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PREFACE 

At its Third Ice Symposium in 1975 in Hanover, New Hampshire, USA, the IAHR 
Section on Ice Problems formed the following working groups, proposed by its 
chairman, Dr. 0. Starosolszky: 

Working Group on Standardizing Testing Methods 
Working Group on Ice Jamming 
Working Group on Ice Forces on Structures 

The Section gave the Working Groups the task of presenting state-of-the-art 
reports to the Fourth Ice Symposium in Lulea, Sweden, in 1978. 

The Working Group on Ice Fc.:cces has the fpllowing members: 

To Carstens, Norway (Chairman) 
K.R. Croasdale, Canada 
R.Y. Edwards, Canada 
V.A. Korenkov, USSR 
M. M~~ttanen, Finland 
D.E. Nevel, USA 

It has not been found practical or even desirable to mould the working group 
reports in the same form. The present report consists of four parts written 
by named individuals. The function of the .working group has essentially been 
to provide general guidelines at the start and to review the manuscripts at 
the end. The report is thus more a result of individual efforts than of teamwork. 

The main advantage of this mode of operating is that it produces results faster 
than the other mode, in which the collective efforts predominate. To gather 
an international group for intensive discussions and uni~ying modifications of 
tl~ submitted drafts is a practical problem of considerable magnitude, and it 
is very time consuming. 

In this first report we have sacrificed, to some degree, coherence and uniformity, 
in order to avoid the worst fate of any report: obsolescence. 

The printing and distribution of this and forthcGming reports present another 
set of problems. Working group reports cannot be expected to sell and carry 
their printing costs~ IAHR does not have budgets for such publishing, so out­
side sponsors are necessary. The predicament was overcome by a generous offer 
from the u.s. Army Cold Regions Research and Engineering Laboratory, Hanover, 
New Hampshire (CRREL). This renowned institution has members in all the working 
groups and is very active in international ice research. 

The present report is an attempt to distribute information in a useful format to 
the international community of ice engineers. Your response will indicate whether 
the effort was worthwhile. 

Trondheim, August 1979 

Torkild Carstens 
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P A R T I 

THERMAL ICE FORCES 

By J.H. Kjeldgaard and T. Carstens 

The River and Harbour Laboratory, 

The Norwegian Institute of Technology, 

Trondheim, Norway 

Abstract 

A short revlew lS presented of the literature on thermal 

ice pressure against extended hydraulic structures such 

as dams. 

Some of the methods suggested for the computation of ice 

loads caused by temperature changes are reviewed. As a 

means of comparison measurements of thermal ice pressure 

and empirical values used at present for estimating these 

loads are referred to. 

As will appear there still exists some divergencies in the 

results of the methods suggested and there seems to be a 

need for further field measurements to clarify some of the 

problems. 
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INTRODUCTION 

When an ice cover is subjected to a temperature 1ncrease the 

ice will attempt to expando The forces exerted on the sur­

roundings eog. on hydraulic structures such as dams will depend 

on a number of parameters describing: 

• the temperature variation as a function of time and 

depth in the ice cover 

• the material properties of the ice 

the geometrical form of the ice cover including cracks 

and other irregularities 

restrictions to expansion along the boundaries of the 

ice cover 

The theories suggested for the computation of such ice forces 

and the experimental verification of the theories are compli­

cated by the co~plex mechanical behaviour of ice under load 

of long duration and by the variety of forms in wich ice may 

occur. 

Some of the methods and theories that have been proposed for the 

calculation of thermal ice forces are reviewed below. 

As will be seen there still exists some uncertainties and 

divergencies in this field. 

Units used 1n the reviewed literature: 

l kp/cm 2 98066.5 N/m 2 = 
l 2 9806.65 N/m 2 t/m. = 
l t/m = 9806.65 N/m 
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l.l.THEORIES OF THERMAL ICE PRESSURE 

In this section lS given a short survey of the theories suggested 

for calculation of thermal lce pressure. It has been the inten­

tion to outline some of the ideas used ln the theories and to 

glve some of the fundamental drawbacks that may reduce their 

utility. 

Many of the points mentioned can be found ln the works of Korzhavin 

[l] and Drouin and Michel [2, 3, 4, 18]. In these works also a 

more quantitative description of the theories can be found. 

1.11 Royen (1922) 

In 1922 the Swede N. Royen published a method for determining 

thermal lce pressure [5]. 

His formula was the basis for the Russian norm SN 76-59 used 

until 1967. The fundamental law used by Royen was 

where 

a 

t 

e 
c 

The relation 

while· s~t 113 

€ = ccrt 113 

1+8 

strain in compression (uniaxial) 

stress [kp/cm2 ] 

duration of load [hours] 

(l) 

the ice temperature [°C numerical value] 
. -5 -5 an experlmental constant 60xl0 - 90xl0 

scrcr had been found by tests with paraffin wax 

was based mainly on tests with lake ice. Both 

relations have later been shown to give an inadequate description 

of the behaviour of fresh water lce. 

The uniaxial strain rate from a nonrestricted thermal expansion 

of ice can be written 

= a 
d8 
dt 

( 2 ) 
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where a is the linear thermal expansion coefficient of ice 

[/oC]. 

Royen equates (1) and (2) keeping 0 and e ln (1) constant 

during differentiation. It is further assumed that the tempera-

ture increase is linear with time: 

8(t) 

e . 
l 

eCt) = e. 
l 

• 8•t ( 3 ) 

mean temperature of ice [°C absolute value] 
~ 

initial mean temperature of ice [°C absolute value] 

the mean temperature increase [°C/h] 

By means of equations (1), (2) and (3) Royen finds the maxlmum 

stress developed during a temperature increase 

or with 

becomes 

0 max 
= l640a(8.+l) 7 ece.+l)2' 

l l 

2 [kp/cm ] (4) 

-5 0 a = 5.5•10 I C the usual form of Royens equation 

p = 0.9d (8.+1) 
max l 

p 
max 

force [t/m] 

y ' 
ece.+l) 2 

l 

d ice cover thickness [m] 

( 5) 

To find the value of P relevant to Sweden, Royen assumes 
max 

a minimum air temperature of -40°C, a maximum ice thickness 

of 0.75-1.0 mandan initial temperature for the ice of -12°C. 

If then the ice temperature is increased to 0°C during 100, 170 

or 360 hours as suggested by Royen the corresponding values of 

P will be 34.5, 28.7 and 22.5 t/m for an ice thickness of l m. 
max 

In admitting a certain elastic deformation Royen assumes a 

maximum value of 30 t/m for an ice cover biaxially restrained 

iri areas where the minimum air temperature is -40°C. 
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In the light of later research on thermal lce pressure a number 

of drawbacks are found in Royen's theory, for instance: 

1) Paraffin wax does not simulate the 

properties of fresh water ice. 

2) Elastic deformation lS ignored. 

3) No distinctions are made between different 

creep states of the ice. 

4) Uniaxial theory lS used for biaxial restraint. 

5) Because the temperature lS assumed uniform over 

the ice thickness, P will be proportional to max 
the thickness. 

1. 12 USSR norm SN 7 6- 59. ( 19 59) 

The formula in this norm, operative until 1967, was based on 

the Royen theory with minor modification. 

Korzhavin [1]. 

See for instance 

From observations 

ice temperature 

ln 

e . 
l 

Siberia it was found that the initial mean 

should be expressed as 

e. = o.35 • e 
l a 

( 6 ) 

where 8 is the mean air temperature during the preceding a 
24 hours [°C absolute value] 

The increase of the lce mean temperature should be 

~e 

8 = 0.35 ~ta ( 7 ) 

where ~8 is the maximum increase of the alr temperature 
a 

[°C] during a given period of time ~t [hours] 

within the preceding 24 hours. 
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Finally replacing the constant 1640a by the empirical form 

0.78·e- 0 · 88 the Royen formula becomes 
a 

where 

When there 

values of 

p = 5.52d 
co.35 e +1) 513 

a 

8 
o.88 

a 
max 

d 

p 
max 

is a 

p 
max 

r = 

ice thickness [m] 

maximum force [t/m] 

snow cover 

should 

d 
d+9.ld s 

be 

(thickness 

multiplied 

t,e 1/3 
a . (-) 

t,t 

d [m]) on the 
s 

by the factor 

( 8) 

ice the 

( 9) 

following the SN 76-59. If the extent L of the ice is more 

than 50 m P should be multiplied by the factor~ = 0.9-0.6 
max. 

for L = 50 m - 150 m or more. 

According to Korzhavin [1] the pressure values for 10 points 
. 2 

in the USSR will fluctuate from 15 to 30 t/m when based on the 

recommendations of SN 76-59. 

It is noticed that in spite of the Russian refinements of the 

Royen formula the value of P is still proportional to the max 
ice thickness. 

1.13 Brown & Clarke (1932) 

In connection with a hydraulic project in Canada Brown & Clarke 

1932 [6] made some laboratory investigations t9 obtain at least 

the order of magnitude of the expected thermal ice pressure. 

In the two experiments that were reported, ice cubes were 

subjected to a temperature rise that was intended to be linear 

with time while two opposite cube faces were loaded exactly as much 



- 6 -

as needed to avoid any expansion ln that direction. The results 

of the experiments were a few (primarily three) points on a graph 

showing temperature increase rate versus load increase rate. 

As is seen the results are fewand furthermore the experimental 

equipment was not able to realize the intended test conditions 

with any high degree of accuracy. 

1.14 Rose (1947) 

In spite of the drawbacks Brown & Clarke's experimental results 

were used by Rose [7] to make some general computations of ice 

pressure. Rose's main contribution to the lce pressure problem 

was that he showed how the temperature distribution will develop 

ln an ice cover that is subjected to a linear temperature rise 

at the top. 

The computations of ice forces were carried out by first uslng 

finite difference integration of the heat conduction equation 

to give the rate of change of temperature at a certain level 

ln the ice cover. Using this and a curve based mainly on Brown 

& Clarke's results, the ice pressure at that level in the lce 

·was found by summing up the.pressure lncreases. Rose made cal­

culations with or without lateral restraint and also with or 

without accounting for absorption of solar energy. According 

to Drouin [2] the results found by Rose have been widely known 

and used by engineers. 

Among the objections made against Rose's results some of the 

most important ones might be: 

1) The experimental basis lS weak. 

2) No account is taken of the initial lce temperature, 

only changes are considered. 

3) According to Lofquist [8] the summation process used is 

not legal:- "An integration of component forces will be 

mathem~tically permissible only if a linear relation 

exists between the stress and the strain. In the present 
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case this 1s true only with a.linear temperature rise 

according to the experiments. From the physical point 

of view, it is not permissible as a rule, to add to a 

component of force set up in the ice at a given point 

of time, in consequence of restrained temperature expan­

sion, another component of force set up at a later point 

of time ...... " ...... because of stress relaxation. 

1.15 Monfore (1947-1953) 

A major research project was begun in 1947 by the U.S. Bureau of 

Reclamation. The intention of the project was to determine 

the thermal ice pressure on some dams in Colorado. Both in 

situ measurements of ice pressure and laboratory investiga­

tions of the creep properties of natural ice were conducted 

Monfore [9, 10, 11, 12]. 

The laboratory investigations were made in much the same way as 

the ones by Brown and Clarke, but the equipment was better. 

Small cylindrical ice samples could be loaded axially. A meter 

in direct contact with the sample measured the axial strain. 

The temperature of the 1ce sample could be controlled by means 

of cold air-circulation and the ice temperatures were measured 

both at the periphery of the ice sample and at the axis. 

Before a test was made the sample was kept at one of the follwing 

initial temperatures -30, -20, -10, 0, 10, 20°F for some time. 

Then the circulation of air was changed in such a way that the 

temperature of the ice was made to increase with one of the 

following rates 2, 5, 10, 15 °F/h. During the .first 30 minutes 

the load was adjusted to give zero total strain every 5 minutes. 

Thereafter adjustment of load was done every 15 minutes. 

The samples had been taken from two reservoirs where the ice 

cover thickness was approximately 45 em. The samples were 
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taken from different levels 1n these covers. They were made in 

such a way that the axis of the cylinders were parallel to the 

ice cover surface. 

Monfore made several tests withthe above mentioned temperature 

conditions. When the stress necessary to maintain zero strain lS 

drawn as a function of time (or temperature), the curves look 

qualitatively the same. First the stress increases nearly 

linearly with time, the curve having a weak tendency of decreasing 

slope. The slope decreases more and more and at a certain time 

the stress attains a maximum after which it decreases markedly. 

The curves look qualitatively the same but by testing different 

samples at the same initial temperature and the same rate of 

temperature increase, Monfore found a large scatter in the two 

characteristic parameters of the load curve: the maximum stress 

and the time used to attain this stress. Variation in the order 

of 25% was recorded. 

To find the reproducibility of the tests a number of samples 

were loaded twice under identical temperature conditions. This 

showed that the mean value of the difference between 1st and 

2nd loading was less than 6%. 

This difference in scatter could be attributed to variations in 

the crystal structure of the ice. Monfore studied the crystal 

orientations in a few samples and did find some marked diffe­

rences but the crystal structure was not used as an independent 

parameter in the tests. 

The fact that he neglected the crystal structure may be the most 

important reasori for objections.from later investigators. 

