-generation methodology follows the 

description of the physical facility. Due to the three-dimensional 

nature of the wave forms required for this study, considerable detail is 

presented for the data-gathering program to quantitatively measure the 

temporal and spatial structure of the wave field. 

4.1 The Wave Basin 

A wave basin measuring 98.0 ft wide, 184.0 ft long, and 2.5 ft deep 

is used for the experimental portion of the study. The walls of the 

basin are constructed of concrete filled, non-reinforced, cinder blocks 

resting on the concrete slab that forms the bottom of the basin. A 

schematic diagram of the wave basin is shown in Figure 4.1. 

The concrete slab was poured by standard construction procedures to 

normally acceptable tolerances. The topography of the tank bottom is 

shown in Figure 4.2 and reveals a maximum variation of a/- 0.5 inch, 



98.0 Feet 

i 
Gage, Array I 

L 90.0 Fee t  

Figure 4.1 Schematic drawing of the wave basin 

High and Pow areas resulted which can be identified in the figure, As 

will be discussed in a later section, the effects of these irregular 

zones were evidenced in the measured wave height patterns. The inset 

numbers shown in Figures 4.1 and 4.2 refer to the location of wave gages 

in %he basin which will be described subsequently. 

The downstream end of the wave basin, opposite the wave generator, 

is Pined with rubberized horse-hair %s a depth of approximately 2.0 ft, 

extending out a distance of approximately 6.0 ft from the wall. The 

purpose of this absorption material is t o  both reduce reflections from 

the rear wall of the basin during testing and to dissipate the oscil- 

lation sf waves within the basin folPowing testing. Sidewal-1s are not 

lined with the wave absorption material. The 90 ft wide wave generator, 



'9 CBNPaURS 
CBMT8UW LEVELS FWBM -.360 TB ,300 

CBNPQUR INTERVQB BF . I08  ( inches)  

F igu re  4.2 Bathymetry of the  wave b a s i n  



which nearly spans the basin width, is located to tkie right of the gages 

in Figure 4.2. 

4,2 

A wave generator capable of generating single or multiple wave 

forms of variable shape and direction is located at the US Army Engineer 

Waterways Experiment Station's Coastal Engineering Research Center 

(CERC) located in Vicksburg, Mississippi. This directional spectral 

wave generator is shown in Figure 4,3,  It was designed and constructed 

for CERC by MTS Systems Corporation sf Minneapolis, Minnesota, based on 

design specifications ppsvided by CEWC, 

The directional spectral wave generator is composed of 60 indivi- 

dually progranmable wave paddles, The generator Nas designed in a port- 

able configuration of 4 separate, self contained modules (Chatham, 

1984). Each of these modbales is claniposed sf 15 separate wave boards 

constructed on a steel frame as shown on the schematic drawing of Fig- 

ure 4,4. Each module is equipped with six adjustable mounting pads for 

leveling purposes and can be moved by using four dollies at each of four 

lifting postis, two located in the front and two in the rear. 

The wave boards, measuring 1.5 fk wide and 2 - 5  ft in height each, 

are individually driven in a piston-like motion by a 0.75 horsepower, 

direct-drive servo-mskor located at. $he artieukated joint between 

adjacent boards, The join% structure consists of a fixed and linked 

hinge as shown in Figure 4 ,5 ,  Extremiky points (left edge of paddle 1 

and s igh% edge of paddle 60) are driven by single fixed hinges, The 

connections between adJacent wave boards are smoothed by means of a 

flexible-plate seal which slides in slots located on each wave board. 





DRIVE 
PLATE 

Figure 4.4 Schematic diagram of a wave 
generator module (Outlaw, 1984) 

The maximum stroke of a wave board is 1.0 ft, corresponding to a 

+/- 0.5 ft displacement from the mid-point position. Each wave board 

can be operated up to and including 180 degrees out of phase with the 

adjacent board. As already noted, the boards are operated in a piston- 

like motion and are not sealed at the floor. The displacement of each 

paddle is controlled by a belt-driven carriage assembly connecting the 

drive assembly to the belt drive as shown in Figure 4.4. A transducer 

is located on each wave board to monitor displacement and provide a 

feedback signal to the wave generator console. The servo-controller 

module for each servo-motor monitors this position feedback and gener- 

ates a stroke-limit and displacement-error detection signal which stops 

further displacement of the wave board if either limit is exceeded. The 



Figure  4 .5  Schematic diagram sf a wave board (Outlaw, 1984) 

system console  block diagram is shown i n  F igure  4 . 6  and t h e  servo-  

c o n t r o l l e r  block diagram is presen ted  F igure  4 . 7 .  Enclosures  a r e  

mounted on t h e  t op  o f  each module f o r  con ta in ing  t h e  motor and t r a n s -  

ducer  power and s i g n a l  equipment, The c a b l e s  r equ i r ed  f o r  t h e  t r a n s -  

mission o f  wave board displacement  s i g n a l s  and t h e  p o s i t i o n  t r ansduce r  

feedback s i g n a l s  are loca t ed  on t h r e e  c a b l e  reel assembl ies  a d j a c e n t  t o  

t h e  equipment enc losu re s .  

Each paddle o f  t h e  f o u r  p o r t a b l e  modules is e l e c t r o n i c a l l y  con- 

t r o l l e d  and e l ec t ro~nechan ica l ly  operabed accord ing  t o  t h e  inpub cam- 

mand s i g n a l  rece ived  from each a s s o c i a t e d  c o n t r o l  channel ,  Th i s  re- 

q u i r e s  a t o t a l  sf 61 c o n t r o l  channels  corresponding t o  khe push p o i n t s  



Figure 4 .6  System console  block diagram (Outlaw, 1984) 
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Figure  4.7 Servo-cont ro l le r  block diagram (Outlaw, 1984) 



(articulated joints) for each of the 60 paddles (A single control 

channel provides the common signal for the joint between adjacent 

paddles). Independent control of each paddle in the system is provided 

by an Automated Data Acquisition and Control System (ADACS). The ADACS 

system was developed for the directional spectral generator through the 

modification of an existing control-feedback system (Whalin et al., 

1974) reported by Durham and Greer ( 1976) . This hardware/software 

interface allows the user a 20 update per second per wave board command 

control signal to the wave generator, This control capability is per- 

formed by the wave generator console which provides the digital to 

analog (D/A) conversion of the programmed signal such that 61 channels 

of control signal are simultaneously output to each of the 61 wave 

paddle servos. The sampling and storage of data at a rate of 50 samples 

per second per gage for up to 128 gages through multiplexed channels of 

analog to digital (A/B) conversion is provided by the system. The re- 

sponse of each wave board to the individual control signals is monitored 

so that when either the stroke or displacement limits have been ex- 

ceeded, disable signals can be issued to the respective paddle, In 

addition, signals are provided to a calibration/test indicator located 

on the system console so that adjustments of the servo controllers can 

be made when necessary, Details of the system are reported by Turner 

and Durham (1984).  

The computer system supporting the ADACS is a Digital Equipment 

Corporation (BEC) VAX 11/750 central processing unit (CPU). The system 

is equipped with an IEEE 448 interface fos the D/A conversion of the 

user-supplied digital control signal. Peripherals to the basic CPU 

include 121 megabytes of fixed-disk mass storage, 40 megabytes of 



removable-disk mass storage, two 125 inch-per-second 800/1200 BPI mag- 

netic tape drives, two line printers, a Versatee printer/plotter, and a 

Tektronix 4014 CRT unit equipped with hard-copy capabilities. The com- 

puter system is shown in Figure 4.8, 

4.3 

Genus 2 solutions of the KP equation were shown in Chapter 3 to 

describe a three-dimensional, nonlinear wave pattern, The development 

of these solutions by Segur and Finkel was partially a consequence of 

experiments by H m a c k  (1980) which indicated qualitatively similar sur- 

face patterns resulting from the interaction of incident and reflected 

waves, W similar interpretation of genus 2 waves was presented in Chap- 

ter 3, The development of an experimental procedure which would result 

in the evolution of surface wave patterns qualitatively similar to genus 

2 solutions was achieved by experimentally reproducing the conditions 

reported by Wa~mack, i.e. interacting waves, In view of this intergre- 

tation, the interacting wave trains used for the experiments were chosen 

to be cnoidal waves, sEnce the periodic extension sf a solitary wave is 

a criaidal wave. This section will first describe the methodology used 

for generating cnojdal waves and then discuss the technique of evolving 

an appropriate wave form through the generation of simultaneously inter- 

secting cnoidal wave trains. The indirect procedure of wave form evolu- 

tion outlined here instead sf the exact generation of genus 2 waves will 

be addressed at the end of this section. 

4,3,1 The Generation sf Cnoidal - Waves 

The generation of a cnoidal wave with the directional spectral 

wave generator is acconnplished by utilizing the wave generation 





technique presented by Goring in 4978. Goringe% method prescribes the 

displacement-time history required of a single piston wave generator to 

generate a long, permanent form wave. Because of the similarities in 

both the wave form and wave paddle motion, the generation approach is an 

ideal one for the present application, Therefore, the identical tech- 

nique is used here to program the directional spectral wave generator 

with the added complexities of 60 paddles (with 61 push points) and pro- 

visions for phase lagging between adjacent paddles necessary for the 

subsequent generation of oblique waves. The basic theory is presented 

below, 

Goring's wave generation methodology provides a means of relating 

the vertical displacement of' the water surface profile of a known free 

wave to the horizontal wave paddle motion required to generate that 

wave, The principal idea is to equate the velocity of the paddle to the 

velocity beneath the wave surface at the location of the moving wave 

paddle. By knowing the time history of the desired free wave, the time 

history of the wave paddle motion necessary for generating that wave can 

be computed. Figure 4.9 was presented by Goring to demonstrate the way 

in which the generation equation is obtained. 

The inset diagram (c) represents the desired water surface profile. 

