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I. INTRODUCTION

A finite amplitude wave refraction and shoaling numerical model
based on Stokes third-order wave theory is developed in this report.
Improved prediction methods for wave refraction and shoaling are needed
to better estimate waves in the nearshore zone, which generate nearshore
currents and sediment transport. The finite amplitude wave model devel-
oped in this report uses a more accurate description of water wave prop-
agation than the commonly applied small amplitude wave theory. In finite
amplitude wave theory, a more accurate representation of the wave motion
is obtained by retaining terms neglected in small amplitude wave theory.

The model developed herein is intended to take monochromatic waves
from deep or "deeper" water to intermediate depth water. 1It, or any
other model based on Stokes wave theory, cannot be used to directly cal-
culate breaking waves. This is a theoretical limitation well documented
and examined in this study. However, the model can be used to provide
the seaward boundary condition for a shallow water wave model based on
cnoidal or small amplitude wave theory, for example.

A major part of this report is the derivation of the wave energy
flux to third-order using the 3rd-order Stokes wave theory of Isobe and
Kraus (1983a). Although others have developed expressions for the
energy flux, the derivation of this fundamental quantity has never been
clearly described. In addition, there are some problems with previous
work. The expression for the energy flux given by Tsuchiya and Yasuda
(1981) appears to be divergent in the deepwater limit and the expression
for the flux given by Le Méhaute and Webb (1964) is somewhat incon-

venient for applications. The derivation of the energy flux given in
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this study is unique in that Stoke's second definition of wave celerity
(defined in Section II) is used to condense the integration for the
energy flux.

The energy flux and irrotationality condition of the fluid are em-
ployed to calculate finite amplitude wave properties (height and direc-
tion) directly on a bathymetric grid. The calculation procedure is
simpler to program than the traditional wave ray method. The program is
verified by computing special limiting cases for which exact solutions
are known, as well as by comparison to laboratory data. Example calcu-

lations for irregular bathymetry are also given.
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IT. HISTORICAL WORK ON STOKES WAVE THEORY

George Gabriel Stokes (Stokes 1847) is the originator of the wave
theory bearing his name. Stokes derives a solution to the water wave
problem for waves of permanent form and finite height by using a trigo-
nometric series. In his theory, the unknown variables describing the
flow are developed as power series in terms of a small physical quantity
called the perturbation parameter. (Stokes selects the wave steep-
ness, H/L , where H is the wave height and L 1is the wavelength, as
the perturbation parameter, hence the theory is valid in relatively deep
water.) Using a perturbation procedure, successive approximations of
presumably higher accuracy can be developed. Linear or small amplitude
wave theory is found to be a first approximation of the wave motion.
Stokes found it difficult to obtain terms beyond the second approxima-
tion due to the nonlinearity of the free surface boundary conditions and
because the free surface itself is an unknown function of the indepen-
dent variables. Consequently, Stokes obtains the third approximation by
another method: a double power series expansion. This method is based
on the assumption that a series solution exists in terms of trigonome-
tric and hyperbolic functions whose arguments are multiples of those
Stokes had already obtained for the first and second-order approxima-
tions. Thus is formed a Stokes wave: a progressive wave with a surface
profile repreéented by a series of cosine functions. Higher-order solu-
tions are obtained more easily by extending Stoke's first method to in-
clude the perturbation expansion of the free surface, the wave celerity,
and the velocity potential. This eliminates the need for an a priori

assumption about the form of the free surface.
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To simplify the solution process, Stokes wave theory (and all
perturbation-type wave theories) are derived in a reference frame moving
with the wave celerity, rendering the motion steady. Hence, the wave
celerity must be specified to convert the solution to a fixed reference.
In the moving reference frame a unique solution exists, but the wave
celerity must be specified by some physical consideration apart from the
perturbation procedure to convert to the fixed reference frame.

Stokes realized there were many ways to specify the wave celerity.
After considering the physics of the wave problem, he proposed two def-
initions of wave celerity, which are generally called the "first defini-
tion" and "second definition" of Stokes. The first definition states
that the average value of the horizontal water particle velocity over one
wave period is zero in the fixed coordinate system, or mathematically:*

T
/ (C + u) dt
c -9 . (2.1)

T
J/. dt
0

The second definition states that the average mass transport over one

wave period through a vertical section is zero in the fixed coordinate

system, or mathematically:

T N
J[ j/‘ (C + u) dz dt
0 -D

C = T . (2.2)

N
j[ j[ dz dt
-D

0

*# Notation is defined in Fig 3.1 and Appendix F,

(2-2)



Other definitions of wave celerity have been proposed. The definition
of wave celerity used by various authors of Stokes-type wave theories
will be introduced with each theory. In general, it is found by calcu-
lation that the numerical value of the celerity does not vary greatly
between definitions. However, there is a theoretical or philosophical
distinction.

Skjelbreia and Hendrickson (1960) use five terms in a Stokes-type
trigonometric series and the first definition of wave celerity to obtain
a fifth-order wave theory. They assume a perturbation trigonometric
series form for the velocity potential and water surface elevation, and
a perturbation series form for the wave celerity and Bernoulli constant.
By substituting the series into the two free surface boundary condi-
tions, they evaluate the twenty unknown series constants using an itera-
tive method. The procedure involves grouping terms of equal order of
the perturbation parameter and sub-grouping terms of equal power of the
cosine function. This results in twenty equations which are solved for
the twenty unknown series constants. Lastly, Skjelbreia and Hendrickson
solve for the wave number and perturbation parameter. The results of
their theory and the values of the series coefficients are presented in
tabular form. (It should be noted that Nishimura, Isobe, and Horikawa
(1977) found a sign error in the expression for the fourth-order wave
celerity of Skjelbreia and Hendrickson.)

Skjelbreia and Hendrickson compare their results to those of small
amplitude wave theory and the third-order approximation of Skjelbreia
(1958). A secondary hump in the third-order wave profile with an Ursell

number (defined in Equation 3.21) of 43.2 was found. It is now known
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that such a distortion results from the application of Stokes theory be-
yond its range of validity. This will be discussed in Section III C.

De (1955), Chappelear (1961), and Fenton (1985) also present
fifth-order Stokes wave theories. Fenton uses an extrapolation method
to numerically check various fifth-order wave theories. From this pro-
cess, Fenton concluded that his and Chappelear's theories are numerical-
ly correct to fifth-order, but Skjelbreia and Hendrickson's theory has
an error in the dynamic free surface boundary condition. In order to
find this error, Fenton rederives his solution using Skjelbreia and Hen-
drickson's expansion parameter. Thus, Fenton numerically found the sign
error in the fourth-order wave celerity term, previously discovered by
Nishimura, Isobe, and Horikawa (1977). Any applications of Skjelbreia
and Hendrickson's theory which have not incorporated the proper sign in
the wave celerity expression are therefore incorrect at fifth-order.
Since Fenton found Chappelear's theory to be numerically correct at
fifth-order, he concluded that discrepancies between Chappelear and De's
theories meant De's theory is also incorrect at fifth-order.

Dailey (1978) summarizes and applies the fifth-order wave theory
of Chappelear (1961) to calculate water particle velocities and acceler-
ations. (This fifth-order application is a good source for engineering
use). Dailey evaluates the wave number, wave steepness and relative
water depth by using an iterative technique to solve three nonlinear
equations.

Le Mehauté and Webb (1964) use the principle of conservation of
transmitted energy (energy flux) to calculate wave shoaling. They ex-

tract a third-order wave theory from the fifth-order analytical solution
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of Skjelbreia and Hendrickson to use for their calculations of energy
flux, average energy, and group velocity to a third order of approxima-
tion. A comparison of theoretical and experimental results showed that
higher-order theoretical approximations better described the experimen-
tal data than linear wave theory. They recommend using Stokes theory
for values of the Ursell number (see Section III C) less than ten.

Koh and Le M&hauté (1966 a,b) use the principle of conservation of
energy flux and the fifth-order solution of Skjelbreia and Hendrickson
to calculate wave shoaling. They found that the fifth-order theory
predicts a shoaling coefficient larger than linear wave theory, but
slightly smaller than third-order theory. Koh and Le M&hauté recommend
using third-order theory because its range of applicability is the one
most often encountered (.10 < D/L < .25, where D 1is the water depth
and L is the wavelength).

Tsuchiya and Yamaguchi (1972) recalculate the Stokes wave theory
of Skjelbreia and Hendrickson to a fourth order of approximation using
Stoke's second definition of wave celerity. Using the experimental re-
sults of Iwagaki and Yamaguchi (1968), they found the theoretical wave
celerity for fourth-order Stokes waves using the second definition of
wave celerity gave better agreement with experimental laboratory data
than the theoretical wave celerity using the first definition. Tsuchiya
and Yamaguchi conducted an experiment to calculate the horizontal water
particle velocity at the wave crest and trough. It appears that the
theory using the second definition of wave celerity yields slightly bet-
ter results than the theory using the first definition. By comparing

the theoretical and experimental wave profiles, Tsuchiya and Yamaguchi
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show that both theories agree with the experimental data quite well in
Figure 2.1. It should be noted that the Ursell number is 19 in Fig-

ure 2.1 and 133 in Figure 2.2. Secondary humps in Figure 2.2 are due to
the application of Stokes wave theory beyond its range of validity.

This will be discussed in Section III C.

Tsuchiya and Yasuda (1981) develope a Stokes wave theory to third
order without direct specification of a definition of wave celerity.
Instead, Tsuchiya and Yasuda make an assumption about the periodicity of
the velocity potential. Expressions for the kinetic energy and energy
flux are derived. Although not stated by the original authors, a prob-
lem appears to exist in their solution. In the deepwater limit, their
determined energy flux diverges exponentially. This will be discussed
in Section III E.

Bretschneider (1960) presents a finite amplitude wave theory which
is complete to any order for which it is calculated. He uses a summa-
tion harmonic series, with each term in an unexpanded form. Expansion
of the hyperbolic and trigonometric terms in the series results in an
approximation to the exact theory which is identical to Stokes wave the-
ory to the same order. Bretschneider notes that there is some loss in
accuracy in the expanded form. This may be because the unknown free
surface is approximated by a finite number of terms. In his paper, the
coefficients for the unexpanded and expanded forms are given for orders
one through five. This theory does not appear to have had wide accep-
tance in the coastal engineering field.

Schwartz (1974) extends Stoke's perturbation theory to order sev-

enty using a computer to determine the series coefficients. Rather than
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solve the problem in the physical plane, he maps one fluid cycle (wave-
length) into an annulus in the complex plane to simplify the calcula-
tions, and uses Pade approximations of polyncmials to aid in the series
summations. In order to accurately predict the highest wave (Michell
1893, Havelock 1919), Schwartz reformulates the problem with wave height
as the independent parameter. A single-valued function of the transfor-
mation coefficient is thus obtained. For the transformed case, solu-
tions to order H48 are computed in finite water depths and solutions to
order 17 are computed for infinite depth water.

Nishimura, Isobe, and Horikawa (1977) also derive very high-order
solution of Stokes waves using a computer to determine the series
coefficients.

Finally, Isobe and Kraus (1983a) present a pedagogical derivation
of a third-order Stokes wave theory, applying Stoke's second definition
of wave celerity. The wave celerity resulting from the first definition
is also given. The systematic methodology used by Isobe and Kraus in
their solution process makes their derivation clean and useable, unlike
many other solutions which are not fully developed or use a difficult
notation. Therefore, it is Isobe and Kraus' derivation that is used as
a basis for the calculations of the wave energy, energy flux, and group
velocity for this thesis. A summary of the third-order derivation by

Isobe and Kraus is given in Section III B.
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ITII. STOKES WAVE THEORY
A. Overview of Finite Amplitude Wave Theory

In order to understand finite amplitude wave theory, one must have
a clear understanding of small amplitude wave theory and the water wave
boundary value problem.

Small amplitude (or linear) wave theory is the first approximation
to a more rigorous theoretical description of wave behavior. In fact,
small amplitude wave theory results as the leading order solution of
Stoke's formal perturbation theory. In this developement, the wave
height is assumed to be infinitessimal. One might think of linear wave
theory as the base from which to build a Stokes wave theory or as a fi-
nite amplitude wave theory in which the wave height is infinitely small.

The objective of any wave theory is to formulate and solve a
boundary value problem describing the behavior of water wave motion.

The formulation of a boundary value problem involves expressing the
physical situation in mathematical terms to obtain a unique solution.
The solution to a surface wave, boundary value problem generally in-
volves the determination of three basic unknowns: the free surface ele-
vation, N , the velocity potential, ¢ , and the pressure, P . The
formulation of the surface water wave boundary value problem will be
briefly described.

1. A region of interest is established (Figure 3.1). The solu-
tion to a given boundary value problem depends on the wave height, H ,
the wavelength, L , and the water depth, D , as shown in Figure 3.1.
Three characteristic, dimensionless ratios can be obtained from these

three quantities: H/L , H/D , and L/D . Waves become more nonlinear
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Figure 3.1. Definition sketch (after Isobe and Kraus 1983a)
{(or finite) as these ratios increase. A more detailed description will
be presented in Section III C.

2. Next, one determines a differential equation that must be sat-
isfied within the region of interest. For irrotational flow in an in-
compressible fluid, a velocity potential exists which satisfies the two-

dimensional continuity equation (the Laplace equation):
e = 0 . (3.1)

This is the linear, partial differential equation which governs the re-
gion of interest.

3. In order to solve the governing equation, one must specify
the boundary conditions of the problem. That is, there could be an

infinite number of solutions to the differential equation; the boundary
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conditions determine the solution which is relevant to the physical sit-
uation. The kinematic boundary conditions mathematically state that
there is no flow across an interface, in order for the interface to ex~
ist. The kinematic bottom boundary condition for a horizontal bottom is
simply

w=0 at z = =D , (3.2)
or in words, flow at a horizontal bottom is tangential to the bottom.

The kinematic free surface boundary condition is

ELAE

=3 U ax at z = N, (3.3)

or in words, a particle on the free surface remains on the free surface.
The dynamic free surface boundary condition describes the pressure dis-
tribution on the free surface. A free surface cannot support a pressure
variation as can a fized or solid surface; it deforms to maintain uni-
form pressure. The dynamic free surface boundary condition is described

by the Bernoulli equation:
2 2 PB
(ﬁ + W ) + g = == at z = N, (3.4)

where PB/p is defined as the Bernoulli constant. The pressure at the
free surfacs was taken to be zero at the free surface, by convention.
The lateral boundary conditions for the region of interest are

prescribed by:

N =0 (3.5a)
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and

L
N(0O) - N(E) = H . (3.5b)
The Bernoulli equation
é3‘1+-1~(u2+w‘2)+gz+—P-:E§ (3.6)
at T2 P o )

is also needed in the solution process if the pressure is required.

4, The water wave problem represented by Equations 3.1 through
3.6 is solved for the velocity potential (which yields the water parti-
cle velocities), free surface elevation, and the pressure. Methods of
solution include linearization, power series, and numerical methods.
Small amplitude wave theory falls under the first category of solution
method. The wave height is assumed to be much smaller then the wave-
length. A further assumption of small amplitude wave theory is that all
motions are small. Terms involving squares of the velocity components
then become negligible. (After the linearized solution is obtained,
these assumptions can be checked.) Thus, small amplitude wave theory
simplifies the solution to the water wave problem by: (1) linearizing
the free surface boundary conditions, and (2) prescribing the free sur-
face boundary conditions at z = 0 .

In finite amplitude wave theory, the free surface boundary condi-
tions are nonlinear and prescribed at z = N, where N 1is the unknown
free surface elevation. Power series solutions in terms of a small per-
turbation parameter can be found in these cases. Stokes wave theory and
cnoidal wave theory both use power series solutions.

In Stokes wave theory, the wave steepness is regarded as a small
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parameter and the solution is developed for finite values of the rela-
tive water depth. The small parameter is called the perturbation param-
eter and the other parameter is called the auxiliary parameter by Isobe
and Kraus (1983a). Stokes theory is valid in relatively deep water
where the wave steepness is not large and the relative water depth is
fairly large. The validity of Stokes theory, to any order, breaks down
in shallow water (D/L<0.1), where the wave steepness becomes increas-
ingly large and the relative water depth approcaches zero,

In cnoidal wave theory (Korteweq and DeVries 1895, Keulagan and
Patterson 1940, Isobe and Kraus 1983b), the relative wave height is
taken as the perturbation parameter and the modulus of the elliptic in-
tegral is commonly taken as the auxiliary parameter. Hence, cnoidal
theory is valid in relatively shallow water (.02<D/L<.10) (Keulagan and
Patterson 1940). Unlike Stokes wave theory, for which the first-order
solution is equivalent to small amplitude wave theory, the first-order
solution of cnoidal wave theory is nonlinear.

The third method of solving the wave problem is a numerical solu-
tion (e.g., Dean 1965). In a numerical solution, the differentials are
replaced by finite differences. Such solutions are not convenient in
engineering applications because they require tables. Numerical methods
are also computer intensive, and not easily adaptable to microcomputers.
Unlike analytical solutions, in which the equations for the various
physical quantities can be explicitly studied and insights obtained, nu-
merical methods lack this capability because the coefficients are deter-
mined numerically. However, numerical methods of solution can provide

solutions of very high accuracy.
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B. A Third-Order Stokes Wave Theory

A complete derivation of a Stokes third-order wave theory is given
by Isobe and Kraus (1983a). Their solution is used as the basis for the
finite amplitude wave refraction and shoaling model developed in this
report; therefore, a summary of the derivation of their solution method
is in order.

Governing Equations

The conservation of mass equation for two-dimensional, irrota-
tional motion in an inviscid, incompressible fluid reduces to the

Laplace equation:

+ ¥ =0 (3.7)

or

vy =0, (3.8)

where ¥ 1is the stream function. The subscripts denote partial differ-
entiation with respect to that variable. Surface water wave motion is
described by this partial differential equation. Figure 3.1 displays
the region of interest. In this figure, H denotes the wave height, L
is the wavelength, D is the water depth, N 1is the water surface ele-
vation, C 1is the wave celerity, and x and 2z are the horizontal and
vertical coordinates, respectively. Equation 3.8 is the governing equa-

tion for this region. The boundary conditions are:

¥ =0 at z = =D , (3.9)

(3-6)



¥ = Q at z = N, (3.10)

and

at z = N, (3.11)

D|"U
o]

163-+w2 + gN =
2 8% =

where Q 1is the flow rate across a vertical section, g 1is the gravi-
tational acceleration, p 1is the fluid density, and PB/p is the Ber-

noulli constant. The steady-state Bernoulli equation,

© |o
o

= B (3.12)

1 u2 + w2 + gz + —
2 o '’

is also needed in the solution process if the pressure is required.
Steady-state motion is achieved by allowing the coordinate system to
move with the wave celerity, C . Two additional equations used for

obtaining a solution,

(3.13)

=
1"
(@]

and
N(0) - N(—é—) -H, (3.14)

follow from the definition of water depth, D , and wave height, H ,
respectively. (It should be noted that in order to simplify the solu-
tion process, all the parameters are nondimensionalized as follows:

n = free surface elevation = kN

d

still water depth = kD
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L0
"

flow rate = kQ/CIK

p = pressure = kP/Cyy

3]

¥ the stream function = k‘i’/CIK

_ /%
CIK = ” tanh kD .)

Solution Process

Equations 3.8 through 3.14 are used to solve for the stream func-
tion, water surface elevation, and the pressure. A general analytical
solution cannot be obtained because of the nonlinearity of the free sur-
face boundary conditions, but a power series solution can be found
(Stokes wave theory and cnoidal wave theory).

In a perturbation method, it is assumed that the solution can be
represented by a power series expansion in terms of a small parameter
known as the perturbation parameter. In the Isobe-Kraus derivation, the
perturbation parameter, ¢ , 1s proportional to the wave steepness and

is given by:

e - KH (3.15)

The auxiliary parameter, & , is proportional to the relative water

depth and is given by:

§ = kD . (3.16)

Isobe and Kraus apply standard perturbation methods to the unknown vari-
ables, much as Stokes had done. That is, all variables to be solved for

(v, n, p, q) are expanded in a power series of the perturbation
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parameter. For example:
I A (3.17)

The series expansion of ¢ 1s then substituted into the governing equa-
tion and bottom boundary condition and terms of equal order of the per-
turbation parameter are gathered. According to the theory of power
series, the coefficients of each order of epsilon on the left and right-
hand sides must be equal. To third order, this results in eight equa-
tions from Equations 3.1 and 3.2. The free surface boundary conditions
need a closer examination because they are nonlinear in ¢ and n . A
Taylor series expansion of n about the mean water level is used to
approximate n at the free surface. The expansion is substituted into
the free surface boundary conditions and again, equal orders of epsilon
are gathered. This results in eight additional equations from the two
unexpanded free surface boundary conditions. Expansion of Equations
3.13 and 3.14 result in eight more equations.