It is also claimed that when the load is not adjusted more 

often than every 5th ~ 15 th minute the measured stress will 

be too high. 

A final objection lS of course that the tests are uniaxial while 

nature is often biaxial. 

In spite of the drawbacks Monfore's investigation was a ·great 

step forward in the understanding of thermal ice pressure. 
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1.16 Lofquist (1952) 

In 1952 the Swede Lofquist published the results of a single 

experiment with thermal ice pressure [8]. 

He made use of a cylindrical container with a diameter of 50 em 

appropriately insulated. In this container he let the ice 

develop in the same way as it happens in nature by cooling the 

water/ice at the top surface. 

When the ice had reached a thickness at about 60 em the ice sur­

face was exposed to an approximately exponential temperature in-
. 0 0 . 

crease from -30 C to 0 C dur1ng 25 hours. 

During the temperature increase both temperature and the corre­

sponding biaxial stress were measured at several levels in the 

ice. It was seen how the temperature profile, 

first approximately linear through the ice thickness, 

develops into the shape of a semi-pear with a minimum moving 

down through the ice. The form of the stress profile also 

develops into the shape of a semi-pear with a maximum moving 

down through the ice. The stress maximum however is lagging the 

temperature minimum by some hours. A maximum total load corre­

sponding to 20 ton/meter was recorded about 14 hours after the 

start of the temperature increase. At that time the maximum of 

the stress distribution had moved about 1/5 of the way down 

through the ice cover. 

The cylindrical container used by Lofquist was made of concrete. 

He assumes that the thermal and elastic expansion of the concrete 

and some cracks 1n the ice cover during heating have caused the 

measured stress to be less than it ought to be. 

1.17 USSR norm SN 76-66 (1966) 

In 1967 the USSR norm SN 76-59 was succeed~d by the one ~entiQned 

above. The norm was translated into English by the National 

Research Council of Canada in 1973 [14]. 
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This norm obviously contains a set of formulas quite different 

from the:ones that were used in the SN 76-59. But in fact we 

have found no publication (in non-Russian language) explaining 

the sources and the development of the formulas and graphs given 

in SN 76-66 for determining thermal ice pressure. 

Apparently the th8ory is the one referred to by Korzhavin 1972 

[15]. According to him it is based on the work of B.V. Pros­

kuryakov: "Proceeding from the basic assumption that pressure 

developed due to the thermal expanslon of ice exceed its yield 

point, he regards ice within the range of plastic deformations 

as a viscous fluid". 

In 1967 Proskuryakov submitted a paper to the 12th IAHR confe­

rence [~16] . In this paper he gives a short survey of the pro­

blems of thermal ice pressure and reviews the USSR norms for 

determining this pressure, but no details of the SN 76-66 are 

glven. So for the present it appears to us that only the com­

putational results of the SN 76-66 can be studied. 

However one point may be mentioned: The temperatures to be 

used a~ input to the formulas of SN 76-66 are air temperatures 

and a~count is taken of the thermal boundary layer between ice/ 

snow and air. The formulas used for these two values of the 

coefficient of heat transfer are those suggested by 0. Devik 

[17]. From these formulas it is seen that the thermal boundary 

layer will play a significant role in the temperature distri­

bution. This is contradictory to what is said by Michel [3]. 

1.18 Lindgren (1968) 

In 1968 S. Lindgren published the results of an investigation 

on thermal ice pressure [13]. 

The work contained laboratory tests with both uniaxial and 

biaxial load. Only little information is given about the struc-

ture of the ice used for the experiments. 
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The samples that were used by Lindgren for uniaxial tests were of 
3 the size 7x7x20 em . They were made in such a way that a 

load along the longer axis would simulate an ice cover loaded 

horizontally. 

The samples were subjected to a constant stress at a constant 

temperature. The results of the tests are thus strain as a 

function of time. At the temperature -10°C Lindgren used the 

loads 2, 6, 8, 10 and 14 kp/cm2 and at the load 6 kp/cm
2 

the 
0 

temperatures -0.5, -5, -10 and -20 C were used. 

To reduce the results of the deformation tests to a common form, 

Lindgren tried to fit the parameters in a linear visco-elastic 

model composed of a Maxwell and a Voigt element coupled in series. 

The rheological equation for such a model is 

-E t 
+ at 0 +Q_ (1-exp (-2-)) (10) E: = 

El E2 n2 n3 

where El E2 elastic moduli 

n2 n3 viscosity moduli 

E: strain 

0 stress 

Concerning the suitability of such a model Lindgren says: 

"Several studies have shown that this equation does not give 

a complete picture of the deformation characteristics of ice. 

-- However a simple form in accordance with the equation lS 

used in the following. As ice is not linearly visco-elastic 

the moduli of deformation are therefore governed by stress." 

After mentioning that: ''Only a few tests were carried out and 

it is therefore only possible to show the general effect of 

different factors", Lindgren gives the following values: 

El (66000 800 8) kp/cm 2 
= - • 

E2 
...., 70000 kp/cm 

2 

...., 1.1 • 10 8 kp sec/em 2 
n2 

-1 t 0.5 8 2 
n

3 
= 18.5 • a (0.20-0.088)( 3600 ) • 10 kp sec/em 
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where t 1s time [sec] and 8 
. 0 

lS temperature [ C]. 

According to Lindgren E1 seems to be independent of stress 

and previous load. It was not possible to show the effect of the 

size of crystals. E
1 

was determined on the basis of the de­

formation occurring 30 sec after the load was applied. (This 

time period may be too long according to [4] because of the 

viscous deformation.) 

E2 and n2 are difficult to determine and only approximate 

values are given. 

The value given for n3 1s applicable only to "normal crystals" 

such as those used for the experiment. 

"The value of n3 is considerably lower when the crystals are 

small and shows tendencies to decrease with the period of load". 

Lindgren also made experiments with biaxial stress. 

In these tests a steel ring with an inner diameter of 80 em was 

placed around a circular ice plate with a diameter of about 80 

em and a thickness of about 7 em. Then the space in between 

was filled with water. The tests were started at a low tempera­

ture after which the temperature was raised. The temperature, 

the strain and the stress were recorded as a function of time. 

The values for E
1 

and E2 used in the rheological model are esti­

mated to be the same as for the case of uniaxial tests, on condi­

tion that the coefficient for contraction during elastic defor­

mation is ~ 0.36. (According to Drouin and Michel [4] this is 

a necessary assumption because of difficulties in determining 

those parameters.) The value of n2 is assumed the same as 

before. n3 on the other hand has been assigned a new value, 

-1 t 0.25 n3 = 31 • cr (0.30-0.078) • c3600 ) 
8 2 10 kp sec/em 

on condition that the contraction coefficient 1s 0.5 when the 

deformation is viscous. 
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According to Drouin and Michel [4] a fundamental objection to 

this work is that the rheological model used by Lindgren cannot 

represent the properties of the ice. Further the experimental 

results are very scattered. So the final results can only be 

an approximation. 

One of Lindgrens concluding remarks is: "---;... calculations of 

the values of maximum ice pressure are somewhat unreliable. 

With this in mind, rough estimates can be used to assess maxi­

mum ice pressure." 

1.19 Drouin and Michel (1971) 

A couple of years after Lindgren's publication Drouin and 

Michel (in the following abbreviated D & M) made their con­

tribution to the research of thermal 1ce pressure [4]. 

D & M have made a critical survey of former thermal ice pres­

sure research relevant to their work. Furthermore they have 

given a thorough treatment of the question of temperature 

distribution in an ice cover by conduction considering both 

stationary and transient conditions. But the question of 

thermal boundary layers has been totally neglected except for 

some qualitative considerations in the concluding part of 

their work. 

As a natural basis for the treatment of the i.ce pressure pro­

blems they have included information on the temperature varia­

tions in the Quebec area. 

By computing the temperature distribution in an 1ce cover sub­

jected to a cyclic temperature variation·at the surfaceD & M 

find that because of attenuation an ice cover thicker than 40 

em can be looked upon as a semi infinite body when ice pres­

sure caused by usual temperature variations are considered. 

This fact leads to a great simplification in temperature com­

putation. 
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D & M have made several laboratory tests with uniaxial as well 

as biaxial stress to find the connection between time, tempera­

ture, stress and the structure of ice. 

In uniaxial tests cylindrical samples (length 7.62 em and dia­

meter 2.54 em) were deformed along the axis at a constant strain 

rate and a constant temperature. The results of such a test is 

a graph showing the applied load versus time. 

A number of such tests were made with artificial snow ice. 

The density of this ice was about 0.89 g/cm3 , the diameter of 

the grains was about 1 mm and the direction of the crystallo­

graphic orientations was random. 

Apparently tests were run with a range of strain rates 

and a temperature range of 

0 T = -3.2 C 0 to -28.3 C 

(Some .of the tests are not shown on certain graphs and tables.) 

The second sort of ice examined was columnar lee of the type 

Sl i.e. where the c-axes of the crystals are vertical or nearly 

vertical. The stress was perpendicular to the c-axes. Test 

conditions were 

• -8 -1 
€ = 3.7•10 sec 

0 T = -4.1 C to 

to 
-1 

sec 

(The number of test results shown vary somewhat from table 

to table.) 

The third type of lee tested was columnar ice with horizontal 

c-axis (S2). The direction of stress was in the plane of the 

optical axes. 
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After some tests had been made D & M concluded that the samples 

of the S2 ice were too small compared to the grain size. Only 

two tests with bigger samples are reported (dimensions: height 

10.16 em, diameter 5.08 ern). 

The general form of the resulting stress versus time curves 

shows a nearly constant increase of stress during the first 

period of time. Then the increase becomes less and a maximum 

lS reached. 

In the case of snow ice the stress decreases only little after 

the maximum has been reached. 

For the Sl ice a marked decrease of stress is found after the 

maximum lS reached. (The very sudden decrease in the load recor­

ded in some of th€ tests just after the maximum is attributed to 

some sudden lateral deformation of these ice samples.) 

The deformation curves for the S2 ice resemble the curves for 

snow ice. 

D & M use the following formula to give their experimental results 

a general form: 

where 

0 stress 

s strain rate 

t time 

E apparent elastic modulus 
a 

n : initial number of dislocations 
0 

S rate of multiplication of dislocations 

b the Burger vector 

p a constant 

m a constant 

(ll) 
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As said by D & M this rheological model is somewhere in between 

the conventional models consisting of Maxwell and Voigt elements 

on one h~nd and models making use entirely of theories of mole­

cular mechanisms on the other. 

When the constants E a' 
certain type of ice the 

of this type of ice can 

ln the ice are known. 

n , S, p, b, and rn have been found for a 
0 

uniaxial pressure from an ice cover made 

be computed if the temperature variations 

Biaxial stress was also investigated. The ice samples used were 

formed as cylinders (height- 5 ern, diameter- 15 or 30 ern). The 

cylinders were placed in an invar ring with the same height as 

the cylinders and a diameter a couple of millimeters larger than 

the diameters of the samples. 

was filled with water. 

The space between ring and sample 

During the tests the temperature of the ice was raised from a cer­

tain initial value to 0°C. The thermal pressure was measured by 

strain gauges attached to the ring. 

Using such a procedure five tests were made with snow ice For 

each of the tests the formula (11) was used to find the stresses 

that would develop in the uniaxial case under the same tempera-

ture conditions. In this way the maximum measured stress in the 

biaxial case could be compared to the maximum computed stress in 

the uniaxial case. 

The value of the ratio: 

o(rnax,biax,snow ice) I o(rnax,uniax,snow ice) 

were 1.81, 1.51, 1.83, 1.72, 1.56 leading to the following 

values of the apparent Poisson modulus: 0.45, 0.34, 0.45, 0.42 

0. 3 6. 

Some considerations on the validity of the different tests make 

D & M exclude the two smallest values from the series of five. 

After that they conclude that the snow ice will deform in the 

same way as a nearly perfectly plastic material when the state 
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of max1mum stress has been reached. 

The arguments made for the exclusion of the two small Poisson 

values seem difficult to follow. If all five values are re-

tained the mean value is - 0.40. The same value for perfectly 

plastic material is 0.50 whereas for isotropic elastic materials 

it is in the order of 0.3. 

With the ice of the type Sl eight biaxial tests were made. 

The values for the ratio 

a(max,biax, Sl) I a(max,uniax, Sl) 

were found in the range 1.97 to 1.0. The variation in this 

value is attributed by D & M to a variation in the direction of 

the optical axis in the biaxial case. For the tests with a high 

value of the ratio the directions of the c-axis were found to be 

scattered very little about the vertical, whereas a much larger 

scatter was found for the samples giving low values of the ratio. 

It is confirmed by Lindgren [13] that 

a(max,biax,Sl,c-axis scattered)la(max,uniax,Sl,c~axis vertical)~ 1 

This leads D & M to a convenient conclusion (translated freely 

from French): In nature it is impossible that all of the optical 

axes of an ice cover consisting of columnar ice are directed 

vertically. For this reason the determination of the thermal 1ce 

pressure of columnar ice (not nucleated) that is restricted 

biaxially can be based upon the results of maximum stress ob­

tained from samples uniaxially restricted and deformed perpendi­

cular to the optical axis. 

