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Abstract of Dissertation Presented to the
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in Partial Fulfillment of the Requirements
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STABLE, THREE-DIMENSIONAL, BIPERIODIC WAVES
IN SHALLOW WATER

By
Norman Wahl Scheffner
May 1987

Chairman: Joseph L. Hammack, Jr.
Cochairman: Ashish J. Mehta
Major Department: Engineering Sciences

Waves in shallow water are inherently three-dimensional and non-
linear. Experiments are presented herein which demonstrate the exist-
ence of a new class of long water waves which are genuinely three-
dimensional, nonlinear, and of (quasi-) permanent form. These waves are
referred to as biperiodic in that they have two real periods, both tem-
porally and spatially. The waves are produced in the laboratory by the
simultaneous generation of two cnoidal wave trains which intersect at
angles to one another. The resulting surface pattern is represented by
a tiling of hexagonal patterns, each of which is bounded by wave crests
of spatially variable amplitude. Ezperiments are conducted over a wide
range of generation parameters in order to fully document the waves in
the vertical and two horizontal directions. The hexagonal-shaped waves
are remarkably robust, retaining their integrity for maximum wave

heights up to and including breaking and for widely varying horizontal

length scales,

X



The Kadomtsev-Petviashvili (KP) equation is tested as a model for
these biperiodic waves. This equation is the direct three-dimensional
generalization of the famous Korteweg-deVries (KdV) equation for weakly
nonlinear waves in two.dimensions. It is known that the KP equation
admits an infinite dimensional family of periodic solutions which
are defined in terms of Riemann theta functions of genus N. Genus 2
solutions have two real periods and are similar in structure to the
hexagonally-shaped waves observed in the experiments. A methodology is
developed which relates the free parameters of the genus 2 solution to
the temporal and spatial data of the experimentally generated waves.
Comparisons of exact genus 2 solutions with measured data show excellent
agreement over the entire range of experiments. Even though near-
breaking waves and highly three-dimensional wave forms are encountered,
the total rms error between experiment and KP theory never exceeds 20%
although known sources of error are introduced. Hence, the KP equation
appears to be a very robust model of nonlinear, three-dimensional waves
propagating in shallow water, reminiscent of the KdV equation in two

dimensions.
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CHAPTER 1

INTRODUCTION

The propagation of waves in shallow water is a phenomenon of sig-
nificant practical importance. Shallow water waves are especially im-
portant to the field of coastal engineering where their effects on
beaches, harbors, inlets, coastal structures, ete. are both economical
and aesthetic concerns. The ability to model realistic wave character=-
istics such as their vertical height distribution, surface pattern,
fluid velocities, and wave speed is essential for developing engineering
solutions to problems in the coastal zone. Difficulties in making such
predictions arise from the fact that the equations governing the physics
of flow, i.e. the conservation laws of Newtonian physics and the appro-
priate boundary conditions, cannot be solved exactly. The inability to
solve these equations in closed form is due to the nonlinear terms con-
tained in the governing equations. In order to circumvent these diffi-
culties, a variety of simplifying approximations is made. For example,
the nonlinear terms are often neglected, giving rise to a linear wave
theory. Both the omission of nonlinear terms and three-dimensionality
are especially severe restrictions for nearshore problems and result in

solutions which do not realistically model many situations.



Natural waves experience dramatic changes in their appearance as
they propagate from deep water into shallow water regions. In the
shallow areas, the waves become steep with high crests and long shallow
trougha. This transformation in sha?e can be attributed primarily to
the decrease in water depth. Additional boundary conditions, such as
irregular shoreline features, nonuniform variations in bathymetry, and
the presence of coastal structures result in the refraction, diffraction
and reflection of the incident wave; hence, the resulting wave field is
not only nonlinear in shape but also spatially three-dimensional. For
wave fields which can be reasonably approximated in twc dimensions,
cnoidal wave theory, first published by Korteweg and deVries (KdV) in
1895, has been found to be descriptive of the nonlinear features ob-
served in shallow water. The linear wave approximation, most commonly
used for three-dimensional coastal engineering applications, assumes
that the nonlinear terms in the governing equations are negligible.
Unfortunately, this theory does not predict the nonlinear three-
dimensional Teatures which are often of importance in shallow water
regions. Therefore, a realistic analytical model which describes both
nonlinear and three-dimensional waves in shallow water is not available
currently.

A recent advance in the theoretical description of three-
dimensional, nonlinear waves in shallow water is presented by Segur
and Finkel (SF, 1985). They present an explicit, analytiecal solution
for three-dimensional, weakly nonlinear wave forms. These solutions
are biperiodic in that the waves have two independent spatial and
temporal periods. Biperiodic waves are an exact solution of the

Kadomtsev-Petviashvili equation (KP, 1970) and represent a natural



three-dimensional generalization of the two-dimensional cnoidal waves
of the KdV equation.

The analytical solution of the KP equation described by Segur and
Finkel represents a somewhat abstract mathematical formulation which has
never been applied to actual wavefields. If, in fact, these solutions
model nonlinear waves accurately, they will represent a significant ad-
vancement in the field of nonlinear wave mechanics and a powerful new
tool for the coastal engineer. Herein are presented laboratory experi-
ments which document the existence of a new class of long water waves
which are truly three-dimensional, biperiodic and nonlinear. The exper-
imentally generated waves are used to test the validity of the KP solu-
tions presented by SF. In order to verify these solutions as a model
for the experimental wave fields, the mathematical parameters of the
exact solution first must be related to the physical characteristics of
the waves measured in the laboratory. Secondly, an experimental program
must be developed that provides a reasonably comprehensive test of KP
theory. Additionally, parameter limits are sought in order to establish
the stability and range of applicability of the biperiodic solutions,

An experimental test of the KP equation as a viable model for
three-dimensional, periodic, and nonlinear waves requires the success-
ful completion of several tasks. For example, even though the qualita-
tive features of the surface pattern for biperiodic waves are documented
by Segur and Finkel, procedures are not available which would provide a
formal basis for applying KP theory to practical situations. Instead,
SF present a series of conjectures which suggest a methodology for in-
ferring the free mathematical parameters of the exact solution from

certain physical measurements of an observed three-dimensional wave



field. An initial task of this study is to utilize the conjectures

of 8F and develop a technique for calculating exact KP solutions from
measured wave characteristics. Secondly, an experimental laboratory
program is developed for generating ﬁhreeodimensional waves (with two-
dimensional surface patterns) which are qualitatively similar to those
presented by Segur and Finkel. Following the generation of the proper
wave patterns, a methodology is developed for measuring the spatial and
temporal characteristics of the wave field necessary for determining the
solution parameters. Finally, a comparison of measured data and best-
fit theoretical solutions is made in order to establish the stability
and range of validity of KP theory over a wide parameter range.

A brief review of two-dimensional nonlinear wave theory in shallow
water is presented in Chapter 2 in order to provide a proper perspective
for the extension of the theory into three dimensions. This chapter
begins with a discussion of the first experimental documentation of per-
manent form shallow water waves by John Scott Russell in 1844, The for-
mal derivation of the KP equation is presented in Chapter 3. The exact
biperiodic solutions presented by Segur and Finkel (1985) are also de-
scribed in this chapter. Chapter 4 describes the laboratory facilities
and the experimental procedures developed in order to accomplish the
goals of this study. The experimental procedures include the method
used to generate three-dimensional wave patterns and the data acquisi-
tion techniques employed to quantify the resulting wave fields. A
methodology for relating KP theory to wave measurements is presented in
Chapter 5. This chapter includes an investigation of the parameters
in the KP solution and their relationship to experimental wave charac-

teristics. Conclusions of this study are presented in Chapter 6. A



presentation of the elliptic functions used for the generation of waves
in the laboratory is shown in Appendix A. All of the spatial and

temporal data used in this study are presented in Appendix B.



CHAPTER 2

LITERATURE REVIEW

In the middle 1800s, a controversy arose as to whether or not a
single, localized wave of elevation could propagate at constant velocity
with permanent form, neither steepening nor dispersing. The argument
was prompted by the observation in 1834 and subsequent laboratory veri-
fication in 1844 of a permanent-form wave by John Scott Russell. This
wave has since been termed the "solitary wave" and, more recently, a
"soliton." At that time, no known mathematical solutions for the equa-
tions of fluid motion existed which adequately described the solitary
wave. Linear (inviscid) theory described a wave form which dispersed
into sinusoidal spectral components because of the dependence of the
computed phase speed on the wave length. Although these waves were of
permanent form, they were not of the shape observed by Russell. The
existing theory advocated by Airy did account for nonlinearity but did
not account for dispersion of the wave. This theory described waves of
elevation which steepened in time but did not disperse; i.e., they were
not of permanent form and contradicted Russell's observations. Even
though Russell meticulously documented the existence of the solitary
wave, his findings were essentially ignored by Airy. 1In fact, a certain
amount of contemptuocusness and jealousy appears to have existed between
the two scientists because in 1845, just one year after Russell's labo-

ratory verification, Airy published a theory of long waves in which he



specifically addressed the propagation of small-but-finite amplitude
waves., Airy's interest in the subject was somewhat biased in that his
wave theory did not admit permanent form solutions. His attitude was
reflected in the published theory in thch he concluded that solitary
waves of permanent form, such as those reported by Russell, do not
exist!

Fortunately, mathematicians and fluid mechanicians other than Airy
were interested in the solitary wave which seemed to contradict all pre-
viously existing theories of fluid motion. Subsequently, intense ef-
forts were directed at deriving an approximate governing equation which
would successfully model the waves observed by Russell. During this
time, several theories were advanced which explained the existence of
solitary waves. Boussinesq in 1871 and, independently, Rayleigh in 1876
first derived theories which admitted solitary waves as solutions. The
most concise mathematical treatment for the solitary wave was presented
in 1895 by Korteweg and deVries. They derived an approximate evolution
equation for a wave field which admits both solitary and periodic solu-
tions. This remarkable equation is now known as the Korteweg-deVries

(KdV) equation and has the form

fﬁ+6ff§+f =0, 2.1

K&K

The KdV equation was derived as a model for the propagation of a wave
which is both weakly nonlinear and weakly dispersive. In the nondi-

mensionalized equation 2.1, f represents a suitably scaled wave



amplitude, Y is time and % is the direction of wave propagation.
The periodic solutions of the KdV equation were termed '"cnoidal waves"
(in analogy with sinusoidal waves) by Korteweg and deVries. These

periodic solutions can be written in the following form:

f(ﬁ,{t\}) = 202m2 Cn2 (Y’m) - 20 [Eggg - 1 + m] 2.2

where cn is the Jacobian elliptic cosine function and y 1is a phase
argument (to be described at a later point). The functions K{m) and
E(m) represent the complete elliptical integrals of the first and
second kind. The argument m 1s the Jacobian elliptical parameter with
a modulus of the form 0 < m < 1 . The amplitude parameter o is the

following function of the nondimensionalized wavelength A :

(A presentation of the complete cnoidal wave solution in an alternate,
but equivalent, form of Equation 2.2 is made in Appendix A.) The above
solution recovers sinusoidal waves as m approaches zero. As the wave-
length becomes infinitely large, m approaches unity and the solitary

wave solution is recovered with the form

£(4,%) = sech®(y) . 2.3



The specific point of interest here is that the exact periodic solution
is written completely in terms of well-known analytic functions and can
therefore be used for analyzing the characteristies of naturally occur-
ring two-dimensional waves. The practical application of cnoidal wave
theory was recognized by Wiegel (1960) who developed a set of figures
which made the calculation of cnoidal wave solutions in terms of mea-
surable wave quantities an easy task. This development was a signifi-
cant contribution to the field of coastal and oceanographic engineer-
ing since it provided design engineers with the first usable two-
dimensional, nonlinear, shallow water wave model. Until this time,
linear wave theory was used primarily for the majority of coastal
applications, regardless of its applicability to the problem. Even
though cnoidal wave theory is only two-dimensional, descriptive of one-
dimensional or long-crested waves, a marked improvement over linear
solutions was made possible for the practicing engineer,

The development of an adequate understanding of solitary (aperi-
odic) and cnoidal (periodic) waves required about 50 years, extending
from Russell's observations to the publication of KdV theory. The
explanation given by KdV for the existence of the soliton wave was then
apparently overlooked by most subsequent researchers. This lack of
understanding is evidenced in the literature as manifest by the refer-
ences to the "long wave paradox" which guestions the theoretical basis
for the propagation of a nonlinear wave that neither steepens nor dis-
perses. Ursell (1953), apparently unaware of the results of Korteweg
and deVries, provided a clear explanation of this paradox in terms of

the parameter (now referred to as the Ursell parameter),
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In equation 2.4, a 1is a dimensional measure of wave amplitude, L 1is
the dimensional wavelength, and h is ﬁhe depth of water. Ursell demon-
strated that this parameter represented a ratio of weakly nonlinear
effects (measured by a/h) to weakly dispersive effects (measured by
hg/Lg) which can be used to distinguish between flow regimes. Inter-
pretive examples of the relative magnitude of this parameter are common.
For example, when the wave in question has a Ursell parameter of order
unity, U = 0(1), then the effects of nonlinearity and dispersion are
comparable and a balance is possible between the two effects. A perma-
nent form wave can result when these weak effects are balanced. When
the parameter is small, U < 1, nonlinearity is negligible and the
waves are essentially linear. The wave then disperses inte sinusoidal
components, each of which is a permanent-form solution of linear theory.
When the parameter becomes large, U >> 1, the governing equation is of
the type advocated by Airy (1845) which does not admit permanent form
solutions. These nonlinear waves experience steepening and stretching
due to the effect of the wave amplitude on the wave speed. (This effect
is known as amplitude dispersion.) Since the Ursell parameter does suc-
cessfully predict the flow regime for a wave with given dimensions, it
is commonly used in engineering practice.

It is interesting to note that Ursell was not the first to use the
parameter of Equation 2.4. In fact, the first reference to the Ursell
parameter was much earlier in a paper by Stokes (1847). Stokes demon-
strated that a second-order, permanent-form solution could be derived

for the fluid motion if an approximation method was used in which this
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parameter is taken to be small. Unfortunately, Stokes apparently did
not recognize the significance of his observation for explaining that
the existence of a permanent-form nonlinear wave in shallow wabter was
due to the balance of opposing steepenihg and dispersion effects. For
example, in the same paper, he agreed with Airy's conclusion by making
the statement that "a solitary wave can not be propagated." Although
Stokes later recognized that this conclusion was erroneous, he never
again referred to the parameter. The next reference to the Ursell
parameter was made by Korteweg and deVries (1895) who demonstrated that
their cnoidal wave solutions reduced to Stokes' second-order solution
when the elliptic modulus became small. Furthermore, KdV related the
elliptic modulus of their solution to the Ursell parameter and showed
that a correspondingly small value resulted in a sinusoidal solution.
This differentiation between wave regimes; i.e., cnoidal or sinusoidal,
based on the relative size of the Ursell parameter demonstrated that
Korteweg and deVries were certainly cognizant of the impact of the
parameter on the resulting wave solution.

Following the introduction of the KdV equation with its solitary
and cnoidal solutions, no new applications appear to have been reported
until 1960, at which time the equation re-emerged in a study of
collision-free hydromagnetic waves (Gardner and Morikawa, 1960).
Related studies by Kruskal and Zabusky (1963) again resulted in the
derivation of the equation. It was in this new research context that
physicists and mathematicians began to discover applications of the KdV
equation which would significantly impact the scientific community.
These discoveries led to the formulation and development of the Inverse

Scattering Transform (IST) by Gardner, Green, Kruskal and Miura (1967).
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Their landmark paper outlined a revolutionary solution technique which
can be used to predict the exact number of solitary waves, or "soli-
tons," which emerge from arbitrary aperiodic initial conditions. In
fact, solutions that describe any finité number of interaction solitons
can also be expressed in closed form.

