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Ice Forces on Flat, Vertical Indentors 
Pushed Through Floating Ice Sheets 

NAOKI NAKAZAWA AND DEVINDER S. SODHI 

INTRODUCTION 

About half the Earth· s surface is subject to snow. ice 
and seasonally frozen ground. Extensive pem1afrost 
and ice sheets exist in the polar regions, and the oceans 
are covered by seasonal and multiyear sea ice. With the 
growth of human activit ies in cold regions. the impact 
of snow, ice and frozen ground on human affairs and 
commercial development has grown in recent decades, 
thus establishing the need for scientific research. ln low 
temperatures, the properties of most materials change, 
and many machines either do not work as designed or 
fail. Design criteria and construction techniques for 
structures for cold regions are different from those in 
warm regions. 

Purpose for this study 
A rational basis is needed for the design and con­

struction of structures in coastal and offshore regions 
where the presence of floating ice presents a hazard. 
Among the ice forces imposed on structures that interact 
with ice, the impact of an ice floe produces some of the 
greatest loads that the structure has to be designed to 
withstand. This impact can be approximated by an 
indentation. 

In this study, indentation tests were conducted to 
allow us to observe ice fail ure and to determine the 
distribution of ice pressures and the total ice force. The 
geometry of an indentation in an actual environment is 
shown in Figure I. An ice sheet of thickness h moves at 

a veloci ty I ' past an indentor of width d. Because of the 
limits imposed by model testing in the laborutory, 
indentors with a velocity I ' were push£'d through an ice 
sheet in this study. 

Previous indentation studies were conducted using 
finite-sized ice sheets that were confined in a frame. 
Because of the limitations of hydraulic equipment or 
faci lities, many of these tests used a sho11 indentation 
distance. However, limited studies by Kato and Sodhi 
( 1984 ), Sodhi and Morris ( 1984) and Timco ( 1987) 
have been conducted on large. floating ice sheets with 
long indentation distances. simulating the indentation 
of a vertical structure into an infinite, first-year, floating 
ice sheet. 

The previous studies did not completely illuminate 
the ice fai lure mechanism. It is, therefore, the objective 
of this study to attempt to understand the ice failure 
process during ice crushing against an indentor. To 
accomplish this, instrumented indentors were pushed 
against the edge of floating ice sheets at different 
velocities. The instrumentation of the indentors al­
lowed us to measure both the total ice force and the local 
ice pressure or the position of the resultant ice force 
within the contact area. Furthermore, transducers were 
placed to monitor the Acoustic Emission (AE) activity 
in the ice and to measure displacements of the carriage 
and the indentor. which enabled us to analyze the 
energies stored in the structure and dissipated in the ice. 

Plots of force versus time and force versus displace­
ment allowed us to draw conclusions concerning the 



h 

Figure 1. Schematic of indemmion geometJ )'. 

magnitude of the force or energy required to make an ice 
sheet fail, as well as allowing us to observe the size of 
the damage zone in the ice sheet during each loading 
event. Moreover, AE signals, believed to be caused by 
the fo rmation of microcracks, were corre lated with the 
damage caused by the interaction and with the resulting 
ice forces. To summarize the objectives of this study, 
we hoped to do the following: 

I. Observe the nature of the ice failure mode during 
the indentation. 

2. Estimate the energy required to cause an ice sheet 
to fail. 

3. Observe the indentor response at the point of the 
ice failure. 

4. Determine whetherthere is any non-simultaneous 
crushing failure by measuring the distribution of ice 
pressure at the ice/structure interface. 

5. Determine the frequency of ice crushing failure. 
The instrumentation used in this study had some 

desirable features. First of all , the experiments were 
conducted on large, floating ice sheets, simulating an 
infinite ice sheet: second, the indentor support was quite 
stiff; third, a screw-driven carriage capable of moving 
up to 2 m was used; fourth, direct ice force measure­
ments were made by mounting the indentor on the load 
cells at the ice/structure interface; and fi fth , separate 
measurements were made of carriage and indentor 
displacement relative to an ice sheet. 

We carried out 92 indentation tests with rigid, verti­
cal, flat indentors of various widths at different inden­
tation velocities on different thicknesses of freshwater 
ice. We varied several parameters during this study­
indentor widths of 50. 60, I 00 and 150 mm were used, 
ice thickness ranged from 20 to 60 mm, and indentor 
velocity varied between I and 9 mru/s. 

During each test, we measured the force generated 
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during ice-indentor interaction, ice pressure at the ice/ 
indentor interface. indentordisplacement relative to the 
ice sheet, displacement of the carriage relative to a fixed 
datum. and AE activity in the ice. In addition, we noted 
nucleation of the first radial crack using an event marker, 
and used photography and video to record the experi­
ments. 

Background 
The crystallographic structure and properties of both 

freshwater and sea ice have been intensively studied 
(e.g., Weeks and Ackley 1982, Weeks and Cox 1984). 
Through studies by many invest igators, the dependence 
of ice strength (i .e .. compressive. tensile and bending 
strength) on temperature. strain rate, grain size, poros­
ity, salinity, etc., is now well understood. Frictional 
resistance and adfreeze bond strength between ice and 
different materials (e.g., concrete, steel and wood) have 
been investigated byTusima and Tabata ( 1979), Oksanen 
( 1980), Forland and Tatinclaux ( 1984) and Saeki et al. 
( 1986, 1988). Ice forces on bridge piers in rivers have 
been studied for a long time, but the interaction between 
ice and structures in offshore regions is a relatively new 
field of study. 

For the estimation of design loads, ice forces are 
broadly divided into two categories (Neill 1976, San­
derson 1988) : static and dynamic. 

Static loading 
The loading state is defined as static if ice ex ists in 

stationary contact with a structure, and then the struc­
ture experiences an increasing load applied to it by 
natural driving forces , such as wind and water stresses, 
and them1al expansion of ice sheets because of wam1-
ing. 

Dynmnic loading 
The loading state is defined as dynamic if an ice 

feature is not initially in contact with a structure, but 
arri ves and strikes it with an appreciable velocity. This 
loading state differs significant ly from static loading in 
two respects: firstly, the initial contact conditions are 
invariably irregular and nonuniform, and secondly, the 
duration of the impact is generally detennined by the 
kinetic energy of the impacting ice feature, which may 
come to rest during the process. Examples of dynamic 
ice forces are impacts by multiyear floes and by ice­
bergs or ice islands. 

In addition to the above two broad categories of 
loading, it is also necessary to understand the magnitude 
of the forces and the contact area over which these 
forces act. For example. total force on the whole struc­
ture and local pressures over a limited area are ex­
tremely important. 



Toralfoad 
The total load sustained by a structure is important 

for considerations of foundation sliding resistance. 
foundation bearing capaci ty and ove11urning moment. 

Local loads or pressure 
The magnitude and distribution of local pressure is 

essentia l infonnation for detem1ination o f the design 
and spacing of internal structural members and the 
dimensions of internal cell units. Loads over smaller 
areas are also impo11ant for the design of the external 
skin of a struc ture. 

Structures placed in an ice environment sho uld be 
able to withstand not only the total ice load but also the 
local pressure. A good understanding of these loads will 
lead to an economical design for structures. 

Experimental and theoretical studies on ice pressure 
distribution at the ice/structure interface were con­
ducted by Schwarz ( 1970), Kry ( 1978, 1979), Tanaka et 
al. ( 1987), Tunik ( 1987) and Blanchet ( 1987). 

Korzhavin 's fonnula, which empirically re lates ice 
c rushing force with contact area and compressive 
strength of ice, has been discussed by many researchers. 
Experimental and theoretical studies to de tennine ice 
forces on structures were conducted by many research­
ers: laboratory tests were done by Hirayama e t al. 
(1974), Michel and Toussaint ( 1977). Saeki et al. ( 1977), 
Kry ( 1980b), Michel and Blanchet ( 1983), Kato and 

Sodhi ( 1984 ). Sodhi and Morris ( 1984) and T imco 
( 1987): fie ld tests have been done by Zabilansky et al. 
( 1975) and Croasdale et a l. ( 1977). 