In this example a linear sinusoidal surface displacement has been spe- 

cified. The wave has an amplitude a and is propagating to the right 

with a wave celerity of e .  The corresponding horizontal velocity time 

history is shown in the inset diagram (a). It can be seen that the 

velocity and surface time series are in phase, consistent with linear 

wave theory. Desired is the time history of the displacement of the 

wave paddle required to generate a. sinusoidal wave, This desired 



Figure 4.9 Wave generation phase plane (Goring, 1978) 



displacement $(t), ternned the "trajectorysv by Goring, is written in the 

following form, 

where G(5,t) represents the depth averaged velocity written as a fune- 

%ion of the time varying traJectory of the wave board. Since we are 

dealing exclusively with long waves, the assmption is made that &he 

particle velocity is constant throughout the water column, 

The above representation for the velocity produces a distortion of 

the  trajectory from %ahat would be observed at a fixed location. For 

example, if u(0,t) were used in Equation 4.1, the velocity would be 

only a function of time and the resulting tragectory would simply be 

sinusoidal in shape, The point of maximum trajectory, 5 = S , would 

occur at the time t - T / 2  . $.&enl the velocity representation of Equa- 

tion 4.7 is used, the maximadla trajectory j s  achieved a t  a time of t 

z T/2 + $ / 6  . In Goring 's  words (1948)  "Thus the time taken for the 

plate to travel forward to its full extent is time S/c longer than it 

would be if the trajectory were sinusoidal and consequently the time 

taken for the plate to travel back to its original is time S/c shorter 

than  F'e would be if the trajectory were sinusoidal." Physically, if the 

wave paddle position is not considered, thereby ignoring the celerity of 

the wave, secondary waves will be produced at the wave generator paddle, 

This occurs because the crests and trbsughs, which are not traveling at 

t he  exact speed of the paddles, reflect off the paddles  to produce the 

secondary wave effect, 



For waves of permanent form it was shown (Svendsen, 1974) by con- 

tinuity that the velocity averaged over the depth is 

where v represents the surface displacement. It is assumed that this 

displacement can be written in the following form: 

A A 
where H represents a wave amplitude and f(0) is the appropriate 

function (sinusoidal, cnoidal, etc.) of the phase variable 

The total derivative of Equation 4.4 is written as 



By using the chain rule, the time derivative on the right hand side can 

be written as follows: 

By using the relationships of Equations 4.9, 4.2, and 4.3; Equation 4 - 6  

can be simplified to the following 

Integrati~n with respect to the phase variable yields 

A 
where w represents a dummy variable and the phase variable 8 is 

given by Equation 4.4. The resulting equation for the paddle trajectory 

is implicit in that the phase variable on the right hand side is also a 



function of the trajectory; therefore, the equation must be solved 

numerically. The solution technique selected by Goring was Newton's 

method, also referred to as the Newton-Raphson method. A general ex- 

pression for this numerical procedure can be written for an arbitrary 

A 
function F as a function of a phase variable 8 as 

The superscript i represents the iteration number. The iterative 

procedure is to select an initial $ i 
Aicl a This is and compute 0 

repeated until the quantity ]hi - ti" 1 is adequately small. The 

solution scheme is a rapidly convergent one for most well behaved 

A 
functions and results in an accurate approximation for 8. The 

arbitrary function can be defined by writing the phase function of 

Equation 4.4 in the following identity. 

Substitution of this identity into Equation 4,7 results in 



Now, t h e  p a r t i a l  d e r i v a t i v e  wi th  r e s p e c t  t o  t h e  phase v a r i a b l e  8 

y i e l d s  t h e  form 

Equat ions 4,8 and 4 - 9  ass t h e  p r e c i s e  form necessary  f o r  a Newton method 

A 
s o l u t i o n  f o r  9. S u b s t i t u t i o n  y i e l d s  t h e  fol lowing s o l u t i o n  f o r  t h e  

phase v a r i a b l e  a t  t h e  i c l  i t e r a t i o n :  

The i t e r a t i o n  o f  t h i s  r e l a t i o n s h i p  t o  t h e  d e s i r e d  l e v e l  of convergence 

A 
w i l l  r e s u l t  i n  an a c c u r a t e  approximation f o r  0 a t  time t .  Then, t h e  

paddle  displacement  can be determined by r e w r i t i n g  Equation 4 .4  i n  t h e  

form 

Equation 4.10 r e p r e s e n t s  an i m p l i c i t  s o l u t i o n  method f o r  t h e  phase 

v a r i a b l e  of an a r b i t r a r y  wave form. We a r e  now i n t e r e s t e d  i n  t h e  

s p e c i f i c  wave form o f  a cno ida l  wave. The s u r f a c e  displacement  f u n c t i o n  

f o r  a cn0ida.I. wave can be w r i t t e n  as 



where h represents the depth of flow, yt represents the distance 

from the wave trough to the bottom boundary, cn is the Jacobian 

elliptic function, m is the elliptic parameter, and 

is the phase variable (the sign has been changed for convenience ac- 

cording to Goring's paper) written in terms of the first complete ellip- 

tic integral K ( m ) ,  the wave period T ,  and the wavelength L. This 

form is exactly equivalent to that shown by Equation 2.2, The integral 

of this function, necessary for the evaluation of Equation 4.10, can be 

written in closed form (from Abramowitz and Stegun, 1970) as 

where E ( $  lm) is the second incomplete integral and ml is the 

complimentary elliptic parameter defined as 



Substitution of Equations 4.1 1 and 4.13 into the Newton approximation 

results in the following relationship: 

Mote &hat the negative sign in the first term of the numerator (-%Kht/T) 

was inadvertently omitted by Goring. A thorough description of the 

nnethsds used t o  evaluate the various elliptic functions is provided in 

Appendix A. Upon completion of an adequate number of iterations to 

achieve the desired level sf accuracy, the paddle displacement at time 

t can be written from Equation 4.12 as 

The programing of the wave generator to produce these displacements is 

accomplished in the following sequence of operations. Reference is now 

made to Figure A.1 in Appendix A ,  A wavelength and maximum water sur- 

face elevation i s  specified for each desired cnoidal wave. Based on 

this wavelength and wave elevation data, values for n , ,  u2, "3' m17 

T, and the first K(m) and second E(m) complete and the second 

~ ( i  lm) incomplete integrals are computed. The wave period is divided 

into 360 time segments corresponding to 361 discrete values (0-360). 

For each time value, the phase variable of Equation 4.12 is defined and 



used in the Newton iteration method to compute a disp1.acement for the 

paddle corresponding to each of the 360 degree representations of the 

period. This procedure is repeated for each of the 61 push points of 

the 60 wave generator paddles. A magnetic tape is generated which con- 

tains the control signal for the displacement of each push point for the 

time series corresponding to a control signal update of 20 updates per 

second per paddle. The wave generator control software program is 

executed and the waves are produced on the wave generator corresponding 

to the input signal on the magnetic tape. 

An example of the generated cnoidal waves can be seen in Fig- 

ure 4.10 in which a single period of a cnoidal wave with a wavelength of 

7.0 feet and a maximum wave height of 1,84 inches is shown. Discre- 

pancies between theory and measurement are due to the variations in the 

basin topography as evidenced in Figure 4.2. This spatial variation in 

depth produces an approximate +/- 25% variation from the mean of the 

measured total wave heights for a cnoidal wave uniformly generated 

perpendicularly from the axis of the wave generator. This effect can be 

seen in the nine wave gage traces shown in Figure 4,14. The shoaling of 

the wave is sbvi~us in the traces of gages 3 ,  6, and 7 which can be seen 

from Figure 4.2 to be located behind shallow areas. If these three 

gages are omitted, the variation is en the order of 14%. Fortunately, 

this shoaling effect is much less pronounced in the C?v~l~ed waves which 

are used for verification of the KP equation. This is probably due to 

the fact that the test waves result from the nonlinear interaction of 

two separate waves generated from separate directions, The influence of 

the basin floor on the verification will be further addressed. The 

waves of interest, the candidate genus 2 waves, will now be discussed. 
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Figure 4.40 A eomgarlson between a g e n e r a t e d  wave and 
c n s i d a l  wave t h eo ry  
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4.3.2 -- The Generation of Genus 2 Waves 

Genus 2 wave forms were produced in the wave basin by evolving the 

proper form rather than by directly generating it. The reason for this 

approach will be discussed at the end of this section. The evolution 

technique is as follows. The procedures described for generating 

cnoidal waves were modified such that a single enoidal wave could be 

generated at an angle to the axis of the wave generator, A second wave 

was then simultaneously generated at an equal but negative angle such 

that the two separate waves are generated at a predetermined angle of 

intersection which is symmetric to the wave generator, In order to 

fully investigate the validity and limits of applicability of the KP 

equation as a model for three-dimensional nonlinear waves, an experi- 

mental program was devised to generate a variety of wave patterns which 

span a wide range of nonlinearity and three-dimensionality. 

A broad range of nonlinearity of the basic wave shape is achieved 

by generating three basic cnoidab wave trains, These waves are gen- 

erated with heights of approximately 1.0 inch and wavelengths of 

7.0 ft, 11.0 ft, and 15.0 ft, corresponding to an elliptic parameter 

rn of 0.44, 0.73, and 0-89 respectively. Water depth was maintained at 

1.0 ft. Variations in the three-dimensionality of the resulting wave 

patterns was achieved by intersecting each of the three cnoidal wave 

trains at a variety of angles, These angles of intersection are ob- 

tained by progrming a phase shift between adjacent wave paddles. A 

positive shift for one wave and a negative shift for the other wave 

results in the generation of the desired symmetrically intersecting 

waves. This phase shift is approximate1.y equivalent to the angle of the 

wavecrest with respect to the axis of the generator. A wide range of 



angles of intersection were used in order to completely cover the range 

of weak to strong interaction of the two basic waves. 

Twelve wave fields were selected for generation to test the KP 

equation. The generation components of each are shown on Table 4.1. 

The angle indicated in the table shows the approximate (linear wave 

relationship) correspondence between the phase shift and the angle of 

propagation. 

Verification of the KP equation as a model for three-dimensional 

nonlinear waves will be successfully accomplished by reproducing the 

wave patterns indicated in Table 4,1 with exact solutions, Reproduction 

requires the development of a unique correspondence between the free 

parameters of the genus 2 solution and the physical characteristics of 

the observed wave field. Correspondence is developed in Chapter 5. 