The problem now consists of determining the nondimensional series

coefficients at each order of i (wi y N

;0 Py s 93 y.-.). This is done

in a systematic manner, beginning with the first-order equations. The
zeroth-order equations are those equations that are a function of ¢ to
the power zero, therefore they are treated in a simpler manner. First,
two observations are made which simplify the solution: (1) It is clear
that the zeroth-order contribution to the stream function describes uni-
form flow and is therefore only a function of the elevation z, or:

Yy = byg 2 (3.18)
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where by, 1is an arbitrary constant to be determined. (2) The zeroth-

order surface elevation is the mean water level:

=d , (3.19)

which must be true in the absence of wave motion. The quantities dp
and Py are also a function of the constant bOO . It becomes apparent
in the course of the derivation that the solution to the zeroth order is
not fully determined until the the series constant bgg 1is determined.
This is accomplished at the first order of solution. This process is
repeated at every order of the solution procedure. Therefore, a solution
to a given order is not complete until part of the solution to the next
higher order is determined.
The systematic procedure used to solve for the higher order equa-
tions consists of the following steps:
(1) Separation of variables is applied to the nth-order stream
function.
(2) The derivatives of the nth-order stream function are substi-
tuted into the nth-order Laplace equation.
(3) The solution for the nth-order stream function is deduced from
the differential equation.
(4) The solution for N, + G s and pp follow by simple sub-
stitutions and only one constant, boy » remains unknown. This
must be determined at the next order of solution.
The highest order of solution desired in this case is third order and, in

principle, the solution process must continue to fourth order to deter-
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mine the third-order unknown constant, b03 . However, Isobe

and Kraus argued that there is a pattern in the constants bOO + 0,

b01 = 0, b02 # 0 , and concluded that b03 must equal zero. This com-
pletes the solution for ¢ , n, p , and q in the moving coordinate

system to a third order of approximation.
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C. Range of Validity

The problem of selecting the most suitable finite amplitude wave
theory for a given application will be discussed. It is a difficult
problem because different theories may bettér reproduce particular
characteristics of interest (C, u, w , N) for a given set of wave
conditions.

Small amplitude wave theory is commonly assumed to be uniformly
valid over the entire range of relative water depths, whereas the range
of validity of finite amplitude wave theories is more restrictive. (In
fact, small amplitude wave theory is not valid in many cases; however,
since it is always "well behaved," it is often applied.) In the deriva-
tion of small amplitude wave theory, the wave height is regarded as an
extremely small quantity, whereas in finite amplitude wave theory the
wave height is allowed to take on realistic values. Thus, the wave
steepness (H/L) and relative wave height (H/D) parameters become signif-
icant in finite amplitude wave theory. (Two parameters are needed to
describe waves of permanent form.) The standard approach is to regard one
parameter as small and develop a theory for finite values of the other
parameter. Isobe, Nishimura, and Horikawa (1982) demonstrated that a so-
called double-series perturbation approach was inferior to the single-
series approach. The single-series procedure results in two main
categories of perturbation-type, finite amplitude wave theories: Stokes
wave theory and cnoidal wave theory. For Stokes theory, the wave steep-
ness, H/L , is assumed to be small and the theory is developed for fi-

nite values of the relative water depth, D/L . For cnoidal wave
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theory, the relative wave height H/D 1is regarded as a small quantity

and the theory is developed, in effect, for finite values of the shallow

water Ursell parameter US , where
gHT2
US =55 (3.20)

The range of validity of both Stokes and cnoidal theories have
been quantitatively examined by several authors (Laitone 1962; Dean 1970;
Le Méhauté 1976; Nishimura, Isobe, and Horikawa 1977). Le M8hautd
summarizes the results on the range of validity of perturbation wave

theories in graphical form (Figure 3.2).
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Figure 3.2. Limits of validity of various wave theories
(after Le Meéhaut& 1976)
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Keulegan (as presented by Rouse 1950) classifies Stokes, cnoidal,
and solitary wave theories according to: (1) the relative importance of
the wave steepness and relative wave height and (2) the value the rela-
tive water depth. Keulegan does not establish exact ranges of validity,
but states that Stokes-type wave theories are generally applicable in the
region where D/L > 0.10 . Cnoidal theories are applied in the region
0.10 > D/L > 0.02 , overlapping the Stokes theory region near a relative
water depth value of 0.10. Solitary wave theory is applied in very
shallow water (D/L < 0.02). Figure 3.3 displays Keulegan's classi-
fication of finite amplitude waves.

Laitone (1962) evaluates the ranges of validity of third-order
Stokes theory and cnoidal theories by comparing wave celerities. He
found that Stokes theory is applicable for D/L> 0.125 and cnoidal
theories are applicable for D/L < 0.20 . These results are limited be-
cause only a reasonable value of the wave celerity is considered. The
accuracy of other parameters (u , w , N) may be poor.

Dean (1970) evaluates the numerical fits of forty wave conditions
to the two free surface boundary conditions to find the relative validity
of several water wave theories. The Simpson's rule numerical ap-
proximations to the root-mean-square errors are defined by Dean for the
kinematic and dynamic free surface boundary conditions. This is used to
measure the boundary condition errors for the various wave theories for
different wave conditions. Figures 3.4a and 3.4b show the results of
Dean's investigation. Dean emphasizes that the method used to assess the

various theories does not necessarily imply the best overall fit,
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but rather the best fit to the free surface boundary conditions.

Nishimura, Isobe, and Horikawa (1977) investigate the convergence
domains of very high-order Stokes and cnoidal solutions using a Dombs-
Sykes (1957) type of plot. Figure 3.5 shows the convergence domains es-
timated by Nishimura, Isobe, and Horikawa. In the figure, A1 1is the
coefficient of the first component in their solution for the surface
profile. The authors point out that the convergence domains depend on the
definition of the perturbation and auxiliary parameters, e and
§ , respectively. Isobe and Kraus' (1983a,b) derivations of a third-
order Stokes theory and a second-order cnoidal theory are governed by
these convergence ranges.

In summary, perturbation theories (such as Stokes and cnoidal
theory) are valid over certain ranges. A perturbation theory is de-
scribed as being "outside its range of validity" if the contributions
from higher-order terms in a perturbation series become comparable or
larger than lower-order terms. This will be discussed in the following
paragraph.

Generally, Stokes theory is valid in relatively deep water and
cnoidal theory is valid in relatively shallow water, but the range of
validity of Stokes and cnoidal theories overlap in relatively shallow

water. In the overlap region the Ursell parameter, defined as

v - (3.21)

can be used to decide which theory is applicable, since it incorporates

both the relative wave height and wave steepness. (Actually, the Ursell
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parameter reduces to US of Equation 3.18 in the overlap region, where
the depth is relatively shallow.) Various recommendations have been
made for the critical value of the Ursell parameter separating the
ranges of validity of Stokes and cnoidal wave theory. The various rec-
ommendations for the critical Ursell number are covered in a discussion
recently given by Kraus, Cialone, and Hardy (1987). Stokes theory
should be used if the Ursell number is less than the critical value and
cnoidal theory should be used if the Ursell number 1s greater than the
critical value. The critical value of the Ursell parameter is somewhat
dependent on the details of the theory (e.g., definition of wave celer-
ity and selection of expansion parameters), and on the criterion used

to judge validity (e.g., Dean's (1965, 1970) boundary condition fit,
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comparison to a particular measured quantity (u , w , N) as Laitone

(1962) did, or existence of secondary peaks in the wave profile). Table

3.1 displays critical values of the Ursell parameter explicitly stated

or inferred from context from several sources.

Chu (1975), who was one

of the first to attempt to model the refraction and shoaling of finite

amplitude waves, switches between third-order Stokes theory and first-

order cnoidal theory at an Ursell number of':

U= 7.5+ ggg .
Table 3.1

(3.22)

Critical Values of the Ursell Parameter

Source Critical U
Le Mehauté and Webb (1964) 10
Skovgaard and Petersen (1977) 15
Dean (1970) 20
Isobe, Nishimura, and Horikawa (1982) 25
Isobe and Kraus (1983 a,b) 25
Le Mehauté (1976) 26
Shore Protection Manual (1984) 26
Horikawa (1978) 30
Laitone (1962) u8
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Some examples of problems associated with range of validity were
noted earlier in the literature (Skjelbreia and Hendrickson 1960, and
Tsuchiya and Yamaguchi 1972). Following Isobe and Kraus (1983a), a
critical Ursell number of 25 is deemed suitable (Table 3.1) and Stokes
theory should be used if the Ursell number is less than or equal to this
value. Skjelbreia and Hendrickson applied Stokes theory well beyond
this limit (U = 43.2). Tsuchiya and Yamaguchi's application yields an
Ursell number of 133, clearly outside the range of validity of Stokes
wave theory. In such cases, secondary humps in the wave profile are

observed and erroneous numerical values are obtained.
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D. Derivation of Energy Flux, Energy, and Group Velocity

From the conservation of wave energy, the onshore energy flux per

unit alongshore length is constant. Energy flux, F, is defined as the

rate at which energy is transferred from a generating source (e.g., a

rock thrown into a pond) to any given location. It is the time rate of

doing work. Mathematically,

where

The mean

where
T
dt

Denoting

N
F = f £ uadz, (3.23)
=D

= energy flux,

= external forces on the system,

= horizontal water particle velocity,
= incremental unit of depth,

elevation of the bottom, and

= free surface elevation.

energy flux, F , is given by:

t+ T N

= 1

F:Tf [fiudzdt, (3.24)
t -D

(1]

wave period
= inecremental unit of time.

the time average over one wave period with an overbar, Equa-

tion 3.24 is equivalently,
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N
_]:_‘_' = ffi u dz . (325)
-D

What forces, f transfer energy from one fluid section to another?

i
The dynamic pressure f, (including the potential energy) and the

inertia force per unit volume, f2 , transfer wave energy:

£, = P+ pg(z - N) (3.26)

(u2 + w2) (3.27)

Inserting (3.26) and (3.27) into (3.25) yields:

N
f[P + og(z - N) + 5 W° « wz)] 1 dz . (3.28)

|
u

-D

This is equivalent to Phillip's (1977) Equation 3.6.17 and Horiguchi's

(1982) Equation 1. Expanding and rearranging,

N
F=op f[§+gz+%(u2+w2)—gﬁ]udz. (3.29)
-D

From the Bernoulli equation, Equation 3.29 can be written in the fol-

lowing form:

N

F=-o f[-ot - gl Juaz, (3.30)
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where Qt denotes the partial differentiation of the velocity potential

with respect to time. Noting that
u = @X(x - Ct, z) (3.31)

(where @X is the partial differentiation of the velocity potential with

respect to the direction of wave propagation, x) and

_ 3 .32
@t - atv[‘¢x dx (3.32)

it is concluded that

¢, = -Cu + constant . (3.33)
Substituting (3.33) into (3.30) and separating (3.30) into two integrals

yields:

N N
F = oC ~/~ W@ dz -p(gN + constant) j~ u dz . (3.34)
-D -D
If Stoke's second definition of wave celerity (Equation 2.2) is used,

then

u/~ udz = 0 . (3.35)

Therefore,
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F =op C-/- W@ dz . (3.36)
=D

Thus, the second definition of wave celerity is used to condense the in-
tegration for the mean energy flux to one integral and F is uniquely
determined by evaluating this integral. The derivation of the mean en-
ergy flux is not a trivial matter and is given in Appendix A. This fun-
damental quantity is used for calculating wave shoaling and its deter-
mination is a central part of this report.

To a third-order of approximation, the mean energy flux is ob-

tained by evaluating (3.36) with

u=u, + u, cosh k(z + D) cos 6 + u. cosh 2k(z + D) cos 28

0 1 2

+ug cosh 3k(z + D) cos 36 (3.37)

from the Isobe-Kraus derivation of a third-order Stokes wave theory.

The final result from Appendix A is:

_ YHEDCIK Yk2HuCIK
5 5 . =z B (3.38)
where:
B = - C(;kg n) %H (-27¢® 156" - 616% + 57)

3 cosh 2kD(c2 - 1)
4(cosh 2kD - 1)

+ %E (906 + 304 - 1302 + 33) +

. 91<D(c)4 - 202 + 1)

blc sinhu kD
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the specific weight of water

-
1]

H = wave height

0 s L[ 20
T2 sinh 2kD
- |8
CIK = B tanh kD
k = the finite amplitude wave number
¢ = coth kD.

The average kinetic and potential energy are determined from the follow-

ing integrals:

N
KE = g f (u2 + w2) dz (3.39)
-D
N
BE - og f 2 dz . (3.140)
-D

The evaluation of these integrals yields the average energy per unit

surface area of a wave, E or:

E = KE + PE . (3.41)

The final result of the derivation of average energy is:
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- 6c4 - 1702 + 2U4)

=l [ e 1
-8 128 kD 8

2
3(¢” - 1) cosh 2kD
* T (cosh 2kD - 1) 1 : (3.42)

The actual derivation is given in Appendix B.
The group velocity is defined as the rate at which energy is

transferred, or:
F = EC (3.43)
therefore,
c = (3.44)
E

The derivation of Cg for third-order Stokes waves is given in

Appendix C.
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E. Energy Flux Comparison

As previously stated, energy flux is the fundamental quantity
required to calculate wave shoaling and its determination is a central
part of this report. Although a limited number of expressions for the
energy flux of third-order and fifth-order Stokes waves can be found in
the literature, they appear to contain either errors or inconvenient
mathematical formulations. Therefore, the energy flux to third order
was rederived from the basic equations (Appendix A). Also, the
procedure used to calculate the energy flux is unique because Stoke's
second definition of wave celerity is used to simplify the integration
for F. A completely independent evaluation of the flux, serves to
verify the limited previous work and substantiate the final result,
which is of great importance.

Energy flux expressions have been given in three Stokes wave
theory developments: Le Méhauté and Webb (1964), Koh and Le Mehauté
(1966), and Tsuchiya and Yasuda (1981). Herein, these available ex-
pressions for the energy flux are compared at the deepwater limit, where
all Stokes theories should approach small amplitude wave theory. (The
deepwater limit condition is kD » = .) The expressions do not com-
pletely reduce to small amplitude wave theory due to the finite-
amplitude effect, as will be shown in this section.

Tsuchiya and Yasuda's theory is derived without direct specifica-
tion of a definition of wave celerity. Instead, they make an assumption
about the periodicity of the velocity potential. Their expression for
the energy flux (Tsuchiya and Yasuda 1981, pg. 32, Equation 94) is given

as:
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1 2 1
W= 5pga C 2(1 +

2kD 2 cosh2 2kD + 3 cosh 2kD + 2
sinh 2w’ * (k&) n
16 sinh kD

9(2kD + sinh 2kD) . 3(cosh kD + cosh 3kD)

+ % sinh® kD +

64 sinh7 kD cosh kD 8 sinhu kD cosh kD
kD tanh kD + sinh2 kD
+ m (3.45)
2 sinh kD

where:

the mean energy flux = F

W

a =z the first-order wave amplitude.
This quantity tends to infinity in the deepwater limit due to the second

correction term, namely:

sinh2 kD .

oo

It is concluded that the expression for energy flux presented by
Tsuchiya and Yasuda is divergent and of questionable use in deeper water
(assuming there was no typographical error in their expression, Equation
3.45).

Le Mehaute and Webb (1964) extract a third-order wave theory from
the fifth-order analytical solution of Skjelbreia and Hendrickson
(1960), which uses Stoke's first definition of wave celerity. In their
derivation for the mean energy flux, Le Mchaute and Webb simplify the
integration by using the Bernoulli equation, as was done in this report
(Section III D). Since Skjelbreia and Hendrickson's theory was derived
for the first definition of wave celerity, Le Méhaute and Webb could not

employ the further simplification based on the second definition of wave
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celerity, as was done here (Section III D). The average energy flux
calculated by Le Mehauté and Webb is given (Le Méhauté and Webb 1964,

pg. 29, Equation 19) by

2 .2
wpCo A
F -3 15 {M(sc + kD) + x2 [L§9_16521(_2006 + 16011l + Hc2 + 9)
avg 8k~ T s Ls
+ §EE(16CM + 202 + Qﬂ (3.46)
2s
where:
Favg = the mean energy flux = F

4 2
E tanh kD |1 + A2 <8° '83 *9>
8s

(@]
w
1]

6
A = the perturbation parameter = mH _ ,3(3(8c_ + 1)
L 6us®

s = sinh kD

¢ = cosh kD .

The notation employed by Le Méhaute and Webb is somewhat cumbersome due
to the complexity of A . For any Stokes wave theory, the leading order
term for the mean energy flux should be equivalent to F from small

amplitude wave theory or,

F - yinC (3.47)

This is difficult to determine in a straightforward manner from the
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expression for the mean energy flux given in Equation 3.46 because of
the interdependency of the variables.

Koh and Le Méhauté (1966) also use the fifth-order analytical so-
lution of Skjelbreia and Hendrickson (1960) to calculate the energy flux
and ultimately, wave shoaling (to fifth-order). To third-order, their
results and assumptions are identical to those of Le Mehauté and Webb.
However, it should be noted that there is an apparent typographical
error in the expression for the third-order energy flux, F, (Koh and
Le Mehaute, Equation U4, pg. 2007). It is believed that the last term
in F, should be divided by two, not four.

A comparison of the expressions for F given by Le Mehauté and
Webb, Koh and Le Méhauté, Tsuchiya and Yasuda, and the present authors
is accomplished at the deepwater limit (kD + «). The resulting deep-
water expressions for F should be identical to third-order, but may
differ at higher orders due to different assumptions in the derivation
such as the definition of wave celerity and the choice of the pertur-
bation parameter. As was mentioned previously, the expression for F
given by Tsuchiya and Yasuda is divergent in the deepwater limit.

The deepwater limit for F given by Le Mehaute and Webb, Koh and
Le Méhauté, and that derived here are found to be identical to the third

order of approximation. The mean energy flux tends to

o o

_ yH
Fqg = 3

C°(1 . 26(2)) (3.48)

[opY

in deepwater, where the subscript d denotes deepwater and CO is the
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deepwater wave celerity, L_/T . Equation 3.U48 can be restated in terms

of fundamental quantities as:
2

_ yHOLO ] ﬂ'HO 2
Fd: ET b,uzfo—— (3.49)

The first term in Equation 3.49 corresponds to the energy flux from

small amplitude wave theory and the second term is a correction for the
finite amplitude effect. It is important to note that the finite ampli-
tude effect is present even at the deepwater limit! Table 3.2 displays
some numerical examples of the percent increase in Fd due to the fi-
nite amplitude effect. The more significant effect obviously occurs
with steeper waves, since the perturbation parameter, ¢ , is propor-
tional to H/L . Therefore, finite amplitude model results will differ
from small amplitude model results throughout the solution domain, with
the more dramatic differences occurring in shallower water (where the
wave height is larger and the wavelength is smaller) and for steeper
waves.

Based on agreement at the deepwater limit, it is believed that
Le Méhauté and Webb (1964), Koh and Le Méhauté (1966), and the present
authors have derived expressions for F which are correct to a third
order of approximation. However, the procedure presented here has the
advantages that: (1) it is based on a well-documented derivation of a
third-order Stokes theory and (2) the second definition of wave celerity
is used to simplify the integration for the mean energy flux, thereby
reducing the number of calculation steps and the possibility for er-
ror. The latter advantage would become particularly important if the

integration procedure were carried to higher order.
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Table 3.2

The Finite Amplitude Effect on F

d
Ho T Lo io e Per-
(m) (sec) (m) 0 0 cent¥
1.0 6.0 56.2 0.02 0.0063 0.63
2o 60 e ow owe 2
-
o so %3 oo oo om
2o 80wy oo owm om
o 60 ms oo oons 11
o e e oo cows o
vo e 6 om come o
so ma  whi oe oom om

* Percent change in Fd
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IV. THEORY OF SURFACE WATER WAVE TRANSFORMATION
A. Refraction

As a wave propagates into shallow water over a sloping sea bottom,
its height, length, celerity, and direction change with depth. Accurate
prediction of these nearshore wave parameters is required in almost all
coastal engineering projects.

Refraction is the process by which the direction of a wave changes
as 1t moves into shallow water at an angle to the bottom contours. The
portion of the wave in shallower water moves slower than the portion of
the wave in deeper water. Therefore, the wave pivots, or bends, to
align itself with the contour (Figure U.1). Refraction diagrams can be
constructed to show how waves change direction from deepwater to any ar-

bitrary water depth (Shore Protection Manual, 1984, pg. A-46). Wave

rays, showing the direction of wave advance, and/or wave crests are

drawn on the refraction diagram. The refraction coefficient, K de-

r !
fined as the square root of the ratio of the spacing between adjacent
wave rays in deep water and in an arbitrary depth of water, is used to
measure the convergence or divergence of the rays.

