

COASTAL ENGINEERING STUDIES IN SUPPORT OF VIRGINIA BEACH, VIRGINIA, BEACH EROSION CONTROL AND HURRICANE PROTECTION PROJECT

Report 1

PHYSICAL MODEL TESTS OF IRREGULAR WAVE OVERTOPPING AND PRESSURE MEASUREMENTS

by

Martha S. Heimbaugh, Peter J. Grace, John P. Ahrens D. Donald Davidson

Coastal Engineering Research Center

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631

March 1988 Report 1 of a Series

Approved For Public Release; Distribution Unlimited

Prepared for US Army Engineer District, Norfolk Norfolk, Virginia 23510-1096 Under Intra-Army Order No. AD-86-3018 The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188 Exp. Date Jun 30, 1986	
1a. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE MARKINGS			
Unclassified					
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT			
2b. DECLASSIFICATION/DOWNGRADING SCHEDU		Approved for public release; distribution unlimited.			
4. PERFORMING ORGANIZATION REPORT NUMB	ER(S)	5. MONITORING (ORGANIZATION RI	EPORT NU	JMBER(S)
Technical Report CERC-88-1					
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	ONITORING ORGAI	VIZATION	
USAEWES, Coastal Engineering	(п аррпсаые)				
Research Center 6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit	v State and 71P	Code)	
		70. ADDINESS (CR.	y, State, and En	.oue/	
PO Box 631					
Vicksburg, MS 39180-0631					
8a. NAME OF FUNDING / SPONSORING ORGANIZATION TIG A	8b. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IDE	NTIFICAT	ION NUMBER
US Army	(If applicable)	Intra-Arm	y Order No.	AD-86-	-3018
Engineer District, Norfolk 8c. ADDRESS (City, State, and ZIP Code)		1	10. SOURCE OF FUNDING NUMBERS		
		PROGRAM	PROJECT	TASK	WORK UNIT
803 Front Street Norfolk, VA 23510-1096		ELEMENT NO.	NO.	NO.	ACCESSION NO
11. TITLE (Include Security Classification) Co	astal Engineeri	no Studios i	Cuppost of	- Winei	inja Pasah
Virginia, Beach Erosion Control	and Hurricane	Protection Pi	roject: Repo	· ATIRI	Physical Model
Tests of Irregular Wave Overton	ping and Pressu	re Measuremen	its	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	inysical nodel
12. PERSONAL AUTHOR(\$)					
Heimbaugh, Martha S.; Grace, Pe	ter J.; Ahrens,	John P.; Day	vidson, D. E	onald	
13a. TYPE OF REPORT 13b. TIME C		14. DATE OF REPO		Day) 15.	
Final report FROM 16. SUPPLEMENTARY NOTATION	TO	March 1988	3		138
Available from National Technic	al Information	Sarviaa 528	5 Down Down 1	Pond	Controff old
VA 22161.	ar imormation	bervice, J20	7 TOIL ROYAL	. Koau,	obininginera,
17. COSATI CODES	18. SUBJECT TERMS (Continue on reverse	e if necessary and	identify	by block number)
FIELD GROUP SUB-GROUP Irregular waves Seawalls Wave pressu			Wave pressures		
	Physical models Virginia Beach				
10 ARSTRACT (Continue of the continue of the c	Riprap ber		ze overtoppi	ng	
19. ABSTRACT (Continue on reverse if necessary	and identify by block n	number)			
A two-dimensional (2-D) physical model investigation was conducted at scales of 1:13					
and 1:19 (model to prototype) to provide input for the design optimization of a seawall					
proposed for long-term storm protection at Virginia Beach, Virginia. This was one of a					
number of tasks conducted in support of the detailed design of a beach erosion control and hurricane protection project at Virginia Beach. The 2-D tests were conducted to acquire					
data on the expected rate of overtopping for two design storm types (hurricane and north-					
easter) at selected still-water levels, determine a stable stone size for a proposed					
fronting riprap berm, and to determine the distribution of wave-induced pressures on the					
face of the seawall.					
As a result of the 2-D tests, a stable stone size was determined for the proposed					
fronting berm, and overtopping rates were measured. An improved seawall design was					
(Continued)					
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT ☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS ☐ Unclassified					
22a. NAME OF RESPONSIBLE INDIVIDUAL	RPT. DTIC USERS	22b. TELEPHONE (II	Total Control of the company of the Control of the	22c. OF	FICE SYMBOL
DD FORM 1473, 84 MAR 83 AF	'R edition may be used un All other editions are ob		SECURITY (LASSIFICA	ATION OF THIS PAGE

PREFACE

The US Army Engineer District, Norfolk (CENAO), requested the US Army Engineer Waterways Experiment Station's (CEWES's) Coastal Engineering Research Center (CERC) to conduct physical model studies to determine overtopping rates and wave-induced pressures on a seawall proposed for construction at Virginia Beach, Virginia. This is the first of three reports that describe tasks conducted in support of the Virginia Beach, Virginia, Beach Erosion Control and Hurricane Protection Project. Funding authorizations by CENAO were granted in accordance with Intra-Army Order No. AD-86-3018.

Physical model tests were conducted at CERC under general direction of Dr. James R. Houston, Chief, CERC; Mr. Charles C. Calhoun, Jr., Assistant Chief, CERC; Mr. C. Eugene Chatham, Chief, Wave Dynamics Division; and Mr. D. Donald Davidson, Wave Research Branch (CW-R). Tests were conducted by Messrs. Cornelius Lewis, Sr., Engineering Technician, John M. Heggins, Computer Technician, and Lonnie L. Friar, Electronics Technician, under the supervision of Ms. Martha S. Heimbaugh, Civil Engineer, and Mr. P. J. Grace, Hydraulic Engineer, CW-R. Mr. Kenneth W. Hassenflug, Computer Specialist, CW-R, was responsible for software development throughout execution of the pressure tests and during subsequent data analysis efforts. This report was prepared by Ms. Heimbaugh and Messrs. Grace, Davidson, and John P. Ahrens, Oceanographer, CW-R. Report editing was performed by Ms. Shirley A. J. Hanshaw, Information Products Division, Information Technology Laboratory, CEWES.

Throughout the course of this study liaison was maintained with Ms. Joan Pope, CERC's overall Project Manager, and CENAO representatives: Messrs. David Pezza, Project Manager, Owen Reece, Hydraulic Engineer, and Steve Geusik, Structural Engineer. The contributions of these individuals, and all other involved CENAO personnel, are acknowledged with thanks for their assistance in the investigation.

Commander and Director of CEWES during the investigation and the preparation and publication of this report was COL Dwayne G. Lee, CE. Technical Director was Dr. Robert W. Whalin.

CONTENTS

	Page
PREFACE	1
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT	3
PART I: INTRODUCTION	4
Study BackgroundSite Background Purpose of the Model Study	4 5 8
PART II: THE MODEL	10
Scale Selection	10 10 12 14
PART III: WAVE OVERTOPPING INVESTIGATION	16
Testing Procedures	16 16 18 23 26
PART IV: WAVE-INDUCED PRESSURES INVESTIGATION	28
Testing Procedure	29 30 30 33 34
PART V: CONCLUSIONS	37
REFERENCES	40
PHOTOS 1-2	
PLATES 1-63	
APPENDIX A: OVERTOPPING TEST RESULTS	A1
APPENDIX B: COMPARISON OF SEAWALL PERFORMANCE AND BEACH EROSION EFFECTS	В1
APPENDIX C: WAVE SETUP AND SEICHE EFFECTS	C1
Wave Setup	C1 C1
APPENDIX D: WAVE PRESSURE TEST RESULTS	D1
APPENDIX F. NOTATION	F1

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply By		To Obtain		
cubic feet per second per foot	0.09290	cubic metres per second per foot		
feet	0.3048	metres		
inches	2.540	centimetres		
miles	1.6093	kilometres		
pounds (force) per square inch	6.894757	kilopascals		
pounds (mass)	0.4535924	kilograms		
pounds (mass) per cubic foot	16.01846	cubic metre		

COASTAL ENGINEERING STUDIES IN SUPPORT OF VIRGINIA BEACH, VIRGINIA BEACH EROSION CONTROL AND HURRICANE PROTECTION PROJECT

Report 1

Physical Model Tests of Irregular Wave Overtopping and Pressure Measurements

PART I: INTRODUCTION

Study Background

- 1. This report is the first of a series of three reports on coastal engineering studies conducted by the US Army Engineer Waterways Experiment Station's (CEWES's) Coastal Engineering Research Center (CERC) to assist the US Army Engineer District, Norfolk (CENAO), in the Advanced Engineering and Design of the Virginia Beach, Virginia, Beach Erosion Control and Hurricane Protection Project. The other two reports concern overtopping hydrograph design and beach and dune design. The coastal studies were divided into two major sections: seawall design (i.e., the physical model overtopping and wave-induced pressure measurements and analysis of overtopping for design events) and beach and dune design evaluation (i.e., numerical simulation of profile response to short-term design events and design of beach fill for long-term stability and maintenance). Figure 1 presents a flowchart of the coastal engineering studies.
- 2. Selection of design waves, storm surge hydrographs, and runupovertopping rates was crucial to development of the most hydraulically efficient seawall geometry and definition of short-term beach stability. Coastal
 engineering studies consisted of selecting design storms from the historical
 record, simulating the wave field for each of these storms, establishing design surge hydrographs, developing a two-dimensional (2-D) hydrographic model
 to measure overtopping rates and test wave-induced pressure loadings, computing an overtopping hydrograph adjusted for all prototype parameters, numerically simulating beach and dune response to design events, developing a design
 and construction beach profile for long-term adjustment, and establishing a
 beach maintenance plan.

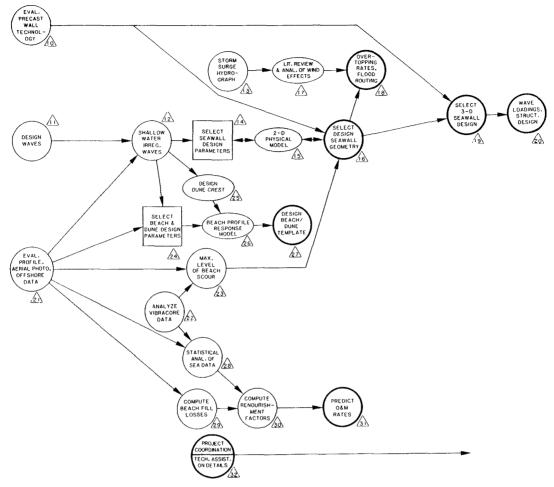


Figure 1. Flowchart for coastal engineering studies, Virginia Beach, Virginia

Site Background

3. The proposed Virginia Beach, Virginia, Beach Erosion Control and Hurricane Protection Project is one of the largest and most complex coastal projects of this type in recent Corps of Engineers experience. The City of Virginia Beach is located on the east coast of the United States just south of the entrance to Chesapeake Bay (Figure 2). The project area consists of 6 miles* of heavily developed commercial and urban shoreline which extends north from Rudee Inlet to 89th Street (Figure 3**). This shoreline is subject

^{*} A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3.

^{**} All elevations (el) cited herein are in feet as referenced to National Geodetic Vertical Datum (NGVD).

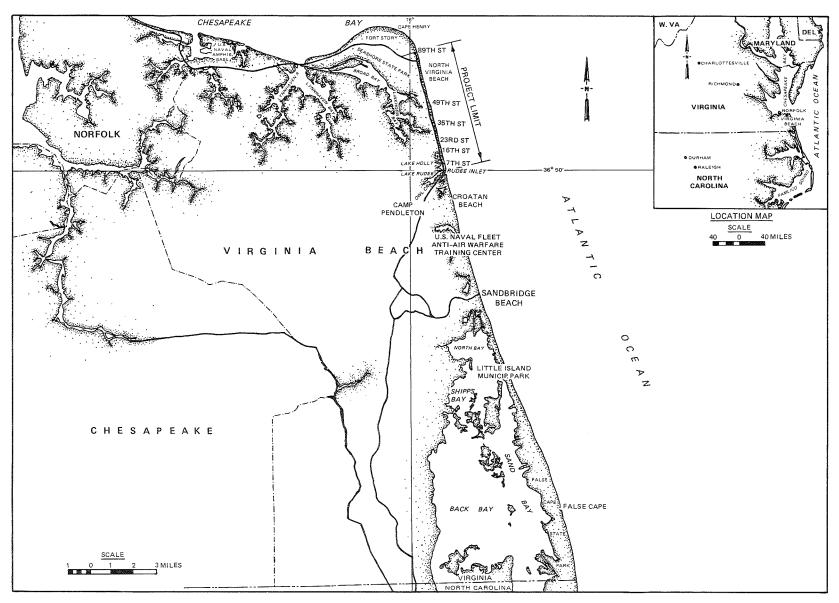


Figure 2. Location map of study site

Figure 3. Project reach, Rudee Inlet to 89th Street

to severe damages from hurricanes and extreme extratropical storms (locally called northeasters). The August 1933 hurricane and the March 1962 extratropical storm (the Ash Wednesday storm) devastated this coastal area. Storm damages included loss of the beach, destruction of the bulkhead and seawall system, damage to buildings, and inshore flooding. In addition, there has been a continuing problem with beach erosion. Since 1962 annual harbor dredging of Rudee Inlet and pumping operations to bypass the sand at Rudee Inlet, and/or the trucking in of sand from other sources, has been sponsored by the Federal, state, and city governments to maintain a beach width of approximately 100 ft and a crest el of +5.4 ft.

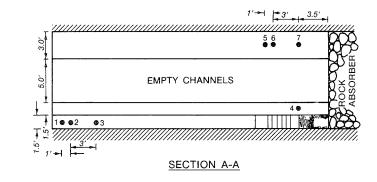
- 4. Existing protection consists of a combination of various bulkheads with crest els between 10 and 12 ft NGVD and nourished beach. In 1970 CENAO completed a feasibility study which recommended construction of a sheet-pile seawall with a concrete cap at el 15 and heavy stone at the base. By 1983, results of the previous study had been reevaluated and incorporated into an initial (Phase I) seawall design and beach erosion control concept. The seawall was designed with guidance from the Shore Protection Manual (SPM) (1984) which is based primarily on monochromatic wave theory. Adequate storm protection was to be provided by the seawall without sacrificing aesthetics of the ocean view.
- 5. The proposed project seawall has a crest el of 15.7 ft NGVD and will extend from Rudee Inlet north to 57th Street. Beyond this point, a dune and beach system will occupy the area from 57th Street north to 89th Street. The recommended plan also calls for a 100-ft wide berm at el +5.4 ft NGVD from Rudee Inlet to 89th Street (Figure 3). When built, the seawall project should provide 54-year flood protection to the community (CENAO 1984).

Purpose of the Model Study

6. This model study was conducted to determine the adequacy of the proposed seawall design and, if necessary, to investigate the effectiveness of design modifications. The physical model study was one of a series of tasks conducted by CERC to aid in the design of the detailed Beach Erosion Control and Hurricane Protection Project for Virginia Beach. The specific purposes of this 2-D physical model study were to:

- <u>a.</u> Determine the expected rate of overtopping for two design storm types (hurricane and northeaster) at four selected still-water levels (swl's).
- \underline{b} . Recommend any changes in the geometry of the seawall which might decrease the overtopping rate.
- c. Determine a stable stone size for the proposed fronting riprap.
- d. Evaluate the distribution of wave-induced pressures on the face of the seawall to aid in final design of the wall and foundation.

PART II: THE MODEL


Scale Selection

7. During this model study, time constraints dictated that construction of the physical model be carried out prior to determination of ultimate test conditions (by CERC's Coastal Oceanography Branch). Under these conditions a model to prototype scale of 1:13 was chosen based on calculations indicating that any smaller scale would introduce scale effects into the secondary task of optimizing a stable fronting riprap design; therefore, Phase I seawall overtopping tests were performed at the 1:13 scale. However, after the design test conditions were eventually chosen, it was found that at a scale of 1:13 only 60 percent of the design deepwater zero moment wave height H_{mo} * could be consistently achieved at the wave board for all representative swl's. At this time it was believed that overtopping was controlled by the inshore conditions. Because visual and measured observations indicated maximum wave heights and H_{mo} values were being maintained, tests were continued at this scale. After changes in the geometry of the seawall had been recommended, however, the decision was made to implement a smaller model scale of 1:19 to achieve 100 percent of the design H_{mo} at the wave board in deep water. Also at this point, a stable riprap size had been determined; therefore, all Phase II testing was performed at a model scale of 1:19. (In this report, Phase II implies that geometric modifications to the seawall had been incorporated.) Pressure tests conducted for the Phase II seawall were conducted at the 1:19 scale.

Equipment and Facilities

8. All tests were conducted in a concrete wave flume 11 ft wide and 250 ft long. The cross section of the tank in the vicinity of the structure was partitioned into two 3-ft-wide channels and two 2.5-ft-wide wave-absorbing channels (Figure 4). Irregular waves were generated by a hydraulically actuated piston-driven wave board. The seawall test sections were installed in the flume approximately 200 ft from the wave board.

^{*} For convenience, symbols and abbreviations are listed in the Notation (Appendix E).

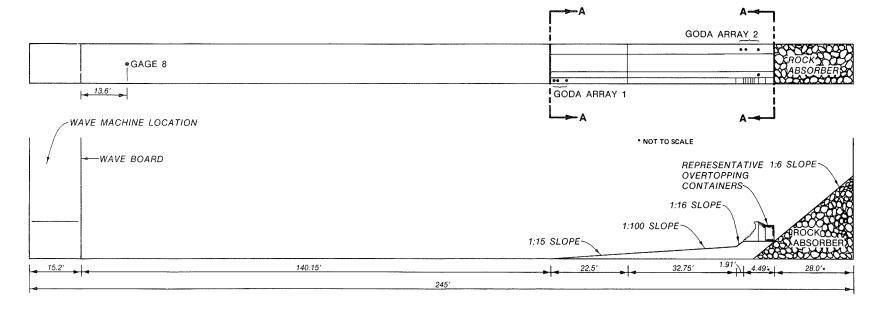
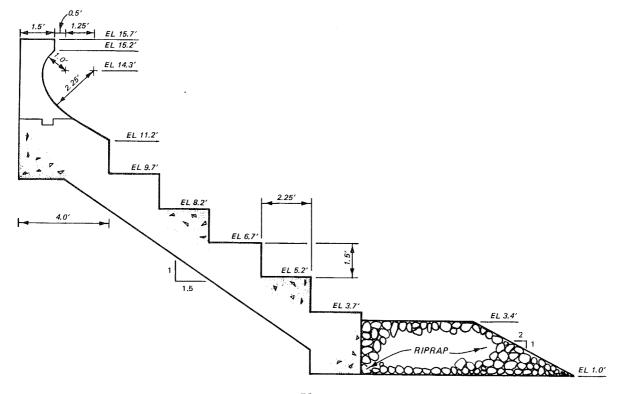
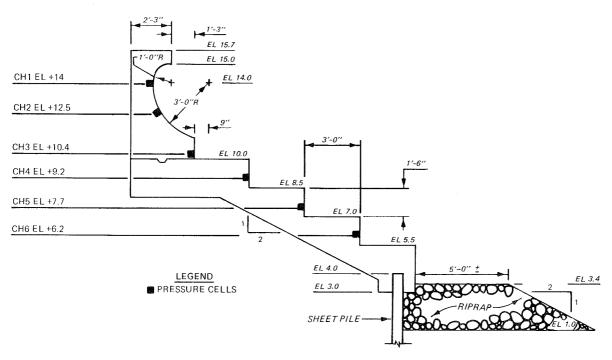



Figure 4. Tank bathymetry and gage arrangement


9. Wave data were collected on eight electrical resistance wave gages. Wave pressures were measured with miniature semiconductor pressure transducers, each equipped with a silicon diaphragm and a four-arm strain gage bridge. Simultaneous pressure measurements were made at six different locations along the face of the seawall (Figure 5). Wave signal generation and data acquisition were controlled using a DEC MicroVAX I computer. Wave and pressure data analysis were accomplished using primarily a DEC VAX 11/750.

Test Conditions

- 10. Test conditions were determined based on historical storm records for the Virginia Beach area from 1928 to present. Selection of these conditions involved numerical modeling of three hurricanes and three northeasters which were chosen as the most severe storms in the historical record (Lillycrop, Pope, and Abel, in preparation). Portions of the wave hindcast data came from the Sea State Engineering and Analysis System (SEAS). The remainder were obtained from existing Wave Information Studies (WIS). After a data base was established, all wind wave computations were made using the WIS discrete spectral wave transformation model. This procedure used three hurricane storms and three northeaster storms which were considered representative of the worst storms on record. From these six storms, the most significant of each type was chosen to be represented in the physical model. The test storms were, specifically, the hurricane of August 1933 and the northeaster of March 1962. These are the most severe storms of record for Virginia Beach, and they were generated using TMA spectra, which are analytical spectra representing the depth and frequency transformations of a deep-water wave moving into shallow water (Hughes 1984 and Lillycrop, Pope, and Abel, in preparation). A description of the design deepwater wave conditions reproduced in the tank is provided in Table 1 for the zero-moment wave height H_{mo} , wave period T_{p} , and three spectral shape parameters $\,\gamma$, $\,\sigma_{\mbox{\scriptsize lo}}$, and $\,\sigma_{\mbox{\scriptsize hi}}$. Swl's were chosen to bracket historical storm surge elevations, and those selected for testing were +6.0 ft, +7.0 ft, +8.0 ft (project design water level), and +9.5 NGVD.
- 11. The wave machine was calibrated by generating monochromatic waves of differing heights and periods while measuring these waves at various gage locations in the tank. In the same manner, spot checks of the TMA spectra

a. Phase I

b. Phase II

Figure 5. Profile view of seawall

Table 1
Design Wave Conditions

Storm Type	TMA Spectral Parameters				
	H , ft	T , sec	<u> </u>	⁰ 10	σ _{hi}
Hurricane	15.81	13.7	1.1	0.0001	0.90
Northeaster	13.60	15.4	3.4	0.1300	0.15

were made to verify that the required spectra were being reproduced in the wave tank at the wave board.

Model Construction

- 12. Model seawalls for overtopping tests were constructed by covering a 1.5-ft-wide marine plywood frame with sheet metal. For the pressure tests, an additional 8-in.-wide center section was machined from aluminum block to accommodate the six pressure transducers. Profile views of the Phase I and Phase II seawalls are shown in Figures 5a and 5b, respectively. Locations of the pressure transducers are also shown in Figure 5b.
- 13. Figure 4 shows a plan and profile view of the tank bathymetry, gage locations, overtopping basins, etc. Overtopping rates were determined by measuring the change in water levels in two containers located behind the seawall.
- 14. During testing of the Phase I seawall, stability of a proposed fronting stone riprap revetment was investigated. Sizing of the model stone was accomplished using the following transference equation:

$$\frac{\binom{W_a}{m}}{\binom{W_a}{p}} = \frac{\binom{\gamma_a}{m}}{\binom{\gamma_a}{p}} \binom{\binom{L_m}{L_p}}{\binom{L_m}{p}}^3 \left[\frac{\binom{S_a}{p} - 1}{\binom{S_a}{m} - 1} \right]^3$$

where

 W_a = weight of an individual stone, 1b

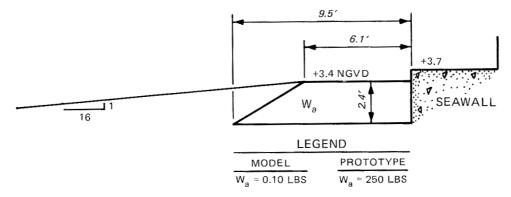
m,p = model and prototype quantities, respectively

 γ_a = specific weight of an individual stone, pcf

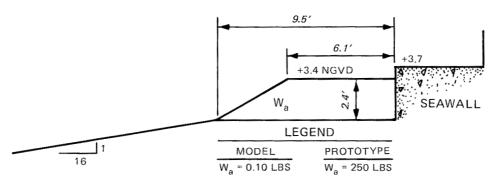
 $\frac{L}{m} = 1 \text{ inear scale of the model}$

 S_a = specific gravity of an individual stone relative to the water in which it was placed, i.e. $S_a = \gamma_a/\gamma_w$

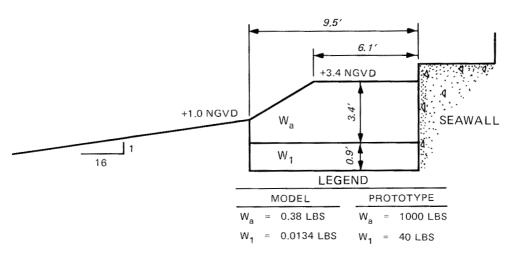
 $\gamma_{\rm W}$ = specific weight of water, pcf


PART III: WAVE OVERTOPPING INVESTIGATION

Testing Procedures


- 15. A typical test run for collecting wave overtopping rates took place as follows. Wave gages were calibrated at the beginning of each day of testing. The proper signal generation file was loaded into the data acquisition program, and a percent gain was selected. (Percent gain varies the wave height H_{mo} at the wave board without changing the peak period T_{p} or phasing.) Initial water level readings in the two overtopping containers were recorded, and generation of the wave field was begun. During the following 30 min of testing, water from the lower overtopping container was pumped into the upper container, quantified, and released back into the flume as necessary. This procedure minimized the effect that removal of overtopped water might have on swl and wave conditions. When a test was completed, final water level readings were taken, and the water surface in the flume was allowed to still before another test run was started.
- 16. The wave gages acquired data at 20 samples per second and, for the majority of test runs, wave data and overtopping measurement were collected throughout the entire 30-min run. For the range of conditions tested, the zero-moment wave height H_{mo} near the structure varied from about 3.5 to 6.0 ft, and the peak period T_{p} near the structure varied from about 10.0 to 20.0 sec (see Appendixes A and B).
- 17. Stability of the toe armor stone was observed during each over-topping test condition at each of the swl's. Results of the stability tests and overtopping quantities were recorded by an experienced technician, and selected events were documented by still photography and video footage.

Riprap Stability


18. In an attempt to control overtopping by restricting the scour depth that influences overtopping, a riprap fronting berm was proposed for the Phase I seawall design at the initiation of the model. The initial proposal by CENAO dictated determination of overtopping rates and stability of riprap toe at the +3.4 NGVD elevation which would have left the riprap unexposed to wave attack (Figure 6a). To adequately determine berm stability, it was

a. Unexposed riprap toe as originally proposed

b. Exposed riprap toe as tested

c. Stable riprap toe as determined by model tests
Figure 6. Riprap toe as proposed and tested

recommended that the toe stone be exposed to wave attack; therefore, the wall was tested with a fronting slope intersecting the toe of the riprap at +1.0 NGVD (Figure 6b).

- 19. Initially, a berm with a median stone weight of 250 1b (Figure 5b) was tested and found to be unstable (Photo 1). Based on Goda's stability theory (Goda 1985 and Tanimoto 1982) and engineering judgment, a 1,000-1b median stone weight (Figure 6c) was selected for testing. Stability of this berm was acceptable for all test conditions (Photo 2).
- 20. Observations made during the tests suggested that the fronting riprap toe reduced wave overtopping, especially at swl's of +7.0 ft and less. This conclusion is based on the observed energy dissipation as waves propagated over the berm at the lower swl's. A quantitative description of the influence of the fronting riprap on overtopping rates at low water levels is difficult; however, it is apparent that at sw1's of +8.0 ft and above the fronting riprap caused little reduction of overtopping rates at the seawall. To accomplish a significant decrease in the overtopping rates, the berm width would have to be increased considerably before its dissipating effect on the long-period storm waves which were tested would be noticeable. Nevertheless, presence of the 10-ft-wide fronting berm could be advantageous in other respects. The riprap may help minimize undermining at the toe of the structure and could help to reduce erosion of the beach adjacent to the structure by absorption of incident wave energy. Since the Virginia Beach seawall was designed with a steel sheet-pile cutoff wall to prevent undermining of the structure, inclusion of a fronting riprap berm may not be necessary.

Analysis of Overtopping Parameters and Trends

21. The dimensionless relative freeboard parameter which consolidates the data into a single trend was first developed and used for the Roughans Point seawall/revetment study for US Army Engineer Division, New England (Ahrens and Heimbaugh 1986). The relative freeboard parameter is defined as follows:

$$F' = \frac{F}{\left(H_{\text{mo}}^2 L_{\text{p}}\right)^{1/3}} \tag{1}$$

where

- F = average freeboard, or that distance between the crest of the seawall and the local mean water level
- H_{mo} = zero-moment wave height measured at Goda Array 2 (wave gages 5, 6, and 7) and assumed to be representative of the H_{mo} at the toe of the structure
- L = significant wave length associated with peak period T measured p at Goda Array 2 and computed using Hunt's method (Hunt 1979)

The relative freeboard parameter F' can be thought of as the ratio of free-board to severity of local wave climate. As wave climate becomes more severe, F' becomes smaller until a point is reached when the wall is being inundated with waves such that the energy dissipation through wave/structure interaction is insignificant. To establish data trends for the Phase I and Phase II seawalls, the relative freeboard parameter was plotted versus the measured overtopping rate Q in cubic feet per second per foot (cfs/ft) of seawall.

22. The Phase I and Phase II tests were limited to a relatively narrow band of wave conditions because only two peak periods, and corresponding maximum wave heights, were specified in the selected design events. To better establish data trends and cover a wider range of possible storm conditions, wave heights of the wave board were varied for the two specific wave periods at each of the selected swl's (see Appendix A). Figures 7 and 8 show that as the percent gain of the design wave height at the wave board was increased, the wave energy of the spectrum, or $H_{\overline{mo}}$, measured at Goda Array 2, approached an approximate limiting value (Hughes 1984). This theoretical approximate limiting value of $H_{\overline{mo}}$ is controlled by the water depth and is calculated by

$$H_{mo} = B h \tag{2}$$

where B is dependent on the fronting beach slope and typically ranges from 0.55 to 0.65, and h is the water depth. A value of B = 0.6 is suggested for a typical beach slope and was used along with the water depth and associated setup to plot the limiting value lines seen in Figures 7 and 8. These plots indicate that the maximum amount of energy for a particular water depth was reached at the higher percent gains.

23. The Phase I seawall (Figure 5a) was initially tested for hurricane and northeaster storm events, as previously described, for swl's of +6.0 ft,

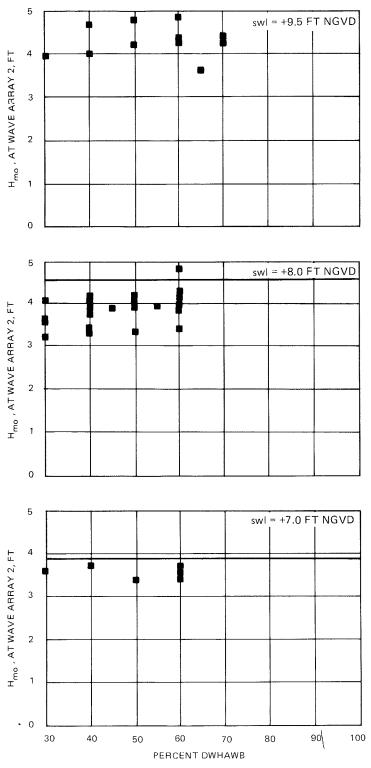


Figure 7. H vs percent gain for Phase I seawall at swl's of +9.5, 8.0, and 7.0 ft NGVD (DWHAWB = design wave height at the wave board)

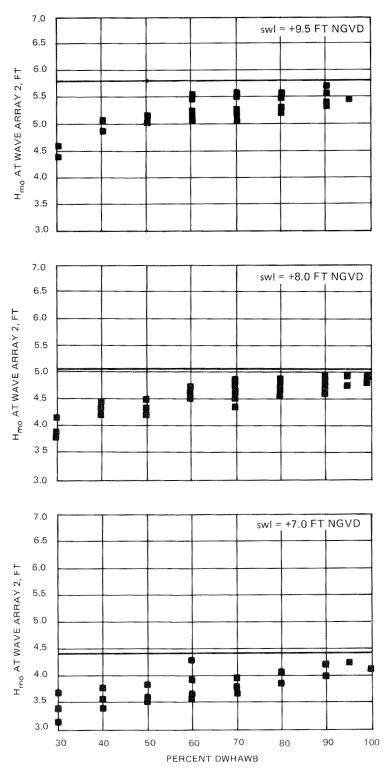


Figure 8. H_{mo} vs percent gain for Phase II seawall at swl's of +9.5, +9.0, and +7.0 NGVD

+8.0 ft, and +9.5 ft. Since no significant overtopping occurred at +6.0 ft swl, the minimum water level was raised to +7.0 ft NGVD. A data plot of Q versus F' showing results of the Phase I seawall tests is presented in Figure 9. Detailed test data are tabulated in Appendix A, Table Al. The data presented in Figure 9 show a definite trend which can be defined by the following general equation:

$$Q = Q_o \exp (C_1 F')$$
 (3)

where

Q = overtopping rate, cfs/ft

Q = regression coefficient, cfs/ft

 C_1 = dimensionless regression coefficient

F' = dimensionless relative freeboard parameter

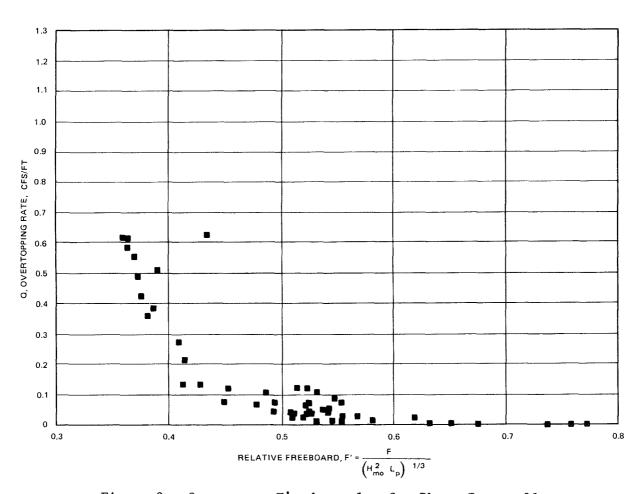


Figure 9. Q versus F' data plot for Phase I seawall

This general equation not only includes the incident wave height and period, water depth, and seawall freeboard but also provides a means for comparing seawall performance and predicting percent differences in the overtopping rates for various beach erosion levels in front of the structure. Such comparisons will be made later in this report.

