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Abstract 
This report examines linear and planar defects in ice: dislocations, grain 
boundaries and stacking faults. The authors review experimental results and 
theoretical models on the defects' atomic structures and physical properties. In 
addition, experimental techniques used for direct observation of defects, 
experimental results and theoretical interpretation of dislocation mobility and the 
role of dislocations in plastic deformation are considered. 
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FOREWORD 

At the present time, thousands and thousands of people around the world deal with ice, 
snow and permafrost. They are scientists, educators, engineers, navigators, meteorologists 
and others. While a small fraction of these people contribute to the knowledge base in ice 
physics, all of them use knowledge from it frequently. Moreover, successful applied research 
is based upon fundamental science-one more reason for ice specialists to have a textbook 
on ice physics on their desks. 

The first modem ice physics text was Fletcher's book on The Chemical Physics of Ice {1970). 
Fletcher's book is in typical textbook format: it is reasonably brief and easy to understand. 
He touched on a few of the most important topics, but not all of them. 

The most comprehensive book on ice physics to date was published by Hobbs in 1974. 
Hobbs considered almost all of the basic aspects of ice as understood at that time. Moreover, 
he described and compared several (sometimes opposing) viewpoints. This fundamental 
and rather large (837 pages) book is commonly known as the "Ice Bible" by specialists in the 
field. In 1974 and 1975, two CRREL monographs on ice were produced by John Glen. These 
were briefly and clearly written and reviewed almost all ice-related subjects. This work was 
(and in some respects still is) a magnificent introduction to ice. 

Finally, in 1981 Maeno wrote a simple, popular book for the express purpose of attracting 
people's attention to the subject. 

During the past 20 years, a significant amount of new experimental and theoretical work 
has appeared, dramatically changing our views on ice physics. As a result, we are now able 
to formulate physical laws using more simple and direct methods. We have found some of 
the physical models used in the past to be completely wrong. The physics of ice is a much 
better developed subject than it was 20 years ago. 

For the above reasons, we feel the time is ripe for a contemporary book on ice physics, 
incorporating the known and proven with almost 20 years' worth of material not covered by 
previous works. 

We have tried to prepare a "readable" book, and not one that requires the reader to be a 
uniquely educated person. It is our intent to present the material in such a way that any 
reader attracted by the title Ice Physics will be able to comprehend it. This is quite difficult for 
a book dedicated, not to a particular field of knowledge, but to a specific material. Indeed, 
for ice it means we have to consider a wide variety of subjects, including quantum chemistry, 
solid state physics, the theory of elasticity, ionic conductivity, synchrotron x-ray topogra­
phy, crystal growth, the physics of surfaces and more. 

The primary goal is to produce as simple a book as possible without sacrificing scientific 
accuracy. Experimental facts, physical ideas and theories will be strongly organized and 
bound together cohesively. The reader will be introduced to a wide variety of material on a 
step-by-step basis. Then the picture will be whole. 

To accelerate publication, this book will appear first in the form of a series of joint CRREL­
Dartmouth reports, later to be published in CRREL's Monograph series, on: 

1. The structure of ordinary ice 
Part 1: Ideal structure of ice. Ice crystal lattice 
Part II: Defects in ice 

Volume 1: Point defects 
Volume 2: Dislocations and plane defects 
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2. Electrical properties of ice 
Part 1: Conductivity and dielectric permittivity of ice 
Part II: Advanced topics and new physical phenomena 

3. Optical properties 
4. Electro-optical effects in ice 
5. Thermal properties 
6. Mechanical properties of ice. Elasticity and anelastic relaxation. Plastic properties. 

Fracture of ice 
7. Electromechanical effects in ice 
8. Surface of ice 
9. Other forms of ice and their properties 

10. Ice in space 
11. Ice research laboratories 
The reports will be prepared in a sequence convenient to the authors. The present is the 

fourth in the series. 
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NOMENCLATURE 

This Nomenclature section incorporates that of Fd free energy of defect formation 
Volume 1, Point Defects . Fk free energy of kink formation 

a lattice constant Fm free energy of kink motion 
b Burgers vector force acting on i-type of defects 
b magnitude of Burgers vector g diffraction vector 
c lattice constant 'Yai activation volume of formation of pro-
D diffusion coefficient tonic defects 

DH diffusion coefficient of hydrogen in ice 'Ymi activation volume of protonic defects' 

D; diffusion coefficient of interstitials motion 

Ds self-diffusion coefficient h separation of the Peierls troughs 

Dso (va'\) exp (iv) lli = 1,-1,-1,1 for i = 1, 2, 3, 4 

Dv diffusion c~fficient of vacancies )i flux density of defects (i = 1, 2, 3, 4) . _, 
Jdis displacement current D electric displacement vector . 

e proton charge lcr drift current .. 
E relative dielectric permittivity J,J electric current density 

E strain kB Boltzmann constant 

EaB energy of creation of a pair of Bjerrum I unit vector parallel to a dislocation line 

defects J..l. mobility 

Eai energy of creation of an ion pair J..l.i mobility of i-type of defects 

Eas activation energy of static conductivity <J5 n concentration (in m-3) 

Eaoo activation energy of high-frequency con- Nd concentration of dislocations 
ductivity <Joo no D-defect concentration 

Ef energy of a defect creation nHl<) concentration of water molecules in ice 
e; defects' electric charge (i = 1, 2, 3, 4) n· I 

concentration of defects (i = 1, 2, 3, 4) 
Eif formation energy of interstitials nk number of kinks per unit length 
Ek kink formation energy nL L-defect concen tration 

Emi activation energies of protonic defects' nv concentrations of vacancies 
motion (i = 1, 2, 3, 4) p pressure 

Eo dielectric permittivity of vacuum 
q,ei electric charge of carriers 

Es activation energy of self-diffusion Q rate of heat generation 
Es static dielectric permittivity ( (1) < < roo) 

r distance 
Em activation energy of partial conductivity 

roo oxygen-oxygen distance in ice lattice of i-type defects (i =1, 2, 3, 4) 
(2.76A) 

Et activation energy ofDebye relaxation time s entropy 
E activation energy 

conductivity (J 

Eoo high-frequency ( (1.) < < roo) dielectric per-
normal stress mittivity (J 

E strain rate CJB Bjerrum defect conductivity-a8 = a3 + CJ4 

F free energy Sc configurational entropy 

<I» = 3.85kBTroo Sr vibrational en tropy 

f,v frequencies 0: I partial conductivity of i charge carrier 

f fault vector (]ion ionic conductivity- aion = CJ1 + 02 
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sk kink entropy vd dislocation velocity 

static or low-frequency conductivity (ro < ... 
drift velocity <Ts Vd 

<roo> Vir activation volume of formation of inter-
a_ high-frequency conductivity (ro >> roo) stitials 

T temperature Vim activation volume of motion of interstitials 

't shear stress vk kink velocity 

time Vmol molecular volume in ice (3.3 x I0-23 cm3) 

'tb mean time to reorient a hydrogen bond w number of configurations of a system 

'to = roo -l De bye relaxation time (J) circular frequency 

'tL lifetime of charge carriers ~ Debye frequency 

u internal energy n configurational vector 

Uim activation energy of motion of interstitials X = nJ nHzo 
Urn activation energy of ionic motion y = no/ nH20 
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Structure of Ordinary Ice lh 
Part II: Defects in Ice 

Volume 2: Dislocations and Plane Defects 

VICTOR F. PETRENKO AND ROBERT W. WHITWORTH 

INTRODUCfiON 

Dislocations are line defects in crystals and are 
most easily visualized in terms of the slip of one 
plane of atoms over another by a single lattice 
spacing, as illustrated in Figure 1. In the interme­
diate stage shown in this figure, the line BC is the 
boundary between the slipped region ABC and 
the remainder of the slip plane. This boundary line 
is a dislocation line, or dislocation for short. The pres­
ence of the dislocation results in an elastic distor­
tion throughout the whole crystal, but the disrup­
tion of the lattice is greatest along the core BC. The 
lattice vector by which slip has occurred on the 
plane ABC is known as the Burgers vector b of the 

Figure 1. Production of slip in a crystalline 
material by the glide of a dislocation BC across the 
slip plane. The amount of slip is given by the 
Burgers vector b. The magnified portions show 
the arrangement of atoms around the screw com­
ponent at Band the edge component at C. 

dislocation. Where the dislocation lies parallel to b 
as at B, it is said to have screw orientation, and 
where it is perpendicular to b as at C, it has edge 
orientation; in general, a dislocation will have both 
screw and edge components. An edge dislocation 
has dangling bonds at its core, as seen in the 
enlarged region around C shown in Figure 1, and 
can be thought of alternatively as the line at which 
an added half-plane of atoms terminates within 
the crystal. There are no dangling bonds on a 
screw dislocation, but the lattice is distorted in 
such a way that a path passing once round the core 
advances by one Burgers vector. 