With 1ce of type S2 eight biaxial tests are reported. In the 

same way as before a comparison of maximum stresses 1s given. 

Due to lack of results for uniaxial tests of S2 ice the 

following ratio has been used 

a(max, biax, S2) I a(max, uniax, Sl) 

The values of this ratio vary between 0.83 and 1.16 with a mean 

value of 1.02. 
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D & M conclude: On the basis of this mean value the magnitude 

of the thermal ice pressure exerted by an ice cover consisting 

of nucleated columnar ice is considered, in the scope of this 

work, as not being able to attain a higher value than the ther­

mal stresses exerted by columnar ice with the optical axes pre­

ferentially in the vertical direction. 

From the conclusions by D & M cited in the preceding sections 

it is seen that the results of the uniaxial tests with ice of 

the type Sl attains a very central and important position in 

their work. On the basis of these tests they have computed 

graphs showing the maximum total thermal ice pressure (t/m) 

that is exerted by an ice cover (composed of Sl ice and 

uniaxially restrained) as a function of cover thickness and 

with the initial surface temperature of the ice and the time 

for increasing this temperature to 0°C as parameters. 

Similar curves are shown for a uniaxially restrained cover of 

snow ice. 
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1.110 Metge (1976) 

Based on observations of cracks in the ice on Lake Ontario near 

Kingston, Canada, Metge ~21 in an unpublished Ph D thesis to 

Queen's University presented some new thoughts on·pressure due 

to temperature variations. Metge focused not on the continuous 

ice sheet, but on the cracks which have so far been almost to­

tally neglected, although they occur in every ice cover. He 

suggests two crack mechanisms influencing ice pressure in oppo­

site ways: 

Wet cracks, when refreezing, develop thin lCe bridges that are 

subjected to crushing forces when the ice moves due to thermal 

expanslon or otherwise. Their sudden failure releases elastic 

energy stored in the ice sheet and may cause high impact forces 

when the edges· of the two ice sheets meet. 

Dry cracks, developed during cooling, act as bellows during 

warming of the ice, delaying the build-up of thermal pressures. 

Formation of dry cracks is often associated with compressi0n ln 

the lower part of the ice cover as evidenced by flaking. 

1.111 Bergdahl (1978) 

In 1978 yet another Swedish contribution to the literature on 

thermal lce pressure appeared. Bergdahl [23,241 submitted a 

doctoral dissertation to Chalmers Institute of Technology and 

later summarized his work at the Lulea Ice Symposium. 

Bergdahl suggested a rheological equation 

o n 
E: = E + K D o ( 12) 

where K and n are functions of strain rate and temperature, while 

E and D are functions of temperature only. Physically D is the 
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coefticient of self-diffusion fbr the ice molecules, and K and 

n are parameters discribing the viscous deformation (dashpot 

characteristics in the Maxwell unit). 

The model (12) is nonlinear, but lends itself fairly well to 

numerical computations. If one describes the time history of 

deformation due to loading and unloading by three terms as ln 

Fig. 1, equation (12) accounts for elastic and viscous de­

formation, but neglects elastic lag. When considering rare 

events such as extreme rates of change of temperature, this does 

not seem a serious deficiency. 

Fig. l. 

Deformation 

E4 
...____.__7-t-----t=------____Jt:__~ Time 

Loading Unloading 

Time history of lce deformation. 

The calculation of ice temperature is thorougly discussed. The 

resulting ice temperatures for a clear night and an overcast 

night, assuming constant heat and flux v, are given in Fig. 2 

for three ice thicknesses. 

clear sky overcast 

a1r 1;) a1r 

10 10 

20 20 
IC£> 

30 JO 

watPr water 

Fig. 2 . Temperatures ln snow-free ice covers. 
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The weather conditions for Fig. 2 were: alr temperature -10°C, 

wind speed 2 m/s, and vapour pressure ·300 Pa. 

It is clear that noen of the simpler assumptions, such as T = 
0 

T . (Drouin & Michel) or T =0,35 T . (USSR, Sn 76-66), can 
alr o alr 

account for more than a few of the examples shown in Fig. 2. 

The cases of interest have rising ice temperature, however, and 

Bergdahl made parametric studies with various numerical schemes. 

He claims that the method used by Drouin & Michel gives incorrect 

results, and warns that the choice of boundary conditions is 

more important than the choice of ice parameters. 
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1.2.MEASUREMENTS OF THERMAL ICE PRESSURE 

Many of the authors mentioned above conclude the description 

of thei~ theories by the remark that the theoretical formulas 

should be tested against appropriate field measurements. 

We have found only a few descriptions of in situ measurements 

of thermal ice pressure made recently and in fact none of these 

measurements considered the case of thermal ice pressure against 

a nearly vertical, flat wall and at the same time reported suf­

ficient data to make possible a comparison between theory and 

nature. 

The rneasur~rnents often referred to by investigators are the ones 

reported by Monfore about 1950 [11]. Measurements were made at 

several reservoirs in the mountains of Colorado. Indenter and 

strain gauges were set ln thin mortar panels that could be ln­

stalled on the face of the walls. Unfortunately these measure­

ments can not be analysed as a function of the temperature condi­

tions because the method used only records the maximum stress 

developed during a winter at different levels in the ice. A 

mean value of the stresses measured at different levels in the 

ice cover is interpreted as the maximum load. 

In this way it was found that the maximum load varied between 

22.4 and 35.8 t/m in reservoirs with steep and rocky shores 

(Eleven Mile Canyon). A maximum load of 14 t/rn was found in 

the Evergreen reservoir where the shores are moderately steep. 

In reservoirs with flat and sandy shores CAntero and Shadow 

Mountain) values of 5.4 and 8.6 t/rn were measured. 

In connection with an application of the linear viscoelastic 

theory in a simplified form to the problem of thermal ice pres­

sure on the Sairna Channel,Jurnppanen [21] reports the result of 

a single measurement of ice pressure (1972-73). 

Only the pressure measured at a single level in the ice cover 

(8 ern below the surface) during 28 hours is reported. It shows 

a rather good agreement with the pressure calculated by means 

of the theory on the basis of the measured temperature varia­

tions at the same level on the ice cover. 
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It seems hard to believe that no one has tried to make more 

extensive measurements of thermal ice pressure recently. 

According to Drouin & Michel [4] such a measurement should con­

tain the following parameters: 

a) measurement of the stress as a function of time at 

several levels in the ice cover, 

b) measurement of the lCe thickness, 

c) measurement of the air temperature, 

d) measurement of temperatures in the ice, 

e) measurement·of thickness of snow cover, 

f) measurement of solar radiation, 

g) measurement of direction and speed of wind, 

h) analyses of the structure and the texture of the ice, 

i) measurement of the water level, 

j) a complete and global description of cracks in the lCe cover, 

k) measurements of displacements of the ice cover. 
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1.3. EMPIRICAL VALUES 

For different locations and climates one finds empirical 

values for the maximum thermal ice pressure used by designing 

engineers. 

According to Michel [3] empirical values used in Canada at pre­

sent vary form 15 t/m to 22 t/m for rigid structures. For more 

flexible structures such as sluice gates values in the vicinity 

of 7 t/m are more commonly used. 

Drouin [18] g1ves a somewhat higher value of 15 - 30 t/m for 

Canada and suggests himself that when account is taken of cracks 

and snow an appropriate value for a thick ice cover moderately 

restrained would be 22 t/m. 

In [19] the usual practice ln North America used to estimate the 

total pressure lS given as a thrust varying linearly with the 

lee thickness. For zero thickness the ice thrust is zero and 

for a thickness of 4 feet the thrust is 20 kips per linear foot. 

This corresponds to the commonly used design loads of 15 t/m 

and 22 t/m when the 1ce thickness is 2 and 3 feet. 

According to Starosolszky [20] 1n the Soviet Union for the 

regions Siberia, Leningrad and Caucasus 30, 20 and 15 tons 

per sq. m are recommended as a first approximation for design 

purpose. 

For the somewhat less seyere conditions in Norway 10 t/m is 

estimated under usual conditions. Under especially unfavour­

able conditions the value will be as high as 15 - 20 t/m. 



25 

1.4. A COMPARISON OF ICE PRESSURt VALUES 

In his paper "State of research on ice thermal thrust" [18] 

Drouin makes a comparison between the result of some of the 

thermal ice pressure theories using a specific example: 

The temperature of ~he ice surface initially at -40°C 

lS made to rise at a rate of 2.8°C/h. The ice cover 

lS uniaxially restricted and without a snow cover. 

No solar energy is absorbed. Pressure values are 

computed for two thicknesses of the ice cover 0.45 m 

and 0. 9 0 m. -

Under these conditions Drouin computes the pressure values by 

means of Rose's theory, by means of Monfore's experimental 

results combined with an appropriate theory of the temperature 

destribution and finally by means of the USSR norm SN 76-59. 

(As far as the norm SN 76-59 is concerned it is assumed that 

the initial air temperature is -40°C and the rate of change 

in air temperature is 2.8°C/h). The results ar~ shown in the 

table below. 

The table has been extended, first by Kjeldgaard [24] 

and later by Bergdahl [23]. Kjeldgaard found the 

pressure values based on Drouin and Michel's work [4] for lCe 

of the type Sl and for snow ice. (It should be noticed that 

the pr~ssures glven on the graph of [4] for a certain tempera­

ture increase are compu~ed for a sinusoidal variation of the 

temperature with time. The values given below have been cal­

culated for a linear temperature increase taking into account 

the correction factors given in [4]. For a sinusoidal varia­

tion within the same temperature limits the values would be 

approximately 40% larger.) 

Alsd results obtained from the USSR norm SN 76-66 are shown. 

In this norm no distinction is made between different types 

of ice but the pressure values are very dependent on the velo­

city of wind i.e. the thermal boundary layer. The temperature 

data that is to be used in SN 76-66 is air temperature data. 

So it is assumed that the initial air temperature is -40°C and 

that the increase rate of the air temperature is 2.8°C/h. 
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Values of the thermal 1ce pressure have been computed for a 

wind velocity of 0, 5 and 20 m/sec. 

(It is assumed that the extent of the 1ce cover 1s less than 

50 m, otherwise the values should be multiplied by a reduction 

factor according to SN 76-66.) 

TABLE l. 

T 40°C Tl 0°C KN/m 2 
= = 

0 ' 
Ice thickness 

6T 2,8°C/h 0.45 0,90 
6t = m m 

Rose 1947 (Drouin 70) 47 86 

Monfore 54 " 222 232 

SN 76-59 59 " 128 255 

Drouin & Michel (Kjeldgaard) 

Sl. ice " 330 390 

Snow ice " 220 270 

SN 76-66 0 m/s II 30 60 c=- 5 II 11 310 440 

20 " II 410 58 0 I 

Bergdahl 78 

" 0 m/s 459 752 
II 5 " 50 2' 830 
II 20 II 531 829 

The question of the type of restraints relevant to the examples 

given in th~ table will be considered in more detail: 

Drouin has computed the forces exe~ted by Monfore ice 1n the 

uniaxial case. In connection with a similar calculation 

Michel [3] mentions that for the biaxial case the results 

for Monfore ice would be about 60% larger using elastic 

theory as the first approximation in extending the results 

from the uniaxial to the biaxial case. 

As far as we know [1] the SN 76-59 does not distinguish be­

tween the uniaxial and the biaxial case of restriction. 
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• Referring to the conclusions made by Drouin & Michel in [4] 

and cited ln section 1.9 above, it seems to be in agreement 

with their train of thoughts to look upon the results of the 

uniaxial tests with Sl ice as a reasonable estimate of the 

pressure exerted by biaxially restricted Sl ice as it occurs 

in nature with some scatter in the directions of the c-axes. 

Further these results can be taken as a reasonable upper 

limit of the forces exerted by biaxially restrained S2 ice 

according to [4]. 

In the Russian norm SN 76-66 no distinction is made between 

uniaxial and biaxial restraints, i.e. the users of the norm 

do not have to decide which sort of restraints exist in the 

actual case. 

It is seen from the table that the values computed by means of 

the SN 76-66 are very dependent on the speed of wind w l.e. on 

the thermal boundary layer in air above the ice/snow surface. 

The later Canadian investigators Drouin and Michel do not 

attach the same importance to the boundary layer. In fact 

Michel in [3] says that the difference between the temperature 

of the ice surface and the temperature of the air "is small and 

measurements made for a whole winter on clear lCe have shown 

that it rarely exeeds 3°F (1.7°C). It is thus safe and accep­

table to neglect this effect". 

Further in [4] Drouin & Michel gives an example of application 

of their test results for Sl ice. The example is for an air 

temperature originally 1at -36°C. To take account of both the 

effect of the boundary layer and the weak possibility of the 

initial temperature gradient in the ice being a straight line 

they assume an initial ice surface temperature of -30°C. No 

further account is taken of the boundary layer ln their example. 

Thus it seems that the question of tem·perature distribution 

above the ice/snow surface is one of the main divergencies be­

tween the later methods for computing the ice pressure. 

When comparing the theories and methods of computation with each 

other it should be remembered that they may have developed along 
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different lines. 

