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PREFACE

Summarized herein are important findings obtained from unpublished model
studies conducted by the Coastal Engineering Research Center (CERC) for the US
Army Engineer District, Detroit (NCE), and the US Army Engineer District,
Jacksonville (SAJ).

This report was prepared at the US Army Engineer Waterways Experiment
Station (WES). The data were compiled and analyzed by Mr. John P. Ahrens,
Oceanographer, and Ms., Martha S. Heimbaugh, Civil Engineer, both of CERC. The
data were collected by Messrs. Martin Titus and Louis Meyerly and Ms. Karen
Zirkel, Civil Engineering Technicians, CERC.

General supervision was provided by Dr. James R. Houston, Chief, CERC,
Mr. Charles C. Calhoun, Jr., Assistant Chief, CERC, Dr. Charles L. Vincent,
Program Manager, CERC, and Mr. C. E. Chatham, Jr., Chief, Wave Dynamics
Division, CERC.

COL Dwayne G. Lee, CE, was Commander and Director of WES during the
preparation and publication of this report. Dr. Robert W. Whalin was

Technical Director.
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APPROXIMATE UPPER LIMIT OF IRREGULAR WAVE RUNUP ON RIPRAP

PART I: INTRODUCTION

1. In many locations riprap is the preferred type of shore protection
against wave attack. The two reasons for this are the low cost and high dura-
bility of stone, and the effectiveness of randomly placed stone, because of
its roughness and porosity, in dissipating wave energy and attenuating runup.
Because of these reasons, riprap has been the most studied type of revetment,
and its performance is well documented.

2. Runup is one of the most important factors affecting the design of
revetments exposed to wave action. Generally, riprap revetments are designed
so that little or no runup exceeds the top of the protection. Because of the
inherent complexity of natural wave trains and the interaction of incident
waves and the return flow of previous runup on a rough, porous slope, it is
difficult to predict the upper limit of wave uprush on riprap. This report
summarizes the most important results from two unpublished studies, and pre-
sents formulas to calculate the approximate limit of wave runup. Both studies
included laboratory tests of riprap exposed to irregular wave action. The
formulas can be used to compute the elevation to which protection needs to be
extended to prevent exceedance by runup or to estimate the potential severity

of wave overtopping.



PART II: SOURCES OF DATA, TEST SETUPS, AND
TEST CONDITIONS

3. The sources of data for this report came from model studies conducted
primarily for two US Army Corps of Engineer Districts, Detroit (NCE) and
Jacksonville (SAJ).

4, Model studies conducted for NCE were to investigate wave runup on
riprap-protected dredge disposal dikes in the Great Lakes. The scope of this
study was expanded to include an unusually wide range of water depths at the
toe of the structure dg , zero-moment wave heights Hp, , and period of peak

energy density of the incident wave spectrum T By expanding the scope of

D °
this study beyond the immediate problems occurring on the Great Lakes, the
opportunity to develop a general wave-runup prediction method was provided. A
summary of test conditions for both the NCE and SAJ studies is given in

Table 1, and data collected on both studies are tabulated in Appendix A.

Table 1

Summary of Test Conditions

Armor
Unit
Embankment ds Hmo Tp w50 Weighg Nug?er
Study Slope cm cm cm g g/cm Tests
NCE 1 on 2 11.9-38.5 4.9-17.5 1.02-4.74 189 2.65 4o
SAJ ton3 19.0-23.8 3.0-10.5 1.39-1.46 63.3-67.0 2.55 21
SAJ 1 on 4 19.0-23.8 3.2-10.3 1.39-1.49 56.9 2.55 8

5., A 1- on 2- (1 vertical:2 horizontal) structural slope was used in the
NCE study. Plywood roughened with glued on pea gravel was used as the sup-
porting slope and simulated the impermeable core of the dike. This slope was
covered with a filter layer of Sioux Quartzite 5.5 em thick. The range of
weight for this stone was from 6 to 41 g with a median weight of 18 g. Riprap
armor stone was placed by hand on top of the filter layer. Armor stones were
composed of Kimmswick Limestone with a range of weight from 144 to 233 g with
a median weight of 189 g. The armor layer was 10 cm thick. Figure 1 shows a
profile view of the model structure, and Figure 2 shows a plan view of the

test setup.
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6. The model was constructed at a nominal 1:16 (model:prototype) undis-
torted Froude scale. The influence of scale effects at this large a scale was
considered to be small. To further reduce the possibility of scale effects,
the stone used in the filter layer was double the size required for geometri-
cal similitude, Use of somewhat larger filter stones helps establish the
proper flow-regime in the model filter layer when the revetment is exposed to
wave action; see Broderick and Ahrens (1982). Large-sized filter stone and a
1:16 scale were used in both the NCE and the SAJ studies to minimize the in-
fluence of scale effects.