From the way in which we have introduced 
them, it is clear that the motion of dislocations on 



the slip plane is associated with plastic deformation 
of the crystal. Such motion of the dislocation is 
known as glide, but it represents only one aspect of 
the properties of dislocations. Dislocations may be 
incorporated into a crystal as it is grown, affecting 
the topology of the whole lattice, but with little 
effect on plastic deformation. The core of a disloca­
tion may be displaced perpendicular to the glide 
plane by the adding of atoms to or removing of 
atoms from the end of the extra half-plane; this is 
known as climb. 

The properties of dislocations are described in 
many books and articles. For a very clear discus­
sion of the basic geometry, we recommend Read 
(1953), and for a comprehensive discussion includ­
ing many aspects relevant to ice, Hirth and Lathe 
(1982). A beautifully illustrated book describing 
dislocations in ice is that edited by Higashi (1988). 

DISLOCATIONS IN THE ICE STRUCTURE 

Basal dislocations 
It is now well established that crystals of ice 

deform by slip on the basal plane (0001) (Glen and 
Perutz 1954), and that macroscopic slip on any 
other plane is difficult (Higashi 1969, Duval et al. 
1983). The Burgers vectors for slip on the basal 
plane are the three lattice vectors of the form (a/3) 
<2110>, but in macroscopic experiments slip can 
occur in any direction by a combination of disloca­
tions with these three vectors (Kamb 1961 ). We will, 
therefore, consider initially only basal dislocations 
of this type. Because of the hexagonal symmetry, 
the simplest dislocations are those that lie parallel 
or at 60° to the Burgers vector; these are screw and 
60° dislocations respectively. 

shuffle 

glide 

.. 
[1010) 

Figure 2. Projection ofthestructureoficeon the {1210) 
plane, showing the basal planes of the shuffle set and of 
the glide set; I and II are different lcindsof(10l0) planes. 
Only oxygen atoms are shown. 
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figure 2 shows the ice structure projected on a 
{1210) plane with the basal plane horizontal. Slip 
can, in principle, take place between two kinds of 
planes called the glide set and the shuffle set. The 
planes of the shuffle set are more widely spaced 
and were originally thought to be the natural slip 
planes, but the planes of the glide set fit over one 
another in a way that resembles the packing of 
close-packed metals. On such planes, a dislocation 
may lower its energy by dissociating into two 
partial dislocations, separated by a stacking fault 
(see the Stacking Faults section). This dissociation 
is illustrated in Figure 3a, in which the open and 
shaded circles represent oxygen atoms on adjacent 
basal planes of the glide set; the screw dislocation 
in Figure 3b is shown dissociating into two partial 
dislocations _£>f Burgers vectors b1 and b 2 of the 
type (a /3) <1100>. Slip by b 1 corresponds to mo­
tion of the shaded atoms in Figure 3a from B to C, 
creating the stacking fault, and slip by the further 
amount b2 removes the fault, resulting in a net slip 
by the full Burgers vector b = b 1 + b2. Both the 
partial dislocations associated with a screw dislo­
cation have a 30° character. Figure 3c shows the 
dissociation of a 60:) dislocation into an edge and a 
30° partial dislocation. The dissociation leads to a 
reduction in the elastic strain energy of the dislo­
cation, and this reduction is balanced by the ener­
gy required to create the stacking fault. From esti­
mates of the stacking fault energy, Fukuda et al. 
(1987) have estimated that in ice screw disloca­
tions on planes of the glide set would dissociate 
into partial dislocations separated by about 20 nm. 

In many semiconductors with structures relat­
ed to that of ice, the dissociation of dislocations on 
the basal plane has been observed directly in the 
electron microscope, and slip is therefore assumed 
to occur on planes of the glide set (see George and 
Rabier 1987). There is no such direct evidence for 
ice; and, as the bonding is quite different, we can­
not presume that the same conclusion applies. 
However, as we will see, indirect evidence sug­
gests that dislocations do in fact glide on planes of 
the glide set. 

If a straight dislocation lying on its glide plane 
moves forward by one Burgers vector over part of 
its length, the step so produced is called a kink. An 
example for an edge dislocation is shown in Figure 
4. The most elementary step in the process of glide 
is for a kink to move along the dislocation by one 
lattice spacing, as shown by the broken line. Figure 
4 also shows a jog at which the dislocation makes 
a step from one glide plane to another. For a dislo­
cation with an edge component, the formation of a 



t 6iio1 

a. Positions A, Band C of possible (0001) 
layers of molecules in the ice structure. 

[1120] 

b- ja 6i1o] t 

b. Screw dislocation. 

~ 
[2110] 

c. 60° dislocation. 

Figure 3. Dissociation into two partial dislocations. Screw and 60° dislocations on planes of the glide set can 
dissociate into partial dislocations with the Burgers vectors b1 and b2 separated by a stacking fault, shown 
shaded. 

Figure 4. Edge dislocation containing a kink on its glide 
plane and a jog at which it makes a step from one glide 
plane to another. The broken line shows an elementary 
step in the motion of the kink. 
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jog or its motion along the dislocation requires that 
atoms be added to or removed from the end of the 
extra half-plane, and this is what is involved in 
climb. In this process, the dislocation acts as a 
source or sink of vacancies or interstitials. In the ice 
structure, the simplest jog would take the disloca­
tion from a glide to a shuffle plane; a full jog must 
span two layers of atoms (see Fig. 2). 

Kinks and jogs are in general quite different in 
character. However, a pure screw dislocation has 
the property that it can, in principle, glide on any 
plane containing its Burgers vector, and in this 
case whether a particular step behaves as a kink or 
a jog depends upon which plane is being consid­
ered to be the glide plane. 

Figures Sa and b show the arrangement of mol­
ecules on the two sides of the basal glide plane at 
an edge and a 30° partial dislocation in the ice 
structure (Whitworth 1980). Open circles repre-



a. Dislocation core for edge dislocations with dangling 
bonds. 

b. Dislocation core with 30° partial dislocations and 
dangling bonds. 

c. Possible way in which the core in Figure Sa can be d. Possible way in which the core in Figure Sb can be 
reconstructed to link up the dangling bonds. reconstructed to link up the dangling bonds. 