For instance Monfore's, Lindgren's and Drouin & Michel's con­

tributions are almost entirely based upon laboratory tests and 

theoretical considerations. In this way it has been possible 

to study i~ detail different effects taking part in the problem 

and to establish a reliable basis for further research. However, 

the next step, to translate these observations into a usable and 

safe set of rules for the designing engineer, has not yet been 

taken. 

The Russian norm SN 76-6~ may have gone much further in this 

direction. Possibly the Russian theories, whatever their 

origin, have been tested against field measurements and adjusted 

to the conditions occurring in nature. 
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1.5. CONCLUDING REMARKS 

From the short review of the methods suggested for the computa­

tion of thermal ice pressure it appears that the kno~ledge of 

the phenomenon has become more detailed during the previous 

decades. 

However, in spite of a considerable amount of experimental work 

conducted in laboratories, there still exists some divergencies 

concerning the difficult question of which stress-strain rela­

tionships or constitutive laws should be considered appropriate 

as the basis for the methods of computation~ 

The somewhat simpler problem of calculating the temperature 

variation in an ice cover seems to be solved, except for some 

divergencies concerning the importance of the thermal boundary 

layer in the air above the ice/snow surface. 

In laboratory tests and by theoretical considerations single 

physical effects have been studied with great care without 

disturbance from variations in non-relevant associated para­

meters and a detailed knowledge of effects important to the ice 

pressure problem has been reached in that way. However, there 

seems to be a lack of accessibl~ field experiments that show 

to what extent the theories and methods can give the magnitude 

of ice pressure occurring in nature where conditions are more 

mixed. 

Such field measurements should take into account all the para­

meters that at present are thought to play a role in the en­

tire problem of thermal ice pressure or at least a set of para­

meters that constitutes an independent part of the problem e.g. 

the temperature distribution including the thermal boundary 

layer in the air. 

Table l il}ustrates a rather striking development which has 

led to an order of magnitude higher estimates in 1978 than in 

1947. It is interesting to note that our increased understanding 
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and perception has uniformly gone in the direction of increasing 

thermal pressures. Perhaps this reflects the prudence of a worst 

case design philosophy more than the actual but largely unknown 

reality. We are now in the most active period ever of ice re­

search. There will be new information available, and one may 

wonder where the upper bond lies. Physically still higher press­

ures than those of Table l are conceivable. Bergdahl has pointed 

out that an untested combination of simultaneously increasing 

alr temperature, wind speed and cloud cover will boost thermal 

ice pressure beyond the present estimates. 

On the other hand the response to this kind of extreme atmos­

pheric forcing depends on the previqus history of the ice. If 

the ice is too thin, or too thick, or· too warm, or has a snow 

cover, or is cracked up, the resulting pressures will not be 

extreme. 

In Vlew of all the parameters influencing the phenomenon, a sta­

tistical approachseems to make sense. One could then either ob­

serve ice pressure directly, or observe inputs in a model and 

compute the ice pressure. 

The former approach has been advocated by all researchers, but 

it is only recently that the necessary instrumentation has been 

developed in connection with offshore structures. 

The latter approach has been followed by Bergdahl [23]. Based on 

12-16 years records of weather and ice conditions he estimated 

ice pressures and extrapolated the observed series of annual 

maxima to recurrence periods of 100, 500 and 1000 years. 

The advantage of using a model is primarily that one can then 

~enerate time series of ice pressures by hindcasting where the 

input variables are available. However, even for this case it 

lS imperative wi{h direct measurements of thermal ice pressure 

to verify the proposed model. 
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PART II 

ICE FORCES ON FIXED, RIGID STRUCTURES 

By K.R. Croasdale 

Imperial Oil Ltd., Calgary, Alberta, Canada 

ABSTRACT 

Ice forces on structures are determined either by the 
environmental driving force or by the force to fail the ice sheet 
and move the ice around the structure; which ever is the least. 
State-of-the-art techniques for predicting these forces on fixed, 
rigid structures are presented. A rigid structure is defined as one 
where the ice interaction process is not influenced by the defor­
mation of the structure itself. Structures are considered in three 
broad categories; structures with sloping sides, structures with 
vertical sides, and wide structures such as artificial islands. 
Both uniform and ridged ice is considered. The problem of ice 
ride-up on sloping beaches is also discussed. 



35 

2.1 DEFINITION OF FIXED, RIGID STRUCTURES 

Fixed rigid structures can be defined as having negligible 
deformations under the action of ice forces. Any deformations that do 
occur are heavily damped so that the dynamic response of the structure 
is not siginficant. In this category, interaction between the ice failure 
process and the response of the structure does not have to be considered 
in design. 

Examples of fixed rigid structures would be artificial islands 
(with frozen surfaces), massive concrete or steel docks and break-waters. 
Conical shaped piers and platforms will generally be rigid enough for 
their dynamic response to be ignored, and will also be considered in this 
category of structure. Docks, piers and platforms with cylindrical 
members might also fall into this category if the length of the cylindrical~ 
members is short and the structure is very stiff. 

2. 2 EXAMPLES OF FIXED, RIGID STRUCTURES 

Examples of fixed, rigid structures are shown in the first 
series of Figures. 

An artificial dredged island for petroleum exploration in the 
Beaufort Sea is shown in Figure 1. Such islands have been built out to 
13 m of water and are subject to the forces generated by moving ice up 
to 2m thick. They are typically about 120m in diameter at the water 
line. 

In deeper water an island might be retained by concrete caissons 
with sloping sides and ice deflectors as shown in Figure 2. This 
arrangement is being considered for.water depths out to 20m in the 
Beaufort Sea. At this depth ice features such as multi-year ridges have 
to be considered in design. 

Another possible concept for deeper Arctic waters is the 
concrete or steel conical platform which might be held on location by 
friction between the large base and the sea floor (Figure 3). Designs 
for these structures exist but none have yet been built. One could 
envisage them being installed out to the 100 m water depth where they 
would be subject to ice forces generated by the movement of thick polar 
ice containing ridges up to 30 m thick. 

In less severe climates, conical-shaped light piers have been 
installed in the St. Lawrence Seaway, Canada, Figure 4. These structures 
are subject to action by sheet ice up to about one metre thick. 
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Figure 1. Artificial drilling island. 

Figure 2. ·caisson Retained Island. Schematic showing 
cutaway through island. 
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2.3 LOGIC FOR CONSIDERING ICE FORCES 

Before one can accurately predict ice forces on a structure 
(or even consider the right problem to solve)_ some pre l imina ry con­
siderations have to be made. 

One should be aware for instance that the forces transmitted 
to a structur~ by the ice are generated by natural forces such as winds, 
currents or thermal strains. These natural forces can be concentrated 
on the structure by large ice sheets and represent an upper limit for 
the ice forces. The more usually addressed upper limit for the ice 
forces, is the force to fail the ice against the structure in the 
easiest mode of ice failure. Sometimes one can select the mode of 
failure which gives the lowest force but often one has to check 
several modes. 

Another consideration relates to the clearance of ice around 
the structure; if ice rubble builds-up on the structure the mode of ice 
failure (and hence the force) can change. 

A suggested logic for considering some of the above mentioned 
points is presented in Figure 5. 

Environmental driving forces can be calculated separately and 
compared with ice interaction forces to indicate the design force. 
Environmental forces, as will be discussed later in this report are not 
easily estimated to any degree of accuracy. But usually they are much 
greater than the ice interaction force so that accuracy is not that 
important. Sometimes a short cut to the environmental force can be made 
by using observed ice velocities and floe sizes to estimate kinetic energy 
prior to impact. If this energy is much greater than the work done in 
deforming the ice to reach the maximum interaction force then the latter 
force governs the design force. 

Environmental factors such as rate and magnitude of ice move­
ment also input to other parts of the logic diagram as shown. 

For the ice interaction force, the mode of ice failure is the 
most important factor to consider. Intuitively one can expect ice 
crushing against vertical structures. However it is well known that thin 
ice can buckle at lower forces than crushing. Furthermore ice rubble 
in front of a vertical structure can lead to bending failure in a similar 
way to the formation of first-yeir ridges. Bending failure will occur 
against a sloping structure, but the presence of re-frozen rubble or 
high friction due to ice freezing to the structure can lead to ice 
crushing at higher loads. All these possibilities may have to be 
considered. 
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The ice~type governs both the failure mode and the actual 
interaction force. Such factors as thickness, ridge shapes and sizes, 
crystal structure, salinity, and temperature are known to be important 
and will need to be specified. 

Structure shape has already been discussed in·terms of side 
angle. For sloping structures, the friction between the ice and the 
sides is also important in determining the horizontal force. In 
additio~ the width of the structure will influence two things; first 
the way ice rubble clears around the structure; and second whether ice 
failure is simultaneous across the full width of the structure. 

For certain low-freeboard structures the problem of ice en­
croaching onto the structure may have to be seriously considered. As 
shown in the logic diagram such factors as structure shape, extent of 
ice movement and characteristics such as strength or thickness will all 
have to be considered in determining the extent of ice ride-up or pile-up 
on the structure. 

2.4 ICE TYPES 

Under the topic of ice type we have to specify ice strength 
and geometry (e.g. thickness) in order that modes of ice failure and ice 
forces against any·particular structure can be calculated. 

In order to calculate interaction forces it is usually necessary 
to know the following strengths: 

-compressive (uniaxial) 
- shear · 
- bending or flexural 

It is well known that the above strengths are functions of ice 
temperature, crystal structure, direction of loading, rate of loading or 
strain, confining force, sample size, presence of impurities such as salts 
and air. 

It is beyond the scope of this report to discuss the above 
effects on ice strength but this topic has been addressed ~xtensively in 
the literature. 

Another aspect of ice strength which is important is the 
integrity of ice rubble piles and first-year pressure ridges. Can they 
be treated as a pile of granular material or do they also have cohesion 
due to refreezi,ng of the water between the ice blocks. This problem has 
not yet been properly addressed. 



40 

For uniform sheets, ice thickness in any geographic area is 
generally known well enough. However, the thickness of ridges is often 
not known, and assumptions will have to be made. 

2.5 ENVIRONMENTAL DRIVING FORCES 

stress. 
Ice motion in large bodies of water is caused mainly by wind 

A typical wind force on an ice surface can be calculated using 
the classical expression for drag (K). 

where: 
C10 is the drag coefficient at the 10-metre level 
Pa is the air density 
V is the air velocity at the 10-metre level 
A is the "fetch area" 

( 1) 

Danys (1977) has recently reviewed the topic of wind induced 
ice forces. In his paper he lists drag coefficients measured or 
calculated for a variety of ice surfaces. An average value for a rough 
ice cover is given as 0.0022. 

Other investigators have suggested values for the drag coefficient 
of arctic sea ice. Karelin and Timoichov (1972) obtained values in the 
range 0.00335 <C 10 <0.0049 by direct measurements on unridged ice. Banke 
and Smith (1973) recommend doubling the drag coefficient to allow for the 
form drag on ridges, whereas Arya (1973) suggests an increase by about 40%. 
For ridged arctic sea ice a value of C10= 0.005 has been recommended 
( Metge, 1976). 

Some typical sheet sizes needed to impose critical ice forces 
on various structures are given in Table 1. For ice sheet sizes greater 
than those shown the ice forces will be governed by the ice failure 
mechanism and not by wind stress. It can be seen that only on relatively 
small bodies of water will the wind induced ice force control the design 
load for the structure. 

For floes of limited extent moving at a velocity determined 
by the current or wind, ice forces can be calculated using energy 
considerations. The initial kinetic energy of the floe is equated to the 
work done in failing the ice as the edge of the ice floe is penetrated by 
the structure. Floes below a certain size will be brought to rest before 
full penetration at lower-than-maximum ice force. However this condition 
is unlikely to govern ice design criteria. 
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TABLE 1 ICE SHEET SIZES TO GENERATE TYPICAL ICE FORCES 

Structure 

Conical Light Pier 
(3 m diameter) 

Conical Drilling 
Plat form 

(60 m diameter) 

Cylindrical Pier 
(4 m diameter) 

Dredged Island 
(150 m diameter) 

Typical 
Force for Ice 
Sheet Failure 

( KN) 

1500 

30000 

10000 

500000 

Ice Sheet Size to 
Generate Ice Force 
(For V = 15 ms-1) 

(m) x (m) 

1600 X 1600 

2630 X 2630 

4150 X 4150 

18600 X 18600 

Figure 5. Logic for considering ice 
action on fixed, rigid structures. 
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2.6 UNIFORM ICE ACTING ON A SLOPING STRUCTURE 

2.61 Interaction Mechanism 

Consider the simplified two-dimensional system shown in 
Figure 6. As the advancing ice sheet first encounters the sloping 
structure, local crushing occurs on the underside of the ice sheet. 
The local crushing causes an interaction force normal to the structure 
surface. In addition, because the ice is moving relative to the 
surface, a frictional force is also generated. 

The normal and tangential forces can be resolved into 
vertical and horizontal components V and H acting at the centre of 
the crushed area. In the simple two-dimensional model shown in 
Figure 6, the forces acting on the ice will be V, H, gravity and 
buoyancy forces; the latter can be considered as an elastic foundation. 

As the ice sheet continues to advance the crushed area 
will increase causing V and H to increase. Assuming an unlimited 
driving force, V and H will continue to increase until the ice fails. 
For a properly designed sloping structure the ice should fail in 
bending. 