EXPERIMENTAL SETUP AND PROCEDURES 

Facilities 
The experiments were conducted in the test basi n of 

CRREL's Ice Engineering Faci li ty. The test basin is 
34.4 m ( I 13 ft) long, 9 m (30ft) wide and 2.4 m (8 ft) 
deep. A photograph of the test basin is shown in Figure 
2. The test basin is insulated. and its refrigeration is 
provided by seven forced-ai r heat exchangers suspended 
from the ceiling. The total refrigeration capacity is 80 
kW, and the minimum air temperature that can be 
achieved is approx imately -23°C. The refrigeration 
tluid is ammonia. 

Ice sheets 
Ice grml'th 

The freshwater ice shee ts were grown in the test 
basin. To freeze an ice sheet. a mixture of water and air 
was sprayed into the cold air over the water surface. The 
resulting seed c rystals fal ling from the a ironto the water 
surface s ta11ed the ice gro wth and ensured unifo m1. 
small size grains (approximately I to 2 mm) throughout 
the sheet. The top layer of the ice sheet is genera lly thin 

Figure 2. Test basin. 
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(I mm) and is composed of columnar ice with a mixed 
vertical and horizontal c-axis orientation. The rest of the 
ice sheet has a random c-axis orientation in the horizon­
tal plane and has a columnar structure characteristic of 
dendritic type growth. 

The ice sheets were grown at several temperatures. 
depending on the time available for freezing and the 
cooling capacity available from the refrigeration plant. 
Most sheets were grown at a temperature between - 15 
and -20°C. It took approximately 36 hours to grow a 50-
mm-thick ice sheet. On a typical day of testing, the room 
was allowed to wam1 to approximately -3°C. after 
which the ice was allowed to temper and to attain a 
unifom1 temperature. 

Temperature 
The temperature of the ice sheets was measured a 

few times during the program and was found to be 
between -I and 0°C. 

Ice thickness 
The ice thickness was measured after each test at the 

test track using vernier calipers with a resolutionof0.05 
mm. 

Characteristic length 
The characteristic length of each floating ice sheet 

was measured shortly before the tests for that day. A 
deadweight ( I 0 lb [5 kg]) was placed over a circular 
plate near the center of an ice sheet. The resulting 
deflection of the sheet was measured using a displace­
ment transducer at the point of loading. The character­
istic length of the floating ice sheet was calculated 
according to the theory of an infinite plate on an elastic 
foundation (Wyman 1950, Sodhi et al. 1982). 

The setup for load application and defomation 
measurements is shown schematically in Figure 3. The 
characteristic length was calculated using eq I. 

I= {_AL_ [ 1 + <X
2 

(1n E., _,i)l}l/2 
8K ~ w 21t 2 4 IJ 

( I ) 

LVDT 

Ice Sheet 

Figure 3. £,\peri mental setup for measuring the clwrac­
teristic length of a floating ice sheet. 
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where I = characteristic length of ice sheet 
M = incremental load placed on the ice sheet 

K = speci fie weight of water 
~IV = resulting deflection increment of the ice 

sheet at the center of the load zone 
lny = 0.55772157 (Euler constant) 

r = radius of the applied load 
a = r/1. 

Elastic modulus 
The elastic modulus can then be calculated by eq 2 

using the characteristic length and ice thickness 

£ = 12( 1-v 2)K 14 
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where£ = effective elastic modulus 
\' = Poisson's ratio for ice 

K = specific weight of water 

= characteristic length of the ice 
h = ice thickness. 

Experimental apparatus 

(2) 

A schematic drawing of the test structure setup is 
shown in Figure 4. A carriage that travels parallel to the 
length of the basin was used to carry the test apparatus. 
The high-force module. which includes a screw-driven 
carriage for the indentation tests, was mounted under 
the carriage. The test structure, structural suppo11 and 
indentor were attached to the screw-driven carriage. 
The test structure traveled perpendicular to the longitu­
dinal direction of the basin, and was powered by a motor 
located at one end of the high-force module. The range 
of velocity fort he carriage in the high-force module was 
from I to 9 mm/s. A photograph of the high-force 
module is shown in Figure 5. 

A schematic diagram of the experimental setup is 

Control 
Room 

D 
Carria e 

T 

Figure 4. Schematic of the test struclllre setup . 



Figure 5. High-force module, looking from above. 

Oitplac-t 
f,.ansducer 

shown in Figure 6. The structural support mounted on 
the carriage of the high-force module is 1.2 m long. 0.6 
m wide and 0 .3 m high. The indentor support was 
mounted under the structural support. and indentor 
plates were attached to the indentor support. Both the 
indentor and structural support moved together. The 
load cell insta lled in the structural support was cali­
brated to measure the horizontal ice force on the inden­
tor. 

The following two methods were used to determine 
the pressure distributio n on the indentor (Fig. 7). 

Installation of pressure transducers 
on the indentor plate 

The pressure transducers were installed to measure 
the local ice pressure at the ice-indentor interface. The 
widths of the indentor used with this method were 60 
and I 00 mm. Two pressure transducers were installed 
on the 60-mm-width indentor and four pressure transduc­
ers on the 100-mm-width indentor. 

Support of indentor on three load cells 
The indentor plate was mounted on three load cells 

that were installed on the supporting structure behind 
the indentor. The total interaction force at the interface 
was obtained by summing the forces measured by each 
load cell. The indentor widths used with this setup were 
50, I 00 and 150 mm. 

Mounting the indentor plate on three load cells 
produced a stiffload-measuring system that gauged the 
interaction forces without the influence of the structural 
response. This methodology (Fig. 7b) to measure inter­
action forces enabled us to determine not only the 
magnitude of the total forces but also the position of the 

/ H igh Force Module 

- Structural Support 

Displocem...-.t 
Trans 

Figure 6. Schematic of the e.\perimental setup. 
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Indentor Pla te 

a. fllstal/atiofl t!lpressure tJwlsclucc·rs till 
the i11de11tor plate. 

Elevation 
view 

Section 
view 

+ 

E 
E ... ... 

w b• SO . IOO . ISOmm 

'lood Cell 

h. Support ofillclentor oil thre<' loacl cc·lls. 

Figure 7. Schematic ofi11cle11tor plate. 

resultant forces. When the resultant force is found to be 
in the center of the contact area. it is an indicat ion of a 
symmetrical distribution of ice pressure at the inteli"ace. 
Examples of simple symmetrical distributions of ice 
pressure would be a unifonn or a parabolic distribution 
or a combination of these two. However. if the position 
of the resultant force is not at the center of the contact 
area. we know that the distribution of ice pressure is 
asymmetrical. 

Instrumentation 
A 44-kN-capacity ( I 0.000-lb) load cell shown in 

Figure 6 was installed on the structural suppo11 to 
measure the total ice force. However. only part of the 
total interaction force at the interface was measured by 
this load cell (which was calibruted prior to the test ing 
program). The capacity of each load cell supporting the 
indentor plate was 22 kN (5000 I b). The capacity of each 
of the 13 pressure transducers installed on the indentor 
plate was 7 MPa (rated) and 14 MPa (maximum). 
Because the C41pacity of these transducers was not high 
enough. they fai led. one after the other. during the tests 
because of overloading. 

The velocity of the structural suppo11 was measured 
using a position-velocity transducer mounted on the 
frame of the high-force module and attached to the 
screw-driven carriage. Displacement of the indentor 
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relative to the ice sheet was measured using another 
posit ion-velocity transducer that was placed on the ice 
sheet and connected to the indentor surface. 

An Acoustic Emission (AE) sensor was placed in the 
ice sheet to monitor the acoustic activi ty from micro­
cracking during defonnation of the ice. The AE 
transducer was connected to a signal conditioner whose 
output in volts was proponional to the cumulative AEs 
(or counts) received by the sensor. It would automati­
cally reset to zero whenever it reached a maximum 
limit. 

An event marker was used to record the initial 
contact between the indentor and the ice and the nuclea­
tion of the ti rst radialmacrocrack in the ice sheet during 
tests. The event marker was connected to the signal 
conditioner. and the researcher observing the tests cued 
the signal conditioner by touching the event marker. 

Data acquisition system 
A flow chalt of the data acquisi tion system used to 

monitor our tests is shown in Figure R. The data uc4ui­
sition system wus controlled by a desk-top computer 
that also provided input--<>utput handling tor data stor­
age. All transducers were connected to a signal condi­
tioner thut also provided the excitation voltage to each 
transducer. The data were stored in digital tom1 on 
tloppy disks. 