Figure 5. Positions of molecules abave and below the (0001) glide plane for partial dislocations in ice. 

sent molecules above the glide plane and shaded 
circles represent those below. The extra half-plane 
is above the glide plane, and the dislocations in 
both of the diagrams include kinks. There are 
dangling bonds on the molecules above the glide 
plane at the edge dislocation, and on both sides of 
the glide plane for the 30° dislocation. With some 
changes to bond lengths and bond angles, and 
with some local elastic distortion, it is possible to 
link up these dangling bonds, except at the kinks, 
as shown in Figures 5c and d . This is known as 
reconstruction, which is generally believed to occur 
in semiconductors. Calculations by Heggie et al. 
(1992) suggest that it probably happens in ice, too, 
although there is more than one possibility about 
how the reconstruction might occur for the 30° 
dislocation. 
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Non basal dislocations 
Dislocations with the basal Burgers vector 

(a /3) <2110> can in principle glide on the non­
bas~! planes _that include this vector, such as 
{ 0110 I or { 0111 I, and in the Dislocations Associated 
with Plastic Deformation section, we will report 
observations of edge dislocations that glide on 
such planes. There is again more than on~ possible 
typeofglideplane,suchasthesetsof(1010)planes 
marked I and II in Figure 2, but there is no evidence 
to show which of these is operative. 

In addition we may expect dislocations in which 
the Burgers vector has a [0001] component. Such 
dislocations have been observed in ice, usually in 
the form of loops lying in the (0001) plane. Such 
loops are called prismatic and are formed by the 
condensation of point defects. There is no evi-



dence that these dislocations can glide or that ice 
can be deformed plastically by slip in the [0001] 
direction. 

DIRECT OBSERVATION OF 
DISLOCATIONS 

General 
Since the earliest experiments of Webb and Hayes 

(1967), X-ray topography has been extensively used 
for the study of dislocations in ice. It is undoubtedly 
the most suitable technique for use with this mate­
rial, and, of all materials, ice has been the one most 
fruitfully studied by this method. We will first try 
to explain why this is so. 

For other materials the most powerful technique 
for observing dislocations is usually the transmis­
sion electron microscope. However, in the case of 
ice, the preparation and handling of suitable thin 
specimens present enormous difficulties, and, even 
when prepared, the specimens have a very limited 
life in the electron beam. Although there have been 
reports of such experiments (Unwin and Muguru­
ma 1972, Falls et al. 1983), no significant informa­
tion has been obtained in this way. It is possible to 
produce etch pits on ice (Higuchi 1958) that can be 
useful in orienting crystals, but these do not nor­
mally correspond to the points of emergence of 
dislocations. Particular kinds of etch pits and other 
etch features do appear to be related to dislocations 
(e.g., Muguruma and Higashi 1963, Sinha 1977), 
but the information obtained from such experi­
ments is very limited compared with that from 
other crystals, such as LiF. 

In contrast, X-ray topography has been used to 
reveal dislocations in the interior of crystals that are 
a few millimeters thick and to observe their motion 
during annealing and while under stress. This is 
possible because ice, having a low molecular weight, 
is sufficiently transparent to X-

Dislocation 
line 

X-ray beam 

... 

X-ray topography technique 
The form of X-ray topography that is the sim­

plest and the most easily explained has only be­
come possible with the availability of intense, 
highly collimated beams of "white" X-radiation 
from a synchrotron source. If such a beam falls on 
a single crystal, as shown in Figure 6, it produces 
Laue diffraction spots, in which there is a one-to­
one correspondence between a position on the 
spot and the position at which the X-rays passed 
through the crystal. Local misorientations of the 
lattice within the crystal, such as occur at disloca­
tions, change the diffraction conditions slightly 
and result in contrast in the Laue spot. Each spot is 
therefore an image of the crystal in which disloca­
tions are visible, and these images are called topo­
graphs. The topographs can be recorded on high­
resolution photographic film or plates, and ob­
served in real time at lower resolution with an X­
ray sensitive TV camera. 

The imaging conditions depend on the diffrac­
tion vector g, so that a dislocation of Burgers vector 
b will not appear in a topograph for which both g· b 
= 0 and g·(b x 1) = 0, where 1 is a unit vector parallel 
to the dislocation line. This makes it possible to 
identify the character of each dislocation. 

The resolution depends on the degree of colli­
mation of the incident beam, which can only be 
satisfactorily achieved with a synchrotron. With­
out this collimation, we have to use monochro­
matic radiation, and, with a conventional X-ray 
source, the beam divergence for a reasonable in­
tensity is then too high for Bragg's law to be satis­
fied over the whole crystal at once. Provision has 
then to be made for scanning the crystal across the 
beam, and the most commonly used arrangement 
is the Lang (1959) camera, which has been used 
extensively in all but the most recent work on ice 
(see review by Higashi 1988). Because of the scan-

Topographs 

rays of wavelength less than 
about 0.9A, and ice crystals can 
be grown with a low enough 
dislocation density, that individ­
ual dislocations can be distin­
guished in such large specimens. 
A further reason why ice is suit­
able for dynamic experiments 
on dislocations is that they can 
be moved slowly under stress, 
whereas in many materials dis­
locations move suddenly by 
large distances once some criti­
cal stress is reached. 

Figure 6. Principle of synchrotron white-beam X-radia­
tion topography. Screen 
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ning, the exposure time, which is typically a few 
seconds using a synchrotron, becomes minutes or 
hours, depending on the power of the X-ray gen­
erator. 

Observations made by topographic methods 
fall into three groups-dislocations grown into 
the crystal, dislocations produced during plastic 
deformation and dislocations introduced or modi­
fied by diffusion processes. The last of these groups 
was considered by in Volume 1, Point Defects (Pe­
trenko and Whitworth [1994] see section on Molec­
ular Effects). 

Grown-in dislocations 
All normally produced crystals (produced with­

out special precautions being taken) or grains 
within polycrystals contain stable networks of 
grown-in dislocations, which often form arrays 
constituting low angle boundaries. In ice almost 
all such dislocations have the basal Burgers vector, 
and their concentrations are appreciably lower 
than those found in metals and other commonly 
occurring solids. Examples of good quality ice 
from the Mendenhall Glacier are described by 
Fukuda and Higashi (1969), but other naturally 
occurring ice can be much less perfect (Fukuda 
and Shoji 1988). For the study of individual dislo­
cations by topographic methods, much lower dis­
location densities are needed, and much attention 
has been given in Japan to the growth and exam­
ination of such crystals (Higashi et al. 1968, Hi­
gashi 1974, Oguro 1988). Single crystals that are 
several centimeters in diameter and typically 10 
an long are grown in glass tubes that are seeded by 
growth through a capillary. The latest refinement 
of this method is that of Ohtomo et al. (1987). Good 
crystals contain less than 100 dislocations with 
(a / 3) <2110> Burgers vectors per square centime­
ter, but there are usually also a few circular or 
spiral loops that have [0001] Burgers vectors and 
lie on or close to the basal plane (Fig. 7). These 
loops, which are of prismatic character, have been 
studied by Oguro and Higashi (1981 ), and it is now 
believed that they are formed by the condensation 
of interstitials (Oguro et al. 1988). Crystals with 
significant concentrations of impurities are usual­
ly much less perfect (Oguro 1988), but the grains 
within polycrystals grown slowly under carefully 
controlled conditions can be remarkably good (Liu 
et al. 1992). 

Dislocations with plastic deformation 
Many experiments have been described in which 

dislocations were observed to move and to multi-
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Figure 7. Topograph projected on the (0001) 
plane showing concentric dislocation loops 
in an as-grown crystal of ice. The variation of 
contrast round the loop is an indication of its 
prismatic character. The other dislocations 
seen are typical of the low-density random 
network in a good as-grown crystal (/rom 
Oguro 1988, used with permission of Hok­
kaido University Press). 

ply under an applied stress. Such motion repre­
sents an extremely early stage of deformation; 
once any significant macroscopic strain is pro­
duced, the dislocation density becomes too high 
for topographic observations. In early experiments 
(e.g., Fukuda and Higashi 1973, Jones and Gilra 
1973, Mai 1976, Fukuda et al. 1987, Fukuda and 
Higashi 1988) much information was lost, because, 
as was found subsequently, the dislocation struc­
ture changed after unloading in the time that was 
required to obtain the topographs. In more recent 
work, especially that using synchrotron radiation, 
it is much easier to identify different kinds of 
dislocations in the topographs. 