Except for very steep structures the effect of H on the 
bending failure of the ice can be ignored. The ice sheet then 
behaves like a beam or plate on an elastic foundation. The load 
V to fail the ice sheet governs the initial lateral load on the 
structure. Subsequent loads are generally higher because of the 
additional load required to push the ice pieces up the slope. 

2.62 Simple Theory - Two-Dimensions 

To gain an appreciation of the influence of various 
parameters it will be useful to consider a two-dimensional system 
and derive some simple equations. 

Consider the initial interaction between ice and the 
sloping face. The relationshi~between V, H, N and ~ can be 
derived by resolving forces, that is; 

H = Nsina + ~Ncosa (2) 

v = Nco sa ~Nsina (3) 

therefore, 
H = V ( si na + )JC?Sa) (4) 

cos a ~s1na 
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In the limit, the maximum value of V will be limited by 
the strength of the ice sheet with an edge loading. In this simple 
analysis, assume the ice sheet can be represented by a beam or an 
elastic foundation. Assume its strength is limited by its bending 
moment capacity Mo. Most beam strength tests on ice measure bending 
moment capacity but with the results converted to a flexural 
strength(af) using simple bending theory, that is; 

of = 6Mo 
bV 

Where b is the width of the beam and t is the ice thickness. 

(5) 

For a semi-infinite beam on an elastic foundation it can 
be shown (Hetenyi, 1946) that the maximum bending moment (Mo) due to 
an edge load(V)is given by 

Mo = B e~/4 si~(rr/4) 

Where 1 is a characteristic length, defined by, 
s 

(6) 

(7) 

Where K is the foundation constant equal to pwgb for a floating 
beam, pw is the density of water, g is the gravitational constant, 
E is the elastic modulus, and I is the second moment of area of 
the cross section (bt3/12). 

Combining equations (5), (6) and (7) we get 

V = 0.68 "fb ( pwts)" (8) 

and therefore, the initial horizontal force on the ~tructure per 
·unit width is given by 

H/b = 0.68 crf(pwgt5 )~ sina + ~cosa 
E cosa - ~sina 

(9) 

The above can be thoughtof as the component required to 
break the advancing ice. For subsequent interactions a component 
is also required to push the ice up the slope. The force system 
in this latter case is shown in Figure 7. Pis the force required 
to push the ice up the slope, then 

p = ~ 
sina 

t b pig (sina + ~cosa) (10) 
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Where ~·is the height reached by the ice on the slope, and pi is 
the density of the ice, then, 

H = ( V + Psi na) ( s ina + llC~sa ) + Pcosa 
cosa llSlna 

substituting for V and P gives 
1 

(11) 

H ~ 

b = 0.68 of (pwgt 5
) ( sina + llC~Sa) + 

E cosa - llSlna 
Ztpig(.(sina +llCOSa)2 + sina+ llCOsa) (12) 

cosa -llsina tana 

Equation (12) above is similar to equation ( 9) except for the 
additional term~ The equation can be simplified to 

-~ 

.!:!_ = (pwgt 5 \
4 c 1 + ~tp i g C2 ( 13) 

b 0 f\ E ) 

where C1 and C2 are functions only of aand ll· Values for the 
coefficients C1 and C2 are plotted in Figures (8) and (9) for typical 
values of a and ll· 

In the simple two-dimensional theory given above, the 
first term can be considered to be the force necessary to break the 
ice, and the second term can be considered to be the force necessary 
to push the ice pieces up the sloping structure. As a 2-D theory 
it might be considered accurate for a very wide structure, but as 

· will be discussed later it is probably inaccurate for narrow structures. 
For structures which are narrow relative to the characteristic length 
the zone of ice failure will be wider than the structure itself, also 
most of the ice pieces will not necessarily ride-up the structure 
but more around it. Nevertheless it will be useful to discuss the 
importance of some of the key parameters in the context of the simple 
2-D theory. 

2.63 Effect of Friction ahd Slope Angle 

For a typical example of a structure with a freeboard of 
5 m subject to forces imposed by ice 1 m thick with a flexural 
strength of 700 kPa, the effect of friction and slope angle is shown 
in Figure 10. It can be seen that the effect of friction and slope 
angle becomes s~gni fi cant above an angle of 45°. For a s tructur~ with 
an angle of 55 the horizontal ice force inc~eases from 125 KNm 1 for 
ll = 0.1, to 450 KNm-1 for ll = 0.5. For steep angles and high friction 
the ice may fail in crushing rather than bending. Figure 10 emphasizes 
the;need to maintain smooth surfaces on sloping structures so that 
ice forces are minimized. Even for very shallow angled structures 
high friction can increase loads significantly. Other investigators 
(Bercha and Danys, 1977 and Ralston, 1977 ) have also 
shown the importance of friction. 
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FORCES ACTING ON ICE 