In the early years of coastal engineering, refraction diagrams
were constructed by hand with the aid of a template (Wiegel 1964). All
such work was based on linear wave theory. Graphical methods (such as
the polygon method and the circular arc method) are somewhat subjective
and are also time-consuming, but can provide a quick overview in cases
of refraction over simple topography. Abernathy and Gilbert (1975)

cite a significant deficiency with the construction of conventional

refraction diagrams. They found that the number and selection of wave
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Figure U4.1. Wave refraction

rays refracting from the offshore boundary can result in large varia-
tions in the refraction coefficient. Such variation is often unaccept-
able to the needs of a coastal engineer due to the latent ambiguity.

Since the early 1960's, refraction diagrams have been constructed
by using computer programs (Wilson, 1966; Dobson, 1967; and others).
These programs incorporate the ray equation derived by Munk and Arthur
(1951) into their solution process. Munk and Arthur's pioneering work,
which provides an analytical means for determining the path of a wave
ray and the wave ray separation distance, will be briefly outlined.

Ray theory and the ray equation developed by Munk and Arthur
(1951) are based on the optical analogy to water wave refraction. Be-

ginning with Fermat's principle, which states that a wave ray is the

path of minimum travel time, Munk and Arthur derive the ray equation.

(4-2)



Thus, the ray equation determines the path of wave rays and is given by,

da

i ° - (#.1)

Qf—
Q-lQ
jo i e}

where:

the angle between the wave ray and the x axis (Figure 4.2)

QR
1"

723
H]

the arc length along the ray

C = wave celerity

n the arc length along the wave front.

Equation 4.1 links the curvature of the wave ray, g% , Wwith the local

wave celerity and the gradient of the celerity along the direction of

ADJACENT RAY

WAVE CRESTS

o X

Figure 4.2. Definition of terms used in the derivation
of the ray equation and the equation of ray separation
(after Munk and Arthur 1951)
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the wave front. Physically, this means that the wave ray bends toward

the direction of lower celerity.

The equation of ray separation expresses the convergence or diver-

gence along a ray,

d d
3 T an (1.2)

wi—

where B8 = the ray separation factor. Equations 4.1 and 4.2 are manipu-

lated to give

2
d8 4 ps) ¥4 qs)s =0, (4.3)
2 ds
ds
where
p(s) = - 1 {cos a 3C | sin o aC
C X y
and

2 ) 2

q(s) 1 (sin? ¢ € _ 2 sin o cos o &% & cos® o LE\.
C 2 3 2

X ay

#H

X3y

This is the equation of wave intensity. Basically, Equation 4.3 is used

with
dx
It = C cos a , (4.4)
dy . .
gr = Csino, (4.5)
and
ds
at = © (4.6)

to provide an analytical means of determining locations along a wave ray

and the spacing between the rays, or more simply, wave refraction. (The

(4-14)



wave celerity, C , is determined from the dispersion relation.) Numer-
ous numerical programs for linear wave refraction are based on this the-
ory (e.g., Wilson 1966, Dobson 1967). Other authors (Chu 1975, Headland
and Chu 1984) present programs for calculating finite amplitude waves by
means of the wave ray method.

In this report, a different approach is used to determine the re-
fraction of water waves over an arbitrary bottom. The basic procedure
was originally implemented by Noda et al. (1974) for small amplitude
waves.

The wave phase Q 1s a scalar quantity (@ = kx cos o + ky sin o - ot)
which is constant along a wave crest. From vector analysis, a vector normal

to this quantity is given by

normal = VQ . (4.7)

If we define the wave number vector, k , as

=Y
i

ve (4.8)

then this represents the wave number perpendicular to the wave crest, or
equivalently, in the direction of wave advance. Again, from vector
analysis, the curl of the gradient of a scalar quantity is identically

zZero or,

VXE:O. (4.9)
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Substituting the components of kK into Equation 4.9 yields,
8 _(k sin @) - g—(k cos a) = 0 (4.10)
3x 3y :

Expanding Equation 4.10 results in the following,

k cos o %% + k sin o %% = CcOS a %% - sin « %% . (4.11)
In the method of Noda et al. (1974) and in this report, Equation 4.11 is
used to solve for the wave direction, o , using a numerical (finite
difference) technique. Thus the irrotationality condition on k (Equa-
tion 4.9) is used to determine wave refraction. The solution for a is
accomplished at discrete points (e. g., on a grid system); therefore,
Equation 4.11 is put into finite difference form. This will be shown in
Section V.

Use of the irrotationality condition on the wave number vector
provides a cleaner method for calculating wave refraction than the ray
method, and it is also less computer intensive. Ray theory involves nu-
merous interpolations because it is required to "shoot" wave rays in
from the offshore boundary to an arbitrary point, which is not necessar-
ily a grid point. Two advantages which are lost by not using ray theory
are: (1) the intuitively appealing continuous wave ray produced by ray
theory and (2) the ability to artificially eliminate or avoid caustics.
(A caustic is a point at which two wave rays cross. Mathematically, a
caustic causes a divergence which may not physically exist.) If a

caustic develops, a model using ray theory can "shoot" a different ray
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in from the offshore boundary, whereas a model using the irrotationality
of the wave number vector will stop operating because of the divergence.
In practical situations, if a caustic occurs, the topography could be
smoothed or another procedure taken to remove the divergence. These
procedures are not investigated in this report.

Weighing the advantages against the disadvantages, for most appli-
cations it appears to be more practical to use the irrotationality con-
dition of Kk to determine wave refraction over an arbitrary bottom.
Values of wave-related quantities obtained directly on a grid can then
be used as input to other numerical models, such as sediment transport

and nearshore circulation models.
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B. Shoaling

The transformation of a wave as it travels from one depth to an-

other, but usually from deep to shallow water, is called wave shoaling.

As was mentioned in Section IV A, a wave changes in height, length, ce-

lerity, and direction as it propagates into shallow water. The change

in wave height is mathematically described by the conservation of wave

energy. Neglecting the frictional effect of the bottom slope, as well

as other possible energy gains and losses, this conservation law re-

quires that the transmitted energy, or energy flux, be constant

(4.12)

For ease of explanation, linear wave shoaling will first be pre-

sented and the more rigorous finite amplitude wave shoaling will be ex-

plained in Section V D. For the purpose of explanation, assume straight

and parallel bottom contours and waves that are incident normal to the

contours; the first-order solution to Equation 4.12 reduces to

H2nC _ H2nC
75), < (), ¢
o
Solving for Hy/Hy ,
B o
H ~ 2nC
o} 1

(4-8)
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or

H1 ‘g0
= = g . (4.15)
o] gl

The square root of the ratio of group speeds is defined as the shoaling
coefficient, Ky (linear wave theory).

Figure 4.3 displays the shoaling coefficient as a function of di-
mensionless depth. From deep water, KS first decreases to a minimum
value of 0.913, then increases rapidly as the depth diminishes. A
mathematical explanation for the variation (decrease, then increase)
in KS is given. In deepwater, n changes more rapidly than the

ratio of wave celerities and KS decreases. Next, the ratio of wave

0 0.1 0.2 0.3 0.4 0.5

Figure 4.3. Wave shoaling
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celerities begins to dominate and KS increases. Although KS de-
creases then increases, the shoaling coefficient is generally regarded
as greater than unity and one associates wave shoaling with waves
"peaking up" as the water depth gradually decreases. The physical
reason for the increase in wave height (or Ks) is that the wave slows
down while still conserving energy flux. Therefore, the wave height
must increase.

In conclusion, the conservation of wave energy must balance the
change in wave height with the change in celerity, as a wave propagates
in shoaling water. In shallow water, the wave celerity decreases and
the group velocity approaches the wave celerity. The energy is then
transmitted with the wave celerity and the wave height must therefore
inerease in order to conserve energy flux. This is the process of wave

shoaling.
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V . THE NUMERICAL MODEL

A. General

A numerical wave transformation model for third-order Stokes waves
is developed in this report. The solution for the wave number, k ,
wave angle, o , and wave height, H , is accomplished on a finite dif-
ference grid using iterative techniques. The dispersion relation is
solved for the wave number using a Newton-Raphson numerical method. The
wave direction is obtained from the irrotationality condition of the
wave number vector and the wave height is obtained from the equation of
conservation of wave energy.

Figure 5.1 is a flow chart of the model with brief descriptions
to the right of each subroutine. The three main subroutines, DISPERS,
DELK, and DELF will be described in Sections V B, V C, and V D, respec-
tively. As shown in Figure 5.1, an iterative scheme is used with sub-
routines DISPERS, DELK, and DELF to solve for k , a , and H , respec-
tively. This is due to the interdependency of the third-order disper-
sion relation, the irrotationality of the wave number vector, and the
equation of conservation of wave energy. The third-order dispersion re-
lation (subroutine DISPERS) is solved for k , but depends on H ; the
irrotationality of the wave number vector (subroutine DELK) is solved
for o , but depends on k ; and the equation of conservation of wave
energy (subroutine DELF) is solved for H, but depends on k and o .
Therefore, after any one iteration through the three main subroutines,
the new (or updated) values of k, o , and H are used for the next

iteration through the three main subroutines. This procedure is
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repeated until a specified tolerance is reached for each k , a ,and H
value along a given row.

Subroutines BNDRY and URSELL will be explained in this section.
The remaining subroutines are elementary and require no further explana-
tion. A complete program listing is given in Appendix E.

Figure 5.2 shows an example of a finite difference grid and the
general grid characteristics used in the model. The x-axis is in the
on-offshore direction and the y-axis is in the longshore direction.
There are M gridpoints in the x-direction, each separated by a dis-
tance of DX meters (or feet). There are N grid points in the y-
direction, each separated by a distance of DY meters (or feet). The
grid points are specified by (J , I) coordinates on the grid, where J
is the counter in the y-direction ranging from 1 to N and I 1is the

counter in the x-direction ranging from 1 to M .

Y
N=YMAX :\

. i+1,0-1 j+l,i j+1,i+1

g ji=1 j,i ji+l
SHORELINE J

] DY

’ v li-1,i-1 |i-1,i i—1,i+1

g — DX —>

> X
M=XMAX

Figure 5.2, Definition sketch, finite difference grid
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The solution process begins at the offshore boundary of the grid,
I=M , (see subroutine BNDRY), then continues marching shoreward row by
row. The solution for H , k , and a 1is completed at a given (I-1)
row for all J values before a solution at the next shoreward row can
be found. The solution at row (I-1) is completed by iterating (see Fig-
ure 5.1) until the solution converges. This occurs when a specified
tolerance is reached. After completing the solution at row (I-1), this
row becomes row "I" and the next shoreward (unknown) row becomes row
"(I-1)" , where the solution for H , k , and o 1is obtained next.
This "marching" procedure is repeated at each successive row. The solu-
tion procedure terminates if the limit to the range of validity of
Stokes waves is reached (see subroutine URSELL).
1. Subroutine BNDRY

The solution at the offshore boundary is found by assuming the
offshore contours are straight and parallel. Then, the dispersion rela-
tion is solved for Kpo Snell's law is used to find L and the
equation for conservation of wave energy provides Hbc , where the sub-
seript be means "at the offshore boundary." The dispersion relation
applied at the offshore boundary is the same as the dispersion relation
used in subroutine DISPERS. The conservation of wave energy equation
applied at the offshore boundary is a similar, but a simplified version
of the equation used in subroutine DELF. (There is no y-dependency be-
cause of the assumption of a plane beach.) Snell's law relates the

change in wave direction to the change in wave celerity or,
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be | ° (5.1)

Inserting C = o/k , Equation 5.1 is equivalently,

i = i . .2
kbc sin a_, ko sin a (5.2)

Equation 5.2 is solved for « Using an iterative technique, the

be
solution for kbc b, and Hbc is obtained after a specified
tolerance is reached.

The solution at the lateral boundaries is found by setting the

boundary values equal to the values at adjacent grid points. That is,

a (J=1,I) = a (J=2,1) (5.3)

and
o (J=N,I) = o (J=N-1,I) . (5.4)

This boundary condition implies that the change in the variable (in this
case o) in the y-direction is zero. Therefore, this boundary condition
is most valid if the contours are nearly straight and parallel to the
y-axis.
2. Subroutine URSELL

Stokes wave theory should be applied when the Ursell number (de-
fined in Section III C) is less than a critical value. Following Isobe

and Kraus (1983a), a critical Ursell number of 25 is deemed suitable
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(Table 3.1) and Stokes theory is applied if U < 25 . Therefore, after
the solution is obtained at a given row (I-1), the value of the Ursell
number is calculated at each grid point. This is to insure that the
model is not applied beyond its range of validity. If an Ursell number
of 25 is reached at any one grid point, the run is terminated, thereby
avoiding the production of erroneous results. The application of a
cnoidal wave model (Hardy and Kraus 1987) for the remaining (M-I) rows,

or to the breaking point, would be appropriate.
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B. Subroutine DISPERS
From Isobe and Kraus' (1983a) third-order derivation of a Stokes

wave theory, the dispersion relation is

2
2. 4 2
g D _ 2({9c - 10c +9 _c
2 - kD tanh kD [1 + € ( 16 2kD>J . (5.5)

This equation is solved for the wave number, k , using the Newton-

Raphson method. For the solution procedure, it is convenient to define

2
x = kD ,
and 5

ot 2
_ 2{9c - 10c” + 9 c .
FAC = [1 + & < 16 - 2kD>j, ;

therefore, the form of Equation 5.5 simplifies to
S = (x tanh x)-FAC . (5.6)

Bringing S to the right-hand side and defining f(x) ,

1]

f(x) = (x tanh x):FAC - S (5.7)

or

f(x) = x-FAC - S coth x . (5.8)
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The value of the independent variable, x , for which the function f(x)
is zero is obtained by the Newton-Raphson method.

In the Newton-Raphson method (see Figure 5.3), a first guess of
x = x, 1s made and the value of f(x,) 1is calculated. The tangent
to the f(x) curve at f(x1) is extrapolated to intersect the x-axis
(where f(x)=0 ) . This becomes the second guess for x , or Xy .
Again, f(x2) and the tangent at f(xz) are calculated and the proce-
dure is repeated until the solution converges. This occurs when the
difference between two consecutive approximations for x becomes so

small that the desired accuracy is reached. Mathematically,

f(x1) - f(x2)

tan (ANG) = f'(x,) = ——— (5.9)
1 2
or
£ x,) = ot (5.10)
177 Xy = %, ’
since f(x2) is zero. Solving for x, ,
X, = X, = fﬁfll— (5.11)
2 - f'(x1) )
or in general,
(n)
L) ) T ) (5.12)
= ‘( (n)> 3 .
f'ix

where the superscripts denote the guess (or iteration) number.
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Figure 5.3. Newton-Raphson method
For the dispersion relation, f(x) 1is given in Equation 5.8, but

its derivative with respect to x must also be calculated,

f'(x) = FAC + S csch® x (5.13)

or

2

£'(x) = FAC + S(coth” x - 1) . (5.14)

Inserting Equations 5.8 and 5.14 into 5.12 yields

X(n+1) : x(n) _ [x(n)FAC - S coth x<n)] . (5.15)

[FAC + S(coth? x(™ - 1)

The solution for x = kD 1is obtained by iterating until a specified
tolerance is reached (for example, 0.0001). Dividing by the depth D ,

the solution for the wave number is completed.
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C. Subroutine DELK

The irrotationality condition on the wave number vector,

Uxk=0 (5.16)

is solved to obtain the wave angle, o« . Inserting the components of k

into Equation 5.16 and expanding,

kK cos o 22 + sin a 3k k sin o 2% _ cos o 2K . 0 . (5.17)
3x X ay 3y
Solving for da
g vl
da _ 1 3k _ 13k 3o
2x ~ K 3y tan Q<F st By) (5.18)
or in finite difference form
°5,1 " %5,1-1 1 K1 T Koo
k -k o -
- (150,10 T 55 1m0 Y9en, 1 T %1y
- tan aJ’I<E i + shy (5.19)

where the overbar denotes the average of the (J,I) value and the

(J,I-1) wvalue. Solving for o yields

J,1-1
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%3,1-1 7 9,1 - 28y

k -k
- tan & 1 J,1 J,I-1
J, I %

®Je1,1 7 %J-1,1
+ .
Ax 240y
The solution for @5 1.1 is obtained by iteration, since a
1=
I O

o
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D. Subroutine DELF
The equation for the conservation of wave energy requires that the

energy flux be constant or,
v-F=0. (5.21)

This equation is solved to obtain the wave height, H . The third-
order energy flux, derived in Appendix A, is therefore used in the
solution for H . Inserting the components of the energy flux into

Equation 5.21,
3—(? cos a) + 3—(? sin a) = 0 (5.22)
ax ay

or in finite difference form,

FJ,I cos a5.1 " FJ,I-1 cos ey 1-1
AX

+ FJ+1,I sin ®Js1,1 " FJ—i,I sin ag.1,1 + FJ+1,I—1 sin 851,11 " FJ_1’1_1 sin.uJ_111_1 .
Ty =0 (5.23)

The first term represents a forward difference in the x-direction and
the second term represents a central difference in the y-direction. The
second term also weights the known row (1) and the unknown row (I-1)
equally such that the differencing in the y-direction is truely midway

between rows (I) and (I-1). Defining

Foe,0 S0 oy 1 - Fyoqpsinag g p + Foy pog 8inagey poy = Fyoq 1oy 8100959, 19
Yay

TERM2 =
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DX = Ax

FCOS = F.. cos a

JI

and

COS = cos aJ’

JI

I-1

Equation 5.23 simplifies to

F

_ FCOS + DX-TERM2

J,1-1 7

COos

Recall from Section III D, Equation 3.38,

where
_-c(1 + n)
B = o
+ %E(Qc

+ %E(_27C

4

6

N 9kD(cu - 202 + 1)

blc sinh)4 kD

2 2.4

- vH nCIK X vyk™H CIKB
- 8 16
+ 15cu - 61c° + 57)

6 . 3% - 136 4+ 33) +

3 cosh 2kD(c2 - 1)

Inserting Equation 5.25 into Equation 5.2U4,

The first term in Equation 5.25 and 5.26 is the leading order term

2
vH rlCI

K

Ysz4

CI B

Y(cosh 2kD - 1)

K™ _ FCOS + DX-TERMZ2

8

“+

16
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in the third-order energy flux and is equivalent to F from small am-
plitude wave theory. According to perturbation theory, the first term
in a perturbation series (Equation 5.25) is significantly greater in

magnitude than each successive term. Therefore, here we solve for the

wave height from the first term in Equation 5.26 or,

2,1
. Yyk“H'C_ B
g - 8 FCOS + DX-TERM2 _ — K| . (5.27)

YnCIK Cos

The solution for H 1is solved by iteration since the higher-order term

in the conservation of wave energy equation

2.4
vyk™H CIKB
16
also contains H . As was mentioned in Section V A, the solution for
k , a,and H on a given row (I-1) is obtained by iteration because

of the interdependency of the three wave equations solved in subroutines

DISPERS, DELK, and DELF.
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VI. RESULTS
A. Test Cases: Small Amplitude Versus Finite Amplitude Wave Theory
1. Plane Beach

Introduction

It is well known that the calculation of wave shoaling based on
small amplitude wave theory underpredicts the wave height, and small am-
plitude wave theory has also been found to overpredict wave refraction
(Chu 1975). (Another interesting aspect of refraction was discovered in
the course of this research and is presented later in this section.)

The form of the small amplitude wave profile can also differ sig-
nificantly from that of the finite amplitude wave profile. The magni-
tude of the error in quantities predicted by small amplitude wave theory
(e.g., water particle velocity, wave height, wavelength, and surface
profile) depends on the characteristics of the wave: the deepwater wave
height, wave period (or length), and the water depth at which the wave
is examined. Actual wave characteristics, such as the water particle
velocity and the wave profile, deviate more significantly from the re-
spective quantities predicted by small amplitude wave theory as:

(1) the wave height increases and (2) the wavelength and water depth
decrease. These factors are examined by using the numerical model de-
veloped for this thesis and as described in Section V. The model is
capable of simulating small amplitude and finite amplitude (third-order
Stokes) waves. Since first-order Stokes waves are equivalent to small
amplitude waves, higher-order terms are set equal to zero in the model
if small amplitude wave theory is selected.

For comparing small amplitude and finite amplitude waves, a plane
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beach with a 1:50 slope was selected. This slope is representative of
the east coast of the United States. The various wave conditions for
the comparison runs are given in Table 6.1. The small amplitude model
runs are accomplished with only the first set of wave conditions

(H = 1.0 m), since the value of the wave height does not affect the so-
lution (except for the breaker location). The finite amplitude model
results are a function of wave height, therefore the model is run for
all the wave conditions shown in Table 6.1. These deepwater wave con-
ditions are used to start the model solution process at the offshore
boundary. The solution process consists of an iterative, marching
scheme in the shoreward direction, which continues until the model can
no longer be applied. For small amplitude wave model runs, this occurs
if the breaking condition (H/D = 0.78) is reached. For finite amplitude
wave model runs, this occurs if the range of validity of third-order
Stokes waves is reached. This occurs at an Ursell number of 25. Ap-
plication of a finite amplitude wave model outside its range of valid-
ity, as was done by Oh and Grosch (1985), is expected to produce er-
roneous results.