Figure 8 is a topograph showing dislocations 
projected on the basal plane in a crystal that had 
been subjected to a compressive stress in a vertical 
direction (Ahmad and Whitworth 1988). Features 
with 120° angles as at A and B are dislocations 
gliding on the basal plane. These dislocations glide 
as almost straight segments in the screw and 60° 
orientations, but the comers rapidly become curved 
after the stress is removed. Very occasionally, for 
example in a collapsing loop, basal dislocations in 
edge orientation have also been seen. The long 
narrow loops like those at C and D have basal 
Burgers vectors parallel to their lengths and lie on 
nonbasal planes oblique to the plane of the topo-



graph. The tip of the loop is an edge dislocation on 
the nonbasal plane, and the long segments in the 
figure are screw dislocations. The loop Eisa pris­
matic loop of the type shown in Figure 7. 

Similar features to the nonbasalloops at C and 

I 
Figure 8. Topograph projected on the 
(0001) plane showing dislocations in­
troduced by a compressive stress pro­
ducing a shear stress on this plane in the 
vertical direction. The diffraction vector 
is 1100; A and Dare loops in the basal 
plane. C and D show edge dislocation seg­
ments on non basal planes lying oblique to 
the plane of the topograph, which are 
dragging long screw dislocations behind 
them. E is a prismatic loop of the kind 
shown in Figure 7 (from Ahmad and 
Whitworth 1988). 

D have been reported in the work of Fukuda et al. 
(1987) (see also Fukuda and Higashi 1988), but the 
nature of this nonbasal glide is best revealed in 
crystals stressed parallel to the basal plane, as 
shown in Figure 9 (Shearwood and Whitworth 
1989). This shows dislocations propagating from a 
scratch on the back surface of a crystal with the 
O_!ientation shown; the edge dislocations move on 
{ 1010} planes, but the screw dislocations that they 
leave behind do not glide on these planes. The 
separation of the screw segments of loops, such as 

-
[1100) 

[0001) 

Figure 9. Sequence of topogrtphs (left) s!iowing edge disloca­
tions propagating on the (0110) and ( 1010) planes from a 
scratch on the surface of a crystal oriented as indicated above 
to prevent basal slip (from Shearwood and Whitworth 1989, 
reproduced courtesy of the International Glaciological Soci­
ety from Journal of Glaciology, 35(120): 202). 
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C in Figure 8, arises from glide on the basal plane. 
Hondoh et al. (1990) have also studied nonbasal 
slip in specimens with the [0001] axis perpendicu­
lar to the stress. 

We conclude from these observations that all 
glide dislocations have Burgers vectors in the bas­
al plane, and that loops expanding on this plane 
take up a hexagonal form made up of screw and 
60° segments. The screw segments cannot cross­
glide on nonbasal planes, but edge disloca.ti~ns 
can glide easily on nonbasal planes contauung 
their Burgers vector. These characteristics are prob­
ably unique to ice, and are relevant to its high 
degree of plastic anisotropy. 

DISLOCATION MOBILITY 

Experimental observations 
The most detailed measurements of dislocation 

velocities are those of Shearwood and Whitworth 
(1991), who obtained sequences of topographs 
showing the positions of dislocations between 
successive applications of stress. Figure 10 shows 
tracings of such positions for a loop expanding on 
the basal plane, and Figure 11 shows the projection 
on the basal plane of an edge dislocation moving to 
the lower left on a nonbasal plane. For the stresses 
up to 1 MPa used in these experiments, the dislo­
cation velocity vd was found to be directly propor­
tional to stress t; the velocities per unit stress for 
basal screw, basal60° and nonbasal edge disloca­
tions in pure ice are plotted as functions of temper-

0 ·5 mm (b) 

a. Tracings of the positions of the loop. b. Topographic image traced as the sixth line in Figure lOa. 

Figure 10. Hemgonal dislocation loop expanding on the (0001) plane after successive loadings (from Shearwood and 
Whitworth 1991). 

8 

Figure 11. Two topographs and~ sequ~ce oftra~~gs 
showing the motion of a pointed dzslocatwn loop glidmg 
to lower left on a nonbasal plane (from Shearwood and 
Whitworth 1991). 
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ature in Figure 12. The results for non basal disloca­
tions are consistent with the observations of Hon­
doh et al. (1990). Earlier results, such as those of 
Yamamoto and Fukuda (quoted by Fukuda et al. 
1987) and Mat (1976), do not distinguish among 
different types of dislocations, and were probably 
subject to recovery in the time taken to obtain the 
topographs. There is no evidence to support the 
nonlinear dependence of velocity on stress report­
ed byMa!. 

In so far as the Arrhenius plots in Figure 12 are 
straight lines, the activation energies for dislocation 
glide (actually from plots ofln(vdT /'t) vs.1/1) are 
as in Table 1. 

Another technique, which in principle provides 
information about dislocation mobility, is internal 
friction . Many experiments (e.g., Vassoille et al. 
1978, Tatibouet et al. 1986) have observed a contri­
bution that increases with temperature, is enhanced 
by plastic deformation and often depends on am-

Table 1. Activation ener­
gies for glide of disloca­
tions in pure ice (after 
Shearwood and Whit­
worth 1991). 

Basal screw 
Basal60" 
Nonbasal ed 

Activation 
energy 

(eV) 

0.95 ± 0.05 
0.87 ± 0.04 
0.63 ± 0.04 
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Figure 12. Dislocation velocities per unit stress v d I 'tin 
pure ice as functions of inverse temperature 1 /T for 
screw and 60° dislocation segments on the basal plane 
and for edge segments on nonbasal planes (after Shear­
wood and Whitworth 1991). 

plitude. This effect can reliably be attributed to 
dislocations and might be usable for distinguish­
ing among the motion of kinks, the nucleation of 
kinks and breakaway from pinning points, but 
there are too many disposable parameters for us to 
draw conclusions from the observations. 

Peierls model for basal dislocations 
The fact that, under stress, dislocations on the 

basal plane glide quickly into hexagonal form and 
then glide as straight segments is strong evidence 
for motion across a Peierls barrier, as is also ob­
served in materials such as silicon (George and 
Rabier 1987, Nadgomyi 1988). The energy of a dis­
location will be minimized when it lies along a par­
ticular line in the crystal lattice, and a step on the 
dislocation between two such lines constitutes a 
kink, as in Figures 4 and 5. The kinks can glide 
along the dislocation, and under stress their mo­
tion will carry the dislocation forward until it 
consists of almost straight segments along the 
directions of minimum energy. In ice these are the 
screw and 60° segments seen in Figure 10. To ad­
vance further, double kinks must be thrown for­
ward across the Peierls barrier and then move 
sideways until they reach the end of the segment 
or are annihilated by other kinks. A computer 
simulation illustrating this behavior is shown in 
Figure 13. The dislocation velocity is given by 

where nk = number of kinks per unit length 



Figure 13. Computer simulation of glide of a dislocation across a Peierls barrier 
by the nucleation of kink pairs and by the glide of the kinks along the dislocation. 
The dislocation is gliding upwards in the figure and successive positions are 
shown above one another. The original position for each case is indicated by the 
marks at the edges of the diagram. 

vk = their velocity 
h = separation of the Peierls troughs. 

According to the standard theory of this kind of 
dislocation motion (Hirth and Lothe 1982), in the 
limitoflow stress( -rbah<<k8T, where a is the lattice 
parameter and b is the Burgers vector), vd is linear­
ly proportional to stress. It depends on both the 
activation free energy to form an isolated kink fk 
and that to move it Fm according to the equation 

The quantity v is a characteristic frequency that 
cannot be more than the Debye cutoff frequency. 
The free energy fk can be written in terms of the 
energies and entropies of formation [Ek(T)- TSk], 
and the measured activation energy for glide is the 
temperature independent part of(Ek +Em). Howev­
er, with the above experimental values and other 
known parameters, the entropies of activation tum 
out to be remarkably high (for details see Shear­
wood and Whitworth 1991). This model indicates 
that dislocations seem able to move more easily 
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than expected. The contributions arising from kink 
nucleation and kink migration can in principle be 
separated by studying the motion of curved seg­
ments (Hondoh 1992), but this has not yet been 
successfully achieved. 