Table 4.1 The Experimental Waves 

Test 
Number Wavelength (ft) Phase Shift (deg) Angle (deg) Period (see) 



Prior to addressing the free dynmical parameters of the exact 

solution, a comment on the generation technique utilized for this 

investigation is necessary. Waves were generated in the wave tank by 

evolving an approximate genus 2 wave as described above. This approach 

was first adopted because the relationship between the free parameters 

of the exact solution and the physical characteristics of the desired 

wave form were unknown at the onset of the investigation. For example, 

an appropriately shaped wave is first required in order to develop a 

means of relating the free solution parmeters to that observed wave. 

These parameters could then be used to compute an exact solution which 

would emulate the observed wave. Foll.owing the successful completion of 

this task, the logical extension would be to generate the exact solution 

and analyze the resulting wave, This was in fact aecomplished, but with 

disappointing results. 

The finite dimensions of the 1-5 ft wide paddle proved to introduce 

strong perturbations in the small features of the resulting wave. An 

example result from experiment CN2015, described in Chapter 5, will be 

used here to illustrate this problem. The stem region of experimental 

wave CN2015 is on the order of 3.5 ft in length. It is physically im- 

possible to generate this region exactly with 1,5 ft wide paddles. 

Examples of the perturbations introduced are shown in Figures 4.12 and 

I Figure 4.12 shows a wave trace in the saddle region for the 

evolved wave of' experiment CM2015. Note the symmetrical peaks and uni- 

form wave shape. An exact solution corresponding to this wave field was 

computed. Figure 4 -13  demonstrates a similarly located wave trace for 

that generated exact solution. The perturbations are evident from khe 

nonuniform shape of the resulting Nave which actually evolves a third 



Figure 4.12 Measured wave profile in the saddle region of 
experiment CN2015 

Figure 4,13 Measured wave profile in the saddle region corresponding 
to an exact solution generation of experiment CN2015 



peak. Repeated attempts at generating exact waves always failed to gen- 

erate a clean wave form. The conclusion of this exercise was that a 

relatively clean genus 2 wave could be continuously evolved but could 

not be discretely generated by existing facilities. 

4.4 The Measurement of Waves 

The difficulty of quantifying three-dimensional wave phenomena with 

two-dimensional instrumentation is well recognized. Furthermore, the 

presentation of two-dimensional data in a concise yet definitive form 

for effectively demonstrating three-dimensional effects is difficult. 

The measurement program developed here can best be motivated by looking 

at the basic features of the generated waves. Figure 3.3 shows a typi- 

cal wave form produced by the technique described above. Symmetry of 

the wave pattern was achieved by generating identical cnoidal waves 

(equal wavelength and height) at symmetric angles. The period paral- 

lelogram, discussed in Chapter 3 and shown in Figure 3,4,  was described 

as a basic surface pattern which repeats to form a global surface wave 

field, The complete specification of this area will define the surface 

pattern and be sufficient for verification of the KP solution. The 

basis for choosing synmetric waves can now be seen, a symmetric period 

parallelogrm is generated which propagates in a direction perpenaicular 

to the axis of the wave generator. 

Two separate means sf data coklectf~n were used to quantitatively 

measure the parameters of the basic garallelogrm. First, a photogra- 

phic kechnique was devised. to measure the spatial distribution of the 

generated wave field, Photographs provided a visual representation of 

both the physical size of the resulting period parallelograms and of the 



internal features, such as the stem and saddle regions. These data were 

used to determine the placement and spacing sf a single fixed linear 

array of recording wave gages which would be capable of quantifying the 

vertical, horizontal, and temporal distribution of each of the period 

parallelograms. These two collection techniques are described below. 

4,4.1 The Photographic System 

Measurement of the two-dimensional geometry of the surface wave 

patterns was found to be highly beneficial in that it provided both 

quantitative and qualitative information on the spatial structure of the 

period parallelogram. This procedures is described, Two klasselblad 

Model 500 EL/M 70mm cameras were each equipped with a 50 m lens, an 

automatic advance 50 exposure film canister, and a remote control expo- 

sure capability. The two cameras were installed approximately 23.0 feet 

above the floor of the wave basin, located on either end of an approxi- 

mately 20.0 foot long 3 X 5 inch alminum box beam which was clamped to 

an existing catwalk and eantilevered out over the wave basin. This pro- 

cedure resulted in a final placement sf the cmeras centered on the wave 

generator a distance of 40-0 feet from the axis of the wave boards, Be- 

cause of the focal length of the lenses, the field sf vision of each 

cameras was approximately 23 X 23 feet, The resulting two photographs 

could then be combined in a mosaic to form a 23 X 40 foot picture. J I -  

lmination of the basin area beneath the cmeras was by means of 2 

Ascor, 800Q watt-second strobe lights with remote control activation 

capability. 

Both cm~eras and strobes were connected to a remote conLrol aetiva- 

tion panel which, when activated, operated both simultaneously. The 



control panel was located adjacent to the wave generator console in the 

computer room. A single gage was centrally placed 55.0 feet from the 

wave generator, beyond the viewing range of the cameras. A schematic 

diagram of the photographic sekup is shown in Figure 4.14. Gage output 

was monitored with a Tektronix Model 5111A dual trace oscilloscope, also 

Located adjacent to the generator console, to provide the operator with 

a means of determining when to activate the cameras and strobes. It was 

assumed that when the wave front first became visible on the oscillo- 

scope screen, the wave field would be fully developed in the camera 

viewing area. A photograph was taken at this time followed by four more 

at approximately 5.8 second intervals. This procedure was used for all 

experimental wave patterns. A total of 240 photographs, representing 

128 mosaics, of surface wave patterns were taken for the study. A rep- 

resentative photograph of each wave pattern used for analysis is in- 

cluded in Appendix 8 .  

I 

55.0 Feet  

Wave Generator 

a Kenlote C0ntT03. Panel  

Figure 4,14 The photographic system 



The photographic technique described above proved to be an invalu- 

able tool for understanding and interpreting the qualitative features of 

the generated wave fields. Without the aid of these photographs, the 

successful formulation of a data collection program would have been 

extremely difficult. 

A problem which exists with photographic data is that of distor- 

tion. Although the photographs were primarily used in a qualitative 

sense, this problem is addressed here. Horizontal measurements from the 

photographs are based on grid marks painted on the basin floor for that 

purpose. Since the waves are actually photographed on the surface (one 

foot above the bottom), a discrepancy between actual and measured dis- 

tances is experienced which increases with distance from the camera 

lens, An example is shown in Figure 4.15 to illustrate this effect. 

10.313 Feet 

Figure 4,15 Horizontal measurement distortion 



Assme a wave crest is photographed which is actually 23.0 feet below 

and 10.0 feet from the camera. Due to the diffraction of light (assum- 

ing an index of refraction of 1,3330) a diskance of 10.313 feet will 

be measured from the floor scale. This mounts to an error of 3% in 

10 feet ( 6 %  for the entire viewing area). Directly under the camera, 

the error is zero. Because of this variable horizontal discrepancy, 

error limits %or hori~ontal measurements were determined, These limits 

will be further addressed in Chapter 5. 

The second set sf required data are quantitative water surface 

elevations which will relate the vertical structure of the observed 

waves to the exact geaails 2 solutions sf the KP equation. These data 

were used to quantify certain wave characteristics, such as the hari- 

zantal variation in height and shape within the period parallelogram, 

Measurement of the required three-dimensional distribution of the wave 

field was greatly simplified by the selecLisn of the symmetrically 

intersecting waves. As previously mentioned, the resulting permanent 

wave form, bounded by Lhe basic period parallelogram, propagates perpen- 

dicular to the Eace of the wave generator. The period of the generated 

wave is easily measured with wave gages and the width of the period 

paralleLsgram is measlared from the photographs, These two data deter- 

mine the propagati<~g vulocity of the permanent-form wavefield. By know- 

ing the period and velocity, a time series measured from a stationary 

gage for one period can easily be converted to a spatial water surface 

distribution across one horizontal wavelength, 



The simplification achieved by symmetry can now be demonstrated. 

As can be seen in the schematic of Figure 3.4, the axis of the stem 

region of interaction is parallel to the face of the wave generator. An 

array of nine recording wave gages was located in the wave basin paral- 

lel to this same line. The gages were placed a distance of 40.0 feet 

from the face of the wave generator, spaced 2.5 feet apart. The entire 

array was centered on the generator such that gages 1 and 9 were each 

10.0 feet from the generator centerline as shown in Figures 4 , l  and 

4 2 .  The placement of these gages with respect to the hexagonal wave 

forms and period parallelograms is shown in Figure 4.16. 

The sample wave pattern shown graphically now demonstrates the 

advantages of generating symmetrical waves. For example, it can be seen 

that a common point exists in the center of each hexagonal figure which 

represents the common apex of two period parallelograms. It can be seen 

that the location of each gage can be uniquely identified within a half 

Zero 1 
Poi.nt 

Wave Generator ' 

Figure 4.16 Schematic diagram for wave gage placement 



parallelogram by referencing it according to its distance from the 

common, or zero point. Because of the symmetry, the left half of the 

right parallelogram is exactly equivalent to the right half of the left 

parallelogram. The determination of just one half  parallelogram is then 

sufficient to completely describe the entire period parallelogram and 

hence the entire global wave field. The data collection scheme was 

specifically aimed at this goal by mapping each of the nine gages into a 

common half period parallelogram. In the example shown; gages 6 and 

4, 7 and 3 ,  8 and 2, and 9 and 1 are equivalent since each pair are 

equidistant from the zero point, Since the actual location sf that 

point with respect to the gage line axis varies for each test run, the 

first estimated reLationships between the zero point and the gage loca- 

tions were determined from the mosaic photographs, Subsequent adjust- 

ments were made by shifting the solution origin by varying and 

'28 
of Equations 3.49. An exmple of the gage-zero point correspsn- 

dence will be presented in Chapter 5. 