Figures 6.1 through 6.19 are a graphical interpretation of the
calculated results. This explicit method of displaying results clearly
shows the differences between predictions from small amplitude and fi-
nite amplitude wave theories, as will be discussed in the following
paragraphs.

Wave Shoaling

Figures 6.1 through 6.5 display the effects of wave shoaling for

various wave heights and periods. Wave height, nondimensionalized by
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Table 6.1

Wave Conditions for Model Tests

H, (m) T (sec) o (deg)
1.0 4, 6, 8, 10, 12 0, 30, 60
2.0 4, 6, 8, 10, 12 0, 30, 60
3.0 b, 6, 8, 10, 12 0, 30, 60

the deepwater wave height, is plotted against the water depth. Although
the model applications begin at a depth of 50.0 m, the plots only show
the results from a depth of 20.0 m to the depth where the model reaches
its limit of applicability. The difference between small amplitude and
finite amplitude wave model results are greatest in this shallow water
region. Results from larger deepwater waves differ most significantly
from small amplitude waves results. This is to be expected since small
amplitude wave theory assumes the wave height is infinitely small. (Be-
cause of this assumption, the small amplitude model results need only be
computed for a single wave height.) Also, larger waves have a larger
perturbation parameter, H/L , (for a given wave period) and are there-
fore more "finite." By the same reasoning, a short period wave has a
shorter wavelength and therefore a larger perturbation parameter. Short
period waves are therefore more "finite" for a given wave height, and
differ most significantly from small amplitude waves. This is verified
in Figures 6.1 through 6.5.

It should be noted that longer period waves "feel the bottom"
sooner, therefore they begin to shoal in deeper water. It can be in-

ferred from this fact that a long period, finite amplitude wave will
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tend to "peak up" and break in deeper water (larger breaking wave
height) than the corresponding small amplitude wave of the same deep-
water characteristics. This has significant impact on the prediction of
sediment transport since, e.g., the standard predictive expression for
the longshore sediment transport is proportional to the wave height

squared ("CERC" formula, Shore Protection Manual, 1984, Chapter 4).

(Since the model developed in this thesis is based on Stokes theory, it
is not valid in shallow water (near the breaker point) where longshore

sediment transport is most significant; therefore, this aspect will not
be examined in detail.)

Wave Profile

Figures 6.6 through 6.14 depict the change in the wave profile as

a wave travels from deep water to the depth at which the wave reaches
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the limit to the range of validity of Stokes wave theory. The figures
are generated using the wave profile equation derived by Isobe and Kraus
in their derivation of a third-order Stokes wave theory (Isobe and Kraus

1983a, Equation 143),

N = % (N1 cos 8 + N, cos 20 + N3 cos 36) , (6.1)
and using the wave height and wavelength produced by the model for a
given wave condition. In each figure, the wave profile nondimensional-
ized by its corresponding wave height (y-axis), is plotted for one wave-
length (x-axis). The result predicted by small amplitude wave theory is
represented by the solid line and that of finite amplitude wave theory
is represented by the dashed line. Regardless of the water depth, lin-
ear waves maintain a sinusoidal shape. In contrast, finite amplitude
waves become more peaked in shoaling water. The wave crest becomes
higher and narrower and the trough becomes flatter and elongated. This
asymmetry is of great importance in calculating the sediment transport
threshold and direction, although it appears to be little discussed in
the literature,

Figures 6.6 through 6.9 follow the change in wave profile as a
2.0-m, 6.0-sec wave travels from a water depth of 15.0 m to 5.0 m. From
Figure 6.6 (D = 15.0 m) to Figure 6.7 (D = 10.0 m), the Ursell number
remains small, the wave height decreases slightly, and the finite ampli-
tude wave profile deviates somewhat from the small amplitude wave pro-
file. From Figure 6.2, one can see that between these depths the shoal-

ing coefficient gradually decreases, verifying the decrease in wave
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height between Figures 6.6 and 6.7. Between Figures 6.7 and 6.8, the
Ursell number becomes still larger, the wave height increases slightly,
and the difference between the small amplitude and finite amplitude wave
profiles becomes more pronounced. In Figure 6.9, the finite amplitude
wave approaches the limit of the range of validity of Stokes waves
(U3 = 24.49). The finite amplitude wave height is 9 cm larger than the
small amplitude wave height, as calculated by shoaling theory, and the
finite amplitude wave crest is approximately 36 cm higher than the small
amplitude wave crest. This clearly shows that the finite amplitude wave
will reach the limiting steepness, H/L = 0.14 (Michell 1893), sooner
and will therefore break in deeper water than the small amplitude wave.
Again, it is emphasized that this model is not valid at the breaker line
and calculations are terminated before the limiting Ursell number
(U = 25) is reached.

Figures 6.10 through 6.14 compare wave profiles in 5.0 m of water
for various wave heights (1, 2, 3 m) and wave periods (4, 6, 8, 10,
12 sec). The longer period waves reach the limit of the range of valid-
ity of Stokes waves in water deeper than 5.0 m; therefore, they are ex-
amined at their limiting depth. This is indicative of the fact that
longer period waves shoal in deeper water than shorter period waves,
thereby reaching the limit of Stokes waves "sooner." From the figures
it is clear that a long period wave has a profile which differs more
significantly from a small amplitude wave profile than would a short
period wave, in a given water depth. In conclusion, (1) profiles of
larger waves differ more strongly from small amplitude wave profiles and

(2) longer period waves show a more marked change in the wave profile
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from the small amplitude wave profile than would a short period wave.

On examination of Figure 6.10c, the finite amplitude wave profile
shows signs of the formation of secondary humps (at x/L = *0.35). Al-
though the Ursell number (U = 14.04) is not near the limit to the range
of validity of Stokes waves, the wave steepness, H/L , (which is pro-
portional to the perturbation parameter) is large (H/L = 0.13) in rela-
tion to the relative water depth, D/L = 0.21, (which is proportional to
the auxiliary parameter). This violates the assumption in the deriva-
tion of Stokes wave theory, that the perturbation parameter is small
(whereas the auxiliary parameter can take on finite values). In addi-
tion, Michell's criterion for the limiting steepness (H/L = 0.14) is
nearly reached. This reiterates the importance of the wave steepness in
Stokes wave theory and the need for checking the wave steepness crite-
rion in the wave model.

Wave Refraction

Figures 6.15 through 6.19 display the change in wave angle as a
wave travels from deepwater to a depth at which the limiting condition
for Stokes waves applies. In each figure, the results of linear wave
refraction are represented by a solid line and those of finite amplitude
wave refraction are represented by dashed lines. The linear waves are
permitted by the model to transform until the breaking criterion,

H/D = 0.78 , is reached, therefore the solid lines extend further shore-
ward than the dashed lines.

An interesting phenomenon found in the course of this research is
that finite amplitude waves do not refract less than small amplitude

waves throughout the full solution domain. This aspect appears
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not to have been previously noted. Oh and Grosch (1985), in their in-
vestigation of third-order Stokes wave refraction, apparently missed
this effect because of their incorrect calculation of wave shoaling.
Here, it is found that in deeper water, finite amplitude waves refract
more than small amplitude waves and in shallower water they refract
less. This can be explicitly demonstrated by examining Snell's law
(Equation 5.2) for small amplitude and finite amplitude wave refraction

over a plane beach.

(1) . (N
k sin o = ko sin a (6.2)
or
(1)
sin o1 s ETTT sin a_ (6.3)
Lo
where
LO = deepwater wavelength
and
a, = deepwater wave angle.

The superscripts denote the order of the solution. Similarly for third-

order Stokes waves,

(3)
sin a(g) -k sina . (6.4)
L(3) o

0

Dividing 6.4 by 6.3 yields,
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(1)

3 31

N O E)
o]

sin a

(6.5)

sin a

By examining the third-order dispersion relation given by Isobe and

Kraus (1983) (Equation 5.5) at the deepwater limit, it is found that

L(3) () (1 RECAY (6.6)
¢) 0o O/

It is interesting to note that Equation 6.6 is compatible with an
equation for the wave celerity obtained by Stokes (1847) in his original
work (if it is evaluated at the deepwater limit). Therefore the ratio
of the deepwater wavelengths, Lé1)/Lé3) , 1s a constant less than
unity, with the actual value depending upon the deepwater perturbation
parameter, €y = Ho/Lé1) . The ratio of the wave angles then becomes a
function of the ratio of the wavelengths. The linear wavelength is a

function of the water depth and the deepwater wavelength or
1
LN £(D, T) . (6.7)

The finite amplitude wavelength has the additional dependency on wave

height, or
L<3) = f(D, T, H) . (6.8)
It is found that the H dependency of L(3) causes the overall ratio,

(1)
L(3) L

NEIENEN 6.
(N [(3) (6.9)
@
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to have a similar shape or depth dependency as the shoaling coefficient,
Ky (Figure 4.3). That is, the overall ratio first decreases than in-
creases, becoming greater than unity in shallower water. Therefore, it
is concluded that the wave angle calculated by finite amplitude theory
is less than the corresponding wave angle calculated by small amplitude
theory in deeper water (more refraction), and greater than the small
amplitude wave angle in shallower water (less refraction).

Table 6.2 displays numerical values of the ratio given in Equa-
tion 6.9, and the corresponding small amplitude and finite amplitude
wave angles and H/HO values as a function of depth for a 2.0-m, 6.0-
sec wave, with a, = 30 deg . From the table it is observed that the
ratio is less than unity at a depth of 30.0 m, then decreases to a mini-
mum value of 0.993 between the 10.0 and 15.0 m depths. Finally, the ra-
tio begins to increase at a depth of 9.0 m and quickly surpasses unity
(D = 6.5 m). A comparison of the first-order and third-order wave an-
gles shows that the "finite amplitude wave angles" are smaller (more re-
fraction) than the "small amplitude wave angles" in deeper water. The
wave angles differ by, at most, 0.15 deg in deeper water. This occurs
when the ratio is at a minimum (0.993). If the ratio becomes greater
than unity, the finite amplitude wave angles become larger (less refrac-
tion) than the small amplitude wave angles. The small amplitude waves
refract more quickly than the finite amplitude waves in shallow water.
The angles differ by 0.41 deg at the 5.0 m depth. A comparison of the
shoaling of the first-order and third-order waves shows that finite am-
plitude waves are consistently larger than small amplitude waves, with

the greatest difference occurring in shallow water. It should be noted
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Table 6.2

Numerical Example for Wave Refraction

(M

L3) Lo LD L3 L(1) L(3)
HOME - .

D (m) 0 (deg) {deg) 0 o)
5.0 1.018 19.81 20.22 0.905 0.947
5.1 1.015 16.97 20.34 0.904 0.943
5.2 1.014 20.13 20.47 0.902 0.939
5.3 1.012 20.29 20.59 0.901 0.936
5.4 1.01 20.44 20.72 0.900 0.933
5.5 1.009 20.60 20.84 0.899 0.930
6.0 1.004 21.32 21.46 0.894 0.920
6.5 1.001 21.99 22.06 0.892 0.912
7.0 0.998 22.61 22.61 0.890 0.908
7.5 0.997 23.19 23.17 0.889 0.905
8.0 0.996 23.72 23.67 0.889 0.903
8.5 0.995 24,22 24,15 0.890 0.903
9.0 0.994 24.68 24.59 0.891 0.903
10.0 0.993 25.51 25.39 0.896 0.906
11.0 0.993 26.22 26.09 0.901 0.910
12.0 0.993 26.83 26.69 0.908 0.916
13.0 0.993 27.35 27.21 0.915 0.923
14.0 0.993 27.80 27.65 0.922 0.929
15.0 0.993 28.17 28.03 0.930 0.936

20.0 0.994 29.32 29.21 0.962 0.967

25.0 0.995 29.76 29.68 0.983 0.987

30.0 0.996 29.62 29.87 0.993 0.996

NOTE: H, =2.0m, T =6.0 sec, and o = 30.0 deg
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that the first-order shoaling coefficient, H“)/HO , includes the
effect of refraction, therefore the tabulated values are somewhat less
than a strict, linear shoaling curve.

Comments

For the purpose of calculating the longshore sediment transport
rate in the surf zone, the breaking wave angle, @, is needed.
Although a Stokes wave model is not valid at the breaker line, the fol-
lowing can be surmised. From the general trend in the wave angle dis-
cussed in the previous paragraph, it can be inferred that a small am-
plitude wave will have a smaller value of the wave angle than the cor-
responding finite amplitude wave at breaking. Therefore, small ampli-
tude wave theory overpredicts refraction at the breaker line and would
presumably underpredict the longshore sediment transport rate. The
undeprediction of the wave height by small amplitude wave theory com-
pounds the problem of the low sediment transport rate predicted by small
amplitude wave refraction.

In conclusion, as compared to third-order Stokes wave theory,
small amplitude wave theory underpredicts the wave height throughout the
solution domain, underpredicts wave refraction in deeper water, and
overpredicts wave refraction in shallower water. It is reasonable to
believe that these trends should continue to the breaker line. A finite
amplitude wave model applicable at the breaker line would then predict a
greater longshore sediment transport rate than would a small amplitude
wave model. In addition, the wave profile and orbital velocities (Isobe
and Kraus 1983a) are found to be quite different between finite ampli-

tude and small amplitude waves.
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2. Irregular Bottom Topography

The numerical model of finite amplitude refraction and shoaling
is capable of predicting refraction and shoaling over an irregular
bottom of reasonably smooth gradients. In this section, refraction and
shoaling over a valley and a shoal will be examined. Figures 6.20 and
6.21 display the bottom configurations for the shoal and the valley,
respectively.

Figure 6.22 shows the wave height and water depth in the longshore
direction at various depths for the shoal. As the wave advances, it
converges on the shoal and a caustic forms behind, or shoreward of, the
shoal. That is, the waves bend inward and eventually cross each other.
This typifies one limitation of the method used to calculate refraction
in the model. The formation of a caustic can be artificially avoided to
some extent if the ray method is used. If a caustic develops, a model
using ray theory can "shoot" a different ray in from the offshore bound-
ary. Alternatively, the method used in this thesis can be modified to
include a smoothing scheme to eliminate some caustics. But, there is no
theoretical justification for employing a smoothing scheme. The model
as developed in this project uses no smoothing scheme; therefore the
rigorous, theoretical solution of refraction is demonstrated here.
Caustics, or wave ray crossings, can only be eliminated by employing a
theory which allows energy movement across wave rays (or along a wave
crest). This is the phenomenon known as wave diffraction. Incorpora-
tion of diffraction in the model is beyond the scope of the present

work. For the extension to a combined refraction-diffraction approach,

(6-27)



the interested reader is referred to Berkhoff 1972, Radder 1979, Luil
1984, and Ebersole 1985.

Figure 6.23 shows the wave height and water depth in the longshore
direction at various depths for the valley. In this case, the wave
energy disperses as the wave advances and the wave height decreases over

the valley.
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Figure 6.20. Bathymetric feature: shoal
(Note: this is a portion of the grid)

Figure 6.21. Bathymetric feature: valley
(Note: this is a portion of the grid)
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B. Comparison of Model Results with Laboratory Data on Wave Shoaling
Wave height predictions from the model developed for this thesis
were compared to the laboratory data of Iversen (1951). Iversen con=-
ducted tests in a 1 ft. by 3 ft. by 54 ft. flume to study wave shoaling
and wave breaking. As part of the wave transformation experiment, the
wave height was measured using vertical point gages at 29 locations
along the length of the flume for 11 wave conditions (Figure 6.24).
Point gage readings of the crest and trough elevation provided the wave

height at each location.

LEGEND

== emamas BEACH SLOPE =0.072
s BEACH SLOPE = 0.054

| 18.0°
VERTICAL POINT GAGES ’ WAVE GENERATOR

BB AELLL Do |
R § o8 S

R

Figure 6.24. Channel configuration for shoaling experiments
(after Iversen 1951)

For comparison with the Stokes wave model, three wave conditions
were selected from Iversen's flume tests (Table 6.3). These wave condi-
tions were selected because they were actually generated as deepwater

waves. The remaining experimental tests were not generated as deepwater
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Table 6.3

Wave Conditions for Wave Shoaling Comparison Tests

HO T DO*
Case (ft) (sec) (ft) Beach Slope
1 0.351 0.865 2.55 0.072
2 0.333 0.860 2.44 0.054
3 0.320 0.965 2.44 0.054

* DO is the depth in the constant depth region of the flume

waves due to the depth limitation of the flume. The laboratory data
were also limited to plane beach tests because of the narrow flume
width. The length of the flume restricted the experiments to beach
slopes of 1:50 or steeper. Also, energy dissipation due to internal or
bottom friction was not estimated in the experiments.

The numerical model is based on Stokes wave theory; therefore, it
is correct to apply the model over the deeper regions of the laboratory
flume. The model is applied until the limiting value of the Ursell num-
ber is reached (U = 25).

As shown in Figures 6.25 through 6.27, a comparison of the calcu-
lated and measured wave heights shows a good correlation between the
general trends of the data (i.e., a decrease, then increase in wave
height as the water depth decreases), but the magnitude of the wave
heights differ by approximately 10 percent. The difference may be at-
tributed, in part, to the frictional effect of the bottom and sides of
the long, narrow experimental facility. Energy dissipation due to bot-
tom friction causes a decrease in wave height, which is expected to be

more prominent as the depth decreases. In addition, the sides of the
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Figure 6.25. Comparison of predicted and measured shoaling curves
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Figure 6.26. Comparison of predicted and measured shoaling curves
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Figure 6.27. Comparison of predicted and measured shoaling curves

narrow flume will dissipate wave energy, thereby reducing the wave
height further.

It is observed that the shoaling rate of finite amplitude waves is
more rapid (a steeper curve) than small amplitude waves in shallow water
(Figure 6.28). As in finite amplitude wave shoaling, the experimental
results display a more rapid shoaling rate (a steeper curve) in shallow
water than the small amplitude curve, but the entire curve is shifted
down, below the finite amplitude and small amplitude curves. (The small
amplitude wave transformation curve lies between Iversen's results and
the finite amplitude model results.) All of Iversen's wave transforma-
tion tests fall below the small amplitude shoaling curve and all finite
amplitude wave transformation results fall above the small amplitude

shoaling curve (Figure 6.28). This observation supports the claim of

(6-35)



1.1p
SMALL AMPLITUDE WAVE THEORY

1.0 MODEL PREDICTIONS
xI
~
I

0.9}

MEASUREMENTS
0.8 I 1 1 ] |
0 0.1 0.2 0.3 0.4 0.5
D/L

Figure 6.28. Small amplitude, finite amplitude,
and measured shoaling curves

frictional effects reducing the wave height in the flume experiments.
That is, the measured wave heights are consistently less than both the
small amplitude and finite amplitude predicted wave heights. Therefore,
it is believed that frictional dissipation reduced the measured wave

heights and causes a downshift in the flume test shoaling curves.
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C. Model Limitation

The model developed in this report has certain limitations which
have been briefly discussed in previocus sections and will be summarized
in this section.

1. The Wave System

The finite amplitude wave model developed herein is based on the
derivation of a third-order Stokes wave theory by Isobe and Kraus
(1983a). 1In the derivation, it is assumed that waves of permanent form
and finite height progress over a horizontal bottom. The fluid is as-
sumed to be inviscid and incompressible and the motion is assumed to be
irrotational. The solution is in two dimensions and therefore assumes
long-crested waves. From the conservation of wave energy equation used
in the derivation, V:F = 0 , it is apparent that surface stresses
(i.e., wind) and bottom stresses (i.e., friction) are neglected. The
assumption of a horizontal bottom means modeling over a sloping bottom
is not absolutely theoretically correct.

The model computes wave conditions resulting from the transforma-
tion of a monochromatic wave over an irregular bottom. It is a steady-~
state model, i.e., time dependent processes are not included. The in-
clusion of diffraction and steady, longshore currents was beyond the
scope of this investigation.

2. Range of Validity

The finite amplitude wave model developed for this report is ap-
plicable from deep water to the depth at which the Ursell number reaches
25. This is the range of validity of Stokes waves. (Therefore, this

model, or any other Stokes wave model, cannot be used to directly
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calculate breaking waves, because such waves generally have Ursell
numbers larger than 25.) The range of validity is a function of the
deepwater wave height and the wave period. The limiting values calcu-
lated by the model can be used as input to other wave transformation
models applicable to shallow water and for sediment transport models in
deeper water. The limitations imposed by the range of validity are mit-
igated by the model's ablility to aid in the solution process of other
models.
3. Caustics

Any pure calculation of wave refraction, as presented here, will
lead to caustics for certain bathymetric features. The inclusion or ex-
tension to combined refraction and diffraction is expected to alleviate
the problem in most instances.
4, Lateral Boundary Conditions

The solution at the lateral boundaries is found by setting the
boundary values equal to the values at adjacent grid points. This
boundary condition implies that the change in any given variable in the
y direction is zero and is therefore most valid if the contours are

nearly straight and parallel to the y-axis.
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VII. CONCLUDING DISCUSSION AND RECOMMENDATIONS FOR FUTURE WORK

A finite amplitude wave refraction and shoaling model has been
developed from the third-order derivation of a Stokes wave theory pre-
sented by Isobe and Kraus (1983a).