The significance of the IST was far more profound than was initi-
ally realized. Zakharov and Shabat (1972), using a technique introduced
by Lax (1968), demonstrated that the IST provided an exact solution for
the nonlinegar Schrédinger equation, which describes nonlinear waves in
deep water. Their work demonstrated that the solution technique was not
an acclident which was only applicable to the KdV equation. Soon, many
physically significant nonlinear partial differential equations {PDEs)
were found to be solvable by the IST, firmly demonstrating the power and
versatility of the solution technique. Ablowitz, Kaup, Newell, and
Segur {1973,1974) extended the applicability of the transform by
employing Lax's (1968) approach to develop criteria which made it
possible to derive equations which could be solved by the IST. An
enormous amount of theoretical interest had been generated by the
introduction of the transform, so much so, that specialized research
applications were beginning to emerge., One area of particular impor-
tance to the study herein relates to the case of periodic boundary
conditions and solutions.

An important contribution to the theory of nonlinear equations with
periodic boundary conditions was made by McKean and van Moerbeke (1975)
and Marchenke (1977). Their work established a connection between the
spectral theory of operators with periodic coefficients and algebraic

geomebry, the theory of finite-dimensional completely integrable
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Hamiltonian systems and the theory of nonlinear equations of the KdV
type (Dubrovin, 1981). They showed that the KdV equation admitted an
infinitely dimensional family of solutions which could be written in

terms of Riemann theta functions of the form

2
Ay - o 3 .
£(R,8) = 2 e In 8(b,, Wy, <oy Uyi B 2.5

where 6 1is a theta function of genus N. The theta function contains
N one-dimensional (in the horizontal plane) phase variables and a
scalar parameter B. They showed that the genus 1 solution was equi-
valent to the cnoidal solution shown in Equation 2.2 and was the only
permanent form solution of the KdV equation.

The generalization and extension of this theory to three-
dimensional systems was made by Krichever (1976). He developed a
methodology for solving the three-dimensional generalization of the KdV
equation, the Kadomtsev-Petviashvili (KP) equation. This equation,
which was first proposed by KP (1970) and is formally derived in

Chapter 3, can be written in the scaled form:

(£} + 6£Fp + Epa4), + 3699 = O 2.6
where (%,ﬁ) are orthogonal coordinates in the plane of the quiescent

water surface with & representing the primary direction of wave propa-

gation., The equation is based on the assumptions of weak nonlinearity
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and weak dispersion, as in the derivation of the KdV equation, and on
weak three-dimensionality. Each effect is assumed to be of an equal
order of magnitude. The previous statement that the KP equation is a
direct three-dimensional generalization 6? the KdV equation can be
seen. The equation reverts to the KdV equation when no crest-wise or
variations in the §_direction occur.

Krichever (1976) showed that the KP equation admits an infinitely
dimensional family of exact periodic (or quasi-periodic) solutions. The
concepts employed by Krichever in his solution methodology were adapted
and further extended by Dubrovin (1981) in order to express these

periodic solutions in the following form:

A AN 82
£{%,y,t£) = 2 —= 1n 8(m1, P

3 cevs Vs B) 2.7
ax

2,

where 6 is a Riemann theta function of genus N, composed of N two-
dimensional phase variables ¢ and an N X N symmetric Riemann matrix

B. Genus 1 solutions are exactly equivalent to cnoidal waves; i.e.,
they are singly periodic, two-dimensional, nonlinear waves which propa-
pate at some angle to the &-direction. Genus 2 solutions are the sub-
Ject of the investigation herein. These solutions are biperiodic, truly
three-dimensional, nonlinear waves which propagate with permanent form
at a constant velocity. The resulting two-dimensional surface pattern
therefore appears stationary to an observer translating with the waves
at the correct velocity. Genus 3 and higher order solutions are multi-

periodic solubtions which cannot be characterized as permanent form since
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no translating coordinate system exists that allows the solutions to
become stationary.

Dubrovin's detailed treatment of the subject culminated, for our
purposes, in an analysis of the genus 1,.2, and 3 solutions to the KP
equation. He presented a series of theorems, lemmas, and corollaries
which proved the existence and uniqueness of solutions to the KP equa-
tion. He also developed the basic guidelines which are required for
actually constructing genus 1 and genus 2 solutions although he pre-
sented no explicit exzamples for doing so. Dubrovin's paper laid the
theoretical foundation for extending the theory from a highly abstract
mathematical proof into a computationally effective tool. The formid-
able task of utilizing Dubrovin's theory in the development of an analy-
tical wave model capable of yielding exact, truly three-dimensional,
biperiodic genus 2 solutions of the KP equation was successfully accom-
plished by Segur and Finkel (1985). A detailed description of the math-
ematical machinery developed by SF for genus 2 KP solutions is presented
in Chapter 3.

Although exact biperiodic wave solutions for shallow water have
only recently been presented, three-dimensional approximations have been
studied and reported in the literature. Solutions for interacting waves
have been reported by Miles (1977), Bryant (1982), Melville (1980), and
Roberts and Schwartz (1983). Each of these investigations show non-
linear coupling of two intersecting waves which are in qualitative
agreement with the exact solutions and with the observed behavior of
interacting waves. Since each of these results is produced by approx-
imation methods, they are not relatable to the observed characteristics

of intersecting waves. The exact solutions presented by Segur and
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Finkel described herein represent the first exact biperiodiec solution

which can be quantitatively compared to observed waves.



CHAPTER 3

THE KADOMTSEV-PETVIASHVILI (KP) EQUATION

This chapter is intended to provide a background for the study of
genus 2 solutions of the KP equation. It begins with a formal
derivation of the KP equation in order to document the procedures used
and the assumptions underlying this approximate model equation. Follow-
ing the derivation, a complete presentation of the analytical genus 2
solution, as derived by Segur and Finkel (1985), is presented. The po-
tential relevancy of this solution as a wave model is made through the
presentation of several graphical examples demonstrating the three-
dimensional nonlinear structure of these exact solutions. The following
sections provide the background for developing the experimental portion
of the study and the determination of the correspondence between exact

solutions and measured waves.

3.1 Derivation of the KP Equation

The KP equation was first proposed, but not formally derived, by
Kadomtasev and Petviashvili (1970). Their interest in the equation was
a consequence of their study on the stability of solitary waves to
transverse (crest-wise) perturbations. The formal derivation of the
KP equation, which closely parallels that of the KdV equation, begins
by defining the fluid and its boundaries. Consider for example a three-
dimensional, inviseid, incompressible, flow domain as shown in

Figure 3.1.

17
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Figure 3.1 Schematic diagram of flow domain

The equations governing this flow are Euler's equations for the

conservation of linear momentum
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and the continuity equation for the conservation of mass

3.1
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In addition, the assumption of irrotational motion yields the following

equalities:

W

w 3y _ 3w _du _ 3v _ 3u
3y 8z 8% 3 T 3% a?'o 3.3

In the above dimensional equations, € represents time and u, v,
and w represent the Eulerian velocity components in the orthogonal
¥, ¥, and Z directions. Additional terms include the fluid density
p, the fluid pressure p, and the acceleration of gravity g. It fol-
lows from Equation 3.3 that the velocity field is derivable from a po-

tential ¢ which can be written in the following form:
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A kinematic boundary conditions for the free surface of the flow regime

shown in Figure 3.1 can be written as
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whereas the corresponding boundary condition for a horizontal bottom is

written as

Ww=20 on (%,%,0,%) 3.6

where ¢ represents the elevation of the free surface measured from the
quiesent fluid level. A dynamic condition for the free surface boundary

can be written by combining Equations 3.1 through 3.4 to find

3% + _;_ {v¢l2 + gL = 0 on (%J,y,h+CyE) 3.7

where the linear operator V = (a§, a?’ 82) is used and the pressure on
the free surface is assumed constant. (Since this constant value can be
absorbed into the velocity potential, the pressure 1s conveniently set
to zero in the above derivation.)

The equations can now be consolidated to define a boundary value
problem for the motion of the fluid domain shown in Figure 3.1 subject
to the defined boundary conditions. For example, equations 3.2 and 3.4
are combined to yield Laplace's equation for the velocity potential
which determines the three-dimensional velocity distribution of the

fluid domain; i.e.,
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The fluid motion defined by the velocity potential is not only

required to satisfy equation 3.8 at all points in the flow domain but

also to satisify the boundary conditions defined by Equations 3.5, 3.6,

and 3.7 on the upper and lower boundaries. These conditions are rewrit-

ten in terms of the velocity potential and surface elevation to yield

the kinematic free surface boundary condition

the kinematic bottom boundary condition

¢ = 0 on ('}T,’SIJ,O,’E)

and the dynamic free surface boundary condition

b + % |V¢|2 +gr =0 . on (¥%,¥,h+¢,t)

3.10

3.1

The governing equations and associated boundary conditions repre-

sented by Equations 3.8 through 3.11 cannot be solved analytically in

their present form; however, a solution can be obtained if certain sim-

plifying assumptions are made. For example, if all of the nonlinear
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terms in the governing equations and boundary condition equations are
assumed negligible, the resulting linear system of equations becomes
solvable. Of course, this results in linear wave theory in which
velocities and surface elevations are conséructed in terms of the
normal-mode solutions; i.e., sine and cosine functions.

The derivation of the nonlinear KdV and KP equations requires a
more systematic approach since the nonlinear subtleties of these solu-
tions are lost in the linear approximation. The decision as to which
terms are retained and which are omitted is made through a systematic
study of the relative magnitude of each term in the equation based on
the existence and subsequent ordering of certain small parameters. This
approximation is accomplished through the use of power series expansions
in terms of the small parameters.

The formal derivation of the XKP equation first requires the scaling
of all dimensional quantities by introducing the following "scales." A
global length scale for the wave, usually considered to be the wave-
length, is defined as L, for which a corresponding wavenumber k = 2n/L
is defined. For three-dimensional flow, k represents a vector wave-
number with ¥ and ¥ components. The magnitude of this wavenumber
is defined by the relationship |k| = (1° + m2)1/2 where 1 represents
the ¥-direction wavenumber and m represents that in the V-direction.
An amplitude scale, descriptive of the wave crest height, is defined
ag a. A vertical scale h is defined as the depth of flow in which
the wave is propagating.

These three representative scales (k, a, and h) are similar to
those used by Stokes (18U47), Korteweg and deVries (1895), and Ursell

(1953). One additional scale is introduced in order to define a
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reference speed of propagation for the wave, This scale is simply de-
fined as the celerity of a shallow water wave, as found in linear wave

theory; i.e.,

The purpose of defining representative scales for a given flow
regime is to enable one to characterize the wave behavior in a systema-
tic manner similar to the approach described by Ursell (1953). This
characterization is made by analyzing the relative magnitude of selected
combinations of the representative scales for that wave. Three of these
combinations are used for defining the characteristics of the KP equa-
tion. Each of these resulting "scaled parameters" will be used in the
formal derivation in order to insure that the derived evolution equation
Wwill describe a wave field which will behave in a manner consistent with
the defined relative magnitudes of the scaling parameters. The first of

these parameters, given below,

SR

defines a wave amplitude to depth parameter which provides an indication
of the degree of nonlinearity of the wave. Smallness of this param-

eter implies weak nonlinearity and, in the limit o + 0 , linear wave
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theory is recovered. The second parameter

B = (kn)?

provides a measure of the length of the wave with respect to the depth

of flow in which the wave is propagating. Smallness of this parameter

implies shallow-water conditions so that dispersion is weak. The third
parameter provides a measure of the three-dimensionality of the wave.

This parameter, shown below,

indicates the direction of propagation of the wave field with respect to
a defined orthogonal coordinate system. Smallness of the parameter, for
example, indicates that the primary direction of propagation is in the
X~direction and that the wave is weakly three-dimensional. When the
parameter vanishes, the flow becomes the two-dimensional flow field
governed by the KdV equation.

The formal derivation of the KP equation is based on the assumption
that each of the defined parameters are small (i.e. << 1) which implies
a weakly nonlinear, weakly dispersive, and weakly three~-dimensional
flow. The relative magnitudes of each of these parameters will be

chosen in a subsequent analysis. The derivation begins with the scaling
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This is

accomplished by introducing the following non-dimensional quantities:

X = k¥
y = k¥
2= 2
-
= Ckt
Gy

Substitution into Laplace's equation (Equation 3.8) results in the

following relationship:
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In a similar manner, the kinematic free surface boundary condition

of Equation 3.9 is written

and the corresponding kinematic bottom boundary condition of Equa-

tion 3.10 takes the form

» =0, 3.20

The dynamic free surface boundary condition of Equation 3.11 becomes

+ 1 =0 . 3.21

Equations 3.18-3.21 now represent the complete nondimensional equations
governing the flow.

Next, each of the dependent variables is represented in a power
series expansion in terms of a small parameter. For the velocity poten-

tial, we assume the following form
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o(x,y,z,t;B) = 2 Bm ‘pm (x,y,2,t) 3.22
m=0

which is substituted into Equation 3.18. Collecting all terms with mul-

tipliers of like order of powers of B8 yields the form below.

0

1
8 (¢Ozz) * e (¢0xx Oyy 1zz

3.23

2
+ B8 (¢1xx + ¢

yy
Since each sum of terms in Equation 3.23 is ordered by powers of the
small parameter 8, the overall equation is satisfied if, and only if,
each sum of terms is zero. Hence, the original single equation in terms
of ¢ 1is replaced by an infinite set of equations for @m. The equa-~

tions resulting from Equation 3.23 are shown below.

0 . -
0(8") effects: QOzz = 0 3.24

1 . -
0(8') effects: QOxx + QOyy + @122 =0 3.25

2 . -
0(8%) effects: ¢1xx + ¢1yy + @222 =0 3.26

Integration of Equation 3.24 with respect to 2z yields
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9, = G(x,y,t)z + ¢0(x,y,t)

where G(x,y,t) and ¢0(x,y,t) are integration constants. Application

of the bottom boundary condition of Equation 3.20 (i.e. 02 = 0)

requires

G(x,y,t) = 0
so that

@O(x,y,z,t) = ¢O(X,y,t) . 3.27

Similar integrations of Equations 3.25 and 3.26 and application of the

bottom boundary condition result in the following two relationships:

A

2
5 oxx * C0yy

2, (x,y,2,t) = ) 25 + ¢, 3.28

and

4

1
@g(x,y,z,t) = Iy )z

(¢Oxxxx * 2¢Oxxyy * ¢Oyyyy

3.29

- ;_!<¢1xx * ¢1yy) 2 + % -
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Substitution of these results into equation 3.22 yields the following

expansion for ¢, the velocity potential, correct to the third order.

The further analysis requires the introduction of a slow time scale.
This new time scale will permit the suppression of secular terms that
arise in the analysis of the dynamic free surface boundary condition.

Define

T = et 3.31

where ¢ represents the small parameter defined previously. In addi-
tion, we will make a Galilean transformation to a uniformly translating

coordinate system by letting

X=x-~-t. 3.32

Differentiation between the different length scales in the x-, y- and z-

directions will also be made by explicitly defining the following:
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Z=2z, 3.34
The new scales of Equations 3.31 through 3.34 are substituted into Equa-

tion 3.30 to obtain the following slow time representation for the

second order correct velocity potential.

. - 1/ 2 2
2 1 2 2
* B [“’2 -2 (¢1xx te ¢1YY> 2

1 2 Loy 4 3
* o <¢oxxxx *e 200yxyy * € d’ommz)z ] + 0(g7) 3.35

We now introduce the following power series expansion representation of
the free surface displacement in terms of the new slow time scale

parameter.