~--------------------~ 
~~~-------------------lr 

FORCES ON STRUCTURE 

Figure 6. Initial inter­
action between ice and 
sloping structure. 

R 

Figure 7. General interaction between 
ice and sloping structure. 
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Figure 8. c1 vs slope angle and friction. 

Figure 9. c0 VS slope angle and friction. 
L 
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2.64 Effect of Ice Strength 

The ice strength affects the ice breaking component but 
not the ride-up component. As shown in Figure 11, in this simple 
2-D elastic analysis, the ride-up force in a typical example is 
larger than the breaking force, so the effect of ice strength on 
total force is not as significant as one might suppose. This 
observation however is not true for narrow structures - as will be 
discussed later. 

2. 65 Effect of Ice Thickness 

Ice thickness is probably the most significant parameter 
affecting ice forces on sloping structures. In the simple 2-D 
analysis, the ice breaking component is proportional to (t) 1 • 25 

and the ride-up force is directly proportional to t. The effect 
of thickness for a typical example is shown in Figure 12. 

Again, it is interesting to note from Figure 12 that the 
ice ride-up force is larger than the ice breaking force. However 
as already discussed, this observation can only be considered 
relevant to 2-D theory as might be applicable to a very wide 
structure. For a narrow structure, the ice breaking component will 
be larger and the ice ride-up component smaller (see the next 
section). 

2. 66 Three Dimensional. Theory 

. In. the three dimensional case the same mechanisms apply 
but the zone of ice failure extends wider than the structure. Also 
for structures of circular section the effective angle for ice ride­
up is reduced and ice pieces can slide around the structure without 
fully riding-up. These effects are illustrated conceptually in 
Figure 13. Intuitively it will be appreciated that 3-D effects 
cause divergence from the simple theory more for narrow structures 
than.for wide structures. 

For the ice breaking component, the simple beam theory 
is replaced by a more complex plate theory for which elastic 
analyses have been made using theories developed for plates on 
elastic supprts. Nevel (1972) has proposed equations for the 
ultimate failure of ice plates which can be applied to this problem. 

It is generally assumed that the essence of the ice force 
prob 1 em on a coni ca 1 structure reduces to the predi c ti on of the 
forces necessary to fail a series of ice wedges formed by radial 
cracking of the ice as it advances against the cone, see Figure 13. 
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Figure 10. Horizontal force vs slope angle 
and friction (simple 2-0 theory). 
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SIMPLE 2-D THEORY 

LENGTH OF TRANSVERSE CRACK 
EQUAL TO WIDTH OF STRUCTURE 

3-D THEORY 

LENGTH OF CIRCUMFERENTIAL 
CRACK GREATER THAN 
WIDTH OF STRUCTURE 

Figure 13. Ice action on sloping structures (3-0 effects). 
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Nevel •s (1972) equation for the force to fail these 
wedges is given as; 

6P 2 = 1.05 + 2.00(a/~) + 0.50(a/~) 3 

b0ot (14) 

where P is the failure force on the tip of the wedge, a is the 
ice flexural strength, t is the ice thickness, a is the distance 
from the tip of the wedge over which it is loaded, bo is a constant 
defining the width of the wedge (b) in the equation 

b = bo x (15) 

where x is the distance along the wedge, bo is a constant and ~ 

is the characteristic length for the plate given by 

{16) 

Bercha and Danys (1975) have made use of the above theory to present 
an elastic analysis for the ice breaking component of the ice force 
on a conical structure. Their results are repeated here in Figures (14) 
and (15) for structures with water-line diameters up to 18.3 m (60 ft) 
subject to ice 0.91 m (3 ft) thick. 

Bercha and Danys (1975) have also analyzed the effect of 
in-plane compressive stresses on the flexural failure of the ice 
sheet. For steep, rough structurffithe effect can be significant 
and increases the horizontal force. 

An approach for ice forces on a conical structure using 
plastic limit analysis has been proposed by Ralston (1977). His 
results can be expressed in the form 

H = A4 ~ 1ot
2 + A2pwgtD2 + A

3
pwgt(D2 - D~)] (17) 

v = 2 2 B1H + B2pwgt(D - DT) (18) 

where DT is the top diameter and D is the water line diameter. A1 
and A2 are coefficients dependent on pwgD2/ot , and A3 ; A4 , B1 and B2 
are coefficients dependent on the cone angle a and fri~tion ~. Values 
for these coefficients are reproduced in this report in Figure 16. 

It should be noted that Ralston•s analysis includes both 
the forces due to ice ride-up and ice breaking. In equation (17) 
the first two terms are due to ice breaking and the third term results 
from the ice pieces sliding over the surface of the cone. 
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and Bercha. 1976). 

-~ en 
U)- z a.. 0 

g~ !::: 
60 

~ 

w., 50 

~2 
0 
u... 
...JO 
<l"' 
I-

40 

z o.., 
Nt-

ii: 
0 30 
:z:g 
...J 
<l 
I-.., g .. 20 

~ 

10 

!!? 

0 
0 10 

Flexural strength • 100 p. s.i. ( 7. 03 kg/cm2 l 

Friction coefficient • 0.10 

Ice thickneu • 1.0 ft (30.5 em) 

20 30 40 50 60 
SLOPE ANGLE (DEGREES) 

(a} 

70 80 

0 g 350 

(i) (i) 
z 9:2 0 ::.:,... t: 
300 

0 .. 
ID 

Wo 
~:& 250 
0 
u... 

·Flexural strength • 100 p.s.i. 

(7. 03 kg/cm2 l 

Friction coefficient • 0.30 

Ice thickneu •3.0ft (91.5cml 

...Jg INDENTER 
CX <t RADIUS .A•35·0 
~ 200 in fl 

§~ 
a:: 
0 
:z:~ 150 

...J"' 
< 
1-o o.-
1-N 100 

0 
CD 

10 20 30 40 50 60 
SLOPE ANGLE(DEGREES) 

( b} 

70 80 

Figure 15. Horizontal force vs slope ~ngle and indenter radius A for constant 
flexural strength, friction and ice thickness. (Kip= 1000 lbs.), (Danys 
and Bercha 1976). 



Al 

0.7 r 
I 

0.6 t-
i 
! 

0.5 f-
I 

I 
0~4~ 

! 

3.5 

3.0 

20 30 

-51-

0.30..------...,---------------------, 4.0-

0.02 
10. 0.1 1.0 Pwg 02 u, t 

I 
A4 

40 
a. deg 

5 

4 

3 

2 

20 

0.07 r 
I 

0.06 

0.05 

0.03 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

100. 

30 

30 

A, 

50 

a. deg 

I I 

40 50 
CX,deg 

60 70 

Figure 16. Ice force coefficients for plastic analysis (Ralston 1977). 
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It•s of interest to note that for narrow structures, 
Ralston•s theory predicts the ride-up component to be small compared 
with ice breaking,see Figure (17). For wide structures the ice ride­
up component becomes a larger part of the total force, see Figure (18). 

2.67 Experimental Data 

At this time there are only two series of laboratory 
experiments for which data are available. In 1970, tests were 
conducted in the Arctec model basin on 45° angle cones up to 100 em 
in diameter with ice up to 7 em thick. Results from these tests 
have been reported by Edwards and Croasdale (1976). In 1971~ tests 
were conducted with cones up to 28 em in diameter with ice up to 
3.5 em thick by Afanasev, Dolgopolov and Shvaishtein (1971). 

An empirical relationship derived by Edwards and Croasdale 
from their tests is given as; 

H = 2 2 1.6ot + 6.0pg0t (19) 

(for a 45° angle cone with an ice to cone friction coefficient of 
0.05). 

The investigators proposed that the first term represents 
the ice breaking portion of the ice force and the second term 
represents the ice clearing component. 

From observations of their tests Afanasev et al (1971) 
proposed the following formula based on elastic plate theory 

H = ot2Sx tanx 
1.93~ 

where Sx is the length of the circumferential crack given as 

Sx = 1.76(r + n/4~) 

(20) 

(21) 

where r is the cone radius at ice level, and~ is the characteristic 
.length given by 

N (22) n _ ( Et3 )0.25 
12pg(1 v2) 

where E is Young•s modulus and v is Poisson•s ratio. 

. Measurements of ice forces on an inclined pieb have been 
published by Neill (1976). The piir was inclined at 23 to the 
vertical and forces up to 788 KNm- were measured for ice 0.75 m thick. 
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I 
II 

-

Figure 17. Horizontal force vs ice thickness - narrow structure 
(Ralston•s theory). 

Figure 18. Horizontal force vs ice thickness - wide structure 
(Ralston•s theory). 
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Experiments have been conducted in a large outdoor 
test basin in Calgary on a 45° angle cone with a 3.1 m (10ft) water 
line diameter with ice up to 0.6 m (2ft) thick (Robbins et al, 1975, 
Croasdale, 1977). Results from these experiments have not yet been 
published. 

Tryde (1975 and 1977) has investigated ice acting 
on a narrow wedge-shaped pier by conducting model tests. He proposed 
the following empirical method for predicting ice forces on a narrow 
sloping wedge. 

where ocis the ice compressive strength and CF is a •reduction 
coefficient• expressed as, 

CF = 5.2 El/3 
1~ c2 

where 
E J~ 0 C = 0.16 f- 2 . c1;c2 C3 '-

lpUc s 1 n s 
where s = o/oc' where o is the bending strength and oc is the compression 
strength of tne 1c'e, E is the Young•s modulus, p 1s Lne ice density 
and u . the ve 1 oci ty of the floe. The coefficients C1 , C2 and c3 are 
gi venc as, 

c, 1 - tan a 
11 sins 

C2 = +~ 11 sins 

c 
c3 = 6 (~oss + ~) 

2 

where 2 s is the included angle at the point of the wedge in the 
horizontal plane, a is the inclination of the slope of the wedge to 
the horizontal and 11 the coefficient of friction. 

Tryde suggests that the value of CF is most likely 
to be in the range 0.1 to 0.3, implying that ice failing in bending 
imposes forces which are 10 to 30% of the ice crushing forces. As 
far as can be determined Tryde 1 s formula does not account for ice 
ride-up and is quite sensitive to modulus of elasticity. The formula 
is not strictly applicable to conical towers. 
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2. 68 Comoari son of Formulae 

2.68.1 Narrow Structures 

In his review of ice forces on piers and piles 
Neill (1976) used an example of a 10 ft (3.05 m) diameter 
conical tower to compare various formulae for ice forces on 
sloping structures. This example is repeated here and extended 
to include the additional correlations published since Neill's 
paper. Horizontal forces compared for the four original methods 
discussed by Neill are presented in Table 2 together with forces 
calculated using the formulas discussed in this report. Also, 
typical crushing forces, assuming the structure is vertical 
sided, are presented. 

An immediate observation from the forces shown in 
Table 2 is that all the more recent formulae and correlations 
generally give higher forces than the methods originally listed 
by Neill. 

None of the original formulae listed by Neill took 
account of friction, but even if we set~= 0 the formulae of 
Bercha and Ralston still yield higher forces than the first four 
methods. It should be appreciated that the 3-D math models of 
Bercha and Ralston presumably assume simultaneous failure of 
the ice sheet in the affected zone, and this perhaps represents 
an upper bound. For example in Bercha's model the ice force is 
derived assuming all the loaded ice wedges fail simultaneously. 
If in fact they do not, then presumably the peak ice breaking 
force will be lower. 

It is of interest to note that the model data of 
Edwards and Croasdale if extrapolated to this example gives 
forces comparable with those predicted by Bercha and Ralston. 
This fact lends support to the validity-of their predictions. 

As expected, the simple 2-D th~ory underpredicts 
the ice breaking component. This is because the structure width 
is small compared with the characteristic length of the ice sheet. 
If we adjust the 2-D force by the ratio-of the length of the 
circumferential crack to the structure width, then the force 
predicted by the 2-D theory agrees quite well with methods (5) 
and (7). The length of the circumferential crack ~0.25n2 £ , 
where£ is the characteristic length defined by equation (22). 
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T.L\BLE 2 HORIZONTAL FORCE ON CONICAL TmvER 
CALCULATED BY TEN METHODS 

ASSUMPTIONS: D=lOft. (3.05), t=3ft.(0.9lm), cr=l50psi (1050kPa) 
v=0.33, E=lxlOGpsi (7 xl06kPa), a= 45° 
Freeboard= 5ft. (1.53m) 

Source of Formula 

I 

( 1 ) Afanasev etal (1971) 

(2) Dany's Procedure as Reported 
by Nei 11 (1976) 

(3) USSR Code SN 76-66 (Appendix 2) 

(4) Korzhavin's Formula 

(5) Bercha and Dany's (1975) .u=O 
~-~=0 .15 

(6) Ralston lJ=O 
lJ=0.15 

(7) Edward's and Croasda1e 

(8) Simple 2-D Theory ( lJ:=O. 15) 

(9) Simple 2-D Theory 
Adjusted ( ll=O. 15) 

(10) Tryde IE= 7xlo6 kPa 
(sloping wedge)1 

___1= 2xlQ5 kPa 

. -!'!:'="' 

Crushing Force 
p = 400 psi (2800kPa) 
k = 0.5 

Crushing Force 
p = 600 psi (4200kPa) 
k = 0.5 

Breaking 
Force 

- I ( kN) 

694 

249 

543 

463 

954 
1335 

1400 
1964 

1384 

84 

1200 

485 

1200 

3886 

5829 

, .. 

Ride-Up 
Force 

(kN) 

-

126 

-

-

-
-

22 
30 

150 

70 

iO 

-

-
·-·-

-

~ 

! 

i 
I 

Total 
Force 
(kN) 

694 

375 

543 

463 

954 
1335 

1422 
1994 

1534 

154 

1270 

485 

1200 

3886 

5829 

i 

l 
i 
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A 1 so , we see from Tab 1 e 2 that even us i n g the 
most conservative predictions,the forces on the conical tower 
are significantly less than typical crushing forces on a 10 ft 
(3.05 m) diameter cylindrical structure. 

Finally, we see from the table that for narrow 
conical structures the ride~up force is small compared to the 
ice breaking force. 

Until better test data is available, designers 
would be wise to use the most conservative prediction techniques 
(e.g. Ralston, Bercha and Danys, or adjusted 2-D theory). 

2.68.2 Bercha's Example- 18.3 m Diameter Cone 

To examine results for a wider structure consider 
the example of an 18.3 m diameter cone, with the other variables 
as defined in Table 3. This is the largest diameter structure 
considered by Bercha and Danys (1975) in their paper. 

Again the Ralston formula predicts the highest 
force,but the ice breaking force is in reasonably close agree­
ment with Bercha and Danys. 

The most significant point about ·the data presented 
in Table 3 is that the ice ride-up or clearing forces are now 
quite large. The simple 2-D theory probably over predicts the 
ride-up forces but both the correlations of Ralston and Edwards 
and Croasdale suggest ride-up forces of-around 1000 KN. Clearly 
for a structure of this width the ride-up forces cannot be ignored. 

2.68.3 A Wide Sloping Structure 

The horizontal forces acting on a structure 60 m 
wide are compared in Table 4. In this case only forces 
derived using the Ralston formula and simple 2-D theory are 
compared. The agreement for total force is quite good, but the 
2-D theory consistently predicts lower ice breaking forces. This 
is to be expected for the reasons already discussed. 

Again the ice ride-up or clearing forces are very 
significant and cannot be ignored for such a wide structure. 
Perhaps more importantly the actual clearing mechanism needs to 
be further addressed when considering such wide structures. 
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It should be remembered that the method of calculation of ice 
ride-up forces assumes simply that the surface of the structure 
is covered by ice pieces; and the force is that necessary to 
push the ice pieces up the surface. In reality the ice pieces 
may not continue to clear around the structure and a large ice 
rubb 1 e fie 1 d may be genera ted. Th i sl ice rubb 1 e may then inter­
fere with the ice structure interaction and could lead to even 
higher forces. For wide structures_, mode 1 tests should be 
conducted to investigate this phenomenon. 
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TABLE 3 HORIZONTAL FORCE ON AN 18.3m DIAMETER CONICAL TOWER 
(BERCHA'S EXAMPLE) 

ASSUMPTIONS: D=60ft. (18.3m), t=3ft. (0.9lm), cr=lOO psi (700kPa) 
v=0.33, E=lxl06psi (7 xl06kPa), a= 45° 

~=0.15, freeboard = 20ft (6.1 m) 

- ---

Breaking Ride-Up 
Force Force 
(kN) (kN) 

··---- ... --...---~ _2 ___ • 

Bercha and Dany's (1975) 1558 -

Ralston (1977) 1964 1196 

Simple 2-D Theory 355 1896 

Simple 2-D Theory 845 1896 
(Adjusted) 

Afanasev Et A1 ( 1971 ) 711 -

Edwards and Croasdale (1977) 922 900 

I Total 
Force 
(kN) 

1558 

3160 

2251 

2741 

711 

1822 

ll 
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TABLE 4 HORIZONTAL FORCE ON WIDE CONICAL STRUCTURE 

ASSUMPTIONS: D=60m, o=700kPa, E=7xl06kPa, a = 45° 

~=0.15, freeboard= lOrn, t=0.5, 1 .0, 2.0m 