- 24. CENAO indicated that the overtopping rates measured for the Phase I seawall were not satisfactory and requested suggestions of how the overtopping could be reduced. Suggestions considered were to: (a) increase the crest elevation of the wall, (b) place a large revetment in front of the wall, and (c) change the geometry of the seawall). Item (a) was believed to be the most promising but was rejected by CENAO because of local community objections. Placement of a large revetment in front of the wall was deemed impractical and uneconomical; thus, it was recommended that the geometry be changed by adding a lip, or extension, to the recurved portion of the seawall. This alternative was agreeable with CENAO, and a modified seawall geometry developed by CENAO, Phase II seawall, was constructed for testing.
- 25. The Phase II seawall (Figure 5b) was tested using hurricane and northeaster storm events for swl's of +7.0, +8.0, and +9.5 ft NGVD. All data generated from the Phase II seawall tests (including data from wave heights of 30 to 100 percent of DWHAWB are presented in Figure 10 and tabulated in Table A2 (Appendix A). Similar to the Phase I seawall test results, these data fit the general trend of Equation 3. Since there was some question whether the prototype overtopping rates for the design events should be based on all the data generated in the Phase II tests (wave heights of 30 to 100 percent DWHAWB) or with only the 100 percent DWHAWB data, a Q versus F' plot of only the 100 percent DWHAWB data for Phase II seawall is presented in Figure 11. This plot contains fewer data points because of the limited number of design events, but the data trend characteristic of Equation 3 is assumed.

Seawall Comparisons

26. To compare the performance of the Phase I and Phase II seawalls, Equation 3 was used. An explanation of Equation 3 and a tabulation of calculated values are presented in Appendix B. Specific comparisons of the percent decrease in Q for hurricane conditions at the three swl's tested are given in Table 2. Since only wave heights up to 70 percent of the DWHAWB at

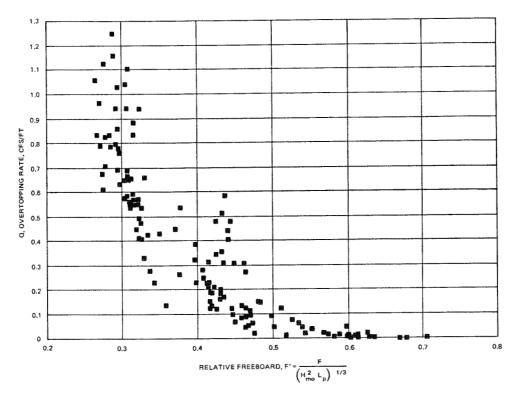


Figure 10. Q versus F' data plot for Phase II seawall

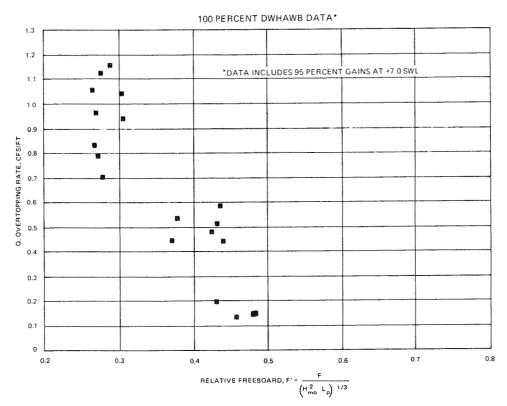


Figure 11. Q versus F^{\dagger} plot using only maximum data point (100 percent gains) for Phase II seawall

Table 2
Phase I Seawall Compared to Phase II Seawall for Hurricane Conditions

swl ft	Percent Decrease in Q Phase I vs Phase II 30 to 70%	Percent Decrease in Phase I vs Phase II 100%
<u>ft</u> +9.5	43	18
+8.0	48	24
+7.0	54	31

the +9.5 swl and up to 60 percent for all lower swl's could be reproduced in the Phase I seawall tests, relative performance of the Phase II seawall (where wave heights up to 100 percent DWHAWB were reproduced) presented in Table 2 is given first based on 30 to 70 percent data and finally on all data. Based on these comparisons, it can be seen that the seawall geometry changes made from Phase I seawall to Phase II reduced the overtopping rate between 18 and 54 percent depending on the conditions compared. Table 2 also shows that as the swl increased geometry modifications had a smaller effect on reducing the overtopping rate. This occurrence was expected since, as the water level was increased, the waves became larger and began to inundate the wall more often. In short, changes in seawall geometry are less effective at higher swl's.

- 27. As mentioned earlier, the decision to lower the beach elevation in model tests from +3.4 to +1.0 ft NGVD to test stability of the fronting riprap also affected overtopping rates. For instance, a small change in the depth at the structure toe d_s can significantly affect the magnitude of Q. By lowering the beach elevation, d_s is increased, and this increase in turn affects the local wave length L_p used in Equation 1. Also, as the water depth near the structure becomes deeper, a larger wave can be supported. Thus, as d_s increases, d_s increase, and d_s increase, causing the relative freeboard parameter d_s to decrease. As can be seen in Figures 9 and 10, as d_s increases, the overtopping rate d_s increases exponentially. Therefore, by decreasing the beach elevation from d_s to d_s to d_s increased. Overtopping rates for the d_s increased elevation were estimated as explained in the following paragraphs.
- 28. The relative freeboard versus Q plot was used to predict overtopping rates for extrapolated values of $d_{\rm g}$ and/or F provided the

projected $d_{\rm e}$ and F were similar to those tested. There was, however, some question whether the effects of beach erosion should be calculated based on a Q versus F' plot with all the measured data (30 to 100 percent <code>DWHAWB</code>) or based only on the 100 percent DWHAWB measured data. This question was resolved by choosing the more conservative (100 percent DWHAWB) data plot (Figure 11) to calculate the effects of beach erosion for the design storm event where erosion potential is greatest. The method for calculating changes in overtopping rates for the maximum H_{mo} that can exist at each swl is explained, and the respective beach erosion elevations are tabulated in Appendix B. The percent difference and the percent decrease in overtopping rates between the data trend for the Phase II seawall at the ± 1.0 NGVD beach erosion elevation and the projected trend for the same wall at a +3.4 NGVD beach erosion elevation for hurricane conditions at the three swl's tested are given in Table 3. These numbers are based on Figure 11 where only those data collected at 100 percent DWHAWB were used. The percent difference values in Table 3 were used to predict the change in overtopping for the surge hydrographs (Lillycrop, Pope, and Abel, in preparation).

Table 3

Overtopping Comparisons Using Hurricane Conditions at the +1.0- and +3.4-ft NGVD Beach Elevations

swl, ft	Percent Difference*	Percent Decrease**
+9.5	46	54
+8.0	22	78
+7.0	9	91

^{*} Percent difference in Q for data at +1-ft NGVD beach elevation and projected values at +3.4-ft NGVD beach elevation.

Wave Setup and Seiche in the Wave Tank

29. In almost all wave tank tests, there can exist local wave setup and seiche. Both of these phenomena can occur in the prototype, but their amplitude and overall effects may not be the same as in model tests; thus, it is important that they be identified and, to the best extent possible, accounted

^{**} Percent decrease in Q for beach elevation at +3.4-ft NGVD versus +1.0-ft NGVD. Percents are based on Q values calculated in Table B3 (Appendix B) using only the 100 percent DWHAWB data points.

for in the model. Wave setup is the superelevation of the water surface over normal swl elevations and is due to wave breaking which causes radiation stresses to develop. Seiche is a long-period oscillation which can occur in an enclosed body of water and, in the case of wave tanks, depends mostly on tank length and geometry.

30. It was determined that both wave setup and seiche existed in varying degrees during the Virginia Beach tests. Measured values of wave setup and calculated values of the seiche are reported in the tabulated data (Appendix A). A detailed discussion of wave setup and seiche effects is given in Appendix C. The effects of wave setup were directly accounted for in the model and thus were considered in any subsequent prediction calculations. The main effect of the seiche was that it increased scatter in the data. This was not thought to influence the overall data trend; thus its effect was not included in the data analysis.

- 31. After completion of the overtopping study, wave pressure tests were performed using the Phase II seawall geometry (model scale 1:19). The purpose of these tests was to obtain pressure data necessary to determine wave-induced forces and moments to which the wall would be subjected under certain storm conditions. Ultimately, this information will be used in the completion of a seawall and foundation design which can withstand expected wave forces and ensure stability against overturning and/or sliding.
- 32. Wave pressures were measured using miniature semiconductor pressure transducers, each equipped with a silicon diaphragm and a 4-arm strain gage bridge. Pressure measurements were calibrated and recorded using a DEC Micro-VAX I computer. Typical time-histories of measured wave pressures (Figure 12) indicate that as a wave approaches and strikes the face of the seawall, in many cases, it causes an initial shock pressure of large magnitude and short duration immediately followed by a secondary (or surge) pressure of lesser magnitude and longer duration. Based on experiments conducted with a vertical

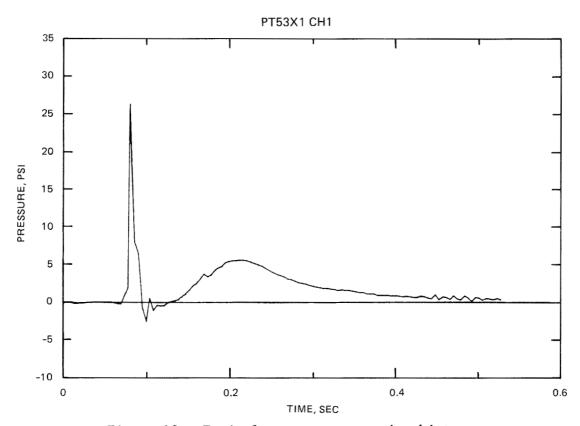


Figure 12. Typical wave pressure time-history

wall, Bagnold (1939) theorized that the short duration shock pressures result from the rapid compression of an air pocket trapped between the face of a breaking wave and the wall. In the past, this phenomenon has been studied by several investigators (Minikin 1946; Carr 1954; Kamel 1968a, 1968b; Garcia 1968; Kirkgoz 1982). However, there is still debate concerning the relative importance of these shock pressures to the actual design of a seawall. A common opinion among many designers is that pressures of such short duration should not be used for establishing design loadings; thus, it is their opinion that the lesser surge pressures of longer duration are more suitable indicators of critical dynamic loadings.

Testing Procedure

33. For the purpose of this study, shock and surge pressures were measured in response to waves characteristic of the same two storms used in the overtopping study. These storms were simulated at swl's of +7.0, +8.0, and +9.5 ft NGVD. Signal generations and resulting zero-moment wave heights were accomplished with gains set at 50 and 100 percent. Test conditions to which the wall was subjected are summarized in Table Dl (Appendix D). Because of limited data storage capacity of the computer facilities used for data acquisition, the duration of each test was dictated by the particular sampling rate at which pressures were measured. As stated above, durations of shock pressures are characteristically quite short (in the range of prototype milliseconds); therefore, to acquire a definitive record of these portions of the pressure response, a high sampling rate was imperative. Tests were initiated using a 2,000-Hz sampling rate which, due to data storage capabilities, limited the actual data acquisition interval to approximately 30 sec. Therefore, with a 2,000-Hz sampling rate, pressure data in response to roughly seven to nine waves in sequence could be obtained. Analyses of these first runs indicated that the 2,000-Hz sampling rate resulted in good resolution of most maximum pressures; however, since the duration of individual tests was so limited (30 sec), a series of tests using various slower sampling rates was undertaken. These tests indicated that an acceptable resolution of most shock pressures could be achieved at a 1,000-Hz sampling rate, thereby increasing the allowable length of each test to 60 sec. Table D1 shows that 16 tests were executed with an 80-Hz sampling rate. These tests were conducted to

allow continuous data acquisition for an entire 30-min run, yielding a more comprehensive time-history of the overall pressure response at the expense of clear resolution of shock pressures.

Overall Results

34. The primary objective of this evaluation of wave-induced pressures was to identify the magnitudes and durations of both the shock and surge pressures on a particular wall geometry. CENAO guidance stipulated that the most important product of this effort would be a series of representative pressure profiles describing some of the more severe conditions encountered. The importance of identifying the occurrence of significant negative pressures was also stressed. In conjunction with these objectives, the presentation of results is concentrated primarily on representative design conditions. Subjection of the seawall to spectral wave conditions resulted in the collection of many less severe but more interesting pressure time-histories; however, detailed analysis of these records is not documented herein. Maximum values recorded on each gage for all runs are listed in Table D2 (Appendix D).

Shock Pressures

- 35. For each combination of storm, swl, and percent gain, an initial 30-min run (simulating a 2.18-hr prototype) was performed during which the wave train was closely observed and times of occurrence were recorded for the more severe waves (in terms of impact on the seawall). These observations allowed scheduling of 1-min sampling intervals to coincide with the most probable times when maximum pressures would occur.
- 36. Generally speaking, a 1-min test (simulating a 4.36-min prototype) of a severe condition would provide three to four waves which induced distinct shock pressure records. Most magnitudes of these most severe pressures were in the 20- to 60-psi (prototype) range, although on two occasions pressures as high as 117 psi were recorded. (Throughout the remainder of this text, all values of pressure magnitudes and durations presented will correspond to prototype.) Durations of the most severe shock pressures also varied but to a much lesser extent. Pressures of 15 psi and more were normally characterized by durations of less than 0.020 sec. Durations of the highest pressures

(above 60 psi) were less than 0.010 sec in duration.

37. A typical shock pressure time-history is presented in Figure 13. This particular record was collected on Channel 1 (see Figure 5b) during simulation of the hurricane at a +9.5-ft swl. The peak value measured 105 psi with a duration of approximately 0.038 sec above 10 psi.

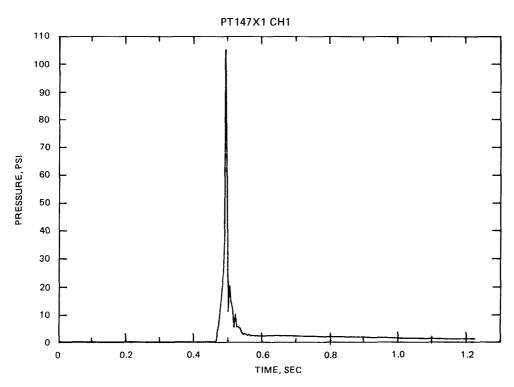


Figure 13. Time-history depicting typical shock pressure

- 38. At sw1's of +8.0 and +9.5 ft NGVD, maximum pressures consistently occurred at Channel 1 which was located near the vertex of the wall curvature. High pressures also were common on the face of the highest step (Channel 3) at these sw1's. At the +7.0-ft sw1, maximum pressures occurred on the faces of the lower steps (Channels 4, 5, and 6). It is interesting that at no time during data collection did the pressure on Channel 2 exceed 14 psi. Maximum pressures at this location on the wall never displayed characteristics of shock pressures. Instead, they were typified by a well-rounded, relatively small peak of long duration (Figure 14).
- 39. Plates 1-63 were prepared to provide designers with adequate information concerning pressure profiles in response to severe wave conditions. For each location of a pressure transducer, records containing the five greatest pressures encountered were retrieved and analyzed in greater detail. Six

Figure 14. Typical maximum pressure record for Channel 2

profiles exist for each of these records. These six instantaneous profiles represent the six points in that particular record when a maximum value was occurring on one of the transducers. For example, Plates 1, 2, and 3 depict the six points in time when maximums were occurring during Test 45 (NE, swl = +9.5, 50 percent gain). The plot labeled PT45 MAX CH2 is an instantaneous pressure profile at the point in time during Test 45 when the highest pressure on Channel 2 was monitored. All other profile plates are labeled accordingly. The pressure distributions indicate that maximum pressures at different wall elevations rarely occur simultaneously, especially in the case of a nonvertical wall such as the stepped wall studied here, on which some wave energy is dissipated through turbulence. Notably, the profiles often depict surge pressures on channels other than the one experiencing a maximum. For example, profiles labeled PTXXX MAX CHl represent the instant in time when the wave has reached the last instrumented point on the face of the seawall. Therefore, impact loads on the more seaward transducers occurred earlier, if at all, and longer duration surge pressures are actually being measured at that point. It should also be noted that the negative pressures indicated on Plates 4 and 5 resulted from a mistaken zero offset before the test was performed.

Surge or Secondary Pressures

40. Results of this study indicate that although surge pressure magnitudes were very consistent (at about 5 to 10 psi for the more extreme conditions) the durations could be quite variable. This phenomenon is primarily related to defining surge pressures, and the variation corresponds to expected results since simple observation of the wall when subjected to spectral wave conditions reveals that the mass of water on a particular wall location varies a great deal throughout a series of waves. However, the most typical surge pressure durations were in the 2.0- to 3.0-sec range (Figure 15). These most

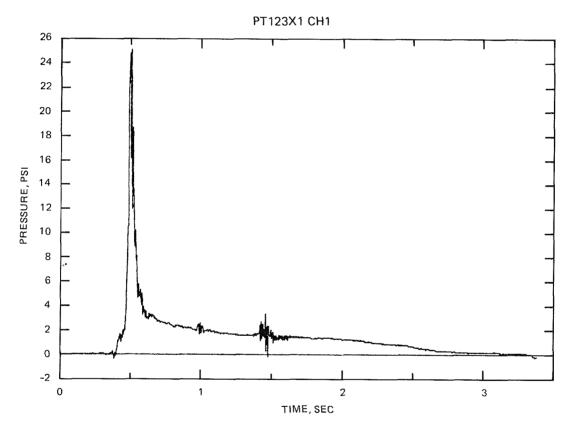


Figure 15. Time-history showing typical surge pressure

distinct surge pressures, in all cases, were recorded immediately after a significant shock pressure. Since little variation actually existed in the profile distributions of the surge pressures, numerous plots of this type were not included. A typical surge pressure profile measured during the northeaster at a +8 ft swl is shown in Figure 16.

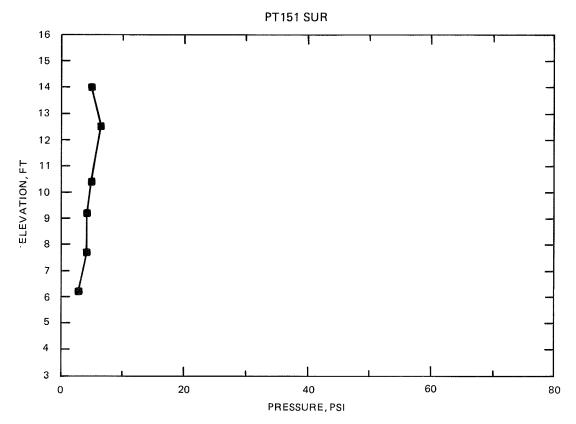


Figure 16. Typical instantaneous profile of surge pressures

Negative Pressures

- 41. As stated previously, CENAO personnel had expressed an interest in identifying significant negative pressures experienced during testing. Primary interest was related to whether wave runup or drawdown could induce negative pressures small enough to warrant inclusion in the procedure for calculating design uplift forces.
- 42. A cursory analysis of the data indicated that significant negative pressures may have been recorded. Ten records included measured pressures with values less than -20 psi. However, closer inspection of these records indicated that the small negative pressure durations were less than 1 msec. Also, in most cases the minimum negative pressures occurred within milliseconds of a maximum shock pressure. Such events are shown in Figures 17 and 18. Due to extremely small durations characteristic of these events, these records were not evaluated in further detail; therefore, at this time an explanation of these occurrences is incomplete. In all cases, these events

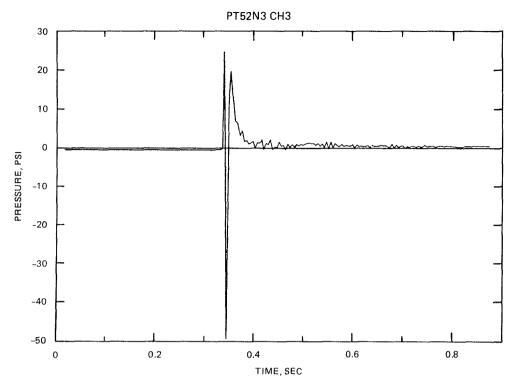


Figure 17. Record depicting minimum negative pressure, Channel 3

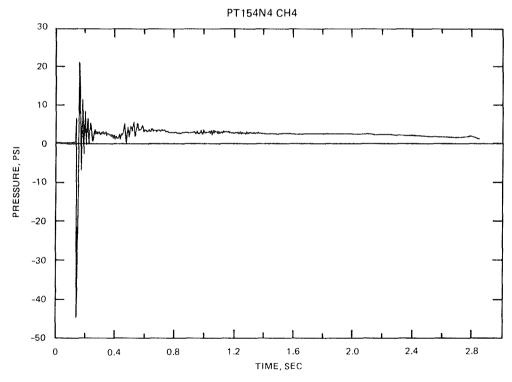


Figure 18. Record depicting minimum negative pressure, $\mbox{Channel 4}$

occurred at the lowest three transducer locations during events with a high swl. It is suspected that this may be a characteristic of turbulence and air entrainment occurring at the base of each seawall step. Analysis of all other data files failed to identify the occurrence of significant negative pressures.

PART V: CONCLUSIONS

- 43. Based on the 2-D physical model test results reported herein, it was concluded that:
 - a. Regarding wave overtopping and berm stability tests for the storm conditions to which the structures were subjected:
 - (1) The berm design characterized by stone weights of 250 lb was not acceptable in terms of stability of the riprap structure.
 - (2) The berm design using 1,000-lb stones was acceptable.
 - (3) Visual assessment indicated that the riprap toe played an important role in reducing overtopping at swl's of +7.0 ft or less and a lesser role at the +8.0- and +9.5-ft swl's.
 - (4) Overtopping rates measured with the Phase II seawall geometry in place were less than corresponding rates measured with the Phase I design.
 - (5) Overtopping rates observed with a +1.0-ft beach elevation can be expected to decrease by as much as 78 percent for a hurricane event at a +8.0-ft swl with a beach elevation of +3.4 ft.
 - (6) Much of the data scatter in the overtopping results seems to be caused by the occurrence of seiche in the wave flume.
 - b. Regarding wave pressure testing:
 - (1) Shock pressures as great as 117 psi were recorded; however, durations of pressures greater than 15 psi were typically less than 0.020 sec.
 - (2) At swl's of +8.0 and +9.5 ft, maximum pressures consistently occurred at the vertex of the wall curvature. Highest pressures were also common on the face of the topmost step at these swl's.
 - (3) At the +7.0-ft swl, maximum pressures occurred on the faces of the lowest three steps.
 - (4) Secondary pressure magnitudes were relatively consistent at approximately 5 to 10 psi. Durations of significant secondary pressures ranged from 2.0 to 3.0 sec.
 - (5) No significant durations of negative pressures were recorded. Design calculations for uplift pressures on the Phase II seawall may be performed neglecting any contribution due to wave runup or recession.
- 44. Relative to wave overtopping, results of this model study indicate that the Phase II seawall geometry is a more effective design of the two alternatives tested. At the +8.0-ft swl, overtopping rates measured during

Phase II testing were 24 to 48 percent less than corresponding rates measured with the Phase I seawall in place.

- 45. At the higher water levels of +8.0 and +9.5 ft, the riprap fronting berm appeared visually to have less influence on the reduction of overtopping rates; however, general observations with and without the berm in place indicated that the structure did reduce overtopping at the +7.0-ft swl. Without further tests it is hard to say how much the overtopping rates would be affected, without the berm in place, at the higher water levels. Also, the presence of the berm could help to reduce beach scour at the seawall by helping to dissipate incident/reflected wave energy. Tests indicated that 1,000-lb stone were of adequate size to ensure berm stability under the storm conditions tested.
- 46. Wave setup and seiches did occur in the wave flume, and these phenomena were considered during data analysis. The seiche influence was responsible for much of the scatter evident in the presentations of the overtopping data. This influence was not great enough to affect overall data trends.
- 47. Results of the pressure tests indicate that wave pressures in excess of 100 psi can be experienced on the seawall under severe wave conditions; however, these pressures in excess of 15 psi characteristically have durations of less than 20 msec. The question remains—at what duration can a designer confidently establish a threshold above which pressure magnitudes are considered of serious importance? Presently, the answer is a matter of personal opinion. Some individuals (Carr 1954, Cole 1972, Garcia 1968, and Ross 1953) who have investigated this problem feel that the lesser secondary pressures of longer duration are more critical for designer purposes. These particular tests identified secondary pressures with magnitudes of approximately 5 to 10 psi and durations in the range of 2.0 to 3.0 sec.
- 48. Although the geometry of the seawall prevented installation of a vertical transducer in the extreme upper curvature of the wall, the area did not appear to be subjected to large pressures. Visual assessment of the testing indicated that this was not an area where wave energy was being concentrated. Similar tests performed on the Cape Hatteras Lighthouse seawall indicated that this was an area of concern due to the pressure magnitudes measured on the overhang (Grace and Carver 1985). However, that particular design incorporated a 2-ft extension to the original overhang. In comparison, the lack

of wave energy concentration in this area on the Virginia Beach seawall is due to the milder curvature and relatively small overhang.

REFERENCES

- Ahrens, J. P., and Heimbaugh, M. S. In preparation. "Approximate Upper Limit of Irregular Wave Runup on Riprap," Technical Report, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Ahrens, J. P., Heimbaugh, M. S., and Davidson, D. D. 1986 (Sep). "Irregular Wave Overtopping of Seawall/Revetment Configurations, Roughans Point, Massachusetts," Technical Report CERC-86-7, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Bagnold, R. A. 1939. "Interim Report on Wave-Pressure Research," <u>Journal</u>, Institution of Civil Engineers, Vol 12, No. 7, pp 202-226.
- Carr, J. H. 1954 (Nov). "Breaking Wave Forces on Plane Barriers," Hydrology Laboratory, California Institute of Technology, Report No. E-11.3, Pasadena, Calif.
- Cole, A. L. 1972 (Jul). "Analysis of Lake Erie Wave Pressure Data," US Army Engineer District, Detroit, Lake Survey Contract No. DACW 35-70-C0015, Detroit, Mich.
- Garcia, W. J. 1968 (Sep). "An Experimental Study of Breaking Wave Pressures," Research Report H-68-1, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Goda, Y. 1985. <u>Random Seas and Design of Maritime Structures</u>, University of Tokyo Press, Japan.
- Grace, P. J., and Carver, R. D. 1985. "Seawall and Revetment Stability Study, Cape Hatteras Lighthouse, North Carolina," Technical Report CERC-85-12, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Hughes, S. A. 1984 (Dec). "The TMA Shallow-Water Spectrum Description and Applications," Technical Report CERC-84-7, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Hunt, J. N. 1979. "Direct Solution of Wave Dispersion Equation," Journal of the Waterways, Port, Coastal and Ocean Division, American Society of Civil Engineers, No. WW4, pp 457-459.
- Kamel, A. M. 1968a. "Shock Pressures Caused by Waves Breaking Against Coastal Structures," Research Report H-68-2, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- . 1968b. "Water Wave Pressures on Seawalls and Breakwaters," Research Report 2-10, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Kirkgoz, M. S. 1982. "Shock Pressure of Breaking Waves on Vertical Walls," Journal of Waterway, Port, Coastal, and Ocean Engineering, American Society of Civil Engineers, Vol 108, No. WW1, pp 81-95.
- Lillycrop, W. J., Pope, J., and Abel, C. E. In preparation. "Coastal Engineering Studies in Support of Virginia Beach, Virginia, Beach Erosion Control and Hurricane Protection Project; Report 2: Seawall Overtopping Evaluation," Technical Report, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.

- Minikin, R. R. 1946. "Pressure of Breaking Waves," The Dock and Harbour Authority, Vol 26, pp 262-266.
- Ross, C. W. 1953. "Shock Pressure of Breaking Waves," <u>Proceedings, Fourth Conference on Coastal Engineering</u>, American Society of Civil Engineers, pp 323-332.
- Seelig, W. N., and Ahrens, J. P. 1980 (Jun). "Estimating Nearshore Conditions for Irregular Waves," Technical Paper No. 80-3, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Shore Protection Manual. 1984. 4th ed. 2 vols, US Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, US Government Printing Office, Washington, DC.
- Tanimoto, Katsutoshi; Yagyu, Tadahiko, and Goda, Yoshimi. 1982. "Irregular Wave Tests for Composite Breakwater Foundations," Coastal Engineering Proceedings, Vol 3, pp 2144-2163.
- US Army Engineer District, Norfolk. 1983 (Nov) (Revised Jun 1984). "Main Report and Supporting Documentation, Phase 1-GDM and Supplemental EIS, Beach Erosion Control and Hurricane Protection," Norfolk, Va.