[+o3

n(X,Y,2,T;e) = 3 &" n,(X,Y,2,T) 3.36
m=0

The kinematic and dynamic free surface boundary conditions of Equa-

tions 3.19 and 3.21 respectively can now be written in terms of the slow
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time scale. This substitution results in the following two equations

for the velocity potential and surface displacement:

1 _
“Ny + Eng + a@XnX + aeQYnY -3 @Z =0 3.37
and
1 2 2 1 a 2
-0y + €0 + 3 a0y + 5 aEdy + 3 3 o, +n = 0. 3.38

Note that the new governing equations now contain all three small param-
eters (a, B8, and ¢ ) which have been introduced to allow for the

specific ordering of the final wave solution. The key to the derivation
of the KP equation is the assumption that each of the parameters are of

an equivalent order of magnitude. This assumption is made by letting

0(a) = 0(B) = 0(¢) . 3.39

Substitution of the series expansions for the velocity potential and the
free surface displacement (Equations 3.35 and 3.36) into the boundary
equations 3.37 and 3.38, expansion, and consolidation of ordered terms

in e yields the following two relationships:
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0 1 /1 102 2
e (f¢ox * ”o) + e (2 Soxxx " ®1x * 2 %x * %ot * “1) +0(e") = 0 3.40
and

0 1
€ (’”ox + d’oxx)*' e ("“1x - Mot * ®ox"ox * Povy

1

2 -
+ ®1xx = § Soxxxx * Poxxo)* O(=) = 0 . 3.41

Analysis of the O(so) terms show that

no = ¢OX . 3)42
A similar analysis of the 0(51) terms yields
1 1.2
M7 ®x 7 %1 T 2 Poxxx T 2 %ox 3.43
and
1 . 3.4l

Mx ~ P1xx T Tox®ox * "o®oxx T & ®oxxxx * ®ovy * "ot

Now equating the partial derivative (with respect to X) of Equation 3.43
with Equation 3.44, again taking the X partial derivative of the entire

result, and consolidating terms yields
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1
(’¢0Tx " 3 %oxxxx ~ ®ox®oxx ~ "ox®ox ~ Mo®oxx " “or)x - toyyx = 0. 3.45

Substitution of Equations 3.4, and 3.42 into Eduation 3.45 results in

the Kadomtsev-Petviashvili equation,

! -
<2uOT + 3uguoy + 3 uOXXX)X * Uyyy = 0 . 3.46

where u A final transformation of variables is now

0" %x = "o .
required in order to write Equation 3.46 in the form used by Segur and

Finkel (1984). Let

R =X
y =Y
(- % T
f = % Uy -

The substitution of these variables into Equation 3.45 results in the
following form of the KP equation which will be used extensively in the

remainder of this study.
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(f/t\; + 6f’f)/} + f;}%é){\( + 3f/}\’§' =0 3.47

3.2 Solutions of the KP Equation in terms of Riemann Theta Functions of
Genus 2

Krichever (1976) showed that the KP equation admitted an infinitely
dimensional family of exact quasi-periodic solutions which could be
written in terms of Riemann theta functions of genus N. The techniques
employed by Krichever were extended by Dubrovin (1981) to specifically
address the genus 1, 2, and 3 solutions. The solutions relevant to this
study are the biperiodic genus 2 solutions which are truly three-
dimensional and have two real periods, both spatially and temporally.
Dubrovin provided the necessary existence and uniqueness criteria re-
quired for computing these solutions. The task of actually applying
Dubrovin's criteria and solution approach to compute an exact genus 2
solution of the KP equation was first completed by Segur and Finkel in
1985. This, of course, required the development of a considerable
amount of mathematical machinery to implement Dubrovin's outline. The
purpose of this section is to present, and describe, the machinery which
was presented by SF to compute these genus 2 solutions.

Genus 2 solutions of the KP equation can be written as

82

2 ;};\{“5 In 8 (1[)1? 1@)2, B) 3.48

where 8 is the genus 2 Riemann theta function, composed of a 2-

component phase variable ¥ and a (2 X 2) real-valued Riemann matrix B.
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The construction of this solution begins with the introduction of the

two phase variables

and 3.49

_ A A A
wz = u2x + v2y + w2t + w20 .

The parameters Hqs and v v, are wave numbers in the k- and §~

H2 172
directions, respectively, while Wey o Wy represents the angular fre-
quencies of the wave with respect to the translating coordinate system

in which the KP equation operates. The constants represent

Y101 Y20
a constant shift in phase and are of no dynamical significance. A much
more thorough description of these coefficients will be presented later.

The second ingredient involves the specification of a symmetric, real-

valued, negative definite 2 X 2 Riemann matrix of the form shown below.

B = 3.50

by, €0, by, €O, b by, =bj,>0. 3.51
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The role of the phase variables and the Riemann matrix in the specifi-
cation of the theta function can now be shown. A genus 2 Riemann theta
function can be defined by a double Fourier series (Segur and Finkel,

1985)

3.52

and

The theta function requires two additional refinements in order to
assure a unique genus 2 solution. For example, SF (1985) showed that
two different Riemann matrices could result in identical theta func-
tions. These two matrices are therefore equivalent and can be related
to each other by the appropriate transformation. The existence of equi-
valent matrices which produce identical solutions introduces a question
as to whether or not the sclution is unique. In order to resolve this
ambiguity, SF (1985) introduced the concept of a basic Riemann matrix.
They chose the following parameters to be natural representations for a

basic Riemann matrix:
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b = max (b11, b22)
X o= b12/b
d = det B/b 3.53

where both b and d are negative and X 1is real. Segur and Finkel

(1984) chose the basic Riemann matrix to be of the form

B = 3.54

where the requirement that the matrix is basic and negative definite is

satisified by

3.55

Under these conditions, a basic Riemann matrix generates one and only
one theta function. Another difficulty with the general definition of
the theta function as given by Equation 3.52 results when the off diag-
onal terms of the matrix become zero. Diagonal matrices are referred to
as decomposable, otherwise, they are indecomposable. Dubrovin (1981)

proved that nontrivial genus 2 solutions of the KP equation only result
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from indecomposable matrices. Although Dubrovin (1981) gave an explicit
test for decomposability, Segur and Finkel (1985) provided a simpler
test in terms of their parameters for a basic Riemann matrix. A basic
Riemann matrix is decomposable if, and only if, VA =0,

A real-valued, negative definite, indecomposable theta function has
been associated with its corresponding basic Riemann matrix of the form
given by Equation 3.54. The requirements imposed on that matrix, are
that the parameters b, d, and A are real, and that A 1s non-
zero, The basic definition of a genus 2 Riemann theta function can now

be written in terms of these new parameters.

1 2

m\
9(‘!}19 ‘9329 B) = Z exp
2..,, 0

i an

mzizm exp ;% b (m1 + xmz)g
1

x COS (m1tp1 + mgwg)

The above definition assures the existence of a real valued, indecompos-~
ible theta function, but it does not assure that the resulting theta
function will provide a solution to the KP equation. This assurance re-
quires the development of two additional concepts as noted by Dubrovin
(1981). The new ingredients are theta-constants and two additional
phase variables.

The concept of theta-constants begins with the definition of a two
component vector P which can assume any one of the following four

values:
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5o (). (0).(R). () e

These values correspond to the four half-periods of a theta function
(Dubrovin, 1981). Every Riemann matrix generates a four-component

theta-constant (SF, 1985) which can be written in the following form

B 5.

mg;;m exp

(f + B)-B- (i + 5)} 3.58

where m = (m1, m2). Equation 3.58 can be written in terms of the

basic parameters as

8[5] = ji: exp ‘d(m2 + p2)2}

exp {b [m1 + Py o+ x(m2 + p2ﬂ2} 3.59

where each theta-constant is differentiable with respect to the param-
eters b, d, and .

Secondly, two new phase variables ¢, and wu are defined in

3

terms of the previous phase variables according to

d’u = 11»'2 - )‘4)19 lb3 = \b1 - X w2 3-60
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where

« _ 212 b
- .
22 bA® + d

3.61

Wavenumbers and angular frequencies for these new phase variables can be

written analogous to Equations 3.60 as

My = My o Au1 v Mg T My o- kug
vu = v2 - Xv1 ’ v3 = v1 - kv2
wy = Wy - Aw, g = Wy - Awy 3.62

ALl of the components needed to state Dubrovin's main theorem have now
been established. The theorem requires that a function in the form of
Equation 3.48 is a solution to the KP equation if, and only if, the

following matrix equation is satisified:

MX = 4SV 3.63

where the components of this matrix notation are
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|
X = MWy F Hyw, 6\)1\)u e 3.64
My + 3“3
D
and
_ (3 A 1 93 A 3 A A
M <ab 0(p) » 25 57 ¢(P) » 33 O(p),@(p))
S—f—o() 3 (128 , &L §(p)
" \p2 P} 36 \2b ax ' 3b ad P/ s
3_(1 23 )ap) ié() 3.65
ad\2b ar) °\P "o P)j - :

The parameter D shown in Equations 3.64 represents a constant of inte-
gration with no physical significance. The system of four equations
represented by Equation 3.63 can always be solved if the Riemann matrix
is indecomposable. The matrix equations of Equation 3.63 can be in-
verted to yield the following four relationships corresponding to the
four possible values of the two component vector 5 . The resulting

relationships are



3.66

where the parameters on the right hand side (P1, Py P3, Pu) represent
well-defined fourth order polyﬁomials in the variable uu/u1. (The
polynomials in Equations 3.66 are obtained by inverting M.) .The con-
stant of integration D is arbitrary so that its equation can be ignored.
The two angular frequencies, w, and wy, can be eliminated from Equa-

tions 3.66 to yield the following single relationship:

2 4 6 Hy
(“1\)14 - uu\)o =3 P6 <q , 6) 3.67

where P6 is a well-defined polynomial of degree 6. The left hand side
of Eguation 3.67 is real-valued; therefore, in order for Equation 3.67

to be satisified, the polynomial must be positive or zero; i.e.,

fRu—— >
Pe W 20 . 3.68
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All existence and uniqueness criteria have now been presented for

genus 2 solutions of the KP equation. The results are summarized as
follows: Equation 3.48 represents a real-valued solution of the KP
equation if,and only if, the associated Riemann théta function satisfies
the criteria that 1) the phase variables, defined by Equations 3.49 are
real-valued, 2) the associated Riemann matrix is basic and indecompos-
able, and 3) the polynomial relationships represented by Equations 3.63
are satisified. Provided these criteria are met, the following section

demonstrates the computation of genus 2 soclutions.

3.3 The Construction and Properties of Genus 2 Solutions

The construction of a genus 2 solution of the KP equation requires

the specification of the following eleven parameters:

u17 U29 \’17 V29 ‘”19 wzy ‘p101 ‘1’20’ b, d, A

The first eight of these parameters defiine the phase variables of Equa-
tions 3.49 while the remaining three are contained in the basic Riemann
matrix defined by Equations 3.54. Dubrovin's theorem of Equation 3.63
provides three relationships among the eleven parameters; hence, there
are only eight independent parameters required to specify a genus 2
sclution. Of these, $10 and wZO serve only to determine the origin
of the coordinate system and do not impact the dynamics of the solution.
Thus, the most general genus 2 solution of the KP equation contains only

six dynamical parameters which may be chosen freely. In order to
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provide insight into the structure of the genus 2 solutions and to be
able to assess the effect of each parameter on the wave form, it is
useful to specify the six dynamical parameters and calculate some typi-
cal solutions. In the experiments to follow, spatial and temporal
symmetry will be exploited in order to expedite the measurement progran.
The symmetry of the generated waves provides three additional relation-

ships among the six free parameters of the genus 2 solution; i.e.,

30 that only three free parameters are available for specification. In
addition, the ezperimental measurements make it convenient to choose b,
u, and 2 for the free parameters. Making use of these additional
constraints on the family of genus 2 solutions, two examples are calcu-
lated and presented in Figures 3.2 and 3.3. These figures show perspec-
tive views of the water surface at a fixed time when the parameter b is
varied while u and A are held constant. (A more detailed examina-
tion of the solution sensitivity to each of the free parameters will be
presented in Chapter 5.)

The exzact solutions shown in Figures 3.2 and 3.3 are typical of all
of the symmetric subfamily of genus 2 solutions. The surface wave pat-
tern consists of a single, basic structure which repeats in a tiling of
the entire water surface. A typical, basic structure can be isclated as
in Figure 3.4 by the construction of a "period parallelogram." Inside

the period parallelogram the wave crests form two V-shapes, pointing in
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opposite directions, and connected by a single, straight crest. Here-
after, the V-shaped region will be referred to as the "saddle region"
while the straight crest between the V's will be termed the "stem."

(The motivation for both names will become apparentvshortlyu) Note that
crest amplitudes are largest in the stem region. The entire wave pat-
tern propagates at a constant speed in a direction normal to the stem
region. The sides of the period parallelogram coincide with lines of
constant phase defined by the phase parameters noted in Figure 3.4. The
periodicity in each of these two directions is increased by 2w across
the period parallelogram. Specific relationships between other mathema-
tical paramebers and the wave structure inside the period parallelogram
have not been established for the general case. However, SF examine the
limit case of b,d + 0 and prove that the actual wave crests of the sad-~
dle region coinecide with lines of constant w3 and wu. The wave pat-
tern in the limit b,d » 0 is similar to that of Figure 3.2; mathema-
tically, the solution appears as two KdV solitons, propagating at angles
to one another and producing a third wave (the stem region) in a manner
that is well known from other investigations (e.g. see Miles, 1977). In

addition to the exact correspondence of U and mu with individual

3
wave crests in the saddle region, the interpretation of the genus 2
solutions as two intersecting wave trains is especially important to
the experimental study and to the application of these solutions to
actual ocean waves., (Interestingly, a stimulus for the interest by
Segur in these waves was experiments on intersecting waves by Hammack,
1980.) The examination of the two-soliton limit solution also estab-

lished that the two parameters A and X are a measure of the rotation

of the individual wave crests from the directions of periodicity; i.e.,
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¢1 and mg, Alternatively, this rotation is related to the amount of
"phase shift" a wave experiences as a consequence of passing through a
region of interaction with another wave. All of these aspects of the

genus 2 solution will be made more explicit in Chapter 5.



CHAPTER 4

LABORATORY FACILITIES AND EXPERIMENTAL PROCEDURES

This chapter describes the laboratory facilities and experimental
procedures used to generate the three-dimensional wave fields for com-
parison with exact genus 2 solutions of the KP equation. This chapter
begins with a detailed description of the wave basin and wave generator.
A basic knowledge of the wave making capability is essential to the for-
mulation of an approach for generating candidate waves for comparison
with genus 2 solutions. The wave-generation methodology follows the
description of the physical facility. Due to the three-dimensional
nature of the wave forms required for this study, considerable detail is
presented for the data-gathering program to quantitatively measure the

temporal and spatial structure of the wave field.

4.1 The Wave Basin

A wave basin measuring 98.0 ft wide, 184.0 ft long, and 2.5 ft deep
is used for the experimental portion of the study. The walls of the
basin are constructed of concrete filled, non-reinforced, cinder blocks
resting on the concrete slab that forms the bottom of the basin. A
schematic diagram of the wave basin is shown in Figure 4.1.

The concrete slab was poured by standard construction procedures to
normally acceptable tolerances. The topography of the tank bottom is

shown in Figure 4.2 and reveals a maximum variation of +/- 0.5 inch.

49
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Figure 4.1 Schematic drawing of the wave basin

High and low areas resulted which can be identified in the figure. As
will be discussed in a later section, the effects of these irregular
zones were evidenced in the measured wave height patterns. The inset
numbers shown in Figures 4.1 and 4.2 refer to the location of wave gages
in the basin which will be described subsequently.