The water level gages used for this study are water-surface- 

piercing, parallel-rod, conductance type gages, They are identical to 

those for which the original ADACS was developed. Use of the gages made 

it possible to utilize existing calibration, storage, and plotting 

software. Each gage is associated with a rneatstone bridge, shown 

schewakically in Figure 4,17. Operationally, a transducer measures the 

conductance sf the water between the two vertically mounted parallel 

rods. This measilred conductance is directly proportional to the depkh 

of submergence of the rods, The output from each gage is sent to the 

ADA63 th~sugh shielded cables, The accuracy of the gages was reported 
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Figure 4.17 Schematic diagram of parallel-rod resistance transducer 
(Durtiam and Greer, 1976) 



by Durhm and Greer (4976) to be within 0.001 ft. A typical wave gage 

is shown in Figure 4.18, 

The actual process of taking data was based on the procedures de- 

veloped and the software written for the ADACS described in Section 4,3.  

The operational steps are as follows. 

Each wave gage is calibrated prior to the generation of waves. The 

calibration process entails the monitoring of the output voltages from 

the linear-position potentiometer located on each gage. This is accom- 

plished by system software/hardware interfacings which move each paral- 

lel rod sensor into and out of the water a known distance. Each sensor 

is systemakically moved to I 1  quasi-equally spaced (within the practical 

limits of the gear-train driven electric motor) locations over a user 

specified range. During this movement, 24 volt-age samples are taken 

from which an average value for each of the 19 locations are c~mputed, 

A schematic diagram of the calibration process is shown in Figure 4,19. 

The averaged 11 values for each gage are fitted to a least squares 

linear fit to determine the calibration curve, If the maximum deviation 

from this linear fit exceeds a user-specified tolerance, a quadratic Pit 

is performed, A cubic spline can be applied if the quadratic fit is 

outside tolerances, The final resulting calibration curve relating 

voltages to waber surface displacements for each gage is then stored in 

disk memorly %or later use by system software. 

The eonbrol signal for a desired wave combination is used to 

generate an experimental wave field, The bocation of the wave front in 

the basin is determined by the operator by simply monitoring the output 

of any two sf the nine gages with the dual channel oscilloscope. Mhen 

it has been determined that the wave field is fully developed at the 



Figure 4,18 Parallel-sod wave sensor 
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Figure 4.19 Waverod calibration (Turner and Durham, 1984) 

array of wave gages, the operator initiates the sampling of data. 

Sampling extends for a user-specified period of time. The data, along 

with the corresponding calibration curves, are stored on disk. The time 

series for each gage is automatically plotted on a Versatec printer/ 

plotter and written into disk storage for subsequent analysis. The 

length of data sampling used for this study was 30.0 seconds. With a 

sampling rate of 50 samples per second, 13500 data points were collected 

and stored for all nine gages for each experimental wave. 

The data collected for this project are presented graphically in 

Appendix B. The results of the verification of the KP equation to the 

12 generated wave fields are presented in Chapter 5 .  



CHAPTER 5 

A COMPARISON OF GENUS 2 THEORY WITH EXPERIMENTAL, WAVES 

This chapter relates the exact genus 2 solutions of the KP equation 

described in Chapter 3 to the wave characteristics measured in the 

twelve laboratory experiments described in Chapter 4. The development 

of this relationship requires the detailed assessment of the free param- 

eters in the solution. In particular, insight into the sensitivity of 

the solution to each of these free parameters must be established since 

the spatial and temporal features of the solution are linked non- 

linearily to these parameters. Once a basic understanding of the coupl- 

ing between parameters is established, a methodology is developed for 

selecting and optimizing the solution such that a "best-fitq' to measured 

data is achieved. The quantitative assessment of the comparisons be- 

tween best-fit genus 2 waves and measured data for each of the twelve 

experiments of Table 4.1 will demonstrate the capability of the KP equa- 

tion to model a wide range of laboratory-generated wave phenomena, 

5.1 The Free Parameters of a Genus 2 Solution - 

The calculation of a general genus 2 solution of the KP equation 

requires the specification of six dynmical parmeters and two nondynaan- 

ical parameters. (These parameters were noted in Section 3.4.) The ex- 

perimental program described in Sections 4.3 and 4.5.2 employs symmetrl- 

ical waves in order to evolve a period parallelogram which is symmetric 



about both the x- and y-axis as was shown in Figures 3.4 and 4.16. A 

symmetrical parallelogram was desirable so that a fixed linear wave gage 

array could be used to measure all experimental waves. Symmetry intro- 

duces the following relations: 

Hence, the number of free parameters for the symmetric subset of 

solutions is reduced to five, with only three of dynamical signifi- 

cance, These three free parameters are truly independent and can be 

arbitrarily selected from the nine dynamieal parameters of the general 

genus 2 solution. The remaining six dependent parameters are computed 

from Dubrovin's theorem of Equation 3.66 and the relationships shown in 

Equations 5.1. The free parameters chosen for this investigation are 

b, p, and A. These were selected because their specification resulted 

in a rapidly convergent algorithm for computing a best-fit with measured 

data, The algorithm consists of' an interactive program which was speci- 

fically developed to compare computed and measured wave characteristics. 

In order to gain insight into the effects of changing parameter values, 

a sensitivity analysis is made to demonstrate the impact of each of the 

independent free parameters on the computed waves. 

In each of the following analyses, two of the independent variables 

are held fixed while the third is allowed t o  vary. The relative effect 

of the single parameter is then measured by changes in the nondimen- 

sional tmaximm computed wave elevation fmax, the angular frequency 



w ,  and the y-direction wavenumber v. These parameters were selected 

because their values yield the measurable quantities of maximum wave 

elevation, period, and y-dimension length of the period parallelogram. 

5.1.1 Sensitivity analysis for the parameter b 

As already noted in Section 3.4, the parameter b provides a mea- 

sure of the nonlinearity of the wave field. There it was shown that for 

b+O the waves appeared as two KdV solitons whose interactions were 

highly localized in space. For b more negative, the wave heights 

decrease and a wave profile measured through the stem region becomes 

more sinusoidal. More detailed insight into the effects of b on the 

genus 2 waves is provided in Figure 5.1 which shows the effects of vary- 

ing b on w ,  fmax, and v when X and are fixed. It can be seen 

from Figure 5.1 that a 3-fold increase in b ( - 6 .  to -2.) produces a 

Figure 5.1 Sensitivity ~f the parmeters w , fmax , and v to  
the parameter b 



21-fold increase in the nowdimensional maximum wave elevation (0.116 to 

2.522). W coniparable change in the angular frequency occurs while the 

value of v is not affected significantly. The effect on w is due to 

nonlinear changes in wave speed through the dispersion relation and the 

fact that the %-direction wavelength is fixed in the computation. The 

value of b can therefore be seen t o  be indicative of nonlinearity, 

somewhat equivalenb to the  elliptic parmaeter m of cnoidal theory. A 

qualitative demanskration of the relative effect sf b on the wave shape 

can be seen in the normalized three-dimensional plots shown in Fig- 

ures 5.2a and 5,2b .  I n  the first ~:mse, the waves are seen to be highly 

nonlinear in shape while the waves are smoother and appear t o  be more 

linear in the second case, 

Figure 5.2 Example wavefields demonstrating the effect of %he 
parmeter b with h =0,100 and ~ 0 , 5 0 0  

a) b = -2,800, u - -0,629, f n ~ a x  - 2.552, OJ = -3,197 
b )  b - -6,000, u = -0 ,277,  fmax = 8,496, . -8,350 



5.1.2 Sensitivity analysis for the parameter 11 

The effect of the parameter is illustrated in Figure 5.3 which 

shows the variation of w ,  fmax, and v over a range of 0.25~50.9. It 

can be seen that the frequency and, to a lesser extent, the wave height 

are sensitive to variations irr 11. For example, an increase in 11 

decreases the x-direction wavelength over which the wave must travel. 

This results in a decrease of the period or increase of the angular fre- 

quency of the wave with respect to a coordinate system translating at 

the speed of a linear wave. This is shown in Figure 5.3, The total 

effect of these coupled changes are manifest in the maximum wave eleva- 

tion shown in the figure. As with the parameter b, little effect is 

shown in the value of u. Figures 5.4a and 5.4b qualitatively demon- 

strate the effect of to be a somewhat minor alteration of the shape 

of the period parallelogram. The most significant effect is not obvious 

from the three-dimensional plots, a 100% increase in (0.400 to 

Figure 5.3 Sensikivity of the parameters LO, fmax, and v to 
the parameter p 



Figure 5,4 Example wavefields demonstrating the effect of the 
parameter with b = -3.080 and x = 0.100 

a) u = 0.400, v = -0.291, fmax = 0.572, w = -0,713 
b )  v = 0.800, v = -1.163, fmax = 2,286, w = -5.705 

0.800) produces an 800% change in w .  However, the large change in 

w is somewhat misleading since the frequency passes through zero as the 

wave celerity increases from less than to greater than the linear wave 

celerity. It can be seen that u is primarily a measure of wave period 

and secondarily a measure of wave he igh t .  

5.1.3 

The effect of A is evidenced in all parameters (o, fmax, and 

v )  as shown in Figure 5.5. The most effective demonstration of its 

relative effect on the solutior~ is seen in the qualitative features 



Figure 5.5 Sensitivity of the parameters w ,  fmax, and v to 
the paramete.r X 

evident in Figures 5.6a and 5.6b. In the first case, the saddle region 

is long, resulting in a short stem of interaction. This is an indica- 

tion of weak interaction between the two waves. The second figure shows 

a much stronger degree of interaction as seen by the long stem and large 

angle between the saddle region and the stem axis. From the point of 

view of intersecting waves, this interaction is so strong that the orig- 

inal waves have completely lost their identity. The entire wave pattern 

is now represented by propagating stems with almost no saddle region in 

between. Note that Figure 5.5 and 5.6b include values of A outside 

the allowable range of 0.5 according to Segur and Pinkel for a Riemann 

matrix to be basic according to the definition of Equations 3.55. These 

values were included to demonstrate the effect of the parameter on the 

qualitative features of the solution. The observed effects provide an 

indication of the strength and magnitude of the phase shift experienced 

by the wavecrests of the original component waves. 