Energy flux is the fundamental quantity required to calculate wave
shoaling, and its determination is a central part of this project. An
expression for the energy flux is derived using a unique simplification
based on the second definition of wave celerity. Since the recent the-
ory of Isobe and Kraus' was used as a basis for the calculations of wave
energy, energy flux, and group velocity herein, the results provide an
independent evaluation of the flux and serve to verify the limited pre-
vious work. The present work is also substantiated by the fact that the
energy flux given by Le Méhaute and Webb (1964) is identical to the en-
ergy flux derived in this report at the deepwater limit. This condition
does not necessarily mean that the fluxes are identical throughout the
solution domain, however.

The model solves the dispersion relation for the wave number, the
irrotationality condition on the wave number vector for the wave angle,
and the conservation of wave energy equation for the wave height. The
solution is accomplished on a grid using finite difference techniques.
The interdependency of the variables requires an iterative scheme in the
solution process.

The finite amplitude wave model has certain limitations imposed
upon it by assumptions in the theoretical development, the derivation,
and by the modeling process itself.

Since the model is based on Stokes wave theory, it is valid from
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relatively deep water to the depth where the Ursell number reaches 25.
(The Ursell parameter, which incorporates the three wave characteristics
needed to describe waves of permanent form, is evaluated at each grid
point to determine if the Stokes wave model is applicable.) The wave
steepness criterion (H/L < 0.14) must also be closely monitored in the
model (Michell 1893). Application of the model outside the range of va-
lidity of third-order Stokes waves will produce erroneous results, and
the model has an automatic "shut-off™ if the validity is violated.

Model tests were run to compare the results of the finite ampli-
tude wave model with small amplitude wave theory model results. It was
found that small amplitude wave theory consistently underpredicts wave
shoaling as compared to the third-order Stokes theory. The magnitude of
the difference between small amplitude and finite amplitude wave theory
predictions depends on the characteristics of the wave: the deepwater
wave height, the wave period, and the water depth at which the wave is
examined. High, short period waves in shallow water will have a large
perturbation parameter and will therefore refract and shoal differently
from small amplitude waves. The form of the finite amplitude wave pro-
file is also quite different from the purely sinusoidal small amplitude
wave profile,.

Refraction of finite amplitude waves is found to be greater than
small amplitude wave refraction in deep water and less than small ampli-
tude wave refraction in shallower water.

In conclusion, the most significant differences between small am-
plitude and finite amplitude waves occur in shallow water. Small ampli-

tude wave theory: (1) underpredicts wave shoaling and (2) overpredicts
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wave refraction in this region. The underprediction of wave shoaling by
small amplitude wave theory is of a significantly larger magnitude than
the overprediction of wave refraction.

The laboratory shoaling curves of Iversen were compared to the
shoaling curves predicted by the finite amplitude wave model. Both the
predicted wave model results and the measured flume data display the
general trend of shoaling curves. That is, a gradual decrease in wave
height as the water depth decreases, then a more rapid increase in wave
height as the depth decreases further. The laboratory shoaling curves
are consistently below the model shoaling curves (and are also below the
small amplitude wave shoaling curve). Frictional effects are most prob-
ably the major cause of the lower wave heights in the laboratory data.

The derivation process for the energy flux, energy, and group ve-
locity along with the numerical model development and applications were
extensively examined in this report. Refinements and extensions of the
model in possible future work include the following: (1) merging of the
third-order Stokes wave model with a shallow water (cnoidal) model, (2)
inclusion of diffraction in the wave model, (3) collection of field data
and laboratory data to complete the model verification, and (4)
derivation of the fifth-order Stokes energy flux, energy, and group

velocity for use in a fifth-order Stokes wave model.
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APPENDIX A: DERIVATION OF THE MEAN ENERGY FLUX

The process of evaluating the mean energy flux, F , will be

shown. As derived in Section IITI D, F can be written

N

= pC ~/~u2dz (A
D

rry i
—
S~

by use of the second definition of wave celerity, where:

the fluid density

©
1

C = wave celerity

u = horizontal water particle velocity
dz = incremental depth

-D = elevation of the bottom boundary

N = free surface elevation

The following quantities are available from Isobe and Kraus

(1983a):

4 2
_ 2/9c - 10c” + 9 c
¢ = CIK[1 tE ( 16 B 2kD>]

u=1u, + u, cosh k(z + D) cos 8 + u, cosh 2k(z + D) cos 23

0 1 2
+ u3 cosh 3k{z + D) cos 3¢
21
N = " (N1 cos 9 + N2 cos 28 + N3 cos 39)
- g
CIK = i tanh kD
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Uy = CriBy

CIKB‘I

sinh kD

¢ CrBp

sinh 2kD

3 Crg By
sinh 3kD

3
(—2706 - 3c4 - 4102 + 39)

o
1)
m
+
2"

2 2
B2 = ﬁ~ <?c(c - 19
3 6 4 >
B3 S (27¢” - 57¢’ + 17c¢° + 13)

N. = 3e” (9¢c

= (kX - Ot)
_ kH

T2

= coth kD

horizontal coordinate

A2



Zz = vertical coordinate

g = gravitational acceleration

2n

k = wave number = L

H = wave height

2T
o = angular frequency = T

£ = time

The first step is to calculate the square of the horizontal water

particle velocity.

u2 = ug + 2uou1 cos 6 cosh k(z + D) + 2uou2 cos 26 cosh 2k(z + D)

+ 2uou3 cos 38 cosh 3k(z + D) + u? 00526 cosh2 k(z + D)

+ 2u1u2 cos 6 cos 268 cosh k(z + D) cosh 2k(z + D)

+ 2u1u3 cos 6 cos 36 cosh k(z + D) cosh 3k(z + D)

+ u2
2

where

H.O.T.

Higher Order Terms
- terms of order e (or i—) and higher.

Defining the symbol

-D

2

the next step is to integrate u“ over the depth.

A3

cos2 29 cosh2 2k(z + D) + H.O.T.



2u u1 cos 9

<u2> = ug(N + D) + —~9——E~——~— sinh k(N + D)
uou2 cos 26 2uou3 cos 38
+ sinh 2k{N + D) + sinh 3k(N + D)
k 3k
2 2 4 sinh 2k(N + D) N D
+ Ll1 cOos f'-lk + 2 + 2
sinh 3k(N + D) sinh k(N + D)
+ u1u2 cos 6 cos 29 3k + "
\
sinh Lk(N + D) sinh 2k(N + D)
+ u1u3 cos 6 cos 38 Ik + 5k
2 2 sinh 4%(N + D) N D
+ u, cos 29 81 *3+3 (A2)

It is convenient to define the terms in Equation A2 as follows:

I = Ug(N + D)

::UOU.l cos §

I, = — sinh k(N + D)

u-u. cos 28

02 7 in o

12 = . sinh 2k(N + D)
2u0u3 cos 38

13 = —————§§T————-sinh 3k(N + D)
u? cos 9

IL& e T sinh 2k{N + D)
u1 cos B

IS = 5 N

Al



u, cos 8
I6= 5 D
u1u2 cos8 6 cos 28
= '1 1\ D
17 = 3K sinh 3k{(N «+
u1u2 cos 6 cos 29
I8 = n sinh k(N + D)
u1u3 cos 9 cos 39
19 = i sinh 4k(N + D)
u1u3 cos 6 cos 36
I10 = 5k sinh 2k(N + D)
ug cos2 26
111 = ek sinh 4k(N + D)
u2 0052 20
I -2 N
12 7 2
u2 0052 20
I 2 D
13 ~ 2

The time average of each I; term must be calculated. For con-

venience, the following definition (symbol) is introduced:

A5



The explicit integration of I, I4 , Iy, and I4; will b2
shown and the results of the remaining integrals will only be listed.

Identities used in the solution process are given in Appendix D,

- 102 . »
I, - T<u0 (N + D)) (a3

u2N u2D
T -2 ., 0 (AL)
0 T T \
n ugD
Ip=7 (T-0)

2
IO = uOD

The first term in Equation AY is zero because the average value of
the free surface elevation over one wave period (or wavelength) is equal

to the mean water level, by definition.

2u0u

I, =

1 T (cos 0 sinh k(N + D)) (a5)

Assuming N is small but finite, sinh k(N + D) can be expanded in a

power series around D .

2 3
(
sinh k(N + D) = sinh kD + kN cosh kD + <kg) sinh kD + ‘kg) cosh D
2 iy 3
sinh k(N + D) = sinh kD(i + LEgl—>+ cosh kD(kN + Lﬁ%l—> (45)
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Substitution of (A5) into (AS) yields:

12 p 3
— ; e T8N PR
I, = —E%—lK%os 8 sinh kD<1 + <k§) >-+ cosh kD(kN + ;ﬁ%l—))] {AT)

Equation A7 is separated into the four terms defined below:

2uOu1 sinh kD

111 = o {(cos 0)

- ) uou1 sinh kD ————;zrggg
1. F KT cos k )
2

_ 2uou1 cosh kD

11 - T <cos ) (kN))
3

u.u, cosh kb ——m—=

- _ 0 3

I, - 7 <éos 6 (kN) )
y

Neglecting higher order terms,
(kN)2 = N? c052 6 + 2N1N2 cos 6 cos 29
(kN)3 = N3 cos3 8

1

These equations are to third-order in e , as can ke seen from

Equations AL6 through A48. In reality they need only te kept to first-
u.u

K

order because they are multiplied by which is £2 second-order,
as can be seen from Equations AL2 through AU5. Since thz lowest ordar
of (kN)2 and (kN)3 is second-order, and they are multiplisd by the

second-order constant Uy these terms will not contribute to the

k

AT



mean energy flux to a third-order of approximation. To verify this, the

four terms defined above will be evaluated.

2uou1 sinh kD

11‘| = T (cos 6)
i =0 (A8)
1
1
_ Ugly sinh kD 5 >
I = cos B[N, cos 9 + 2N,N., cos 8 cos 26
12 kT 1 172
u.u, sinh kD
= 01 3 2
112 = KT <§1 cos™ 8§ + 2N1N2 cos 6 cos 26>
_ Uiy sinh kD N
112 = K NN, (A9)

ZuOu1 cosh kD

—
1"

13 KT <cos 6<N,I cos 8 + N2 cos 26 + N3 cos 36>>
_ .2uou,| cosh kD >
113 = T (N1 cos 6 + N2 cos 6 cos 286 + N3 cos B cos 36)
_ ugiy cosh kD
1 k 1
3
u.u, cosh kD
- _ 0™ 3 3
I]u = 36T (éos 9<N1 cos e>>
u.u, cosh kD ,—~———
- _ 071 3 4
I1u = 3KT <N1 cos e>
u.u, cosh kD
T, - 91 N3 (a11)

8k 1

Adding Equations A8 through A11 yields:

A8



Uty Yot Yol 3

I1 . sinh kD N1N2 + T cosh kD N1 + Bk cosh kD N1
2
7. 2 5 si A12)
14 = kT <éos 8 sinh 2k(N + D)>

Assuming N 1is small but finite, sinh 2k(N + D) can be expanded in a

power series around D .

(2kN)2

2

sinh 2k(N + D) = sinh 2kD + 2kN cosh 2kD + sinh 2kD

3
+ ig%El— cosh 2kD

sinh 2k(N + D) = sinh 2kD<j + 2(kN)2> + cosh 2kD(%kN + % (kN)3> (A13)

Substitution of Equation A13 into Equation A12 yields:

T o Y oo . 2 4 3 (A14)
4 = Tk |°OS 8 sinh 2kD{1 + 2(kN) + cosh 2kD{2kN + 3 (kN)

|

4=

Equation A14 is separated into the four terms defined below:

2 .

T i u1 sinh 2kD (Co > e)

4 T OKT s

u2 sinh 2kD
- 1 2 2
142 = SKT (cos 8 (kN) )
2

_ u, cosh 2kD 5

Iu3 =TT (COS 9(kN))

A9



_ u? cosh 2kD T3
I)-l SV — <COS 8 (kN) )

The four terms defined above are evaluated as follows:

u2 sinh 2kD

Tu,] = 1—4‘&',17“— <COS2 9)

u? sinh 2kD

IL41 = TTTak (A15)
2 .
_ u1 sinh 2kD — > T3
Iu STy (cos 8(kN) )
2
2 .
_ u1 sinh 2kD 5 > 5
142 =TT (cos 8 (N1 cos 6 + 2N1N2 cos 8§ cos 2%))
2 .
_ u1 sinh 2kD 5 M 3
142 T <N1 cos 6 + 2N1N2 cos™ 9 cos 28)
2 .
_ 3u1 sinh 2kD 5
IM = ek N1 (A16)
2
_ u? cosh 2kD
IM = TS (Eos ] (kN))
3
_ u? cosh 2kD
Iu3 ST — <§os 8 (N1 cos 0 + N2 cos 26 + N3 cos 3e)~>
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u2 cosh 2kD

N P 3 2 2
143 = ST (N1 cos” 8 + N2 cos 6 cos 26 + N3 cos~ 6 cos 36)
_ u? cosh 2kD
Ly =7 — N (a17)
3
2
_ ujncosh 2kD ———5———~——§
qu S T (eos 8 (kN) >
2
_ u1 cosh 2kD 5 3 3
qu = ————§ET—~—— <Eos e(N1 cos e))
2
_ u1 cosh 2kD —§————§——
qu SRR ¥ (N1 cos e)
Tu =0 (A18)
4
Adding Equations A15 through A18 yields:
- “? 3u§ 2 u?
I4 B sinh 2kb + T8k sinh 2kD N1 + Bk cosh 2kD N2
2
- Yo P .
Ly = 8T <§os 26 sinh U4k(N + D)) (A19)

Assuming N is small but finite, sinh 4k(N + D) 1is expanded in a

power series about D .
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(4kN)2

5 sinh 4kD

sinh U4k(N + D) sinh 4kD + 4kN cosh 4kD +

3
+ iﬂ%ﬂl_ cosh 4kD

sinh 4k(N + D)

H

sinh ukD<1 + 8(kN)2) + cosh ukD(ukN + 3—2- (kN)3> (A20)

Substitution of Equation A20 into A19 yields:

jud

2
2

T11 = gET[}osz 26<éinh 4kD<H + 8(kN)2>+ cosh ukD<hkN + %g (kN)S)i] (a21)

Equation A21 is separated into the four terms defined below:

u2 sinh 4kD
I =2 (cos® 28
111 8kT
2 .
_ u, sinh 4kD > 5
IH S (COS 26 (kN) >
2
2
_ u, cosh LkD 2 R
I11 = T o (OOS 29(kN)>
3
2
_ 4u2 cosh 4kD 5 3
I11u = KT (éos 26 (kN) )

The four terms defined above are evaluated as follows:
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—}

1

sinh 4kD
kT

sinh U4kD
kT

sinh 4kD
kT

sinh 4kD

bk

cosh U4kD

2kT

cosh Y4kD
2kT

u2 sinh 4kD

—_

= 2 2

1111 = TTTTBRT (COS 26)

B ug sinh 4kD

I111 = T6K (A22)
<0052 26(kN)2>
(cos 228 (N1200s 29 + 2N1N2 cOS 0 cos 26))
(N? cos2 ] cos2 20 + 2N,|N2 cos 9 cos3 26)

(a23)

cos 29

2

(N1 cos 8 + N2

cos 268 + N3 cos 36))

<NT cos 6 cos2 20 + N2 cos3

11U

11u

20 + N3 cos2 28 cos 38)

(A24)

Muz cosh 4kD

= 2 KT (0052 26(kN)3)
Mug cosh U4kD 5 3 3
= 3KT (cos 20 (N1 cos e) )

A13



Mug cosh U4kD
3kT

I
1),

I
11u

Adding Equations A22 through A25 yields:

(v

cos3 §] 0052 26)

(a25)

u2 sinh U4kD u2 sinh 4&D
= 2 . 2 N2
1M - 16k Uk 1
The final results for the integrals EO through f13 are as follows:

- 2
IO = uOD
~ Y% [sinh kD cosh kD .3
I, = B NN, + cosh kD N, + “255—= N
u.u ™~
= _ 02 |sinh 2kD ,2
I, = 5 N + cosh 2kD N2]
- Y9Y3[3 sinn 3kD 3 cosh 3kD .3
Iy = =5 NN, + cosh 3kD Np» SS2FRS5 N1}
K
- YT 3 sinh 2kD .2
IM Bk [%1nh 2kD + s N1 + cosh 2kD N%}
p)
< u1N2
5 Bk

Al



Keeping only terms of O(

-l

]

-

=i

2
5
4

Yt

Ik [% sinh 3kD N1N2
u,u. I

172 .

Ik -?1nh kD N1N2
u.u, [

173 . 2

Ik flnh L4kD N1
Y443 [sinh 2KkD |2

k 8 1
u2

_2 |sinh 4kD  sinh HkD 2
k 16 4

(@]

2
b

u-D

Qo

Hoty
K

+ cosh kD(N1 + N.) +

+ cosh 3kD(N1+ N3) + % cosh 3kD N

i

+ cosh UkD Na]

. cosh 2kD N2]

4

cosh kD N

b
£
k

1

)

1

0(53) yields

A15

3

cosh kD N

6

1

3

1

|

(A26)

(A27)

(A28)

(A29)



2
u .
I, - 8—% [sinh oKD + M Nf + cosh 2kD Nz} (A30)
2
u,N
- 12
I5 = —g¢ (431)
_ u?D
16 = g (A32)
= U4
17 = IR cosh 3kD N1 (A33)
= U
Ig = 5 cosh kD N1 (A34)
1. = A
19 0 (A35)
110 =0 (A36)
_ ug sinh 4kD
I11 =T 16k (A37)
I, =0 (a38)
_ ugD
T)3 =~ (439)
Combining (A30) with (A31) yields:
2
T+ T - g% [sinh 2kD + i%h'?-@ N‘f + 2 cosh® kD N2] (ALO)

Combining (A33) with (A34) yields:

A16



m,u

- = 12

I7 + 18 = Sp (cosh kD cosh 2kD)N1 ALY
The evaluation of Ug o Uy s Uy, u3 , N1 , N2 , and N3 yields
the following:

- _.__1__ gc 2 7/ ali
Uy = ZkDVK © (a42)
u, = g + §—3- (—2706 - 304 - 4102 + 39)) (&53)

1 ° | X sinh kD cosh kb \* © &l 2
3 g 2 2 ;
u, = = (¢ - De (aul)
2 4 \/k sinh3 kD cosh kD
3
uy = 23 - ta”g KD (5700 - 570" 4+ 1762 + 13) (AL5)
k sinh™ 3kD
363 6 4 2 -
N, = ¢ + 23— (-9¢” + 3¢ - 3¢ + 1) (Al48)
1 64
2 2

_egc(3¢c -1 m

N, = 5 (ALT)
3

_ 3e” 6 y 2 (ALE)

N3 = 3 (9¢” - 3¢’ + 3¢ - 1)

Substituting Equations A42 through A48 into Equations A26 through AY1

yields:

]
i
rg
™
g

|
H
i
F
LM
o=
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27 '3 T ig 10 12
- - . 2 6 2
I+ 1o = 35 5w £ (-27¢° - 3¢ - U1e° + 39)
> 32
3g€4 g02(302 - 1)eu
+ > + 5
8k 16k
T --—8 2, e’ (-27¢® - 3¢ - 11c? 4 39)
6 ~ 2k sinh 2kD °© 32

- 3gsu cosh 2kD(c2 -1

I, + 1, =
7 8 Mk2(cosh 2kD - 1)
T 9gsu(c6 - cL‘l - c2 + 1)
11 64k2
T - 9gDe:u(C)1l - 202 + 1)
13 7 y

6l4ke sinh’ kD

Reecall,
N
F = oC u2dz
-D
This equation can now be written as:
i=13
F - oC E Ti (4L9)
1=0

Substituting TO through 113 into Equation A49 results in the

following:
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4 4 4
= gee _ gee g gD 2 £ [ oqb U
F o= oC [ * ( 2 * 2k sinh 2L<D><5 + 35 (-2Te” - 3¢

386u . g02(302 - 1)64 . nge)1l cosh ZkD(02 - 1)
8K° 16k° 4k (cosh 2kD - 1)

—41c2 + 39)) +

. 9g€u(c6 - Cu - 02 + 1) . QgDs»:Ll(c)4 - 202 + 1)
6Lk 6like sinh kD

Combining terms,

2
F:XE[-E—Z—”-+ (755 + By (-27e® - 30" - m1c 4 39) + L (9e® 4 3c!

3 cosh 2kD(c2 - 1) . 9kD(cu - 202 + 1))
4(cosh 2kD - 1) 6lc Sinhu YD

- 13¢2 + 33) +

where

n = 1 1 + ——QEQ———>
-2 sinh 2kD

Inserting Equation 141 from Isobe and Kraus (1983a)