FigureS. Floll' chart of tile claw acquisition.\:\'stelll. 

Testing procedures 
When the ice sheet thickness reached that required 

for the planned test. the characteristic length of the ice 
sheet was measured by placing a deadweight on the 
cente r of the ice sheet and monitoring its ve11ical dis­
placement with respect to a fixed datum. A slot was cut 
in the ice sheet with a chain saw to allow the indentor. 
which protruded below the water surface. to travel from 
one test location to anothe r. T he ice was carefull y cut to 
avoid cracking and to make the ice edge perpendicular 
to the indentor surface. Indentation tests were per­
fomled o n ice that was visually free of mac roc racks. 

The AE sensorwas placed in the ice sheet by drilling 
a 1-cm-deep hole at a location approximately 70 em in 
front of the indento r. A weight was placed on it to keep 
it in fim1 contact with the ice sheet. A disp lacement 
transducer was also placed on the ice sheet approxi­
mately 1.5 m in front of the indentor and its s tring was 
connected to the indentor plate. Indentation tests were 
conduc ted after these preparat ions. 

Tests were conducted along several tracks in the ice 
sheet as shown schematically in Figure 9. First. a test 

Second R"" 

Fint Run 

I t t t 
Slot 

Test Bas in 

was conducted on an undamaged (with no microc racks) 
ice sheet for several seconds and then stopped (fi rs t 
run). During these tests. extensive microcracks were 
produced in front oft he indentor. Then. anothe r test was 
carried out on this damaged ice in the track created by 
the first run at the same velocity (second run). The time 
inte rval between these two tests (or runs) was usually 2 
to 3 minutes. During the fi rst run. the initial contact of 
the indentor with the ice and the nuc leation of the first 
radial macrocruck were recorded manually with the 
help of the event marke r. 

After conducting two tests in one track. we moved 
the carriage to another location. doing two more tests at 
a different velocity. creating another test track (see Fig. 
9). Up to five test locations were carefully chosen to 
avoid existing cracks in the ice sheet. the distance 
between different test tracks being at least 3 m. In one 
day. 9 to II tests were usually conduc ted on one ice 
sheet. Second runs for tests at very low velocit ies ( I 
mm/s) were not conducted. St iII photographs and video 
recording of the tests were taken. After the tests. crushed 
ice specimens were cut out to observe and to photograph 
the icc damaged by mic rocracking. 

Summary oftest series 
The test period was from 19 February through I ~ 

Apri ii 9RR. Altogether. 92 tests were conducted in an~­

week period. 
Tests were di vided into two test series. Firs t. tests 

were conducted in which the pressure transducers were 
installed on the indentor (Fig. 7a). When some of the 
pressure transducers failed because of overloading during 
the tests. the experimental setup was changed to sup­
porting the indentor plate on three load cells (Fig. 7b). 
thus enabling the measurement of total force and deter­
mining the posit ion of the resultant force. They are 
labeled NSC test and N N test. respectively. The test 
condi tions are listed in Table I for NSC tests and in 
Table 2 fo r N N tests. 

/Test Track 

t t Prep 
Tank 

Fi,::urc• 9. Test track location in the hasin. 
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Table 1. Parameters and ice properties for the NSC Table 2. Parameters and ice properties for the N N 
series of tests. series of tests. 

lndemor Ice lndemor ludemor Ice lndt' lllor 
Dme Test il"idth thicknl's.~ n·lvcity Lc (em)* /)(If(' Test ll"idth thickness n ·lol"ity Lc (em)* 

( 19NXJ 1111111/J(•r (111111) (111111) (nnn/s) E (Gpai ( /988) number (111111) (111111) (mmls) E (GPa) 

19 F.:b R9/8S 60 50 7.7 not mc.asurcd I Apr 31/.12 50 26 9.3 Lc= 65.3 
'1!.7/86 60 42 6.6 3~/34 50 26 7.0 /:" = 1.11 
85/84 60 ~5 5.4 5/36 50 27 ~ .6 

X3/X2 60 48 3.3 ~7/~8 50 27 2.2 
25 F.:b 79 100 26 7.8 not m.:.asur.:d :l9 50 27 1.2 

78 100 25 6.6 -1 Apr ~1/42 50 60 9.2 Lc= 1463 
77 100 25 4.4 43/4~ 50 60 6.1l 1: = 2.27 
76 100 24 2.6 ~5/46 50 56 ~..~ 

29 Feb 69/61l/67 100 57 7.9 not measured ~7/~R 50 57 2.2 
66 100 56 7.5 -19 50 60 1.3 
65 100 56 5.5 7 Apr 51 100 3~ 9.1 Lc = 77.3 

~/63/62/6 1 100 56 5.8 52/53 100 3~ 6.9 £ = 1.07 
60 100 62 6.1 5~ 100 33 9..1 
59 100 57 1.8 55/56 100 33 ~.5 

7 Mar ~9/48/47 100 52 7.9 not m.:asurcd 57/58 100 32 2.3 
46 100 54 59/&.) 100 ]3 2.0 
45 100 55 II Apr 61/62 100 53 9.2 Lc = 129.0 
44 100 55 6~/~ 100 56 6.6 E = 1.69 

IOM.ar 39/38 100 45 R.O not m.:.asur.:d 65/66 100 56 ~.6/JA 

37 100 43 S.l 67/6R 100 54 2.2 
36 100 49 1.0 69no 100 55 1.1 

16Mar 29 100 47 8.3 Lc= 116.7 701 100 57 \.1.4 
28 100 58 0.9 E = 1.19 14 Apr 71 150 30 4.9 Lc = 71.8 
27 100 56 1.5 7'2 150 31 2.9 ~~· = 1.05 
26 100 56 1.3 73 150 30 0.3 
25 100 56 1.0 7-1 150 29 1.5 
2-1 100 55 3.1 75 150 31 1.1 
23 100 53 4.6 76 150 J3 1.2 
22 100 57 6.2 IR Apr 81 150 54 3.5 Lc = 129.0 
21 100 51 7.9 £ = 1.88 

18 Mar 19 100 25 8.0 Lc = 65.3 " Lc = ch.ar.actcristic length: £=clastic modulus. 
18 100 25 5.8 E = 1.25 
17 100 25 3.8 
16 100 25 2.0 

• Lc = char.lctcristic length; E =clastic modulus. which were continuously taken from the initial contact 
through the ice fai lure, are shown in Figure II . 

At the onset of loading, microcracks fo1111ed in the 
immediate vicin ity of the indentor (Fig. I Oa). As the 

TEST R ESULTS AND OBSERVATIONS indentor deformed the ice. more microcracks appeared 
in an expanding zone. The crack density also appeared 

In this study, we observed microcracking near the to increase with the passage of time after the in it ial 
indentor as well as a variety of fai lure modes during the contact between the indentor and the ice. As the ice 
indentation tests: radial cracking, circumferential crack· force increased during microcracking and defonnation 
ing, cleavage cracking, spalling and crushing. and of the ice, one (and sometimes two) big radial cracks 
buckling. The time when the radial cracks occurred propagated into the ice sheet ahead of the indentor. A 
during a test depended on the test conditions, i.e., ice photograph of the microcracks and a radial crack is 
thickness, indentor width and indentor velocity. shown in Figure 12. With the help of an event marker, 

it was possible to establish that this radial crack formed 
Microcracking when the ice force reached a magnitude of about 70% of 
Observations the maximum force: there is no indication in the record 

Mic·rocracking was observed visually and recorded of any decrease in ice force at the time this crack 
by still photography and video. Sketches of micro- nucleated and propagated. The length of these radial 
cracks and some larger cracks. based on visual observa- cracks was usually about J m and they fom1ed almost 
tions, are shown in Figure I 0. Photographs of a test, perpendicu lar to the indentor face (Fig. I Ob). 
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microcracks ..._ 

(b) 

, rodia l crack -

Figure 10. Microcracking and radialmacrocracking 
behavior. 

Even after the fonnation of the radial crack. micro­
cracks would keep developing, not only in front of the 
indentor, but also on both sides. The ice in front of the 
indentor would tum milky with the accumulation of 
microcracks. We found by observing the tests that the 
highest density of microcracks was near the indentor, 
decreasing with increasing distance from it (Fig. I Oc). 