Figure 5.6 Example wavefields demonstrating the effect of the 
parameter A with b = -3.600 and = 0.500 

a) X = 0.300, u = -0.218, fmax = 0,908, w = -0.541 
b) A = 0.800, v - -0.032, fmax = 0,492, w = -8.129 

5.2 The Dimensional Genus 2 KP So%ution 

The comparison of exact KP solutions to laboratory generated data 

requires the use of the scaling presented in Chapter 3 for relating the 

nondimensional KP parameters to their dimensional laboratory counter- 

A A parts. The nondimensional variables 2 ,  y, P, and t are related to 

ry - - 
the dimensional variables x, y, $, and t according to 



Use of the velocity potential results in the following relationships 

describing the three-dimensional velocity field: 

The nondimensional wave numbers (u, v ) can be written in terms of 

dimensional wavelengths according to 



where Lx and Ly represent the ? and 7 dimensions of the observed 

period parallelogram. The maximum observed wave elveation %ax is re- 

lated to fmax through the relationship: 

The small parameter c appearing in Equation 5.5 was used for ordering 

terms in the derivation of the KP equation, The numerical value of the 

parameter is arbitrary and can be set to unity without loss of general- 

ity. By specifying c as unity and noting that a water depth of 

1.0 foot was used for all experiments, it can be seen that the dimen- 

sional and nondimensional wavelengths are numerically equivalent. 

The dimensional wave period measured in laboratory coordinates can 

be written in terms of the nsndimensional solution by examining the 

phase variable in Equation 3.49. For example, the nondimensional phase 

can be written in terms of dimensional quantities according to 

where p and w are KP values. The quantity in brackets represents 



the dimensional angular frequency and can be used to define the dimen- 

sional wave period in terms of the KP values and w ,  

Equations 5.4 through 5.7 provide the relationship between laboratory 

quantities and solution parameters. These relationships will be 

utilized in the following section for obtaining a best-fit genus 2 

solution for each of the experiments. 

5.3 A Methodology for Relating Genus 2 Solutions to Observed Waves 

The algorithm developed to relate the free parameters of the 

genus 2 solution to the observed wavefield is an iterative procedure 

based on the sensitivity analysis of section 5.1 and the laboratory data 

measured in the experiments. The algorithm will be described in detail 

using experiment CN3007 from Table 4.1 as an illustrative example. 

The wave field corresponding to case CN3007 was generated using ttse 

technique described previously in Chapter 4. Wave gages located in the 

stem region indicate the period parallelogram has a period approximately 

equal to 1.378 seconds as was used to program the wave generator. This 

period is the most accurate information known describing the evolved 

wave pattern since it was independently computed by system software from 

the calibrated wave gage data. Overhead photographs were taken to form 

a mosaic of the wave field. The mosaic for experiment CM3007 is shown 

in Figure 5.7. The location of the period parallelogram and the nine 





recording wave gages, which were subsequently placed in the basin, are 

superimposed on the photograph. The dynamic features of the wave field, 

such as the stem and saddle regions, are clearly visible. 

The photographs represent changes in intensity of light originating 

from the strobes and reflected by the water surface. Since the strobes 

are located on the wave generator, the approximately straight line seg- 

ments showing an abrupt change in intensity from light to dark represent 

wave crests propagating directly away from the generator, in a direction 

of light to dark. The sharpness of this stem region indicates a near 

breaking condition for the CN3007 waves, The distinct crest lines rep- 

resenting the stems of interaction are connected by saddles of smaller 

crest heights. The global wave pattern, composed of a tiling of the 

basic period parallelograms, is clearly observed in Figure 5.7. The 

qualitative similarity to the example solutions shown in Chapter 3 can 

be seen. Certain extraneous features are also included in the phoko- 

graphs. The orthogonal white lines, for example, represent concrete 

seams on the floor of the wave basin. The ethereal small patterns 

appearing on the water surface are the result of reflections from the 

overhead catwalk and the structural members. Both of these features are 

irrelevant to the collection and analysis of data; however, their exfst- 

ence is acknowledged to explain their appearance. The mosaics for the 

entire set of experimental waves of Table 4,'l are shown in Figures B , 9  

of Appendix B. 

Measurement of the x- and y-dimensions of the period parallelogrm, 

drawn on each mosaic, results in an initial estimate for and v 

- 
respectively. An initial value for the parameters X = X can be 

computed by using the values for the $ and Q4 intercepts of the 
3 



parallelogram sides corresponding to 6 - 0,2n and ( J ~  = 0,2x . 1 - 
Although the intercepts are difficult to estimate since they depend on 

the accuracy with which one can draw the parallelogram and the stem and 

saddle regions, an initial value is obtained which is usually adequate 

for the first iteration of the optimization algorithm. 

In addition to the initial estimates gained from the mosaics, a 

visual correspondence between the qualitative features of the wave field 

(stems and saddles for example) and the locations of the nine recording 

wave gages is determined. This is best illustrated by Figure 5.8, 

representing the wave traces of the nine gages for the CN3007 test 

wave. The exact correspondence between each gage and its respective 

location within the period parallelogram can easily be seen from the 

photograph. Gages 1, 2, 4, 5, 6, 8, and 9 are clearly located within a 

stem region where only one wave crest is experienced per passing of the 

period parallelogram, In contrast, gages 3 and 7 are located in the 

saddle region where two smaller peaks per period are seen. The visual 

correspondence between the wave measurements and the photograph proves 

to be almost indispensable for interpreting the observed three- 

dimensional waves from the two-dimensional wave traces. The wave traces 

for all experimental waves are presented in Figures B.2 of Appendix B. 

Variations in wave shape and height shown in the initial portion of 

Figure 5.8 (and in other wave traces) resulted from the sampling of data 

at the end of the 10 second ramp motion programmed into the wave genera- 

tor, During this time, the paddle movement is modified by ramping the 

paddle stroke from zero to its full programmed value in order to provide 

protection for the wave generator. These regions are usually evidenced 

by the incomplete evolution of a genus 2 type wave. In addition to 
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Figure  5.8 Wave p r o f i l e s  for  &he n i n e  wave gages i n  
experiment CN3807 



these effects, reflections from the sidewalls and variations in depth 

alter the shape of the evolved wave. The error introduced by the depth 

variations will be addressed in the conclusions of this investigation. 

The technique of quantitatively comparing the laboratory data with 

germs 2 solutions involves the computation of an exact solution corre- 

sponding to the location of each of' the nine wave gages. From Fig- 

ure 5.7, the location of each gage with respect to the origin of the 

coordinate system is estimated, (This origin or zero point eorrespon- 

dence was discussed in Section 4.4.2.) For the example of CN3007, the 

y-distances were determined to be 

Gage /I 1: 1.50 ft Gage 2: 1,00 f t  Gage /I 3 :  3.50 ft 

Gage # 4: 6.00 ft Gage /I 5 :  8.50 ft Gage /I 6: 6.00 ft 

Gage i/ 7 0 3 . % 0  ft Gage # 8: 1.00 ft Cage /I 9 :  1.50 ft 

The estimate of v f o r  experiment CM3007 resulted in a y-distance wave- 

length of 17,O ft, corresponding to a symetrical half-length of 8,5 ft. 

The mirror reflection of distances about 0.0 and 8.5 ft is shown in the 

above data ( i . e .  gages 4 and 6 about 8.5 ft and gages I and 9 about 

0,Q ft), For the case sf CN3007, the period parallelogram is 17-0 ft 

long while t he  linear gage array is 20.0 f t  in length. Several gages 

can be seen to lie in adjacent parallelograms (gages 3 and $71, Regard- 

less of the size of the parallelogrm, each gage can be related to the 

common point. The deternnination of the lo@aticsn of this point with 

respect to the gages i s  equivalent to selecting an origin of the period 

paralkelogrm by means of the nondynaical parat~eters 
$ l a  

The photographs provide this first estimate. 



Preliminary estimates of the solution parameters were used to 

generate exact solutions. For each test case, 31 solution traces, 

equally spaced along the y-axis of the period parallelogram and parallel 

to the x-axis, were computed for the three-dimensional wave pattern. 

These individual traces can be seen in the x-parallel profiles defining 

the three-dimensional plots. Since the parallelogram is symmetric, a 

glot of a half-parallelogram is sufficient to define the entire paral- 

lelogram, thus quantifying the vertical and horizontal distribution of 

the entire global wave field. Figure 5.9 presents a detailed glot of 

this half region by plotting the 16 two-dimensional solution profiles. 

Note that the crest of the top trace represents the center of the stem 

region while the middle portion of the bottom trace represents the 

trough, bounded by a stem crest at either end. The center traces rep- 

resent the saddle area connecting the stems of adjacent parallekograms, 

A clearer example of the saddle region is shown in Figure 5-90, where 

the traces of experiment CN2015 are shown (the photograph corresponding 

to CN2015 can be seen in Appendix B ) .  The distinct double peaks of the 

saddle region are easily identified in this figure, 

A means sf analyzing the complex three-dimensional wave pattern in 

a way which was both concise and definitive was developed, based on the 

above two-dimensional slice presentation. Employing this approach, an 

exact KP solution was evaluated at nine y-locations, corresponding to 

the locations 0% each of the nine wave gages within a comon half-period 

parallelogram. This procedure yielded a set of nine two-dimensional 

slices through the wave pattern which provided a horizontal and vertical 

definition for the overall wave which esuld be utilized for further 

analysis of the data in a quantitative sense. For example, a trace sf 



OIDQL T E S T  CN3007 

Figure  5.9 S i x t e e n  MP wave p r o f i l e s  for the  half-paraklelogrm 
s o l u t i o n  c o r r e s p ~ n d i n g  t o  exper iment  CN3007 
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Figure 5.10 Sixteen KP wave profiles for the half-parallelogram 
solution corresponding to experiment CN2045 



solutions was computed such that an exact solution was computed to 

correspond to the data sampling rate of 50 samples per second for the 

measured period of each experimental wave. This computation yielded a 

set of computed wave elevations which were directly comparable in time 

(point by point) to the collected wave gage data, This permits the use 

sf standard data analysis techniques for comparing the two sets of 

data, The chosen comparison was a root-mean-square (rms) analysis which 

defined the rrns error between the experimental data and the observed 

data as 

where N represents the total number of points in the time series, An 

average rms error was also computed as the arithmetic mean, or average, 

sf the nine individual rrns values so that a comparison of the overall 

fit for each experimental wave could be made. The rrns error approach 

for comparing two time series of data requires the seleckion of a single 

period of data from the 30.0 seconds sf data sampled for each experi- 

mental wave. The criteria for selecting this "typical" wave will be 

discussed in the following section. In both examples presented, the 

free parmeters 0% t he  solution have been optimized. The following 

paragraphs demonstrate this optimization process, 

The generation of an exact genus 2 solution c~rresponding t o  an 

observed wave field requires the specification of b, u ,  and X 

describing that wave field. The mosaic photographs are used to estimate 



v ,  v ,  and A .  The maximum observed wave height and the wave period 

T are determined from the wave gages. The direct use of this data 

results in an overspecification of the problem. An iteration scheme was 

therefore developed to converge on a solution which is consistent with 

all of the data, within the specified limits of accuracy. The following 

iteration procedure is effectively used to optimize each of the free 

parameters for each of the twelve experiments. 