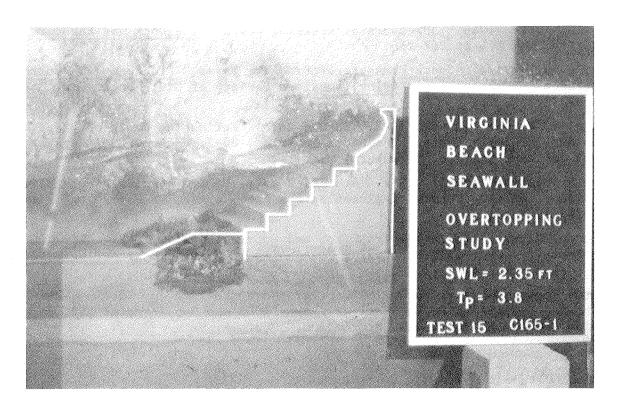
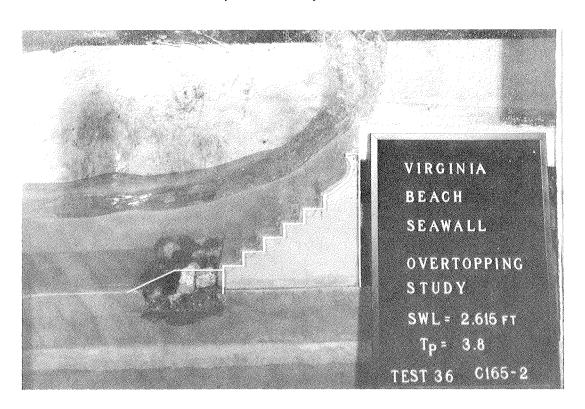
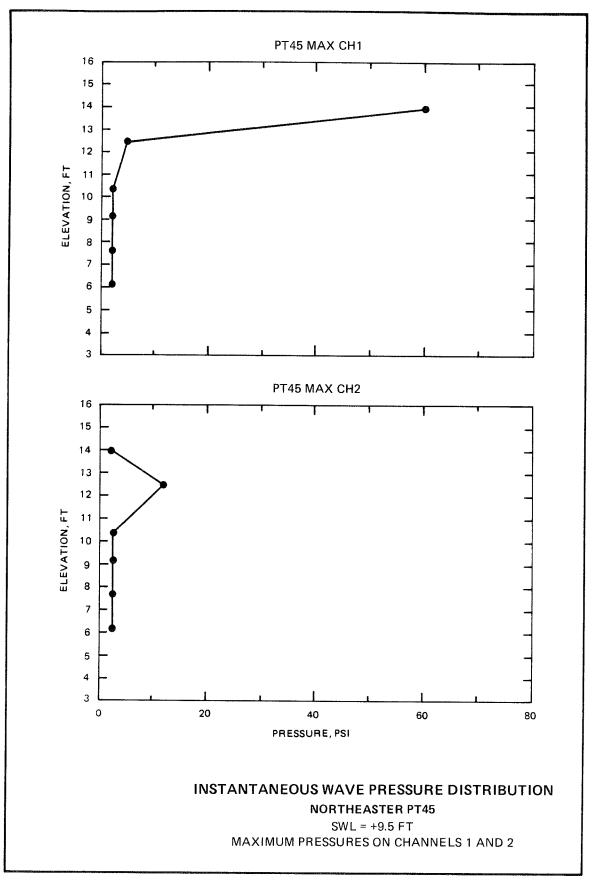
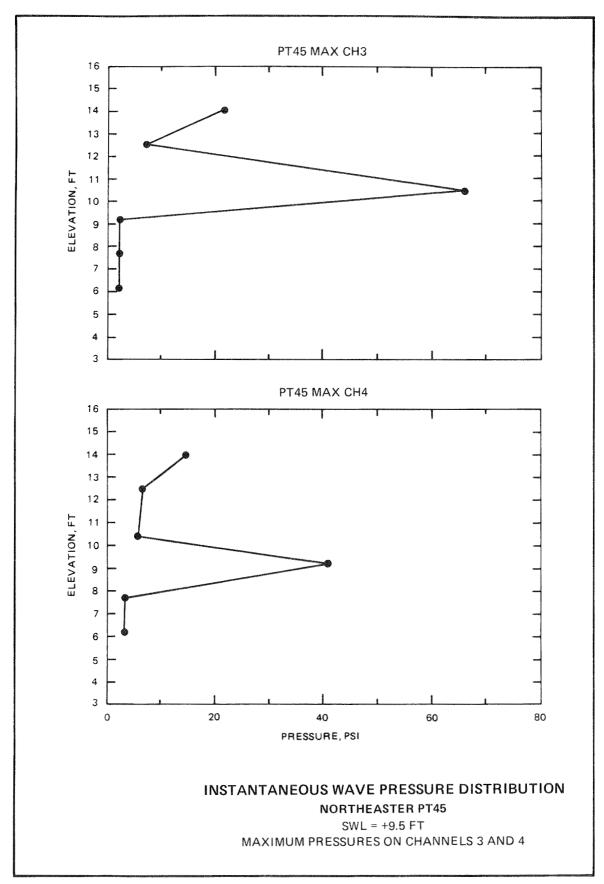
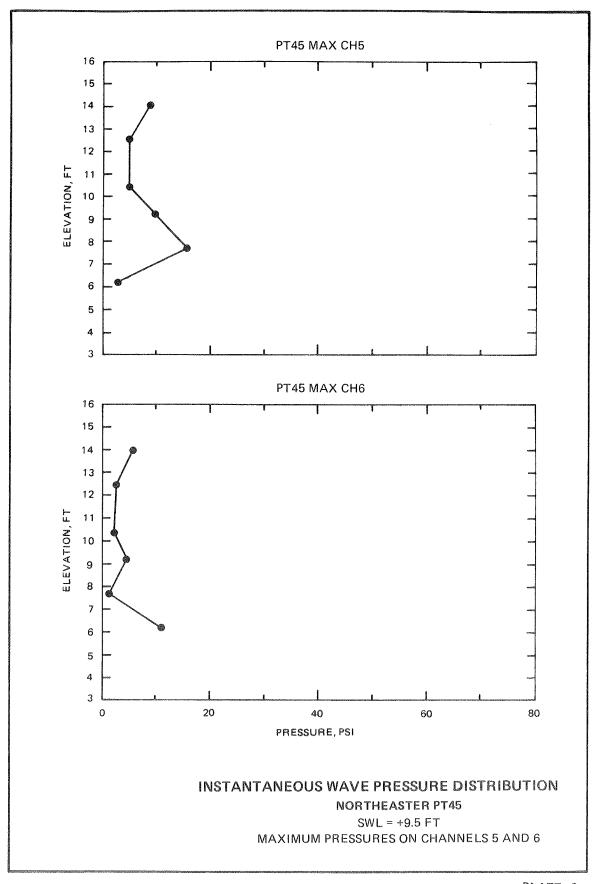
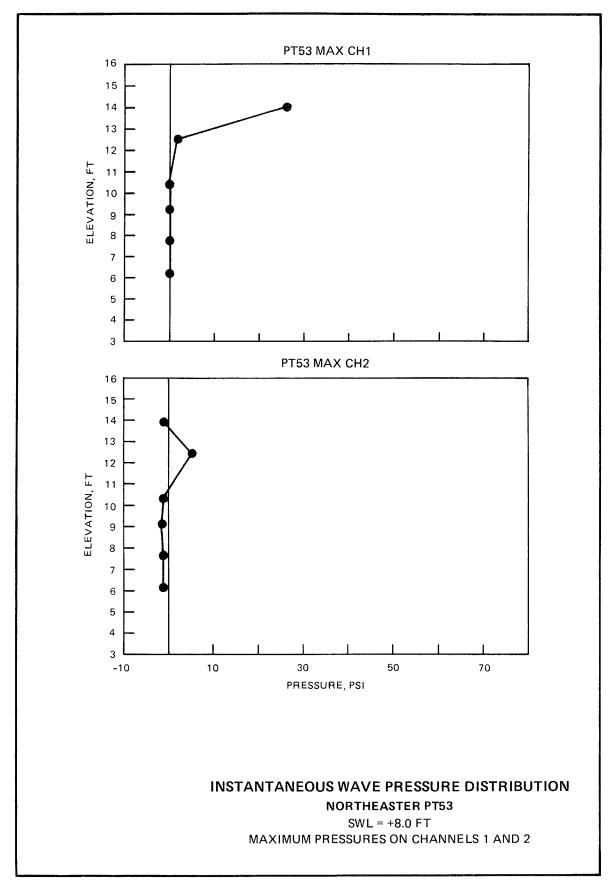
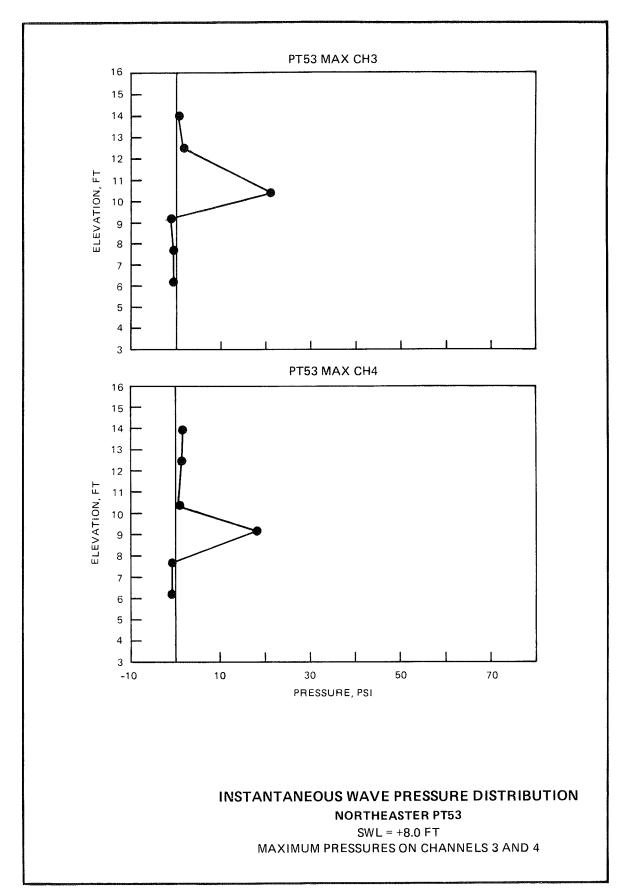
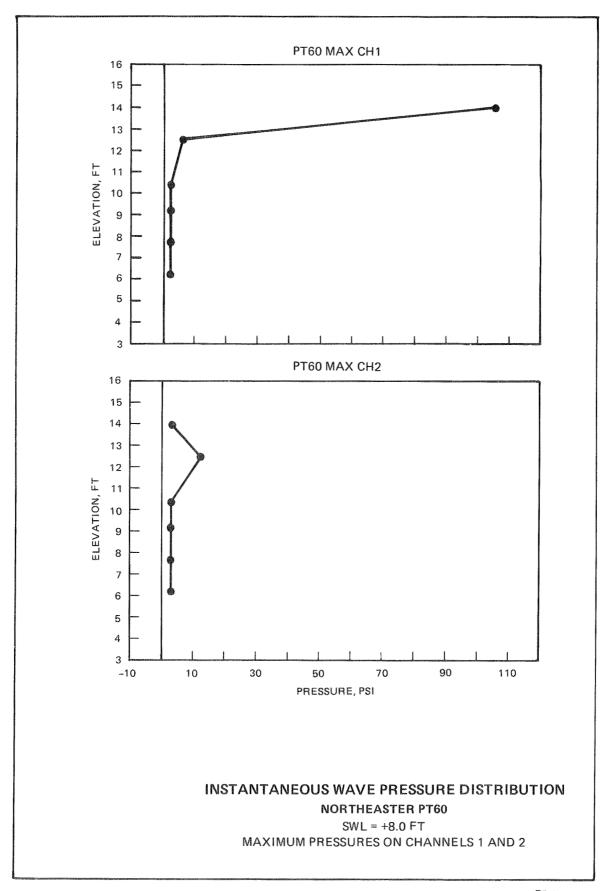
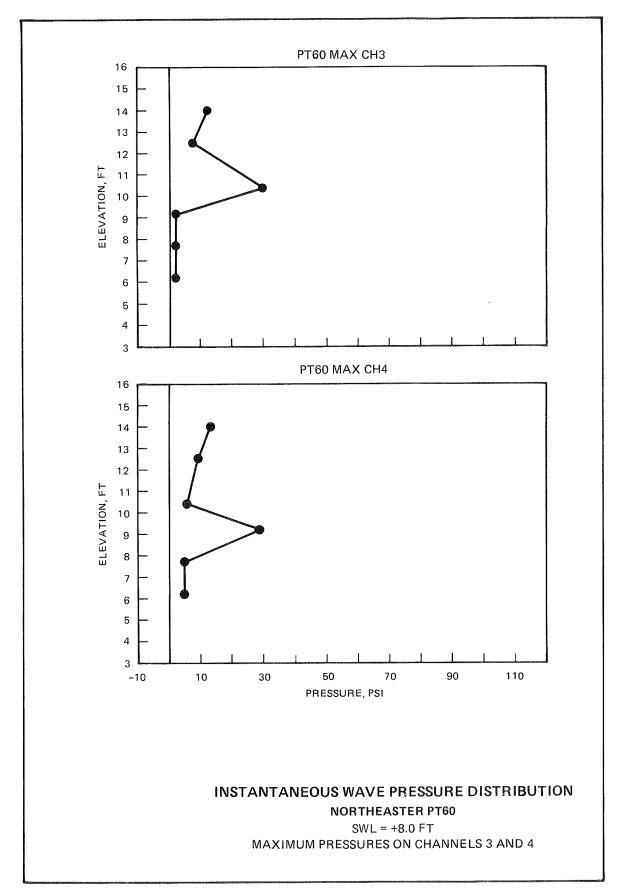


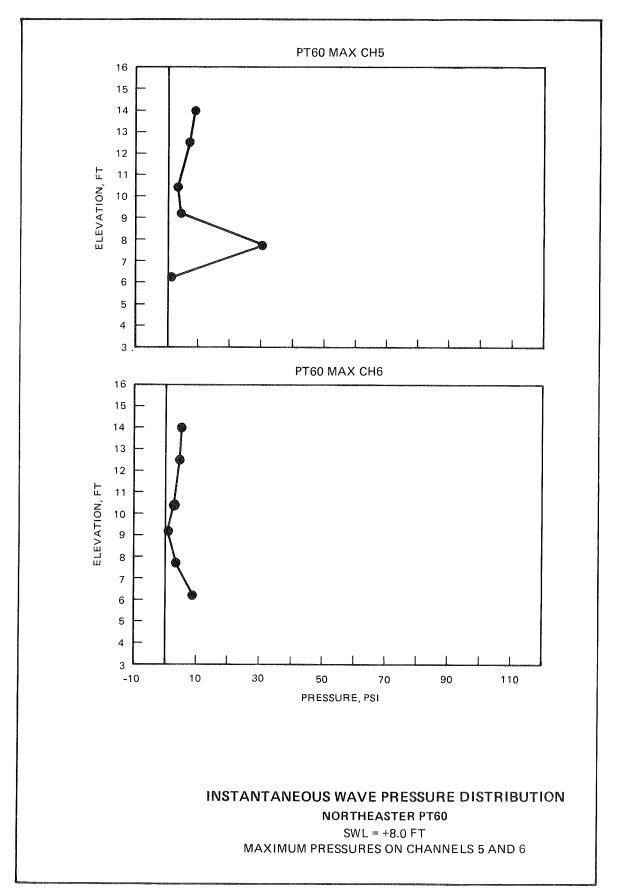
Photo 1. Unstable riprap, 250-1b median weight stone Phase I, hurricane, sw1 = +6.0 ft

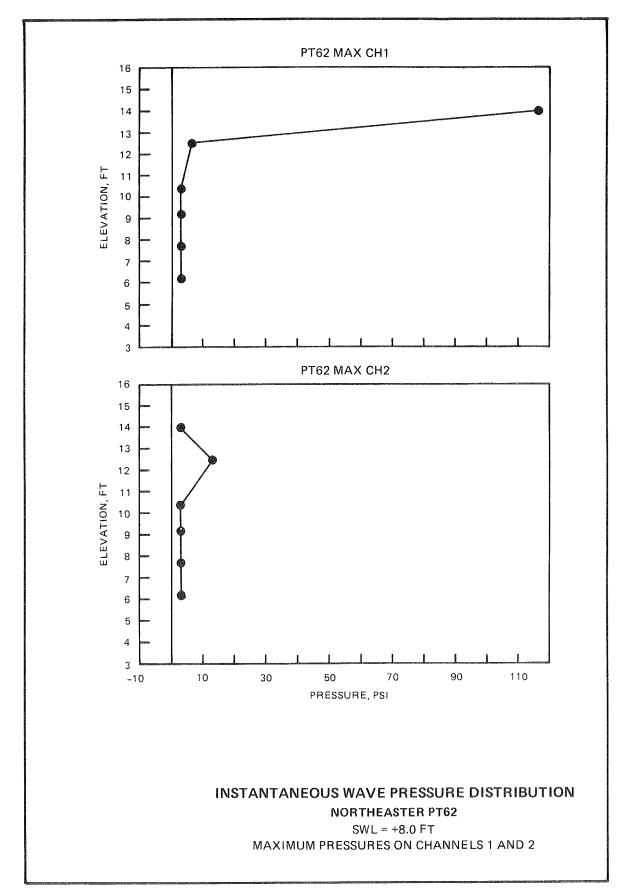






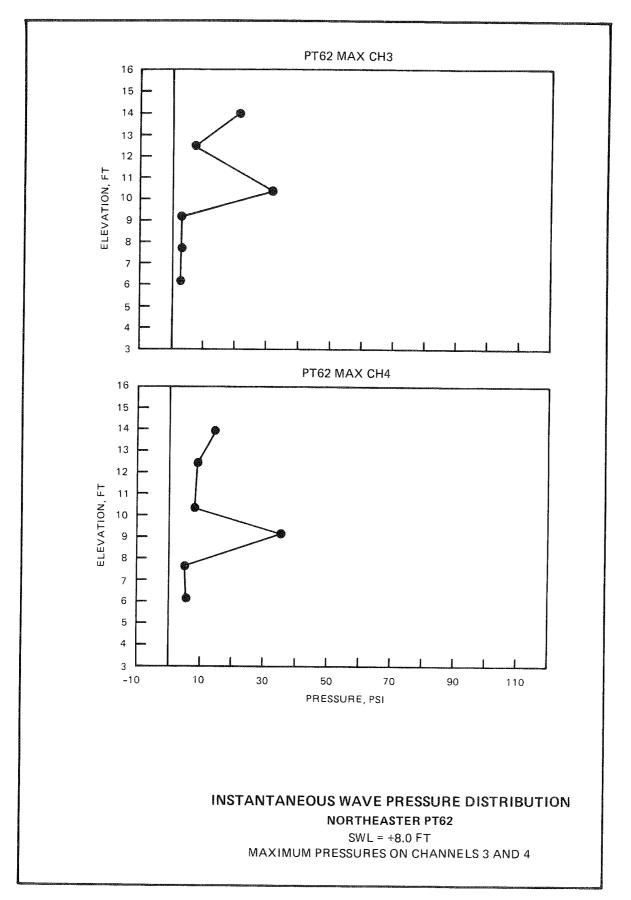

Photo 2. Stable riprap, 1,000-1b median weight stone Phase I, hurricane, sw1 = +9.5 ft