4 2
_ 29 - 10c” + 9 c
C=Cr <:l TE ( 16 - ZRD) )

into F and rearranging,

A19



_ YCT c2 . 1
F oK [“,n + au <:Ei%§%_ﬁl + %E (—27c6 + 1504 - 61c° + 57)

2 .
1 b 2 3 cosh 2kD(c - 1)
*TT (9¢” + 3¢ ~ 13c° + 33) + T (oSt 26D — 13

k(e - 2e% . 1))]

6lc sinhu kD

Substituting in

yields
= . YH22CIK . Ykz?:CIK [-c(&kg n) N %H (_2706 . 15cu _ 6102 + 57)
o et L R

4

. 9kD(cu - 202 + 1)]
e sinh kD
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APPENDIX B: DERIVATION OF THE AVERAGE ENERGY

The process of evaluating the integrals for the average energy per
unit surface area will be shown. The average energy of a wave system is

the sum of its kinetic and potential energies.

where:
E = average energy per unit surface area,
KE = average kinetic energy per unit surface area
N
= % -/. (W + w?) dz ,
-D
and
PE = average potential energy per unit surface area
N
=yfzdz.
-D
Therefore,
N N
E = % ~/~ (u2 + w2) dz + vy u/‘ z dz
-D -D
where
p = the fluid density
u = horizontal water particle velocity

B1



Ww = vertical water particle velocity ,
dz = incremental depth

elevation of the bottom

i
o
i

N = free surface elevation
y = specific gravity of the fluid
Zz = vertical coordinate

The following quantities are available from Isobe and Kraus (1983a):

u = uo *u, cosh k(z + D) cos 6 + U, cosh 2k(z + D) cos 28

+ u3 cosh 3k(z + D) cos 36
W = w1 sinh k(z + D) sin 8 + W, sinh 2k(z + D) sin 28
+ w3 sinh 3k(z + D) sin 38
1
N = K <N1 cos 6 + N2 cos 20 + N3 cos 36)
Y = C1kBo
U osw €18y
1 7 71 7 sinh kD
o 2C. B,
2 7 "2 T sinh 2kD
N 1 4 1
3 7 "3 7 sinh 3kD

B2



¢ = coth kD
¥ = horizontal coordinate

27
k = wave number = i
H = wave height

2n

g = angular frequency = T
£ = time

T = wave period

For the average kinetic energy, the first step is to calculate the

square of the horizontal and vertical water particle velocities.
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2_.2. 1 s} - ~a~al O \
ut o= ouy o+ EuOu1 cos 86 cosh k(z + D) + 2u U, cos 29 cosh 2k (z + D)
2 2 2
+ 2uou3 cos 38 cosh 3k(z + D) + uy cos 8 cosh™ k (z + D)
+ 2u1u2 cos © cos 268 cosh k(z + D) cosh 2k(z + D)
+ 2u1u3 cos 6 cos 38 cosh k(z + D) cosh 3k(z + D)

+ ug cos® 20 cosh® 2k(z + D) + Higher Order Terms

W o= w2 sin2 8 sinh2 k(z + D)

1

+ 2W,W,. sin 8 sin 26 sinh k(z + D) sinh 2k(z + D)

172
+ 2w1w3sin 8 sin 36 sinh k(z + D) sinh 3k{(z + D)
. wg sin® 26 sinh® 2k(z + D) + H.O.T.
where:
H.0.T. = Higher Order Terms

5
= terms of order eu <or i—f)and higher.

Defining the symbol
N

fdz: ,
D

2

2

the next step is to integrate u“ and w~ over the depth.
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2u u, cos 8
o 1

k

2

Wl = ug(N + D) + sinh k(N + D) +

u.u,.cos 29 2u.u. cos 38

02 sinh 2k(N + D) + —2-3

P 3K sinh 3k(N + D)

4 12 oos 2 e(sinh 2k(N+D) N D
1 Ik 272

sinh 3k(N + D) sinh k(N + D))

+ Uu,u. cos 8 cos 26( 3K + "

172

(sinh 4k(N + D) sinh 2k(N + D))

+ u1u3cos 8 cos 36 Ik + oK

2 2 sinh 4k(N + D) N D
+ u5 cos 26( 8 + 5 2) (B1)
2, _ 2 .2 ,(sinh 2k(N +D) N D
W > = w1 sin e< Tk -5 2)

. . sinh 3k(N + D) sinh k(N + D))

+ w1w2 sin & sin 26( 3K - >
. . sinh 4k(N + D) sinh 2k(N + D))

+ w1w3 sin 8 sin 38( Tk - 5k

inh 4k(N + D) N D
N 5) (B2)

+ w2 sin2 29(% Bk 5

2

It is convenient to define the terms in Equations Bl and B2 as follows:

2
I, = uO(N + D)
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10 ~

1M

12 7

13 7

2u u1 cos 8

u_u

0

k

sinh k(N + D)

cos 28

072

2uou

k

3

sinh 2k(N + D)

cos 39

Yy

u

3k

sinh 3k(N + D)

sinh 2k(N + D)

cosS 6 cos 28

2

sinh 3k{(N + D)

u,u

1

3

k

cos 6 cos 28

2

sinh k(N + D)

4

u3 cos B cos 38

k

u,u

1

3

b

" sinh U4k(N + D)

cos 6 cos 39

2
u

2

2

T sinh 2k(N + D)

cos 28

8k

sinh 4k{(N + D)

B6



2 .2
w1 sin 8
114 S Tr— sinh 2k(N + D)
w? sin2 ]
Lig = - > N
w? sin2 ¢]
116 = - 5 D
www2 éin 6 sin 26
117 = 3K sinh 3k(N + D)
w1w2 sin 6 sin 29
118 = - ™ sinh k(N + D)
wlw3 sin 6 sin 36
119 = I sinh 4k{(N + D)
w1w3 sin 8 sin 3¢
120 = - oK sinh 2k(N + D)
_ wg sin2 26
I21: BT sinh 4k(N + D)
w2 sin2 28
Tz --2 _  y
22 2
w2 sin2 28
T =2 D
23 2

The time average of each I, term must be calculated. For convenience,

the following definition (symbol) is introduced:

B7



and without any loss of generality, for waves of permanent form,

From the evaluation of F

in Appendix A,

I

determined to order (E—->as follows:

—i

—i|

al

—

—i

]

=i

i

—i

10 ~

k

2
uo D
u.u
01
” cosh kD N1
0
0
u2
- _ . 3 sinh 2kD
15 * Bk sinh 2kD + R S—
2
i
y
= U
I8 = % (cosh kD cosh 2kD) N1
0
0

B8

ID through 113 are
N? + 2 cosh® kD N,

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)

(B11)



2
Y2
11 ° T(—SE sinh UrkD

-
b
(=)

12

I, =

13 4

The explicit integration of I14 )

the results of the remaining integrals will only be listed.

(B12)

(B13)

(B14)

115 , and I16 will be shown and

Identities

used in the solution process are given in Appendix D.

Ly =

Assuming N is small but

power series around D .

sinh 2k(N + D)

sinh 2k(N + D)

w? p)
—— (3in“ @ sinh 2k(N + D) (B15)
UkT

finite, sinh 2k(N + D) can be expanded in a

sinh 2kD + 2kN cosh 2kD

(2kN) 3

sinh 2kD + g cosh 2kD

H

sinh 2m>@ . 2(kN)2)

+ cosh 2kD(gkN . %(kN)3) (B16)

B9



Substitution of (B16) into (B15) yields:

!

the

2kD

2kD

2kD

2kD

sinh

8kT

sinh

8kT

sinh

14
Equation (B17) is separated into
_ w? sinh
1141 - BKT
_ w? sinh
1., =
1&2 2kT
_ w? cosh
I.,, =
kT
143 2
_ w? cosh
I., =
144 3kT
Evaluating 1141 through I1uu :
w2
T, =—
141
w2
T, =—
1#1
w2
= o]
Ly, =

8k

2
W
= H%T sin2 9 (sinh 2kD<} + 2(kN)2> + cosh 2kD<?kN + %(kN)3)‘) (B17)

four terms defined below:

(sin2 )

(sin o (kN)?)

2

(sin” 6 (kN))

(sin® 6(kN)3)

2kD

(1 - cos 28)
2kD

(T - 0)
2kD

(B18)

B10



w. sinh 2kD

1 . 2 2 2
SKT <31n <9 N1 cos” 8 + 2N1N2 cos 8 cos 26)‘>

W, sinh 2kD

2 2 .2 . 2
SKT (N1 cos B sin @ + 2N1N2 cos B cos 28 sin 9)

Ww. sinh 2kD <N?T)

2kT 8

- N

W, sSinh 2kD 5
T N1 (B19)

w2cosh 2kD

1
2kT

(51n 3] (N1 cos 8 + N2

cos 20 + N3 cos 39))

w2 cosh 2kD

1 . 2 .2
SKT <N1COS 8 sin” 8 + N2 cos 26 sin™ 8

+ N3 cos 38 sin2 e)

w? cosh 2kD N2T
2KT <” Yy )

w? cosh 2kD
—e———— N (B20)

8k 2

B11



_ w% cosh 2kD 5 3 3
I = m—— (sin e(N1 cos 9))

144 3kT
w2 cosh 2kD
T = S N3 sin2 2] cos3 9
1“& 3kT 1
1 = 0 (B21)
144

Adding (B18) through (B21) yields:

_ w'? sinh 2kD wf sinh 2kD w? cosh 2kD
Lyy = 8k * 16k Ny - 8k Ny
2
- "1 N
115 = - SIT sin” 6 (N1 cos 8 + N2 cos 26 + N3 cos 39)]
2
- T 2 N P
115 = - 5T N1 cos B sin” 8 + N2 cos 26 sin” 8 + N3 cos 36 sin~ 8
2
T - - [ N_21:
15 2kT i 4
2
— w1
Lis = ac Vo
w2D
T, = - = sin2 8
16 2T (
_ W
I16 = - I (1 - cos 26)



_ w%D
L= (T-0
w2D
T -
16 L
The final results for the integrals f17 through T23 are as follows:
s W, cosh 3kD N . 3 N3
17 bk 1 34
W,W, cosh kD N3
T, =12 N, - N o+
18 7 Lk 1 3 12
= M1"3 2
119 = Ix sinh 4kD N1 + cosh 4kD N2
W, W
= 1"3 | sinh 2kD .2
IZO = - IR > N1 + cosh 2kD N2
w2 sinh 4KkD
T --2—— 1.
21~ bk y 1
I22:O
w2 D
1 --2
23~ 4
4 3 _ _
Keeping only terms of O(ﬁ—) = 0(e”) , terms 114 through 117 are as
follows:
W 1
= 1 . sinh 2kD .2
- EETLANNSLE - B22
L) = g |sinh 2kD + 5 N7 - cosh 2kD N2J (B22)

B13



= 2

15 ° Bk (B23)
_ W?D

Lig =~ T (B24)
_ Wy W, cosh 3kD

Lo = T N, (B25)
- W W, cosh kD

Lig = - Tk Y (B26)
Ig=0 (B27)
120 =0 (B28)
_ wg sinh 4kD

e I T- (B29)
122 =0 (B30)
_ wgD

123 = - (B31)

Combining (B22) with (B23) yields:

sinh 2kD + B E— N1 - 2 sinh”™ kD N2

OO!S
i— o

“44-115:

Combining (B25) with (B26) yields:

B14



W, W

T T .= -2 i i (B33)
117 + I18 = 5y N1 (sinh kD sinh 2kD)

The evaluation of UO , u1 s Uy s u3 , w1 , w2 R w3 R N1 y

N2 , and N3 yields the following:

. _ 1 jge 2
Y9 = " 2kbVk °© (B34)

3
_ _ g € 6 il 2
Uy =Wy = \/k sinh kD cosh kD (e "6l (~27c” - 3e” - U1e” + 39)) (B35)

3 g (02 -1 e2 (B36)
2 2 ”\/k sinh3 kD cosh kD

3
Uy =y = gz gtanh Kb (270% = 57¢" + 1762 + 13) (B37)
k sinh~ 3kD

33 6 ! 2

£
]
=
1

N1 = e+ (<9¢” + 3¢’ - 3¢ + 1) (B38)
2 2
_ec(3e - 1)
N, = T (B39)
33 6 .4 2
N3 = m— (90 - 30 + 30 - 1) (BMO)

Substituting equations (B22) through (B28) into (B3) through (B14) and

(B24) through (B33) yields

T = gcsu
0 w3p

B15



]
"
i
1"
]
1
]
t
i
]
—
|
4
]
—
u
(@]

i

3 4
I. = —55 (82 + %5 (~27c6 - 304 TR 395) + ig%-
8k

4

D <e2 + %5 (_2706 - 304 - 41c° 4 39))

6 ~ 2k sinh 2kD

i
i

- 3gsu cosh 2kD(c2 -1

I+ 1, =
7 8 4k2(cosh 2kD - 1)
= 9g§u(c6 - cl‘l - 1
Lyg = z
blk

= 9gbet(at - 20 4 1)

13 blke sinh4 kD

- - 2 su 6 4 2 Eu
114 + I, = “&g (; * 33 (=27¢c” = 3¢’ = 41c” + 39)) + g_§

157 8k
- gsu(302 -1
16k°
- D 2 M 6 .U >
e = = srsioes (° + 35 (-27c” - 3¢” - Hie *39’)
N2

I, 4T, = 3tele=1)

17 18 4k2

B16



4
f21 = 2355 (c6 - cu - 02 + 1)
64Kk
= 9gDeu(cu - 202 + 1)
123 z - m
6Udke sinh kD
Recall,

N
KE = % y/“ (u2 + w2)dz
=D

This equation can now be written as:

i=23
— 9 § -
KE = 5 Ii

i=20

Substituting I 23

following:

B17

o ‘through 1 into Equation B41 results in the

(B41)



1)

|

)

ﬁ:egce”-808“+(8+ N T oy
2 Hk3D 2k3D UKZ 2k sinh 2kD 4k2 2k sinh 2kD
> M 6 .4 > 9eel (6 4 2
x (a +o=— (=27¢” - 3¢ = 41c™ + 39)) + ~g—-6c -Cc =-Cc +
32 6Mk2
il 2 4 2
. kD(c ' - 23 + 1) N (06 _ CM . c2 1) - kD{c - 23 + 1) >
¢ sinh kD ¢ sinh kD
. 3ge4 cosh 2kD(c2 - 1) . geu02(3c2 -1 geu(3c2 - 1) . 3gsu
4k°(cosh 2kD - 1) 16k° 16k° 8K°
. gau N 3geu(c2 - 1)
2 2
8k bk
Combining terms,
KE = IEE 1+ 2f- - _ 9 (06 . CU N 302 S 5) 4 3(02 - 1) cosh 2k
N € ( 2kD ~ 32 2(cosh 2kD - 1)
where
Y = pg .
Substituting in
kH

yields:

B18



. 2 2.
KE = %%— + YEMH (— ZED - %5 (06 + ca + 302 - 5)

(B42)

3(02 - 1) cosh 2kD
2(cosh 2kD - 1) )

This completes the evaluation of the average kinetic energy per unit
surface area. The next step is to evaluate the average potential energy

per unit surface area. Recall,

PE = Y ,[‘ z dz .

-D

Integrating in the 2z direction yields

where the overbar denotes the time average.

Define

el
1
M=
/-\
=l
no
N

Evaluating 3? and J2

B19



—_y |1 2

J,l = 57 k2 (N1 cos 6 + N2 cos 26 + N3 cos 38 )

J, = L 1 N2 0032 8 + 2N,N, cos 8 cos 28 + 2N,.N, cos 8 cos 36
1 2T k2 1 172 173

. Ng cos® 28 + H.o,T.)

Inserting N, and N, into 3? yields

The evaluation of 3; is simply:

but this is the potential energy of the fluid when no waves are present.

The potential energy per unit surface area due to the wave is:

4 4 2 2 2
e c (3¢ - 1)
+ 1) + 73

Inserting

B20



and combining terms yields

2 2.4
PE = :1{2— + g% (-906 - 3Cu - 7(22 + 3) (B43)

This completes the evaluation of the average potential energy per unit
surface area. Combining (B42) and (BY3) results in the average energy

per unit surface area.

E - lﬂi . Iszu _e (- 906 - 60u - 1702 + 24) | 3(c2 - 1) cosh 2kD
T 8 128 kD 8 (cosh 2kD ~ 1)

This completes the evaluation of the average energy per unit surface

area.

B21



APPENDIX C: DERIVATION OF THE GROUP VELOCITY

The group velocity is defined as the velocity at which the wave

energy is propagated. Mathematically,

?:ECg
or
F
Cg = = c1
= (C1)
From Appendices A and B we have:
2 2.4
7o YKH L N 5006 4 _ 6162
F = g~ n CIK * g CIK 4kD<1 +n) + 64( 27¢” + 15¢ 61¢~ + 57)

. (906 + 304 - 1302 + 33) . 3 cosh 2kD(c2 - 1)
o4 §(cosh 2kD ~ 1)

2

. 9kD(cu - 22 + 1) (c2)
64c sinh” kD

F - lgf . Iszu e (-9c6 - 604 - 1702 + 24)
-8 128 kD 8

2
3(e” - 1) cosh 2kD
(cosh 2kD - 1) (C3)

C1



Defining

B = - ce(l +n) n_

6 6
Tkd T 6%

(-27¢

L 2
+ 1504 - 61c2 + 57) + (9 _+ 3¢ - 13¢ + 33)

ol

N 3 cosh 2kD(c2 - 1) . 91<D(c)4 - 202 + 1)
Y(cosh 2kD -~ 1) 6lc sinhu YD

and

- 6c4 - 1702 + 24) . 3(c2 - 1) cosh 2kD
kD 8

(cosh 2kD - 1)

and inserting into (C2) and (C3) yields

2
= vH nCIK - 2H2 o
- 8 2
2 2.2
= _ yH k H
E—8 1+16A

Inserting (C4) and (C5) into (C1) yields:

22]
kK H
o nCIK[1+2nB

g K2He
[1 + 16 A

Using the series,

(1 + x)"1 =1 - % + x° - x3 + xu

2,2 2,2
) KH® . k°H
Cg = n Cpp [1 + 5B - S A+ H.O.T.]

c2

(ch)

(C5)



Inserting
yields

2/2B A
Cg:nCIK[1+€ (H—-')I)]

This completes the derivation of the group velocity.