Proton disorder 
A unique feature ofice, first recognized by Glen 

(1968), is that the disorder of the protons presents 
in principle an obstacle to the glide of dislocations. 
This arises quite simply, because, if two planes of 
molecules are linked by randomly oriented hydro­
gen bonds, they cannot be sheared over one anoth­
er and still link up correctly. The idea is easily 
understood by considering a 60° dislocation on 
planes of the shuffle set as shown in Figure 14, 
where the positions of the protons are disordered. 
For the dislocation to glide to the left, bond DD' 
must be broken and D' joined to C. This presents 
no problem, but for motion to the right, C must 
link to C', which would create aD-defect. There is 
not sufficient energy from the stress to create this 
defect, and there is in general no local rearrange­
ment of bonds that will avoid the formation of a 
defect somewhere. In practice we expect glide to 



b 

Figure 14. Section in the ( IIOO) plane of a 60° dislocation on a 
plane of the shuffle set in the structure of ice, illustrating the 
consequence of the disorder of the protons according to the model 
ofGlen (1968). 

occur by the motion of kinks along the dislocation, 
with each step of the kink involving a single ex­
change of bonds like the one just considered. There 
will be a 50% chance of the bonds being mis­
matched at each step. 

Glen therefore proposed that the rate-limiting 
step for dislocation motion may be the rate at 
which bonds are randomly reoriented by ions or 
Bjerrum defects, as in the process of dielectric 
relaxation.lt is important to realize that the stress 
cannot force the reorientation of the required bonds 
as the dislocation approaches. This idea was quan­
tified for kinks on the shuffle plane by Whitworth 
et al. (1976) and Frost et al. (1976). The stresses 
involved are always such that they impose a small 
bias on the random motion of the kinks; the kinks 
are not pushed up against the mismatched bonds. 
With this assumption, the kink velocity vk for 
reorientations by Bjerrum defects is given by 

(3) 

where -rb is the mean time to reorient a bond. 
For dislocations on planes of the glide set, the 

obstacle presented by proton disorder may be less 
severe. Provided the core is not reconstructed, 
molecules B and C in Figures Sa and b are free to 
rotate about the single bond, perpendicular to the 
glide plane, as they switch their linkages from G 
and H to A and D. For a kink on an unreconstruct­
ed partial dislocation, Whitworth (1980) showed 
that 

(4) 

U the partial dislocation is reconstructed, the bar­
rier presented by proton disorder will be much 
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greater, but this situation has not been analyzed 
theoretically. In all cases where a Peierls barrier is 
present, proton disorder will affect the rate of kink 
nucleation as well as the kink mobility, but it can 
only make the theoretical velocity less than that 
predicted from eq 2. A theory has also been devel­
oped for a flexible dislocation line (Whitworth 
1983). This does not seem to be applicable to dislo­
cations that glide as straight segments, but may be 
applicable for non basal edge dislocations. 

The quantity 'tb is the mean time for the reorien­
tation of bonds close to the dislocation core, and, if 
we assume that the ice rules are applicable, this 
will take place by the motion of Bjerrum defects or 
ions. In bulk crystal, this time is approximately the 
same as the Debye relaxation time 1"0 , but Shear­
wood and Whitworth (1991) have shown that, for 
dislocations to move at the observed rate, the 
appropriate value of -rbmust be much shorter than 
this. A critical experiment to establish the possible 
relation of the dislocation velocity to the bond 
reorientation rate in bulk ice is to measure veloci­
ties in doped ice. This was first attempted for HF 
doping by Mal et al. (1978), who found a small 
effect, but much less than predicted. Using HCl 
doping, Shearwood and Whitworth (1992) found 
no significant effect under conditions where To 

was known to have been reduced by more than a 
factor of 10. 

From all that we know about the disorder of the 
protons in ice, it is essential that there be a process 
for the reorientation of bonds at the dislocation 
core that retains compatibility with the ice rules in 
the surrounding material. It could arise from an 
enhanced concentration or mobility of ions or 
Bjerrum defects near the core. Interstitials or va­
cancies should not be directly involved as they do 
not change the proton disorder. Perez et al. (1978, 
1980) postulated that the dislocation core was in 
some sense noncrystalline, thereby avoiding the 



obstacle presented by the ice rules. Their particular 
model has several adjustable parameters, and these 
take unphysical values that depend on the nonlin­
earity in their observations of vd('r). The fact that 
dislocations glide as straight segments in crystal­
line orientations indicates that the core must retain 
much of its crystalline character. The precise way in 
which dislocations overcome the barrier presented 
by proton disorder is at present unknown, and, as 
we will see in the Doped Crystals and Electrical Effects 
section, there is conflicting evidence about whether 
proton disorder is rate limiting. 

There is no evidence for a Peierls barrier to the 
motion of nonbasal edge dislocations, and this is 
consistent with their having a lower activation en­
ergy for glide. However, the limitations presented 
by proton disorder are in principle equally impor­
tant in this case (Whitworth 1983, Shearwood and 
Whitworth 1991). The most significant fact about 
nonbasal slip is the complete absence of any glide of 
screw dislocations on the nonbasal planes at the 
stresses used. This is strong evidence that the screw 
dislocations are dissociated into partial disloca­
tions on the basal plane, and provides circumstan­
tial evidence for basal slip being between planes of 
the glide set. 

Weertman (1963) proposed a further mechanism 
by which the disorder of the protons in ice will 
inhibit the motion of dislocations: anelastic loss, 
which arises from reorientation of molecules in the 
stress field of the dislocation as it moves. Any such 
effect will constitute a barrier additional to those 
already considered, and seems likely to be compara­
tively small. 

ROLE OF DISLOCATIONS IN 
PLASTIC DEFORMATION OF 
SINGLE CRYSTALS 

Pure crystals 
For the plastic deformation of a crystal on a 

single slip system, the strain rate f. is given by the 
equation 

(5) 

where Nd = density of mobile dislocations (length 
per unit volume) 

b = Burgers vector 
vd = dislocation velocity 
~ = factor depending on the orientation of 

the slip system. 

If several slip systems operate together, their contri­
butions to the strain rate must be summed. Crystals 
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of ice normally deform almost exclusively on the 
basal plane, and Figure 15 shows the form of the 
stress-strain curve for such deformation in con­
stant strain rate tensile tests (Higashi et al. 1964). 
The peak followed by a yield drop arises because 
Nd is initially small and the constant deformation 
rate requires a high value of vd, but as Nd increases 
during the deformation, the stress necessary to 
maintain a smaller vd becomes smaller. Eventual­
ly, deformation may proceed at constant stress. 
There is little work-hardening in ice, and in the 
steady-state region there will be a balance among 
dislocation multiplication, emergence from the 
surface and recovery processes. 

4 

.. z Strain rate 
(Ex 105min- 1 ) 

~--16 

8 10 

z 3 4 
Strain ex 1 oz 

Figure 15. Stress-strain curves for tensile 
deformation of single crystals of ice at -15 'C 
and at the constant strain rates shown (after 
Higashi et al. 1964). 