When the test velocity was high ( v > 4 mm/s), the ice 
sheet failed brittlely, followed by sudden forward 
movements of the indentor into the ice sheet and into the 
zone of extensive cracks (Fig. I Od). When the indentor 
velocity was low (v < 3 mm/s), the ice failed ductilely, 
as indicated by the absence of sudden forward indentor 
motion and the rounded peaks in the ice force record. 

During tests at high velocity (v > 4 mm/s), we 
observed spurts of microcracking prior to each subse­
quent failure. Microcracks developed ahead of the 
indentor, and then the indentor moved forward very 
quickly, accompanied by crushing or spalling of the 
damaged (microcracked) ice (Fig. JOe). 

9 

Figure II . Progress of an indenrarionresr 
from rhe inirial conwcr rhrough rhe firsr 
failure. 



Figure 12. Microcracks and one radiallnacrocrack during a test. 

Figure 13. Microcracks during a rest. 
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Figure 15. Acoustic emission signals and ice force records. 
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Figure 16. Cumulative AE count and ice force. 

Microcracks spread slower during tests with a low 
indentor velocity than they did during tests at higher 
velocit ies. Figure 13 shows a photograph of micro­
cracks fom1ed during a test, whereas Figure 14 shows a 
photograph of microcracks after a test. A preliminary 
examination of thin sections from a freshly defom1ed 
ice sample indicated that the microcracks were located 
at the grain boundaries. This agrees wi th the observa­
tions of Sinha ( 1984 ). who proposed a model for the 
ini tiation of intergranular cracks and their subsequent 
accumulation. 

Microcrac:king and AE signals 
Figure 15 shows records of the AE signals and the ice 

force versus time. As we stated previously in the section 
describing instrumentation. the AE apparatus would 
reset the cumulat ive count (or the signal) automatically 
to zero when the count reached the saturation level of 
the apparatus. The intense AE activity is reflected in the 
records by the high frequency of resetting. The increase 
in ice force correlates very well with the high AE count, 
which can be directly attributed to microcracking as 
observed visually. For the ductile fai lure at low velocity 
(v < 3 mm/s), an AE signal was recorded after the time 
when the maximum ice force occurred. 

Figure 16 shows the cumulative AE count and the ice 
force with respect to the time for the indentor velocities 
of9.2 and 1.1 mm/s. The upper curves in the AE figures 
are the cumulative count, which has been nondimen­
sionalized with respect to its maximum value. Afterthe 
buildup in the ice force, the cumulative AEcount started 
to increase, and the ice force and the cumulative AE 
count increased together. These findings show that the 
microcracks are generated and accumulated in the ice 
by the indentor loading. In the test hav ing high indentor 
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velocity (9.2 mm/s), the cumulative AEcount increased 
until brittle failure. At the low indentor velocity ( 1.1 
mm/s). however, the cumulat ive AE count increased 
with increasing ice force. Even after the time when the 
peak force was recorded. this count continued to in­
crease because of the ductile behavior of the ice. 

Failure modes 
The failure modes observed in the test series are 

illustrated schematically in Figure 17. 

Radial crack 
As mentioned in the previous section. one (or some­

times two) radial cracks were generated after a certuin 
time (between I and 5 seconds. which depended on 
indentor velocity) following the initial contact between 
the indentor and the ice. The length of these radial 
cracks was usually about 3 m and they fom1ed almost 
perpendicular to the indentor face (Fig. 17a). 

Circumfi•n•n rial crack 
Many circumferential cracks were generated in front 

of the indentor by the first brittle fai lure (Fig. 17b). 
Usually, five to ten circumferential cracks developed in 
front of the indentor. No circumferential cracks were 
generated when the ice failed ductilely. 

Cleal'(lge crack 
Cleavage cracks (in-plane horizontal cracks) were 

sometimes observed in front of the indentor. These 
cracks appeared after the microcracks formed and grew 
gradually in size as the indentor loading increased (Fig. 
17c). In Figure 18. the dense. milky semicircular shape 
in front of the indentor is a cleavage crack . Figure 19 
shows a photograph of both a plan view and a cross 



a. Radial crack. c. Cleamge 
crack. 

b. Circumferential 
aack. 

'*,...------~"< d. Spa/ling. 

Figure 17. Glohal failure modes (after Sandason 1988). 

section of the ice cut after the test shown in Figure 18. 
A theoretical model for the propagation of cleavage 

cracks was presented by Kendall ( 1978). A geometry 
useful in the analysis of cleavage propagation is shown 
in Figure 20. The compressive force P is conceptually 
divided into two forces P/2 acting at points a distance Ill 
2 from the top and bottom surfaces. These two forces 

Floatin11 ice shut 

lead to tensi le forces at the crack tip. More research is 
needed to understand cleavage crack propagation. 

Spa/ling 
During tests at intennediate to high indentation ve­

locities (1·> 6 mm/s). we observed local spall ing failure 
during ice crushing . The sudden forward motion of the 

Figure 18. Cleamge crack during a rest-semicircular shape in from of the indemor is a cleamge 
crack. 
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Figure 19. /ce hori:omallyseparated by the in-plane cleavage crack: 
the plan view and the cross section of the ice (arrow indicates 
indentor path). 

/,---
/ 

I 
I 
I 
\ 
\ ', ..... __ 

a. Plan view. 

-
b. Cross-sectiona/l'iewforthe analysis 
of propagation of the c/eal'age crack. 

Figure 20. Geometry of an in-plane cleavage crack (after Wier:hicki 1985 ). 
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Figure 21. Buckled ice sllcetwitll a 1111111ber of circumferemia/ cracks. 

indentor caused fragments o f ice to break away ahead o f 
it. Ice, damaged by microcracks, expanded near the 
indento r. As the ice moved in the vertical direction, the 
indentor moved forward suddenly, with the ice frag­
ments spalling up and down (Fig. 17d). 

BucJ.:Ii11,~ 

In some tests, ice buckled, especially when indentors 
were pushed against thin ice at low velocities (v < 3 mm/ 
s). Tests N N 7 1 toN N 76 (d = 150 mm) all resulted in 
buckling failure. At the o nset of the loading, micro­
cracks were generated in the same manner as stated 
earlier. But soon afterthe nucleation of the microcracks, 
the ice sheet started to bend downward and eventually 
buckled forming several c ircumferential cracks (Fig. 
2 1). 

DISCUSSION 

To examine the factors influencing the ice forces on 
flat , vertical indentors, we looked at the following 
topics: velocity effects, energy analysis, ice pressure 
and contact area, position of resultant force, first peak 
force versus subsequent peak force, frequency of ice 
force failure, and buckling failure. 

The velocities indicated in figures and tables are 
those of the average rate of indentor displacement 

15 

relative to the ice sheet. Test results and analyses are 
summarized in Table 3. 

Velocity effects 
Because ice is a viscoelastic material. its prope11ies 

depend on the magnitude of the stress it is under and the 
rate of stress application. The ice may fail by brittle 
fracture or by ductile creep, depending on the applied 
stress rate. The range of relative velocity in the present 
test series was between I and 9 mm/s. 

At the instant of ice failure, especially d uring tests at 
intermediate to high indentor veloci ty (r > 4 mm/s). a 
sudden unloading occurred with a loud noise because 
the indento r would spring back to its original position. 
This can be seen in the displacement records of the 
carriage and the indentor in Figure 22, where force and 
displacement records are shown for tests at velocities 
rang ing from 3. 1 to 7.9 mm/s. Figure 23 defines the 
deformation of the structure: the difference between the 
displacement of the carriage and that of the indentor. 
We observed, from Figure 22. that the indentor dis­
placement record was not always linear with time. The 
nonlinear displacement record of the indentor at a 
velocity of 3. 1 mm/s in Figure 22 shows that the 
indentor catches up with the carriage faster as the ice 
resistance decreases as a result of creep failure. 

The effects of velocity o n the nature of fai I ure can be 
seen in the records of ice force versus time and in the 



records of ice force versus indentor displacement shown 
in Figures 24 and 25 respectively. The sudden unload­
ing of the fo rce on the indentor is an indication ofbrittle 
failure, whereas the ductile failu re results in gradually 
decreasing force. but not a ll the way to zero. Typical 
force versus time plots for the brittle and the ductile 
failures of ice are shown in Figure 26. 