The downstream end of the wave basin, opposite the wave generator,
is lined with rubberized horse-hair to a depth of approximately 2.0 ft,
extending out a distance of approximately 6.0 ft from the wall. The
purpose of this absorption material is to both reduce reflections from
the rear wall of the basin during testing and to dissipate the oscil-
lation of waves within the basin following testing. Sidewalls are not

lined with the wave absorption material. The 90 ft wide wave generator,
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Figure 4.2 Bathymetry of the wave basin
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which nearly spans the basin width, is located to the right of the gages

in Figure 4.2.

4,2 The Directional Spectral Wave Generator

A wave generator capable of generating single or multiple wave
forms of variable shape and direction is located at the US Army Engineer
Waterways Experiment Station's Coastal Engineering Research Center
(CERC) located in Vicksburg, Mississippi. This directional spectral
wave generator is shown in Figure U4.3. 1t was designed and constructed
for CERC by MTS Systems Corporation of Minneapolis, Minnesota, based on
design specifications provided by CERC.

The directional spectral wave generator is composed of 60 indivi-
dually programmable wave paddles. The generator was designed in a port-
able configuration of 4 separate, self contained modules (Chatham,
1984). Each of these modules is composed of 15 separate wave boards
constructed on a steel frame as shown on the schematic drawing of Fig-
ure 4.4, FEach module is equipped with six adjustable mounting pads for
leveling purposes and can be moved by using four dollies at each of four
lifting posts, two located in the front and two in the rear.

The wave boards, measuring 1.5 ft wide and 2.5 £t in height each,
are individually driven in a piston-like motion by a 0.75 horsepower,
direct~drive servo-motor located at the articulated joint between
adjacent boards. The joint structure consists of a fixed and linked
hinge as shown in Figure 4.5, Extremity points (left edge of paddle 1
and right edge of paddle 60) are driven by single fixed hinges. The
connections between adjacent wave boards are smoothed by means of a

flexible-plate seal which slides in slots located on each wave board.
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- WAVEBOARDS

DRIVE 7
ASSEMBLY/

Figure 4.4 Schematic diagram of a wave
generator module (Outlaw, 1984)

The maximum stroke of a wave board is 1.0 ft, corresponding to a
+/- 0.5 ft displacement from the mid-point position. Each wave board
can be operated up to and including 180 degrees out of phase with the
adjacent board. As already noted, the boards are operated in a piston-
like motion and are not sealed at the floor. The displacement of each
paddle is controlled by a belt-driven carriage assembly connecting the
drive assembly to the belt drive as shown in Figure 4.4. A transducer
is located on each wave board to monitor displacement and provide a
feedback signal to the wave generator console, The servo-controller
module for each servo-motor monitors this position feedback and gener-
ates a stroke-limit and displacement-error detection signal which stops

further displacement of the wave board if either limit is exceeded. The
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Figure 4.5 Schematic diagram of a wave board (Outlaw, 1984)

system console block diagram is shown in Figure 4.6 and the servo-
controller block diagram is presented in Figure 4.7. Enclosures are
mounted on the top of each module for containing the motor and trans-
ducer power and signal equipment. The cables required for the trans-
mission of wave board displacement signals and the position transducer
feedback signals are located on three cable reel assemblies adjacent to
the equipment enclosures.

Each paddle of the four portable modules is electronically con-
trolled and electromechanically operated according to the input com-
mand signal received from each associated control channel. This re-

quires a total of 61 control channels corresponding to the push points
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(articulated joints) for each of the 60 paddles (A single control
channel provides the common signal for the joint between adjacent
paddles). Independent control of each paddle in the system is provided
by an Automated Data Acquisition and Control System (ADACS). The ADACS
system was developed for the directional spectral generator through the
modification of an existing control-feedback system (Whalin et al.,
1974) reported by Durham and Greer (1976). This hardware/software
interface allows the user a 20 update per second per wave board command
control signal to the wave generator. This control capability is per-
formed by the wave generator console which provides the digital to
analog (D/A) conversion of the programmed signal such that 61 channels
of control signal are simultaneously output to each of the 61 wave
paddle servos. The sampling and storage of data at a rate of 50 samples
per second per gage for up to 128 gages through multiplexed channels of
analog to digital (A/D) conversion is provided by the system. The re-
sponse of each wave board to the individual control signals is monitored
so that when either the stroke or displacement limits have been ex-
ceeded, disable signals can be issued to the respective paddle. In
addition, signals are provided to a calibration/test indicator located
on the system console so that adjustments of the servo controllers can
be made when necessary. Details of the system are reported by Turner
and Durham (1984).

The computer system supporting the ADACS is a Digital Equipment
Corporation (DEC) VAX 11/750 central processing unit (CPU). The system
is equipped with an IEEE 448 interface for the D/A conversion of the
user-supplied digital control signal. Peripherals to the basic CPU

include 121 megabytes of fixed-disk mass storage, 10 megabytes of
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removable-disk mass storage, two 125 inch-per-second 800/1200 BPI mag-
netic tape drives, two line printers, a Versatec printer/plotter, and a
Tektronix 4014 CRT unit equipped with hard-copy capabilities. The com-

puter system is shown in Figure 4.8.

4.3 A Methodology for Generating Waves

Genus 2 solutions of the KP equation were shown in Chapter 3 to
describe a three-dimensional, nonlinear wave pattern. The development
of these solutions by Segur and Finkel was partially a consequence of
experiments by Hammack (1980) which indicated qualitatively similar sur-
face patterns resulting from the interaction of incident and reflected
waves. A similar interpretation of genus 2 waves was presented in Chap-
ter 3. The development of an experimental procedure which would result
in the evolution of surface wave patterns qualitatively similar to genus
2 solutions was achieved by experimentally reproducing the conditions
reported by Hammack, i.e. interacting waves. In view of this interpre-
tation, the interacting wave trains used for the experiments were chosen
to be cnoidal waves, since the periodic extension of a solitary wave is
a cnoldal wave, This section will first describe the methodology used
for generating cnoidal waves and then discuss the technique of evolving
an appropriate wave form through the generation of simultaneously inter-
secting cnoidal wave trains., The indirect procedure of wave form evolu-
tion ocutlined here instead of the exact generation of genus 2 waves will

be addressed at the end of this section.

4,3.1 The Generation of Cnoidal Waves

The generation of a cnoidal wave with the directional spectral

wave generalor is accomplished by utilizing the wave generation



B e e e

Figure 4.8 The computer system

6G



60

technique presented by Goring in 1978. Goring's method prescribes the
displacement-time history required of a single piston wave generator to
generate a long, permanent form wave. Because of the similarities in
both the wave form and wave paddle motion, the generation approach is an
ideal one for the present application. Therefore, the identical tech-
nigque is used here to program the directional spectral wave generator
with the added complexities of 60 paddles (with 61 push points) and pro-
visions for phase lagging between adjacent paddles necessary for the
subsequent generation of oblique waves. The basic theory is presented
below.

Goring's wave generation methodology provides a means of relating
the vertical displacement of the water surface profile of a known free
wave to the horizontal wave paddle motion required to generate that
wave. The principal idea is to equate the velocity of the paddle to the
velocity beneath the wave surface at the location of the moving wave
paddle. By knowing the time history of the desired free wave, the time
history of the wave paddle motion necessary for generating that wave can
be computed. Figure 4.9 was presented by Goring to demonstrate the way
in which the generation equation is obtained.

The inset diagram (c) represents the desired water surface profile.
In this example a linear sinusoidal surface displacement has been spe-
cified. The wave has an amplitude a and is propagating to the right
with a wave celerity of e¢. The corresponding horizontal velocity time
history is shown in the inset diagram (a). It can be seen that the
velocity and surface time series are in phase, consistent with linear
wave theory. Desired is the time history of the displacement of the

wave paddle required to generate a sinusoidal wave. This desired
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displacement &(t), termed the "trajectory" by Goring, is written in the

following form,

%—é—wz = S(g,t) 4.1

where u(f,t) represents the depth averaged velocity written as a func-
tion of the time varying trajectory of the wave board. Since we are
dealing exclusively with long waves, the assumption is made that the
particle velocity is constant throughout the water column.

The above representation for the velocity produces a distortion of
the trajectory from what would be observed at a fixed location. For
example, if u(0,t) were used in Equation H.1, the veloecity would be
only a function of time and the resulting trajectory would simply be
sinusoidal in shape. The point of maximum trajectory, & = S , would
occur at the time t = T/2 . When the velocity representation of Equa-
tion 4.1 is used, the maximum trajectory is achieved at a time of t
= T/2 + 8/c¢ . In Goring's words (1978) "Thus the time taken for the
plate to travel forward to its full extent is time 5/c¢ longer than it
would be if the trajectory were sinugsoidal and consequently the time
taken for the plate to travel back to its original is time 3/c¢ shorter
than it would be if the trajectory were sinusoidal." Physically, if the
wave paddle position is not considered, thereby ignoring the celerity of
the wave, secondary waves will be produced at the wave generator paddle.
This occurs because the crests and troughs, which are not traveling at
the exact speed of the paddles, reflect off the paddles to produce the

secondary wave effect,
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For waves of permanent form it was shown (Svendsen, 1974) by con-

tinuity that the velocity averaged over the depth is

- _ _cn(x,t) .o dg
u(x,t) = m = = at 4.2

where n represents the surface displacement. It is assumed that this

displacement can be written in the following form:

n(E,t) = HF() 4.3

A A
where H represents a wave amplitude and f(8) is the appropriate

function (sinusoidal, cnoidal, etc.) of the phase variable

8 = ket - ) . 4.4

The total derivative of Equation 4.4 is written as

— =z k(c—é) . u.5
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By using the chain rule, the time derivative on the right hand side can

be written as follows:

A
dg _ . _dg ~doe _d _:
dt°€-a‘3 dt‘Egk(cg)

or 4.6

By using the relationships of Equations 4.1, 4.2, and 4.3; Equation 4.6

can be simplified to the following

Integration with respect to the phase variable yields

H é A
() = = /7 flwaw 4.7
o}

where w represents a dummy variable and the phase variable 8 is
given by Equation 4.4. The resulting equation for the paddle trajectory

is implicit in that the phase variable on the right hand side is also a
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function of the trajectory; therefore, the equation must be solved

numerically. The solution technique selected by Goring was Newton's
method, also referred to as the Newton-Raphson method. A general ex-
pression for this numerical procedure can be written for an arbitrary

function F as a function of a phase variable 8 as

AL+l AL F(8)

The superscript 1 represents the iteration number. The iterative

. .
procedure is to select an initial 8% and compute 61+1 . This is

C A
repeated until the quantity |61 - 91+1|

is adequately small. The
solution scheme is a rapidly convergent one for most well behaved
functions and results in an accurate approximation for 3. The

arbitrary function can be defined by writing the phase function of

Equation 4.4 in the following identity.
A
Fz08-k(ct ~-8)=z0
Substitution of this identity into Equation 4.7 results in

A

6]
A H A
F =0 - ket + " OJF f(w)dw .

4.8
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Now, the partial derivative with respect to the phase variable 8

yields the form
35 : Fé = 1 + % 9(6) . 4.9

Equations 4.8 and 4.9 are the precise form necessary for a Newton method
solution for 8, Substitution yields the following solution for the

phase variable at the i+1 iteration:

o
Al i
A+l AL B8'ket + h 07 Blw)dw

0 = 0 4,10
1 + % 9(8)

The iteration of this relationship to the desired level of convergence
will result in an accurate approximation for 6 at time t. Then, the
paddle displacement can be determined by rewriting Equation 4.4 in the

form

Equation Y4.10 represents an implicit solution method for the phase
variable of an arbitrary wave form. We are now interested in the
specific wave form of a cnoidal wave. The surface displacement function

for a cnoidal wave can be written as



+ cn2(6|m) 4.1

where h represents the depth of flow, yy represents the distance
from the wave trough to the bottom boundary, c¢n is the Jacobian

elliptic function, m 1is the elliptic parameter, and

A t_ &
0_2k(T L) .12

is the phase variable (the sign has been changed for convenience ac-
cording to Goring's paper) written in terms of the first complete ellip-~
tic integral K{(m), the wave period T, and the wavelength L. This
form is exactly equivalent to that shown by Equation 2.2. The integral
of this function, necessary for the evaluation of Equation 4.10, can be

written in closed form (from Abramowitz and Stegun, 1970) as

) A m, 8
Flw)dw = E(glm) - - 4.13

0

where E(8|m) is the second incomplete integral and m, is the

complimentary elliptic parameter defined as
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Substitution of Equations 4.11 and 4.13 into the Newton approximation

results in the following relationship:

Hm
-2Kht 1) ai H (Al
il pi T * (yt - '"“m“) 0% o E<O lm)

i y, + H cn2(gi|m) b

Note that the negative sign in the first term of the numerator (-2Kht/T)
was inadvertently omitted by Goring. A thorough description of the
methods used to evaluate the various elliptic functions is provided in
Appendix A. Upon completion of an adequate number of iterations to
achieve the desired level of accuracy, the paddle displacement at time

t can be written from Equation 4.12 as

The programming of the wave generator to produce these displacements is
accomplished in the following sequence of operations. Reference is now
made to Figure A.1 in Appendix A. A wavelength and maximum water sur-
face elevation is specified for each desired cnoidal wave. Based on
this wavelength and wave elevation data, values for Nysy Moy Y my,
T, and the first K(m) and second E(m) complete and the second
E(g}m) incomplete integrals are computed. The wave period is divided
into 360 time segments corresponding to 361 discrete values (0-360).

For each time value, the phase variable of Equation 4.12 is defined and
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used in the Newton iteration method to compute a displacement for the
paddle corresponding to each of the 360 degree representations of the
period. This procedure is repeated for each of the 61 push points of
the 60 wave generator paddles. A magnetic tape is generated which con-
tains the control signal for the displacement of each push point for the
time series corresponding to a control signal update of 20 updates per
second per paddle. The wave generator control software program is
executed and the waves are produced on the wave generator corresponding
to the input signal on the magnetic tape.

An example of the generated cnoidal waves can be seen in Fig-
ure U4.10 in which a single period of a cnoidal wave with a wavelength of
7.0 feet and a maximum wave height of 1.84 inches is shown. Discre-
pancies between theory and measurement are due to the variations in the
basin topography as evidenced in Figure U4.2. This spatial variation in
depth produces an approximate +/~ 25% variation from the mean of the
measured total wave heights for a cnoidal wave uniformly generated
perpendicularly from the axis of the wave generator. This effect can be
seen in the nine wave gage traces shown in Figure 4.11. The shoaling of
the wave is obvious in the traces of gages 3, 6, and 7 which can be seen
from Figure 4.2 to be located behind shallow areas. If these three
gages are omitted, the variation is on the order of 14%. Fortunately,
this shoaling effect is much less pronounced in the evolved waves which
are used for verification of the KP equation. This is probably due to
the fact that the test waves result from the nonlinear interaction of
two separate waves generated from separate directions. The influence of
the basin floor on the verification will be further addressed. The

waves of interest, the candidate genus 2 waves, will now be discussed.
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4.,3,2 The Generation of Genus 2 Waves

Genus 2 wave forms were produced in the wave basin by evolving the
proper form rather than by directly generating it. The reason for this
approach will be discussed at the end of this section. The evolution
technique is as follows. The procedures described for generating
cnoidal waves were modified such that a single cnoidal wave could be
generated at an angle to the axis of the wave generator. A second wave
was then simultaneously generated at an equal but negative angle such
that the two separate waves are generated at a predetermined angle of
intersection which is symmetric to the wave generator. In order to
fully investigate the validity and limits of applicability of the KP
equation as a model for three-dimensional nonlinear waves, an experi-
mental program was devised to generate a variety of wave patterns which
span a wide range of nonlinearity and three-dimensionality.