7. Tests for this study and the SAJ study were conducted in a 61-cm-wide
channel within the Coastal Engineering Research Center's (CERC's) 1.2- by 4.6-
by 42.7-m wave tank. Wave conditions were measured offshore by using three
parallel wire-resistance wave gages. Incident and reflected wave spectra were
resolved using the method of Goda and Suzuki (1976). Figure 2 shows a plan
view of the wave tank setup for this study. Details relating to spectral wave
generation and the analysis of wave conditions in this wave tank are given by
Seelig (1980).

8. Maximum wave runup elevations were obtained by visual observaticns
made by an experienced observer, and quantified by using a point gage. The
observer stood immediately adjacent to the structure in a wave absorber chan-
nel as shown in Figure 2. The duration of the runup observation was 256 sec,
corresponding to the data acquisition system's sampling interval for the wave
gages to obtain the wave information. The observer tried to measure the ex-
treme excursion of Y“green" water near the middle of the structure. Observa-
tions were not intended to measure the upper limit of spray or splash. Prior
to using visual observations, some effort had been expended in trying to use
various types of continucus wave gages positioned just above the armor sur-
face, but runup elevations that were measured by the wave gages proved to be
unreliable. After some initial observations and discussion, two experienced
observers could obtain maximum runup elevations to within about a difference
of 3 percent or less of each other. Additional information about the NCE
study is given in Ahrens and Seelig (1980).

9. The SAJ study was conducted to investigate the stability of and wave
runup on riprap to be used to protect Herbert Hoover Dike on Lake Okeechobee,
Florida. Two structural slopes were tested during this study, 1 on 4 and 1 on

3. Figure 3 shows a profile view of the 1-on-4 slope tested. Figure 4 shows
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the cut and fill strategy used to construct a 1-on-3, riprap-protected slope
on the embankment. Figure 5 shows a profile view of the 1-on-3 slope tested
and the location of the wave gages. Figure 6 shows a plan view of the test
setup.

10. Since the armor stone planned to protect the dike was marine lime-
stone to be quarried in Florida, this type of stone was used in the model
tests. This stone has a density of 2.55 g/cm3. The armor stone had a median
weight which ranged from about 57 to 67 g during the course of the study (see
Table 1). Filter stone had a median weight of about 12 g and a layer thick-
ness of 2.5 cm. Additional details relating to test procedures and setup are

given in Ahrens and Zirkle (1982).

WAVE
GAGES
) RIPRAP SECTION
STILL-WATER ELEVATION = 5.3 M

7ON 72SLOPE CONCRETE
___PLATFORM

LSRERERSELKK,

10.5

9.0

7.5
6.0

K

4.5 f

3.0

PROTOTYPE ELEVATION, M

48 36 24 12 ¢] 12 24 36 48 60
PROTOTYPE DISTANCE FROM TOE OF DIKE, M

Figure 5. Profile view of 1-on-3, riprap-protected slope
and offshore wave gages

WALL OF WAVE TANKN\k

TO WAVE
GENERATOR, 19.29m

STRUCTURE

WALL OF WAVE TANK-\\%

L ! 1 1 l 1 1 1 ] 1 ] ! | | | I
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
MODEL DISTANCE, M

€» DENOTES WAVE GAGE LOCATION

Figure 6. Plan view of SAJ test setup



PART III: ANALYSIS OF DATA AND DEVELOPMENT
OF RUNUP FORMULAS

11. The biggest difficulty with analyzing the data from the NCE study
was making accurate estimates of the zero-moment wave height H , at the toe
of the structure. In the NCE study the wave heights were measured offshore in
a water depth 25 cm greater than at the toe of the structure. Due to shoaling
and breaking, a wide range of offshore wave conditions can yield the same
zero-moment wave height in shallow water. Therefore, the offshore wave height
ig not as useful as the wave height at the toe of the riprap structure. The
wave conditions near the structure correlate well with the runup and often can
be estimated accurately by depth-limited considerations. Originally in the
NCE study the wave heights at the toe were estimated by using the method of
Goda (1975) which accounts for shoaling and breaking of irregular waves.
However, after scrutinizing the information generated by Goda's model, it was
observed that for some situations the method yielded values of Hj . /dg
greater than 0.8 which is higher than has been observed in any of CERC's wave
tank calibration tests. Because of this limitation, it was decided to try and
develop another method to estimate H at the toe of the structure.