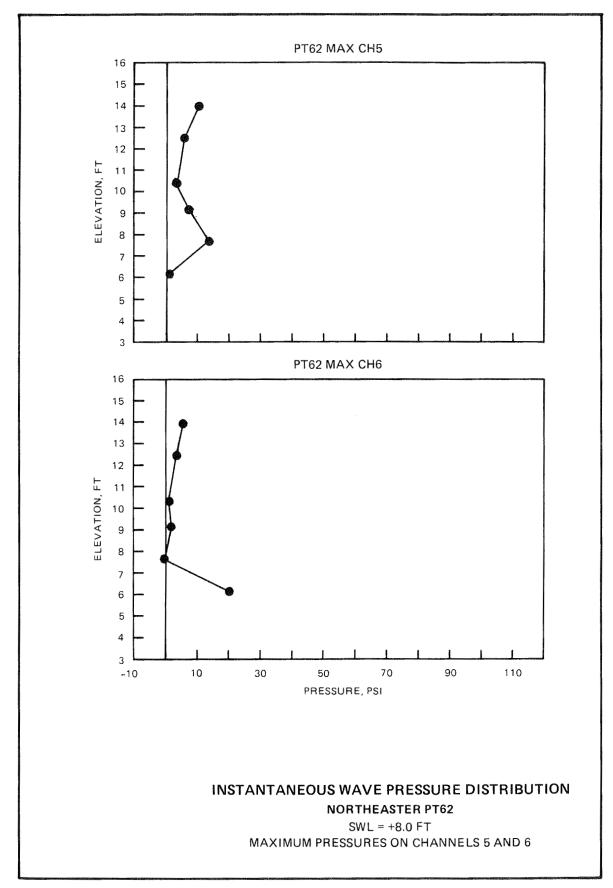


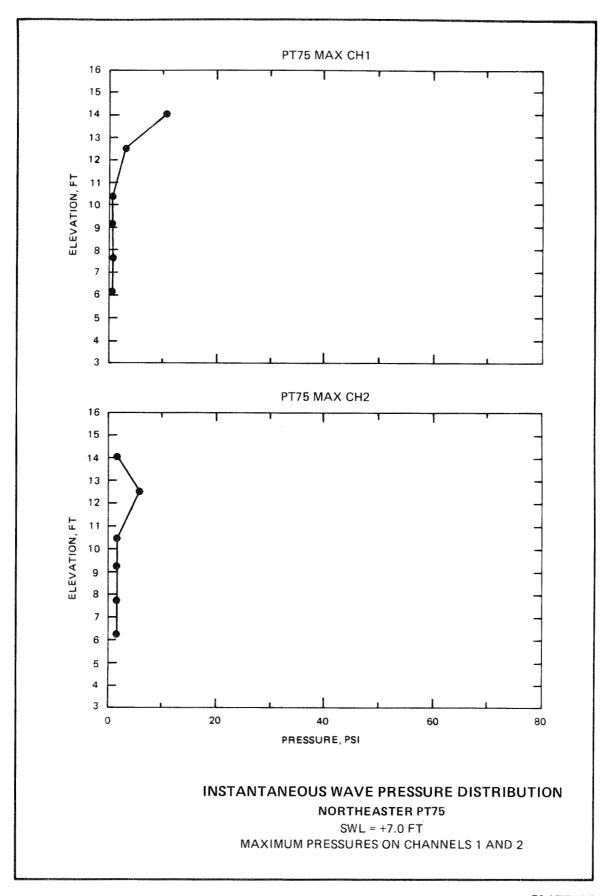


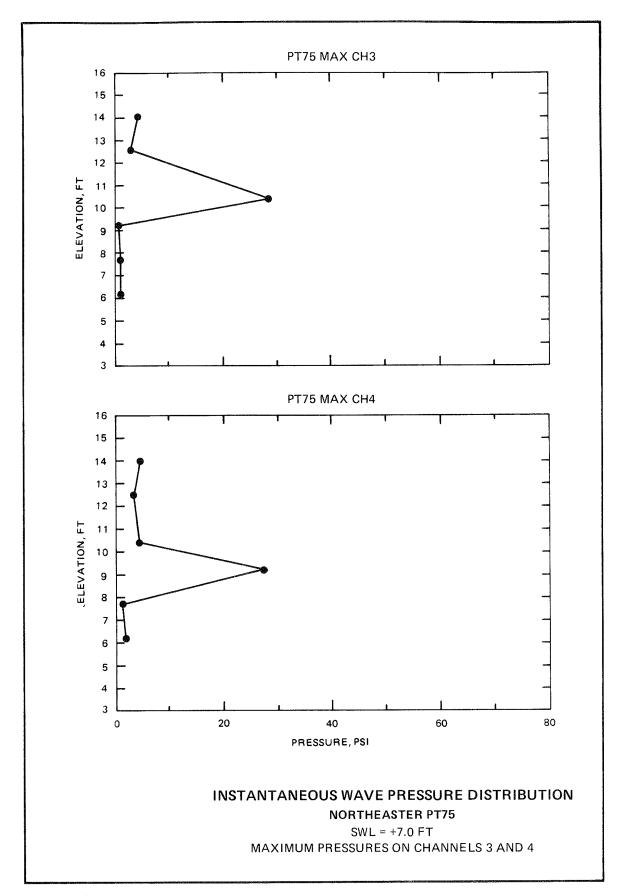


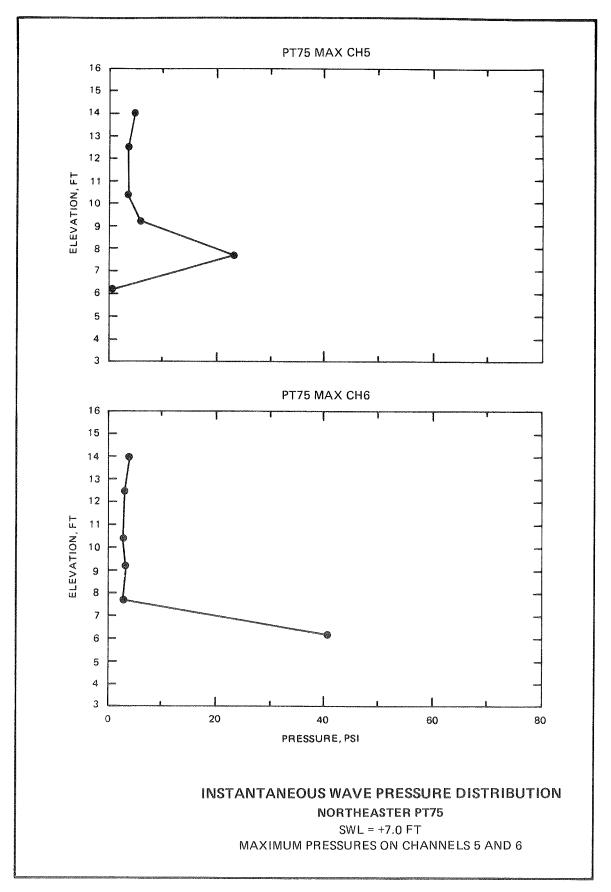


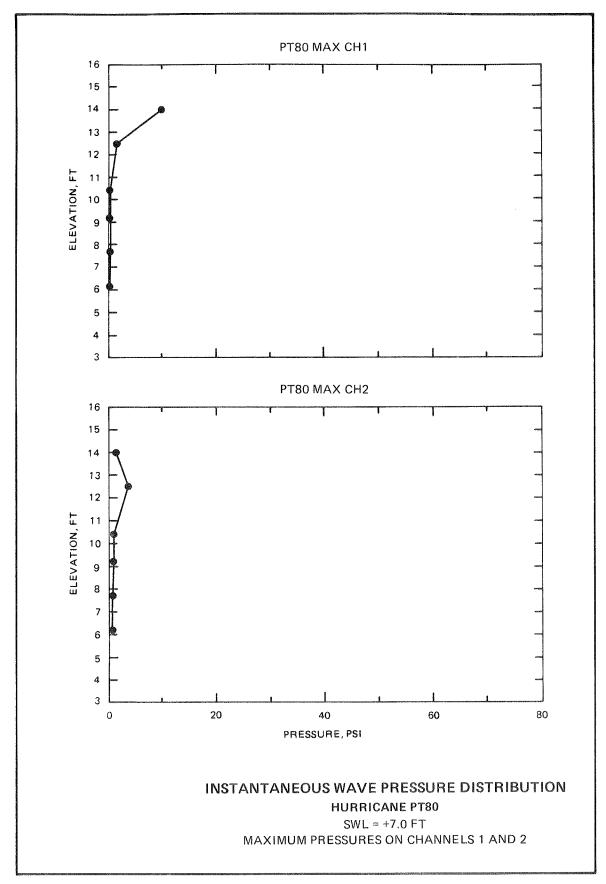


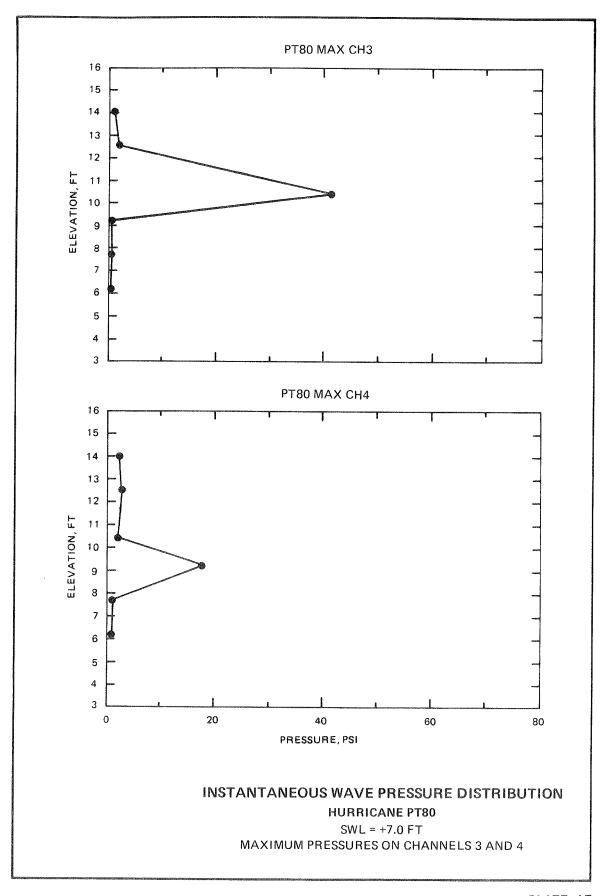


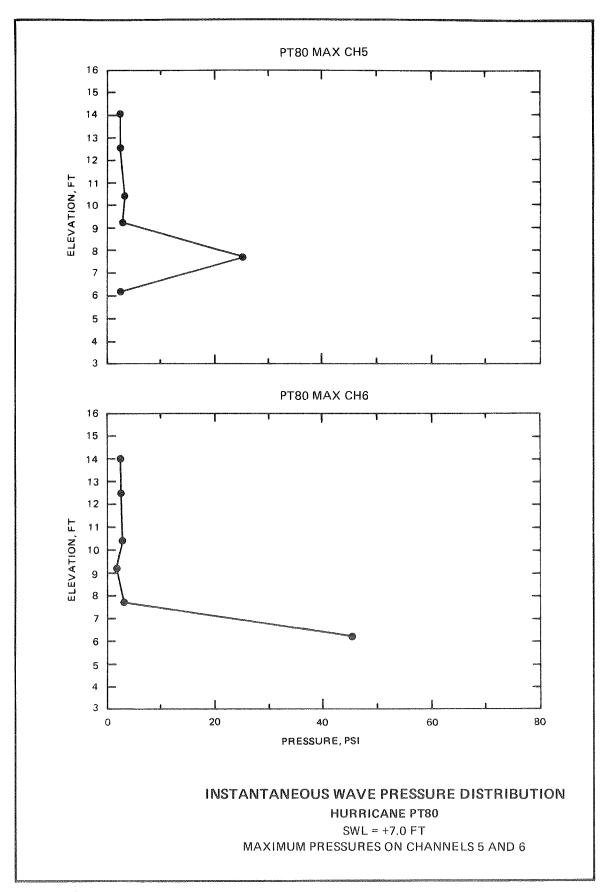


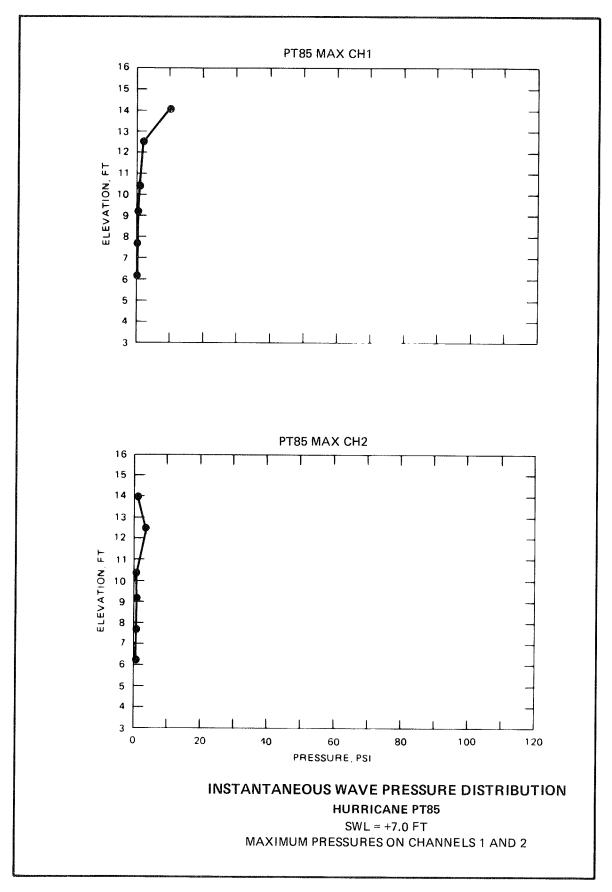


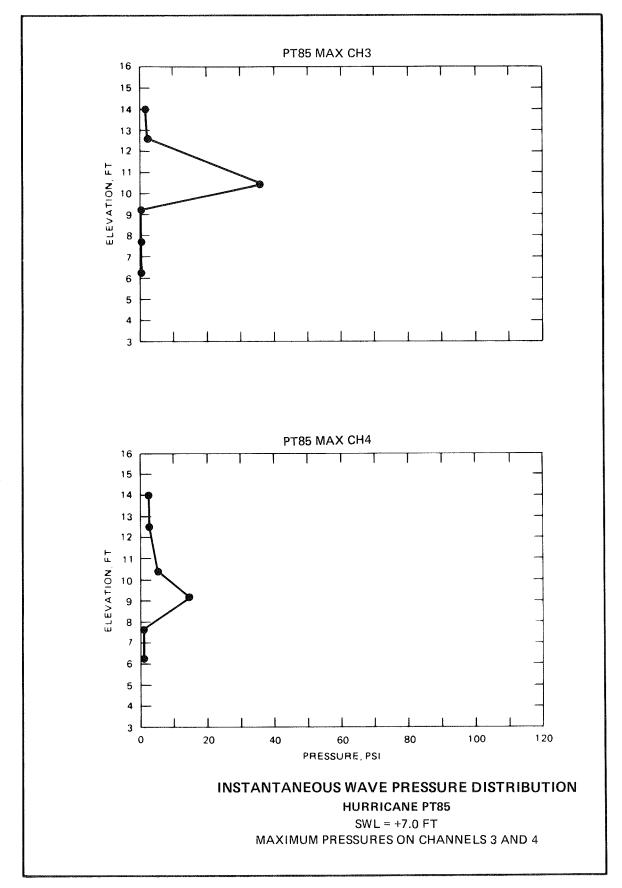


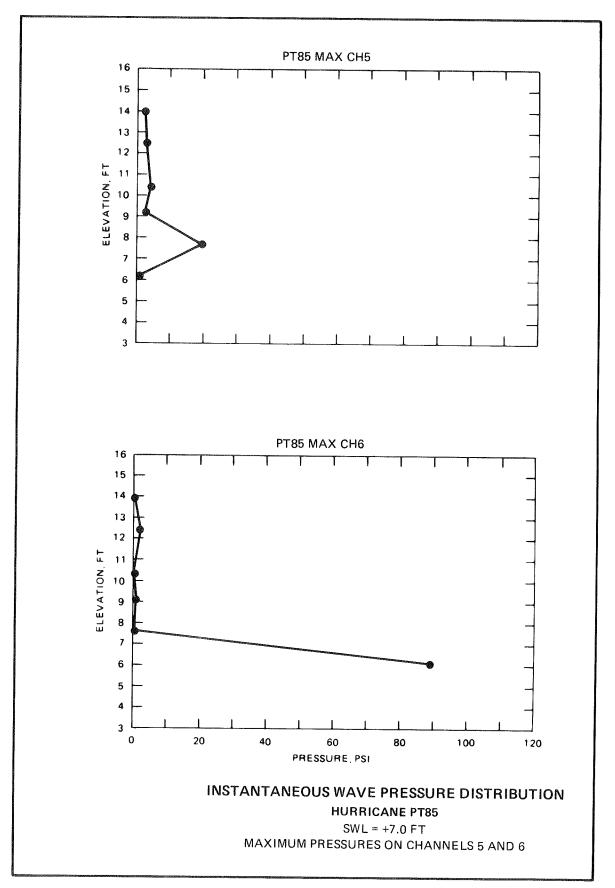


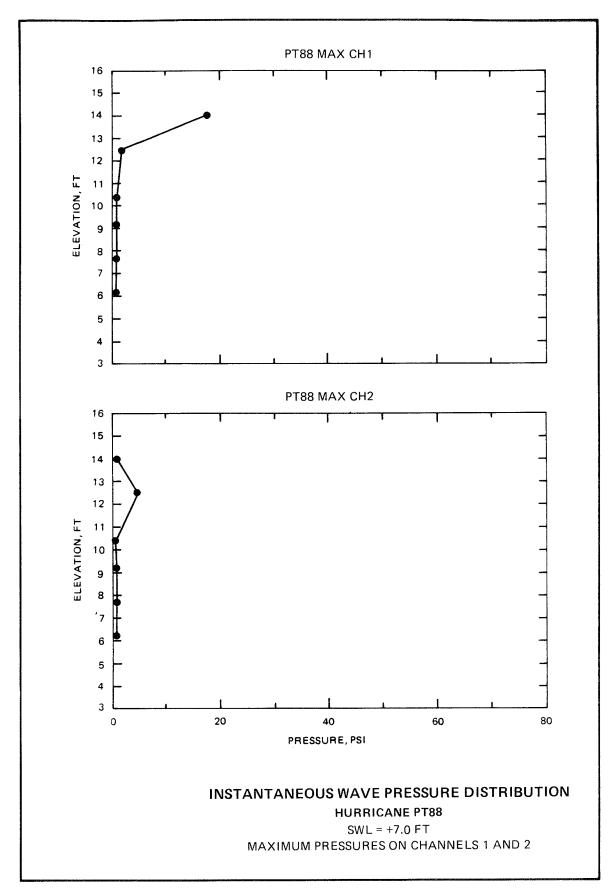


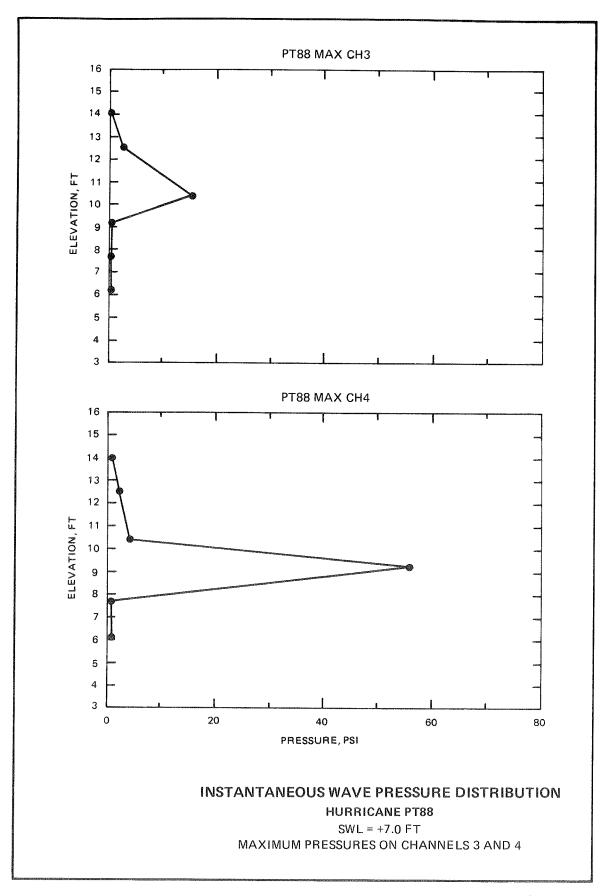


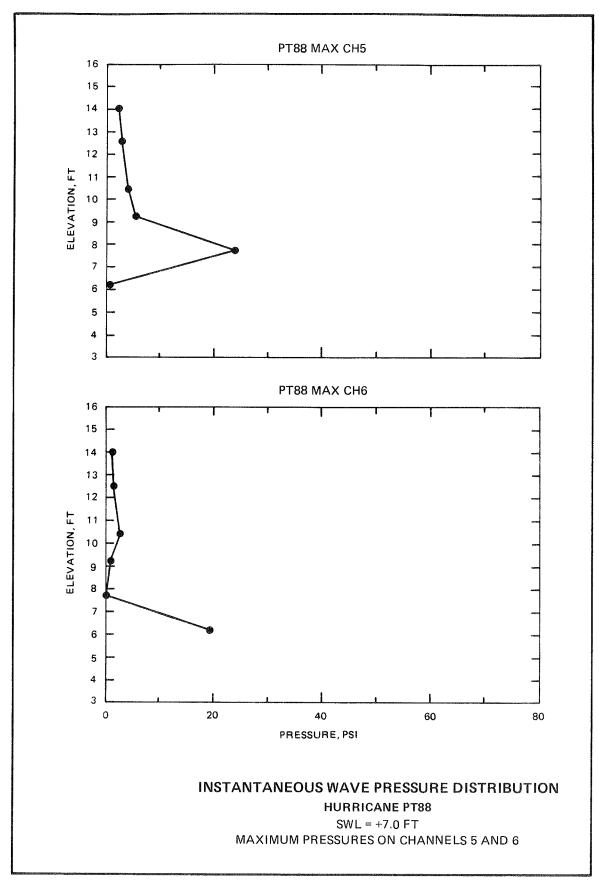


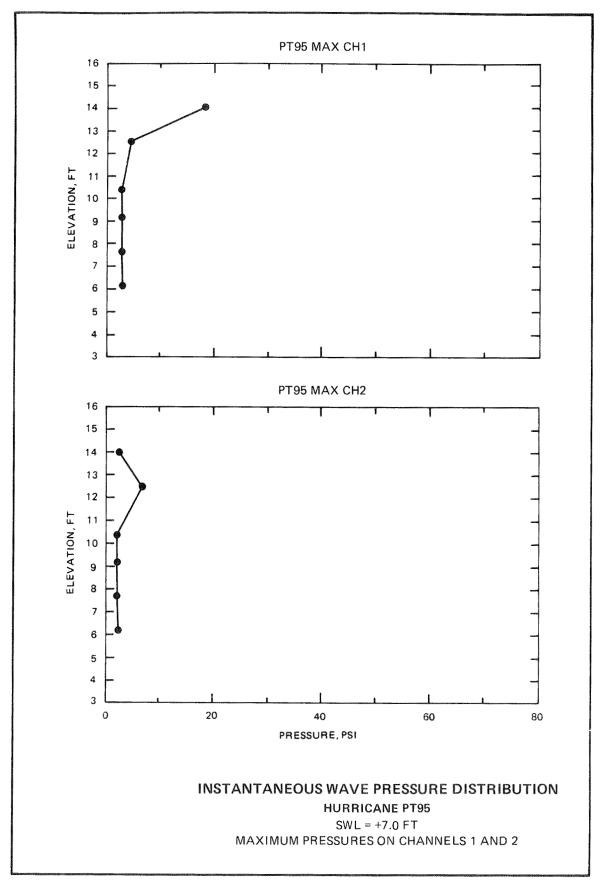


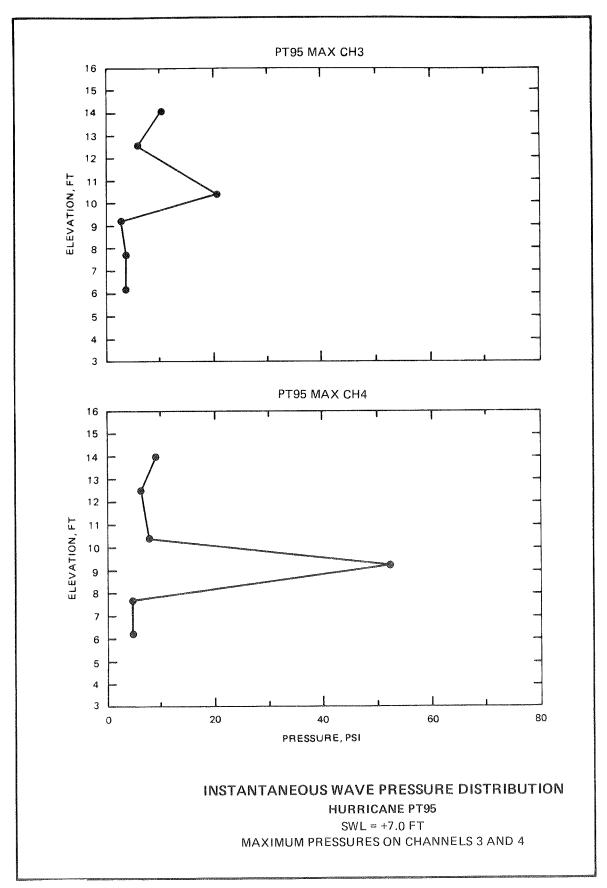


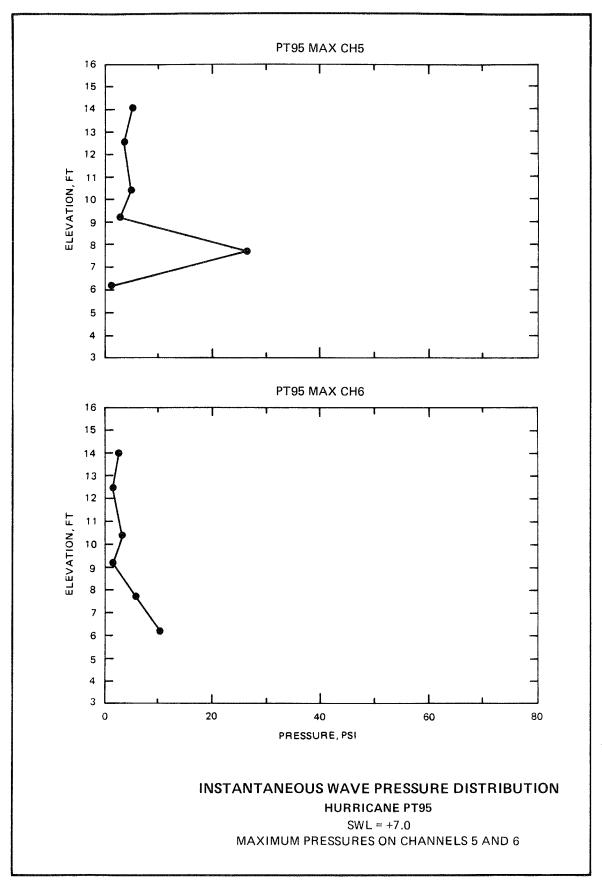


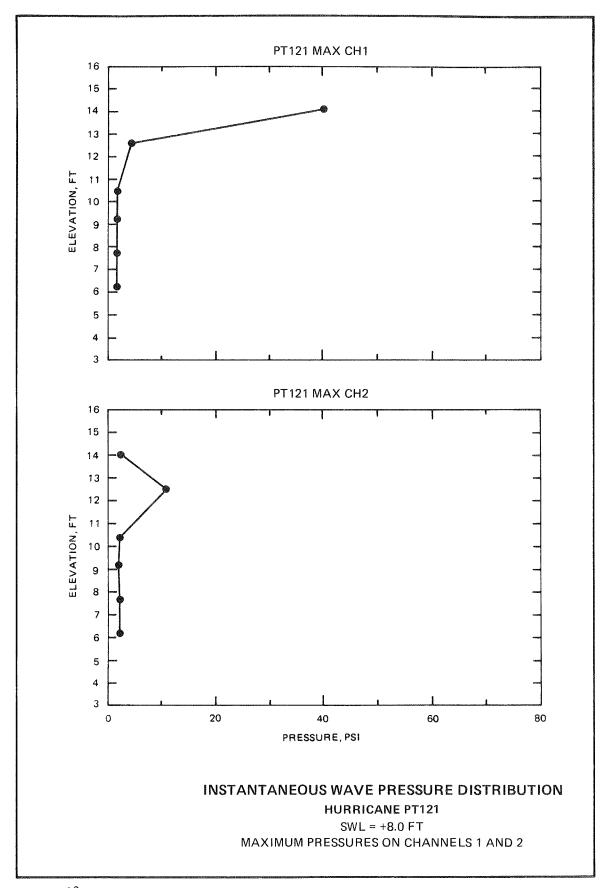


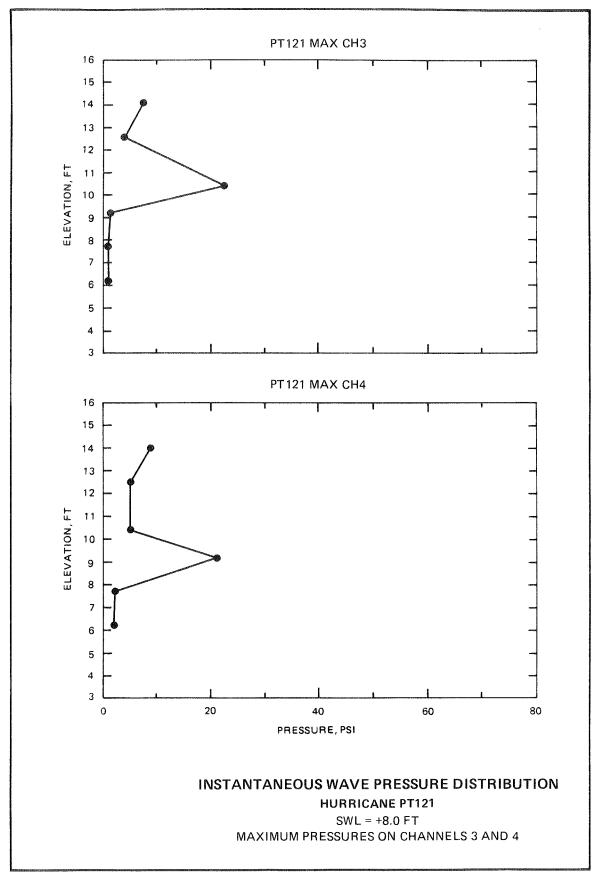


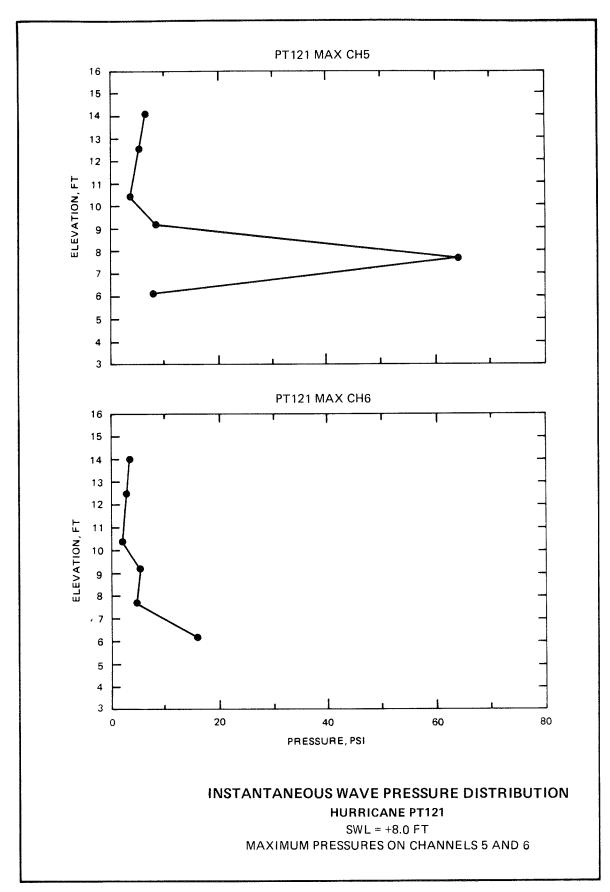


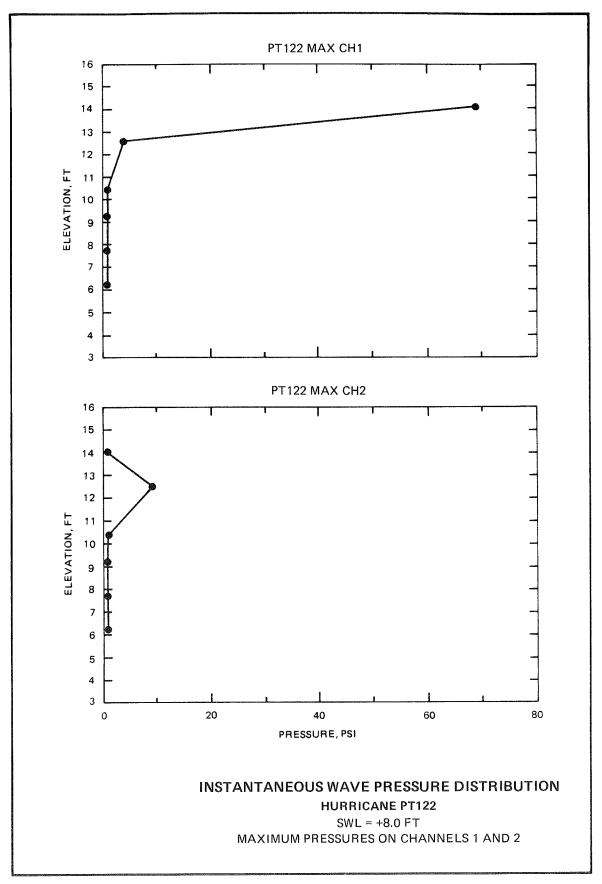


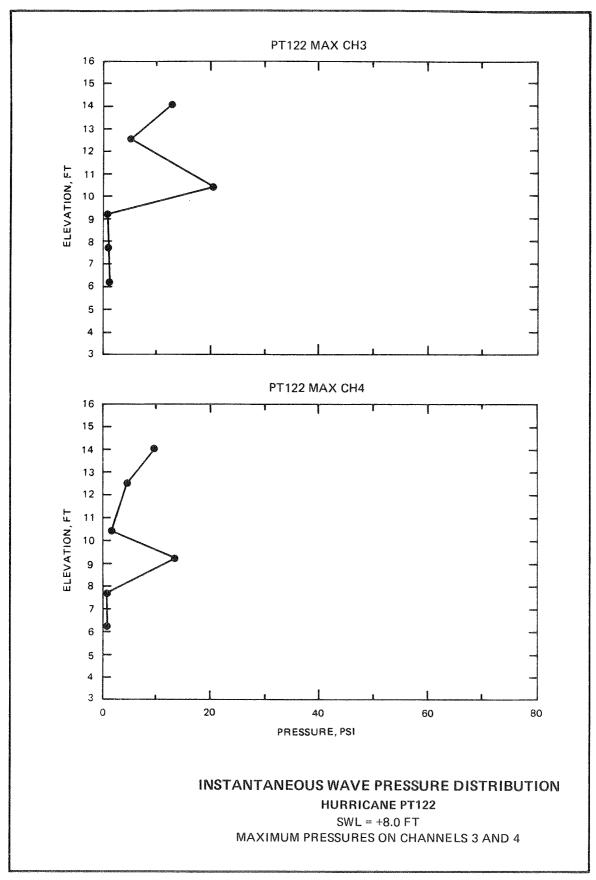


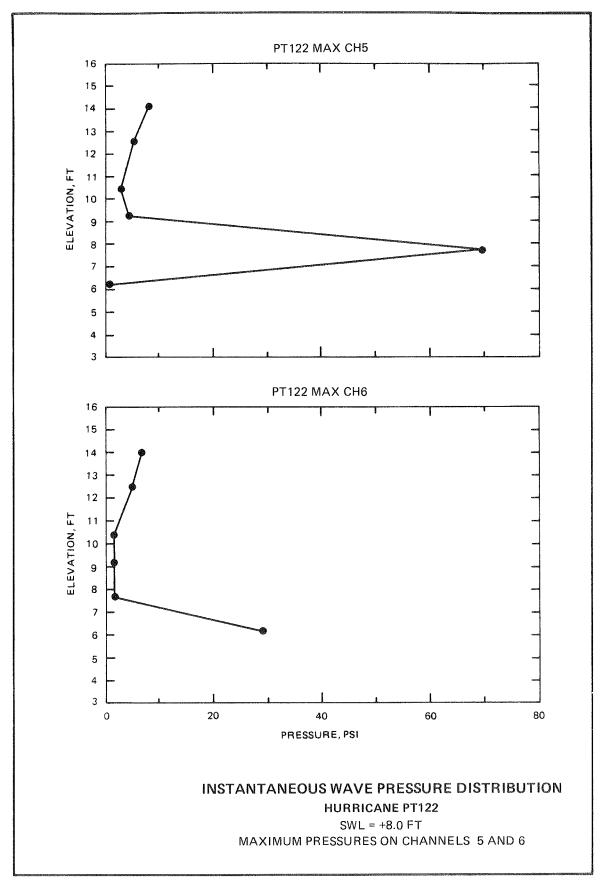


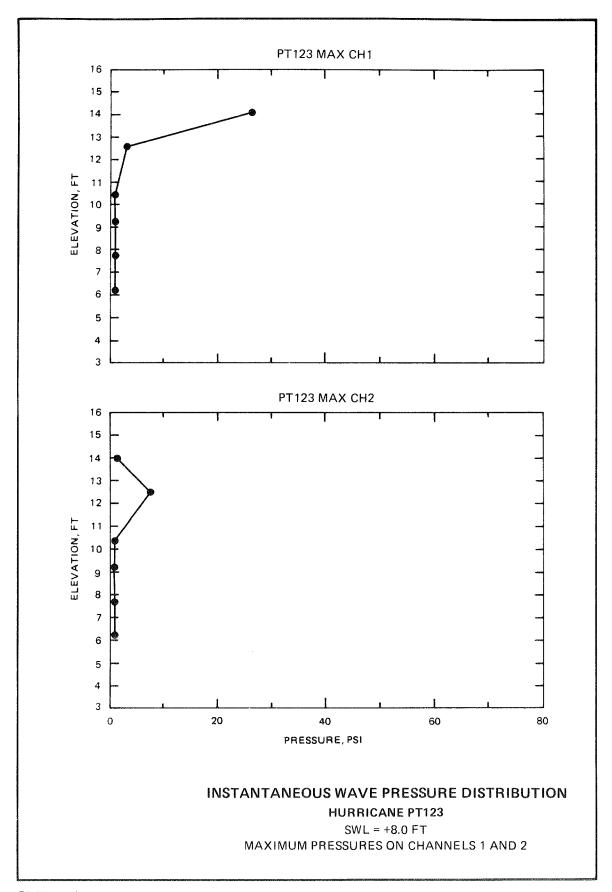


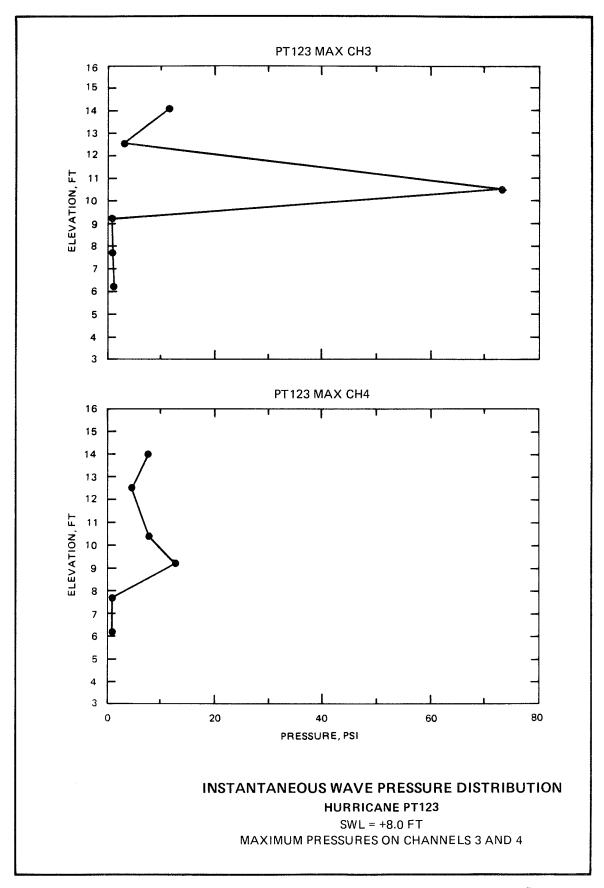


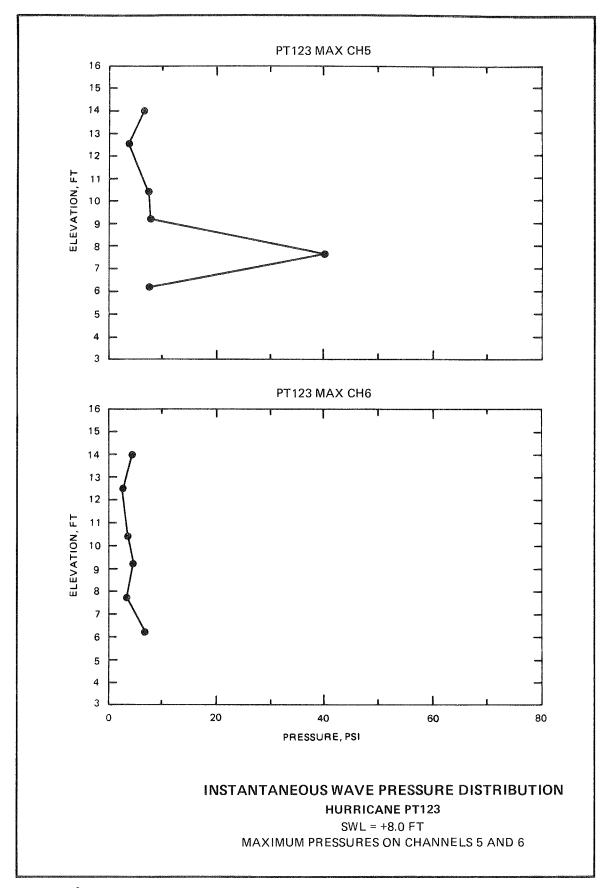


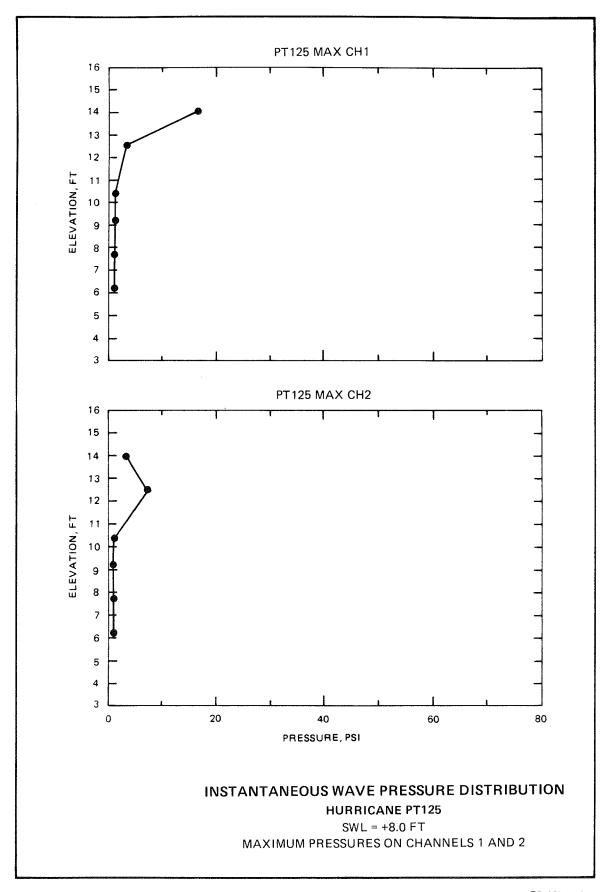


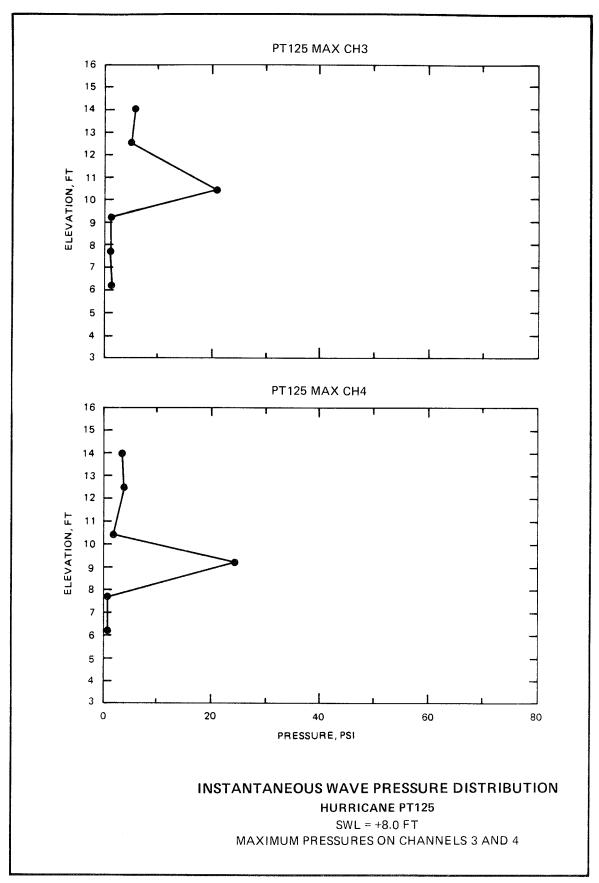