The corresponding behavior to Figure 15 in a 
creep test at constant stress would be an initially 
accelerating creep leading to a constant strain rate. 
Higashi et al. (1965) have reported this kind of 
creep in a very special bending geometry, but in 
tensile tests continuously accelerating creep is 
observed, for which E oc tm with m = 1.5 to 2. The 
macroscopic deformation of ice depends critically 
on the initial state of the crystal and the conditions 
of the experiment, but results are generally fitted 
to the empirical equation 

£ oc d' exp (- E;fcsT} (6) 

where for single crystals n = 2. There is some dif­
ficulty in determining a value for the activation 
energy E, because values deduced from constant­
strain-rate tests depend on the value of n, while 
strictly comparable conditions are difficult to 
achieve in creep tests at different temperatures. 



Table 2. Activation energies for plastic deformation 
of single crystals of ice at temperatures of -10 to 
-sooc. 

Activation 
Type of energy E 

diformation (eV) 

Tensile-<onstant E 0.68 
Tensile-<onstant E 0.62 
Bending creep 0.68 
Tensile creep 0.68 
Tensile creep 0.80 
Tensile creep 0.62 

• From Weertman (1973). 

Reference 

Higashi et a!. (1964) 
Readey and Kingery (1964) 
Higashi et al. (1965) 
Jones and Glen (1969a) 
Homer and Glen (1978) 
Ramseier (unpublished)• 

Table 2 summarizes values deduced by different 
authorsindifferentwaysfromtestsonsinglecrys­
tals in the range-10 to -50°C. There are many more 
data on polycrystalline ice, but this deforms very 
differently and other considerations will be rate 
limiting. For a detailed review of creep in ice, see 
Weertman (1973). 

The interesting fact that emerges from this table 
is that the values of E are all less than those in Table 
1 for the glide of dislocation segments on the basal 
plane in this range of temperatures. Extensive 
studies of silicon reveal no such discrepancy, but 
it does exist in some other semiconductors (Rabier 
and George 1987). There are two possible reasons 
for the difference. Either the dislocation density 
for steady-state creep increases with falling tem­
perature, or, under deformation conditions, the 
dislocations do not glide as straight segments. If it 
is easier to create kinks within the deforming 
material than under the near-perfect conditions of 
topography experiments, the activation energy 
should be reduced. Macroscopic deformation is 
such a complicated process that it is not surprising 
that there is considerable variation among exper­
iments. 

Crystals oriented with the stress perpendicular 
to the [0001] axis can be deformed by slip on { 1 Ioo} 

planes, but this requires a stress of some 50 times 
that for slip on the basal plane, and after such 
deformation voids are created in the specimen 
(Muguruma et al. 1966). We have seen in topo­
graphic experiments that edge dislocations move 
very easily on these nonbasal planes, but screw 
dislocations were not observed to glide off the 
basal plane. This means that a dislocation loop that 
starts to move on a nonbasal plane cannot expand 
to cover the whole plane; slip will be confined to 
narrow strips bounded by screw dislocations as 
seen in Figure 9, and macroscopic slip will be very 
difficult. Hondoh et al. (1990) reproduce a figure 
showing that such slip is associated with very 
short slip lines, which correspond well with this 
interpretation. 

To produce macroscopic deformation, it is not 
sufficient that dislocations should glide. There 
have to be processes by which dislocations can 
multiply on their slip plane and by which slip can 
be transferred from one slip plane to another. The 
standard mechanism is the Frank-Read source 
(see Read 1953). An example of such a source is 
illustrated in Figure 16a, in which dislocation seg­
ments spiral around a fixed point where the di6lo­
cation makes a step from one glide plane to anoth­
er. Ahmad et al. (1986) observed such a source in 
topographic experiments on ice, and Figure 17 
shows an example. In normal materials many such 
sources are generated by the cross slip of screw 
dislocations off their primary glide planes, but the 
immobility of screw dislocations on the nonbasal 
planes in ice means that this does not occur. How­
ever, a feature of ice is the high mobility of edge 
segments on non basal planes, and this means that 
the segmentS, which acts as the fixed center of the 
Frank-Read action in Figure 16a, may not remain 
fixed but more often glides away from the original 
dislocation, trailing screw segments behind it as 
shown in Figure 16b. This leads to features such as 

Figure16. OperationofaFrank-Readsourceon thebasalplane(a),andwhathappens 
in ice if the linking segmentS does not remain fixed but glides rapidly on the non basal 
slip plane (b). 
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Figure 17. Sequenceoftopographs projected on the (0001) plane showing operation of a Frank-Read source in ice. This 
corresponds to Figure 16a (/rom Ahmad et al. 1992, used with permission ofHokkaido University Press). 

lnit1al 
configuration 

b 

OSmm 

8' 

Figure 18. Sequence of topographs projected on the {0001) plane showing dislocation multiplication 
arisingfrom the fast edge segments such as A on a non basal plane oblique to the plane of the figure. The 
section at B, which develops hexagonal features, is on the basal plane and glides more slowly. In the last 
two topographs the dislocation loops have cut the surface at upper left (/rom Ahmad et al. 1992, used 
with permission of Hokkaido University Press). 
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8 Figure 19. Test results from pure single crystals of ice and 
crystals doped with HF at the concentrations given. Temper­
ature is -70"C (after Jones 1967). 

C in Figure 8 and to multiplication of the kind 
shown in Figure 18. The behavior of nonbasal edge 
dislocations that cut the surface is also very signif­
icant (Ahmad et al. 1992, Shearwood and Whit­
worth 1993). 

Doped crystals and electrical effects 
Jones and Glen (1969b) found that doping ice 

with HF produced a remarkable softening in both 
creep tests and constant-strain-rate tests at -60 to 
-70°C (Fig. 19). The softening was observed both in 
crystals doped before deformation and when HF 
was diffused into the specimen part way through 
the test.NJ-40Hproducedasmallhardening.Naka­
mura and Jones (1970) deformed HCl-doped ice, 
but at higher temperatures, and observed a soften­
ing, though the effect was much less than with HF. 
All of these observations indicate a strong corre­
lation in the effects of the dopant on the deforma­
tion rate and on the rate of bond reorientation as 
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observed in dielectric experiments. This led to 
Glen's (1968) hypothesis that proton disorder is 
the rate limiting process for dislocation glide. 

The topographic observations of Shearwood 
and Whitworth (1992) showed no effect of HCl 
doping on the mobility of d islocations at a level of 
doping that produced a ten-fold decrease in -ro, 
but this doping was very much less than that 
which gave the large effects observed by Jones and 
Glen. A further complication is that strain rate de­
pends on the product of dislocation density and 
dislocation velocity, and Jones and Gilra (1972) 
found that diffusing HF into ice, as was done in 
some of the experiments referred to, produced a 
large increase in dislocation density. 

An alternative way of changing the concentra­
tions of point defects that gives rise to bond reori­
entation is the application of an electric field (Pe­
trenko and Schulson 1992). By applying electric 
fields to thin specimens undergoing deformation 



in shear, Petrenko and Schulson (1993) have shown 
that a reduction in the high-frequency conductivity 
leads to a corresponding reduction in creep ra te. 
We have already seen that dislocation glide in­
volves the reorientation of bonds near the core. 
There is considerable evidence that under certain 
conditions changing the bond reorientation rate in 
the bulk of the crystal can have an effect on the 
dislocation mobility. 

Different kinds of electrical effects can arise if the 
dislocations carry a net charge. Such a charge is to 
be expected where there are dangling bonds, be­
cause the numbers of bonds with and without 
protons do not have to be equal. In equilibrium any 
such charge will be screened by a surrounding 
cloud of excess electrical point defects of opposite 
sign (see Whitworth 1975), but during deformation 
a dislocation may become separated from this charge 
cloud. Petrenko and Whitworth (1983) observed 
small transverse electric currents associated with 
the tensile deformation of previously bent crystals, 
and interpreted them as ascribable to dislocations 
carrying a net positive charge of at least 0.002 pro­
tonic charges per atomic length. Itagaki (1970) has 
reported X-ray topographic experiments in which 
dislocations appear to move in an alternating elec­
tric field. In cases where the sign of the charge could 
be identified, it was positive, but it is difficult to 
deduce magnitudes from such experiments. A prob­
lem with any experiment of this kind is that the field 
should be maintained for a sufficient time to move 
the dislocations by an observable amount, but in 
this time the field is largely eliminated by polariza­
tion and conduction in the ice. If the dislocation 
cores are indeed reconstructed, as suggested in the 
Basal Dislocations section, then any core charge will 
be confmed to kink sites or perhaps to Bjerrum type 
defects trapped in the reconstruction. 