A broad range of nonlinearity of the basic wave shape is achieved
by generating three basic cnoidal wave trains. These waves are gen-
erated with heights of approximately 1.0 inch and wavelengths of
7.0 ft, 11.0 ft, and 15.0 ft, corresponding to an elliptic parameter
m of O.44, 0.73, and 0.89 respectively. Water depth was maintained at
1.0 ft. Variations in the three-dimensionality of the resulting wave
patterns was achieved by intersecting each of the three cnoidal wave
trains at a variety of angles. These angles of intersection are ob-
tained by programming a phase shift between adjacent wave paddles. A
positive shift for one wave and a negative shift for the other wave
results in the generation of the desired symmetrically intersecting
waves., This phase shift is approximately equivalent to the angle of the

wavecrest with respect to the axis of the generator. A wide range of
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angles of intersection were used in order to completely cover the range
of weak to strong interaction of the two basic waves.

Twelve wave fields were selected for generation to test the KP
equation. The generation components of each are shown on Table 4.1.
The angle indicated in the table shows the approximate (linear wave
relationship) correspondence between the phase shift and the angle of
propagation.

Verification of the KP equation as a model for three-dimensional
nonlinear waves will be successfully accomplished by reproducing the
wave patterns indicated in Table 4.1 with exact solutions. Reproduction
requires the development of a unique correspondence between the free
parameters of the genus 2 solution and the physical characteristics of

the observed wave field. Correspondence is developed in Chapter 5.

Table 4.1 The Experimental Waves

Test
Number Wavelength (ft) Phase Shift (deg) Angle (deg) Period (sec)

CN1007 7.0 10.0 7.45 1.378
CN1507 7.0 15.0 11.21 1.378
CN2007 7.0 20.0 15.03 1.378
CN3007 7.0 30.0 22.89 1.378
CNLOOT 7.0 40.0 31.23 1.378
CN1011 11.0 10.0 11.75 1.947
CN1511 11.0 15.0 17.79 1.947
CN2011 11.0 20.0 24,04 1.947
CN3011 11.0 30.0 37.67 1.947
CN1015 15.0 10.0 16.12 2.553
CN1515 15.0 15.0 24 .62 2.553
CN2015 15.0 20.0 33.75 2.553
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Prior to addressing the free dynamical parameters of the exact
solution, a comment on the generation technique utilized for this
investigation is necessary. Waves were generated in the wave tank by
evolving an approximate genus 2 wave as described above. This approach
was first adopted because the relationship between the free parameters
of the exact solution and the physical characteristics of the desired
wave form were unknown at the onset of the investigation., For example,
an appropriately shaped wave is first required in order to develop a
means of relating the free solution parameters to that observed wave.
These parameters could then be used to compute an exact solution which
would emulate the observed wave. Follcwinglthe successful completion of
this task, the logical extension would be to generate the exact solution
and analyze the resulting wave. This was in fact accomplished, but with
disappointing results.

The finite dimensions of the 1.5 f't wide paddle proved to introduce
strong perturbations in the small features of the resulting wave. An
example result from experiment CN2015, described in Chapter 5, will be
used here to illustrate this problem. The stem region of experimental
wave CN2015 is on the order of 3.5 ft in length. It is physically im-
possible to generate this region exactly with 1.5 ft wide paddles.
Examples of the perturbations introduced are shown in Figures 4.12 and
4.13. Figure 4,12 shows a wave trace in the saddle region for the
evolved wave of experiment CN2015. Note the symmetrical peaks and uni-
form wave shape. An exact solution corresponding to this wave field was
computed. Figure 4,13 demonstrates a similarly located wave trace for
that generated exact solution. The perturbations are evident from the

nonuniform shape of the resulting wave which actually evolves a third
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peak. Repeated attempts at generating exact waves always failed to gen-
erate a clean wave form. The conclusion of this exercise was that a
relatively clean genus 2 wave could be continuously evolved but could

not be discretely generated by existing facilities.

4.4 The Measurement of Waves

The difficulty of quantifying three-dimensional wave phenomena with
two-dimensional instrumentation is well recognized. Furthermore, the
presentation of two-dimensional data in a concise yet definitive form
for effectively demonstrating three-dimensional effects is difficult.
The measurement program developed here can best be motivated by looking
at the basic features of the generated waves. Figure 3.3 shows a typi-
cal wave form produced by the technique described above. Symmetry of
the wave pattern was achieved by generating identical cnoidal waves
(equal wavelength and height) at symmetric angles. The period paral-
lelogram, discussed in Chapter 3 and shown in Figure 3.4, was described
as a basic surface pattern which repeats to form a global surface wave
field. The complete specification of this area will define the surface
pattern and be sufficient for verification of the KP solution. The
basis for choosing symmetric waves can now be seen, a symmetric period
parallelogram is generated which propagates in a direction perpendicular
to the axis of the wave generator.

Two separate means of data collection were used to quantitatively
measure the parameters of the basic parallelogram. First, a photogra-
phic technique was devised to measure the spatial distribution of the
generated wave field., Photographs provided a visual representation of

both the physical size of the resulting period parallelograms and of the
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internal features, such as the stem and saddle regions. These data were
used to determine the placement and spacing of a single fixed linear
array of recording wave gages which would be capable of quantifying the
vertical, horizontal, and temporal distribution of each of the period

parallelograms. These two collection techniques are described below.

4.4,1 The Photographic System

Measurement of the two-dimensional geometry of the surface wave
patterns was found to be highly beneficial in that it provided both
quantitative and qualitative information on the spatial structure of the
period parallelogram. This procedures is described. Two Hasselblad
Model 500 EL/M 70mm cameras were each equipped with a 50 mm lens, an
automatic advance 50 exposure film canister, and a remote control expo-
sure capability. The two cameras were installed approximately 23.0 feet
above the floor of the wave basin, located on either end of an approxi-
mately 20.0 foot long 3 X 5 inch aluminum box beam which was clamped to
an existing catwalk and cantilevered out over the wave basin. This pro-
cedure resulted in a final placement of the cameras centered on the wave
generator a distance of 40.0 feet from the axis of the wave boards. Be-
cause of the focal length of the lenses, the field of vision of each
cameras was approximately 23 X 23 feet. The resulting two photographs
could then be combined in a mosaic to form a 23 X 40 foot picture. Il-
lumination of the basin area beneath the cameras was by means of 2
Ascor, 8000 watt-second strobe lights with remote control activation
capability.

Both cameras and strobes were connected to a remote control activa-

tion panel which, when activated, operated both simultaneously. The
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control panel was located adjacent to the wave generator console in the
computer room, A single gage was centrally placed 55.0 feet from the
wave generator, beyond the viewing range of the cameras. A schematic
diagram of the photographic setup is shown in Figure 4.14. Gage output
was monitored with a Tektronix Model 5111A dual trace oscilloscope, also
located adjacent to the generator console, to provide the operator with
a means of determining when to activate the cameras and strobes. It was
assumed that when the wave front first became visible on the oscillo-
scope screen, the wave field would be fully developed in the camera
viewing area. A photograph was taken at this time followed by four more
at approximately 5.0 second intervals. This procedure was used for all
experimental wave patterns. A total of 240 photographs, representing
120 mosaics, of surface wave patterns were taken for the study. A rep-
resentative photograph of each wave pattern used for analysis is in-

cluded in Appendix B.
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Figure 4.14 The photographic system
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The photographic technique described above proved to be an invalu-
able tool for understanding and interpreting the qualitative features of
the generated wave fields, Without the aid of these photographs, the
successful formulation of a data collection program would have been
extremely difficult.

A problem which exists with photographic data is that of distor-
tion. Although the photographs were primarily used in a qualitative
sense, this problem is addressed here. Horizontal’measurements from the
photographs are based on grid marks painted on the basin floor for that
purpose. Since the waves are actually photographed on the surface (one
foot above the bottom), a discrepancy between actual and measured dis-
tances is experienced which increases with distance from the camera

lens. An example is shown in Figure U4.15 to illustrate this effect.
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Figure 4.15 Horizontal measurement distortion
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Assume a wave crest 1s photographed which is actually 23.0 feet below
and 10.0 feet from the camera. Due to the diffraction of light (assum-
ing an index of refraction of 1.3330) a distance of 10.313 feet will

be measured from the floor scale. This amounts to an error of 3% in

10 feet (6% for the entire viewing area). Directly under the camera,
the error is zero. Because of this variable horizontal discrepancy,
error limits for horizontal measurements were determined. These limits

will be further addressed in Chapter 5.

4.4.2 The Wave Gages

The second set of reguired data are quantitative water surface
elevations which will relate the vertical structure of the observed
waves to the exact genus 2 solutions of the KP equation. These data
were used to quantify certain wave characteristics, such as the hori-
zontal variation in height and shape within the period parallelogram.
Measurement of the required three-dimensional distribution of the wave
field was greatly simplified by the selection of the symmetrically
intersecting waves. As previously mentioned, the resulting permanent
wave form, bounded by the basic period parallelogram, propagates perpen-
dicular to the face of the wave generator. The period of the generated
wave is easily measured with wave gages and the width of the period
parallelogram is measured from the photographs. These two data deter-
mine the propagating velocity of the permanent-form wavefield. By know-
ing the period and velocity, a time series measured from a stationary
gage for one period can easily be converted to a spatial water surface

distribution across one horizontal wavelength.
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The simplification achieved by symmetry can now be demonstrated.

As can be seen in the schematic of Figure 3.4, the axis of the stem
region of interaction is parallel to the face of the wave generator. An
array of nine recording wave gages was located in the wave basin paral-
lel to this same line. The gages were placed a distance of U40.0 feet
from the face of the wave generator, spaced 2.5 feet apart. The entire
array was centered on the generator such that gages 1 and 9 were each
10.0 feet from the generator centerline as shown in Figures 4.1 and

4.2, The placement of these gages with respect to the hexagonal wave
forms and period parallelograms is shown in Figure 4.16.

The sample wave pattern shown graphically now demonstrates the
advantages of generating symmetrical waves. For example, it can be seen
that a common point exists in the center of each hexagonal figure which
represents the common apex of two period parallelograms. It can be seen

that the location of each gage can be uniquely identified within a half

Period

Wave Generator //ﬁy

Figure 4.16 Schematic diagram for wave gage placement
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parallelogram by referencing it according to its distance from the
common, or zero point. Because of the symmetry, the left half of the
right parallelogram is exactly equivalent to the right half of the left
parallelogram. The determination of just one half parallelogram is then
sufficient to completely describe the entire period parallelogram and
hence the entire global wave field. The data collection scheme was
specifically aimed at this goal by mapping each of the nine gages into a
common half period parallelogram. In the example shown; gages 6 and

b, 7 and 3, 8 and 2, and 9 and 1 are equivalent since each pair are
equidistant from the zero point. Since the actual location of that
point with respect to the gage lineraxis varies for each test run, the
first estimated relationships between the zero point and the gage loca-
tions were determined from the mosaic photographs. Subsequent adjust-
ments were made by shifting the solution origin by varying ¢1O and

w20 of Equations 3.49, An example of the gage-zero point correspon-
dence will be presented in Chapter 5.

The water level gages used for this study are water-surface-
piercing, parallel-rod, conductance type gages. They are identical to
those for which the original ADACS was developed. Use of the gages made
it possible to utilize existing calibration, storage, and plotting
software. Fach gage is associated with a Wheatstone bridge, shown
schematically in Figure 4.17. Operationally, a transducer measures the
conductance of the water between the two vertically mounted parallel
rods. This measured conductance is directly proportional to the depth
of submergence of the rods. The output from each gage is sent to the

ADACS through shielded cables. The accuracy of the gages was reported
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Figure 4.17 Schematic diagram of parallel-rod resistance transducer
(Durham and Greer, 1976)
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by Durham and Greer (1976) to be within 0.001 ft. A typical wave gage
is shown in Figure 4.18,

The actual process of taking data was based on the procedures de-
veloped and the software written for the ADACS described in Section 4.3,
The operational steps are as follows.

Each wave gage is calibrated prior to the generation of waves. The
calibration process entails the monitoring of the output voltages from
the linear-position potentiometer located on each gage. This is accom-
plished by system software/hardware interfacings which move each paral-
lel rod sensor into and out of the water a known distance. Each sensor
is systematically moved to 11 quasi-equally spaced (within the practical
limits of the gear-train driven electric motor) locations over a user
specified range. During this movement, 21 voltage samples are taken
from which an average value for each of the 11 locations are computed.

A schematic diagram of the calibration process is shoun in Figure 4.19.
The averaged 11 values for each gage are fitted to a least squares
linear fit to determine the calibration curve. If the maximum deviation
from this linear fit exceeds a user-specified tolerance, a quadratic fit
is performed. A cubic spline can be applied if the quadratic fit is
outside tolerances. The final resulting calibration curve relating
voltages to water surface displacements for each gage is then stored in
disk memory for later use by system software.

The control signal for a desired wave combination is used to
generate an experimental wave field. The location of the wave front in
the basin is determined by the operator by simply monitoring the output
of any two of the nine gages with the dual channel oscilloscope. When

it has been determined that the wave field is fully developed at the
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Figure 4,18 Parallel-rod wave sensor



86

= COMPUTER,

SN<CALIBRATION AND
MOTOR CONTROLS

LINEAR POSITION
POTENTIOMETER

ROTATION
TRANSLATION

TRANSFER S~ELECTRIC MOTOR

2 PARALLEL RODS

o ,
YE— AH -
i T +C
w =l | [Tr

= =

-E
I 1 1 1
| & I 16 2l
VOLTAGE SAMPLES

Figure 4,19 Waverod calibration (Turner and Durham, 1984)

array of wave gages, the operator initiates the sampling of data.
Sampling extends for a user-specified period of time. The data, along
with the corresponding calibration curves, are stored on disk. The time
series for each gage is automatically plotted on a Versatec printer/
plotter and written into disk storage for subsequent analysis. The
length of data sampling used for this study was 30.0 seconds. With a
sampling rate of 50 samples per second, 13500 data points were collected
and stored for all nine gages for each experimental wave.

The data collected for this project are presented graphically in
Appendix B. The results of the verification of the KP equation to the

12 generated wave fields are presented in Chapter 5.



CHAPTER 5

A COMPARISON OF GENUS 2 THEORY WITH EXPERIMENTAL WAVES

This chapter relates the exact genus 2 solutions of the KP equation
described in Chapter 3 to the wave characteristics measured in the
twelve laboratory experiments described in Chapter 4. The development
of this relationship requires the detailed assessment of the free param-
eters in the solution. In particular, insight into the sensitivity of
the solution to each of these free parameters must be established since
the spatial and temporal features of the solution are linked non-
linearily to these parameters. Once a basic understanding of the coupl-
ing between parameters is established, a methodology is developed for
selecting and optimizing the solution such that a "best-fit" to measured
data is achieved. The quantitative assessment of the comparisons be-
tween best-fit genus 2 waves and measured data for each of the twelve
experiments of Table 4.1 will demonstrate the capability of the KP equa-

tion to model a wide range of laboratory-generated wave phenomena.

5.1 The Free Parameters of a Genus 2 Solution

The calculation of a general genus 2 solution of the KP equation
requires the specification of six dynamical parameters and two nondynam-
ical parameters. (These parameters were noted in Section 3.4.) The ex-
perimental program described in Sections 4.3 and 4.5.2 employs symmetr-

ical waves in order to evolve a period parallelogram which is symmetric

87
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about both the x~ and y-axis as was shown in Figures 3.4 and 4.16. A
symmetrical parallelogram was desirable so that a fixed linear wave gage
array could be used to measure all experimental waves. Symmetry intro-

duces the following relations:

Hence, the number of free parameters for the symmetric subset of
solutions is reduced to five, with only three of dynamical signifi-
cance. These three free parameters are truly independent and can be
arbitrarily selected from the nine dynamical parameters of the general
genus 2 solution. The remaining six dependent parameters are computed
from Dubrovin's theorem of Equation 3.66 and the relationships shown in
Equations 5.1. The free parameters chosen for this investigation are
b, u, and A. These were selected because their specification resulted
in a rapidly convergent algorithm for computing a best-fit with measured
data. The algorithm consists of an interactive program which was speci-
fically developed to compare computed and measured wave characteristics.
In order to gain insight into the effects of changing parameter values,
a sensitivity analysis is made to demonstrate the impact of each of the
independent free parameters on the computed waves.