12. Several methods were tested to account for the wave shoaling and
breaking between the offshore gages and the toe of the structure. The method
that worked best was a hybrid method which combined linear-wave shoaling with

the relation given by Hughes (1984) as

Mo Ao
= (1

(Lp>3/4 1 il (Lp)‘?’/“ O

where
Lp = Airy wave length calculated at those depths for the period of
peak energy density Tp
I and 0 = inshore and offshore water depths, respectively

From wave-tank calibration tests it has been found that the approximate

limiting value for the zero-moment wave height is given by

Hmo 2nds
-f-*“' = 0.10 tanh L (2)

p max p




where dg 1is the water depth at or near the structure toe. The procedure
used to calculate the zero-moment wave height at the toe of the structure was
to calculate the value by using both linear shoaling and Equation 1 and then
taking the average of the two estimates. If the average exceeded the maximum
value suggested by Equation 2, then that limiting value was used.

13. The ability of the above procedure to estimate H;, in shallow
water is demonstrated in Figure 7 using wave-tank calibration data collected
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Figure 7. Predicted versus observed H_ A for tank calibration data

prior to a study of wave overtopping of a seawall (Ahrens, Heimbaugh, and
Davidson 1986). This calibration data included a wide range of wave periods
and an extensive amount of wave shoaling and breaking for many conditions
between the offshore wave gages and an inshore gage located in front of a wave
absorber beach. For the calibration data shown in Figure 7, the offshore
water depth ranged from 61.9 to 66.2 cm; the inshore water depth ranged from
22.9 to 27.2 cm; the offshore Hyo ranged from 1.6 to 21.5 ecm; the inshore
H,o, ranged from 1.5 to 16.4 cm; and the period of peak energy density ranged
from 1.75 to 3.00 sec. The hybrid method given above appears to work well for

CERC calibration data because linear shoaling tends to overestimate inshore

10



H, while Equation 1 tends to underestimate inshore H , and Equation 2
provides a logical limiting value on H,, . Based on the success of the
hybrid model in predicting known data, the model was applied to the NCE study
to estimate Hp, at the toe of the structure. Subsequent analysis of pre-
dicted and observed maximum runup elevations suggests that the hybrid method
makes good estimates of H,, in shallow water.

14. The wide range of water depths tested in the NCE study had been
included partly to investigate the influence of water depth on wave runup.
This concern is strongly reflected in the discussion of wave runup in the

Shore Protection Manual (1984). From previous studies it was known that runup

would be strongly influenced by the surf condition on the structures (Ahrens
and McCartney 1975), but it also seemed logical that the maximum runup would
be dependent on the shape of the wave-height distribution and nonlinear

effects. The last two influences would be very dependent on the water depth
at the toe of the structure and the wave periods. To investigate the influ-
ence of surf characteristics on runup, the surf parameter for irregular waves

¢ is defined as

- tan 6 (3)

where

tan 6 = tangent of the angle 6 between the structure slope and
the horizontal

Ly = ng/Zn = the deep-water wave length
g = the acceleration of gravity

When a runup model was formulated using the surf parameter, it was found to
contain some systematic errors which could be related to the relative wave
height Hmo/ds . However, when a surf parameter was defined by using the
local wave length, a model could be formulated which did not include
systematic errors related to the relative wave height. The modified surf

parameter gL is defined

tan 6
ANV )

1"



|
i

the Airy wave length calculated by using the water depth at the toe
of the structure

Q.
[}

the period of peak energy density, Tp

Runup is computed using the formula

R
max _ as (5)
H 1.0 + bS
mo
where
Rmax = elevation of maximum wave runup
S = surf parameter defined by either Equation 3 or 4 depending on
the prediction method selected
a and b = dimensionless runup coefficients determined by regression

analysis

Equation 5 has a form which is especially convenient and logical for predict-
ing wave runup on rough porous slopes as shown by Ahrens and McCartney (1975),
and, subsequently, by Seelig (1980) and US Army Corps of Engineers (1985). For
the NCE data, using the modified surf parameter defined by Equation Y4, the
coefficients in Equation 5 were found to be a = 1.062 and b = 0.153 .