At high velocities (v > 4 mm/s), after the initial 
contact of the indento r wi th the ice. the ice force 
increases monotonically to a maximum value, as shown 

in Figures 24 and 25. Microcracks nucleate and accu­
mulate in the ice sheet during this period. Brittle ice 
behavior results in sudden unloading of the indentor at 
the instant of the ice failure and forward indentor 
movement. with crushing o r spalling of the micro­
cracked ice in front of the indentor. Because of brittle 
failure, a sawtooth type of force-time plot is recorded 
for h igh veloci ty tests. 

At low velocit ies (v< 3 mm/s), the data in Figures 24 
and 25 show that the ice forces g radually increase to a 

Table 3. Summary of test parameters and results. 

Ice Elastic lnllemor R= 
Test thickness. h modulus. E IVidtlt.d \lclocity. v * F....., p _,. ** F •• / F.~~~~ 
110. (111111) (GPa) (111111) (mmfs) (kN) (MPa) (kNJ F.,.., 1'(//:Jtt fll/V 

NSC 
21 5 1 1.19 100 7.9 70.0 13.7 3 1.8 0.45 
22 57 1.19 100 6.2 67.1 11 .8 29.3 0.44 0.54 4.96 
23 53 1.19 100 4.6 63.0 11.9 
24 55 1.19 100 3.1 63.0 11.5 
25 56 1.19 100 1.0 56.0 10.0 

N N 
3 1/32 26 1.1 I 50 9.3 17.0 13. 1 6.4 0.38 
33/34 26 I. II 50 7.0 15.6 12.0 S.H 0.37 
35/36 27 1. 1 I 50 4.6 15.3 11.3 
37!38 27 1.11 50 2.2 13.7 10. 1 

39 27 I. II 50 1.2 12.7 9A 

4 1/42 60 2.27 50 9.2 39.7 13.2 20.9 0.53 0.75 4.89 
43/44 60 2.27 50 6.8 38A 12.8 20.5 0.53 0.59 5.2 1 
45/46 56 2.27 50 4.4 35.7 12.8 
47/48 57 2.27 50 2.2 33.0 11.6 

49 60 2.27 50 1.3 3 1.5 10.5 

5 1 34 1.07 100 9. 1 3 1.9 9.4 13.0 0.4 1 1.52 5.68 
52! 53 34 1.07 100 6.9 28.4 R.4 11.0 0.39 O.R6 4.24 

54 33 1.07 100 9.4 28.7 8.7 13.0 0.45 1.38 4 .84 
55156 33 1.07 100 4.5 28.7 8.7 
57/58 32 1.07 100 2.3 22.0 6.9 
59/60 33 1.07 100 2.0 24.2 7.3 

6 1/62 53 1.69 100 9.2 57.2 10.8 18.0 0.3 1 0.94 5.42 
63/64 56 1.69 100 6.6 54.6 10.3 23.R 0 .44 0.57 4.84 
65/66 56 1.69 100 4.0 52.6 9.4 23.3 0.44 0.38 5.32 
67/68 54 1.69 100 2.2 46.9 8.7 
69no 55 1.69 100 1.1 42.5 7.7 
701 57 1.69 100 9.4 52.1 9. 1 28.7 0.55 0.72 4.37 

7 1 30 1.05 150 4.9 39.3 8.7 
72 3 1 1.05 ISO 2.9 31.0 6.7 
73 30 1.05 ISO 0.3 25.0 5.6 
74 29 1.05 150 1.5 33.2 7.6 
75 31 1.05 ISO 1.1 28.3 6.1 
76 33 1.05 150 1.2 30.5 6.2 

• Maximum force. 
•• Effective pressure. 
t Maximum force of the lirst peak. 

tt Frequency of icc fai lure. 
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Figure 22. Plots of ice force and displacement of the carriage 
and the indentor with respect to time for the tests with d = I 00 
mm and h =54 mm at different Felocities. 

maximum value after the initial contact and that the 
ductile defonnation of ice results in gradual unloading 
of the indentor and smooth variations in the ice force 
records. Ductile fai lure can be recognized by rounded 
peaks attributable to softening of the material at high 
stress levels. 

Sharp peaks in force versus time plots become 
rounded with decreasing velocity. It should, however, 
be noted that even at high velocity (v > 4 mm/s). the 
monotonic increase in the ice force becomes sl ightly 
rounded before the ice failure takes place. 

Fu11her, the plots of ice force versus the indentor 
displacement at different indentor velocities (Fig. 27) 
present ice force records up to the first few peaks to 
show the effect of velocity. 

From these records, it appears that the indentor 
displacements corresponding to the peak ice force are 
almost the same even though the indentor velocities are 
different (the peaks in the records for ductile failure are 
a little bit to the right of those for brittle failure). A lso, 
even after the ice failed brittlely (i.e. , tests N N 35, 43, 
45,52 and 6 1), the indentors arestill loaded fora certain 
distance after the peak force is recorded. 

After the sudden unloading of the indentor, it moves 
forward until it again contacts the ice. Figure 27 shows 
that the second loadings start almost at the same posi­
tion in the ice sheet for different indentor velocities. The 
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size of the damage zone caused by the first peak loading 
is about the same even when the indentor velocities are 
different. 

The maximum effective pressure, defined as the 
maximum ice force divided by the contact a rea, is 
plotted with respect to the indentation rate rid (I' = 
indentor velocity. d = indentor width) in Figure 28. We 
can see a trend of the maximum effective pressure 
slightly increasing with the increase in indentation rate 
vld, which is in the runge of 0.0 I and 0.18 I /s. 

0 

Figure 23. Sketch e.\plaining the dis­
placement records shown in Figure 
22: a-displacement of the carriage; 
b-<lisplacement of the indentor with 
respect to the ice she<' f: C--<leforma­
tion of the structure. 
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Figure 26. Typical ice force records. 
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In Figure 29, plots of maximum effective pressure 
versus indentation rate obtained from the present study 
are compared with those from other studies on labora­
tory ice (Hirayama et al. 1974, Frederking and Gold 
1975, Michel and Toussaint 1977, Timco 1987). We 
obtained an average value for maximum effective pres­
sure of about 10 MPa, which is consistent with the 
results of the previous studies. 

Energy analysis 
Energy supplied to the carriage by the drive screw is 

partly stored in the structure and partly dissipated in the 
ice. Energy stored in the structure results in the defor­
mation of the structure, and the energy dissipated in the 
ice causes deformation and microcracking in the ice. 
The force generated at the interface is the same as that 
which deforms the ice, deflects the structure and moves 
the carriage. Because the displacements of the carriage 
and the indentor were measured separately with respect 
to a fixed datum, the energies supplied to the carriage 
and dissipated in the ice can be computed independ­
ently. The energy stored in the structure is computed as 
the difference between the energy supplied to the car­
riage and the energy dissipated in the ice. 

Figure 30 shows measured ice force and displace-
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ments data and computed energy transfers for indentor 
velocit ies of 9.4 and 1.3 mm/s respectively. It shows 
plo ts of the following: (from the top) the ice force; the 
displacements of the carriage and the indentor; the 
energies supplied to the carriage, dissipated in the ice 
and stored in the structure; and the rates of energy 
supplied to the carriage, stored in the structure and 
dissipated in the ice with respect to the time. Energy 
supplied to the carriage was calculated by integrating 
the product of the ice force and the incremental carriage 
displacement. Energy dissipated in the ice sheet was 
calculated by integrating the product of the ice force and 
the incremental indentor displacement. Energy stored 
in the structure was calculated by subtracting the energy 
dissipated in the ice from the energy supplied to the 
carriage. We calculated energy rates by multiplying the 
force with the corresponding velocities, which in tum 
were obtained by fitting a polynomial through the 
displacement data by the method of least-squares and 
then differentiating the fitted polynomial with respect to 
time. 

From the initial contact to a peak force, a portion of 
the energy from the carriage is stored in the structure as 
the structure deforms as a result of the interaction force. 
During a test at high indentor velocity (e.g., 9.4 mm/s, 
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Fig. 30a), the energies stored in the structure and dissi­
pated in the ice increase with the elapsed time until the 
force reaches a max imum value. At this time. the energy 
stored in the structure is greater than that dissipated in 
the ice. This means that the deformation of the structure 
is larger than the displacement of the indentor relat ive 
to the ice sheet until the ice fails. 