C3



APPENDIX D: IDENTITIES USED IN APPENDICES A AND B

The identities used in Appendices A and B are given here. Inte-
grals are reduced until there is only integrals of constants, single

trigonometric functions, or orthogonal functions for example:

T
b [orag o
0

T

% u/.cos (kx - ot) dt = 0 (D2)
0
T

% ~/acos (kx - ot) cos 2(kx - ot) dt = O (D3)

0

Equations D1 and D2 are self-explanatory, but the orthogonality con-

dition will be restated for the reader.

b
0 n+mn
cos mx cos nx dx =

a nm

The limits of integration will henceforth be omitted for brevity. For

convenience, let 8 = kx - ot , then:

~[cosz 6 de
1 )
5 (1 + cos 26) de

1 1
é-f(‘l)de+2f00526de

D1



fcos3 8 de

%fﬁ + CcOS 26) cos 8§ ds8

%fcosede+%fcosecos% de
fcosuede

%fﬁ + CoSs 26)2 de

f(1 + 2 cos 26 + cos2 28) de

L
% (1) de + = cos 26 do + % (1 + cos 4s) de
3 1 1
(1) de + cos 26 de + cos 4o de
8 8

fcoss o de

—)}fﬁ + oS 29)2 cos 6 de

%f(cos 8 + 2 coS H coOS 26 + cos O cos2 20) de

FETN

fcos 8d9+%fcos 8 cos 26 de+%fcos 8(1 + cos 4p) ds

fcosede+—;-f005800529de+—é-fcosecosllede

D2

[e][¥9)



fcos2 20 de

%f(1+cos Lg) de
lf(1)de+l cos Ue de
2 2

j-cos3 26 ds

—;—fﬁ + cos U48) cos 26 de

%f00326d8+-;—f0032600549d6

fcos2 36 de

%fﬁ + cos 68) de

f(1)d9+%fcos6ede

fcos 9 cos2 26 ds

nNf—

[N R

fcos 8 (1 + cos U4e) do

fcosede+%fcosecos 49 de

|

D3



~/‘cos 6 cos 26 cos 36 ds

%~/ﬁ(cos 8 + cos 36) cos 36 dse

j—

./Pcos 6 cos 30 de +

cos 36 de +

Nf—
g“\
8
wn
@D

cos 36 de +

Nf—
—
3
72}

(o]

-;- fcos2 39 de
%./~(1 + cos 68) de

%~/~(1) de + %‘/Ncos 66 do

cos2 368 de

@]
O
%}
@

N —

— =
&
9]
D

N —
Q

@)

5]
@

2

(1 + cos 68) ds

de + l~/~cos 8 cos 66 de

cos” 28 de

cos 20 (1 +

Nj—
Q
Q
1]
@

= [

cos 28 do +

Nj—
Q
o
[773
(o)

cos 26 de +

cos 26 do +

Q
@]
(77}
@

Nf—
- s T

PO

cos Ue) de
%fcos 8 cos 26 cos Us de

zl—f(cos 8 + cos 36) cos Yo de

%y/ﬁcos 8 cos Us de + %./”cos 36 cos Up da

D4



fcosz 8 cos 26 dse

%fﬁ + CcOos 26) cos 26 de

fcos 20 do + %fcos2 26 de

%fcos2ede+l—1-f(1+coslle)de

fcos29de+%f(1)de+-&fcosued9

fcos2 8 cos 26 cos 38 de

Nj—

|-

%fﬂ + cos 26)(cos 8 + cos 58) de

1 cc)sede+l cosecosZede+l cos56de+l cos 20 cos 56 de
y 4 L 4

j.cos2 8 cos 38 de

%f(‘l + cos 20) cos 36 de

%fcosSGdeJr%fcosZe cos 36 de

/‘cos2 ] cos2 20 de

7}’/‘(1 + cos 28)(1 + cos Up) de

D5



%fﬁ + cos 298 + cos 48 + cos 20 cos Ue) de

%fﬂ)de+ﬂ-fcos2ede+%fcosuede+%fcos2ecosllede

fcos3 6 cos 28 ds

%fﬁ + cos 20)(cos 6 + cos 38) de

% cos 8 de+% cos39de+& cosOcosZGde+% cos 26 cos 38 de

fcos3 8 cos 39 de

11-_[(1 + cos 26)(cos 28 + cos Ue) ds

%f00329d9+%fcosltede+)—1-f005229d6+%fcos26cosLlede

%fcos 26 de+% cos Ue de+%f(1 + cos Ue) de+% cos 26 cos Ue de

-&fcos29de+%fcosllede+%f(1)d9+%f0052600349de

fcos3 ) 0052 26 de

%f(‘i + cos 20)(1 + cos U48) cos o de
I}f(cos 8 + coS O cos 26 + cos O cos 48 + cos 6 cos 26 cos Ue) de

D6



fcos9de+—)1-fcosecos%de+%fcosecosuede

=i

+ %f(cos 8 + cos 308) cos Us de

fcosede+%fcos600528de+%fcosecosllede

+ %fcos 36 cos 4o de

==

j-cosLl 8 cos 26 de

%'/.(1 + COS 26)2 cos 28 dse

3

%f(cos 20 + 2 0052 28 + cos” 28) de

%fcos2ede+%f(1+cosue)de+%f(1+cosue)cosZSde

%’/.cos2ede+%f(1)de+%fcosuede+%f00529cosuede

fcosu 8 cos 36 de

%fﬁ + COS 29)2 cos 36 ds

%f(cos 36 + 2 cos 286 cos 36 + cos2 206 cos 36) de

%fcos3ede+%fcos2ecos3ed9+%f(1+cos146) cos 38 de

D7



oojw

fcos 39 de+-;-fcos 20 cos 36 de+%fcos 36 cos Yo de
fsinzede
2[(1-005 268) de

f(1)da--;—fcos26de
fsin2 6 cos 6 do

f(1 -~ cos 26) cos 6 de

fcosede-%fcosecos%de

fsin2 8 cos & cos 26 dé

§—

N

N

|-

%fﬁ - cos 26)(cos @ + cos 36) de

Tl—fcosede-%fcosecoszedeJ«fcosSBdB—fcosZGcos%de
j‘sin2 8 0052 g deé

%f(i - cos 26)(1 + cos 26) de

%f(?)de-ﬂ—fcosg%de

D8



f(1)de-—%f(1+cosue) 4o
fﬁ)de-%fcosllede

f.sin2 ] cos3 6 de

=l

oo —

%fﬁ - cos 28)(1 + cos 28) cos 6 de

%fcosede
1
Efcosede

%fcosede—%fcosecosuede

fsin2 8 cos 26 de

Il—j‘cos2 29 cos 0 do

%f(1+cos o) cos o de

—;—fﬁ - coS 260) cos 286 de

fcosZOde-%f(1+cosLle)de
fcosEGde—y}f(T)de-—%fcosltede

fsin2 8 cos 36 do

Nf—

[N

%fﬂ - cos 260) cos 38 de

D9



%fcos 36 de ~—~;~fcos 20 cos 36 ds

fsin 8 sin 26 cos 6 d8

—;—f(cos 8 - cos 36) cos 6 de

1 2 1
2fcos ede—zfcosecos%de

ulf(1+cos2e) d6-%fcosecos3ede

1 1 1
4.[(1)de+E’/-cos.26de—2'/‘005€)cos36de

fsin 9 sin 26 cos 6 cos 26 dé

I}f(cos 8 -~ cos 36)(cos & + cos 36) de

& f(c032 8 - cos2 36) dse

-81- f((? + cos 28) - (1 + cos 68))d6

1 cos 26 do -3 cos 66 de
8 8

fsin 8 sin 286 0052 6 ds

%f(cos 8 - cos 368){(1 + cos 28) ds

D10



1 cosede-l c:os3ede+l cos@cosEede-l cos 26 cos 36 ds
4 4 g 4y

fsin 8 sin 28 cos3 g de

ﬂ-f(cos 8 - cos 36)(1 + cos 28) cos 6 ds

I}fcoszede——l}fcosecos3ede+z}fcos‘2600329de

- I}fcos 8 cos 26 cos 36 de

1

g[(1+cos29)de— fcosecos3ede+%f(1+cos2e)cos2ede

JETIN

- %f(cos 8 + cos 36) cos 36 de

1 cos 0 cos 38 d9+3—— (1 + cos Us) ds
y 16

%f(1)de+%fcos2ede

i
o|—

fcosecos3ede-—%f(1+cos6e)de

%f(1)de+%fcos2ed9

.3 cosecos3ede+l- cosllede—1— cos 60 de
8 16 16

fsin 8 sin 26 cos 26 dé

% f(cos 8 - cos 38) cos 26 do

D11



%fcosecos2ede—-;—fcos2ecos3ede

fsin 8 sin 26 cos 30 de

%f(cos 8 - cos 38) cos 368 ds

fcosecos 38 de—%fﬁ-»cos 66) de

fcosecos38d6—%f(1)dea%fcos6ed8

fsin 6 sin 36 cos 9 ds

GVTIEN

POf -

(cos 20 - cos 46) cos o de

N —

%fcosecos 20 de—%fcosecos e de

fsin 9 sin 36 cos 68 cos 20 d8

%f(cos 20 - cos Ug)(cos 6 + cos 36) de

%fcosecosZ@de-%fcosecoslied9+£-fcos2ecos3ede

- %fcos 36 cos 46 de

D12



fsin 6 sin 36 cos2 8 de

%f(cos 26 - cos 46)(1 + cos

26) de

% cos 29 de-% cos Ua de+%f(’l+cosue) de-;l— cos 26 cos Us de

%fcos%de—%fcosllede

3

fsin 8 sin 39 cos™ 6 de

%f(cos 26 - cos H8)(1 + cos

1
Efcos

%fcosecosmde—

=l

fcos

-&fcosecos% dg -

cos

FTEN

~—

%fcosecos%de—

+%f(1)d9

20) cos 6 de

8 cos He de

- %fcos 29 cos Yo de

+ %fcos 9 cos2 20 de

m%fcos 8 cos 26 cos 4e da

ecosuede+%fcose(1+coslle)d6

- %f(cos § + cos 308) cos 4a de

ecosuedea-%-fccsede

D13

- —%fcos 38 cos Us ds



fsin 6 sin 38 cos 26 de

%f(cos 28 - cos L) cos 26 ds

%f\cos2 20 de -%fcos 26 cos Uo de

%f(1+cosu9) de—%fcos 29 cos U8 de

%fﬁ)de+%fcosl49de«%fcos%cosl&ede

fsin 8 sin 36 cos 36 de@

% f(cos 26 - cos Ue) cos 38 de

%fcos 26 cos 36 do - %fcos 36 cos Us de
fsin2 26 de

%fﬁ - cos 4o) de

1 1
2f(1)d9-§ cos 46 dse

fsin2 26 cos 6 de

-;—f(% - cos 48) cos o de

D14



%fcosede-%fcosecosuede

j&sin2 20 cos 6 cos 26 dé

-,}fﬁ - cos 4e)(cos 8 + cos 39) de

% cosede+~& cos39de-1—1= cosecosuede—-&fcos% cos Ue de

j‘sin2 28 cos2 8 ds

I}f“ - cos Ue)(1 + cos 28) de

%f(1)de-%fcosuede+

'/‘sin2 290 c:os3 8 dse

fcos 26 cos 46 de

=

fcos 26 doe -

=

I}f“ - cos Ue)(1 + cos 28) cos 6 de

%f(cos 8 - cos 8 cos 48 + cos 8 cos 26 - cos 8 cos 26 cos Ue) de

%fcosede—%fcosecosued8+%fcosecos2ede

- %—f(cos 6 + cos 36) cos Us ds

D15



fcosede—

P
ool

j‘lsin2 26 cos 26 de

% f(1 - cos 48) cos 26 de

%fcosZBdB-%fcos%cosMGde

fsin2 26 cos 39 de

-;-f(i - cos 48) cos 30 de

—;—fcos%de--;—fcos%cosuede

D16

fcosecoslledea»%fcosecosZSde

- %fcos 36 cos 4e de
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APPENDIX E: PROGRAM LISTING

PROGRAM STKIREF

Lok

N

L THIZ FINITE AMPLITUDE WAVE MODEL USES A

£ THIRD ORDER SOLUTUIOM TO STOKES WAVE THEORY

N

L
PARAMETER( 18=300,J8=30)
COMMON/CONST/M,N, DX, DY HD, T, THETAD, ONTR, 1ORDER , &
COMMON/CONST2/PT P12, RAD,CO,L0, KO, 510MA, 526, GAM
COMMON/CONST3/, 4, TCONT, IC ML
COMMON/BRRAY/D(IT, 10, K(JQ, 10)  THJG, T0)  HOJG, 103 BOJT, T0)
COMMON/ARRZ/C0, 1Y, F(J0, 14} NERH(JE) ,L(JIG, 16D, C6LIG, 10
COMMON/ARRI/E(JQ, Q) C1{JG, TQ) LI, 1)
REAL KO,LO,K L NEWH

[N

ks SUBROUTINE DATAIN READS IN INPUT DATA

L
CALL DATAIN

£

Chkk CHECK THE ORDER OF THE SOLUTION

£

IF{IORDER.NE.I.AND. IORDER.NE.3) THEN
WRITE(6,98) IORDER
98 FORMAT(IX, THE SCLUTION TO ORDER‘,13,” CANNOT BE CALCULATED
1 BY THIS PROGRAM. CHOOSE ORDER 1 OR 3 AND RERLN')
sToR
END IF

Ckickk  SUBROUTINE DEPTH READS IN DR CALCULATES
Uik THE DEPTH IN EACH GRID CELL

CALL DEPTH

[hidk  SUBROUTINE INITIAL DEFINES AND CALCULATES
Chickk CONSTANTS USED THROUGHOUT THE PROGRAM

CALL INITIAL

L
[hikk  SUBROUTINE BNDRY CALCULATES H,K,TH ON THE OFFSHORE BOUNDARY
r

CALL BNDRY

i

CALL URSELLLD,BR)
IF(U.6E.28.) 5TOP
IF{BR.GE..78) 5TOP

E1
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N
Chkdck BEGIN CALCULATION LOOP
N
DO 30 Is=M,3,-1
TLOUNT=(
Ty=1

10 CALL DISPERS
IF(ICOUNT.EQ. 205 GO TO 9
IF(IC.EQ.20) GO T0 %

CALL DELK
IF{IC.EQ.20) 60 T0 94
ALL DELF
IF(IC.EG.20) GO TO 94
DO 20 J=1 N
TOL=ABS(NEWH{ ) -H{J, 1-11)
IF(TOL.GT..0001} GO TO 10
H(J,1-1)=NEHH( D)
20 CONTINUE
Chkkk FINALIZE ROW 1-1
CALL DISPERS
CALL DELK
CALL DELF
Chkkk  CHECK URSELL NUMBER
CALL URSELL{U,BR)
IF{10RDER.EQ. 3.AND.U.GE.25.) G0 7O 94
IFCI0RDER  ED.1.6ND.BR. 6T, .78) 60 T0 9
30 CONTINGE
Chikkk END CALCULATION LOOP
54 CONTINUE
Cikkk QUTPUT TABLE OF RESULTS

DO 40 1=1,M
DO 40 J=1,N
THI 3, 1Y=(TH(J 1)-F1)/RAD
40 CONTINUE
CALL TABLE{]U,M,2,1,M, DEPT 7 0,10.0)

CALL TABLE(IL,M,2,1,N,” WAWE  HEIGHT *,H,1000.0)
CALL TABLE(IUM,Z,1,N," WAVE  ANGLE *,TH,10.)
CALL TABLE{IU,M,2,1,N,’ WAVE NIMBER  .K,1000000.)

5T0P

END
Chdedcdoiokdnk ek okk
¢
L

SUBROUTINE DATAIN
c
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107
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SUBROUTINE DATAIN READS IN INPUT DATA

DEFINITION OF INPUT VARIABLES

M = NUMBER OF GRID CELLS IN THE X DIRECTION

N = NUMBER OF GRID CELLS IN THE Y DIRECTIN

DX = GRID CELL SIZE IN THE X DIRECTION
BY = GRID CELL SIZE IN THE Y DIRECTION
THETAO = DEEP WATER WAVE DIRECTION
{+) COUNTER-CLOCKWISE FROM THE X-AXIS
(=} CLOCK-HISE FROM THE X-AXIE

[NTR = APPROXIMATE ANGLE THE OFFSHORE
MAKE WITH THE Y-AXIS

(4} COUNTER-CLOCKMISE FROM THE Y-AXIS
{~) CLOCKWISE FROM THE Y-AXIS

HO = DEEP WATER HAVE HEIGHT

T = WAVE PERIOD

[ORDER = DEGREE OF SOLUTION 41 R 3)

G = ACCELERATION OF GRAVITY

**x%iti****ﬁ*&**ﬁ*ﬁ*&k***ikkkk&k*

FQRQHETER(IQ=EBU,JQ=5U}

COMMON/CONST/M,N, DX, DY (HO, T, THETAQ, INT?

CONTOURS

R JORDER,E

COMON/CONGTZ/PL, sg,RAﬁ REIARIN G,EZS&Q‘CEG JAH

COMMON/CONST3/1,J, ICOUNT, 16, N1
COMMON/ARRAY/DEJG, 103 , K40, 100, THOJO
COMMON/ARR2/C(J0, 10) ,F (98, 10)  NEWHE J0)
COMMON/ARR/E(J, 100, 2090, 10, L g, T
REAL KD,LO, K, L NEWH

READ IN GRID CHARACTERISTICH
READ(L,10) M,N,DX,DY

READ{1,133 HO,T,THETAC,CNTR

(103, HOJQ, 18]
L4I0,10),
W
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142 READ(1,12) TORDER,G

143 WRITE(6,13)

144 WRITE(6,14) M

145 WRITE(6,15) N

146 WRITE(6,16) DX

147 WRITE(6,17) DY

148 WRITE(6,18) HO

149 WRITE(E,19) T

150 WRITE(6,20) THETAO

151 WRITE(6,21) CNTR

152 WRITE(6,22) T0RDER

153 WRITE(£,23) G

154 10 FORMAT(215,2F10.5)

155 11 FORMAT(4F10.5)

156 12 FORMAT(1S,F10.5)

157 13 FORMAT{15X, “Hokickionkkkk INPUT DATA sbiobickickk /)

158 14 FORMAT(1X, THE NUMBER OF GRID CELLS IN THE X DIRECTION 1§ /
159 1,15,/)

160 15 FORMAT(IX,’THE NUMBER OF GRID CELLS IN THE Y DIRECTION IS /
161 1,15,/)

162 16 FORMAT(IX,’THE GRID CELL SIZE IN THE X DIRECTION 157,F10,5,/
163 1)

164 17 FORMAT(IX,’THE GRID CELL SIZE IN THE Y DIRECTION 1§ ,F10.5,/
165 1)

166 18 FORMAT(1X, THE DEEPHATER WAVE HEIGHT ,F10.5,/)

167 19 FORMAT(1X, THE WAVE PERIOD 1§ ,F10.5,/)

168 20 FORMAT(1X,’THE DEEPHATER WAVE ANGLE *,F10.5,/)

163 21 FORMAT(IX, ANGLE WHICH THE OFFSHORE CONTOURS MAKE WITH THE
170 1 GRID ¥ AXIS *,F10.5,/)

17 22 FORMAT(IX,’THE ORDER OF THE SOLUTION IS *,15,/)

172 23 FORMAT(1X,’THE ACCELERATION OF GRAVITY IS 7 F10.5,/)

173 RETURN

174 END

175 Chtkeidokdookkonckdooidoiriioiokdooeiok ko k

176 C

177 C

178 SUBROUTINE DEPTH

173 C

180 C

181 Ckibdek ik ook ok inkobokiok ki ok ik

182 £

183 C  THIS SUERDUTINE READS IN OR CALCULATES

184 C  THE DEPTHS AT EACH GRID CELL

185 C

19 € D(J,1) = THE DEPTH IN GRID CELL (J,1)

187 g

188 PARAMETER(10=500,J0=50)

E4



189 COMMON/CONGT /M N DX, DY HO, T THETAC, CNTR  TORDER,, 6

190 COMMON/ARRAY/D(JQ, 10),K(JG, 1), THIJG, 1), HJG, 1), BOJQ, 1D
19 REAL KD,LO,K,L,NEWH

192 D0 100 1=1 M

193 READ(3,200) (D{J,1),J=1,N}

154 100 CONTINUE

195 200 FORMAT(10F8.2)

196 RETURN

197 END

158 Chkddkkidcddkbikkiiklhikikkk

199 ¢

200 8

201 SUBROUTINE INITIAL

202 L

203 c

204 (ki kkddok ook ik ook

205 C

206 Lok SUBROUTINE INITIAL DEFINES AND CALCULATES

207 Cickck CONSTANTS USED THROUGHOUT THE PROGRAM

208 ¢

209 PARAMETER( 14=500,J0=50)

210 COMMON/CONST/M N, D, DY HO, T, THETAQ, CNTR , 1ORDER,
211 COMMON/CONST2/P1,P12,RAD, CO,L0, KO, 516MA, 526, GAM
Mz COMMON/CONST3/1,J, TCOUNT, 1C N4l

213 COMMON/ARRAY/D(J, 10),K(J0, 1), TH(JG, 10) (H(JG, 1) ,B(J0, 10}
214 COMMON/ARR2/CLJG, 18)  F{JG, 10D NEWH(JQ) L (J0, 10}, C6(JG, 1Q)
215 COMMON/ARRI/E(JR, 1), C1(JG,10),UU(I0,10)

216 REAL K0,L0,K,L NEWH

217 " NM1=N-1

218 P1=3,14159

219 P12=2,%PI

220 RAD=P1/180.

221 THETAD=( THETADH180 . ) %RAD

222 CHTR=CNTRARAD

223 CO=(G*T)/PI2

224 LO=COkT

225 K0=P12/L0

226 IF(I0RDER.EQ.3) THEN

227 CO=COK(1.+( (KDKHD/2, )%k2))

228 LO=COAT

229 KO=P12/L0

230 END IF

231 SIGMA=PIZ/T

232 S26=( S1GMAKK2) /6

233 IF{G.GE.32.0.AND.G.LE.32,3) THEN

234 G=32.2

235 BAM=64.0
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ELSE IF(G.GE.9.8.AND.G.LE.9.81) THEN
(=9.806
GAM=10051,
END IF
IF(8.NE. 32,2 AND G.NE. 9, 506) THEN
WRITE(6,10) B
10 FORMAT(1X, THE VALLE OF G = *,F10.5,” THIS MODEL REQUIRES
1 6=32.2 OR G=9.006. PLEASE CORRECT AND RERUN‘)

sTop

END IF

RETURN

END
[k hddkdd kil ook
C
¥

SUBROUTINE BNDRY
L
£
Cdckekdcledek ek
L
L

Ok SUBROUTINE BNDRY CALCULATES H,K,TH ON THE BOLNDARY {1=M)
PARAMETER( 10=500, J0=50)
COMMON/CONST/M N, D, DY H0, T, THETAC, CNTR, 1 ORDER , 6
COMMON/CONGT2/P1 P12, RAD, £O, L0, KO, S1GMA, 526, GAM
COMMON/CONGT/T, 7, TCOUNT 1€ N1
COMMON/ARRAY/D(J0, 10) ,K(J0,10) , TH(JG, 103, H(JO, 1Q) ,B(JQ, ID)
COMMON/ARRZ/ G, 1), F (30, 10) NEWH{J0) ,L (40, 107, 06040, 10
COMMON/ARR/E(J0, 1), 01490, 10, LU(JG, 10)