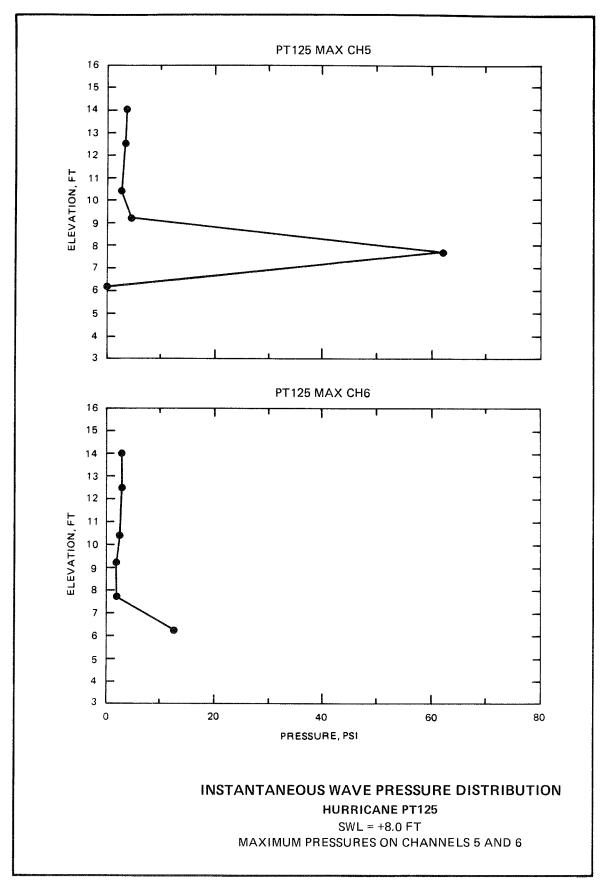




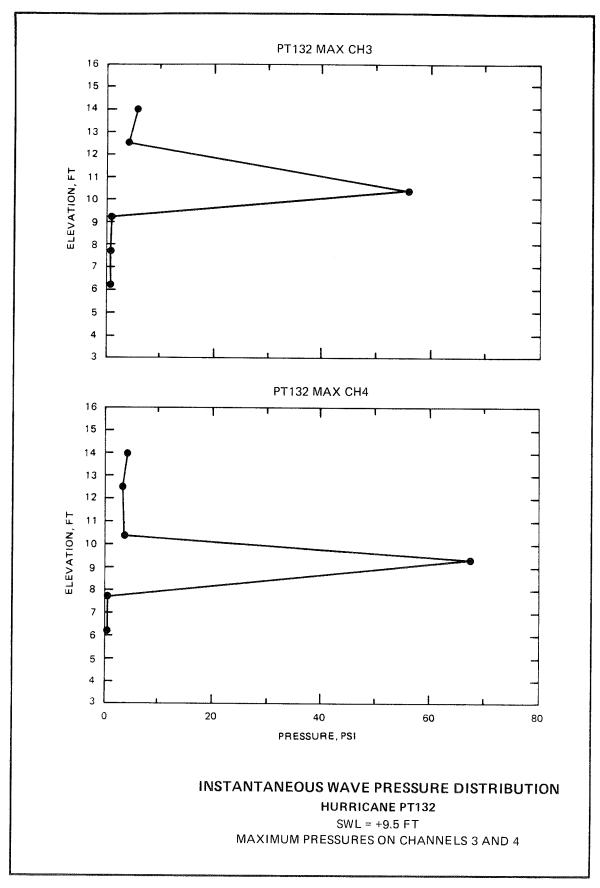


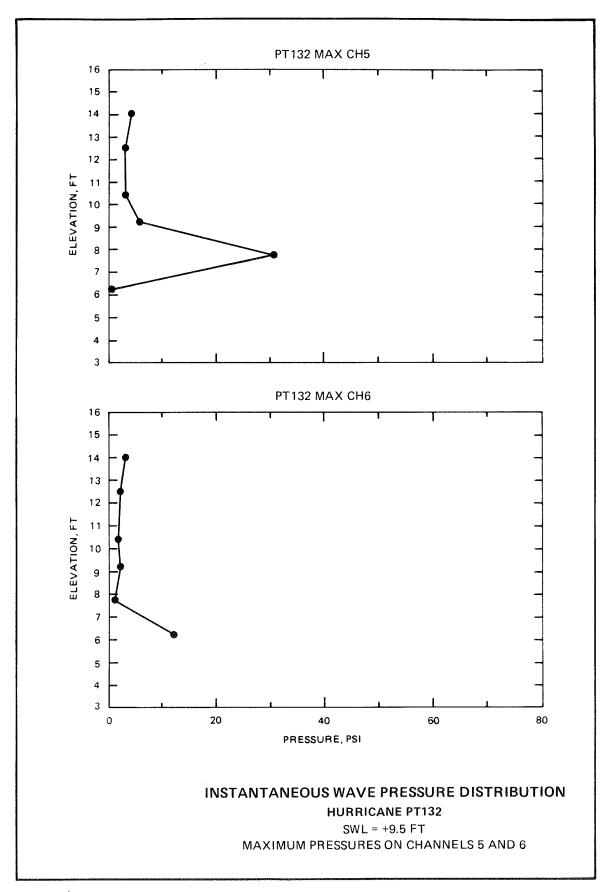


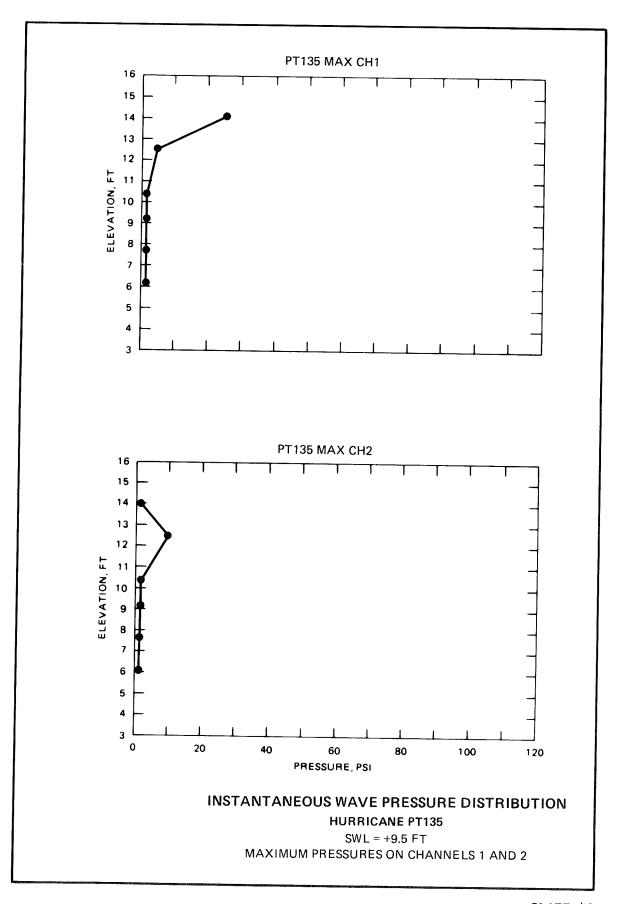


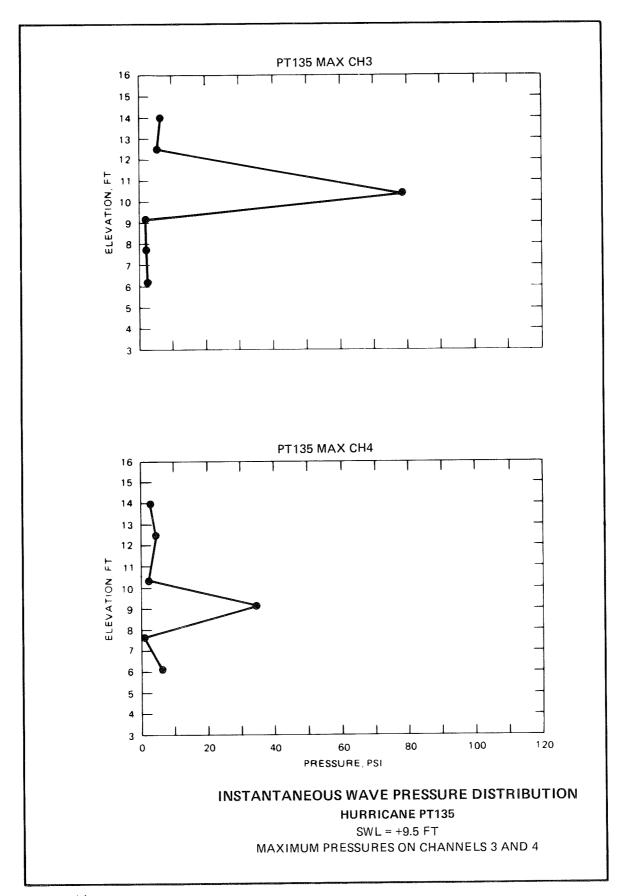


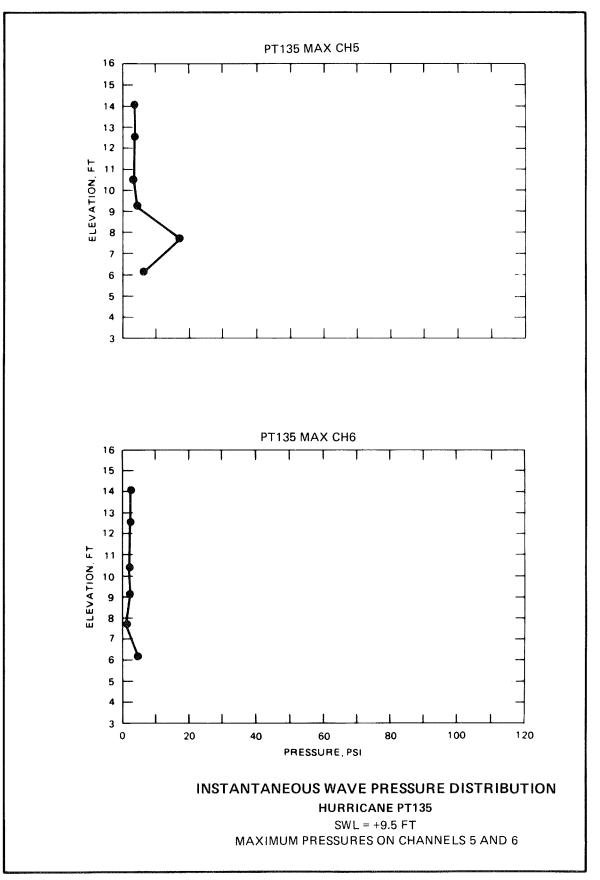


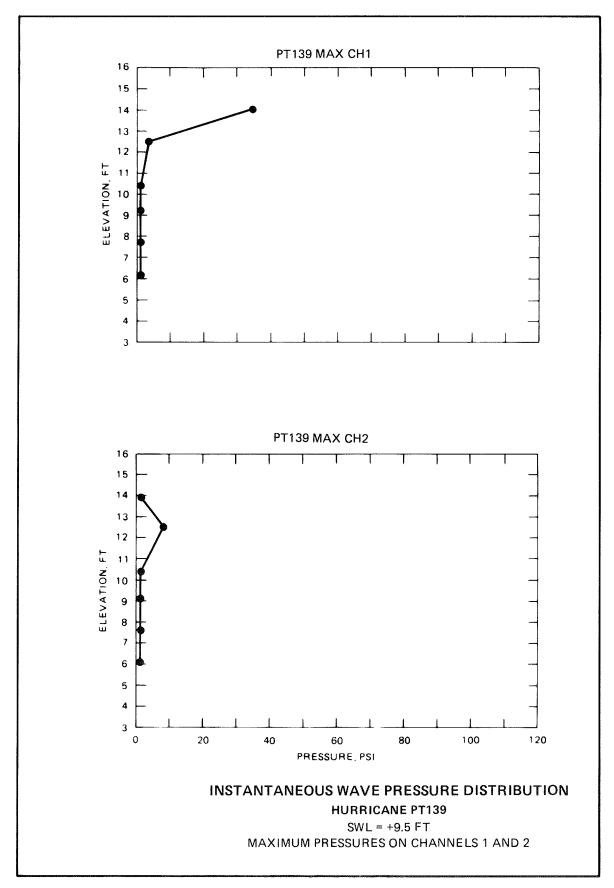


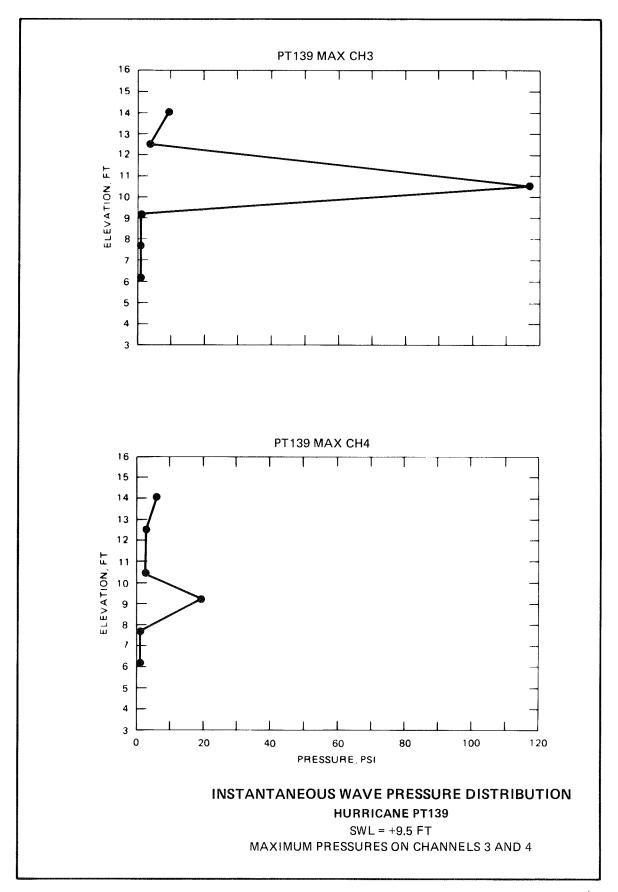


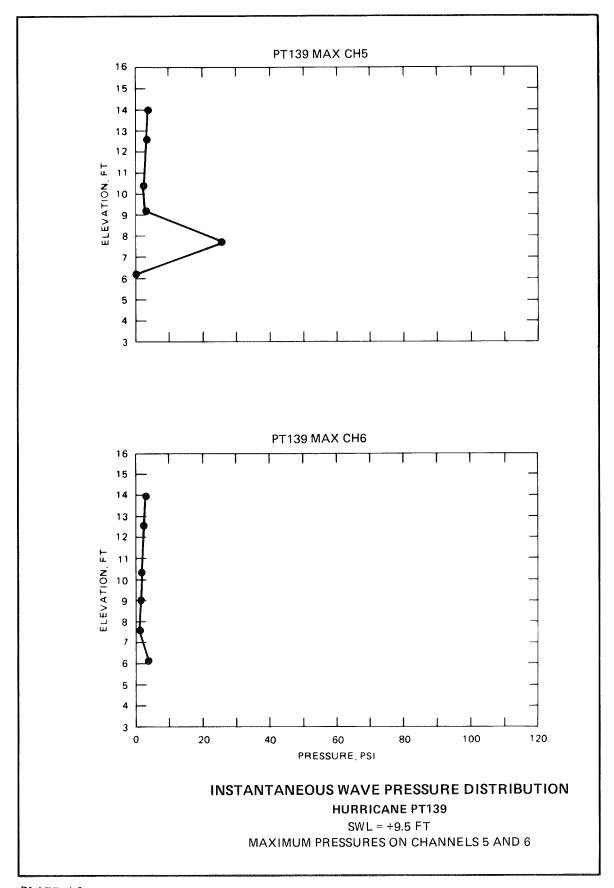


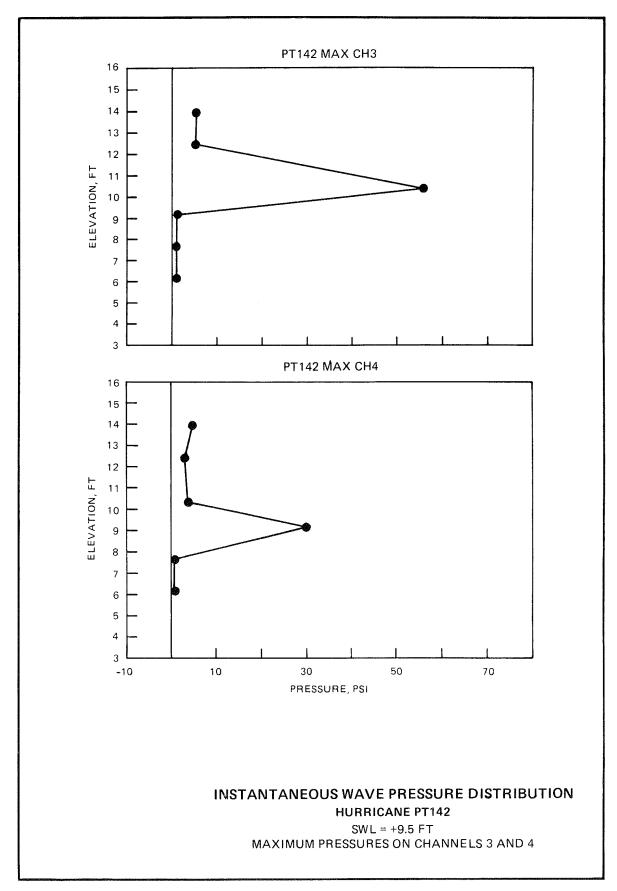


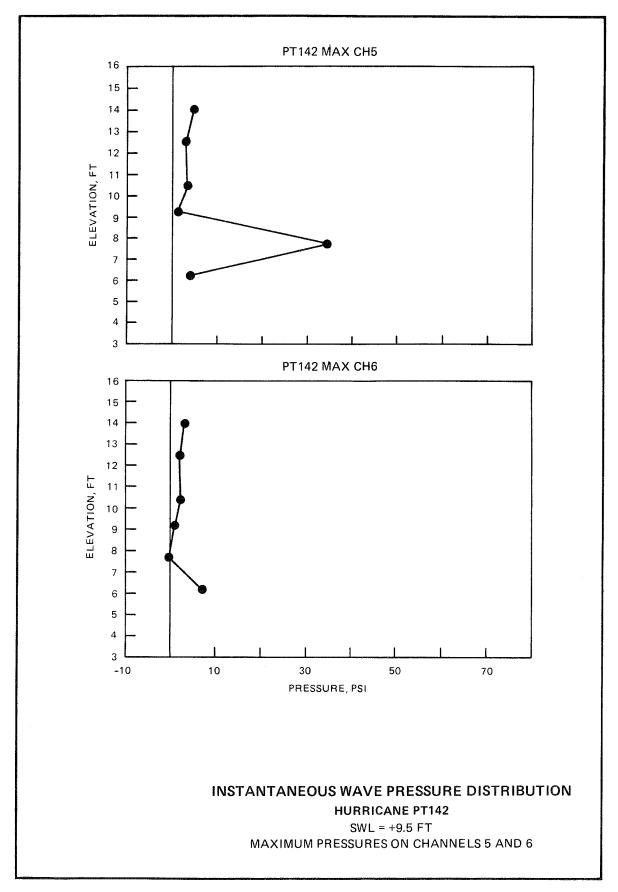


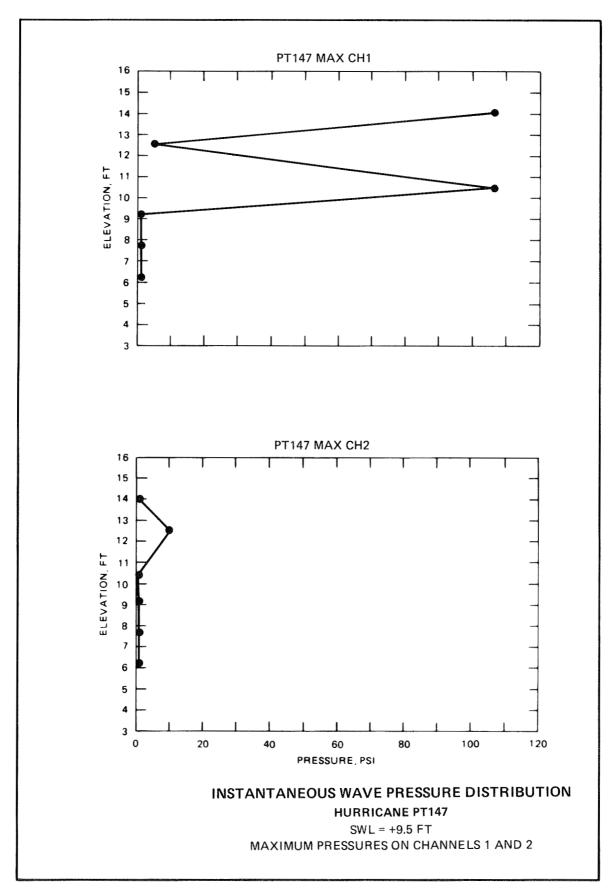


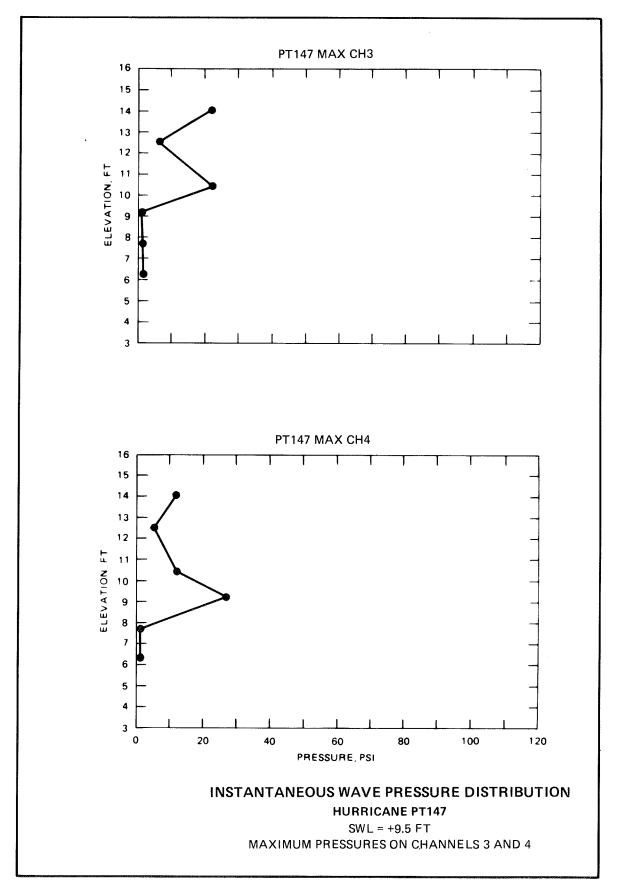


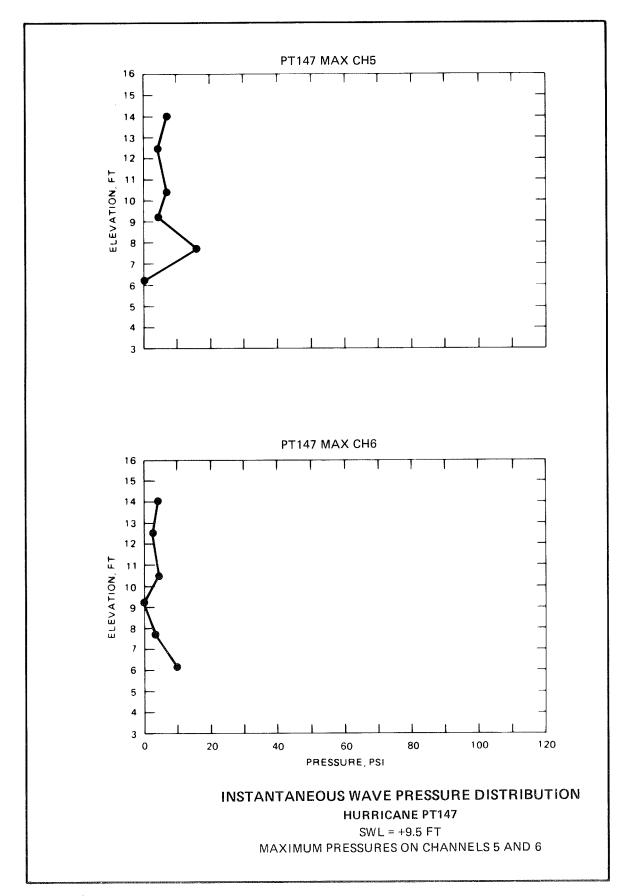


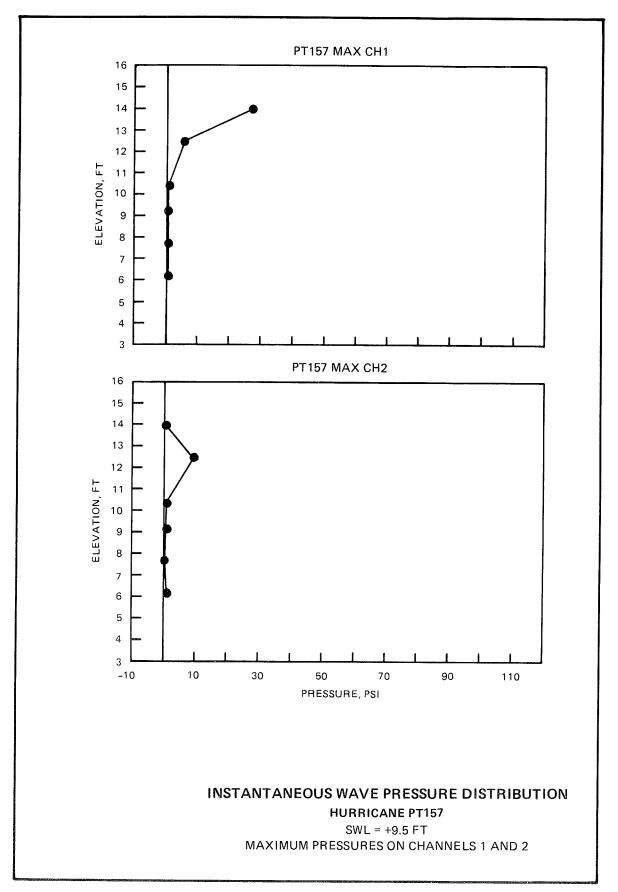


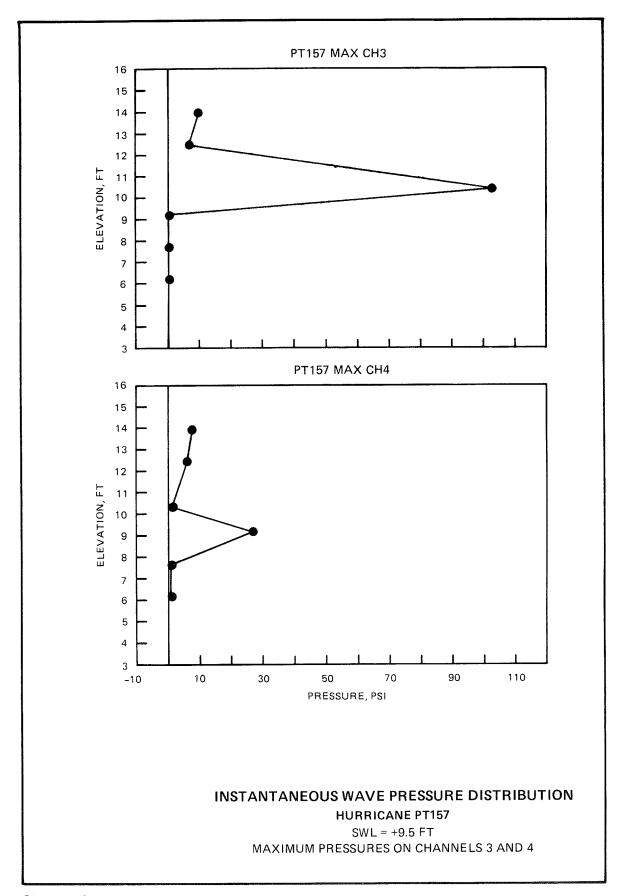


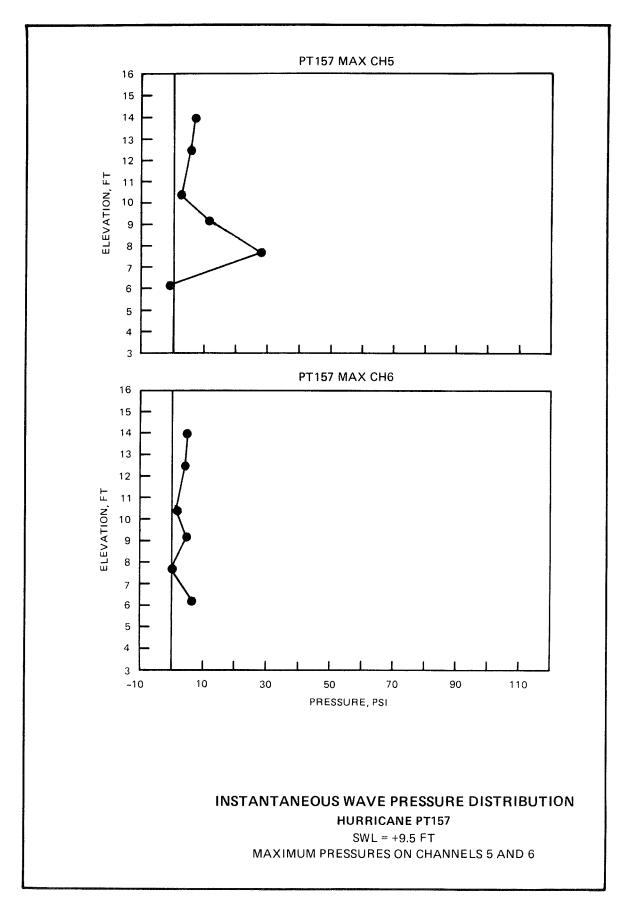


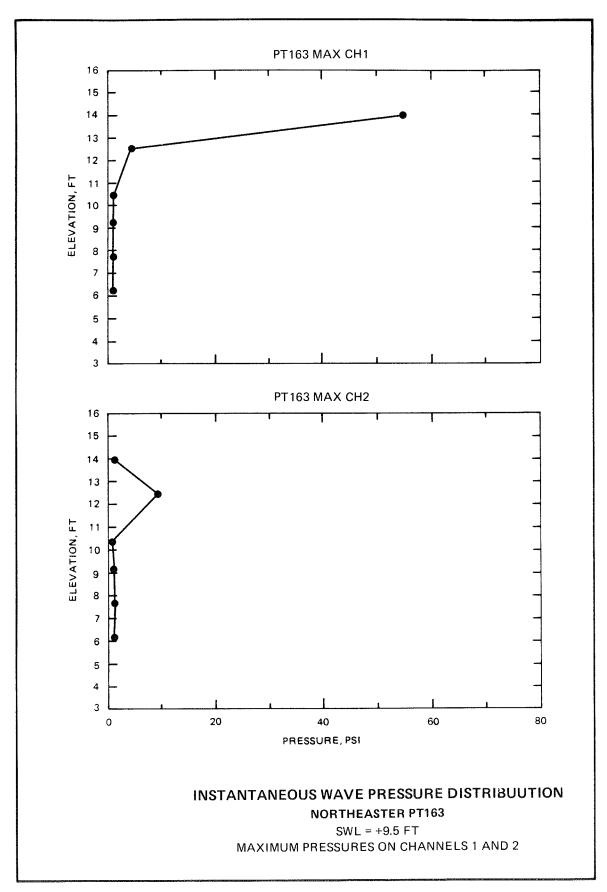


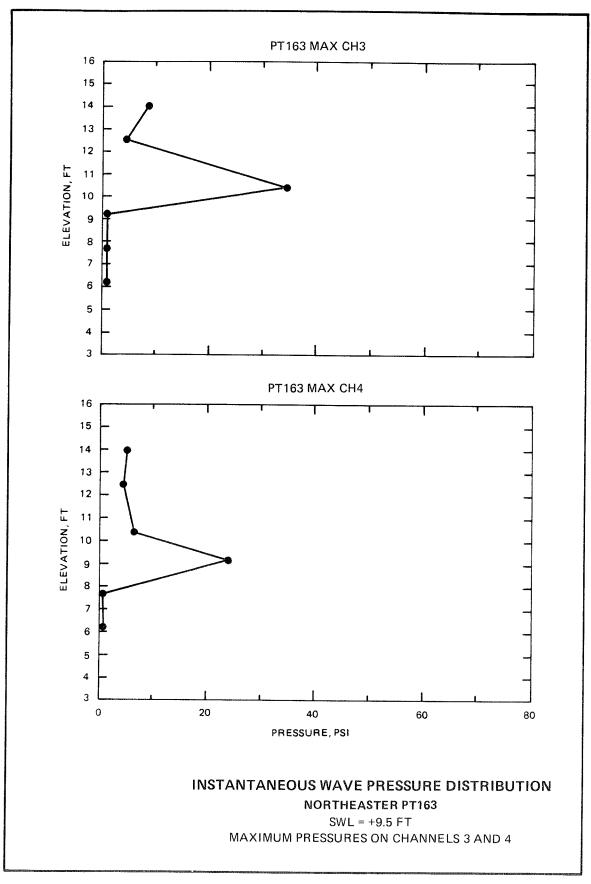


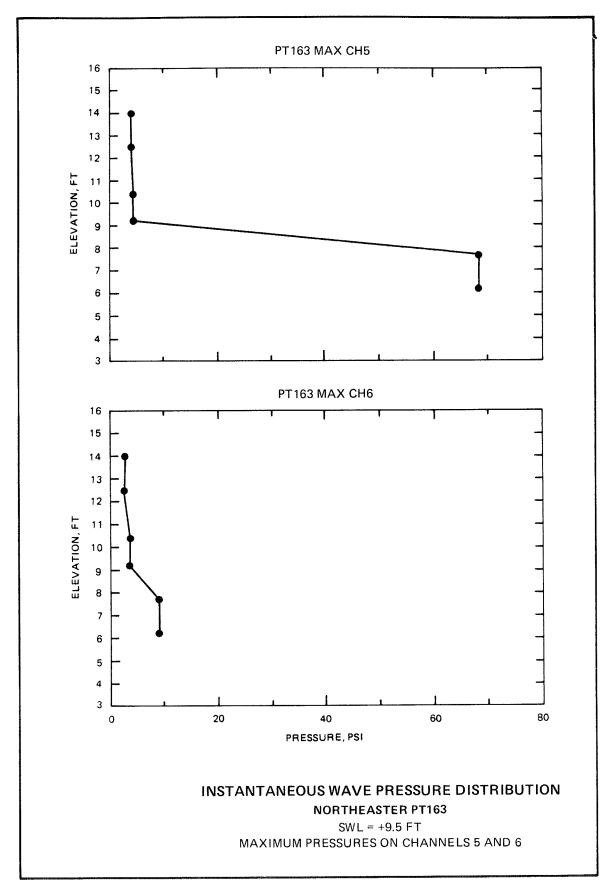


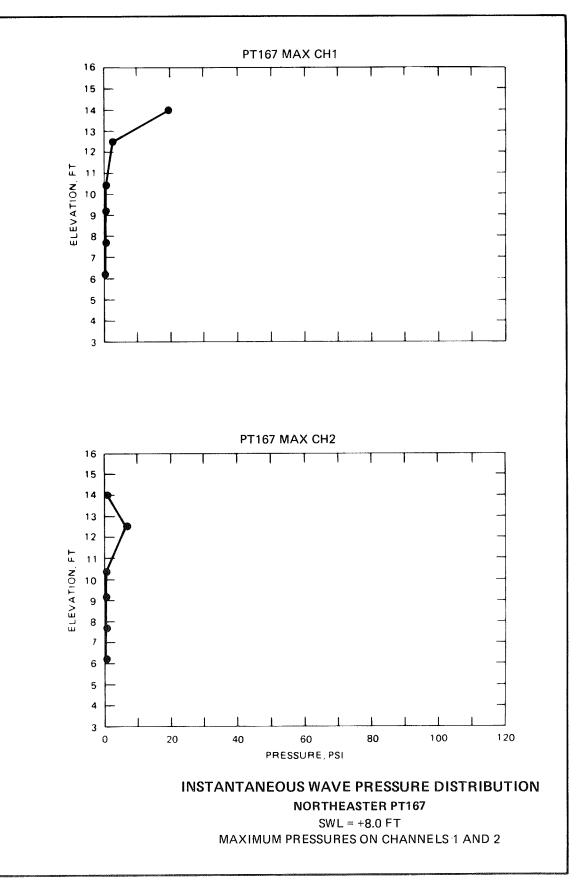


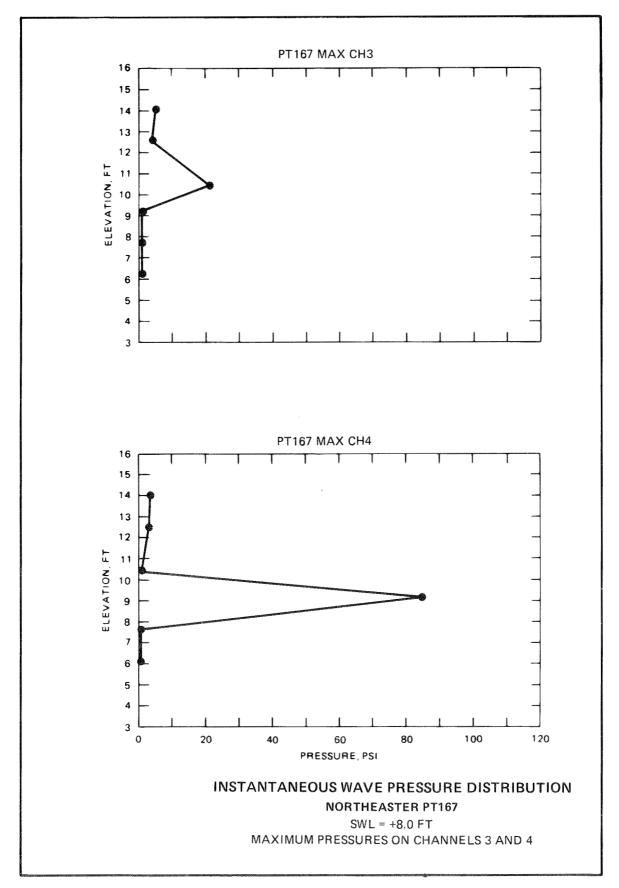


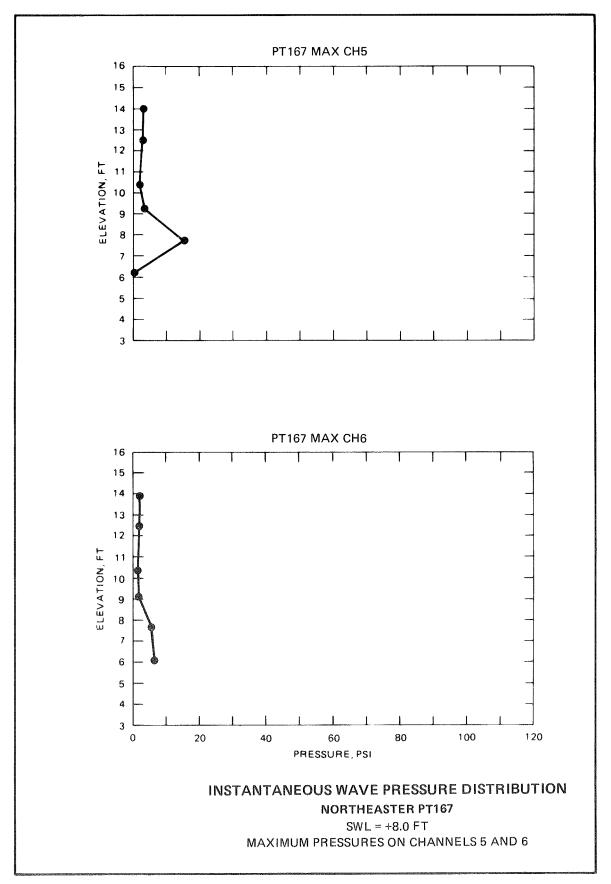












APPENDIX A: OVERTOPPING TEST RESULTS

Appendix A presents Phase I and Phase II seawall data for two storm types: northeasters (N,NE) and hurricanes (H).