a. The estimated values for v,  and A were determined from 

the photographs. The nondynamical parameters "'10 and "'20 

were initialized by requiring the solutions to be computed at 

specified locations within the period parallelogram correspond- 

ing to the location of the wave gages. A single wave period 

was selected from the wave records. The selection of this 

single period will be discussed in the following section. A 

value of b was then selected such that the dimensionalized 

maximum KP solution (from Equation 5.6) was within 5.0% of the 

maximum measured elevation at a wave gage whose location is 

nearest to the center of the stem region where maximum wave 

elevations occur. 

b. The value of v ,  = was adjusted, if necessary, until the 
v2 

dimensionalized period (from Equation 5.7) was within 3.0% 

of the measured period corresponding to the wave gage used in 

Step a. for determining a maximum elevation. 

c. The value of A was adjusted, if necessary, until the dimen- 

sionalized value of v 1 = -')2 
yielded a wavelength for the 

computed period parallelogram which was within 10.0% of the 

value estimated from the mosaic photographs. A 10-percent 



criterion was used for this iteration because the length of the 

parablelogran was difficult to determine accurately from the 

photographs, 

d. Because of the nonlinear coupling of the solution with its 

parameters, each adjustment affected all parameters to some 

extent, If corrections were found to be necessary, Steps a, 

bhrough c. were repeated until all of the computed parameters 

were within the specified tolerances. An interactive program 

was written to make the computations and comparisons required 

for this iteration procedure. 

e. A RP solution for each of the wave gages was calculated. A 

normalized plot comparing theory to measurements at the nine 

gage locations was made. A11 comparisons are shown in Fig- 

ures $-3 of Appendix B e  Included in each plot is the rms error 

for each wave trace. Possible phasing problems regarding the 

gage locations within the parallelogram were rectified by 

adjusting the nundynmical phase parameters. 

%. A normalized contour map and a three-dimensional view for each 

wave field was finally prepared as a visual demonstration sf 

the KP solution. Contour plots and three-dimensional view 

plots for each of the experimental wave are presented in 

Figures B . 4  of Appendix B. 

The above procedures were followed for each of the test wave fields of 

Table 4.1, A minimm tolerance of 5.8% for waveheight, 3.0% for period; 

and 18,0% for the y-direction wavelength was satisified in a l l  experi- 

ments. Section 5.4 presents and discusses these results, 



5.4 Presen ta t i on  and Discussion o f  Resu l t s  

The comparisons mentioned i n  Sec t ion  5 .3  between t h e  genus 2 

s o l u t i o n s  and t h e  observed waves f o r  t h e  experiments CN3007 and CN2015 

a r e  presen ted  i n  F igu re s  5.11 and 5.12. Note t h a t  f o r  each gage,  t h e  

genus 2 s o l u t i o n  is shown by a s o l i d  l i n e  and experimental  d a t a  a r e  

i n d i c a t e d  by a s t e r i s k s .  Each gage comparison has  a corresponding rms 

e r r o r  a s s o c i a t e d  wi th  it t o  provide a measure o f  t h e  accuracy o f  f i t .  

In  F igure  5.11, t h e  rms e r r o r  v a r i e s  from a va lue  o f  0.077 ( i . e .  which 

can be i n t e r p r e t e d  as a 7.7% e r r o r )  f o r  gage 9 t o  0.263 f o r  gage 5. 

Figure  5.12 shows a range o f  from 0.038 f o r  gage 4 t o  0.203 f o r  gage 2 

f o r  expemiment 0 1 5 .  Each comparison is based on t h e  d e v i a t i o n  

between t h e  computed s o l u t i o n  and t h e  measured wave p r o f i l e ;  hence, 

agreement r e q u i r e s  t h a t  both h e i g h t s  and phases match. A d i f f i c u l t  a r e a  

t o  match is t h e  s a d d l e  reg ion  i n  which t h e  wave h e i g h t s  a r e  low and t h e  

phasing is complicated s i n c e  two wave c r e s t s  a r e  experienced per  wave 

pe r iod .  For t h i s  reason ,  t h e  rms e r r o r  i n  t h e  s add le  reg ion  is o f t e n  

h igher  ( i n d i c a t i n g  a poorer  f i t )  than i n  t h e  stem reg ion .  Examples can 

be seen i n  t h e  t r a c e s  o f  F igures  5.11 and 5,42 a s  wel l  a s  f o r  @he o t h e r  

experiments  shown i n  Appendix B.  The rms va lues  i n  F igure  5.91 f o r  

gages 3 and 7 ,  which are loca t ed  i n  t h e  s add le  r eg ion ,  a r e  h igher  than  

those  f o r  gages 8 and 9 l o c a t e d  i n  t h e  stem. S i m i l a r i l y ,  t h e  l a r g e  

e r r o r s  f o r  gages 1 and 2 o f  CN2015 i n d i c a t e  t h a t  t h e i r  l o c a t i o n  is i n  

t h e  s a d d l e  r eg ion ,  When t h e  wave e l e v a t i o n s  a r e  small, as i n  gage 3 o f  

F igure  5.99, disagreement  is o f t e n  n o t  as obvious from t h e  rms value as 

it is i n  t h e  stem reg ion ,  In  the  sadd le  reg ion ,  a l a r g e  d e v i a t i o n  from 

a small number has  less impact than a small d e v i a t i o n  from a l a r g e  

number i n  t h e  stem. The e f f e c t  o f  small waves on t h e  e r r o r  estimates 
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can be seen in a comparison of gages 1 and 3 of Figure 5.49, Gage 1 

shows an error of 0,184 while the visually poorer agreement of gage 3 

indicates a better error estimate of 0.163. The rms error values for 

each gage and for each experiment are presented in Figures B,3 in the 

Appendix B .  

Following optimizing of solution parameters for each experimental 

wave, a normalized contour map and a three-dimensional perspective view 

of the computed genus 2 solution was prepared to demonstrate its fea- 

tures. The results for experiments CN30Q7 and CN2015 are shown in Fig- 

ures 5.13 through 5.16. In each figure, the saddle and stem regions can 

be identified and compared to the respective mosaic photograph in Wppen- 

dix B, 

Figure 5.13 Normalized contour map of the theoretical solution for 
experiment CN3007 



Figure 5.14 Three-dimensional view of the theoretical solution for 
experiment CN3007 

m 

Figure 5.45 Normalized contour map of the theoretical solution for 
experiment CM2015 



Figure 5.16 Three-dimensional view of the theoretical solution for 
experiment CN2Q15 

The free parameters and the computed dependent variables of the 

exact genus 2 KP solution for each of the twelve experiments are 

presented in Table 5.1. Several observations can be made concerning 

these parameters. For example, it can be seen that the parameter b 

increases (becomes less negative) with the angle of intersection and 

with wavelength. Angle effects can be seen within each grouping of 

experiments. The nominal 7-foot tests, for example, show a change from 

-6,200 for CM1007 to -5.150 for CN4007. The effect of the wavelength 

can be seen in the change from the 7- to the 15-foot tests in which the 

value changes from approximately -6.0 to -3.5. Results indicate that 

waves become linear as wavelengths and angles increase. A similar indi- 

cation of the reduction in wave-wave interactions is shown by the values 

of A . Experiment CN1007 indicates a value outside the limits shown by 



Table 5.1 Free parameters of the genus 2 KP solution for the 
experimental program 

Genus 2 Parameters 
Experiment b X IJ v w fmax 

CN1015 -3.850 0.340 0.420 -0.106 -0. I00 0.323 
CN1515 -3.600 0.145 0.390 -0.193 -0.307 0.342 
CN20 1 5 -3.400 0.105 0.367 -0.217 -0.409 0.346 

SF to be required of a basic Riemann matrix. The criterion of SF spe- 

cifies a limit of +/- 0.5,  although the experiments all indicate a 

positive value indicating a positive phase shift. It appears therefore 

that the +/- 0.5 criterion can be shifted to a 0.0 to 1.0 limit without 

loss of generality. The values of IJ merely indicate that the x- 

direction wavelengths are increasing with increasing cnoi.da1 wavelength 

as would be expected. 

The dependent variables ( v ,  w ,  and fmax) reflect the changes in 

the independent parameters. It can be seen from Table 5.1 that the y- 

direction wavenumber (u) decreases as the wave interactions become less. 

The correlation with the parameter X can be seen in each set of exper- 

iments. An interesting trend in the angular frequency is shown, As the 

y-direction wavelength increases (as shown by a corresponding decrease 



in v ) ,  the value of the angular frequency w necessarily decreases 

according to Equation 5.7. Otherwise, the measured wave period will not 

be duplicated by the computed wave. As an example, a positive value sf 

+0.025 for experiment CN1011 is required to balance the effect of the 

p value of 0.585 in order to arrive at a computed period equivalent to 

the measured period of 1.947 seconds. A11 other values can be seen to 

be negative and decrease with decreasing . As previously stated, 

maximum wave elevations were maintained relatively constant as shown by 

the fmax values. 