I 
t I Breaking 

Force 
(m) (kN) 

Ra l stan (1977) 0.5 1574 

Simple 2-D Theory 0.5 559 

Ralston (1977) 1. 0 4822 

Simple 2-D Theory I 1. o 1330 

Ralston (1977) I 2.0 14855 

Simple 2-D Theory 2.0 3162 

Ride-Up Total 
Force Force 
(kN) (kN) 

4385 5959 

5625 6184 

8770 13592 

11250 12580 

17540 32395 

22500 25662 

I 
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2.7 SOLID ICE RIDGES ACTING ON SLOPING STRUCTURES 

Solid multi-year ridges which occur amongst the polar ice 
represent a severe loading condition for arctic offshore structures. 
Multi-year ridges up to 15 m thick are not uncommon and are fully 
consolidated (Kovacs, 1971). 

As a first approximation multi-year ridges can be considered 
as floating beams infinitely long. Failure loads can be calculated 
using the theory of elastic beams on elastic foundations (Hetenyi, 1946, 
Croasdale, 1975). 

Observations of ridge structure interaction in model tests 
(Lewis and Croasdale, 1978) indicates that the ridge usually fails first 
with a centre crack at the point of interaction with the structure 
(see Figure 19). Using simple beam theory the vertical load necessary 
to cause this initial crack is given by 

(23) 

where I is the second moment of area of the ridge cross section about 
its neutral axis, o: ·is the ice flexural strength, y is the distance to 
the surface in tension (in this case the top surface) and £. is the 
characteristic length given by; · 

- (4El )0. 25· 
Q, - pgb (24) 

where b is the width of the ridge. 

Although when the first centre crack has occurred, the ridge 
can be considered broken, it cannot pass around the structure without 
further breaking. Again, observations of tests indicate that the 
subsequent interaction mechanism is the formation of hinge cracks as 
shown in Figure 19. The vertical force to cause the hinge cracks is 
calculated by considering the simultaneous failure of two semi infinite 
beams on elastic foundations, that is; 

(25) 

In this case y is the distance from the neutral axis to the bottom of 
the ridge. 
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It will be noted from the above equation that the formation of the 
hinge cracks will generally cause greater loads on a structure than 
the load due to the initial crack. 

For a ridge 15 m deep and 30 m wide with a flexural strength 
of 700 kPa and elastic modulus of 7 x 106 kPa, the vertical f6rce to· 
create the initial crack is 18,736 KN whereas the force to create the 
two hinge cracks is 28,900 KN. 

The corresponding horizontal forces depend on the cone angle 
and ice~to-structure friction, that is: 

H
2 

= V (sina + ~c~sa) 
2 COSa - ~Slna 

(26) 

(27) 

Typical horizontal fsrces are shown in Figure 19 for the ridge 
described above acting on a 60 cone with ~ = 0.3. 

More sophisticated analyses of ridge loads can be done using 
a more realistic ridge cross-section to calculate I andy. Also, the 
equations given above are for an infinitely long ridge. Ralston (1977) 
has pointed out that shorter ridges can cause greater loads than 
infinitely long ridges. The relationship derived by Ralston showing the 
effect of ridge length is repeated in this report as Figure 20. Obviously 
as the ridge gets shorter there is more chance of other interactions 
taking place. The ridge may simply rotate or the ice sheet may fail 
behind. Therefore Figure 20 should be used with care, and more work is 
required in this area. 

The only published experimental data on ice forces due to ice 
ridges is that by Lewis and Croasdale (1978). Their work was conducted 
in 1970 in a saline ice model basin. Modal ridges up to 23.5 em thick 
and 28.6 em wide were tested ·against a 45 angle cone. 

A summary of their results adjusted to full scale values is 
given in Table 5. For comparison., theoretical values using equations 
(25) and (27) are included. The theoretical values are corrected for 
length using Figure 20. 

The comparison between theory and experiment is not good for 
the small ridge but reasonably good for the deeper ridge. It is possible 
that the effect of the surrounding sheet ice which was present in the 
model tests leads to the higher loads observed compared to those 
predicted. 
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TABLE 5 RIDGE LOADS: COMPARISON OF EXPERIMENTS AND THEORY 

I v 

' H 

b 

.. -·· 

[ - b 
--··· ········· .. .. ... 

D t Ridge £ V Exp. V Theory H Exp. H Theory 
Length [ ~ =0. 1 . 0'=0.3 i 

! 
\ 

(m) (m) (m) (m) (m) (MN) (MN) ( ~1N) (MN) (MN) 

12.5 i 5.9 3. 1 120 42 8.46 3.4 . 14.46 4.2 6.3 
I 
! i 
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2.8 SOLID RIDGES ACTING AGAINST VERTICAL FACED STRUCTURES 

Vertical faced structures would not be recommended where 
multi-year ice ridges are common. Potential ice forces would be 
very large because the ice ridge would have to fail by crushing, 
shear or in-plane bending. 

2.9 UNCONSOLIDATED ICE RIDGES 

First year ridges are largely unconsolidated, that is, 
they are composed of ice blocks held together by buoyancy, gravity 
and frictional forces. Ice forces due to first year ridges can be 
expected to be much lower than due to consolidated ridges. Ice forces 
can be calculated approximately, the ice is a granular material with 
an assumed friction angle. 

For the arrangement shown in figure 21 (ignoring the ridge 
sail): 

2 
Force on structure = 2F = Z~t pbgtan~ (28) 

Where B is the ridge width, t is the ridge thickness pb is the 
buoyant density of the ice and~· is the friction angle of submerged ice 
blocks. 

As an example consider an unconsolidated ice ridge 15 m thick 
by 30m wide with 0 = 30°, and pbg = 981 Nm 3 ; 

2F = 2570 kN 

This is about one tenth the load due to a multi-year ridge 
of the same dimensions. 

2.10 ADFREEZE FORCES 

In the nearshore arctic environment the ice surrounding a 
structure can remain stationary long enough for the ice to freeze to 
the structure. Also, vertical motions of the ice due to tidal action 
can be so small that an adfreeze bond can develop between the ice 
sheet and the structure. Once the ice sheet starts to move again, 
sliding motion between ice and structure first requires breaking the 
adfreeze bond. For certain types of sloping structures the force 
required to fail the adfreeze bond can be significantly greater than the 
force needed to fail the ice in bending. In these situations the force 
to fail the adfreeze bond can become the design force for the structure. 
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Figure 21. Simple interaction model 
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Figure 20. Elastic interpretation of 
initial crack and hinge crack forces 
for multiyear ridges failing against 
conical structures (Ralston 1977). 

Figure 22. Adfreeze bond failure. 
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In the arrangement shown in figure 22 the adfreeze force 
is given by; 

H _ ntqD 
- tana. (29) 

where t is the ice thickness, a is the slope angle, D is the structure 
diameter and q is the adfreeze bond strength. 

Little data is available on adfreeze strengths. Adhesion 
strengths published by Michel (1970) are in the range 140 to 1050 kPa 
(20 to 150 psi) for fresh ice. More recently Sackinger and Sackinger 
(1977) have published adfreeze strengths for sea ice on steel. They 
found that salinity and temperature affected adfreeze strengths. A 
maximum value of 1590 kPa (227 psi) was measured at a temperature of 
-23° C for ice with a salinity of 0.4 parts per 1000. 

2.11 ICE CRUSHING ON A NARROW VERTICAL PIER 

2.111 Introduction 

The problem of ice crushing against a narrow vertical 
pier has become a classic problem in the field of ice mechanics. 
A proper review of this topic would constitute a major thesis 
and is beyond the scope of this report. For a detailed review of 
current engineering practice the reader is referred to Neill (1976). 

2.112 Empirical Formula 

The effective ice pressure or stress acting on a 
narrow vertical pier can be defined as: 

F p =­tb 

where p is the effective ice stress 
F is the ice force 
b is the width of the pier 
t is the ice thickness 

(30) 

The essence of the ice force problem on a narrow 
vertical pier is to be able to specify the appropriate value 
of p for the particular ice conditions expected. 
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Early work (Korzhavin, 1962) to address this problem 
(primarily for bridge piers) suggested the following empirical 
relationship for p. 

p = Imka ( 31) 

where a is the ice strength in compression 
k is a contact coefficient which equals 1.0 for perfect contact 
m is a shape factor which is close to 1.0 for circular piers 
I is an indentation factor which tends to 1.0 for a wide 

structure and is equal to 2.5 for narrow structures (d/t=l .0) 

Ih Korzhavin's original equation a velocity term was 
included, but it is generally accepted that this can be omitted 
if the ice strength is specified for the appropriate velocity or 
strain rate. 

The usefulness of the above equation to the engineer is 
limited because of the need to input a value for the ice compressive 
strength. Compressive strength measured on small ice blocks is 
notoriously variable, being highly sensitive to crystal orientation, 
degree of confinement, temperature, strain rate and size of sample. 

However, despite this limitation, equation (31) includes 
some useful concepts for ice pressure on piles. It suggests that 
for wide structures, with I= 1, the maximum pressure approaches 
the uniaxial ice crushing strength, and for narrow piers, the ice 
pressure could be 2.5 times greater. The equation also tells us 
that the ice pressure is a function of the "goodness" of contact 
between the ice and pier. 

2.113 Plasticity Theory 

For perfect contact the problem reduces to that of 
pushing an indentor into the edge of a semi infinite ice sheet. 
The theory which follows is relevant to the flat indentor con­
figuration shown in figure 23. (The results for a circular 
indentor would be similar.) The problem of penetration of an 
ice sheet by a flat indentor has been addressed by Croasdale, 
Morgenstern and Nuttall (1977); their solution is repeated here. 

We assume ice to be an isotropic, homogeneous ideal 
elastic-plastic material. Yielding is governed by a relation 
between the principal stresses known as the yield criterion. 
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It will be assumed in this analysis that ice behaves like 
most metals and that yielding is independent of hydrostatic pressure .. 
In this case, the simple Tresca yield condition can be applied, 
which states: 

(32) 

where o 1 denotes the major principal stress, 0 2 denotes the minor 
principal stress and q denotes the shear strength, and it follows 
that: 

a = 2q 

where a is the uniaxial compressive strength. Equation (2) states 
that yield occurs when the greatest shear stress on any plane has 
reached a limiting value. 

The penetration of an ice sheet by a flat indentor can 
be analysed by the Lower-and-Upper-Bound Theorems of plasticity 
(Prager and Hodge, 1951, or Calladine, 1969). 

The Lower~Bound Theorem states the following: If any 
stress distribution throughout the loaded body can be found which 
is everywhere in equilibrium internally and balantes the externally 
applied loads and at the same tim~ does not violate the yield 
condition, those loads will be carried safely by the body. 

The Upper-Bound Theorem is as follows: If an estimate 
of the plastic collapse load of a body is made by equating internal 
rate of dissipation of energy to the rate at which external forces 
do work in any postulated mechanism of deformation of the body, the 
estimate will be either high or correct. 

It should be noted that neither stress distribution in 
the first case nor the mechanism of deformation in the second need 
be the correct ones .. The true solution is found when both upper 
and lower bounds converge to the same result. When they do not, 
the true solution will be between the lowest 11 Upper bound 11 and· 
the· highest 11 1 ower bound 11

• 

The problem of interpreting the indentation tests is one 
of computing the resistance offered to incipient indentation of a 
pier or indentor by the edge of the ice sheet. (In all the indentation 
tests, a tensile crack first forms at right angles to the direction 
of loading, so that subsequent crushing failure of the ice sheet 
is the same as would occur due to edge loading of a thick plate, see 
Figure 23 .) 
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We can define the solution in the form, 

P = a I (33) 

where a denotes the compressive strength of the ice, p denotes the 
average pressure on the indentor at failure and I is the indentation 
factor which wi 11 depend on the geometry of the· indentor, the ice 
thickness and the boundary conditions. 

To solve for I is the objective of this analysis, and 
solutions are derived for two boundary conditions; first with the 
ice free to slip at the face of the indentor, and second with the 
ice frozen to the indentor. 

The geometry of the arrangement is defined in Figure 23; 
d is the width of the indentor and t is the ice thickness. When 
d is much smaller than t, the problem reduces to the classical 
Prandtl indentor for whi~h there is an exact solution; 

£ = 1 + rr/2 2 57 a • 

Also when d is much larger than t, the lower-bound 
solution shown in Figure 8 becomes exact, i.e. 

£ = 1 0 0 a 

therefore 

I = 1.0 

Between these limits, the problem is three-dimensional 
and I will depend on the ratio of d/t which is sometimes called the 
aspect ratio. An upper bound solution for this problem wtll now be 
derived. 

Two kinematically admissible velocity fields are shown 
in Figure 24. It can be shown that .. solution 111 gives a lower 
upper bound ( ~1orgens tern and Nutta 11 , unpub 1 i shed) . We wi 11 work 
through one case for d/t = 1.0. The indentor moves with velocity V 
and extern~l work De is; · 

(34) 
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Internal dissipation due to shearing resistance q 
occurs along the velocity discontinuity surfaces such as (abde), 
(bed), (afe). If the wedges are inclined at 9 to the edge of the 
ice sheet, from symmetry the energy dissipated internally o: is; 

1 

D; = cr[d2s~ce + 2d2~anejvcosece (35) 

Equating 0 ando.,weget 
e 1 

p_ = _1 r~ + z ~ 1 
a case l Slne 

To find the critical inclination, we put 

a(p/a) = 0 ae 

which gives 0 = 410 and 

p_ = 1. 34 
a 

i . e . I = 1 • 34. 

(36) 

This calculation can be repeated for several values of 
d/t to give the curve shown in Figure 25. 

If there is adhesion between the interface and the ice 
sheet, more dissipation of energy takes place internally due to 
shearing resistance at the interface. Any value of shearing resis­
tance could be assumed at the interface up to the limiting value of 
q the shear strength of the ice. In this case, accounting for the 
extra resistance, the solution becomes; 

p_ = sececosece + ! tanecosece + cote 
a d 4 2 (37) 

Following minimizati6n with respect to 9, the critical 
values of p/~ may be found for the range of d/t of interest. Again 
there is a plane-strain cut-off at d/t = 0. The size~effect curve 
for the rough indentor is also shown in Figure Z5. 
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Solutions can also be found for circular indentors using 
the same technique (Morgenstern qnd Nuttall, unpublished) but these 
will not ·be discussed here. 

The above theory is based on the simple Tresca yield 
criterion. Other yield criteria have been discussed by Ralston 
(1977). 

2.114 Simplified Theory 

The upper bound solution from the previous theory suggest 
that a flaking type failure occurs for perfect contact between pier 
and the ice (see figure 26). This failure concept has been observed 
in the field; although some investigators also report the occurrence 
of an inplane cleavage crack. (Schwarz etal 1974) However, staying 
with the wedge type failure and assuming that the failure planes are 
at 45° for all values of b/t then the previous theory can be simplified 
to; 

(38) 

This equation neatly explains the term I in Korzhavin's 
equation, for as the width of the structure increases the second 
term becomes negligible and p = ac. 

The double wedge failure is obviously only applicable to 
the initial failure peak for ice in intimate contact with the pier. 
However, similar reasoning can be used to look at subsequent pressure 
peaks (figure 27). 

Intuitively by considering the area of the failure planes 
after critical break out it can easily be seen that for subsequent 