In each of the following analyses, two of the independent variables
are held fixed while the third is allowed to vary. The relative effect
of the single parameter is then measured by changes in the nondimen-

sional maximum computed wave elevation fmax, the angular frequency
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w, and the y-direction wavenumber v. These parameters were selected
because their values yield the measurable quantities of maximum wave

elevation, period, and y-dimension length of the period parallelogram.

5.1.1 Sensitivity analysis for the parameter b

As already noted in Section 3.4, the parameter b provides a mea-
sure of the nonlinearity of the wave field. There it was shown that for
b+0 the waves appeared as two KdV solitons whose interactions were
highly localized in space. For b more negative, the wave heights
decrease and a wave profile measured through the stem region becomes
more sinuscidal. More detailed insight into the effects of b on the
genus 2 waves is provided in Figure 5.1 which shows the effects of vary-
ing b on w, fmax, and v when X and u are fixed. It can be seen

from Figure 5.1 that a 3-fold increase in b (-6. to -2.) produces a

6.0 —w
fmax
4.0 ~
2.0 4
0.0
0.0

Figure 5.1 Sensitivity of the parameters o , fmax , and v to
the parameter b
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21-fold increase in the nondimensicnal maximum wave elevation (0.116 to
2.522). A comparable change in the angular frequency occurs while the
value of v 1is not affected significantly. The effect on w 1is due to
nonlinear changes in wave speed through the dispersion relation and.the
fact that the x-direction wavelength is fixed in the computation. The
value of b can therefore he seen to be indicative of nonlinearity,
somewhat equivalent to the elliptic parameter m of cnoidal theory. A
qualitative demonstration of the relative effect of b on the wave shape
can be seen in the normalized three-dimensional plots shown in Fig-
ures 5.2a and 5.2b. In the first case, the waves are seen to be highly
nonlinear in shape while the waves are smoother and appear to be more
linear in the second case.
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Figure 5.2 Example wavefields demonstrating the effect of the
parameter b with A =0.100 and u =0.500
a) b= -2,000, v = =0.629, fmax = 2.552, w = -3,197
b) b = -6.000, v = -0.277, fmax = 0.116, w = -0.350
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5.1.2 Sensitivity analysis for the parameter u

The effect of the parameter wu is illustrated in Figure 5.3 which
shows the variation of w, fmax, and v over a range of 0.2<u<0.9. It
can be seen that the frequency and, to a lesser extent, the wave height
are sensitive to variations in wu. For example, an increase in u
decreases the x-direction wavelength over which the wave must travel.
This results in a decrease of the period or increase of the angular fre-
quency of the wave with respect to a coordinate system translating at
the speed of a linear wave. This is shown in Figure 5.3. The total
effect of these coupled changes are manifest in the maximum wave eleva-
tion shown in the figure. As with the parameter b, little effect is
shown in the value of v. Figures 5.4a and 5.4b qualitatively demon-
strate the effect of u to be a somewhat minor alteration of the shape
of the period parallelogram. The most significant effect is not obvious

from the three-dimensional plots, a 100% increase in u (0.400 to

frax

~
o
!

Figure 5.3 Sensitivity of the parameters w, fmax, and v to
the parameter u
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Figure 5.4 Example wavefields demonstrating the effect of the
parameter u with b = =3.000 and A = 0.100
a) u = 0,400, v = -0.291, fmax = 0.572, w = -0.713
b) w=0.800, v = ~1.,163, fmax = 2.286, w = -5.705

inou

0.800) produces an 800% change in w. However, the large change in

w is somewhat misleading since the frequency passes through zero as the
wave celerity Iincreases from less than to greater than the linear wave
celerity. It can be seen that u is primarily a measure of wave period

and secondarily a measure of wave height.

5.1.3 Sensitivity analysis for the parameter A

The effect of A is evidenced in all parameters (w, fmax, and
v) as shown in Figure 5.5. The most effective demonstration of its

relative effect on the solution is seen in the qualitative features
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Figure 5.5 Sensitivity of the parameters w, fmax, and v to

the parameter
evident in Figures 5.6a and 5.6b. In the first case, the saddle region
is long, resulting in a short stem of interaction. This is an indica-
tion of weak interaction between the two waves. The second figure shows
a much stronger degree of interaction as seen by the long stem and large
angle between the saddle region and the stem axis. From the point of
view of intersecting waves, this interaction is so strong that the orig-
inal waves have completely lost their identity. The entire wave pattern
is now represented by propagating stems with almost no saddle region in
between. Note that Figure 5.5 and 5.6b include values of A outside
the allowable range of 0.5 according to Segur and Finkel for a Riemann
matrix to be basic according to the definition of Equations 3.55. These
values were included to demonstrate the effect of the parameter on the
qualitative features of the solution. The observed effects provide an
indication of the strength and magnitude of the phase shift experienced

by the wavecrests of the original component waves.
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5.2 The Dimensional Genus 2 KP Solution

The comparison of exact KP solutions to laboratory generated data
requires the use of the scaling presented in Chapter 3 for relating the
nondimensional KP parameterskto their dimensional laboratory counter-
parts. The nondimensional variables ﬁ, §, £, and % are related to

the dimensional variables ¥, ¥, ¢, and t according to
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A 172 | .
% = eh (x - Ygh t)
A L ey
" h
5.2
- 3
f= 2¢h ©
% - 63/26Vgh £
Use of the velocity potential results in the following relationships
describing the three-dimensional velocity field:
u = Vg/h g
v = Vg/h ~/E§d§
w=-"V¥g/h (h + C)Cg . 5.3
The nondimensional wave numbers (u, v ) can be written in terms of
dimensional wavelengths according to
_ _2rh
e1/2L
X
_ 2th
v =T 5.4
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where L, and Ly represent the X and § dimensions of the observed
period parallelogram. The maximum observed wave elveation Emax is re-

lated to fmax through the relationship:

.2
gmax 3 Ehfmax . 5.5

The small parameter e appearing in Equation 5.5 was used for ordering
terms in the derivation of the KP equation. The numerical value of the
parameter is arbitrary and can be set to unity without loss of general-
ity. By specifying e as unity and noting that a water depth of
1.0 foot was used for all experiments, it can be seen that the dimen-
sional and nondimensional wavelengths are numerically equivalent.

The dimensional wave period measured in laboratory coordinates can
be written in terms of the nondimensional solution by examining the

phase variable in Equation 3.49. For example, the nondimensional phase

A A A
Y = uxX + vy + wt

can be written in terms of dimensional quantities according to

w:ﬁé+ﬂ+<-u@+w§§1)s 5.6

where p and w are KP values. The quantity in brackets represents
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\

the dimensional angular frequency and can be used to define the dimen-

sional wave period in terms of the KP values u and uw.

T = en /<9’- ) 5.7

Equations 5.4 through 5.7 provide the relationship between laboratory
quantities and solution parameters. These relationships will be
utilized in the following section for obtaining a best-fit genus 2

solution for each of the experiments.

5.3 A Methodology for Relating Genus 2 Solutions to Observed Waves

The algorithm developed to relate the free parameters of the
genus 2 solution to the observed wavefield is an iterative procedure
based on the sensitivity analysis of section 5.1 and the laboratory data
measured in the experiments. The algorithm will be described in detail
using experiment CN3007 from Table 4.1 as an illustrative example.

The wave field corresponding to case CN3007 was generated using the
technique described previously in Chapter 4. Wave gages located in the
stem region indicate the period parallelogram has a period approximately
equal to 1.378 seconds as was used to program the wave generator. This
period is the most accurate information known describing the evolved
wave pattern since it was independently computed by system software from
the calibrated wave gage data. Overhead photographs were taken to form
a mosaic of the wave field. The mosaic for experiment CN3007 is shown

in Figure 5.7. The location of the period parallelogram and the nine
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Figure 5.7 Mosaic photograph of the experimental wave field
experiment CN3007
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recording wave gages, which were subsequently placed in the basin, are
superimposed on the photograph. The dynamic features of the wave field,
such as the stem and saddle regions, are clearly visible.

The photographs represent changes in intensity of light originating
from the strobes and reflected by the water surface. Since the strobes
are located on the wave generator, the approximately straight line seg-
ments showing an abrupt change in intensity from light to dark represent
wave crests propagating directly away from the generator, in a direction
of light to dark. The sharpness of this stem region indicates a near
breaking condition for the CN3007 waves. The distinct crest lines rep-
resenting the stems of interaction are connected by saddles of smaller
crest heights. The global wave pattern, composed of a tiling of the
basic period parallelograms, is clearly observed in Figure 5.7. The
qualitative similarity to the example solutions shown in Chapter 3 can
be seen. Certain extraneous features are also included in the photo-
graphs. The orthogonal white lines, for example, represent concrete
seams on the floor of the wave basin. The ethereal small patterns
appearing on the water surface are the result of reflections from the
overhead catwalk and the structural members. Both of these features are
irrelevant to the collection and analysis of data; however, their exist-
ence is acknowledged to explain their appearance. The mosaics for the
entire set of experimental waves of Table 4.1 are shown in Figures B.1
of Appendix B.

Measurement of the x- and y-dimensions of the period parallelogram,
drawn on each mosaic, results in an initial estimate for u and v
respectively. An initial value for the parameters A = A can be

computed by using the values for the ¢3 and wu intercepts of the
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parallelogram sides corresponding to w1 = 0,27 and wz = 0,2% .
Although the intercepts are difficult to estimate since they depend on
the accuracy with which one can draw the parallelogram and the stem and
saddle regions, an initial value is obtained which is usually adequate
for the first iteration of the optimization algorithm.

In addition to the initial estimates gained from the mosaics, a
visual correspondence between the qualitative features of the wave field
(stems and saddles for example) and the locations of the nine recording
wave gages is determined. This is best illustrated by Figure 5.8,
representing the wave traces of the nine gages for the CN3007 test
wave. The exact correspondence between each gage and its respective
location within the period parallelogram can easily be seen from the
photograph. Gages 1, 2, 4, 5, 6, 8, and 9 are clearly located within a
stem region where only one wave crest is experienced per passing of the
period parallelogram. In contrast, gages 3 and 7 are located in the
saddle region where two smaller peaks per period are seen. The visual
correspondence between the wave measurements and the photograph proves
to be almost indispensable for interpreting the observed three-
dimensional waves from the two-dimensional wave traces. The wave traces
for all experimental waves are presented in Figures B.2 of Appendix B.

Variations in wave shape and height shown in the initial portion of
Figure 5.8 (and in other wave traces) resulted from the sampling of data
at the end of the 10 second ramp motion programmed into the wave genera-
tor. During this time, the paddle movement is modified by ramping the
paddle stroké from zero to its full programmed value in order to provide
protection for the wave generator. These regions are usually evidenced

by the incomplete evolution of a genus 2 type wave. In addition to
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these effects, reflections from the sidewalls and variations in depth
alter the shape of the evolved wave. The error introduced by the depth
variations will be addressed in the conclusions of this investigation.
The technique of quantitatively comparing the laboratory data with
genus 2 solutions involves the computation of an exact solution corre-~
sponding to the location of each of the nine wave gages. From Fig-
ure 5.7, the location of each gage with respect to the origin of the
coordinate system is estimated. (This origin or zero point correspon-
dence was discussed in Section 4.4.2.) For the example of CN3007, the

y-distances were determined to be

Gage # 1: 1.50 ft Gage # 2: 1.00 ft Gage # 3: 3.50 ft
Gage # 4: 6.00 ft Gage # 5: 8.50 £t Gage # 6: 6.00 ft
Gage # 7: 3.50 ft Gage # 8: 1.00 ft Gage # 9: 1.50 ft

The estimate of v for experiment CN3007 resulted in a y-distance wave-
length of 17.0 ft, corresponding to a symmetrical half-length of 8.5 ft.
The mirror reflection of distances about 0.0 and 8.5 ft is shown in the
above data (i.e. gages 4 and 6 about 8.5 ft and gages 1 and 9 about

0.0 ft). For the case of CN3007, the period parallelogram is 17.0 ft
long while the linear gage array is 20.0 ft in length. Several gages
can be seen to lie in adjacent parallelograms (gages 1 and 9). Regard-
less of the size of the parallelogram, each gage can be related to the
common point., The determination of the loeation of this point with
respect to the gages is eguivalent to selecting an origin of the period
parallelogram by means of the nondynamical parameters $10 and wgoe

The photegraphs provide this first estimate.
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Preliminary estimates of the solution parameters were used to
generate exact solutions. - For each test case, 31 solution traces,
equally spaced along the y-axis of the period parallelogram and parallel
to the x-axis, were computed for the three-dimensional wave pattern.
These individual traces can be seen in the x-parallel profiles defining
the three-dimensional plots. Since the parallelogram is symmetric, a
plot of a half-parallelogram is sufficient to define the entire paral-
lelogram, thus quantifying the vertical and horizontal distribution of
the entire global wave field. Figure 5.9 presents a detailed plot of
this half region by plotting the 16 two-dimensional solution profiles.
Note that the crest of the top trace represents the center of the stem
region while the middle portion of the bottom trace represents the
trough, bounded by a stem crest at either end. The center traces rep-
resent the saddle area connecting the stems of adjacent parallelograms.
A clearer example of the saddle region is shown in Figure 5.10, where
the traces of experiment CN2015 are shown (the photograph corresponding
to CN2015 can be seen in Appendix B). The distinet double peaks of the
saddle region are easily identified in this figure.

A means of analyzing the complex three-dimensional wave pattern in
a way which was both concise and definitive was developed, based on the
above two-dimensional slice presentation. Employing this approach, an
exact KP solution was evaluated at nine y-locations, corresponding to
the locations of each of the nine wave gages within a common half-period
parallelogram. This procedure yielded a set of nine two-dimensional
slices through the wave pattern which provided a horizontal and vertical
definition for the overall wave which could be utilized for further

analysis of the data in a quantitative sense. For example, a trace of



104

CNOIDAL TEST CN3007

B = -5.550
1.0 - ETA/ (MAX ETA CAMPUTED) L H M B D 9 - O . 2 S D
- Ul = -NU2 = -0.369
- 1 = MU2 = 0.800
o 7] M ETAR (CMP) = 0.3394
Z 00: INNETR (CMP) = -0.257
/ ———
—_ e e
R
><C3.— e i U
aw I
-
e ——
W T~
im
>—
o I Th— -
AN -
] N \ —
0.00 0. 20 0% 50 0.80 1.00

X/ (X-AX1S)

Figure 5.9 3ixteen KP wave profiles for the half-parallelogram
solution corresponding to experiment CN3007



105

CNOIDAL TEST CN2015

1.0 ETA/ (MAX ETA COMPUTED)

w)
Dw

ENNEERENE]
ZTERIZrw
DCCD
X X
Mmoo

——
DDX |
~— CZ =
oOone o
TX VOO
TTOU -

1 OG-

Oe ~Jro
W

[T

10.00

.75

—

0.00 0.20 0,40 0.50 0.80 1. 00
X/ (X-AX19)

Figure 5.10 Sixteen KP wave profiles for the half-parallelogram
solution corresponding to experiment CN2015



106

solutions was computed such that an exact solution was computed to
correspond to the data sampling rate of 50 samples per second for the
measured period of each experimental wave. This computation yielded a
set of computed wave elevations which were directly comparable in time
(point by point) to the collected wave gage data. This permits the use
of standard data analysis techniques for comparing the two sets of

data. The chosen comparison was a root—mean—square (rms) analysis which
defined the rms error between the experimental data and the observed

data as

s 1/2
N Cob - r"com 2
rms = Z: -—w——jr——g - 5.8

where N represents the total number of points in the time series. An
average rms error was also computed as the arithmetic mean, or average,
of the nine individual rms values so that a comparison of the overall
fit for each experimental wave could be made. The rms error approach
for comparing two time series of data requires the selection of a single
period of data from the 30.0 seconds of déta sampled for each experi-
mental wave. The criteria for selecting this "typical" wave will be
discussed in the following section. In both examples presented, the
free parameters of the solution have been optimized. The following
paragraphs demonstrate thig optimization process.