The computed values of v ,  w ,  and fmax form the basis of the 

optimization algorithm since it was their values which were used for the 

comparison with laboratory measured wave characteristics, For example, 

h was used to compute a y-dimension wavelength which was required to be 

accurate to within 18% sf the measured value, A 5% criterion was estab- 

lished for the deviation of the maximum wave height computed from fmax 

and the measured elevation and a 3% error limit was set for differences 

in the measured period and the period computed from v ,  The degree of 

success achieved with this solution algorithm can be seen in Table 5 - 2  

in which a comparison of these consistency checks is listed. 

The specified tolerances were maintained for each experiment as 

can be computed from the n~easured/computed comparisons, Included in 

Table 5,2 is an alternate estimate of overall error, the total rms 

value, defined as shown below. This formulation was included as an 

alternate indicator of error to the average rms value shown in Pig- 

ures B . 3 .  



Table 5.2 Comparison of measured and computed 
wave parameters 

measured/computed total 
Experiment y-wavelength maximum elevation period RMS 

(ft) ( ins) (set) error 

Examination of the results shown in Tables 5.1 and 5.2 show that the 

computed error between observed waves and genus 2 solutions never 

exceeds 20%. The nominal 15-foot wavelength experiments ( C N 1 0 1 5 ,  

C N 1 5 1 5 ,  and C N 2 0 1 5 ) ,  which were shown to be the most weakly nonlinear 

according to the values of b, showed errors of only about 10%. Rms 

errors of this magnitude are acceptable since variations in the eleva- 

tion of the basin floor are documented to be on the order of 10% o f  the 

water depth and some of the waves were observed to be near the point of 

breaking. Examination of the single cnoidal wave shown in Figure 4.10 

shows a 25% variation in the wave envelope. A similar error analysis 

for the cnoidal wave would show at least the same order of magnitude as 

seen in the KP waves. In view of the physical size of the facility and 

the known sources of potential contamination of the wave form, an 



accuracy of 20% for a three-dimensional wavp form is considered very 

good and is, in fact, better than anticipated, 

The method sf analysis leading to the results in Tables 5.1 and 5.2 

makes use of a single period of measured wave data from a 30,O second 

record, In order to show that this analysis technique does provide a 

definitive comparison, it remains to be demonstrated that this chosen 

wave is typical sf all waves in the record. 

A certain mount of variation in the shape of the experimental 

waves was discussed From the standpoint of the rms error analysis. 

Some of this variation is due to the startup of the wavemaker which can 

be seen in the beginning of several of the wave traces shown in Fig- 

ures B,2 ,  In addition, reflections from the sidewalls and the shoaling 

effects previously mentioned affect the wave shape. In consideration sf 

ali of these factors, the wave period to be analyzed in detail was se- 

bected by looking at the wave traces sf the nine gages for each expesi- 

mental wave and choosing a single period which appeared to be fully 

developed. This region was generally evidenced by the evolution of the 

two distinct peaks per period in the saddle region, These dual peak 

regions are clearly visible in the wave traces shown in Figures B . 2 .  

The periods selected for analysis are considered t o  be typical for 

the fully developed wave region. In an attempt to quantify this state- 

ment, an average rms error was computed for a composite wave calculated 

by averaging (in time) the selected wave plus 5 adjacent (either pre- 

ceding or following) wave periods to produce a single composite period 

of data, This resulted in an analysis of 8,27 seconds of data for the 

nominal 7,U E t  wavelengths, 11,68 seconds for the 11 ,O  ft wavelengths, 

and 15.32 seconds for the 15.0 ft wavelengths. Table 5 - 3  shows the 



Table 5.3 Comparison of the average R W  error for the typical 
wave and the composite wave 

typical wave typical wave composite wave 
Experiment start time (secs) average RMS error average RMS error 

beginning time for each typical wave (see Figures B.2) in each experi- 

ment, the average rms error of the typical wave, and the average rms 

error of the composite wave. Results in Table 5.3 show that the average 

rms error computed for the composite wave is essentially identical to 

that computed for the typical wave, with one exception. The typical 

wave selected for experiment CN3011 appears to have been sampled during 

the generation ramp, thereby introducing error into the composite wave 

comparison, The discrepancy can be seen in the average rms error values 

in which the typical wave shows a value of 0.172 and the composite wave 

shows 0.245. Inspection sf the wave trace for experiment CN3011 shown 

in Figure B.2i reveals that a starting time of 3.18 seconds was too 

early in the data series for a typical to composite wave comparison to 

be meaningful. With this exception, the results show that the typical 



wave used for the data comparisons is representative of the wave trace. 

Therefore, the analyses performed and reported are valid. 

The results shown in Tables 5.1 and 5.2 quantify the capability of 

the genus 2 solutions to model the vertical and horizontal distribution 

of the twelve experimentally generated wave fields, Table 5,3  shows 

that these comparisons are representative of the entire generated wave, 

It now remains to be shown that the generated wave fields represent a 

broad range of conditions and that the comparisons between theory and 

measurement represent a comprehensive data base for testing the MP 

equation. If the KP equation proves to be capable of predicting a large 

variety of waves, its potential applicability for addressing relevant 

problems may be significant. To accomplish this, each wave field can be 

categorized as to its degree of nonlinearity, dispersiveness, or three- 

dimensionality by looking at the numerical values computed for each of 

the small parameters used in the scaling of the equation shown in Chap- 

ter 3. The applicability of the genus 2 solutions to model a variety of 

waves can then be assessed by considering the error estimates for each 

of the generated wave fields in view of these c~mputed parameters, 

The original derivation of the WP equation was based on the assumed 

smahbness of each of its scaling parameters, i.e. weakly nonlinear, 

weakly dispersive, and weakly three-dimensional, An equation with the 

ability ko provide an accurate description of the waves when the under- 

lying assmptions of its derivation are met, but still provide an ac- 

ceptable prediction when the assumptions are moderately violated, can 

be referred to as robust, Robustness is a highly desirable quality of 

a wave model since it demonstrates the capacity of the equation %s 

acceptably reproduce a wide class of waves, Table 5.4 presents %be 



Table 5.4 Small parameters defining nonlinearity, dispersiveness, and 
three-dimensionality for the experimental program 

Experiment 
a B = (kh) 2 E = ( y )  a / @  rms error 2 total 

a = -  
h 

small parameters computed for each of the twelve wavefields: 

a representing nonlinearity, B representing dispersion, E 

representing three-dimensionality, and the ratio a / @  representing the 

relative effects of nonlinearity and dispersion (comparable to the 

Ursell number). 

Table 5.4 indicates that the nonlinear parameter a, shows the 

least amount of variation throughout the wave tests. A low value of 

0.203 for experiment CN1007 and a maximum value of 0.299 was measured 

for experiment CN1507. The narrow range of a is not significant in 

these tests. It is the one parameter which could not be varied beyond a 

very limited range, due to the method of generation. The experimental 

waves were evolved by combining cnoidal wave trains with wavelengths 

varying from 7 to 15 ft and a variety of angles of intersection. Each 



cnoidal wave was generated with a maximum wave elevation of approxf- 

mately 1.0 inch. This maximum elevation was used for the generation of 

all cnoidal wave trains because it was found that larger waves broke for 

the short wavelength tests (i.e. tests CN3007 through CN3840) while 

smaller waves were barely visible in the mosaic photographs of the 

15 foot wavelength tests (CN1507 through CM1520), For this reason, the 

range of maximm elevation is necessarily limited. It can be seen, 

however, that the parmeter a is not particularly applicable to these 

three-dimensional waves since a strong degree of nonlinearity can be 

seen in the mosaics of the 7-foot waves in which almost all waves can be 

seen to be on %he verge of breaking in the stem region, 

The second parmeter, B ,  provides a measure of wave dispersion 

and is used to categorize a flow as deep or shallow. Results shown in 

Table 5.4 indicate almost an order-of-magnitude range for %his parm- 

eter. For example, experiment CN1007 was measured at 0.810 and experi- 

ment CN2015 showed a value of 0.135. Since all values are in the 

shallow-water regime, it can be concluded that the experimental program 

covers a broad range of shallow-waker conditions. 

The third parmeter represents the most important aspect of the 

present study since it provides a quantitative description of the three- 

dimensional structure of the waves. This parameter provides the means 

of actually quantifying the capability of the KP equation to model a 

genuinely three-dimensional flow, Results rep~kted in Table 5.4 show 

that the generabed wave fields exhibited a strong three-dimensional 

structure whose descriptive parmeters spread over an order sf magni- 

tude, Experiment CM1007 showed the least amount of three-dimensionality 

as indicated by the value of 0.022, A maxinium value of 0,414 was 



measured for experiment CN4007. The assumption of weakly three- 

dimensional is clearly violated by this latter figure since it indicates 

the wave to be almost equally structured in both principal directions. 

The computed error for this test is, however, only 19.1%. Experiments 

CN3011 and CN2015 also show a high degree of three-dimensional structure 

which surpasses the weak assumption. The error for these experiments is 

computed to be just 18.2% and 11.4% respectively. The fact that the 

genus 2 solutions are capable of modeling these waves to the reported 

accuracy certainly shows the KP equation to be robust in its ability to 

accurately model a three-dimensional wave field. 

A final calculation is shown in order to demonstrate that the 

observed permanent form waves have an Ursell parameter of order unity. 