15. By using the coefficients given above, Equation 5 does a good job of
predicting R, ., for both the NCE and SAJ studies. Figure 8 shows the
predicted values of Rmax versus the observed values of Riax by using dif-
ferent symbols to identify the two studies. The good fit to the NCE data is
gratifying considering the problem related to estimating the Ho 2t the toe
of the structure. The good fit to the SAJ data is somewhat surprising consid-
ering that the thickness of the armor layer for the SAJ test was considerably
thinner than the armor layer used in the NCE tests. In addition, the struc-
tural slopes tested for SAJ were 1 on 3 and 1 on 4 compared with a slope of
1 on 2 for the NCE tests. These findings indicate that the maximum runup may
not be too sensitive to the armor-layer thickness, and that the surf parameter
properly accounts for differences in the structural slopes. It should also be
recalled that the runup coefficients were obtained from the NCE study so that
the SAJ data provide a rather severe test for the runup model's predictive
ability.

16. By lumping the data from the two studies together, somewhat better

12
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a and b runup coefficients can be determined. By using regression analysis
on the combined data set, the improved coefficients are a = 1.154 and
b = 0.202 . A new scatter plot comparing predicted and observed values was
prepared with the above coefficients, and Equation 5 was used to calculate the
predicted values of maximum runup. The new scatter plot (see Figure 9) shows
that the change in the runup coefficients caused very little change over the
scatter plot shown in Figure 8. Even though there was little change in the
scatter plot, the limiting value for R/HmO dropped from 6.9 to 5.7; the
limiting value for Equation 5 is given by the ratio of a to b .

17. To investigate systematic error in predicting the maximum runup and
to identify possible ways to improve the prediction method based on the modi-
fied surf parameter EL , & series of error plots was made. In these plots,

the percent error %E in predicting the maximum runup is defined as

13
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9E = (Rmax)pR“ (Rmax)o x 100 (6)
maxO

where the subscripts p and o indicate predicted and observed, respec-
tively. The percent error is plotted versus EL s £ ds/Lp s HmO/Lp ;
Hpo/dg o r(bar)/d5o , and II, and cot 6 in Figure 10a, b, ¢, d, e, £, g,
and h, respectively, where r 1is the average armor-layer thickness and 1II

is Goda's (1983) nonlinear parameter defined for irregular waves

L

_ D

1I = ; 55 (1)

tan h ( =
p

The larger the value of 1II , the more nonlinear the waves with

14
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Figure 10 shows little or no systematic error for the prediction method based
on Lp . Figure 10 also shows that the percent error ranges from -33 to
+U4Y4 percent, but that for most tests the error is within about %10 percent.

18. Approximately 25 percent of the tests had a percent error greater
than *10 percent. Because of this, it may be useful in some critical or life-
threatening situations to use a value of R;., greater than the expected
value produced by Equation 5 when using the recommended coefficients. Fig-
ure 11 shows how the percent error which has been normalized by the standard
deviation of the data set o seems to have the shape of a normal distribu-
tion. To test this hypothesis, namely, that the percent error has a normal
distribution, a Kolmogorov-Smirnov (K&S) test was performed. This test is
used to determine whether or not the data deviate a statistically significant
amount from the assumed normal distribution model (Cornell and Benjamin 1970).

19. The K&S test indicates that the normal distribution for error should
be accepted at the 20-percent significance level. A 20-percent level is a
more severe ecriterion than a 10-percent level as it indicates there is a
20-percent chance of rejecting a model which is in fact true, a Type I error.
The 20-percent significance level is the most severe criterion commonly tabu-
lated for the K&S tests. Recognizing that errors have a normal distribution
provides an easy way to give more conservative estimates of R, than is
provided by a regression equation. Generally, about half the errors are above
the regression curve and about half are below, so the curve represents a 50_
percent exceedance level., In Figure 12 a more conservative trend is shown
above the regression curve. The conservative curve was generated by increas-
ing the runup regression coefficient a by two standard deviations of the

percent error, i.e.,
a, (conservative a) = a (1 + 20) = 1.143 (1.0 + 2 x 0.1286) = 1.437

The value of the runup coefficient b remains the same, i.e., b = 0.202 .

15
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It can be seen in Figure 12 that the new conservative runup curve provides a
envelope for the observed data. The conservative curve would be expected to
exceed about 97.7 percent of the data. An exceedance level of 97.7 percent is
obtained from a standard normal distribution table for a value two standard
deviations greater than the mean. Figure 12 helps confirm the method of
choosing an envelope curve by showing only one observed value above the con-
servative curve. This is approximately what would be expected for a normal
distribution with a sample size of 69. Other curves used to predict maximum
runup could be constructed which would be more or less conservative than the
example just provided. The degree of conservatism would be evaluated on the
basis of the risk posed by waves overtopping the revetment.