Table Al
Phase I Seawall Data

	· ··· •		SWL	Setup		Gage Right	Gage Right	Gage Four	Goda Array2	Goda Array2	Calc.	Calc.			
			with no	neas.	Ds	aight Emo	Tp Lgut	Hour Heo	Hno	array2 Tp	Seiche	Seiche	Ovtp.	Calc.	
Test	Storm	X	setup		effective		•.			•r	Hao	Amplitude		Lp	Rel.
No.	Type	Gain	ft.	ft.	ft.	ft.	sec.	ft.	ft.	sec.	ft.	ft.	cfs/ft	ft.	Frbd.
75	N	60	9.5	0.1011	8.6	7.51	14.9	4.91	4.35	14.9	2.270	0.803	Ø.584	248.21	0.3633
76	N	50	9.5	0.0581	8.6	6.29	14.9	4.72	4.24	14.9	2.976	0.734	0.488	247.61	0.3726
77	ľ	40	9.5	0.0023	8.5	4.97	14.9	4.41	4.02	14.9	1.816	9.642	0.508	246.83	0.3901
60	H	70 70	9.5 9.5	Ø.26Ø9 Ø.2887	8.8 8.8	10.13 9.94	11.8 10.8	5.Ø8 4.96	4.41 4.31	13.7 13.7	2.519 2.457	Ø.891 Ø.869	Ø.616 Ø.615	230.20 230.55	Ø.3594 Ø.3633
65 67	H H	65	9.5	9.0000	8.5	9.25	10.8	4.87	3.62	13.3	3.252	1.150	Ø.624	220.50	Ø. 4342
66	H	60	9.5	Ø.2122	8.7	8.64	10.8	4.82	4.29	13.0	2.193	Ø.775	Ø.423	218.30	Ø.3758
40	H	60	9.5	Ø.2197	8.7	9.77	10.8	5.58	4.86	13.0	2.737	0.968	Ø.555	218.39	0.3703
68	H	5Ø	9.5	0.1240	8.6	7.26	10.8	4.71	4.21	13.0	2.094	0.740	0.385	217.24	Ø.3866
37	H	5Ø	9.5	0.1018	8.6	8.19	10.8	5.33	4.80	13.Ø	2.324	Ø.822	0.362	216.97	0.3811
39	H	40	9.5	0.0417	8.5	6.55	10.8	5.25	4.69	11.4	2.348	9.830	Ø.278	188.70	0.4091
61	H	3Ø	9.5	-0.0628	8.4	4.38	10.8	4.26	3.96	13.3	1.578	Ø.558	0.214	219.72	0.4141
106	N	60	8.0	0.1405	7.1	8.11	14.9	4.71	3.39	15.0	3.273	1.157	0.084	230.49	0.5464
10	N	60	8.0 o a	Ø.2141 Ø.2496	7.2 7.2	10.42	15.0 14.9	4.67 4.73	4.29 4.06	15.3 17.8	1.838 2.426	Ø.650 Ø.858	0.107 0.076	235.73 275.66	Ø.4864 Ø.4495
102 101	N N	6 <i>6</i> 5Ø	8.Ø 8.Ø	0.2430	7.1	8.21 6.74	15.3	4.44	3.97	15.0	1.994	Ø.7Ø5	0.044	230.25	Ø. 4931
105	N	50	8.0	0.1082	7.1	6.58	15.3	4.41	3.34	15.0	2.871	1.015	0.077	229.99	Ø.5537
100	H	40	8.0	0.0410	7.0	5.34	15.3	4.13	3.85	15.0	1.497	Ø.529	0.027	228.96	0.5092
104	Ħ	40	8.0	0.0089	7.0	5.06	15.4	4.06	3.3∅	15.0	2.368	Ø.837	0.028	228.46	0.5674
96	N	40	8.0	-0.0558	6.9	5.18	15.3	4.09	3.84	15.0	1.432	0.506	0.025	227.46	0.5183
109	H	40	8.0	0.0482	7.0	5.31	15.3	4.16	3.38	15.∅	2.428	Ø.858	0.030	229.07	Ø.5548
103	H	30	8.0	-0.0620	6.9	3.84	15.4	3.73	3.58	14.9	1.045	Ø.369	0.017	224.99	Ø.5453
110	N	30	8.0	-0.0284	7.0	3.89	15.4	3.84	3.23	14.9	2.082	Ø.736	0.018	225.50	0.5812
59	H	60	8.0	0.3261	7.3	9.26	12.6	4.57 4.63	4.01 4.11	22.8 11.8	2.200 2.137	Ø.778 Ø.756	Ø.138 Ø.121	354.92 181.75	Ø.4129 Ø.5134
91 9Ø	H H	6Ø 6Ø	8.Ø 8.Ø	Ø.2373 Ø.2844	7.2 7.3	9.35 9.57	11.4 11.4	4.70	4.13	10.9	2.229	Ø.788	Ø.121	167.74	Ø.5218
79	H	60	8.0	Ø.29 0 9	7.3	8.88	11.4	4.40	3.86	22.3	2.105	8.744	0.134	346.90	0.4283
21	H	60	8.0	0.2001	7.2	9.10	10.9	4.52	4.79	14.9	ERR	ERR	Ø.124	229.77	Ø.4531
58	H	55	8.0	Ø.1929	7.2	8.34	12.6	4.41	3.95	11.8	1.961	Ø.693	0.105	181.23	0.5307
89	H	5Ø	8.0	0.1533	7.2	7.95	11.6	4.43	4.69	11.9	1.699	0.601	Ø.Ø67	181.77	0.5210
84	H	50	8.0	0.1062	7.1	7.94	12.6	4.42	4.67	15.7	1.710	Ø.6Ø5	Ø.Ø68	240.98	9.4781
2	H	50	8.0	0.1494	7.1	8.10	11.4	4.67	4.17	15.8	2.102	0.743	0.077	242.57	0.4941
92	H	50	8.0	Ø.136Ø	7.1	7.83	11.7	4.40	4.08	11.9	1.650	0.583	9.973	181.57	0.5228
57	H	45	8.0	Ø. Ø992	7.1	6.93	11.7	4.29	3.90	11.9 13.5	1.781 1.986	Ø.639 Ø.702	Ø.Ø56 Ø.Ø39	181.13 204.80	Ø.5420 Ø.5263
23 93	H H	40 40	8.Ø 8.Ø	Ø.Ø228 Ø.Ø619	7.0 7.1	6.54 6.28	12.6 11.7	4.61 4.31	4.16 4.12	13.2	1.265	0.102 0.447	0.044	201.54	Ø.5067
56	H	40	8.0	0.0655	7.1	6.15	11.7	4.26	3.89	12.2	1.740	Ø.615	0.042	185.93	0.5409
81	H	40	8.0	0.0605	7.1	5.89	11.7	4.04	3.79	13.2	1.394	0.493	0.051	201.52	0.5361
85	H	40	8.0	0.0715	7.1	6.63	11.7	4.37	4.07	12.2	1.605	0.568	0.043	186.00	0.5244
86	H	3Ø	8.0	0.0000	7.0	5.03	12.8	4.24	4.06	12.2	1.225	0.433	0.614	185.11	0.5306
94	H	3Ø	8.0	-0.0205	7.0	4.70	12.8	4.13	3.64	13.5	1.957	Ø.692	0.014	204.20	0.5536
64	N	60	7.0	0.2534	6.3	8.13	15.2	4.35	3.44	15.0	2.664	0.942	0.025	215.01	0.6187
63	H	50	7.0	0.1552	6.2	6.74	15.2	4.09	3.40	15.0	2.285	9.898	0.010	214.18	0.6318
55	Н	60	7.0	Ø.3595	6.4	9.25	12.8	4.25	3.68	22.2	2.125	Ø.751	Ø. Ø39 ø. ø36	322.33	0.5101 0.5210
78 50	H	6Ø	7.0	Ø.3588	6.4	9.96 6.50	12.9	4.13 3.87	3.57 3.72	22.2 11.9	2.081 1.075	Ø.736 Ø.38Ø	Ø.036 Ø.007	322.32 167.68	Ø.5210 Ø.6518
52 51	H	4 <i>0</i> 3 <i>0</i>	7.0 7.0	0.0643 -0.0373	6.1 6.Ø	6.5Ø 4.79	13.1 13.1	3.70	3.61	11.9	Ø.792	Ø.380 Ø.280	0.003	165.89	Ø.6753
51 12	H	5Ø	6.1	6.1401	5.2	6.85	15.6	3.75	3.12	17.6	2.085	Ø.737	Ø.003	231.13	Ø.7576
13	H	40	6.1	0.0430	5.1	5.56	15.3	3.44	3.02	15.0	1.637	Ø.579	0.002	194.70	Ø.8269
33	H	50	6.1	Ø.1667	5.3	8.32	11.2	4.15	3.45	15.3	2.298	Ø.813	0.004	201.87	Ø.7368
32	H	40	6.1	Ø.9789	5.2	6.91	11.2	3.92	3.54	13.1	1.680	0.594	0.002	171.34	0.7718
34	H	30	6.1	-0.0400	5.0	5.09	13.2	3.67	3.40	13.1	1.379	0.488	0.002	169.45	0.8954

Table A2
Phase II Seawall Data

x	SWL with no setup		Ds effective	Gage Right Hmo	Gage Eight Tp	Gage Four Hno	Goda Array2 Hno	Goda Array2 Tp	Goda Arrayl Reflect. Coeff.	Calc. Seiche Hmo	Calc. Seiche Amplitude	Ovtp. rate	Calc. Lp	Rel.
Gain	ft.	ft.	ft.	ft.	sec.	ft.	ft.	sec.		ft.	ft.	cfs/ft	ft.	Prbd.
30		-0.0267	6.0	4.80	11.9	3.91	3.70	10.7		1.279	0.452	0.002	153.91	0.6780
40		0.0148	6.0	6.24	11.9	4.06	3.79	13.8	0.5474	1.471	0.520	0.008	200.55	0.6082
40		0.0289	6.0	6.44	12.0	3.72	3.58	9.9	0.5121	0.992	Ø.351	0.995	142.95	0.7052
56		0.0425	6.0	7.88	11.9	4.11	3.84	13.8	0.5553	1.469	Ø.516	0.011 a aao	200.96	0.6000 0.6001
50		0.1198	6.1	8.08	12.0	3.88	3.63	14.9	0.5305 0.5505	1.368	Ø.484 Ø.605	0.008 0.015	218.49 220.37	Ø.5868
62 62		Ø.2385 Ø.1586		9.64 9.64	12.0 11.2	4.05 4.52	3.67 4.31	14.9 14.9	0.5764	1.371	Ø.485	0.013	218.45	0.5331
62		Ø. 2518	6.3	9.56	11.2	4.29	3.95	13.8	Ø.5632	1.688	Ø.597	0.019	203.51	0.5727
72		Ø.3431		11.09	11.9	4.47	3.98	14.6	Ø.5794	2.047	0.724	0.037	217.60	0.5511
70		Ø.3424		11.19	12.0	4.27	3.81	16.8	0.5605	1.928	Ø.682	0.019	250.07	0.5413
86		Ø.4659	6.5	12.64	11.9	4.76	4.10	21.8	0.5982	2.424		Ø.Ø83	328.65	0.4637
92		Ø.6264		14.21	11.9	5.05	4.21	14.5	0.6051	2.780	0.983	0.123	220.63	0.5098
95		Ø.6593		14.69	11.9	5.11	4,25	16.8	Ø.6Ø68	2.839	1.004	0.148	255.62	0.4806
30		-0.0654		3.79	14.9	3.53	3.14	15.6	0.5357	1.619	0.573	0.002	225.91	0.6689
3€	7.9	-0.0539	5.9	5.14	15.2	3.72	3.40	15.6	0.5531	1.507	0.533	Ø. 004	225.41	0.6339
46	7.0	0.0114	6.0	5.14	15.2	3.72	3.40	15.6	0.5392	1.597	Ø.533	Ø. 00 4	227.21	0.6275
40	7.0	Ø.Ø228	6.0	6.55	15.2	3.86	3.55	15.6	0.5449	1.496	Ø.529	0.011	226.70	0.6084
52		0.0928	6.1	6.55	15.2	3.86	3.55	15.6	0.5433	1.496	0.529	Ø. Ø9 4	228.58	0.6018
5€		0.0336		6.47	15.0	3.87	3.52	15.5	0.5466	1.612		0.001	226.24	0.6120
62		0.1944		7.93	14.9	4.04	3.60	16.2	0.5456	1.832		0.008	239.70	0.5800
66		0.1151		7.78	15.Ø	4.06	3.58	15.6	0.5693	1.916		0.009	228.95	0.5974
78		0.3475		9.20	15.0	4.29	3.71	15.6	Ø.5857	2.160	0.764	9.023	232.08	0.5650
70		0.2709		9.21	14.9	4.23	3.68	12.1		2.085	Ø.737	0.019	178.87	9.6245
86		0.4691		10.62	15.0	4.61	3.89	15.5	0.5867	2.487	Ø.879	0.048	233.40	0.5385
86		0.3901		10.60	14.9	4.42	3.85	12.1		2.174		0.045	180.37	Ø.5964 Ø.5246
96		0.5278		12.07	14.9	4.76	3.98	15.6	0.5887	2.6 00 2.811	Ø.919 Ø.994	0.077 0.094	234.95 264.60	Ø. 3240 Ø. 4978
96 106		Ø.5841 Ø.6572		11.87 13.38	15.0	4.91 5.08	4.02	17.4		2.982	1.054	Ø.137	316.92	Ø.4574
100		0.0012		13.22	15.2 15.0	5.19	4.11 4.16	20.7 22.9	Ø.5981	3.101	1.034	Ø.149	334.59	Ø.4829
36		-Ø.0557	6.9	4.69	13.5	4.48	4.15	10.6	Ø.5986	1.690	Ø.597	0.039	162.26	Ø.5513
46		-0.0129		6.32	13.3	4.65	4.48	14.1	Ø.5878	1.270	Ø.449	Ø.Ø63	217.88	Ø.4728
46		0.0930		6.49	11.2	4.44	4.37	13.9	Ø.5873	0.787	Ø.278	0.023	216.95	9.4744
56		0.0124		8.19	11.2	4.56	4.49	14.9	Ø.5736	0.797	Ø.282	0.046	230.81	Ø.4616
50		0.0709		8.12	13.3	4.77	4.55	13.6	0.5887	1.434		0.075	212.09	9.4666
66		Ø.2818		9.82	13.3	4.88	4.66	12.5	Ø.5956	1.431	0.506	0.083	197.14	0.4574
66		0.2481		10.14	13.3	4.92	4.68	12.5	Ø.5918	1.522	0.538	0.082	196.73	Ø.4588
69	8.0				13.3	4.87	4.60	12.5		1.599	0.565	0.093	195.87	0.4690
66	8.9	0.1246		9.81	11.2	4.70	4.55	14.9	0.5826	1.171	0.414	0.067	232.48	Ø.4495
66	8.0	0.1211		9.64	13.3	4.96	4.76	12.5	0.5985	1.385	0.490	0.125	195.16	Ø.4628
66	8.8	0.1856		9.81	13.3	4.95	4.60	12.5		1.837		0.113	195.96	0.4687
79		0.2791		11.44	13.3	5.10	4.83	15.6	0.6004	1.631	0.577	Ø.151	246.08	0.4152
76		0.3065		11.32	11.2	4.72	4.42	14.8	0.5786	1.667	0.589	0.095	233.83	0.4466
76		0.3304		11.23	11.2	4.91	4.70	14.9	0.5911	1.411	Ø.499	Ø.122	235.51	9.4151
76		0.3770		11.38	13.3	5.11	4.84	14.5	0.6011	1.639	0.579	Ø.136	230.85	0.4179
79		0.2415		11.14	13.3	5.17	4.96	15.6	0.6089	1.636	Ø.579	0.209	245.50	9.4137
														9.4249
														0.4170
														9.4188
														0.3975
ď	Ø.18	v.4111	1.4	14.91				14.5	Ø.5363	4.312	ъ.00d	ช. 386	291.90	0.4141
	76 86 86	70 8.0 70 8.0 80 8.0 80 8.0 80 8.0	70 8.0 0.2970 80 8.0 0.4157 80 8.0 0.4790	70 8.0 0.2970 7.3 80 8.0 0.4157 7.4 80 8.0 0.4790 7.5	70 8.0 0.2970 7.3 11.42 80 8.0 0.4157 7.4 12.59 80 8.0 0.4790 7.5 12.89	70 8.0 0.2970 7.3 11.42 13.3 80 8.0 0.4157 7.4 12.59 11.2 80 8.0 0.4790 7.5 12.89 13.3 80 8.0 0.4131 7.4 12.97 13.3	7Ø 8.Ø 0.297Ø 7.3 11.42 13.3 5.19 8Ø 8.Ø 0.4157 7.4 12.59 11.2 5.19 8Ø 8.Ø 0.479Ø 7.5 12.89 13.3 5.38 8Ø 8.Ø 0.4131 7.4 12.97 13.3 5.48	7Ø 8.Ø 0.297Ø 7.3 11.42 13.3 5.19 4.77 8Ø 8.Ø 0.4157 7.4 12.59 11.2 5.19 4.73 8Ø 8.Ø 0.479Ø 7.5 12.89 13.3 5.38 4.92	70 8.0 0.2970 7.3 11.42 13.3 5.19 4.77 15.7 80 8.0 0.4157 7.4 12.59 11.2 5.19 4.73 14.9 80 8.0 0.4790 7.5 12.89 13.3 5.38 4.92 15.6 80 8.0 0.4131 7.4 12.97 13.3 5.48 4.87 14.5	70 8.0 0.2970 7.3 11.42 13.3 5.19 4.77 15.7 0.603 80 8.0 0.4157 7.4 12.59 11.2 5.19 4.73 14.9 0.5956 80 8.0 0.4790 7.5 12.89 13.3 5.38 4.92 15.6 0.6044 80 8.0 0.4131 7.4 12.97 13.3 5.48 4.87 14.5 0.5963	70 8.0 0.2970 7.3 11.42 13.3 5.19 4.77 15.7 0.603 2.058 80 8.0 0.4157 7.4 12.59 11.2 5.19 4.73 14.9 0.5956 2.135 80 8.0 0.4790 7.5 12.89 13.3 5.38 4.92 15.6 0.6044 2.181 80 8.0 0.4131 7.4 12.97 13.3 5.48 4.87 14.5 0.5963 2.512	70 8.0 0.2970 7.3 11.42 13.3 5.19 4.77 15.7 0.603 2.058 0.728 80 8.0 0.4157 7.4 12.59 11.2 5.19 4.73 14.9 0.5956 2.135 0.755 80 8.0 0.4790 7.5 12.89 13.3 5.38 4.92 15.6 0.6044 2.181 0.771 80 8.0 0.4131 7.4 12.97 13.3 5.48 4.87 14.5 0.5963 2.512 0.888	70 8.0 0.2970 7.3 11.42 13.3 5.19 4.77 15.7 0.603 2.058 0.728 0.186 80 8.0 0.4157 7.4 12.59 11.2 5.19 4.73 14.9 0.5956 2.135 0.755 0.185 80 8.0 0.4790 7.5 12.89 13.3 5.38 4.92 15.6 0.6044 2.181 0.771 0.236 80 8.0 0.4131 7.4 12.97 13.3 5.48 4.87 14.5 0.5963 2.512 0.888 0.306	70 8.0 0.2970 7.3 11.42 13.3 5.19 4.77 15.7 0.603 2.058 0.728 0.186 247.89 80 8.0 0.4157 7.4 12.59 11.2 5.19 4.73 14.9 0.5956 2.135 0.755 0.185 236.76 80 8.0 0.4790 7.5 12.89 13.3 5.38 4.92 15.6 0.6044 2.181 0.771 0.230 249.14 80 8.0 0.4131 7.4 12.97 13.3 5.48 4.87 14.5 0.5963 2.512 0.888 0.306 231.36

Table A2 (Continued)

Test Stor No. Type	e G		SWL with no setup	Setup meas.	_	Right										
No. Type	e G	*		=040.	Ds	Hao	Right Tp	Four Hmo	Array2 Hmo	Array2 Tp	Arrayl Reflect.	Calc. Seiche	Calc. Seiche	Ovtp.	Calc.	
No. Type	e G			in tank	effective	400	1.12	ш	nav.	* P	Coeff.	Heo	Amplitude		Lp	Rel.
	·		ft.	ft.	ft.	ft.	sec.	ft.	ft.	sec.	***************************************	ft.	ft.	cfs/ft	ft.	Frbd.
248 H		8Ø	8.0	0.0000			11.2	5.18	4.87	14.5	0.6059	1.770	Ø.626	Ø.182	225.20	0.4303
		8Ø	8.0	0.3863		13.28	13.3	5.36	4.92	14.5	0.6011	2.124	0.751	0.231	230.98	0.4128
253 H		80	8.0	0.3844		12.99	13.3	5.39	4.85	15.6	Ø.5999	2.334	Ø.825	Ø. 245	247.70	0.4071
263 H		80	8.9	Ø.3399		12.59	13.3	5.44	4.97	14.5	0.6084	2.197	Ø.777	0.315	230.32	0.4129 0.4401
254 H 123 H		9Ø 9Ø	8.Ø 8.Ø	0.4862		14.43	13.3	5.63 5.40	4.92 4.92	11.5 10.4	Ø.6Ø89 Ø.6Ø78	2.732 2.228	Ø.966 Ø.788	Ø.405 Ø.308	182.64 166.02	0.4401 0.4339
177 H		90	8. 0	0.6230 0.5480		14.18 14.64	11.2 13.3	5.73	4.97	21.8	Ø.6114	2.841	1.004	Ø. 43Ø	351.52	Ø. 3485
151 H		90	8.0	Ø.5284		14.01	11.2	5.47	4.81	10.1	Ø.5983	2.614	Ø.924	Ø.273	161.16	Ø.4636
249 H		90	8.0	Ø.4799		14.69	13.3	5.61	4.94	10.9	Ø.6 09 6	2.664	0.942	0.308	173.17	0.4476
259 H		90	8.0	Ø.628Ø	7.6	14.42	13.3	5.69	4.97	11.2	0.6057	2.767	Ø.978	Ø.355	179.31	Ø.4314
264 H		90	8.0	Ø.4585		13.99	13.3	5.68	5.05	10.9	Ø.6159	2.609	Ø.922	0.479	172.95	0.4426
153 H		95	8.0	0.5806		14.74	11.2	5.53	4.85	9.9	0.6064	2.650	0.937	0.307	157.85	0.4605
125 H		95	8.0	0.7203	7.7	14.92	11.2	5.57	5.04	10.1	0.6102	2.367	Ø.837	0.346	163.06	Ø.4236
178 H		95	8.8	0.0000		15.45	13.3	5.87	5. Ø3	21.8	0.6136	3.024	1.069	0.535	339.58	0.3769
26 0 H		100	8.0	0.7292	7.7	15.61	10.9	5.90	5.06	10.9	0.6236	3.041	1.075	9.489	175.75	0.4231
265 H		100	8.0	0.5730		15.17	13.3	5.92	5.04	10.9	Ø.6149	3.095	1.094	0.585	174.14	Ø.4349
255 H		100	8.0	0.5744	7.6	15.73	13.3	5.88	4.98	11.5	0.6216	3.131	1.197	0.197	183.60	0.4308
25Ø H		100	8.9	Ø.5624	7.6	15.83	13.3	5.81	4.98	10.9	0.6147	2.994	1.058	0.442	174.03	0.4391
179 NE		30		-0.1085	6.9	3.87	14.9	4.26	3.87	15.4	0.6179	1.783	Ø.63Ø	Ø. Ø47	237.17 238.15	0.5005 0.5165
126 NE		30	8.Ø	-0.0454	7.9	3.89	15.1	4.24 4.66	3.77	15.4	Ø.6Ø15	1.944 1.928	Ø.687 Ø.682	Ø.Ø12 Ø.Ø95	238.67	Ø. 4697
18Ø NE 181 NE		40 50	8.Ø 8.Ø	-0.1041 -0.0617	6.9 6.9	5.15 6.69	14.9 14.7	4.80	4.24 4.25	15.5 15.6	Ø.6Ø19 Ø.5876	2.236	Ø.791	Ø.122	240.77	Ø. 465Ø
128 NE		50	8.Ø	-0.0017	7.0	6.83	14.7	4.74	4.36	15.6	Ø.5983	1.873	Ø.662	0.050	241.15	Ø.4669
129 NE		60	8.0	0.1009	7.1	7.99	14.7	4.84	4.54	15.6	0.587	1.667	Ø.589	Ø.123	243.32	Ø.4448
182 NB		60	8.0	0.1876	7.2	8.02	14.7	4.84	4.53	15.6	Ø.5832	1.724	0.610	Ø.163	244.67	Ø.4287
183 NB		70	8.0	0.2730	7.3	9.44	14.9	5.00	4.55	15.5	0.592	2.078	Ø.735	0.208	245.29	Ø.4218
13Ø NE		70	8.0	Ø.1886	7.2	9.59	14.9	4.99	4.62	15.5	Ø.5889	1.882	Ø.666	0.169	243.99	0.4340
131 NR	3	8Ø	8.0	Ø.3122	7.3	10.96	14.9	5.28	4.70	16.2	0.6004	2.404	Ø.85 0	0.230	257.51	0.4148
184 NE	3	80	8.0	0.3511		10.81	14.9	5.26	4.61	16.2	Ø.598	2.528	0.894	0.279	258.13	0.4069
185 NE		90	8.0	Ø.4298		12.04	14.9	5.49	4.71	16.2	0.6124	2.814	Ø.995	Ø.387	259.39	0.3960
132 NE		9₿	8.0	Ø.4585	7.5	12.41	14.9	5.56	4.87	16.2	Ø.6149	2.690	Ø.951	0.324	259.85	0.3958
186 NE		100	8.0	Ø.5518	7.6	13.76	14.9	5.90	5.05	25.8	0.6171	3.050	1.078	0.513	416.09	0.3172
133 NE		100	8.0	0.5696	7.6	13.76	14.9	5.90	5.05	17.4	0.6304	3.050	1.078	0.448	281.01	0.3705
162 H		30	9.5	-0.0187	8.5	4.84	13.3	4.99	4.60	14.6	0.6341	1.923	Ø.68Ø	Ø.137	247.06	0.3579
163 H		40	9.5	-0.0551	8.4	6.57	13.3	5.29	5.10	14.7	Ø.6Ø52 Ø.5979	1.4Ø5 1.224	Ø.497 Ø.433	Ø.278 Ø.332	247.92 248.79	Ø.3356 Ø.3283
164 H 241 H		5Ø 6Ø	9.5 9.5	0.0099 0.0944	8.5	8.32	14.7	5.33 5.75	5.18	14.7 14.7	Ø.5931	1.603	Ø. 433 Ø. 567	Ø.537	249.92	0.3100
241 H 203 H	-		9.5	0.0344	8.6 8.6	10.46 9.51	13.3 13.3	5.48	5.52 5.30	14.7	Ø.59Ø8	1.387	Ø. 491	0.331	249.94	Ø.3185
221 H		6Ø 6Ø	9.5	0.00077	8.5	10.21	10.9	5.77	5.57	14.7	Ø.5947	1.525	Ø.539	9.834	248.76	Ø.3132
165 H		60	9.5	0.0787	8.6	9.90	13.3	5.49	5.25	14.7	Ø.5929	1.629	Ø.576	0.413	249.71	Ø.3217
222 H		70	9.5	0.1037		11.96	13.3	5.97	5.65	14.3	Ø.5984	1.903	Ø.673	Ø.582	244.52	0.3069
204 H		70	9.5	0.1541		11.07	13.3	5.63	5.30	15.6	Ø.5984	1.896	Ø.67Ø	0.547	266.66	Ø.3Ø86
232 H		70	9.5	Ø.1562		11.84	10.9	5.85	5.54	14.7	Ø.5944	1.867	0.660	Ø.666	250.74	0.3057
166 H		70	9.5	0.2029		11.49	10.9	5.67	5.32	14.7	0.6014	1.960	Ø.693	0.537	251.36	Ø.3115
242 H		70	9.5	0.1674	8.7	12.04	10.9	5.86	5.57	14.3	Ø.5925	1.835	Ø.649	Ø.685	245.34	0.3064
243 H		80	9.5	0.2626		13.57	13.3	6.07	5.57	15.6	Ø.5996	2.403	Ø.85Ø	0.780	268.19	Ø.2926
2 0 5 H		80	9.5	Ø.2396	8.7	12.65	13.3	5.79	5.37	15.5	Ø.6 9 58	2.184	0.772	9.648	266.26	0.3020
233 H		8₿	9.5	0.2499	8.7	13.31	13.3	6.00	5.59	15.6	Ø.5975	2.170	0.767	Ø.694	268.01	0.2927
22 3 H		80	9.5	0.2103		13.53	13.3	6.16	5.68	15.6	Ø.5962	2.390	Ø. 845	1.029	267.45	0.2919
167 H	i	80	9.5	0.3175	8.8	13.09	13.3	5.86	5.38	15.6	0.6065	2.333	Ø.825	Ø.634	268.96	Ø.2967

(Sheet 2 of 3)

Table A2 (Concluded)

Test	Storm	x	SWL with no setup		Ds effective	Gage Right Hmo	Gage Bight Tp	Gage Four Hmo	Goda Array2 Hmo	Goda Array2 Tp	Goda Arrayl Reflect. Coeff.	Calc. Seiche H n o	Calc. Seiche Amplitude	Ovtp. rate	Calc. Lp	Rel.
No.		Gain	ft.	ft.	ft.	ft.	sec.	ft.	ft.	sec.		ft.	ft.	cfs/ft	ft.	Frbd.
244	H	9Ø	9.5	Ø.3515		15.03	13.3	6.32	5.64	14.5		2.860	1.011	0.856	251.17	0.2924
234	H	90	9.5	Ø.3798		14.92	10.9	6.30	5.67	14.5	0.6143	2.740	Ø.969	0.944	251.54	0.2896
224	H	90	9.5	Ø.2928	8.8	14.93	13.3	6.43	5.79	15.3	0.6087	2.802	0.991	1.249	264.63	0.2850
206	H	90	9.5	Ø.2899		14.65	13.3	6.06	5.49	15.3	0.6116	2.565	0.907	0.760	264.60	Ø.2956
168	H	9Ø	9.5	0.4197	8.9	14.57	13.3	6.13	5.47	15.3	0.6093	2.753	0.973	0.793	266.38	Ø.289Ø
170	H	95	9.5	0.4437	8.9	15.29	13.3	6.26	5.55	15.6		2.886	1.020	Ø.787	270.72	0.2834
235	H	100	9.5	Ø.4526	9.0	16.34	13.3	6.44	5.75	18.2		2.905	1.027	1.058	316.67	Ø.2623
209	H	100	9.5	0.2398	8.7	15.90	13.3	6.09	5.46	15.0	0.6172	2.699	0.954	1.040	258.49	0.3015
245	Н	100	9.5	0.4535	9.0	16.34	10.9	6.50	5.75	15.6	Ø.613	3.Ø32	1.072	0.704	270.86	Ø.2764
225	H	100	9.5	0.3545	8.9	16.09	13.3	6.52	5.81	14.5	0.6197	2.944	1.041	1.157	251.21	Ø.2863
154	NE	30	9.5	-0.1413	8.4	3.83	15.7	4.48	4.39	14.8	0.6299	0.871	0.308	0.262	248.93	Ø.3754
155	NB	40	9.5	-0.1202		5.54	15.5	5.00	4.90	15.5	0.6053	Ø.989	Ø.35Ø	Ø.228	262.00	0.3420
156	NR	50	9.5	-0.1018	8.4	6.85	14.4	5.20	5.06	15.5	Ø.5925	1.209	0.428	0.425	262.26	Ø.3337
211	ИE	60	9.5	0.0059	8.5	8.94	14.4	5.38	5.10	15.5	0.5874	1.668	0.590	0.406	262.97	Ø.3262
236	NE	60	9.5	0.0396	8.5	7.97	15.5	5.57	5.21	15.5	Ø.5866	1.988	0.703	0.546	263.45	0.3195
157	HB	60	9.5	-0.0620	8.4	8.36	14.4	5.39	5.21	15.5	Ø.5846	1.354	0.479	0.533	262.01	0.3252
216	NE	60	9.5	0.0086	8.5	8.19	14.4	5.49	5.14	15.5	0.5903	1.922	0.680	0.473	263.01	0.3242
226	NE	6Ø	9.5	-Ø.1511	8.3	8.06	14.4	5.68	5.26	15.5	Ø.5876	2.157	0.763	Ø.658	261.55	Ø.3282
212	NE	70	9.5	0.0589	8.6	9.34	15.1	5.48	5.12	15.5	0.5854	1.946	Ø.688	0.493	263.72	Ø.3219
237	NE	70	9.5	0.1210	8.6	9.45	15.5	5.67	5.25	15.5	0.5851	2.156	0.762	0.590	264.60	Ø.3133
227	NB	70	9.5	-0.0758	8.4	9.43	15.5	5.75	5. 33	15.5	Ø.5827	2.171	Ø.768	Ø.939	261.81	0.3214
217	HZ	79	9.5	0.1066	8.6	9.61	15.5	5.63	5.23	15.5	Ø.592	2.101	0.743	Ø.565	264.39	0.3149
158	HR	70	9.5	0.0060	8.5	9.82	15.5	5.49	5.24	15.5	Ø.5851	1.647	Ø.582	Ø.567	262.97	0.3201
228	NE	8Ø	9.5	0.0011	8.5	10.89	15.5	5.96	5.41	15.5	0.5769	2.508	0.887	0.883	262.90	Ø.3136
218	HE	80	9.5	0.1703	8.7	11.01	15.5	5.79	5.28	15.5	0.5849	2.369	Ø.838	0.651	265.29	0.3092
159	HE	80	9.5	0.0931	8.6	11.26	15.5	5.67	5.33	15.5	Ø.5833	1.924	0.680	Ø.653	264.20	Ø.3115
238	NB	8Ø	9.5	9.2284	8.7	10.94	15.5	5.84	5.36	15.5	Ø.591	2.324	Ø.822	0.573	266.10	0.3030
239	NR	90	9.5	Ø.3213	8.8	12.37	15.1	6.08	5.48	17.4	0.5895	2.627	Ø.929	0.832	301.83	Ø.2815
219	NE	9Ø	9.5	0.1831	8.7	12.07	15.1	6.21	5.53	14.5	Ø.5856	2.838	1.003	1.105	248.97	0.3056
214	NB	90	9.5	0.3743	8.9	12.48	15.1	5.95	5.43	19.0	0.5926	2.438	Ø.862	0.675	329.33	0.2729
160	NB	90	9.5	0.2683	8.8	12.56	15.1	5.90	5.44	15.5	0.5949	2.288	0.809	Ø.612	267.50	0.2974
229	HE	90	9.5	0.3046	8.8	12.63	15.1	6.12	5.45	19.0	9.5886	2.774	Ø.981	0.826	328.13	0.2756
230	NE	100	9.5	0.3437	8.8	13.82	15.1	6.31	5.56	19.0	0.5915	3.000	1.061	0.790	328.80	0.2702
161	NE	100	9.5	0.3540	8.9	13.94	15.1	6.16	5.57	13.2	0.5971	2.629	Ø.929	0.941	227.92	0.3042
229	NB	100	9.5	0.2550	8.8	13.42	15.1	6.42	5.60	18.9	Ø.5886	3.152	1.114	1.127	327.20	0.2734
215	NB	100	9.5	0.4676	9.0	13.79	15.1	6.22	5.51	19.0	0.5971	2.890	1.022	Ø.833	330.92	Ø.2655
240	HB	100	9.5	Ø.3914		13.55	15.1	6.35	5.55	19.0	0.5949	3.074	1.087	0.966	329.62	0.2679

APPENDIX B: COMPARISON OF SEAWALL PERFORMANCE AND BEACH EROSION EFFECTS

1. To compare the relative effectiveness of the two seawall geometries and to estimate the overtopping rates for a beach erosion level different from the one that was tested, regression coefficients must be determined for Equation 3 (main text) for each data set. Table B1 lists the regression coefficients determined for the Phase I seawall data set (A), the Phase II seawall data set (B), a partial Phase II data set (C) containing only the test results for the 100 percent values of the design wave height at the wave board (DWHAWB), and a partial Phase II data set (D) containing test results for only those tests with a 70 percent or less DWHAWB.