The generation of an exact genus 2 solution corresponding to an
observed wave field requires the specification of b, u, and 2A

describing that wave field. The mosaic photographs are used to estimate
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vy, v, and A. The maximum observed wave height and the wave period

T are determined from the wave gages. The direct use of this data
results in an overspecification of the problem. An iteration scheme was
therefore developed to converge on a solution which is éonsistent with
all of the data, within the specified limits of accuracy. The following
iteration procedure is effectively used to optimize each of the free
parameters for each of the twelve experiments.

a. The estimated values for u, v, and A were determined from
the photographs. The nondynamicél parameters w10 and w20
were initialized by requiring the solutions to be computed at
specified locations within the period parallelogram correspond-
ing to the location of the wave gages. A single wave period
was selected from the wave records. The selection of this
single period will be discussed in the following section. A
value of b was then selected such that the dimensionalized
maximum KP solution (from Equation 5.6) was within 5.0% of the
maximum measured elevation at a wave gage whose location is
nearest to the center of the stem region where maximum wave
elevations occur,

b. The value of Hy = U, Was adjusted, if necessary, until the
dimensionalized period (from Equation 5.7) was within 3.0%
of the measured period corresponding to the wave gage used in
Step a. for determining a maximum elevation.

¢. The value of . was adjusted, if necessary, until the dimen-
sionalized value of vy ==y, yielded a wavelength for the
computed period parallelogram which was within 10.0% of the

value estimated from the mosaic photographs., A 10-percent
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criterion was used for this iteration because the length of the
parallelogram was difficult to determine accurately from the
photographs.

d. Because of the nonlinear coupling of the solution with its
parameters, each adjustment affected all parameters to some
extent. If corrections were found to be necessary, Steps a.
through ¢. were repeated until all of the computed parameters
were within the specified tolerances. An interactive program
was written to make the computations and comparisons required
for this iteration procedure.

e. A KP solution for each of the wave gages was calculated. A
normalized plot comparing theory to measurements at the nine
gage locations was made. All comparisons are shown in Fig-
ures B.3 of Appendix B. Included in each plot is the rms error
for each wave trace., Possible phasing problems regarding the
gage locations within the parallelogram were rectified by
adjusting the nendynamical phase parameters.

f. A normalized contour map and a three-dimensional view for each
wave field was finally prepared as a visual demonstration of
the KP solution. Contour plots and three-dimensional view
plots for each of the experimental wave are presented in

Figures B.4 of Appendix B.

The above procedures were followed for each of the test wave fields of
Table 4.1. A minimum tolerance of 5.0% for waveheight, 3.0% for period;
and 10.0% for the y-direction wavelength was satisified in all experi-

ments. Section 5.4 presents and discusses these results.



109

5.4 Presentation and Discussion of Results

The comparisons mentioned in Section 5.3 between the genus 2
solutions and the observed waves for the experiments CN3007 and CN2015
are presented in Figures 5.11 and 5.12. Note that for each gage, the
genus 2 solution is shown by a solid line and experimental data are
indicated by asterisks. FEach gage comparison has a corresponding rms
error associated with it to provide a measure of the accuracy of fit.
In Figure 5.11, the rms error varies from a value of 0.077 (i.e. which
can be interpreted as a 7.7% error) for gage 9 to 0.263 for gage 5.
Figure 5.12 shows a range of from 0.038 for gage 4 to 0.203 for gage 2
for expemiment CN2015. Each comparison is based on the deviation
between the computed solution and the measured wave profile; hence,
agreement requires that both heights and phases match. A difficult area
to match is the saddle region in which the wave heights are low and the
phasing is complicated since two wave crests are experienced per wave
period. For this reason, the rms error in the saddle region is often
higher (indicating a poorer fit) than in the stem region. Examples can
be seen in the traces of Figures 5.1%1 and 5.12 as well as for the other
experiments shown in Appendixz B. The rms values in Figure 5.11 for
gages 3 and 7, which are located in the saddle region, are higher than
those for gages 8 and 9 located in the stem. Similarily, the large
errors for gages 1 and 2 of CN2015 indicate that their location is in
the saddle region., When the wave elevations are small, as in gage 3 of
Figure 5.11, disagreement is often not as obvious from the rms value as
it is in the stem region. In the saddle region, a large deviation from
a small number has less impact than a small deviation from a large

number in the stem. The effect of small waves on the error estimates
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can be seen in a comparison of gages 1 and 3 of Figure 5.11., Gage 1
shows an error of 0.187 while the visually poorer agreement of gage 3
indicates a better error estimate of 0.163. The rms error values for
each gage and for each experiment are presented in Figures B.3 in the
Appendix B.

Following optimizing of solution parameters for each experimental
wave, a normalized contour map and a three-dimensional perspective view
of the computed genus 2 solution was prepared to demonstrate its fea-
tures. The results for experiments CN3007 and CN2015 are shown in Fig-
ures 5.13 through 5.16. In each figure, the saddle and stem regions can
be identified and compared to the respective mosaic photograph in Appen-

dix B.
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Figure 5.14 Three-dimensional view of the theoretical solution for
experiment CN3007
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Figure 5.16 Three-dimensional view of the theoretical solution for
experiment CN2015

The free parameters and the computed dependent variables of the
exact genus 2 KP solution for each of the twelve experiments are
presented in Table 5.1. Several observations can be made concerning
these parameters. For example, it can be seen that the parameter b
increases (becomes less negative) with the angle of intersection and
with wavelength. Angle effects can be seen within each grouping of
experiments. The nominal 7-foot tests, for example, show a change from
-6.200 for CN1007 to -~5.150 for CNL40OT7. The effect of the wavelength
can be seen in the change from the 7- to the 15-foot tests in which the
value changes from approximately -6.0 to -3.5. Results indicate that
waves become linear as wavelengths and angles increase. A similar indi-
cation of the reduction in wave-wave interactions is shown by the values

of A . Experiment CN1007 indicates a value outside the limits shown by
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Table 5.1 Free parameters of the genus 2 KP solution for the
experimental program

Experiment b A u v w fmax
CN1007 -6.200 0.550 0.900 -0.135 -0.578 0.310
CN1507 -5.500 0.500 0.867 -0.179 -0.379 0.439
CN2007 -5.730 0.400 0.843 -0.230 -0.286 0.383
CN3007 -5.550 0.250 0.800 -0.369 -0.118 0.394
CNL4OOT -5.150 0.160 0.720 -0.463 -0.632 0.405
CN1011 -4.950 0.400 0.585 ~-0.131 +0.025 0.293
CN1511 -4.600 0.350 0.565 ~-0.156 -0.059 0.349
CN2011 ~-4,.400 0.225 0.540 -0.228 -0.240 0.373
CN3011 -4.450 0.120 0.500 -0.304 ~0.497 0.302
CN1015 -3.850 0.340 0.420 -0.106 -0.100 0.323
CN1515 -3.600 0.145 0.390 -0.193 -0.307 0.342
CN2015 -3.400 0.105 0.367 -0.217 -0.409 0.3U46

SF to be required of a basic Riemann matrix. The criterion of SF spe-
cifies a limit of +/- 0.5, although the experiments all indicate a
positive value indicating a positive phase shift. It appears therefore
that the +/- 0.5 criterion can be shifted to a 0.0 to 1.0 limit without
loss of generality. The values of u merely indicate that the x-
direction wavelengths are increasing with increasing cnoidal wavelength
as would be expected.

The dependent variables (v, w, and fmax) reflect the changes in
the independent parameters. It can be seen from Table 5.1 that the y-
direction wavenumber (v) decreases as the wave interactions become less.
The correlation with the parameter A can be seen in each set of exper-
iments. An interesting trend in the angular frequency is shown. As the

y-direction wavelength increases (as shown by a corresponding decrease
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in v), the value of the angular frequency w necessarily decreases
according to Equation 5.7. Otherwise, the measured wave period will not
be duplicated by the computed wave. As an ezample, a positive value of
+0.025 for experiment CN1011 is required to balance the effect of the

u value of 0.585 in order to arrive at a computed period equivalent to
the measured period of 1.947 seconds. All other values can be seen to
be negative and decrease with decreasing u. As previously stated,
maximum wave elevations were maintained relatively constant as shown by
the fmax values.

The computed values of v, w, and fmax form the basis of the
optimization algorithm since it was their values which were used for the
comparison with laboratory measured wave characteristics. For example,
A was used to compute a y-dimension wavelength which was required to be
accurate to within 10% of the measured value. A 5% criterion was estab-
lished for the deviation of the maximum wave height computed from fmax
and the measured elevation and a 3% error limit was set for differences
in the measured period and the period computed from u. The degree of
success achieved with this solution algorithm can be seen in Table 5.2
in which a comparison of these consistency checks is listed.

The specified tolerances were maintained for each experiment as
can be computed from the measured/computed comparisons. Included in
Table 5.2 is an alternate estimate of overall error, the total rms
value, defined as shown below., This formulation was included as an
alternate indicator of error to the average rms value shown in Fig-

ures B.3.

9
2 1 2
PMSrop 9 m§=1 (r‘ms )m 5.9
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Table 5.2 Comparison of measured and computed
wave parameters

D ot o e (e s S A D D £ £ S T e ) SR S S QN EIN 4Sr T TED A N Gy e oD XD TEM D e e ) e D R Sem O W A d e 27 D IS O i s e e e TR D Gme WM AL G e G = WD G

measured/computed total

Experiment y-wavelength maximum elevation period RMS
(ft) (ins) (sec) error

CN1007 46.9/46.5 2.436/2.479 1.38/1.38 0.152
CN1507 34.0/35.1 3.588/3.508 1.38/1.38 0.198
CN2007 27.0/27.3 3.064/3.061 1.38/1.39 0.171
CN3007 17.0/17.0 3.239/3.154 1.38/71.35 0.156
CNL40O7 12.5/13.6 3.305/3.237 1.38/1.34 0.191
CN1011 48.0/48.0 2.395/2.347 1.95/1.91 0.195
CN1511 38.1/40.3 2.867/2.792 1.94/1.92 0.127
CN2011 26.0/27.6 3.104/2.988 1.94/1.91 0.133
CN3011 20.0/20.7 2.483/2.417 1.95/1.90 0.182
CN1015 56.1/59.3 2.653/2.581 2.55/2.53 0.125
CN1515 32.1/32.6 2.844/2.736 2.54/2.51 0.096
CN2015 27.0/29.0 2.861/2.767 2.55/2.55 0.114

- e . T > € e YD e T R D G A R - e S T R M ) T T O WD D e e e X3P O e RS D et e e D TS e S o A G S S S e o SR R R S S

Examination of the results shown in Tables 5.1 and 5.2 show that the
computed error between observed waves and genus 2 solutions never
exceeds 20%. The nominal 15-foot wavelength experiments (CN1015,
CN1515, and CN2015), which were shown to be the most weakly nonlinear
according to the values of b, showed errors of only about 10%. Rms
errors of this magnitude are acceptable since variations in the eleva-
tion of the basin floor are documented to be on the order of 10% of the
water depth and some of the waves were observed to be near the point of
breaking. Examination of the single cnoidal wave shown in Figure 4.10
shows a 25% variation in the wave envelope. A similar error analysis
for the cnoidal wave would show at least the same order of magnitude as
seen in the KP waves. In view of the physical size of the facility and

the known sources of potential contamination of the wave form, an
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accuracy of 20% for a three-dimensional wave form is considered very
good and is, in fact, better than anticipated.

The method of analysis leading to the results in Tables 5.1 and 5.2
makes use of a single period of measured wave data from a 30.0 second
record. In order to show that this analysis technique does provide a
definitive comparison, it remains to be demonstrated that this chosen
wave 1s typical of all waves in the record.

A certain amount of variation in the shape of the experimental
waves was discussed from the standpoint of the rms error analysis.

Some of this variation is due to the startup of the wavemaker which can
be seen in the beginning of several of the wave traces shown in Fig-
ures B.2. In addition, reflections from the sidewalls and the shoaling
effects previously mentioned affect the wave shape. In consideration of
all of these factors, the wave period to be analyzed in detail was se-
lected by looking at the wave traces of the nine gages for each experi-
mental wave and choosing a single period which appeared to be fully
developed. This region was generally evidenced by the evolution of the
two distincet peaks per period in the saddle region. These dual peak
regions are clearly visible in the wave traces shown in Figures B.2.

The periods selected for analysis are considered to be typical for
the fully developed wave region. In an attempt to quantify this state-
ment, an average rms error was computed for a composite wave calculated
by averaging (in time) the selected wave plus 5 adjacent (either pre-
ceding or following) wave periods to produce a single composite period
of data. This resulted in an analysis of 8.27 seconds of data for the
nominal 7.0 ft wavelengths, 11,68 seconds for the 11.0 ft wavelengths,

and 15.32 seconds for the 15.0 £t wavelengths. Table 5.3 shows the
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Table 5.3 Comparison of the average RMS error for the typical
wave and the composite wave

typical wave typical wave composite wave
Experiment  start time (secs) average RMS error average RMS error

CN1007 23.80 0.141 0.152
CN1507 21.42 0.188 0.186
CN2007 18.46 0.150 0.143
CN3007 21.18 0.143 0.146
CN4oO7 15.60 0.184 0.178
CN1011 12.28 0.174 0.185
CN1511 15.88 0.122 0.128
CN20 11 18.70 0.126 0.133
CN3011 3.18 0.172 0.245
CN1015 4.90 0.120 0.122
CN1515 9.86 0.094 0.095
CN2015 4.54 0.098 0.103

beginning time for each typical wave (see Figures B.2) in each experi-
ment, the average rms error of the typical wave, and the average rms
error of the composite wave. Results in Table 5.3 show that the average
rms error computed for the composite wave is essentially identical to
that computed for the typical wave, with one exception. The typical
wave selected for experiment CN3011 appears to have been sampled during
the generation ramp, thereby introducing error into the composite wave
comparison. The discrepancy can be seen in the average rms error values
in which the typical wave shows a value of 0,172 and the composite wave
shows 0.245. Inspection of the wave trace for experiment CN3011 shown
in Figure B.2i reveals that a starting time of 3.18 seconds was too
early in the data series for a typical to composite wave comparison to

be meaningful. With this exception, the results show that the typiecal
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wave used for the data comparisons is representative of the wave trace.
Therefore, the analyses performed and reported are valid.

The results shown in Tables 5.1 and 5.2 quantify the capability of
the genus 2 solutions to model the vertical and horizontal distribution
of the twelve experimentally generated wave fields., Table 5.3 shows
that these comparisons are representative of the entire generated wave.
It now remains to be shown that the generated wave flelds represent a
broad range of conditions and that the comparisons between theory and
measurement represent a comprehensive data base for testing the KP
equation., If the KP equation proves to be capable of predicting a large
variety of waves, its potential applicability for addressing relevant
problems may be significant. To accomplish this, each wave field can be
categorized as to its degree of nonlinearity, dispersiveness, or three-
dimensionality by looking at the numerical values computed for each of
the small parameters used in the scaling of the equation shown in Chap-
ter 3. The applicability of the genus 2 solutions to model a variety of
waves can then be assessed by considering the error estimates for each
of the generated wave fields in view of these computed parameters.