20. Since the standard surf parameter has been frequently used to pre-
dict wave runup, it is useful to provide a prediction formula based on that
method to allow comparison to earlier studies. Using Equation 3 to define the
surf parameter in Equation 5, the runup coefficients were determined for the
combined NCE and SAJ data sets as a = 1.022 and b = 0.247 . Figure 13
shows the predicted and observed values of Rmax/Hmo versus the standard surf
parameter. It can be seen that the predicted values follow the trend of the

observed data very well., Using the same method to evaluate errors as was used
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PLUNGING REGION
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Figure 13. Comparison of the prediction of Ry, . using &
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for the Equation 4 model, it was found that there were no systematic errors
associated with the model which used the standard surf parameter. Figure 14
shows that the standarized percent errors for this model also seem to have a
normal distribution. Performing the K&S test once again showed that these
data were also normal at the 20-percent significance level and thus, could be
assumed to have a normal distribution. Figure 15 shows the more conservative
curve which could be expected to envelop 97.7 percent of the data and repre-
sents an increase of two standard deviations over the expected mean curve.

The coefficients for this conservative curve are a = 1.285 and b = 0.247 .
Once again, this curve is only one of many more conservative curves that could
be constructed depending upon the design situation. Using the runup coeffi-
cients with the standard surf parameter would be an easy way to estimate Rpax
using a small calculator., The more accurate model would require the calcula-
tion of Lp for use in the modified surf parameter which would be more
difficult than calculating the deep-water wave length for the standard surf

parameter.
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Figure 14, Normal distribution curve for & model data
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PART IV: SUMMARY

21. All the equations presented within this report were developed from
two unpublished laboratory studies. These equations provide an easy way to
calculate the Rmax of irregular waves on riprap-protected embankments.

Table 2 summarizes the important information about two runup equations which

Table 2

Summarized Information for Maximum Runup Formula, Equation 5

Surf o , Standard
Wave Parameter Deviation of
Formula Length Used in Runup Variance Percent
Category Used Equation 5 Coefficients Explained Error
Recommended Lp £ (Equation 4) a = 1.154 RS = 0.843 12.3
b = 0.202
Alternative L, £(Equation 3) a = 1.022 RZ = 0.817 12.9
b = 0.247

represent the most accurate existing method to determine the approximate upper
limit of wave uprush on a riprap revetment. The two equations are presented
as a recommended method and an alternate method to compute Rmax . The recom-
mended method has little or no systematic error such as might be associated
with the influence of water depth or nonlinear effects and is slightly more
accurate than the alternate method. The alternative method is easier to cal-
culate and can serve as a ''rule of thumb" estimate. In Table 2 the runup co-
efficients are to be used in the general runup equation (Equation 5) by using
either the standard or modified surf parameter as noted. A method was devel-
oped which provides a reasonable way to make the predicted values of Rmax
more conservative. It was found that the errors in predicting R, . have a
normal distribution, and this fact was used to adjust the runup coefficient

a so that any predetermined exceedance level for R,.. could be achieved.
For example, by increasing the coefficient a by two standard deviations of
the percent error gives R, ., predictions which would be expected to exceed
97.7 percent of the observed values of R . . This technique produces a

logical envelope for the data. Table 2 lists the standard deviation ¢ of

24



the percent error which was used in this method and the correlation squared

which is the variance explained by the regression equation used to predict

Rmax/Hmo y
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PART V: CONCLUSIONS AND RECOMMENDATIONS

22. Visual observations of the maximum runup of irregular waves on rip-
rap give reliable values of the maximum elevation of wave uprush. For the two
studies considered the time interval of observation was 256 sec. It is diffi-
cult for an observer to maintain adequate concentration on the runup process
for intervals longer than 256 sec. This interval provides between 100 and
250 runup events at the wave periods tested. Future tests will consider using
photogrametric methods to measure irregular wave runup on riprap to increase
the time interval of observation and to obtain the entire runup distribution
rather than just the maximum value.

23. The runup equations presented appear to be the best available to es-
timate the approximate upper limit of irregular wave uprush on riprap revet-
ments. Further tests are planned which should produce improved methods to
determine the runup characteristics of irregular waves on rough and porous

slopes.
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APPENDIX A

SUMMARY OF JACKSONVILLE AND DETROIT DISTRICT TEST CONDITIONS



Table A1

Summary of Jacksonville (SAJ) and Detroit District

(NCE) Test Conditions

offshore wave offshore inshore estisate inshore oftshore sedian  arsor  areor eedian filter typical typical

depth  period Heo depth  inshore wave strugture fronting arsor  umit layer weight stone filter dimensn. disensn.  areor