 $\begin{tabular}{ll} Table B1 \\ Regression Coefficients for Phase I and Phase II Data Sets \\ \end{tabular}$

	Regression Co	Coefficient	
Data Set	Q _o , cfs/ft		
A, Phase I Seawall 30 to 70% DWHAWB	52.3	-13.19	
B, Phase II Seawall 30 to 100% DWHAWB	50.4	-13.67	
C, Phase II Seawall 100% DWHAWB	7.78	-7.476	
D, Phase II Seawall 30 to 70% DWHAWB	37.94	-13.89	

The data curves for data sets A, B, C, and D have been drawn through the data and are shown in Figures B1, B2, B3, and B4, respectively.

2. Comparisons of the overtopping rates between the two seawall geometries and the different beach erosion levels can be made by computing a maximum zero-moment wave height H_{mo} at the structure toe. From earlier wave tank tests (Ahrens and Heimbaugh, in publication*) it has been found that the

^{*} References cited in the Appendixes can be found in the References at the end of the main text.

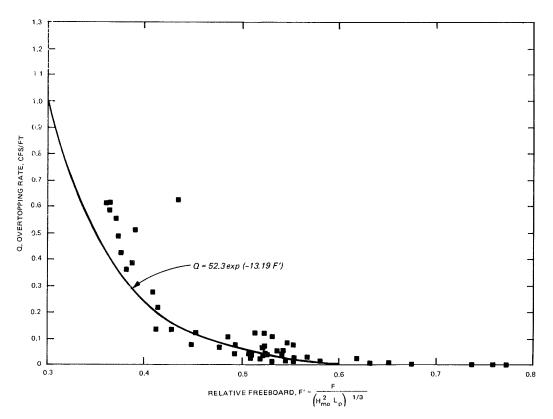


Figure B1. Q versus F' data plot for Phase I seawall, data set A (30 to 70 percent DWHAWB)

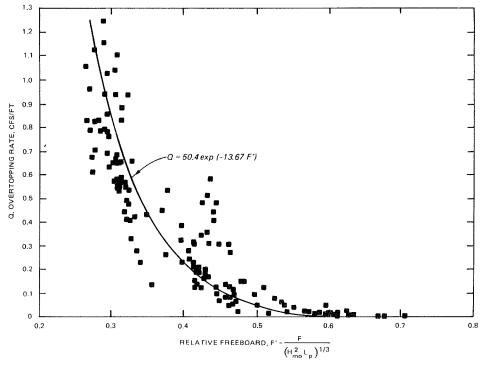


Figure B2. Q versus F' for Phase II seawall, data set B (30 to 100 percent DWHAWB)

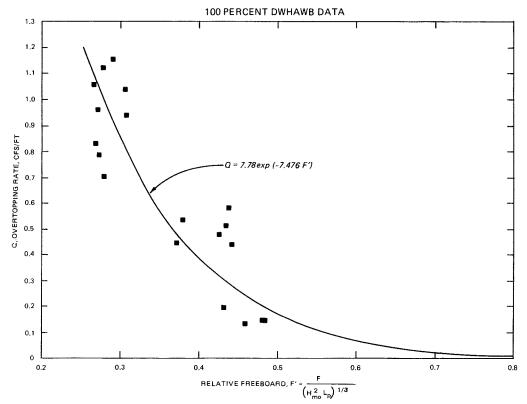


Figure B3. Q versus F' data plot for Phase II seawall, data set C (100 percent DWHAWB)

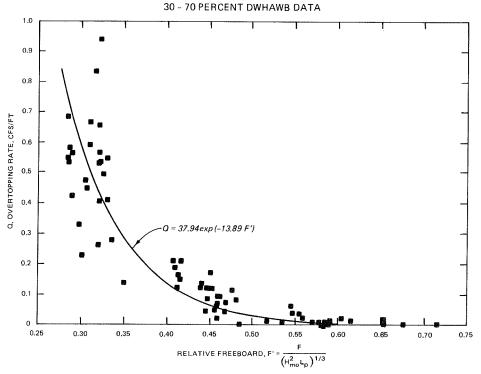


Figure B4. Q versus F' for Phase II seawall, data set D (30 to 70 percent DWHAWB)

approximate limiting value for the zero-moment wave height is given by

$$\left(\frac{H_{\text{mo}}}{L_{\text{p}}}\right)_{\text{max}} = 0.10 \text{ tan } h \left(\frac{2\pi d_{\text{s}}}{L_{\text{p}}}\right)$$
 (B1)

By substituting this (H_{mo}) value into Equation 1 (main text), a corresponding relative freeboard parameter F' can be determined. This value of F' then can be substituted into Equation 3 (main text), and a Q value can be calculated or read from the appropriate data curve (Figures B1, B2, B3, and B4). This Q value is representative of an average overtopping rate associated with a maximum H_{mo} for a specific local still-water level (swl) at the structure toe d_s . The d_s value used in these calculations should include an estimate of the setup which could occur at the project site. The Q values determined in this manner can then be intercompared, and percent differences and/or percent decreases in the overtopping rates can be computed.

- 3. Overtopping rates calculated using data sets A, B, and D are listed in Table B2. Phase I and Phase II seawall comparisons expressed in percent decrease in Q for the hurricane event at the three swl's tested are given in Table 2 of the main text.
- 4. Overtopping rates calculated using data sets B and C are listed in Table B3. The percent difference and percent decrease in Q given in Table B4 and Table 3 (main text) were determined using the calculated Q values for the hurricane conditions in Table B3.

Table B2

Calculated Q Values for Comparison of Phase I and Phase II Seawalls

Data Set	Storm Type*	swl with No Setup ft	swl D s	Setup (Measured in Tank) ft	D s Effec- tive ft	T _p	L p ft	F Average Freeboard ft	F' Relative Freeboard	H mo max ft	Q Predicted cfs/ft
				Phase (One Seawa	11 (30 1	to 70% Ga	ins)			
A	H NE H NE H	9.5 9.5 8.0 8.0 7.0	8.5 8.5 7.0 7.0 6.0	0.4 0.4 0.6 0.6	8.9 8.9 7.6 7.6 6.6	13.7 15.4 13.7 15.4 13.7	224.36 252.70 203.94 229.62 189.02	6.2 6.2 7.7 7.7 8.7	0.338 0.324 0.492 0.472 0.631	5.242 5.263 4.331 4.345 3.721	0.605 0.727 0.079 0.103 0.013
	NE	7.0	6.0	0.6 Phase To	6.6 wo Seawal	15.4 1 (30 to	212.78 o 100% Ga	8.7 mins)	0.606	3.731	0.018
В	H NE H NE H NE	9.5 9.5 8.0 8.0 7.0	8.5 8.5 7.0 7.0 6.0	0.4 0.4 0.6 0.6 0.6	8.9 8.9 7.6 7.6 6.6 6.6	13.7 15.4 13.7 15.4 13.7	224.36 252.70 203.94 229.62 180.02 212.78	6.2 6.2 7.7 7.7 8.7 8.7	0.338 0.324 0.492 0.472 0.631 0.606	5.242 5.263 4.331 4.345 3.721 3.731	0.496 0.600 0.060 0.079 0.009
				Phase Two	Seawall	(30 to 7	70% Gains	0nly)			
D	H NE H NE H NE	9.5 9.5 8.0 8.0 7.0	8.5 8.5 7.0 7.0 6.0	0.4 0.4 0.6 0.6 0.6	8.9 7.6 7.6 6.6	13.7 15.4 13.7 15.4 13.7	224.36 252.70 203.94 229.62 180.02 212.78	6.2 6.2 7.7 7.7 8.7 8.7	0.338 0.324 0.492 0.472 0.631 0.606	5.242 5.263 4.331 4.345 3.721 3.731	0.346 0.421 0.041 0.054 0.006 0.008

^{*} H = hurricane; NE = northeaster.

Table B3

Calculated Q Values for Effect of Beach Elevation* on Overtopping Rates

Data Set	Storm Type**	swl with No Setup ft	swl D s ft	Setup (Measured in Tank) ft	D _s Effec- tive <u>ft</u>	T p sec	L p ft	F Average Freeboard ft	F' Relative Freeboard	H mo max ft	Q Predicted cfs/ft
				Phase Two S	eawall (All	Gains +1	.0 Beach Ele	evation)			
В	Н	9.5	8.5	0.4	8.9	13.7	224.36	6.2	0.338	5.242	0.496
	NE	9.5	8.5	0.4	8.9	15.4	252.70	6.2	0.324	5.263	0.600
	H	8.0	7.0	0.6	7.6	13.7	203.94	7.7	0.492	4.331	0.060
	NE	8.0	7.0	0.6	7.6	15.4	229.62	7.7	0.472	4.345	0.079
	H	7.0	6.0	0.6	6.6	13.7	189.02	8.7	0.631	3.721	0.009
	NE	7.0	6.0	0.6	6.6	15.4	212.78	8.7	0.606	3.731	0.013
				Phase Two Sea	awall (All	Gains +3.	4 Beach Ele	vation)			
	Н	9.5	6.1	0.4	6.5	13.7	190,57	6.2	0.444	3.782	0.117
	NE	9.5	6.1	0.4	6.5	15.4	214.52	6.2	0.426	3.792	0.149
	H	8.0	4.6	0.6	5.2	13.7	165.77	7.7	0.695	2.861	0.004
	NE	8.0	4.6	0.6	5.2	15.4	186.54	7.7	0.668	2.867	0.005
	H	7.0	3.6	0.6	4.2	13.6	146.81	8.7	0.962	2.244	0.000
	NE	7.0	3.6	0.6	4.2	15.4	165.17	8.7	0.924	2.248	0.000
				Phase Two Se	awa11 (100%	Gains +1	.0 Beach E1	evation)			
С	Н	9.5	8.5	0.4	8.9	13.7	224.36	6.2	0.338	5.242	0,621
C	NE	9.5	8.5	0.4	8.9	15.4	252.70	6.2	0.324	5.263	0.690
	H	8.0	7.0	0.6	7.6	13.7	203.94	7.7	0.492	4.331	0.196
	NE	8.0	7.0	0.6	7.6	15.4	229.62	7.7	0.472	4.345	0.228
	H	7.0	6.0	0.6	6.6	13.7	180.02	8.7	0.631	3.721	0.069
	NE	7.0	6.0	0.6	6.6	15.4	212.78	8.7	0.606	3.731	0.084
				Phase Two Se	awall (100%	Gains +3	.4 Beach El	evation)			
	T.	9.5	6.1	0.4	6.5	13.7	190.57	6.2	0.444	3.782	0.282
	H		6.1	0.4	6.5	15.4	214.52	6.2	0.426	3.792	0.322
	NE	9.5			5.2	13.7	165.77	7.7	0.695	2.861	0.043
	H	8.0	4.6	0.6	5.2	15.4	186.54	7.7	0.668	2.867	0.053
	NE	8.0	4.6	0.6		13.7	146.81	8.7	0.962	2.244	0.006
	Н	7.0	3.6	0.6	4.2 4.2	15.4	165.17	8.7	0.924	2.244	0.008
	NE	7.0	3.6	0.6	4.4	17.4	107.17	0.7	0.724	2.240	0.000

^{*} All elevations (el) cited herein are in feet referenced to National Geodetic Vertical Datum (NGVD).

^{**} H = hurricane; NE = northeaster.

Table B4

Overtopping Comparisons Using Hurricane Conditions and the +1.0- and +3.4-ft NGVD Beach Elevation Levels

	Percent	Difference*	Percent Decrease**				
swl _ft_	Phase II 100% Data† %	Phase II 30 to 100% Data %††	Phase II 100% Data %	Phase II 30 to 100% Data %			
+9.5	46	24	54	76			
+8.0	22	6	78	94			
+7.0	9	0	91	100			

^{*} Percent difference in Q for data at +1.0-ft NGVD beach elevation and predicted data at +3.4-ft NGVD beach elevation.

^{**} Percent decrease in Q for +3.4-ft NGVD beach elevation versus +1.0-ft NGVD beach elevation.

 $[\]ensuremath{\dagger}$ Percents are based on Q values calculated in Table B3 using only the 100 percent DWHAWB data points (100% data).

 $[\]dagger\dagger$ Percents are based on Q values calculated in Table B3 using all the data points (30 to 100% data).

APPENDIX C: WAVE SETUP AND SEICHE EFFECTS

1. During analysis of the overtopping test results, it was determined that wave setup and seiche were present in the wave tank. Wave setup is the superelevation of the water surface above normal still-water levels (swl's) and is related to wave breaking. Wave setup is caused by the radiation stress (wave-induced transport or momentum) of the waves progressing toward the shore (Seelig and Ahrens 1980). A seiche is a long-period standing wave which occurs in an enclosed body of water such as a wave tank. Seiches are commonly found in the prototype in lakes and embayments; consequently, they are unlikely to be found along the open coast of Virginia Beach.

Wave Setup

2. Wave setup which occurred in the wave tank increased as the percent gain of the design wave height at the wave board (DWHAWB) increased. Setup became significant only at the higher gain settings. Wave setups as high as 0.3 and 0.7 ft (prototype) were reached in the Phase I and Phase II studies, respectively (Figures C1 and C2). As would be expected, the setup was greater for the lower swl conditions of +8.0 and +7.0 ft National Geodetic Vertical Datum (NGVD). The effect that setup had in the model was to effectively increase the local swl at the structure. This increase was accounted for in the relative freeboard parameter F' by simply adding the measured setup to $\mathbf{d_s}$, the water depth at the structure toe. By increasing $\mathbf{d_s}$, the average freeboard F and significant wavelength $\mathbf{L_p}$ were also adjusted. Accounting for setup in the data analysis in this manner implies that wave setup which occurred in the wave tank was the best estimate of wave setup that would occur at Virginia Beach.

Wave Tank Seiche

3. Initial data analysis showed that a seiche was occurring in the wave tank, and it was determined that much of the data scatter seen in Figures 8 and 9 (main text) was due to this seiche. Figures C3 and C4 show the calculated seiche wave amplitude plotted versus the percent gain DWHAWB. The figures clearly show how the seiche wave amplitude increased as the percent gain

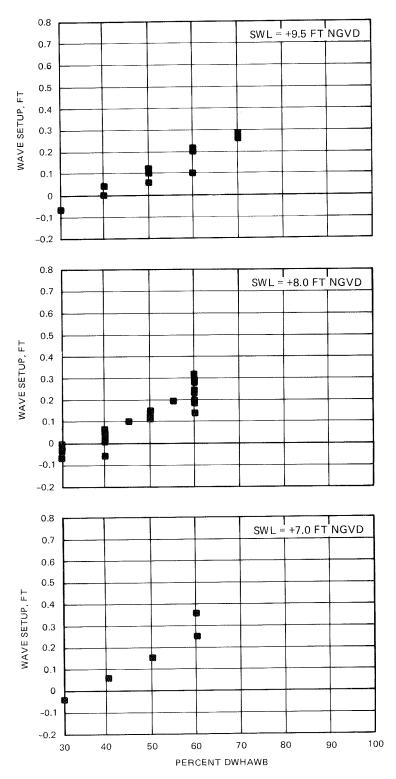


Figure C1. Setup versus percent gain (DWHAWB) at sw1's of +9.5, +8.0, and +7.0 ft NGVD, Phase I

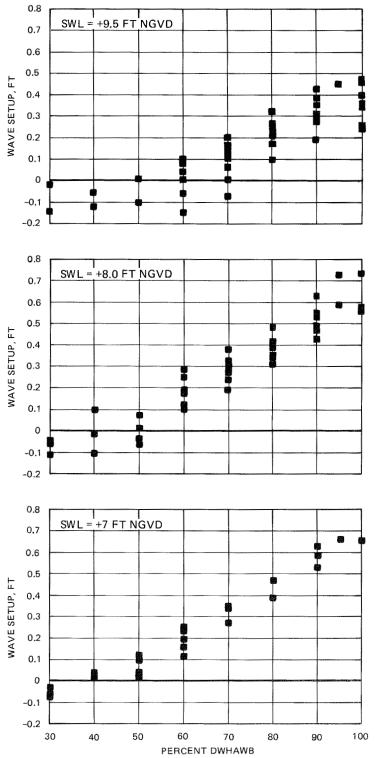


Figure C2. Setup versus percent gain (DWHAWB) at sw1's of +9.5, +8.0, +7.0, and +6.0 ft NGVD, Phase II seawall

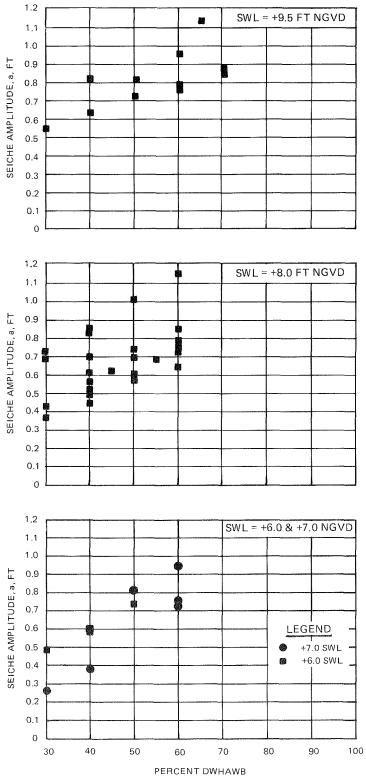


Figure C3. Seiche amplitude versus percent gain (DWHAWB) for Phase I seawall

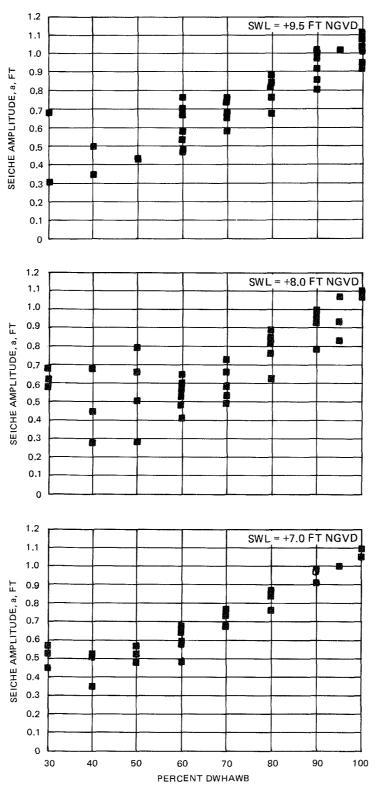


Figure C4. Seiche amplitude versus percent gain (DWHAWB) for Phase II seawall

DWHAWB increased. The seiche wave amplitude was computed by first calculating the H associated with seiche. This $\left(H_{mo}\right)$ was calculated by taking seiche the total H measured in the tank (single Gage 4) and then subtracting from it the wind wave H measured on Goda Array 2 (Gages 5, 6, and 7). Using this $\left(H_{mo}\right)$, the seiche amplitude a seiche was then computed:

$$\left(H_{\text{mo}}\right)_{\text{total}}^{2} - \left(H_{\text{mo}}\right)_{\text{wind}}^{2} = \left(H_{\text{mo}}\right)_{\text{seiche}}^{2} \tag{C1}$$

$$a_{\text{seiche}} = \frac{\left(H_{\text{mo}}\right)_{\text{seiche}}}{4} \sqrt{2} \tag{C2}$$

Some of the seiche in the tank now can be accounted for by changing the form of Equation 3 (main text) to the following:

$$Q' = \exp \left[C_1 F' + \frac{a}{F} (C_3 F' - C_2) \right]$$
 (C3)

where

Q' = dimensionless overtopping rate made dimensionless by dividing Q by $\left(gH^3\right)^{1/2}$, where g is the acceleration of gravity

 $^{\mathrm{C}}_{1}$, $^{\mathrm{C}}_{2}$, $^{\mathrm{C}}_{3}$ = dimensionless regression coefficients

F' = dimensionless relative freeboard parameter

F = average freeboard in feet

a = amplitude of the seiche wave in feet

Figure C5 is a plot of the measured overtopping rate during Phase II seawall tests versus the predicted overtopping rate using Equation C3. Figure C5 shows that the predicted rates agreed well with model results. Figure C6 shows the physical model data again with the predicted Q values from Equation C3 represented by darkened circles. Although the predicted Q values of Figure C6 do not correspond exactly to the measured data values, the figure indicates that much of the data scatter is attributed to seiches in the wave tank. Figure C6 should give the reader confidence in the data collected and should calm any fears created by the data scatter.

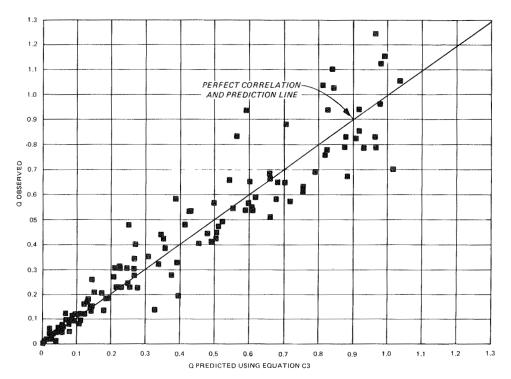


Figure C5. Observed Q versus predicted Q for Equation C3 model

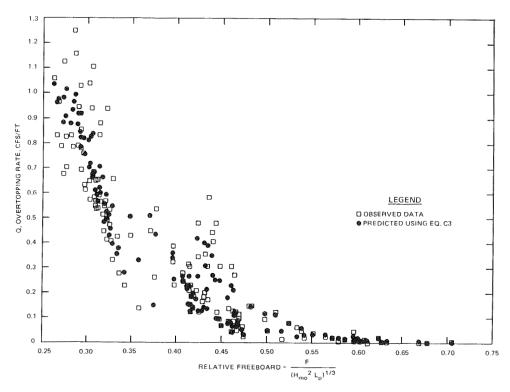


Figure C6. Phase II data plot showing predicted $\,$ Q $\,$ values $\,$ from Equation C3 $\,$

APPENDIX D: WAVE PRESSURE TEST RESULTS

Presented in Appendix D are two tables, one summarizing the pressure test conditions (Table D1) and the other listing maximum wave-induced pressure (Table D2) to which the seawall was subjected.

Table D1
Summary of Pressure Test Conditions

RUN NO.	STORM	SWL (ft)	GAIN (%)	SAMPLING RATE	SAMPLING INTERVAL
				(Hz)	(sec)
1	HU	7.O	50	2000	300-330
2	HU	7.0	100	2000	300-330
3	HU	7.0	50	2000	60 0-6 30
4	HU	7.0	100	2000	600-630
5	HU	7.0	50	2000	900-930
6	HU	7.0	100	2000	900-930
7	HU	7.0	50	2000	1200-1230
8	HU	7.0	100	2000	1200-1230
9	HU	7.0	50	2000	1500-1530
10	HU	7.0	100	2000	1500-1530
11	HU	7.0	50	2000	0-1800
12	HU	7.0	100	80	0-1800
13	HU	8.0	50	80	300-330
14	HU	8.0	100	2000	300-330
15	HU	8.0	50	2000	600-630
16	HU	8.0	100	2000	600-630
17	HU	8.0	50	2000	900-930
18	HU	8.0	100	2000	900-930
19	HU	8.0	50	2000	1200-1230
20	HU	8.0	100	2000	1200-1230
21	HU	8.0	50	2000	1500-1530
22	HU	8.0	100	2000	1500-1530
23	HU	8.0	50	80	0-1800
24	HU	8.0	100	80	0-1800
25	HU	9.5	50	2000	300-330
26	HU	9.5	100	2000	300-330
27	HU	9.5	50	2000	600-630
28	HU	9.5	100	2000	600-630
26 29	HU	7.J 9.5	50	2000	900-930
30 3 1	HU	9,5	100	2000	900-930
31	HU	9.5	50	2000	1200-1230
32	HU	9.5	100	2000	1200-1230
33	HU	9.5	50	2000	1500-1530
34	HU	9.5	100	2000	1500-1530
35	HU	9.5	50	80	0-1800
36	HU	9.5	100	80	0-1800
37	HU	9.5	50	1000	300-360
38	NE	9.5	100	1000	300-360
39	NE	9.5	50	1000	600-660
40	NE	9.5	100	1000	600-660
41	NE	9.5	50	1000	900-960
42	NE	9.5	100	1000	900-960
43	NE	9.5	50	1000	1200-1260
44	NE	9.5	100	1000	1200-1260
45	NE	9.5	50	1000	1500-1560
46	NE	9.5	100	1000	1500-1560
47	NE	9.5	50	80	0-1800

(Sheet 1 of 4)

Table D1 (Continued)

RUN	CTOOM	SWL	C:ATNI	CAMPI THE	COMPLIANCE
NO.	STORM	(ft)	GAIN (%)	SAMPLING	SAMPLING
14(7)		(T C)	(/a/	RATE (Hz)	INTERVAL (sec)
48	NE	9.5	100	80	0-1800
49	NE	á.o	50	80	0-1800
5ó	NE	8.0	100	80	0-1800
51	NE	8.0	50	1000	190-250
52	NE	8.0	50	1000	435-495
53	NE	8.0	50	1000	825-885
54	NE	8.0	50	1000	1020-1080
55	NE	8.0	50	1000	1185-1245
56	NE	8.0	50	1000	1710-1770
57	NE	8.0	100	1000	220-280
58	NE	8.0	100	1000	420-480
59	NE	8.0	100	1000	585-645
60	NE	8.0	100	1000	1365-1425
61	NE	8.0	100	1000	1680-1740
62	NE	8.0	100	1000	1740-1800
63	NE	7.0	50	80	0-1800
64	NE	7.0	100	80	0-1800
45	NE	7.0	50	1000	150-210
66	NE	7.0	50	1000	470-530
67	NE	7.0	50	1000	790-850
68	NE	7.0	50	1000	980-1040
69	NE	7.0	50	1000	1265-1325
70	NE	7.0	50	1000	1495-1555
71	NE	7.0	100	1000	120-180
72	NE	7.0	100	1000	180-240
73	NE	7.0	100	1000	3 40- 400
74	NE	7.0	100	1000	420-480
75	NE	7.0	100	1000	540-600
76	NE	7.0	100	1000	60 0-66 0
7 7	NE	7.0	100	1000	7 65-82 5
78	HU	7.0	50	80	0-1800
7 9	HU	7.0	100	80	0-1800
80	HU	7.0	50	1000	285-345
81	HU	7.0	50	1000	445-505
82	HU	7.0	50	1000	5 10-5 70
83	HU	7.0	50	1000	600-660
84	HU	7.O	50	1000	690-750
85	HU	7.O	50	1000	875-935
86	HU	7.0	50	1000	1035-1095
87	HU	7.0	50	1000	1275-1335
88	HU	7.0	50	1000	1440-1500
89	HU	7.0	50	1000	1530-1590
90	HU	7.0	50	1000	1605-1665
91	HU	7.0	100	1000	1730-1790
92	HU	7.0	100	1000	1440-1500
93	HU	7.0	100	1000	1380-1440
94	HU	7.0	100	1000	1080-1140
95	HU	7.0	100	1000	1020-1080
96	HU	7.0	100	1000	905-965

(Sheet 2 of 4)

Table D1 (Continued)

RUN	STORM	SWL	GAIN	SAMPLING	SAMPLING
NO.		(ft)	(%)	RATE	INTERVAL
			4 5 5	(Hz)	(sec)
97	HU	7.0	100	1000	810-870
98	HU	7.0	100	1000	690-750
9 9	HU	7.0	100	1000	300-360
100	HU	7.0	100	1000	240-300
101	HU	7.0	100	1000	160-220
102	HU	8.0	50	80	0-1800
103	HU	8.0	100	80	0-1800
104	HU	8.0	50	1000	120-180
105	HU	8.0	50	1000	330-390
106	HU	8.0	50	1000	590-650
107	HU	8.0	50	1000	900-960
108	HU	8.0	50	1000	960-1020
109	HU	8.0	50	1000	1080-1140
110	HU	8.0	50	1000	1260-1320
111	HU	8.0	50	1000	1380-1440
112	HU	a.º	50	1000	1620-1680
113	HU	8.0	50	1000	1710-1770
114	HU	8.0	100	1000	60-120
115	HU	8.0	100	1000	130-190
116	HU	8.0	100	1000	200-260
117	HU	8.0	100	1000	270-330
118	HU	8.0	100	1000	330-390
119	HU	8.0	100	1000	400-460
120	HU	8.0	100	1000	4 60-5 20
121	HU	8.0	100	1000	530-590
122	HU	8.0	100	1000	600-660
123	HU	8.0	100	1000	675-735
124	HU	8.0	100	1000	780-840
125	HU	8.0	100	1000	850-910
126	HU	8.0	100	1000	1095-1155
127	HU	8.0	100	1000	1180-1240
128	HU	8.0	100	1000	1410-1470
129	HU	8.0	100	1000	1540-1600
130	HU	8.0	100	1000	1660-1720
131	HU	8.0	100	1000	1730-1790
132	HU	9.5	50	1000	1660-1720
133	ни	9.5	50	1000	1730-1790
134	н⊔	9.5	50	1000	120-180
135	НП	9.5	50	1000	190-250
136	HU	9.5	50	1000	330-390
137	HU	9.5	50	1000	400-460
138	HU	9.5	50	1000	480-540
138	HU	9.5	50	1000	550-610
140	HU	9.5	50 50	1000	720-780
141	HU	9.5	50	1000	7 90 -850
141	HU	9.5 9.5	50 50	1000	890-950
142		7.5 9.5		1000	960-1020
	HU		50 50		
144	HU	9.5	50 E0	1000	1130-1190
1 45	HU	9.5	50	1000	1320-1380

(Sheet 3 of 4)

Table D1 (Concluded)

RUN	STORM	SWL	GAIN	SAMPLING	SAMPLING
NO.		(ft)	(%)	RATE	INTERVAL
				(Hz)	(sec)
146	HU	9.5	50	1000	1400-1460
147	HU	9.5	50	1000	1470-1530
148	HU	9.5	100	1000	1590-1650
149	HU	9.5	100	1000	1660-1720
150	HU	9.5	100	1000	1730-1790
151	HU	9.5	100	1000	80-140
152	HU	9.5	100	1000	180-240
153	HU	9.5	100	1000	250-310
154	HU	9.5	100	1000	370-430
155	HU	9.5	100	1000	550-610
156	HU	9.5	100	1000	885-945
157	HU	9.5	100	1000	1080-1140
158	HU	9.5	100	1000	1200-1260
159	HU	9.5	100	1000	1320-1380
160	NE	9.5	50	1000	300-340
161	NE	9.5	100	1000	300-360
162	NE	9.5	50	1000	50 0- 650
163	NE	9.5	100	1000	600-660
164	NE	9.5	100	1000	1200-1260
165	NE	9.5	50	1000	1500-1560
166	NE	9.5	100	1000	1500-1560
167	NE	8.0	50	1000	1710-1770
168	NE	8.0	100	1000	220-280
169	NE	8.0	100	1000	420-480
170	NE	8.0	100	1000	585-645
171	NE	8.0	100	1000	1365-1425
172	NE	8.0	100	1000	1680-1740
173	NE	8.0	100	1000	1740-1800
174	NE	8.0	100	1000	1740-1800