During a test at low velocity (e.g .. 1.3 mm/s, Fig. 
30b). the energy in the structure and in the ice increases 
with the elapsed time, but the energy dissipated in the 
ice is greaterthan that stored in the structure. This means 
that the displacement of the indentor relative to the ice 
sheet is greater than the deformation of the structure 
duri ng the fi rst loading. 

The rates of energy supplied to the carriage, stored in 
the indentor structure and dissipated in the ice are 
shown at the bottom of Figure 30. For a test with high 
indentor velocity (v = 9.4 mm/s), the rate of energy 
dissipated in the ice is low and gradually increases with 
the elapsed time; the curve becomes steep at the time of 
the ice failure. Fora test with low indentor velocity (v = 
1.3 mm/s), the rate of energy dissipated in the ice is 
much greater than that stored in the structure, and it is 
even greater than that supplied to the carriage after the 
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force peaks and the structure unloads. The negative 
val ues for the rate of energy stored in the structure 
means that the structure gradually swings back to its 
original position. thereby losing its stored energy. 

Appendix A presents 20 plots showing measured 
data and computed energy transfers (Fig. A92- A Ill ). 

Figure 31 shows plots of time versus dissipation 
energy in the ice up to the first peak in ice force for 
different indentor veloci ties. In each test series. it should 
be noted. once again. that the energy used to produce the 
peak force is almost the same, even when the indentor 
velocity is different. The reason for this result can be 
seen in the force-displacement records shown in Figure 
27. With the lower indentor velocity, the the peak forces 
are slightly smaller, and these occur slightly to the left. 
resulting in a constant area underthe force-displacement 
plots. In other words, although the peak force and the 
displacement of the indentor are different at different 
indentor velocities. the energy dissipated in the ice up to 
the first peak in force is almost the same if indentor 
width, ice thickness and structural stiffness are the 
same. 

Rates of energy dissipated in the ice up to the first 
peak in force for different indentor velocities are plotted 
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in Figure 32 for each test series. Each plot shows that the 
rate of energy dissipated in the ice increases with the 
elapsed time. For tests at high indentor velocity (r > 4 
mm/s), the rate increases rapidly with the elapsed time. 
The rates are much lower for tests at low indentor 
velocity (v < 3 mm/s) and attain a steady-state value as 
opposed to the steep rise observed for high-velocity 
tests. This high rate of energy dissipation at high inden­
tor velocity leads to instability, which is commonly 
called brittle failure of ice. The low rate of energy 
dissipation in the ice at low indentor velocities leads to 
gradual unloading of the indentor, which is commonly 
called the ducti le failure of the ice. 

Ice Thlckness•27mm Ice Th lckness • 60mm 
600 . 

!! 200 I ..... .. 
Q: 

!! 300 .. 
Q: 

>-15 0 
en .. 

....... . 

( s ) 

a. d =50 mm. 

Ice Thl ckn ess • 33mm 
600 

i 
N 

100 .. 

" ~ 01~~~~==~~~~-
Time (s l 

b. d = I OOmm. 

15 
Tl me (s) 

Ice Thtckn•sa•SSmm 

Ti me ( s ) 

Figure 32. Energy rate dissipated in the i("(' 1·ersus time 
for differellt indelltor velocities (numher at the top of 
each plot). 

22 

Ice pressure and contact area 
From a wide range of earlier experiments on the 

indentation of ice, it is known that the effective pressure 
decreases with increasing aspect ratio or contact area. 
Ice in the laboratory fails at I 0-20 MPa and yet at large 
scale in the field it appears to fail at about I MPa. It is 
clear that. for some reason. failure pressure depends on 
contact area (Sanderson 1986). 

First, the effective pressures obtained from this study 
were examined to see whether they fol lowed any trend. 
Second. the pressure transducer records were analyzed 
to see if there was non-simultaneous failure across the 
contact area. 

Comact area effects 
Figure 33 shows the plots of the maximum effective 

pressure p (= Fldh. where F =total force. d = indentor 
width and h =ice thickness) as a function of contact area 
(d x h) from the present study for indentor widths of d 
= 50, I 00 and 150 mm. The test data do not show any 
trend of decreasing ice pressure with increasing contact 
area. probably because of the small v;uiations in contact 
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area in our tests. However, the data do show that the 
effective pressure decreases with decreasing velocity 
for the same contact area. 

data obtained from this study are also plotted in those 
figures for comparison, and they compare well with 
those from other studies. 

In Figure 34, the effective pressure is plotted with 
respect to contact area for a wide range of ice-structure 
geometries and structure widths (from Sanderson 1988). 
Similarly, peak effective pressure is plotted with re­
spect to the aspect ratio dllz in Figure 35 for indentation 
tests conducted on freshwater ice (Timco 1987). The 
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Simultaneous \'ersus non-simultaneous failure 
Some of the pressure transducers failed, because of 

overloading, during the course of the experiment. Thus, 
limited data on interfacial pressure between the ice and 
the indentor were obtained by the pressure transducers. 
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records, d = 100 mm and h =54 111111 at different velocities. 

Figure 36 shows the pressure transducer records along 
with the ice force records for tests in which the indentor 
width was I 00 mm and ice thickness 54 mm. The 
velocity range in this figure is between 3.1 and 7.9 mm/ 
s. Nearly uniform pressure distribution can be seen 
during initia l contact of the indentor with the edge of an 
ice sheet. In a few tests, the interfacial pressure in­
creased to a certain value (approximately I 0 MPa in Fig. 
36) soon after the indentor contacted the ice and re­
mained more or less constant while the ice force m­
creased gradually until the ice failed. 

A number of pressure transducer records are in­
cluded in NSC test sheets in Appendix A. Altho ugh 
some of the records show non-simultaneous crushing 
behavior, we believe that pressure data from more 
pressure transducers will be needed to ascertain the non­
simultaneous failure o f ice from the pressure distribu­
tion. 

Position of resultant force 
As mentioned earlie r, the indentor plate was mounted 

on three load cells after the change in the experimental 
setup. Mounting the indentor plate directly on the load 
cells is a better way to measure the interaction force than 
that by instrumenting the structural support. This setup 
allowed us to obtain not only the total ice force by 
summing the three ice forces obtained from the load 
cells but a lso the position of the resultant force in the 
contact area. 
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The positions of the resultant force were calculated 
by the following equations 

X fl -F2 B 
2(f1+f2+F3) 

where F
1
, F

2 
and F

3 
= ice force measured by load 

cells L
1
, L

2 
and L

3 
B = horizontal distance be­

tween load cells L
1 

and L 2 
H = vertical distance between the 

L
1
-L

2 
line and L

3
• 

The calculated positions of the resultant force within 
the contact a rea are plotted in Figure 37 for the total 
force exceeding certain thresho ld values: 5 kN in Fig. 
37a. 15 kN in Fig. 37b. I 0 kN in Fig. 37c and 30 kN in 
Fig. 37d. 
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By monitoring the point of action of the resultant 
force, a few inferences can be made about the pressure 
distribution. A symmetrical pressure distribution would 
be indicated by the point of action of the resultant force 
being in the center of the contact area: otherwise. we 
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would expect it to be in some other area of the contact 
zone. In the situation of a non-simultaneous ice failure. 
the position of the resultant force is expected to move 
from one p<111 of the contact zone to another during 
continuous crushing of ice. 
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The plots of resultant force positions in Figure 37 
show that the initial contact point between the indentor 
and the ice edge may not have been in the center of the 
contact a rea, but, as the load increased, the position of 
the resultant force moved to the center of the contact 
area. From our observations of the computer graphics 
during data analysis, we consistently saw the posi tion of 
the resultant force move to the centerofthecontact zone 
as the ice force increased. These records indicate that, 
when the interaction forces are greater than the thresh­
old force level. a symmetrical pressure distribution 
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exists at the ice-indentor inte1face. It appears that the 
position of the resultant force at high veloci ty (1'>4mm/ 
s) is slightly scattered because of the cyclic brittle 
failure. At low velocities (1• < 3 mm/s). the position is 
laterally centered but varies somewhat vertically. This 
may be attributed to the gradual loading and the ductile 
behavior of the ice, generating a symmetrical pressure 
distribution. 