To dg Heo  length  Reax slope  slops  meigh weight thickness filter  unit layer  arsor filter r(bar)

study Test Lg cat cot 4se w ribar}  stone weight thickness stose  stone  over
design Ko, €2 sec te o8 ce 4] [{} theta  alpha qr grice*  ca qr griea*y B ca 8 458
Detroit L 36,981 2,753 S.877 11,981 4,943 294,871 11,392 288  15.88 167.88 2,65 18,88 10.88 2,43 5,38 4,13 1.89 2.42
Detroit 2 36981 1,533 6,797 11,981 4,394 159.919  9.392 2,89 15.88 187,88 .65 1088 10.88 2.45 5,58 413 1.89 2.42
Detroit 3 36,981 1,820 7.348 11981 5,496 18784 9,586 2.88  15.88  187.88 .65 10.88  18.89 2,85 5,58 4,13 1.89 2.42
Detroit 4 36,981 3821 18,218 11,98 7.544 418,311 24.483 2.88  15.68 187.B8 2,65 1088 18.88 2,68 5,58 4,13 1.89 2.42
Detroit 5 36.981 2.832 9.3% 11.90) 7,334 215,118 14,897 2.588 15.88  187.88 2.65 18.89 18.88 2,63 5.5 4.13 1.89 2.42
Detroit b 36.98% 1,604 13,171 11,981 7,282 176.742 28.483 2.88 15.80  187.88 2,65 18.89 18.88 2,43 5,58 4.13 1.8% 2.8
fetroit 745,588 3,282 5,259 26,588  5.B99 459.122 12.482 2.8 15,88 197.83 2,65 le.B8  18.88 2,65 5.98 4.13 1.8¢ 2.42
Petrodt 8 45.588 1,862 1.424  8.5%3 6,797 132,112 12192 2.8 15.8% 187,88 2,63 10.88 18.89 2,43 3.98 4.13 1.8% 2.42
Detroit 9 45,588 1,571 7.788  20.588  7.252 218,219 13,586 2.89  15.88 187.%8 2,65 1.8 18.88 2.8% 5.98 4.13 1.89 2,42
Detroit 18 45,508 1,954 9.858 78,588 8.444 207.888 17,793 2.88 15.68  187.83 2.6 18.69 18.08 2.6 5.98 4.13 1.89 2.42
Detrpit 11 45,588 3.587  9.8%6 28,583  9.504 491,389 20.388 2,88 15.89 187.88 2.65 18.80  18.88 2.69 5.58 4.13 1.89 2.42
Detroit 12 45,588  2.832 18.719 20.588 16,239 278.362 17.282 2,88 15,89 187.89 2.6 18.88  18.89 2,45 5.5¢ 413 1.89 2,82
Betroit 13 45,388 2,832 13.982 28.58% 12,279 278,362 22.498 2,88 15.88  197.89 2,65 1088 18.89 2,68 5.58 4.13 1.89 2,42
Datroit 18 45,588 1,684 15,777 20.588 11898 227.174  22.99% 2.88 15.88 187.88 7,63 10.88 18.68 2.6% 5,58 5.3 1.89 2.42
Detrait 15 93,381 3282 5747 28,581 5.581 S538.626  14.497 2.8 15.89 107,93 2,65 10.89  18.08 2,49 5,58 4,13 1.89 2,82
fetroit 16 583.98t 1,148 B.289 28,381 7.638 163.885 14,387 2.88 15.68 187.88 2.6% 18.68 18.88 2,835 5.58 4.13 1.89 2.42
fatrait 17 93,591 1,988 12.864 28,58 11.410 243.886 19.393 .88 15.88 187.88 .65 10.88  18.88 2.65 5,98 4.13 1.89 2.42
Detrait 18 53,581  1.948 15.884 20.58% 14,339 367.781 33.39% 2.8 15.88 187.88 2,65  10.88 18,08 2,43 5,58 4,13 1.89 2.42
Detroit 19 55.581  1.628  17.779 28,580  15.69! 251.BE2 26,194 2.88  15.88 187,88 2.5 10,89 10.88 2.68 5.59 &,13 1.89 2,42
Detrait 28 53.581 2,178 14,632 28,581 14.840 347.BSV  76.483 2.8 15.88 187.89 .65 18.88  18.88 2,63 5,58 8.13 1.89 2,42