The original derivation of the KP equation was based on the assumed
smallness of each of its scaling parameters, i.e. weakly nonlinear,
weakly dispersive, and weakly three-dimensional. An equation with the
ability to provide an accurate description of the waves when the under-
lying assumptions of its derivation are met, but still provide an ac-
ceptable prediction when the assumptions are moderately viclated, can
be referred to as robust. Robustness is a highly desirable quality of
a wave model since it demonstrates the capacity of the equation to

acceptably reproduce a wide class of waves. Table 5.4 presents the
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Table 5.4 Small parameters defining nonlinearity, dispersiveness, and
three-~dimensionality for the experimental program

Experiment 2 total
a = % B = (kh)2 g = (%) a/8 rms error

CN1007 0.203 0.810 0.022 0.251 0.152
CN1507 0.299 0.752 0.043 0.398 0.198
CN2007 0.255 0.711 0.074 0.359 0.171
CN3007 0.270 0.640 0.213 0.422 0.156
CN40O07 0.275 0.518 0.414 0.531 0.191
CN1011 0.200 0.342 0.050 0.585 0.195
CN1511 0.239 0.319 0.076 0.749 0.127
CN2011 0.259 0.292 0.178 0.887 0.133
CN3011 0.207 0.250 0.370 0.828 0.182
CN1015 0.221 0.176 0.064 1.256 0.125
CN1515 0.237 0.152 0.245 1.559 0.096
CN2015 0.238 0.135 0.350 1.763 0.114

small parameters computed for each of the twelve wavefields:

a representing nonlinearity, B8 representing dispersion, e
representing three-dimensionality, and the ratio o/8 representing the
relative effects of nonlinearity and dispersion (comparable to the
Ursell number).

Table 5.4 indicates that the nonlinear parameter o, shows the
least amount of variation throughout the wave tests. A low value of
0.203 for experiment CN1007 and a maximum value of 0.299 was measured
for experiment CN1507. The narrow range of o is not significant in
these tests. It is the one parameter which could not be varied beyond a
very limited range, due to the method of generation. The experimental
waves were evolved by combining cnoidal wave trains with wavelengths

varying from 7 to 15 ft and a variety of angles of intersection. Each
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cnoidal wave was generated with a maximum wave elevation of approxi-
mately 1.0 inch. This maximum elevation was used for the generation of
all cnoidal wave trains because it was found that larger waves broke for
the short wavelength tests (i.e. tests CN3007 through CN3040) while
smaller waves were barely visible in the mosaic photographs of the

15 foot wavelength tests (CN1507 through CN1520). For this reason, the
range of maximum elevation is necessarily limited. It can be seen,
however, that the parameter o 1is not particularly applicable to these
three-dimensional waves since a strong degree of nonlinearity can be
seen in the mosaics of the 7-foot waves in which almost all waves can bhe
seen to be on the verge of breaking in the stem region.

The second parameter, 8, provides a measure of wave dispersion
and is used to categorize a flow as deep or shallow. Results shown in
Table 5.4 indicate almost an order-of-magnitude range for this param-
eter. For example, experiment CN1007 was measured at 0.810 and experi-
ment CN2015 showed a value of 0.135. Since all values are in the
shallow-water regime, it can be concluded that the experimental program
covers a broad range of shallow-water conditions.

The third parameter represents the most important aspect of the
present study since it provides a quantitative description of the three-
dimensional structure of the waves. This parameter provides the means
of actually quantifying the capability of the KP equation to model a
genuinely three-dimensional flow. Results reported in Table 5.4 show
that the generated wave fields exhibited a strong three-dimensional
structure whose descriptive parameters spread over an order of magni-
tude., Experiment CN1007 showed the least amount of three-dimensionality

as indicated by the value of 0.022. A maximum value of 0.414 was



123

measured for experiment CN4OOT7. The assumption of weakly three-
dimensional is clearly violated by this latter figure since it indicates
the wave to be almost equally structured in both principal directions.
The computed error for this test is, however, only 19.1%. Experiments
CN3011 and CN2015 also show a high degree of three-dimensional structure
which surpasses the weak assumption. The error for these experiments is
computed to be just 18.2% and 11.4% respectively. The fact that the
genus 2 solutions are capable of modeling these waves to the reported
accuracy certainly shows the KP equation to be robust in its ability to
accurately model a three-dimensional wave field.

A final calculation is shown in order to demonstrate that the
observed permanent form waves have an Ursell parameter of order unity.
The ratio of /8 represents the ratio of nonlinearity to dispersive-
ness reported by Ursell., Ursell showed that this ratio is of order
unity for a permanent form wave. Table 4.5 shows this value to be in
the range of 0.251 (CN1007) to 1.763 (CN2015).

In addition to an evaluation of the scaling parameters, several
observations can be made regarding the experimental wave fields which
demonstrate the robustness of the laboratory waves. For example, it was
stated that during the wave generation phase, the maximum specified wave
elevations for the component waves had to be reduced because the evolved
waves were breaking. Even when they did break, the wave crests reformed
and the horizontal integrity of the hexagonal pattern was retained. Not
only did the generated waves prove to be stable to a variety of geome-
trical configurations, they were alsc observed to be stable to several
sources of external perturbation. For example, variations in the depth

of flow shown in Figure U4.1 were shown to produce wave height variations
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of 25%. Also; reflections from sidewalls, the fact that the correct
wave was not generated but evolved, the 10 second generation ramp, etec.,
all contributed to a small spatial variability in the experimental
waves. Although these extraneous sources of error are known to exist
(but could not be corrected), the waves always retain their basic
qualitative features with the observed perturbations maintained about
these fixed wave features.

The results of the laboratory phase of the investigation show that
stable three-dimensional nonlinear wave forms were successfully produced
in the wave basin which are qualitatively similar to the genus 2 solu-
tions of the KP equation., These wave forms were evolved by simultan-
eously generating two cnoidal wave trains of variable wavelength at
symmetrical angles of intersection to the wave generator. The wave-
lengths and angles of intersection used to produce these wavefields are
presented in Table 4.1. The wave forms were observed to evolve into
genus 2-like hexagonal surface patterns almost immediately after leaving
the wave generator paddles. All wave forms were shown to be extremely
stable with respect to both variations in the basic wave components and
to perturbations to the evolved wave. Examples of this stability are
evident in the photographs shown in Figures B.1 and in the wave gage
traces shown in Figures B.2. A correspondence between the three free
parameters of the genus 2 solution was developed and described. The
resulting exact solutions were compared with their respective laboratory
waves. Quantitative comparisons between the computed solutions and the
observed waves were provided by means of an rms error analysis. Results
of that analysis show the KP equation to be capable of acocurately

modeling genuinely three-dimensional, nonlinear, waves in shallow water.



CHAPTER 6

CONCLUSIONS

A new class of genuinely three-dimensional, nonlinear, shallow
water waves is reported herein. These new waves are produced in the
laboratory by the simultaneous generation of obliquely intersecting
cnoidal wave trains. The generation procedure requires the use of a
large-scale directional spectral wave generation facility. The result-
ing wave pattern resembles a tiling of uniformly sized, permanent form,
hexagonal surface wave patterns. Wave crests defining the hexagonal
pattern consists of stems of interaction, resulting from the nonlinear
interaction of the two component cnoidal waves, and saddle regions
connecting forward and rearward adjacent stems. Wave heights along
these crests vary from a maximum in the stem region to a minimum in the
saddle area. These waves are stable and possess the qualitative fea~
tures given by exact solutions to the Kadomtsev-Petviashvili (KP) equa-
tion. The KP equation has been shown to admit an infinitely dimensional
family of exact solutions in terms of Riemann theta functions of genus
N. The solutions of interest are the genus 2 solutions. These exact
solutions are biperiodic in the sense that they have two independent
periods in both space and time.

A comprehensive laboratory investigation is described which demon-
strates that the genus 2 solutions of the KP equation quantitatively

describe the features of these new waves. Experiments are reported in
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which twelve wave fields are evolved through the discrete generation of
cnoidal wave trains of various wavelengths and at various angles of
intersection. The horizontal and vertical structure of each experi-
mental wave is quantified by ovefhead mosaic photography and by a linear
array of nine resistance-type recording wave gages. A wide range of
variability in size and shape of the repetitive wave pattern is achieved
in order to fully test the limits of applicability of KP theory.

General genus 2 solutions of the KP equation require the specifica-
tion of eight free parameters, two of which are nondynamical in nature.
A subset of this general solution is tested by the generation of equal
and symmetric (with respect to the axis of the wave generator) component
waves. Symmetry introduces three constraints which reduce the required
number of free parameters to five, fhree dynamical and two nondynami-
cal. Verification of the KP equation using twelve wave fields therefore
requires the development of a unique correspondence between the three
free solution parameters and the physical characteristics of the labo-
ratory generated waves. The experimental procedure reported here
utilizes the maximum measured wave elevation in the stem, the measured
wave period, and the measured y-direction wavelength of the repetitive
surface pattern to compute and optimize the 3 free parameters.

Results of this investigation show that a reasonable agreement was
achieved between all experimental waves and their respective optimized
exact solutions. Accuracy of the theoretical solution fit was quanti-
fied by rms error computations between experimental data at each wave
gage and exact solutions corresponding to the location of each gage.
Total error estimates for each experiment, computed from the individual

gage rms values, varied from 9.6% to 19.8% over the entire range of
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data. The following sources of contamination are known to have contrib-
uted to these discrepancies. Variations in the nominally 1 ft water
depth were measured to be 10%. Wave reflections from the sidewalls were
observed to occur following wave.generation, and wave fields were gener-
ated which clearly violated the basic assumptions of weak nonlinearity,
weak dispersiveness, and weak three-dimensionality used in the deriva-
tion of the KP equation (several of the wave fields were on the verge
of breaking while others evolved from waves intersecting at nearly L0
degrees). In view of these sources of error, the measured agreement is

considered excellent.



APPENDIX A

ELLIPTIC FUNCTION SOLUTIONS TO THE KdV EQUATION

The generation of the nonlinear surface wave patterns for this
project required the computation of the "en" Jacobian elliptic function,
the complete elliptic integrals of the first and second kinds, and the
incomplete elliptic integral of the second type. Due to the importance
of these functions in the generation of waves, the solution techniques
used for their calculation are described below.

The en Jacobian elliptic function calculation was based on the

reference parameters shown on Figure A.1.

P P PP PP P PPS PP S IS IS Sl A

Figure A.1 Schematic diagram of the fluid boundary
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The following relationships, presented by Hammack (1985), were used to

define the en function:

1/2
3(n, + n,)
no=oen, 4 (n1 -+ nz)cn2 [———%—E~—§ ] (Xth) m A1
o o
Ny + 7
mz;;‘l—:—;]g- 4.2
1 3
16h 1/2
_ o)
A= ho[§?ﬁ;*I"H§7] K{m) A.3
_ E(m)
n3 = “1[%(m) . Ehnﬂ AL
1/2 1/ n n n
- T+ 1 _ 2 3
V= (gho) 2 ™ h ™ A.5

0 o

where E(m) and K(m) represent the complete elliptic integrals of the
first and second type. The known wave characteristics are the wave-
length A and the peak wave height above mean water Nye Com-
putationally, an initial value for the elliptic parameter m is
selected as 0.5. The complete integrals of the first and second type
are then computed, corresponding to this m, from the following

representation presented by Abramowitz and Stegun (1970):

K(m) = (1.38629 + 0.1119723 m,  + 0.0725296 m; )

+(0.50 + 0.1213478 m, + 0.0288729 m: ) In(1./m;) A.6
E(m) = (1.00 + 0.4630151 my + 0.1077812 m} )

+ (0.2452727 my + 0.0412496 m; ) In(1./my) AT
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where the complementary elliptic parameter my is defined as
m1=19"m. A.8

A value for can now be computed from equation A.4 for the trial

"3
value of m. A wave length A can then be computed and compared to the
known wavelength value. An iterative solution is now used to determine
an m value which will produce a wavelength that matches the input
value to some desired degree of accuracy. When this criteria has been
satisified, all of the arguments of equation A.1 are determined. Con~

solidation of equations A.1 through A.5 results in the following compact

definition:
n=-n, + (n, +n,) cn2(U|m)
2 1 2
where the elliptiec argument is defined as

u = 2K(m) (% - %) ) A.9

The procedure for computing the en function, once the arguments have
been determined, was based on the procedure given by Milne-Thompson
(1950). The algorithm used makes use of a known nonlinear wave property
that the elliptic parameter m approaches unity as the wave becomes
more nonlinear (in contrast, m=0 is a property of a linear sinusoidal
wave shape). Since only nonlinear wave shapes with a high m value
were of interest, the following approximations were used to compute the

sn, cn, and dn functions:
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sn(ujm) = tan u + % m,sech® u (sinh u cosh u - u) A.10

1

en(ulm) = sech u - % m,tanh u sech u (sinh u cosh u- u) A1

dn(u|m) = sech u + % m,tanh u sech u(sinh u cosh u + u) . A.12

The above approximations are only exact when the parameter m is unity.
The accuracy of this represention for waves with a parameter value less
than unity can be substantially improved by increasing the parameter

value by using an ascending Landen transformation. These relationships

are as shown below.

RRVEAN
U, = | ——— A.13
1 1+ m1/2
172
L = Hm - A, 14
(1 + m1/2)
I
vV = , T/2 A.15
+ 1y
1
(1+ u:/z)sn(VIu)cn(VIu) ;
= A,
sn(u|m) & T 1
1= (1 + u:/2)sn2(V|u)
en(u|m) = AT

dn(v{u)
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1 - (1 - u;/z)snz(vlu)

dn(ujm) = EEYCT ) A.18

where the right hand terms are computed with Equations A.10,
A.11, and A.12. The use of the approximations in conjunction with the
ascending Landen transformation will result in the computation of the
Jacobian elliptic functions to any desired degree of accuracy. For
example, a single application will effectively increase an m value of
0.6U40 to a value of 0.988. A single transformation was used for all
wave conditions,

Computation of the iﬁcomplete integral of the second kind,
E(ujm), was based on the procedure extracted from Abramowitz and Stegun
(1965) and presented by Goring (1978). This computational procedure

begins with the defining of an Arithemetic-Geometric Mean (AGM) scale as

follows:

a, = % (aO + bo) b, =\ﬁ;;i:_ e, = % (aO - bo) A.19
® [ ] @
® ® e
® @ @

a_ = 1 (a_ ,+ b ) b_=4/a b c_ = 1 (a ,-b_ )

n 2 ‘n-1" "n-1 n n-1 "n-1 n 2 “n-1 "n-1

Computations stop at the nth step when a, = b, (i.e. when ¢, = 0.) or
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to the degree of accuracy desired. The incomplete integral can be

computed in the following three steps:

1. Define the argument

where u is the elliptic argument defined by equation A.9 and N
represents the Nth step of the AGM matrix.

2. Compute the additional arguments

¢n_1 9 ¢n_2 ’-"’¢0

from the relationship

L= :
¢,_q = sin (e sin ¢ /a ) + ¢ /2.

3. Compute the incomplete elliptic integral of the second

type

E(u|m) = y +© sin ¢,+ c.sin bytent cnsin ¢,

1 1T 72

All of the above numerical representations were used in the generation
of the two-dimensional surface wave patterns with the directional

spectral wave generator.
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EXPERIMENTAL DATA AND EXACT GENUS 2 KP SOLUTIONS
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