It should be noted that the unifOJmity of the ice 
pressure may be attributed to the small contact a rea in 
thi s testing program. Further stud ies employing larger 
contact areas should be conducted to investigate non­
simultaneous fai lure of ice within the contact area. 

First peak force versus subsequent peak force 
We stated previously that eight to ten tests were 

conducted in pairs in four to five tracks in an ice sheet. 
Two tests were conducted in one test track at the same 
velocity to observe the magnitude of the ice force 
resulting from interaction with •·undamaged" and 
"damaged" ice: the "first run" into undamaged ice and 
the "second run" into damaged ice. 

The ice force records are shown in Figure 38. Tests 
N N 3 1 and N N 32 (Fig. 38a) were conducted in the 
same test track. as were N N 33 and N N 34 and so on. 
The first peak force in the first run was always the 
maximum forcethroughouteach test. The first peak was 
generated by the interaction between the indentor and 
the undamaged (with no microcracks) ice sheet, and 
subsequent peak forces were generated by indentation 
into the damaged ice. In the second run. the peak forces 
were not as large as the first peak force in the first run . 
These lower peak forces in the second run can be 
attributed to the previous damage and microcracking 
present in ice caused during the first run. 

The ratio of the average subsequent peak force to the 
first peak force ( Fsui F

111
.,) is plotted with respect to the 

aspect ratio d/h in Figure 39a. the contact area d x II in 
Fig ure 39b and the velocity-to-th ickness ratio 1'/11 in 
Figure 39c. In each of three plots, the ratio Fsu/ F

11
, ,x is 

in the range of 0.3 to 0.6, and these plots show no in­
creasing or decreasing trend. 

Frequency of ice force failure 
Analysis of the structural vibration caused by re­

peated ice failure is an important part of the design 
process. Peyton ( 1968) and Blenkarn ( 1970) reported 
on the vibrations of structures caused by ice movement 
in the Cook Inlet, Alaska. These structures were multi­
legged drilling platfonns that were instrumented to 
measure ice forces and structure response. Jefferies and 
Wright ( 1988) have rep011ed on the ice-induced vibra­
tions of Molikpaq, a large structure ( 116 x 116m) that 
was placed on a 14-m-deep benn at the Amauligak 
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location. MlHittlinen ( 1975) conducted extensive meas­
urement of the ice-induced vibrations of lighthouses in 
the Gulf of Bothnia. 

As can be seen from the data in Figures 24 and 25, the 
interaction force between the indentor and the ice in­
creases with time (or displacement) until the ice fai ls 
and is not able to resist the indentor. As has been 
demonstrated, depending on the velocity of the inden­
tor, the failure in the ice sheet is either brittle or ductile. 
For brittle failure of ice at high indentor velocity (I'> 4 
mm/s), there is sudden unloading of the indentor; thus, 
a brittle failure event in ice is associated with the 
increase of ice force and a sudden unloading. 
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After the ice failure. the indentor moves forward. 
extruding the crushed ice in front of it. The ice force 
does not rise unti I the indentor again contacts intact ice. 
The forward distance moved by the indentor during 
each failure event can be characterized as a damage 
zone caused by crushing. The data in Figure 25 indicate 
that the greater the ice force recorded. the fanher the 
indentor moved forward. In other words. the size of 
damage zone during successive failure events depends 
on the magnitude of the ice force. But an average 
damage zone can be obtained by counting the number of 
peaks in the force-displacement record and dividing it 
by the total indentor displacement. An alternate proce­
dure to arrive at the average damage zone is given 
below. 

Frequencies of ice failure (j) in the brittle range. 
listed in Table 3. were calculated by counting the 
number of peaks divided by the elapsed time. These 
frequencies are plotted with respect to the indentor 
velocity in Figure 40a for all tests with brittle, repeated 
failures. showing a trend of increasing frequency with 
increasing velocity. However. the scatter in the plots 
increases with velocity. When the frequency is plotted 
with respect to the velocity-to-thickness ratio I'! II (Fig. 
40b). the variation in the data points reduces and the 
freq uency increases linearly with increasing 1'111 . These 
trends are similar to those obtained by Sodhi and Morris 
(1984). 

A plot of frequency versus the aspect ratio d/h is 
shown in Figure 40c. Although it seems that the fre­
quency increases with increasing the aspect ratio. it is 
hard to ascenain this trend because of the small vari­
ations in the aspect ratio. 

The nondimensional variable 1'/}71 is the ratio of the 
damage zone to ice thickness, where ,. is the indentor 
velocity. h the ice thickness and/ the frequency of ice 
fai lure. This number quantifies the distance that the 
indentor moves forward in each loading cycle in tem1s 
of ice thickness. Figure 41 shows the plots of 1'/fll versus 
the aspect rat iod/11 and the velocity-to-thickness ratio I'! 
h. The values of v!j71 are in the range of 0.18 and 0.24. 
This means that the average movement of the indentor 
during each ice failure varies between 18 to 24% of the 
ice thickness. In both figures. r/jll remains constant as 
d/h or 1·/h increase. A nondimensional quantity. fhh• 
(similar to the Strouhal number for fluids). is calcu lated 
and listed in Table 3: it ranges between4.37 and 5.68 in 
this test series. 

Buckling failure 
Tests with an indentor width of 150 mm and an ice 

thickness 30 mm resulted in buckling failure (tests N N 
71 toN N 76 in Table 3). 

Six nondimensional data points were ploned in Figure 



42, in which theoretical results from a finite element 
analysis by Sodhi ( 1979) are also plotted for hinged and 
frictionless boundary conditions. The ordinate in Fig­
ure 42 is a nondimensional buckling pressure FldKL 2(F 
is ice force, d is the structure width, K is the specific 
weight of water and Lis the characteristic length of the 
ice sheet) and the abscissa is the ratio of the indentor 
width to the characteristic length of the ice sheet. The 
hinged boundary condition means that there is no rela­
tive displacement between the ice and the structure, and 
the frictionless boundary condition means that there is 
no frictional force when ice moves up or down relative 
to the structure. These two boundary conditions repre­
sent the extreme situations possible in the experiments, 
because the actual boundary condition fall s between 
them. 

All data except the test with the velocity of 5 mm/s 
lie in the zone between the hinged and frictionless 
conditions. With decreasing velocity, it seems that the 
nondimensional buckling pressure decreases, and that 
the boundary condition approaches the frictionless 
condition from the hinged condition. 
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SUMMARY 

We conducted 92 indentation tests by pushing verti­
cal. flat indenters through freshwater, columnar, float­
ing ice sheets. To observe the failure modes and to 
characterize the magnitude and nature of the ice forces, 
new methodology was adopted for conducting these 
tests. For instance, forces were measured by supporting 
the indentor on three load cells: the displacements of the 
carriage and the indentor were measured separately to 
observe the transfer of energ ies from the carriage to the 
structure and the ice; AEs were also measured and 
correlated with measured ice force. The indentor width 
was varied from 50 to 150 mm, the relative velocity of 
the indentor from I to 9 mm/s, and the ice thickness 
from 20 to 60 mm. 

Instrumentation 
Although indentation tests have been conducted 

earlier by other researchers, there are a few salient 
features of this study that need to be pointed out. 

Ice fo rce measuremellf 
The interaction ice force was measured in two ways: 

I) by installing a load cell in the structural suppor1, and 
2) by mounting the indentor plate on three load cells . 
The second method provided the actual ice force that 
was generated between the ice and the indentor without 
being influenced by the deformation and vibration of 
the structure. 

Indentor displacement 
Displacements of both the carriage and the indentor 

were measured separately. A displacement transducer 



placed on the floating ice sheet measured the re lative 
motion of the indentor with respect to the ice sheet. This 
allowed us to compute the total energy supplied by the 
carriage and the energies dissipated in the ice and stored 
in the structure. 

Acoustic emissions 
Acoustic emissions were recorded during the tests, 

and these appear to be correlated to the microcracking 
activities in the ice and the ice force. The cumulative AE 
count inc reases with increasing ice fo rce. 