Detrait 21 93,581 4781 12.687  28.5B1 12,389 785,372 38.994 2,88 15.89 187.89 2.65  18.88  18.88 2.63 5.58 4.13 1.89 2.42
fetroit 22 §3.981  3.288  18.737  20.581 18,428 524,679 26,994 2,88 15,48 197.89 2,65 16.88  1p.ea 2,68 5.58 4,13 1.89 2,42
etrait 23 58.299 3,122 5.926 33,299 5.753 558.935  19.998 288  15.68 167.88 2,65  10.83 18,88 2.65 5.58 4.13 1.89 2.42
Petrait 28 58.299 1.283 8,159 33.29¢ 7,649 191,863  13.482 2.68 15.88 187,83 2.63 18.89 18.88 2.63 5.58 4.13 1.89 2.42
Detroit 25 §8.299  1.533 10.331 33,299 9.779 256,939 17,697 288 15.89 197.88 .65 10.88 18,89 2,43 5,58 4.13 1.89 2.42
Datrait 2% 38.299 2,178 14,971 33.299 14,394 373,358 25.794 2.68 15.89 197,88 2835 18.88 18.688 2.43 5.58 4.13 1.89 2.42
Detroit 27 38.29% 1.626  18.419  33.299  17.486 267.762 39.808 2,88 15.68 197,88 2.6% 18.68 18.88 2.63 5.58 4.3 1.89 2.41
Detroit 28 58.299 3,281 9.765 33.299 9.486 572.888 2).794 2.88 15.89  187.83 2,63 18.68 18.83 2,65 3,38 4,13 1.89 2.42
Datroit 2% 58,299 4,780 15,573 33.299  15.28% 847.677 37.788 2,88 15.88  187.88 2,63 18.68 18.68 2.43 5.58 4.13 1.89 2.42
Detroit 38 58,299 2,989 11,881 33,299 18.742 S11.581 27.794 2.8 15.68 187.89 2,65 18.89 18.68 2,65 3.58 4.13 1,99 2.42
Jetroit 31 43.588 2.733 6.239 38,583 5,847 316,442 17,482 2.88 15.88  187.88 2,63 18.83 18.88 2.63 5.58 4.43 1.89 2.42
Detroit 37 63.588 1,249 9.226 38.5%8 8,794 292,286 19.282 2.88 13,68 187.89 263 1§.88 10.89 2,65 5.58 4,13 1.89 2.42
Datrait 33 43,588 1,515  8.388  30.588 7.883 268,949  13.58b 2.88 13.89 187.88 2.63 18.89 18.88 2.63 5.58 4.13 1.89 2.42
detrait 34 63,988 1.8t6 9.478 38,589 9.249 325.847 28.483 2.58 15.48 197.88 2,63 18.88 18.68 2.65 3,58 §.13 1.89 2.42
Detroit 35 63.588  1.986 12.986 38,588 12,281 259.852 22.899 2.98 1538 107.88 2.45  10.88  18.89 2,63 5.8 8,13 1.89 2.42
Detroit 36 43.588 4,781 14,381 38,588  14.851 918.83%F 33.989 2.88 15.88  187.88 2,865 18.88 18.68 2,63 5.98 4,13 1.89 2.82
Betreit 37 83,588 1.628 14,931 18,588 14,211 263.651 24,898 2.88 15.69 187,88 2,63 18.88 18.688 2.40% 5.58 4,13 1.89 2,42
Detroit 38 43.582 2.813 8.992  36.588 9.728 928.974 25.188 2.88 15.88 187.88 1.63 10.88 18.89 2.63 5.38 4.13 1.89 2.42
Detvoit 39 36.981 1.862 6,683 11,981 6.829 186,518  9.581 2.88 15.69 187,83 265 18.88 18.69 2.63 5.58 4.13 1.89 2.42
fetreit 49 3b.981 3,468 7.685  11.984 7,925 371.834 18.892 2.88 15.89  187.68 2,63 18.68 18,88 2,65 .58 4.13 1.89 2,42
S8 3 48,812 1.498 WA 23,812 7,544 219.089 9,681 4.88 HA 56,98 2.55 3.2 11.68 2.6 2,58 2.82 1.64 1,15
Sad 4 88,812 1.448 HA 23.812 5.806 282,698 5,585 4.88 HA 94,99 .33 3.28 11,48 2,43 2,58 2.82 1.64 1.13
Shd 9 48.812 1.428 BA 23812 5,153 199.788  9.98s 4,08 WA 56,98 2,55 3,28 11.68 2.65 2,59 2.82 1.64 JIRH]