The ratio of a/B represents the ratio of nonlinearity to dispersive- 

ness reported by Ursell. Ursell showed that this ratio is of order 

unity for a permanent form wave. Table 4.5 shows this value to be in 

the range of 0.25 1 (CN1007) to 1.763 (CN2015) . 
In addition to an evaluation of the scaling parameters, several 

observations can be made regarding the experimental wave fields which 

demonstrate the robustness of the laboratory waves. For example, it was 

stated that during the wave generation phase, the maximum specified wave 

elevations for the component waves had to be reduced because the evolved 

waves were breaking. Even when they did break, the wave crests reformed 

and the horizontal integrity of the hexagonal pattern was retained. Mot 

only did the generated waves prove to be stable to a variety sf gesme- 

trical configurations, they were also observed to be stable to several 

sources of external perturbation, For example, variations in the depth 

of flow shown in Figure 4.1 were shown to produce wave height variations 



of 25%. Also; reflections from sidewalls, the fact that the correct 

wave was not generated but evolved, the 18 second generation ramp, etc., 

all contributed to a small spatial variability in the experimental 

waves, Although these extraneous sources of error are known to exist 

(but could not be corrected), the waves always retain their basic 

qualitative features with the observed perturbations maintained about 

these fixed wave features. 

The results of the laboratory phase of the investigation show that 

stable three-dimensional nonlinear wave forms were successfully produced 

in the wave basin which are qualitatively similar to the genus 2 solu- 

tions of the KP equation. These wave forms were evolved by simultan- 

eously generating two cnoidal wave trains of variable wavelength at 

symmetrical angles of intersection to the wave generator. The wave- 

lengths and angles of intersection used to produce these wavefields are 

presented in Table 4,1. The wave forms were observed to evolve into 

genus 2-like hexagonal surface patterns almost immediately after leaving 

the wave generator paddles, All wave forms were shown to be extremely 

stable with respect to both variations in the basic wave components and 

to perturbations to the evolved wave. Examples of this stability are 

evident in the photographs shown in Figures B . 1  and in the wave gage 

traces shown in Figures B.2. A correspondence between the three free 

parameters of the genus 2 solution was developed and described, The 

resulting exact solutions were compared with their respective laboratory 

waves. Quantitative comparisons between the con~puted solutions and the 

observed waves were provided by means of an rms error analysis. Results 

sf that analysis show th& KR equation to be capable of accurakely 

modeling genuinely three-dimensional, nonlinear, waves in shallow water. 



CHAPTER 6 

CONCLUSIONS 

A new class of genuinely three-dimensional, nonlinear, shallow 

water waves is reported herein. These new waves are produced in the 

laboratory by the simultaneous generation of obliquely intersecting 

cnoidal wave trains. The generation procedure requires the use of a 

large-scale directional spectral wave generation facility. The result- 

ing wave pattern resembles a tiling of uniformly sized, permanent form, 

hexagonal surface wave patterns. Wave crests defining the hexagonal 

pattern consists of stems of interaction, resulting from the nonlinear 

interaction of the two component cnoidal waves, and saddle regions 

connecting forward and rearward adjacent stems. Wave heights along 

these crests vary from a maximum in the stem region to a minimum in the 

saddle area. These waves are stable and possess the qualitative fea- 

tures given by exact solutions to the Kadomtsev-Petviashvili (Kg) equa- 

tion. The KP equation has been shown to admit an infinitely dimensional 

family of exact solutions in terms of Riemann theta functions of genus 

N. The soLutions of interest are the genus 2 solutions. These exact 

solutions are bigeriodic in the sense that they have two independent 

periods in both space and time. 

A comprehensive laboratory investigation is described which demon- 

strates that the genus 2 solutions of the KP equation quantitatively 

describe the features of these new waves. Experiments are reported in 



which twelve wave fields are evolved through the discrete generation of 

cnoidal wave trains of various wavelengths and at various angles of 

intersection. The horizontal and vertical structure of each experi- 

mental wave is quantified by overhead mosaic photography and by a Linear 

array of nine resistance-type recording wave gages. A wide range of 

variability in size and shape of the repetitive wave pattern is achieved 

in order to fully test the limits of applicability of KP theory. 

General genus 2 solutions of the KP equation require the specifica- 

tion of eight free parameters, two of which are nondynmical in nature. 

A subset of this general solution is tested by the generation of equal 

and symmetric (with respect to the axis of the wave generator) component 

waves. Symmetry introduces three constraints which seduce the required 

number of free parameters to five, three dynm~i.cal and two nondynami- 

cal, Verification of the KP equation using twelve wave fields therefore 

requires the development of a unique correspondence between the three 

free solution parameters and the physical characteristics of the labo- 

ratory generated waves. The experimental procedure reported here 

utilizes the maximurn measured wave elevation in the stem, the measured 

wave period, and the measured y-direction wavelength of the repetitive 

surface pattern to compute and optimize the 3 free parameters, 

Results of this investigation show that a reasonable agreement was 

achieved between all experimental waves and their respective optimized 

exact solutions. Accuracy of the theoretical solution %it was quanti- 

fied by rms error computations between experimental data at each wave 

gage and exact solutions corresponding to the location sf each gage. 

Total error estimates for each experiment, computed from the individual 

gage rms values, varied from 9,Q$ to 19.8% over the entire range sf 



data. The following sources of contamination are known to have contrib- 

uted to these discrepancies. Variations in the nominally 1 ft water 

depth were measured to be 10%. Wave reflections from the sidewalls were 

observed to occur following wave generation, and wave fields were gener- 

ated which clearly violated the basic assumptions of weak nonlinearity, 

weak dispersiveness, and weak three-dimensionality used in the deriva- 

tion of the KP equation (several of the wave fields were on the verge 

of breaking while others evolved from waves intersecting at nearly 40 

degrees). In view of these sources of error, the measured agreement is 

considered excellent. 



APPENDIX A 

ELLIPTIC FUNCTION SOLUTIONS TO THE KdV EQUATION 

The generation of the nonlinear surface wave patterns for this 

project required the computation of the "cnN Jacobian elliptic function, 

the complete elliptic integrals of the first and second kinds, and the 

incomplete elliptic integral of the second type. Due to the importance 

of these functions in the generation of waves, the solution techniques 

used for their ca1,culation are described below. 

The cn Jacobian elliptic function calculation was based on the 

reference parameters shown on Figure A.1. 

Figure A.4 Schematic diagram sf the fluid boundary 

1 a8 



The following relationships, presented by Hammack (19851, were used to 

define the cn function: 

where E(m) and K(m) represent the complete elliptic integrals of the 

first and second type. The known wave characteristics are the wave- 

length X and the peak wave height above mean water nl. Com- 

putationally, an initial value for the elliptic parameter m is 

selected as 0.5. The complete integrals of the first and second type 

are then computed, corresponding to this m, from the following 

representation presented by Abramowitz and Stegun (1970): 



where the complementary elliptic parameter ml is defined as 

A value for q can now be computed from equation A . 4  for the trial 3 
value of m. A wave length X can then be computed and compared to the 

known wavelength value. An iterative solution is now used to determine 

an m value which will produce a wavelength that matches the input 

value to some desired degree of accuracy. W e n  this criteria has been 

satisified, all of the arguments of equation A - 1  are determined. Con- 

solidation of equations A . 1  through A.5 results in the following compact 

definition: 

where the elliptic argument is defined as 

The procedure for computing the cn function, once the arguments have 

been determined, was based on the procedure given by MiLne-Thompsorl 

(1950). The algorithm used makes use of a known nonlinear wave property 

that the elliptic parameter m approaches unity as the wave becomes 

more nonlinear (in contrast, m=O is a property of a linear sinusoidal 

wave shape). Since only nonlinear wave shapes with a high m value 

were of interest, the f~llswing approximations were used to compute the 

%n, en, and dn functions: 
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1 2 sn(u1m) = tan u + - m sech u (sinh u cosh u - u) 4 1 

I cn(u1rn) = sech u - m tanh u sech u (sinh u cosh u- u) 4 1 A.11 

1 dn(u1m) = s e c h u + - m  tanhu sechu(sinhu coshu+u) . A.12 4 1 

The above approximations are only exact when the parameter m is unity. 

The accuracy of this represention for waves with a parameter value less 

than unity can be substantially improved by increasing the parameter 

value by using an ascending Landen transformation. These relationships 

are as shown below. 



where the right hand terms are computed with Equations A.lO, 

A.11, and A.12. The use of the approximations in conjunction with the 

ascending Landen transformation will result in the computation of the 

Jacobian elliptic functions to any desired degree of accuracy. For 

example, a single application will effectively increase an m value of 

0.640 to a value of 0.988. A single transformation was used for all 

wave conditions. 

Computation of the incomplete integral of the second kind, 

E(u lm) , was based on the procedure extracted from Abramowitz and Stegun 
( 1965) and presented by Goring ( 1978). This computational procedure 

begins with the defining of an Arithemetic-Geometric Mean ( A M )  scale as 

follows : 

Computations stop at the nth step when an = bn (i.e. when cn = 0 . )  or 



t o  t h e  degree  o f  accuracy d e s i r e d .  The incomplete i n t e g r a l  can be 

computed i n  t h e  fo l lowing  t h r e e  s t e p s :  

1 .  Define t h e  argument 

where u is t h e  e l l i p t i c  argument def ined  by equa t ion  A.9 and N 

r e p r e s e n t s  t h e  Nth s t e p  o f  t h e  AGM mat r ix .  

2. Compute t h e  a d d i t i o n a l  arguments 

from t h e  r e l a t i o n s h i p  

- 1 
4n- 1 = s i n  ( en  s i n  @n/an)  + 4n /2. 

3 .  Compute t h e  incomplete e l l i p t i c  i n t e g r a l  o f  t h e  second 

type  

E(m)u  c c s i n  4 c c s i n  4  +...+ c s i n  4 ~ ( u l m )  = ---- K(nn) 1 1 2  2 n  n  

A l l  o f  t h e  above numerical r e p r e s e n t a t i o n s  were used i n  t h e  gene ra t i on  

o f  t h e  two-dimensional s u r f a c e  wave p a t t e r n s  wi th  t h e  d i r e c t i o n a l  

s p e c t r a l  wave gene ra to r .  



APPENDIX B 

EXPERIMENTAL DATA AND EXACT GENUS 2 KP SOLUTIONS 
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Figure B.2 Experimental wave profiles. 

a) Experiment CN1007 
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Figure  B.2b Experiment CN1507 
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Figure B.2c Experiment CN2OO4 
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Figure B.4 Normalized contour map and three-dimensional 

view of the KP solutions for the experimental waves. 
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