Test results 

Microcracks 
At the onset of loading. microcracks immediate ly 

fom1ed in front of the indento r. and this zone o f micro­
cracks expanded unti l the ice failed. During high veloc­
ity tests (1·>4 mm/s). we observed spurts ofmicrocrack­
ing prior to each ice failure event. Microcracks devel­
oped in the ice ahead of the indentor during the time 
when the indentor was being loaded. and then the 
indentor moved forward very quick ly, c rushing or 
spalling the previously damaged (microcracked) ice. 

Macrocracks 
Several macrocracks were observed, i.e., radial 

cracks, c ircumferentia l c racks and in-plane c leavage 
cracks. A number of radial and c ircumferentia l c racks 
nucleated during the first loading and failure of the ice. 

Velocity effects 
Depending on the relative velocity of the indentor, 

ice behavior was either ductile or brittle. Brittle behav­
ior resulted in the sudden unloading o f the indentor, 
which moved back to its original undefonned position, 
re lative to the carriage, with c rushing or spalling of the 
damaged, microcracked ice. Ductile defonnation re­
sulted in gradual loading and unloading of the indentor. 
It appears that, even fordifferent indentor velocities, the 
indentor displacements at the time when the peak ice 
force occurs are a lmost the same. In addition. the size of 
the damaged ice zone during the fi rst loadi ng of the in­
dentor is about the same even when the indentor veloci­
ties are different. 

Energy analysis 
During the ice-structure inte raction, energy sup­

plied to the carriage by the drive-screw is partly stored 
in the structure and partly dissipated in the ice as a result 
of defonnation and microcracking in the ice. During 
tests at high indentor velocity (v > 4 mm/s), the energy 
stored in the structure is greater than that dissipated in 
the ice. This means that thedefom1ation of the structure 
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is larger than the displacement of the indentor re lative 
to the ice sheet until the ice fails . During tests at low 
velocity ( ,. < 3 mm/s), the energies stored in the struc­
ture and dissipated in the ice increase wi th the e lapsed 
time. but the energy dissipated in the ice is greater than 
that stored in the structure. This means that the displace­
ment of the indentor relative to the ice sheet is greater 
than the defonnation of the structure during the first 
loading. 

For tests with high indentor velocity (1· > 4 mm/s). 
the rate of energy dissipated in the ice g radually in­
c reases with the elapsed time. and the curve becomes 
steep at the time of the ice fai lure. For tests with low 
indentor velocity. the rate of energy dissipated in the ice 
is much greater than that stored in the struc tu re. and it is 
even greate r than that supplied to the carriage after a 
peak in the force record occurs and the structure un­
loads. The negative values for the rate of energy stored 
in the structure means that the structure gradually swings 
back to its original position. thereby losing its stored 
energy. 

The energy used to produce the peak force is a lmost 
the same even for different indentor velocities. In other 
words, though the peak force and the displacement of 
the indentor are different at different indentor veloci­
ties. the energy dissipated in the ice up to the first peak 
in force is a lmost the same if other conditions are the 
same. 

Fortests at high indentor velocities ( r >4 mm/s). the 
rate of energy supplied by the carriage exceeds that 
dissipated in the ice; the rest is stored in the structure. As 
the rate of energy dissipated in the ice inc reases with the 
elapsed time, ice is weakened by microcracks, and the 
abi lity of the ice to absorb more energy decreases with 
e lapsed time. Just before the peak ice force, the rate of 
energy supplied to the ice from the carriage and the 
structure increases rapidly with the e lapsed time. lead­
ing to an instabi lity, which is commonly called the 
brittle fai lure of ice. These rates are much Jowerfortests 
at low indentor velocity (1· < 3 mm/s) than for tests at 
high veloc ity and attain a steady-state value as opposed 
to the steep rise observed in high-veloc ity tests. The low 
rate of energy dissipation in the ice at low indentor 
velocity leads to a gradual unloading of the indentor in 
a stable manner, which is commonly called the ductile 
failure of the ice. 

Simultaneous 1·ersus non-simultaneousfailure 
Because the pressure transducers were damaged 

during the tests, the pressure distribution could not be 
detem1ined for all the tests. From the limited data 
obtained from these transducers, we found that a nearly 
unifonn pressure distribution develops during the ini­
tial contact of the indentor with the edge of an ice sheet. 



In a few tests, the interfacial pressure increased to a high 
value soon after the indentor contacted the ice and then 
remained more or less constant while the ice force 
increased gradually until the ice failed. More tests with 
wider structures need to be done to detem1ine whether 
ice fails at different times in different parts of the contact 
area. 

Posirion of resulram force 
In many of the tests. the interaction forces were 

measured by suppo11ing the indento r plate on three load 
cells. This enabled us to compute the position of the 
resultant force. We were looking for a symmetrical 
pressure distribution where the resultant force would 
remain in the center of the contact area. The init ia l 
contact point between the indentor and the ice edge may 
not have been in the center of the contact area. but as the 
load increased, the position of the resultant force moved 
to the center of the contact area. indicating a unifom1 or 
symmetrical pressure distribution at the interface. 

Firsr peak force and subsequenT peak force 
First peak forces were always greater than the subse­

quent peak forces. which were between 30 to 60% of the 
fi rst peak force. We attribute this to the fact that ice 
offers less resistance to indentation as a result of previ­
ous deformation and microcracking. The undamaged 
ice offers maximum resistance, thereby resulting in a 
higher interaction force. 

Frequency of ice force failure 
The frequency of ice failure increased with the 

increase in the ratio of velocity to ice thickness. Us ing 
the velocity and frequency data, we calculated the 
distance of indentor movement for each ice failure: it 
was between 0.18 and 0.24 times the ice thickness. 

Bucklingfailure 
The ice sheets buckled during the tests when the 

indentor width was 150 mm. The nondimensional 
buckling load was found to be between those predicted 
by theoretical results for frictionless and hinged bound­
ary conditions. Experimental results were closer to 
those for the hinged boundary condition. and these 
decreased wi th decreasing indentor veloci ty. 

Scope of future work 
The data obtained in this study provided us with 

many interesting results that were only possible because 
of the new methodology used to measure ice forces and 
the measurements of carriage and indentor displace­
ment, separately, with respect to a fixed datum. There­
fore, we recommend that all future ex peri mental studies 
of this nature also measure forces and displacements in 
a similar manner. The following is a list of studies that 
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we believe should be conducted for a better understand­
ing of ice-structure interactions. 

I. Through the course of study. our observations of 
the defOJm ation of the structure during the ice loading 
showed us that the stiffness of the structure is an 
impo11ant parameter during ice crushing. The frequency 
of the ice failure may depend on the structural stiffness. 
Thus, it is recommended that the influence of the 
structural stiffness to the ice-structure interaction be 
investigated. 

2. Observations of the structural response at the time 
of ice crushing are needed to understand the 
force-displacement relationshi p. 

3. Microcracking and energy/energy-rate dissipa­
tion relationships in the ice should be studied fora better 
understanding of the ductile and brittle behavio r of the 
ice. 

4. Further studies of non-simultaneous failure in the 
ice-structure contact area should be conducted to deter­
mine the influence oft he contac t area on the magnitude 
of the ice force. 
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APPENDIX A: DATA 

NSC test sheets 
Each data sheet contains the following plots: tests 89to 36-ice force versus time. indentor displacement versus 

time and ice pressure versus time: tests 29 to 16-ice force versus time, AE signal versus time. carriage and indentor 
displacement versus time, ice pressure versus time and ice force versus indentor displacement. 
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Figure A27. Test NSC 46. 
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Figure A41. Test NSC 22. 
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Each data sheet contains the following four plots: ice force versus time, AE signal versus time, ice force versus 
indentor displacement and calculated positions of the resultant force within the contact area. These are plotted with 
a label x for the total force exceeding the following threshold values: 5 kN in tests 31 to 39, 15 kN in tests 4 1 to 49, 
61 to 70 and 701, 10 kN in tests 51 to 60, 20 kN in tests 71 to 76, and 40 kN in test 8 1. 
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Energy plots of N N tests 
Each data sheet contains the following plots: ice force versus time, carriage and indentor displacement versus time, 

energ ies supplied to the carriage, d issipated in the ice and stored in the structure versus time and rates of energy 
suppl ied to the carriage, dissipated in the ice and stored in the structure versus time. 
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Figure A95. Test N N 37. 
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Figure A/03. Test N N 52. 
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