Shd g 48.812 1.488 My 23,812 3,181 288.888 5.984 4,69 HA 56,98 .53 3.24 11.69 2.63 2,58 2.82 1,48 1.4%
SAd 18 44.958 1.398 HA 19,859 18,268 177.88% 18.497 4,88 WA 55,98 2,35 3.39 11.68 2.6% 2,58 2.82 1.64 1.28
SAJ 11 44.838 1.428 A 19.85% 9,438 101.469 12.304 4.89 A 36,98 2,38 3.32 11.68 2.43 2.58 2.82 .64 1.8
SAY 12 84,858 1.428 HA o 19.838  B.119 1Bi.B88  4.592 4,08 HR 56,98 2.55 343 11.68 2,69 2.5 2.82 1,68 1.1
A3 13 44,858 |.478 HA 19,888 5.99) 189.488 V.21 4,98 WA 56,98 2.55 3.09 1168 2.6% 2.5 2.82 1.64 1.18
589 25 48,812 1.458 WA 23,812 §.725 294.783  13.58 3.88 KA 5688 2,55 4.45 11,48 2.43 2.58 2.96 1,64 1.81
SAJ 26 W.812 1.468 A 23.812 5,48 283.988 9.792 3.89 MR 56.88 2,88 4,14 [1.68 2,63 2,58 2,96 1.08 1.40
Sl 748812 1428 HA 23,812 3.143 199,768 V.86 u.e8 HA 6689 255 AL 1148 .65 238 2% L.48 1.3¢
A3 38 48.812 1,428 HA 23,812 6.88f 198.v88 13.282 3.88 A b5.80 2.3 .84 11,58 2,44 2,38 2.9 1,64 137
A3 31 48,858 1418 WA 19.858 19,302 100,368 12.786 3.88 HA  64.88 2,55 348 11.48 2.43 2,58 2,94 1,64 1,87
SAJ 32 43,899 1.398 NA - 19.859 9.639 177.48%3 11.881 3.08 HA O 44.88 2,33 3.6 11,68 2,63 2,58 2.98 1.64 1.88
SAd 33 44,858 1.468 WA 19,858 8,325 186.088 13.392 3.08 KA 6488 2.3 3.14 11.68 2,63 2.58 2.94 1.64 1.87
SAd 4 43,83 1,418 KA 19.859 6,218 188.388  9.481 3.8% WA 54,83 2,35 288 11,08 2,69 1.58 2.9% 1,54 8,97
SAd 35 44,838 1.468 BA 19,858 2,991 185.888  5.481 3.88 HA 54,88 2.55 3.7 11,68 2,45 2,58 2,94 1.64 1,88
Shl 36 43.8%9 1.398 HA O 19.858 18,516 177.788  13.297 3.88 NA - 5488 2,55 3.2t 11,69 2,65 2.58 2.94 1.4 1.89
SAd 37 43.858 1,428 44 19.858 9.544 181.889 12.882 3.08 "R 64,88 2,533 3.88 11.68 2.63 2.59 2.9% 1.64 1.82
SAd 38 44,858  1.480 NA 19,838 B.192 176,180 11,497 3.08 HA 54,08 2,59 3.2 1168 2.5 2,58 2.94 1.4 1,86
SAJ i3 48,812 1.468 WA 23,812 8,668 207.188 13.584 3.08 A 44,58 2,35 2,87 11,68 2,63 2.58 2.94 1,64 8.9t
SAJ 44 48,012 1.448 HA  23.812 6,496 282.488  18.881 3.69 A 64,58 2,53 2,43 11,48 2.65 2.5¢ 2.9% 1.64 8.98
SAd 45 48.812 1,448 NA - 23.812 3,124 283.888  6.89% 3.88 HA 44,58 2.3% 2.54 11.68 2,65 2.58 2.94 1.64 8.86
SAJ 46 44,838 1,448 NA o 19.858 18,346 185.488 12.992 3.88 HA 53,38 2.5% 3.88 t1.68 2.6 2.38 2.92 1.64 1.86
SAJ 47 44,658 1,468 N 19.858 9.481 107.488 12,392 3.89 R 63.38 2,93 2.94 11.68 2,65 2,98 2.92 1.64 1.8t
SAd 48 44,858 1.488 HA  19.958 9.145 179.688 1i.68 3.88 KA 83,3 2.3 2.74 11.68 2,463 2.58 2,92 1.6% 8.94
SAd 49 44,858 1,448 KA 19.95% 6,138 194.388  8.192 3.88 HA  83.38 2.33 2,38 11,68 2.6% 2,98 2.92 1.64 8.87
Sad 58 44,858 1,438 HA 19,838 4.618 182.888  7.296 3.8 HA  63.38 2.53 ) 11.48 2,63 2.58 2.92 1.64 8.93