Table D2
Maximum Wave-Induced Pressure

NO S SWL (X)	RUN	STORM		MAXIMUM	PRESSURE,	PSI,	FOR INDIC	ATED ELE	VATION, FT.
1 H7 50 11.02 4.18 12.73 27.74 10.45 6.08 2 H7 100 25.08 7.22 18.81 16.15 29.64 6.08 3 H7 50 5.89 3.04 15.01 14.63 28.50 27.36 4 H7 100 19.76 5.32 12.54 21.85 34.39 8.55 5 H7 50 6.84 3.23 10.26 20.90 11.40 6.08 6 H7 100 8.17 3.99 9.12 19.38 19.00 17.48 6.08 7 H7 50 24.89 4.37 10.83 20.14 31.92 29.07 8 H7 100 4.94 3.80 13.87 9.50 16.15 9.12 9.47 100 19.19 9.31 25.08 12.54 26.22 11.02 13 H8 50 13.87 6.84 27.36 16.72 22.99 4.94 14 H8 100 20.14 11.02 13.87 18.81 13.30 3.55 15 H8 50 15.39 7.41 19.95 14.06 19.00 11.02 16 H8 100 11.78 4.94 47.31 13.68 15.96 16.53 17 H8 50 36.29 3.17 16.72 38.57 23.56 15.39 18 H8 100 19.57 8.93 19.19 25.08 18.81 15.58 19 H8 50 15.81 5.50 20.14 31.02 27.17 31.73 34.96 11.78 21 H8 50 14.44 6.08 31.54 21.09 17.48 5.89 12.14 18.02 14.04 18.00 14.20 14.44 6.08 31.54 21.09 17.48 5.89 12.14 18.00 19.57 8.93 19.19 25.08 18.81 15.58 19 H8 50 14.44 6.08 31.54 21.09 17.48 5.89 12.14 19.95 14.06 19.00 11.78 19.19 19.19 19.19 19.10 19.19 1	NO.		(%)	140 0	.10 F	10. /	TD 2	47 7	44 5
1			EΩ						
S									
4 H7 100 19.76 5.32 12.54 21.85 34.39 8.55 5 H7 50 6.84 3.23 10.26 20.90 11.40 6.08 6 H7 100 8.17 3.99 9.12 19.38 19.00 17.48 7 H7 50 24.89 4.37 10.83 20.14 31.92 29.07 9 H7 50 4.94 3.80 13.87 9.50 16.15 9.12 9 H7 50 4.37 2.66 17.29 28.50 43.13 16.15 10 H7 100 19.19 9.31 25.08 12.54 26.22 11.02 13 H8 50 15.59 7.41 19.95 14.06 19.00 11.52 15 H8 50 15.39 7.41 19.95 14.06 19.00 11.52 15 H8 100 11.78 4.94 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
5 H7 50 6.84 3.23 10.26 20.90 11.40 6.08 6 H7 100 8.17 3.99 9.12 19.38 19.00 17.48 7 H7 50 24.89 4.37 10.83 20.14 31.92 29.07 8 H7 100 4.94 3.80 13.87 9.50 16.15 9.12 9 H7 50 4.37 2.64 17.29 28.50 43.13 16.15 10 H7 100 19.19 9.31 25.08 12.54 26.22 11.02 13 H8 50 13.87 6.84 27.36 16.72 22.99 4.94 14 H8 100 20.14 11.02 13.87 18.81 19.90 11.02 15 H8 100 11.78 4.94 47.31 13.68 15.79 35.56 15.53 18 H8 100 11.									
6 H7 100 8.17 3.99 9.12 19.38 19.00 17.48 7 H7 50 24.89 4.37 10.83 20.14 31.92 29.07 8 H7 100 4.94 3.80 13.87 9.50 16.15 9.12 9 H7 50 4.37 2.66 17.29 28.50 43.13 16.15 10 H7 100 19.19 9.31 25.08 12.54 26.22 11.02 13 H8 50 13.87 6.84 27.36 16.72 22.99 4.94 14 H8 100 20.14 11.02 13.87 18.16 100 11.02 13.87 18.18 10.00 11.02 13.87 18.18 100 11.02 13.87 18.18 13.50 3.55 15.39 14.18 100 11.78 4.94 47.31 13.68 15.96 16.53 11.02 14.89 10.18									
7 H7 50 24,89 4,37 10,83 20,14 31,92 29,07 9 H7 50 4,37 2,66 17,29 28,50 43,13 16,15 10 H7 100 19,19 9,31 25,08 12,54 26,22 11,02 13 H8 50 13,87 6,84 27,36 16,72 22,99 4,94 14 H8 100 20,14 11,02 13,87 18,81 13,30 3,55 15 H8 50 15,39 7,41 19,95 14,06 19,00 11,02 16 H8 100 11,78 4,94 47,31 13,68 15,96 6,653 17 H8 50 36,29 8,17 16,72 38,57 23,56 15,39 18 H8 100 19,57 8,93 19,19 25,08 18,81 15,58 19 H8 50 16,15									
8 H7 100 4,94 3.80 13.87 9.50 16.15 9.12 10 H7 50 4.37 2.66 17.29 28.50 43.13 16.15 10 H7 100 19,19 9.31 25.08 12.54 26.22 11.02 13 H8 50 13.87 6.84 27.36 16.72 22.99 4.94 14 H8 100 20.14 11.02 13.87 18.81 13.30 355 15 H8 50 15.39 7.41 19.95 14.06 19.00 11.02 16 H8 100 11.78 4.94 47.31 13.68 15.76 6.53 17 H8 50 36.15 5.70 20.14 74.10 44.08 20.14 20 H8 100 14.44 6.08 31.54 21.09 17.48 5.89 21 H8 50 18.81									
9 H7 50 4.37 2.66 17.29 28.50 43.13 16.15 10 H7 100 19.19 9.31 25.08 12.54 26.22 11.02 13 H8 50 13.87 6.84 27.36 16.72 22.99 4.94 14 H8 100 20.14 11.02 13.87 18.81 13.30 3.55 15 H8 50 15.39 7.41 19.95 14.06 19.00 11.02 16 H8 100 11.78 4.94 47.31 13.68 15.96 16.53 17 H8 50 36.29 8.17 16.72 38.57 23.56 15.39 18 H8 100 19.57 8.93 19.19 25.08 18.81 15.58 19 H8 50 16.15 5.70 20.14 74.10 44.08 20.14 20 H8 100 14.44 6.08 31.54 21.09 17.48 5.89 21 H8 50 18.81 9.12 27.17 31.73 34.96 11.78 22 H8 100 24.51 7.22 16.91 13.49 13.30 18.05 25 H95 50 64.22 8.93 20.71 34.96 15.39 4.75 26 H95 100 41.80 10.83 19.57 24.32 11.97 6.46 27 H95 50 58.90 7.22 20.71 24.89 12.73 3.99 28 H95 100 40.28 7.79 44.08 15.77 9.50 11.59 29 H95 50 23.94 6.84 45.98 20.90 20.14 5.32 1 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 31 H95 50 42.18 8.74 37.24 22.04 15.96 3.80 34 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95 50 42.18 8.74 12.35 21.47 26.41 5.89 37 NES 50 59.47 11.78 65.74 40.66 15.58 17.99 40 NES 50 59.47 11.78 65.74 40.66 15.58 17.99 41 NES 50 59.47 11.78 65.74 40.66 15.58 17.99 43 NES 50 59.47 11.78 65.74 40.66 15.58 10.83 45 NES 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NES 50 10.07 3.04 30.02 20.90 18.43 10.83 46 NES 50 15.39 4.75 24.51 18.43 30.78 11.90 53 NEB 50 26.22 5.32 21.09 18.05 34.96 34.96 54 NEB 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 17.76 41.59 50 20.90 18.43 12.56 56 NEB 50 19.76 10.64 29.95 33.7 24.52 9.90 18.43 12.56									
10									
13 H8 100 20.14 11.02 13.87 18.81 13.30 3.55 15 H8 50 15.39 7.41 19.95 14.06 19.00 11.02 16.53 17 H8 50 15.39 7.41 19.95 14.06 19.00 11.02 16.6 H8 100 11.78 4.94 47.31 13.68 15.96 16.53 17 H8 50 36.29 8.17 16.72 38.57 23.56 15.39 18 H8 100 19.57 8.93 19.19 25.08 18.81 15.58 19 H8 50 16.15 5.70 20.14 74.10 44.08 20.14 20 H8 100 14.44 6.08 31.54 21.09 17.48 5.89 21.14 18 50 18.81 9.12 27.17 31.73 34.96 11.78 22 H8 100 24.51 7.22 16.91 13.49 13.30 18.05 25 H95 50 64.22 8.93 20.71 34.96 15.39 4.75 26.46 19.5 27 4.75 27 18.89 19.9 19.9 25.08 18.19 19.5 28 19.9 19.5 20.71 24.89 12.73 3.99 28 H95 100 41.80 10.83 19.57 20.01 11.59 29 H95 50 23.94 6.84 45.98 20.90 20.14 5.32 30 H95 100 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 33 H95 50 42.18 8.74 37.24 22.04 15.96 3.80 34 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 38 NE95 100 27.17 9.69 25.08 27.71 20.52 21.47 4.56 3.80 NE95 100 41.61 10.62 39.71 20.52 21.47 4.37 4.56 38 NE95 100 27.17 9.69 25.08 27.71 20.52 21.47 4.37 4.56 38 NE95 100 40.99 9.31 30.21 29.64 30.57 7.79 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78									
14 H8 100 20.14 11.02 13.87 18.81 13.30 3.55 15 H8 50 15.39 7.41 19.95 14.06 19.00 11.02 16 H8 100 11.78 4.94 47.31 13.68 15.96 16.53 17 H8 50 36.29 8.17 16.72 38.57 23.56 15.39 18 H8 100 19.57 8.93 19.19 25.08 18.81 15.58 19 H8 50 16.15 5.70 20.14 74.10 44.08 20.14 20 H8 100 14.44 6.08 31.54 21.09 17.48 5.89 21 H8 50 18.81 9.12 27.17 31.73 34.96 11.78 22 H8 100 24.51 7.22 16.91 13.49 13.30 18.05 25 H95 100 41.80									
15 H8 100 11.78 4.94 47.31 13.68 15.96 16.53 17 H8 50 36.29 8.17 16.72 38.57 23.56 15.39 18 H8 100 19.57 8.93 19.19 25.08 18.81 15.58 19 H8 50 16.15 5.70 20.14 74.10 44.08 20.14 20 H8 50 18.81 9.12 27.17 31.73 34.96 11.78 22 H8 100 24.51 7.22 16.91 13.49 13.30 18.05 25 H95 100 41.80 10.83 19.57 24.32 11.97 6.46 27 H95 50 58.90 7.22 20.71 24.89 12.73 3.99 28 H95 100 40.28 7.79 44.08 15.77 9.50 11.59 29 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95 50 42.18 8.74 37.24 22.04 15.96 3.80 34 H95 100 27.17 9.69 25.08 27.74 15.73 3.89 37 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 4.56 38 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41.89 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41.89 NE95 100 41.61 19.26 39.71 22.04 25.84 7.98 41.89 NE95 100 41.61 19.26 39.71 22.04 25.84 7.98 41.89 NE95 100 41.61 19.26 39.71 22.04 25.84 7.98 41.89 NE95 100 41.61 19.26 39.71 22.04 25.84 7.98 41.89 NE95 100 41.61 19.26 39.71 22.04 25.84 7.98 41.89 NE95 100 41.61 19.26 39.71 22.04 25.84 7.98 41.89 NE95 100 37.90 10.07 44.98 30.97 24.13 9.31 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44.89 NE95 100 41.61 19.26 39.71 22.04 25.84 7.98 41.89 NE95 100 41.61 19.26 39.71 22.04 25.84 7.98 41.89 NE95 100 37.90 10.07 44.98 30.97 24.13 9.31 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 34.80 NE95 100 37.90 10.07 44.98 30.97 24.13 9.31 NE95 50 50 53.77 9.12 32.87 43.32 31.92 7.60 44.89 NE95 100 37.90 10.07 44.98 30.97 24.13 9.31 NE95 50 50 53.77 9.12 32.87 43.32 31.92 7.60 44.89 NE95 100 37.90 10.07 44.98 30.97 24.13 9.31 NE95 NE95 50 50 53.77 9.12 32.87 43.32 31.92 7.60 NEGLIGIBLE 22 NEB 50 15.39 4.75 24.51 18.43 30.78 11.40 NEB 50 NEGLIGIBLE 32 NEB 50 16.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 55 NEB 50 10.06 42.33 40.04 23.37 45.98 22.04 19.76									
16 HB 100 11.78 4.94 47.31 13.68 15.96 16.53 17 HB 50 36.29 8.17 16.72 38.57 23.56 15.39 18 HB 100 19.57 8.93 19.19 25.08 18.81 15.58 19 HB 50 16.15 5.70 20.14 74.10 44.08 20.14 20 HB 100 14.44 6.08 31.54 21.09 17.48 5.89 21 HB 50 18.81 9.12 27.17 31.73 34.96 11.78 22 HB 100 24.51 7.22 16.91 13.49 13.30 18.05 25 H95 50 64.22 8.93 20.71 34.96 15.39 4.75 26 H95 100 40.28 7.79 44.08 15.77 9.50 11.59 27 H95 50 23.94									
17 H8 100 19.57 8.93 19.19 25.08 18.81 15.58 19 H8 100 19.57 8.93 19.19 25.08 18.81 15.58 19 H8 50 16.15 5.70 20.14 74.10 44.08 20.14 20 H8 100 14.44 6.08 31.54 21.09 17.48 5.89 21 H8 50 18.81 9.12 27.17 31.73 34.96 11.78 22 H8 100 24.51 7.22 16.91 13.49 13.30 18.05 25 H95 50 64.22 8.93 20.71 34.96 15.39 4.75 26 H95 100 41.80 10.83 19.57 24.32 11.97 6.46 27 H95 50 58.90 7.22 20.71 24.89 12.73 3.99 28 H95 100 40.28 7.79 44.08 15.77 9.50 11.59 29 H95 50 23.94 6.84 45.98 20.90 20.14 5.32 30 H95 100 35.72 7.60 26.03 16.15 19.57 7.03 31 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NES 100 27.17 9.69 25.08 27.74 19.95 12.73 3.90 34 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NES 100 27.17 9.69 25.08 27.74 19.95 12.73 3.90 NES 100 41.61 10.26 39.71 22.04 25.84 7.98 4.17 4.37 4.20 NES 100 40.09 9.31 30.21 29.64 30.59 7.79 4.37 NES 100 39.90 10.07 27.17 20.52 21.47 4.37 4.37 4.20 NES 100 40.09 9.31 30.21 29.64 30.59 7.79 4.38 NES 50 50.57 7.91 23.87 4.33 23.192 7.60 4.65 NES 50 53.77 9.12 32.87 43.32 31.92 7.60 4.65 NES 50 53.96 11.97 19.38 22.23 25.65 6.08 51 NES 50 10.07 30.49 15.58 10.83 34.96 34.96 35.96 10.83 NES 50 50.47 11.78 15.88 22.23 25.65 6.08 51 NES 50 10.07 30.44 15.58 10.83 32.25 14.06 55 NES 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NES 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NES 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NES 50 10.07 30.04 30.02 20.90 18.43 12.54 55 NES 50 10.07 30.04 30.02 20.90 18.43 12.54 55 NES 50 10.07 30.04 30.02 20.90 18.43 12.54 55 NES 50 10.07 30.04 30.02 20.90 18.43 12.54 55 NES 50 10.07 30.04 30.02 20.90 18.43 12.54 55 NES 50 10.07 30.04 30.02 20.90 18.43 12.54 55 NES 50 10.07 30.04 30.02 20.90 18.43 12.54 55 NES 50 10.07 30.04 30.02 20.90 18.43 12.54 55 NES 50 10.07 30.04 30.02 20.90 18.43 12.54 55 NES 50 10.07 30.04 30.02 20.90 18.43 12.54 55 NES 50 10.07 30.04 30.02 20.90 18.43 12.55 12.55 NES 50 10.07 30.04 30.02 20.90 18.43 12.55 12.55 NES 50 10.07 30.04 30.02 20.90 18.43 12.55 12.55									
18 H8 100 19.57 8.93 19.19 25.08 18.81 15.58 19 H8 50 16.15 5.70 20.14 74.10 44.08 20.14 20 H8 100 14.44 6.08 31.54 21.09 17.48 5.89 21 H8 50 18.81 9.12 27.17 31.73 34.96 11.78 22 H8 100 24.51 7.22 16.91 13.49 13.30 18.05 25 H95 50 64.22 8.93 20.71 34.96 15.39 4.75 26 H95 100 41.80 10.83 19.57 24.32 11.97 6.46 27 H95 50 25.94 4.84 45.98 20.90 20.14 5.32 30 H95 100 35.72 7.60 26.03 16.15 19.57 7.03 31 H95 50 25.46									
19									
20									
21 H8 50 18.81 9.12 27.17 31.73 34.96 11.78 22 H8 100 24.51 7.22 16.91 13.49 13.30 18.05 25 H95 50 64.22 8.93 20.71 34.96 15.39 4.75 26 H95 100 41.80 10.83 19.57 24.32 11.97 6.46 27 H95 50 58.90 7.22 20.71 24.89 12.73 3.99 28 H95 100 40.28 7.79 44.08 15.77 9.50 11.59 29 H95 50 23.94 6.84 45.98 20.90 20.14 5.32 30 H95 100 35.72 7.60 26.03 16.15 19.57 7.03 31 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95									
22 H8 100 24.51 7.22 16.91 13.49 13.30 18.05 25 H95 50 64.22 8.93 20.71 34.96 15.39 4.75 26 H95 100 41.80 10.83 19.57 24.32 11.97 6.46 27 H95 50 58.90 7.22 20.71 24.89 12.73 3.99 28 H95 100 40.28 7.79 44.08 15.77 9.50 11.59 29 H95 50 23.94 6.84 45.98 20.90 20.14 5.32 30 H95 100 35.72 7.60 26.03 16.15 19.57 7.03 31 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.283 8.74 12.35 21.47 26.41 5.89 37 NE95 50 43.32									
25 H95 50 64.22 8.93 20.71 34.96 15.39 4.75 26 H95 100 41.80 10.83 19.57 24.32 11.97 6.46 27 H95 50 58.90 7.22 20.71 24.89 12.73 3.99 28 H95 100 40.28 7.79 44.08 15.77 9.50 11.59 29 H95 50 23.94 6.84 45.98 20.90 20.14 5.32 30 H95 100 35.72 7.60 26.03 16.15 19.57 7.03 31 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95 50 42.18 8.74 37.24 22.04 15.96 3.80 34 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 38 NE95 100 27.17 9.69 25.08 27.74 19.95 12.73 39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.09 9.31 30.21 29.64 30.59 7.79 43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 NEGLIGIBLE 52 NE8 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NE8 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NE8 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 50 19.76 10.64 19.95 23.37 45.98 22.04 19.76									
26 H95 100 41.80 10.83 19.57 24.32 11.97 6.46 27 H95 50 58.90 7.22 20.71 24.89 12.73 3.99 28 H95 100 40.28 7.79 44.08 15.77 9.50 11.59 29 H95 50 23.94 6.84 45.98 20.90 20.14 5.32 30 H95 100 35.72 7.60 26.03 16.15 19.57 7.03 31 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 38 NE95 100 27.17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
27 H95 50 58.90 7.22 20.71 24.89 12.73 3.99 28 H95 100 40.28 7.79 44.08 15.77 9.50 11.59 29 H95 50 23.94 6.84 45.98 20.90 20.14 5.32 30 H95 100 35.72 7.60 26.03 16.15 19.57 7.03 31 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95 50 42.18 8.74 37.24 22.04 15.96 3.80 34 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 38 NE95 100 27.17 9.69 25.08 27.74 19.95 12.73 39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.09 9.31 30.21 29.64 30.59 7.79 43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 51 NE8 50 26.22 5.32 21.09 18.43 30.78 11.40 53 NEB 50 26.22 5.32 21.09 18.43 30.25 14.06 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 56 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76									
28 H95 100 40.28 7.79 44.08 15.77 9.50 11.59 29 H95 50 23.94 6.84 45.98 20.90 20.14 5.32 30 H95 100 35.72 7.60 26.03 16.15 19.57 7.03 31 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95 50 42.18 8.74 37.24 22.04 15.96 3.80 34 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 38 NE95 100 27.17 9.69 25.08 27.74 19.95 12.73 39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 50 40.09 9.31 30.21 29.64 30.59 7.79 43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 51 NE8 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NEB 50 26.22 5.32 21.09 18.43 32.5 14.06 55 NEB 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76									
29 H95 50 23.94 6.84 45.98 20.90 20.14 5.32 30 H95 100 35.72 7.60 26.03 16.15 19.57 7.03 31 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95 50 42.18 8.74 37.24 22.04 15.96 3.80 34 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 38 NE95 100 27.17 9.69 25.08 27.74 19.95 12.73 39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95									
30 H95 100 35.72 7.60 26.03 16.15 19.57 7.03 31 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95 50 42.18 8.74 37.24 22.04 15.96 3.80 34 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 38 NE95 100 27.17 9.69 25.08 27.74 19.95 12.73 39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.0									
31 H95 50 25.46 6.27 39.71 70.49 27.55 3.42 32 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95 50 42.18 8.74 37.24 22.04 15.96 3.80 34 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 38 NE95 100 27.17 9.69 25.08 27.74 19.95 12.73 39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.09 9.31 30.21 29.64 30.59 7.79 43 NE									
32 H95 100 29.26 6.84 27.36 11.78 11.59 4.56 33 H95 50 42.18 8.74 37.24 22.04 15.96 3.80 34 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 38 NE95 100 27.17 9.69 25.08 27.74 19.95 12.73 39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.09 9.31 30.21 29.44 30.59 7.79 43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 N									
33 H95 50 42.18 8.74 37.24 22.04 15.96 3.80 34 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 38 NE95 100 27.17 9.69 25.08 27.74 19.95 12.73 39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.09 9.31 30.21 29.64 30.59 7.79 43 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 100 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
34 H95 100 29.83 8.74 12.35 21.47 26.41 5.89 37 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 38 NE95 100 27.17 9.69 25.08 27.74 19.95 12.73 39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.09 9.31 30.21 29.64 30.59 7.79 43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
37 NE95 50 43.32 10.45 33.44 17.48 46.17 4.56 38 NE95 100 27.17 9.69 25.08 27.74 19.95 12.73 39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.09 9.31 30.21 29.64 30.59 7.79 43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NE95 100									
38 NE95 100 27.17 9.69 25.08 27.74 19.95 12.73 39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.09 9.31 30.21 29.64 30.59 7.79 43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 51 NE8 50 NEGLIGIBLE 52 NE8 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NE8 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NE8 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NE8 50 10.07 3.04 30.02 20.90 18.43 12.54 56 NE8 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NE8 100 22.23 10.64 23.37 45.98 22.04 19.76									
39 NE95 50 46.55 10.07 27.17 20.52 21.47 4.37 40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.09 9.31 30.21 29.64 30.59 7.79 43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 51 NE8 50 NEGLIGIBLE 52 NE8 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NE8 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NE8 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NE8 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NE8 100 22.23 10.64 23.37 45.98 22.04 19.76									
40 NE95 100 41.61 10.26 39.71 22.04 25.84 7.98 41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.09 9.31 30.21 29.64 30.59 7.79 43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 51 NE8 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NE8 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NE8 50 14.44 5.32 28.12 21.28 33.25 14.06 55 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
41 NE95 50 41.61 9.69 39.14 15.58 17.67 4.37 42 NE95 100 40.09 9.31 30.21 29.64 30.59 7.79 43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 51 NE8 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NE8 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NE8 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NE8 50 14.44 5.32 28.12 21.28 33.25 14.06 55									
42 NE95 100 40.09 9.31 30.21 29.64 30.59 7.79 43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 51 NEB 50 NEGLIGIBLE 52 NEB 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NEB 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NEB 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 56 NEB 50 19.76 10.64 19.95 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
43 NE95 50 53.77 9.12 32.87 43.32 31.92 7.60 44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 51 NEB 50 NEGLIGIBLE 8 8 8 11.40 8 8 11.40 8 11.40 8 11.40 8 11.40 8 11.40									
44 NE95 100 39.90 10.07 64.98 30.97 24.13 9.31 45 NE95 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 51 NEB 50 NEGLIGIBLE 52 NEB 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NEB 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NEB 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 56 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76									
45 NE95 50 59.47 11.78 65.74 40.66 15.58 10.83 46 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 51 NEB 50 NEGLIGIBLE 52 NEB 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NEB 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NEB 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 56 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76									
46 NE95 100 53.96 11.97 19.38 22.23 25.65 6.08 51 NEB 50 NEGLIGIBLE 52 NEB 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NEB 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NEB 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 56 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76									
51 NEB 50 NEGLIGIBLE 52 NEB 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NEB 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NEB 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 56 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76									
52 NEB 50 15.39 4.75 24.51 18.43 30.78 11.40 53 NEB 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NEB 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 56 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76							شکه مکنک	20.50	0.00
53 NEB 50 26.22 5.32 21.09 18.05 34.96 34.58 54 NEB 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 56 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76							4 (7) (17)	70 70	1 1 ///
54 NEB 50 14.44 5.32 28.12 21.28 33.25 14.06 55 NEB 50 10.07 3.04 30.02 20.90 18.43 12.54 56 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76									
55 NE8 50 10.07 3.04 30.02 20.90 18.43 12.54 56 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76									
56 NEB 50 19.76 10.64 19.95 23.37 24.32 9.12 57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76									
57 NEB 100 22.23 10.64 23.37 45.98 22.04 19.76									
58 NEB 100 42.18 9.31 15.// 29.0/ 19./6 10.45									
	⊃ಟ	NEB	100	42.18	7.31	10.//	∠7.U/	17./0	10.40

(Sheet 1 of 4)

Table D2 (Continued)

RUN	STORM	GATN	MAYTMIM	PEESSURE	PCT	EOR INDIC	ATED ELE	VATION, FT.
NO.	& SWL	(%)	HATHOU	11/11/11/11/11	, 101,	LOW INDIC	HIED ELE	AMITON'S LIT
(447) =	(ft)	\ /# /	+14.0	+12.5	+10.4	+9.2	+7.7	+6,2
59	NE8	100	42.56	11.59	30.78		15.39	7.03
60	NEB	100	105.64	12.35	30.02		30.21	9.12
61	NE8	100	36.10	10.64	13.87		23.37	6.27
62	NEB	100	116.85	13.11	31.92		13.68	20.14
65	NE7	50	11.21	4.18	29.45		19.57	10.64
66	NE7	50	11.97	3.42	21.28		28.69	11.02
67	NE7	50	8.74	4.94	11.59		28.12	15.20
68	NE7	50	11.97	3.42	23.18		60.23	21.47
69	NEZ	50	12.54	2.28	18.62		23.75	10.25
70	NE7	50	11.02	3.99	16.72		19.76	14.63
71	NE7	100	28.12	8.55	15.01		15.58	11.59
72	NE7	100	19.38	9.50	13.87		21.66	20.14
73	NE7	100	20.52	8.55	16.72		15.58	14.82
74	NE7	100	14.63	7.03	54.34		32.49	14.25
75	NE7	100	10.64	5.89	28.31		23.18	40.28
76	NE7	100	23.94	8.74	15.96		21.47	13.11
7 7	NE7	100	24.32	7.60	10.64		18.62	19.19
80	H7	50	10.07	3.61	40.85		25.08	45.03
81	H7	50	8.55	5.89	12.73		47.50	18.62
82	H7	50	9.88	3.61	19.76		21.09	28.88
83	H7	50	11.59	4.94	17.86		17,10	30.97
84	H7	50	25.46	5.89	11.97		30.02	25.27
85	HZ	50	9.88	3.42	35.72		19.19	88.73
86	H7	50	6.65	2.28	8.36		17.48	31.35
87	H7	50	5.51	2.28	10.07	13.49	15.01	29.26
88	HZ	50	17.48	4.56	15.20	55.67	23.75	19.38
89	HZ	50	24.70	8.36	21.66	27.55	41.04	16.15
90	H7	50	10.64	5.70	39.90	15.77	17.86	19.19
91	H7	100	34.01	9.12	22.04	19.95	29.83	9.50
92	HZ	100	45.22	10.64	17.10	18.05	27.17	11.21
93	HZ	100	56.24	8.74	28.12	29.26	13.30	20.90
94	H7	100	24.70	10.83	18.62	22.23	35.91	13.68
95	H7	100	18.24	6.84	20.33	52.06	26.22	10.25
96	Hフ	100	31.92	10.45	19.19	19.38	26.22	21.85
97	147	100	23.18	9.12	25.08	23.18	30.78	18.62
98	H7	100	25.84	9.50	14.63	28.88	13.87	31.92
9 9	H7	100	40.85	11.78	19.76	19.19	17.67	10.26
100	H7	100	28.12	7.98	15.58	17.48	19.19	11.40
101	H7	100	53.39	9.88	28.12	22.04	15.01	22.61
104	H8	50		NEGLIGI	BLE			
105	H8	50		NEGLIGI	BLE			
106	H8	50		NEGLIGI	BLE			
107	HB	50		NEGLIGI	BLE			
108	H8	50		NEGLIGI	BLE			
109	HB	50		NEGLIGI				
110	H8	50		NEGLIGI				
111	H8	50		NEGLIGI				
112	H8	50	12.92	4.75	11.97		75.43	13.87
113	H8	50	16.53	6.27	55.10	16.53	19.19	38.57

(Sheet 2 of 4)

Table D2 (Continued)

RUN	STORM		MAXIMUM	PRESSURE	, FSI,	FOR INDIC	ATED ELE	VATION, FT.
NO.	& SWL (ft)	(%)	+14.0	+12.5	+10.4	+9.2	+7.7	+6.2
114	H8	100	15.39	6.65	15.20		13.30	21.66
115	H8	100	30.59	7.22	31.35		21.09	9.31
116	H8	100	26.41	7.98	35.53		15.77	7.41
117	нв	100	24.32	10.07	21.47		19.95	23.94
118	H8	100	19.38	7 .7 9	37.24		21.66	14.82
119	н8	100	35.53	8.74	14.44		39.52	5.89
120	H8	100	59.66	10.26	20.14		20.14	17.67
121	H8	100	39.71	10.64	22.23		63 . 84	15.96
122	нв	100	68.21	8.93	20.33		69.16	28.69
123	Н8	100	26.03	7.60	72.58	12.54	39.90	6.65
124	H8	100	29.26	7.03	25.27		17.67	14.82
125	Н8	100	16.53	7.22	20.52		61.94	12.54
126	H8	100	112.67	10.07	31.35		24.70	8.55
127	НВ	100	28.69	7.60	18.05		24.89	30.21
128	H8	100	63.08	9.12	24.89		16.53	10.64
129	H8	100	43.51	9.31	25.46		14.82	11.21
130	H8	100	24.89	7.03	17.86		14.82	13.49
131	H8	100	19.76	6.27	15.58		16.15	12.35
132	H95	50	25.65	7.79	55.67		30.78	12.16
133	H95	50	25.08	8.17	26.98		16.34	12.92
134	H95	50	48.24	8.93	21.28		18.43	4.94
135	H95	50	24.89	9.50	78.47		17.48	4.56
	H95	50	46.55	10.07	34.77		34.20	4.75
136		50	28.88	10.07	33.06		26.79	5.51
137	H95		25.65	9.88	50.54		30.59	6.65
138	H95	50 50	34.20	7.79	116.85		26.22	3.42
139	H95	50					23.18	6.65
140	H95 - H95	50	56.43	8.55 8.36	16.15 38.76		23.94	16.34
141		50	47.12				34.39	7.22
142	H95	50	75.43		56.05		13.87	6.27
143	H95	50	29.26	8.93 9.12	36.67 27.93		25.60	4.18
144	H95	50	54.53				22.23	6.65
145	H95	50	44.27		20.14		13.87	3.99
146	H95	50		10.07	37.43		15.96	9.88
147	H95	50			22.04		19.75	1 9. 57
148	H95	100			22.42		51.87	7.60
149	H95	100			17.86		34.01	7.60 9.69
150	H95	100			27.17			7.07 5.51
151	H95	100			15.20		22.04	6.65
152	H95	100	60.04	10.64	20.14		29.45	
153	H95	100		8.74	20.33		16.53	9.12
154	H95	100		9.88	43.32		17.86	6.65
155	H95	100	33.44	7.98	59.47		30.78	6.46
156	H95	100			24.51		17.48	6.27
157	H95	100	27.36	9.50	103.17		28.12	6.46
158	H95	100	29.07	7.79	23.37		14.63	4.56
159	H95	100	51.11	11.78	30.97		3 4.58	15.96
160	NE95	50	45.41	11.21	39.52		19.00	8.17
161	NE95	100			22.61		30.59	4.37
162	NE 9 5	50	32.11	9.12	20.33	16.34	20.14	4.94

(Sheet 3 of 4)

Table D2 (Concluded)

RUN	STORM	GAIN	MAXIMUM	PRESSURE	, PSI, F	OR INDICA	ATED ELE	VATION, FT.
NO.	& SWL	(%)						·
	(ft)		+14.0	+12.5	+10.4	+9.2	+7.7	+6.2
163	NE95	100	54.72	9.12	34.39	24.13	68.4 0	8.93
164	NE95	100	46.74	8.74	20.52	11.59	11.59	5.89
165	NE95	50	28.88	9.69	20.52	19.19	34.58	4.56
166	NE95	100	56.05	9.69	38.38	14.06	12.92	7 .98
167	NE8	50	19.38	6. 6 5	21.09	84.36	15.20	6.84
168	NE8	100	24.51	6 .4 5	15.20	18.43	22.80	7.22
169	NE8	100	17.48	6.08	19.38	23.75	34.58	6.4 6
170	NE8	100	33.44	9.31	14.82	40.85	23.18	6.65
171	NE8	100	53.65	10.64	24.32	17.48	20.33	32.11
172	NE8	100	31.54	8.36	14.63	16.53	16.72	6.46
173	NES	100	42.56	10.07	19.76	19.00	14.44	13.87

APPENDIX E: NOTATION

В	Value ranging from 0.55 to 0.65
$^{\rm c}_{1}$	Dimensionless regression coefficient
d _s	Water depth at the structure toe, ft
F	Average freeboard, or that distance between the crest of the seawall and the local mean water level, ft
F *	Dimensionless relative freeboard
h	Water depth, ft
H mo	Energy based zero-moment wave height, ft
L p	Significant wave length associated with the peak period $\begin{array}{c} T \\ p \end{array}$, ft
$rac{ ext{L}_{ ext{m}}}{ ext{L}_{ ext{p}}}$	Linear scale of the model
m,p	Model and prototype quantities, respectively
Q	Overtopping rate, cfs/ft
Q _o	Regression coefficient, cfs/ft
Sa	Specific gravity of an individual stone relative to the water in which it was placed, i.e. $S_a = \gamma_a/\gamma_w$
T _p	Peak period, sec
Wa	Weight of an individual stone, 1b
Υ	Spectral shape parameter, peak enhancement factor which controls the sharpness of the spectral peak
Υa	Specific weight of an individual stone, pcf
$\gamma_{\mathbf{w}}$	Specific weight of water, pcf
σ _{1o}	Spectral shape parameter, low side decay factor
$^{\sigma}_{ ext{hi}}$	Spectral shape parameter, high side decay factor