STACKING FAULTS 

Structure of stacking faults in ice 
The crystal structure of ice consists of (0001) 

planes of molecules stacked above one another as 
illustrated in Figure 2. If the positions of these 
layers in their planes are denoted by the letters 
A,B,C, as defined in Figure 3, the hexagonal struc­
ture of ice Ih follows the sequence 

AABBAABBAABB .... 

The C positions are unoccupied, resulting in empty 
channels running through the structure in the [0001] 
direction. Stacking faults arise if the stacking across 
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the planes marked "glide" in Figure 2 departs 
from the perfect sequence. For a general discus­
sion of such faults, the reader is referred to Hirth 
and Lathe (1982) or a similar text. To simplify the 
discussion, we will denote each pair of Ia yers such 
as AA by the single letter A, and the stack-ing is 
then that familiar in hexagonal close packing 

ABABABAB .... 

Cubic ice (ice Ic) has the stacking 

ABCABCABC . .. 

but is energetically unstable relative to ice lh. 
A stacking fault is a planar defect normally ly­

ing on a (0001) plane of the glide set. It must extend 
to the surface or terminate at a partial dislocation 
with a Burgers vector equal to the displacement 
required to create the fault. To distinguish among 
the possible kinds of faults, it is useful to introduce 
Frank's notation, which concentrates not on the 
absolute location of the layers A,B,C but only on 
the stacking relative to the layer below. Thus, the 
equivalent stackings of Bon A, Con Band A on C 
are all denoted by the symbol !l, while the inverse 
stacking of A on B, Bon Cor Con A are given the 
symbol V. The hexagonal stackings ABABAB ... , 
BCBCBC ... or CACACA. .. are then all denoted by 

whereas cubic stacking would be 

""""""""... or VVVVVVVV . ... 

Therearefoursimplewaysofintroducingstack­
ing faults into ice, and these are illustrated in 
Figure 20. The first is to shear a B layer over an A 
layer into a C position. This changes a !l into a V 
giving the fault 

J, 
BABACBCB ... 

V!lVVV/lV 

This fault is illustrated in Figure 20a, in which it 
terminates in a Eartial dislocation of the Burg_ers 
vector (a/3) < 1010>. When a perfect (a/3) < 1120> 
dislocation dissociates into two Shockley partial 
dislocations on a (0001) plane of the glide set, 
according to the equation 

(a/3) <1120> ~ (a/3) <lOlO> + (a/3) <OllO> 
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Figure 20. Projections of structure of ice Ih on a (1210) plane showing stacking faults in the right-hand portion of 
each diagram termimzting at an appropriate dislocation in the center. 

as described in the Basal Dislocations section, this is 
the type of stacking fault ribbon that will be formed 
between them. 

The other types of faults require the addition or 
removal of a layer A, B or C, which consists of two 
planes of molecules. U an A layer is removed, the 
B layers on opposite sides of it can only link to­
gether if there is a displacement of one-half of the 
crystal over the other by an amount (a /3) < 10l0>, 
generating the fault 

J.. 
ABABCBCB .. . 
V/lVVV/lV 
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This fault is shown in Figure 20b. The dislocation 
surrounding it has both prismatic and glide com­
ponents, and its Burgers vector is (116) <2023>. 

Unlike the case just described, the addition of a 
C layer to the perfect ABAB ... structure does not 
necessitate any shear, and the fault generated is 

.J, 
ABABCABCB .. . 
6.V6.M6.V6. 

This fault is illustrated in Figure 20c; it is sur­
rounded by a prismatic dislocation loop of Burg­
ers vector (c/2) [0001]. The fault contains four 



consecutive a-type stackings, which resembles 
cubic ice. It can lower its energy by a shear between 
the C and the A layer at the point marked J,, 
yielding the fault 

J, 
ABABCBCBC . . . 

aVMVaVa 

which is shown in Figure 20d. Examination of the 
6 V sequence shows that this is the same stacking 
as in Figure 20b, but the nature of the bounding 
dislocation corresponds to an interstitial rather 
than a vacancy-type prismatic loop. Stacking faults 
are often classified as intrinsic if perfect stacking is 
maintained up to the plane of the fault and extrin­
sic if it is not; on this basis the faults of Figures 20a, 
b and d are intrinsic and only the higher energy 
fault 20c is extrinsic. 

Observations of stacking faults 
Stacking faults of macroscopic dimensions can 

be observed by X-ray topography and have been 
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studied extensively in ice by the group at Sapporo. 
Their work is reviewed by Fukuda et al. (1987), 
Oguro and Hondoh (1988) and Oguro et al. (1988). 
Stacking faults in ice are energetically unstable and 
never remain in crystals that have been well an­
nealed and observed at the temperature of anneal­
ing. However, a few large-area faults do occur in 
freshly grown crystals (Hondoh et al. 1983), and 
their formation is enhanced by doping, particularly 
with NH3 (Oguro and Higashi 1973). 

Figure 21 is an example of a topograph of pure 
ice cooled to -45°C. The dark areas correspond to 
stacking faults parallel to the basal plane. The large, 
irregular faults originate from the growth of the 
crystal, while the smaller patches are prismatic 
loops formed during cooling. The presence of con­
trast within the area of the fault shows that the fault 
vector f satisfies the condition g·f ~ 0 or an integer, 
where g is th~ diffraction vector of the topograph. 
With g = <1010> this means that the faults must 
have a shear component. The bounding disloca­
tionshave a [0001] component, and careful analysis 
shows that the faulted loops formed on cooling are 

Figure 21. X-ray topograph projected on a(0001) 
plane of a crystal of pure ice cooled rapidly to 
-450C, resulting in the production of faulted 
prismatic dislocation loops by the condensation 
ofinterstitials (from Oguro et al.1988, used with 
permission of Hokkaido University Press). 



interstitial in character (Hondoh at al. 1983). It 
appears that an interstitial loop with the Burgers 
vector (c/2) [0001] does in fact lower its energy by 
taking the sheared form of Figure 20d rather than 
that of Figure 20c. The stable prismatic loops shown 
in Figure 7 are presumably perfect dislocations, 
with the Burgers vector c[0001] including two dou­
ble layers of molecules within the loop; such dislo­
cations will have high energy and will almost cer­
tainly be dissociated, but the stacking fault ribbon 
between them is unresolvable in topography. 

As described in Volume 1, Point Defects (Petren­
ko and Whitworth [1994], see section on Molecular 
Defects), very detailed studies of the growth and 
shrinkage of faulted and unfaulted dislocation loops 
have yielded the best available parameters for the 
formation and self-diffusion of interstitials in ice 
(Goto eta.!. 1986, Hondoh 1992). The energy of a 
(1/6) <2023> fault has been determined to be 0.31 
m] m-2, which is 3 x 10--4 eV per molecule in the 
plane. This is assumed to be the lowest energy type 
of fault because it has only two adjacent !l's in the 
stacking sequence. The shear fault with three !l's is 
estimated to have twice this energy, and on this 
basis the separation of the Shockley partial disloca­
tions formed by the dissociation of a perfect (a/3) 
<1120> dislocation on a basal plane has been esti­

mated by Hondoh et al. (1983) to be 20 nm for a 
screw dislocation and 46 nm for an edge disloca­
tion. Observation of such dissociation requires elec­
tron microscopy and has not yet been achieved in 
ice. 