DIMENSION TEMPH(J)
REAL KO,L0,K, L NEWH, KK, KD KON, KD2, K1, K2, N4, N
SN=SIN(THETAG-CNTR)
$=C0S( THETAD-CNTR)
SNKO=SHAKD
FO=BAMEHDXHOACO/ 16,
IF{IORDER.EQ.3) THEN
EPS2=(KOKHD/ 2. )%k2
FO=FOX(1 . 424EPS2)
END IF
FOCO=FOHCS
DO 100 J=1,N
R{d MI=KO
H(J M) =HD
TH{J My =THETAD
NEWH( J)=HD
F(J,M)=FD
100 CONTINUE

E6



282 TLOWNT=0

284 10 ICOUNT=ICOLNTHL
285 IF(ICOUNT.EG.20) THEN

286 HRITE(6,15)

287 15 FORMAT(1X,’CONVERGENCE NOT REACHED IN 20 ITERATIONG
288 1 AT THE OFFSHORE BOLNDARY”)

289 5ToP

2ap END IF

231 BO 200 J=1,N

292 HCJ, M) =NEHHE D)

293 BD=D(J M)

234 KD=K{J,M)%DD

295 $260=5264DD

296 IF(KD.LT.1.0) KD=GQRT(526D)

237 10=0

298 20 IC=1CH

299 IF(IC.EQ.20) THEN

200 WRITE(6,85) M,J

301 85 FORMAT{ 1%, CONVERGENCE NOT REACHED IN
302 1 20 ITERATIONS AT I=7,15,7 J=*,15)
0% STOP

304 END IF

05 COT=COSH KDY /SINHCKD)

06 COT2=COT4COT

07 IF(IORDER,£Q.1)THEN

308 FAC=1.0

09 G0 TO 25

310 END IF

a1 EPS2=( (KDKH(J M) /(2. 0D) )4k2

312 DUM=( (3, %(COT2Hk2) ) -(10 .4C0T2)49,) /16,
n3 FAC=(1,+(EPS2E(DIM-(COT/(2,4KD)) ) ) k2
314 75 KDN=KD~(KDAFAC-S26DKCOT)/ (FACHSZ60%(COT2-1. 1)
1S TOL=ABS(KDN-KD)

A6 KD=KDN

317 IF(TOL.GT..0001) GO TO 20

318 K(J,M)=KD/DD

319 L(J,M)=PI2/K(d,M)

320 C1(J,M)=50RT( GRTANHCKD) /K (J M)

321 TH(J M)=FI-ASINCENKG/K (] M) ) HINTR

322 200 CONTINUE

23 DO 350 J=1,N

324 HH=NEWH( J)

325 KK=K{d,M)

326 KD=KKAD(J M)

327 KD2=2 KD

328 S12=5INH(KD2)

329 NN=0,5%(1,4KD2/512)

ET



B3 a3 Lo Lo GO £a) €O fad
Kad a3 Go2 £ Ca3 a3 L3
R B R N N

L4 O3
Cad faX
[N~ e

340
EL)]
342
343
244
345
346
347
348
349
350
351
252
353
354
355
356
357
58
359
360
36l
Jo2
363
304
363
366
367
308
369
370
an
37

373

374
375
376

C(J M)=CL(J M)
F(J M=, LO5KGAMKHHAHHKRTL (J M)
IF(10RDER.EQ.3) THEN
£O=COSH(KD)
S1=SINH(KD)
COT=C0/51
COT2=COTACOT
EPS2=(KKkHH/2, k2
T12(9,4C0T2kK2-10,4C0T249, ) /16,
T2=LOT/KD2
GO, M)=CL (T MR (1 HEPS2X(T1-T2))
B1=(-, 25KCOT/KD)*( 1 HN)
S2=(NN/B4, YR(~27 KCOT2AK S KCOT2HR2-61 , XCOT2457,)
£SHR2=COSH(KD2)
SAKD=( SINH(KD) J k4
§3=(9, %COT2Hk343, XCOT2H2-13.XC0T2433. ) /64,
$4=9, %KD ( COT2kk2-2, %COT2H L /(64 XCOTAS4KD)
550, 75%CSH2A{ COT2-1,)/(CSHR-1.)
B(J M)=614524534 54455
FJ,MYZFCI MIKCL (0, SRKKAKKXHHEHHEB(J M) /NN) )
END IF
350 CONTINUE
DO 400 J=2,NM1
10=0
KD2=2. K (J MYAD(J M)
CONL=FOCO/COS(TH(J M)
40 1C=1CH
IF(1C.EQ.20) THEN
WRITE(6,41) J,1C
) FORMAT(1X,/ON BOUNDARY ELEMENT*,13, THE SOLUTION DID NOT
1 CONVERGE IN /,13, ITERATIONS')
5TOP
END IF
CON2=BAMK (K (J M)Hk2) K (NEWH( J) k4 )%CL( T MIXBLJ M) /16,
NNM=0. 5%( 1, +KD2/SINHCKD2) )
CON3=E. /{ GAMANNMKCL (I M) )
TEMPH( ) =SRT{ CON3%( CONL -CON2} )
TOL=ABS{TEMPH(J) -NEWH(J) )
NEKH(J) =TEMPH(J)
IF(TOL.GT..0001) GO TO 40
400 CONTINUE
NEWH( 1) =NEWH(2)
NEWH(N)=NEWH(NHL )
DO 450 J=1 N
TOL=ABS(NEWH(J) -H( J 1))
IF(TOL.GT..0001) GO TO 10
H(J, My=NEWH( J)

E8



ar7
378
379
380
281
382
363
384

-
385

386
387
388
283
330
291
332
392
334
3%
¥
398
239
400
401
402
403
454
403
406
407
408
449
41
411
412
413
414
415
die
417
418
413
420
421
422
423

450 CONTINUE

90 RETURN
END
Cinkdeidodokdiolck koo kool k
L
g
UBROUTINE URSELL(U,ER)
C
"
Dok okl kiokdcbioloiooiokock
C
c

Uik COLCULATE THE URSELL NUMBER ALONG THE ENTIRE RO
PARAMETER( 10=500,J0=50)
COMMON/ CONST /M, N, DX, DY HO, T, THETAQ , CNTR , 1ORDER , G
COMMON/CONST2/P1 ,P12,RAD, L0, L0, KD, ST6HA, 526, A
COMMON/CONGTZ/1,d, TCOINT , 1€t
COMMON/ARRAY/ D J, 10 (K(JG, 10) , TH(JQ, 10) H(I0, 18) ,BLIG, IO
COMMON/ARR2/C( 0, 100 F(J0,10) NEWH(JI) L (30, 100, G648, 10)
COMMON/ARR3/E(JT, 10),C1J0, 10) ,UU( 30, 1D)
REAL KO,L0,K, L ,NEWH
b0 10 J=i,N
U=(HOD, 1= 0L, T-1)%k2) )/ (D(J , T~1)%k3)
WU(d  1-1)=0
IF(1ORDER.EQ.3.AND.U.GE. 25, ) THEN
WRITE(6,30) 1-1
RETURN
END IF
IF(I0RDER.EG.1) THEN
BR=H{J,1-13/D(J,1-1)
IF(BR.GT..78) RETURN
ENDIF
10 CONTINUE
30 FORMAT(//,’ STOP HERE!! YOU ARE OUT OF THE RANGE OF VALIDITY.’
1,7, FIRST INVALID ROK IS *,15)
RETURN
END
Chkirkiek ikl bk kb kkdek odeiokk
¢

~
|-

SUBROUTINE DISPERS

e

Chkdlick bbbk ki khk ko kiok
PARAMETER (10=500 ,J0=50)
COMMON/CONST/M N, DX, Y, HO, T, THETAD, CNTR,, I GRDER 6
COMMON/CONST2/P1 P12, RAD, £0, L0, KD, 51644, 525, 6AN

£

E9



424 COMMON/CONST3/ 1, J TCOUNT , TC N

425 COMMON/ARRAY/DUJE, 1), KOJR, 10)  THOJG, 10D HOJO, 16), BOI0, 1D
43p COMMON/ARRZ/C(JQ, 10), FCIQ, 1) NERHIJIG) , LOJT, 10) , C6(JG, 10)
427 COMIN/ARRIAE{IN, 167, 01{J0,18) , UU(IG, I
428 REAL KO,L0,K,L ,NEWH,KD,KD2 KDN
424 ICOUNT=1COWNT4L
430 IF(ICOUNT.EQ.20) THEN
431 WRITE(E,85) I-1,d
432 65 FORMAT(1X, CONVERGENCE NOT REACHED IN 20 ITERATIONS AT I=’
23 1,15, J=7 15,508 15 DISPERS’)
434 RETURN
435 END IF
43¢ IFCICOUNT.EG.1) THEN
37 D0 10 J=1,N
438 K(d, I-1)=K(J, 1)
43% HOd I-1)=NEWH( D)
44g F(J,1-1)=F(d,1)
443 10 CONTINUE
44z END IF
443 DO 40 J=1 N
444 HEd, T=1 y=NEWH{ )
445 pp=D{d,1-1)
446 KD=K(J,I-1)%DD
447 5260=52G4DD
448 IFCKD,LT. 1.0} KD=5QRT(52GD)
444 IC=t
43¢0 43 10=1041
431 IF{IC.EQ.20) THEN
452 WRITE(G,85) 1-1,J
453 RETURN
454 END IF
435 COT=COSH{KD) /SINH(KD)
456 COT2=C0THCOT
457 IF{10RDER.EQ.1) THEN
458 FAC=1,0
459 B0 70 50
450 ENG IF
461 EPS2={ {ROAH{J, 1-10)/(2 ADD) vk
462 DUM={ 18, %{COT24x3; 1 ~(10.%COT2148, )/16,
462 FAC=(1 H{EPSZA{DIM-(COT/12 %KDY ) ) ) k2
44 S0 EDN=KD~(KDAFAC-S2GDHCOT )/ (FACHS2RDA(COT2-1. 1)
465 TOL=ABS{KIN-KD)
465 KD=KDN
467 TF(TOL.GT..0001) GO TO 45
468 K{J,1-1)=KD/0D
465 L1, 1-1)=5ORT(GATANH(KD) 7K (J, T-10)
470 LE I-13=PI2/R 00, T-1)

E10



471
472
473
474
473
476
477
478
474
48
481
4g2
483
484
483
486
487
488
483
450
431
432
493
494
493
4%
497
448
439
500
301
a2
303
=04

-4
505

il
367
oo
303
518
511

]

313
54
515

Gl

57

40

CONTINUE
RETURN
END

Cokdiriohioick fokdedniodokokocooooookk

L
£

N
C

SUBROUTINE DELK

Gl ik koo kiokikdek ook ko

KH

PARAMETER( 10=500,J0=50)
COMMON/CONST/M, N, DX, DY ,HO, T THETAC, CNTR , TORDER, 6
COMMON/CONST2/PI, P12, RAD, £0, L8, KD, ST6MA, 526, AN
COMMON/CONGTZ/1,J, TCOUNT, 1T, Nt
COMMON/ARRAY./D(JT, 107 K¢ JQ, 10) , TH(JE, 10) , HEJ, T0), BOIO, ID)
COMMON/ARRZ/C(J0, 10) , F(J0, 103 NEWR(J0) ,L{JG, 10),06(JT, 10)
COMMON/ARRS/E( 1, 10),C1(J8, 107, UuJ0,10)

DIMENSION TEMPTH(JD)
REAL K0,L0,K,L NEWH

16=0

IF(ICOUNT.EQ.1) THEN

DO 10 J=1 N

TH(J, 1-1)=TH(J, 1)

CONT INUE

END IF

1C=104

IF(IC.EQ.20) THEN

HRITE(E,50) 1

FORMAT(1X, “NON-CONVERGENCE IN DELK, ROW I=7,I5)

RETURN

END IF

DO 30 J=2 N1

BUBK=(K{d, DHR(, T-1) /2,

DKY=(, Z5/DY SR (KE L, DKL, T=1) K01, B =k {d-1, 1-1))
DIX=EK (S, 1=K d, T=1)) /DX

DAY=(, /DY) (THOHL, 1) -THOI-1, DHTHOI4E, 1-1) =THOI-L, 1))
TT=TANC(TH(, DTROT, 1-10)72.)

TEMPTH J3=THCJ , ) -DXk({ DKY/AVGR-TT4( DKX/AVGKIDAY) )
CONTINUE

10UT=0

DO 35 J=2,841
TOL=ABS(TH(J , 1-1)-TEMFTH{ J})
TH(J, I-1)=TEMPTH( )

IF{TOL.GT,.0001) 10UT=1

CONTINUE
THL,1-13=TH(Z, 1-1)
THON, I-13=TH(N=1,1-1)

E11



sig IF(IOUT.EQ.L) GO TO 25

519 RETLRN
529 END
521 Utk Mokl oo dadook ook
522 C
23 L
524 SUBROUTINE DELF
525 ¢
526 ¢
527 Uhbkkdohiickk ok bk ok ki ok ik dok
528 PARAMETER{ [ 0=500 ,J0=50)
529 COMMON/CONST/M N, DX, DY  HO, T, THETAD , CNTR, 1 ORDER , 6
530 COMMON/CONGT2/P1 P12, RAD, C0,L0, KO, §1 644, 526, GA
531 COMMON/CONSTS/1 ,J, JCOUNT , 1€, M1
532 COMMON/ARRAY/D( J, 10) ,K{JG, 10, TH(JG, 10)  H(JG, 18) ,BLJT, 10)
53 COMMON/ARRZ/C(JT, Q) F (I, 10) NEWH(JQ) L (J&, 10) ,C6(J0, 10)
534 COMMON/BRRI/E(J0,10) ,£1(30, 10),LULJ0, 1)
535 DIMENSION TEMPH(JQ)
535 REAL KO,L0,K,L ,NEWH, KK, KD, KD2 NN, NAM
537 10=0
538 5 IC=1CH
539 IFCIC.EG.20) THEN
540 WRITE(6,50)
541 S0 FORMAT{1X,CONVERGENCE NOT REACHED IN 20
542 1 ITERATIONS IN SUB DELF’)
543 RETURN
544 END IF
545 D0 10 J=1,N
546 HH=NEWH( J)
547 KK=K(d,1-1)
548 KD=KK*D(J,1-1)
549 KDZ=2, %0
550 S12=GINH(KD2)
=51 Mi=0,5H( 1, +KD2/S12)
552 £(d,1-1)=C1(d,1-1)
553 FJ, 1192, 125HBAMEHHEHMINNKCT (0, T-1)
554 IF(IORDER.EG.3) THEN
555 EPS2=( KKXHH/Z , %42
556 CO=COSH(KD)
=57 ST=SINH(KD)
555 COT=00/51
559 COT2=COTHkD
560 T1=(9, 4COT20k2-10,XCOT249. ) /16,
561 T2=COT/KD2
562 C(J, 1-1)=C1(J, -1)%(1 . 4EPS24{T1-T2)}
563 S1=(-, 25ECOT/KDYR(1 HNN)
564 S2=(NN/64, Jh(~27 ACOT2AR 4L, KCOT2kk2-61  KCOT2457. )

E12



565
366
a67
366
a6
378
a7l

7
£

373
374

By
sl

376
a7?
378
379
380
S8l
382
583
384
583
586
a87
568
589
390
391
592
583
394
593
396
397
398
399
600
&01
502
03
604
803
£li6
&07
£08
503
£18
611

19

20

3

CSHR=COSHKDZ)
SAKD=( SINH(KD) Yekd
53=( 5, KCOTEEEH D, 4C0T26k2-13, XC0T2432, ) /64,
S4=(3, %K DA{ COT242-2 KC0T241 ) ) /(64 XCOTHSAKD)
S5=0, Z5KCEHRH( COT2-1, )/ (CSH-1 )
B(J,1-1)=G1+32433+54455
F(J,1-1)=F(J, 1-1)%(1 42, KEPS2AE(J, I-1)/NN)
END IF
CONTINUE
10UT=0
D0 20 J=2,N-1
KD2=2,%K(d, 1-1)4D( 4, I-1)
ANM=0, 5 (1, +KDZ/SINH(KD2))
FL=F{J41, DRSINTHOH, 1))
Fa=F(J-1,1JRSINCTH(J-1, 1))
F3=F(JH, I-14SINCTH(IH, 1-1))
FA=F(J-1,1-1)XSIN(TH(J-1,1-1))
TERMZ=( , 25/DY Y4{ F1-F 24F 3-F4)
CONL=(F(J, 1YACOS(THS, 1) HDKATERME) /COS( THCJ, T-1))
CONZ=BAMK(K(J, 11 )%k 2)% (NEWH( JickdY4CL (J , T-1 4B J, T-1)/16.
CON3=0. / ( CAMANNMAC (J, 1-1))
TEMPH(J)=S0RT{ CONG*{ CONL-CONZ) )
CONTINUE
NEWH(1)=TEMPH(2)
NEHH(N) =TEMPH(NHL)
D0 30 J=2,NM1
TOL=ABS(TEMPH(J)-NEWH(J) )
NEWH( ) =TEMPHLJ)
IF(TOL.GT..0001) 10UT=1
CONTINUE
IF(I0UT.EQ.1) 6O TO 5
RETURN
END

Crdkicisnicoodoonkk ok kiokiokidoook

SUBROUTINE TABLE(I1,12,1VAL,JSTART,JEND, ITITLE ,DUML,FACT)

Coowtchicickdcdcdook ook ik ik ik iokkkoek

PARAMETER( 10=500 , J0=50)
COMMON/CONGT/M,N, DX, DY  HO, T, THETAD, CNTR, 1 0RDER G
COMMON/CONST2/P1 P12, RAD, CO,L0,KO, STGMA 525, GAM
COMMBN/CONGTS/1,J, ICOUNT , 1€, N1
COMMON/ARRAY/D(J0, 10) ,K(J0, 10) , TH( I8, 10) ,H(JQ, 10),B(JG, 10)
EOMMON/ARRZ/CJ0, 10) ,F (JQ, 10) NEWH(JO) ,L(J0,10),C6(JC, 10
COMMON/ARRS/E(J0, 10),£1(J0,10) ,LU(JT, 10)

E13



REAL KO,L0,K,L,NEWH
INTEBER IX(J04203, ITITLE(4)
DIMENSION DUML(JO,10)
NC=20
HRITE(6,10) ITITLE,FACT
J1=J5TART
J2=JSTARTING-1

20 TF(J2.6T. JEND) J2=JEND
WRITE(S,30) (J,J=J1,02)
WRITE(,40)
DO 50 1=11,12,1VAL
D0 45 J=J1,J2
KND=0.5
IF(BUMI(J,1).LT.0.0) RND=-0.5

45 IX(J)=INT(FACTADUMI (J, 1 4RND)

50 WRITE(E,55) 1,(IX(J),d=01,42)
J1=J14NC
J2=J24N0
IF(J1.LE.JEND) 6O TO 20
WRITE(,60)

10 FORMAT(/// 4A4,3X, 7 (MULTIPLIED BY 7,F10.5,7)7)

30 FORMAT(/,3X,’1/J¢7 2016}

40 FORMAT(1X,

i
* 7

* 7
55 FORMAT(1X,13,2¢,737,2016)
60 FORMAT(//)
RETURN
END

E14
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APPENDIX F: LIST OF VARIABLES

B Term use to condense the expression for the energy flux
C Wave celerity

Cg Group velocity

CIK Wave celerity from wave theory of Isobe and

Kraus

CO Deepwater wave celerity
¢ coth kD
D Still water depth
d Dimensionless still water depth
E Average energy per unit surface area
F Energy flux
F Average energy flux per unit surface area
g Gravitational acceleration
H Wave height

HO Deepwater wave height

H.O.T. Higher Order Terms

I X-coordinate of a grid point in the model
I Terms used in the derivation of F and E
J y~-coordinate of a grid point in the model
J Terms used in the derivation of PE

KE Average kinetic energy per unit surface area
k Wave number
L Wavelength

LO Deepwater wavelength

M.W.L. Mean Water Level

F1



Number of grid points in the model x-direction
Number of grid points in the model y-direction
Water surface elevation

Average potential energy per unit surface area
Pressure

Flow rate

Dimensionless flow rate

Wave period

Time

Ursell parameter

Shallow water Ursell parameter

Horizontal component of water particle velocity
Terms of u

Vertical component of water particle velocity
Terms of w

On-offshore direction in the model

Direction of wave propagation in the derivation
Lonshore direction in the model

Vertical direction in the derivation

Wave angle with respect to the model x-axis
Auxiliary parameter

Perturbation parameter

Dimensionless water surface elevation
Bernoulli constant

Fluid density

Velocity potential

F2



Dimensionless velocity potential
Stream function

Dimensionless stream function
Phase function

Specific gravity of a fluid

Angular frequency

F3
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