GRAIN BOUNDARIES 

Structure 
Natural ice is polycrystalline and the boundaries 

between the individual crystals (or 11 grains11
) can be 

considered as planar defects within otherwise per­
fect material. We will briefly describe the intrinsic 
properties of this class of defects, but will not here 
consider their role in the macroscopic properties of 
polycrystalline ice. 

Examination of polycrystalline samples shows 
grains of many shapes, sizes and orientations, de­
pending on the history of the material (e.g., Matsu­
da and Wakahama 1978). In well-annealed ice, the 
boundaries are fairly flat, which is a necessary 
condition for minimizing the surface energy. With­
in a single grain, or within a piece of ice that is 
nominally a single crystal, there will often be sub­
boundaries, across which there is a lattice misorien­
tation of at most a few degrees and often very much 
less. These boundaries are made up of arrays of 
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dislocations in accordance with geometrical prin­
ciples thatapplytoanycrystallinematerial(see for 
example Read 1953 or Hirth and Lothe 1982). 
Except for elastic interactions with one another to 
form a stable structure, these dislocations behave 
as individual dislocations within a single crystal. 
A suitable sub-boundary will migrate by the glide 
of these dislocations under an appropriately ori­
ented stress, as has been observed in ice by Higashi 
and Sakai (1961). 

For large-angle boundaries, the concept of an 
array of dislocations is not applicable, and there 
must be an interface across which the bonding 
departs greatly from that in a perfect crystal. For 
some particular orientations, the bonding may be 
less irregular than for others, and the grain bound­
ary energy will depend on the relative misorienta­
tion of the grains and on the location of the bound­
ary between them, as has been observed by Suzuki 
and Kuroiwa (1972). 

A commonly assumed condition for the forma­
tion of any special type of low energy boundary is 
that the lattice points for the two half-crystals 
should match up with one another in a periodic 
way along the plane of the boundary. The Coinci­
dence-Site Lattice (CSL) model, which has been 
described in relation to ice by Higashi (1978) and 
Hondoh (1988), has this property, but other re­
quirements imposed by the model are not general­
ly thought to be significant (Sutton 1984). A favor­
able configuration in ice is one in which the grains 
are rot~ted relative to one another by 34.1° about 
the [1010] direction, and such a boundary in which 
the grains are joined across their ( 1211) planes is 
illustrated in Figure 22. Hondoh and Higashi (1978) 
have grown bicrystals containing this type of 
boundary and have shown by X-ray topography 
that the boundary is not flat, but is made up of 
facets that make small angles to one another. They 
propo~that a facet that makes a small angle to the 
exact (1211) plane will contain an array of intrinsic 
grain boundary dislocations of the small Burgers 
vector shown in Figure 23; between these disloca­
tions the lattices will match exactly as in Figure 22. 
Experiments on the diffusional motion of bound­
aries during strain-free annealing have shown 
variations with the type of boundary and some 
tendency to form facets with particular orientations 
(Hondoh and Higashi 1979, Nasello et al. 1992). 

Other examples of misorientations that satisfy 
the CSL conditions are 47° about [10l0] and 21.8° 
about [0001 ]. The latter is thought to lead to certain 
types of 12-branched snow flakes (Kobayashi and 
Furukawa 1975). These special cases can also be 
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0 0 0 0 0 0 0 0 

two grains rotated rela- (0001r--
tive tooneanotherby34.1 ° 
about the [1010] axis perpendicular to the diagram. The 
circles are lattice points not molecules. 

thought of as growth twins, though in ice they are 
not usually formed in the ways commonly associat­
ed with twinning. It must be remembered that the 
coincidence of a number of lattice points across an 
interface does not ensure that hydrogen bonds link 
up in a manner even approximating that in the 
perfect crystal, and there must be considerable dis­
order of the molecules in this region. The thickness 
of this noncrystalline or 'liquid-like' region is not 
known. In this connection it is relevant to note that, 
close to the melting point, liquid water is present in 
polycrystalline ice in veins that lie along the lines of 
intersection of grain boundaries (Mader 1992, Nye 
1992}, and this will be in equilibrium with the 
internal structure of the boundaries themselves. 

Grain boundaries can move in a number of ways, 
according to principles that are generally applica­
ble to all materials. Under a shear stress a pair of 
suitably oriented grains may slide over one another 
on the boundary (I gnat and Frost 1987), but in other 
cases shear can occur by the migration of the bound­
ary perpendi~ar to its plane. This has been report­
ed for a 34 ° [1010] boundary by Hondoh (1988), and 
explained in terms of the glide of intrinsic boundary 
dislocations of the type shown in Figure 23. 

The motion of grain boundaries, or of disloca­
tions within them, leads to a characteristic peak in 
the low-frequency internal friction (Perez et al. 
1979, Tatibouet et al. 1987). Boundaries also move 
by diffusive processes in which molecules in one 
grain are rearranged in the lattice structure of the 
other, and this is what happens when ice recrystal­
lizes during large-scale plastic flow. 

Being places where there are irregularities in the 
lattice, grain boundaries can act as sources and 
sinks of point defects and dislocations. We have 
already referred to the formation of faulted disloca­
tion loops by the condensation of interstitials on 
cooling. Near a boundary there is a zone where 
these loops are not formed because the excess inter­
stitials are lost to the boundary (Liu et al., in press). 
In the very early stages of deformation, stress con-
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ary by the small Burg-
ers vector shown. This results in the displacement of the 
boundary downwards in the right-hand part of the 
diagram. 

centrations form at grain boundaries, and disloca­
tion loops are nucleated from them (Hondoh and 
Higashi 1983, Liu et al. 1993). 

Electrical properties of grain boundaries 
in doped ice 

Electrical measurements on monocrystalline 
and polycrystalline samples of ice lead to the con­
clusion that these types of ice differ significantly 
even when the concentrations of impurities aver­
aged over the volume are the same. As ice does not 
exhibit any anisotropy of conductivity, we are led 
to conclude that the grain boundaries make an 
appreciable contribution to the conductivity. 

The most obvious reason why this may be so is 
that the impurities segregate to the boundaries, 
and particularly to the triple intersection lines 
where three grain boundaries meet. Mulvaney et 
al. (1988) and Wolff et al. (1988) investigated the 
impurity distribution in polycrystalline Antarctic 
ice using a scanning electron microscope with a 
cold stage and an X-ray microanalysis facility with 
a spatial resolution of 10 nm and a detection limit 
of 5 mM (equivalent to 490 ppm for ~504). They 
found that, although the volume average concen­
trations were quite small ~!82 ppb for Na+,320pp~ 
for CI-, 764 ppb for 504 and 41 ppb for N03 
according to ion-chromatography and atomic 
absorption spectroscopy}, theconcentrationofso!­
at triple junctions was 25M within an area of 1 m2• 

This concentration is close to the eutectic temper­
ature ( 4.9 M freezing at -73°C}, so that such triple 
junctions remain liquid at very low temperatures 
and form a network of filaments of extremely high 
electrical conductivity. Wolff and Paren (1984) 
have suggested that the d .c. conductivity of polar 
ice could be caused by the presence of acidic liquid 
layers at the grain boundaries. They showed that 
it is plausible that these impurities will concen­
trate at the triple junctions, and, using reliable data 
for H2S04, HN03 and HCl concentrations at the 
South Pole, they derived the correct magnitude 



and temperature dependence for the conductivity 
of such ice. 

The differences between the electrical proper­
ties ofmonocrystalline and polycrystalline ice seem 
to persist in nominally pure samples. This sug­
gests that the grain boundaries may have an en­
hanced conductivity because of the presence of a 
'liquid-like' layer, such as has also been proposed 
for the free surface (see the future report on the 
Surface of Ice). However, at present this is just 
speculation, and experiments on genuinely pure 
boundaries will be difficult to achieve. 
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