failures (or continuous crushing) the pressure peaks are about half 
the initial peak. Also the ice pressure for continuous crushing is 
less sensitive to structure width. The lower pressures for continuous 
crushing can be considered to be accounted for in Korzhavin's empirical 
equation by the use of the contact factor, k. Korzhavin recommends 
values for k in the range 0.4 to 0.7 which are compatible with the 
0.5 factor indicated by simple theory. 

Tryde (1977) also discussed a wedge-type failure mode for 
ice crushing, and proposed the empirical formula 

d}-1 p = 0.8ac 1 + 2.1(0.4 + t 

where ac· is defined as the uniaxial compressive strength of the ice, 
and 0.1 ~ D/t ~co. It is not clear what the basis is for 0.8 factor 
applied to ac . 
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2.115 Test Data- Indentation 

Small scale indentation tests have been conducted by 
Michel and Toussaint (1977), Frederking and Gold (1975), Nevel et 
al (1972), Zabilansky et al (1975), Hirayama et al (1974) and 
others. Field indentation tests have been conducted by Croasdale 
(1974, 1977) and by Haynes et al (1975). 

A composite plot of some of their results are shown in 
figure 28. The results shown indicate a strong dependence on 
strain rate and a possible dependence on ice thickness. 

The effect of strain rate is discussed at some length 
by Michel and Toussaint (1977) they propose that it is the major 
parameter in determining ice forces on piles and that strain rate 
effects can explain the indentation factor I. Their work also 
clearly demonstr~ted that at high strain rates the ice pressures 
during continuous crushing are less than the initial ice pressure 
with good contact, see Figure 29. 

Frederking and Gold (1975) performed tests at low strain 
rates; they suggest that the indentation factor is dependent only 
on indentor width, not thickness. 

The field indentation tests by Croasdale (1974, 1977) 
gave a slight indication of an aspect ratio (b/t) effect (Figure 30). 
More important, the ice pressures were generally lower than those 
obtained in the laboratory on thinner ice. This could be an 
indication of a size effect implying that a larger volume of ice 
has a lower average strength. Or the lower field values could be 
due to imperfect contact between ice and indenter. 

2.116 Theory of Michel and Toussaint 

The experimental work of Michel and Toussaint (1977) led 
them to develop a theory for indentation assuming a perfectly 
plastic material close to the indenter surrounded by a circular 
region of ductile deformation. This concept led them to define 
strain rate as 

v 
s = 4b (39) 

where V is the velocity of movement and b the structure width. 
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Their analysis gave them the expression; 

p = 2.97a (40) 

where a is the uniaxial yield strength in the ductile region (at 
the appropriate strain rate). 

Using equation (40) they reduced a large number of indent­
ation data to uniaxial yield strengths and plotted them with other 
uniaxial yield strengths to give the composite plot shown in 
Figure 31. The plot is for S2 ice at -10° C. The data agrees 
reasonably well with that reported by Croasdale et al (1977), 
showing a maximum strength of about 7600 kPa at a strain rate of 
around l0-4to 1Q-3S-l. As a result of the strong strain rate effect 
shown in Figure 31, and the proposed dependence of strain rate 
on structure width, Michel and Toussaint went on to suggest that 
the variation of effective ice pressure with b/t is because of strain 
rate dependence. 

They proposed the use of three separate equations for 
ice pressure, each for a specific strain rate range, they are; 
(a) For 10-Bs-1 < s < 5x10-4s-1 (ductile zone) 

2 97 k (s )0.32 p=. m a-.. o s 0 
( 41) 

where m = 1 for a flat indenter 1.0 for initial qood contact, 
k = 0.6 for continuous crushing, a = 7000kPa for ice at -1o0c, 
. - s ro-4 -1 o so - x s . 

-4 -1 -2 -1 ( . . ) (b) For 5x10 s < s < 10 s trans1t1on zone 

P = 2.97 m ka
0
(t-) -

0•126 (42) 
so 

where k = 0.25 for continuous crushing and the other parameter 
have values as in (a). 

(c) For s > 10-2 s- 1 (brittle zone) 

P = 3mk ab (43) 

where k = 0.3 for' continuous crushing and ab is the uniaxial 
crushing strength under brittle conditions 
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- The highest values are those derived from Michel and 
Toussaint for cold ice failing in the ductile condition. Michel 
and Toussaint themselves do not recommend designing to these values. 
They note that most ice motions are sufficiently fast to give 
failures in the brittle condition. It will be noted that their 
ice pressure for brittl~ failure of -10° C ice agrees reasonably 
well with that obtained from the wedge theory. 

We should also note that even in the arctic the mean ice 
temperature is unlikely to get much below -10° C because of the 
insulating effect of the snow cover. Furthermore, the values 
calculated are based on fresh ice; sea ice is weaker and so the 
ice pressures in crushing would be lower. 

It seems as though the wedge formula with k = 0.5 gives 
reasonable agreement with the guidelines for warm ice. It is 
recommended that it be used for design where conditions may be 
different from those of the guidelines e.g. in the arctic. The 
wedge formula has the advantage of accounting for structure width, 
thickness, and ice strength. For ice in more or less continuous 
motion a value of contact factor of 0.5 is suggested. If ice can 
freeze around a structure, then a value of k = 1.0 or higher may 
be appropriate. It would seem wise to prevent good contact from 
occurring by the deployment of waste heat or use of other defence 
measures. 

Further measurements of ice forces on vertical structures, 
particularly in Arctic regions, is desirable. 

For very wide structures a further mitigation of ice 
forces may occur due to non-similtaneous failure across the width 
of the structure. 
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For ice at other temperatures different uniaxial 
strength values waul~ be used. 

2.117 Comparison of Crushing Formulae 

Neill (1976) in his review of ice forces compares 
effective ice pressures used in practice for vertical piles and 
piers. His comparison is repeated in Table 6. Also, additional 
ice pressures are included,calculated using the wedge theory, 
and the equations of Michel and Toussaint (1977). 

The ice pressures calculated using the wedge theory 
(equation 38) are calculated on the basis of a contact factor 
of 0.5. Also it is assumed that m = 0.9. For the narrow structure, 
b = 3 m and t = lm. For the wide structure b = 30 m and t = 1 m. 
Equation (38) then reduces to; 

and 

p = 0.59 a 
c 

p = 0.46 ac 

for the narrow structure 

for the wider structure 

ac is taken to be 7000 kPa for ice at -10° C and 3000 kPa for 
ice at -1.50 C. 

Similar assumptions for ice strength and structure 
width were made in using the equations of Michel and Toussaint. 
It was assumed that the ductile ice pressure occurred at the 
maximum ice strength value. Contact factors were 0.6 for the 
ductile condition and 0.3 for the brittle condition. 

In looking at the values listed in Table 6 several 
points can be noted. 

-The values given by existing guidelines are lower 
than the highest values given by the formulae. 

- The guidelines do not relate specifically to ice 
temperature or to structure width. It is likely that the design 
guidelines relate to warm ice as might be experienced at break-up. 
In which case the agreement with the values given by the formulae 
for warm ice is quite good. 
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TABLE (:, COMPARISON OF EFFECTIVE PRESSURES FOR VERTICAL 
PILES AND PIERS 

·-

Source Range of Pressures 
Specified or Implied 

kPa 

Korzhavin 1962: USSR rivers, 
spring break-up 490 - 1860 

AASHO and CSA (old), Highway 
bridge codes ·2760 (400 psi) 

New CSA Code S-6 (1974), Highway Bridges 690 - 2760 

USSR Code SN 76-66: River Structures 295 - 1320 

Canada Ministry of Transport - Navigation 
Lightpiers, St. Lawrence 965 - 1210 

:canada Dept. of Public Works -Wharf Piles 1380 - 1720 

~~edge Formula 3 m dia structure 1755 (250 ~si) 
(warm ice -1 .soc) 30 m-dia structure i 1390 (200 psi) I 

i 

and Toussaint! i Michel Ductiie I 4811 (690 ESi) 
(warm ice -l.SOC) Brittle 

I 

1620 (230 psi) l 
' 

~structure ' 3860 (554psi) 

-1 
Try de (-l.5°C) -::.· porn ?la structure 2580 (370psi) 

I I 

Wedge Formula 3 m dia structure l 4095 (585 psi) ' (cold ice -lQOC) 30 m dia structure 3244 (460 psi) 

Michel and Toussaint! Ductile 11226 {1600 ~si) 
(cold ice -JQOC) j Brittle 4050 {580 psi) 

9070 

' 

Try de (-10°C) 
~3m dia structure (1300psi) 

Om dia structure 5990 (8S.9psi)J -·- , __ _.. _______ 
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2.118 Crushing Against Wide Structures 

As an ice sheet continuously crushes against a very 
wide structure, variation in local contact effects enhances the 
opportunity for non-simultaneous ice failure across the structure 
width. This suggests that the average ice pressure across a wide 
structure will be less than for a narrow structure. In non-simultan­
eous failure, different zones of ice across the width are at different 
stages of failure at any one time. Local stresses in any one zone 
could be high, but the average crushing stress across the total width 
would be low. 

An approach using the concept of independent failure 
zones has been developed by Kry (1978). He uses a statistical 
approach to estimate the effect of structure width on design ice 
pressure. It is shown that if movements of the thickest ice are 
sufficiently limited there is a significant statistical reduction 
in the expected peak stress for a wide structure compared to a 
narrow structure. 

This is an area where further work and field measurements 
are required. 

~.12 ICE FORCES ON ARTIFICIAL ISLANDS 

2.121 Introduction 

Artificial islands are being used in the shallow waters 
of the Arctic Ocean for oil and gas exploration (Croasdale and 
Marcellus, 1978). These islands are generally quite wide relative 
to the ice thickness and therefore the mechanics of ice clearing 
tends to dominate the ice to structure interaction. Islands and 
wide structures become surrounded by extensive ice rubble fields 
which can ground. These, rubble fields have to be considered when 
assessing ice forces (Kry, 1977). 

In the cold environment of the Arctic, islands acquire a 
frozen surface very quickly after construction. If ice forces 
become large enough there is a danger that the frozen surface of 
the island can be moved laterally, although no such failures have 
been observed in the sixteen islands built to date. . . 

Because islands have such large diameters, the ice forces 
to cause failure are also large. In some situations the environ­
mental driving forces are not large enough to cause island failure, 
even if the ice were strong enough. 
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2.122 Typical Island Resistance 

Ice movement during different times of the year creates 
lateral ice forces on dredged islands, which must be resisted by 
the shearing resistance of the soil along possible failure planes. 
Three different potential failure planes have been identified for 
evaluation. These are shown in Figure 32. 

Failure plane 1 is considered unlikely because the frozen 
saturated fill of the island is generally much stronger than the 
surrounding ice and so the ice will fail first. With failure plane 
2, the frozen crust of the island is considered to slide relative 
to the unfrozen fill below it. In the case of a weak foundation, 
failure plane 3 through the sea bed might be possible but generally 
requires a higher lateral force than for failure plane 2. 

Approximate calculations of the sliding resistance of 
an island are quite simple, especially if the material is of good 
granular quality and its friction angle is known. The other un­
certainty is the depth of the frozen layer but this can be predicted 
from previous measurements or from thermal calculations. 

For an island its sliding resistance is give~ approxi­
mately by; 

where 

(44) 

vl is the fill volume above water level 
V is the fill volume between water level and the sliding plane 
PI is the density of the fill 
Pz is the buoyant density of the fill 
~ is the friction angle of the fill 

For an island 122 m in diameter at the sliding plane 
with a freeboard of 4.6 m and 3.1 m between -~e water level and_Jhe 
sliding plane, and also using p

1 
= 1925 kgm and p 2 = 963 kgm 

and tan~ = 0.6, then 
I 

R = 800, 650 kN 

From section 5 a typical environmental driving force might 
be derived using the expression for wind drag; 

- 2 K - c10pagV A 
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In this case assume K equals the island sliding resis­
tance and calculate the area of ice required to generate thP 
equivalent environmental force (for a wind speed of 15 m s-1). 

A = 520 X 106 m3 

In other words an ice cover 520 square km in extent is 
needed to generate an ice force with the potential to fail the 
island~· In the landfast ice zone of the Arctic, continuous ice 
covers of this arealextent are quite common. But in a pack ice 
situation its unlikely that such a large ice force could be trans­
mitted to the island. 

2.123 Ice Action.~on Islands in Shallow Sheltered Locations -Arctic Ocean 

Islands in this category would be in 3 m of water or less 
and would be in protected areas where ice movement is slow and limited. 

2.123.1 Observations of Ice Action 

A typical scenario for ice action at these sheltered islands 
would be as follows. 

Freeze-up occurs about mid-October and because of the 
sheltered nature of the locations the ice quickly becomes landfast. 
From then on, the movement of the ice is similar to that of lake 
ice w~th small expansions and contractions occurring under the action 
of wind stress or thermal expansion. 

Observations of the ice around such islands indicate that 
apart from the occasional tidal crack, the ice is well and truly 
frozen around the islands and there is little evidence in the form 
of cracks or ridges, of ice action due to lateral motion. During 
break-up the ice around these islands usually melts in place. 

2.123.2 Ice Forces on Shallow Islands in Landfast Ice 

Given that observations of ice around shallow islands 
indicate a 'frozen-in' condition exists, we can speculate on possible 
ice failure modes and forces when ice movement occurs. 
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Figure 33 indicates ice failure mechanisms which could 
occur. 

(a) Buckling 

This mode of failure is sometimes observed in the thin 
ice of refrozen leads. A lower-bound prediction for the ice stress 
to cause buckling can be derived using simple theory for a slender 
strip of material on an elastic foundation (Hetenyi, 1946). 

Critical buckling load, P = 2~ 
where K = foundation modulus 

E = elastic modulus 
I = second moment of area 

(45) 

Solving the above for E = 7 X 106 kPa and in terms of 
ice stress (p) and thickness (t) gives: 

t 

p 

(m) 0.3 

(kPa) 2660 
1 . 2 

5250 
2.15 
7000 

In other words, an ice pressure or stress of at least 
7000 kPa would be needed for buckling failure of 2m of ice. As 
discussed be 1 ow, other .fa i 1 ure modes probab 1 y require 1 ess force 
and, therefore, buckling will not occur (and -has not been observed). 
More accurate predictions of buckling failure are contained in the 
paper by Sodhi et al (1977). 

(b) Failure of Frozen Bond Between Ice and Island 

If the adfreeze bond fails then the ice can ride-up the 
island beach and fail in bending. 

Then 

i . e. 

Consider the configuration shown in 
p is the ice stress on the island 
t is the ice thickness 
q is the adfreeze shear strength of 
a is the island beach angle 

pt = (-.-t-) qcosa s1na 

p - __g_ 
tana 

Figure 34 where: 

ice to island bond 
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L 

Little data is available on adfreeze strengths of ice to 
island beaches; for the purpose of this discussion assume q = 
1400 kPa and the beach slope is 1 in 3 then; 

p = 4200 kPa 

Again, this pressure is probably higher than alternates 
discussed below so adfreeze bond failure is unlikely. 

(c) Crushing Failure of Ice or Ductile Flow of Ice 

Whether crushing failure or ductile flow occurs will 
depend on the rate of ice movement or strain rate. At slow strain 
rates this problem is somewhat similar to that of thermal ice pressures 
on dams. At high strain rates, ice crushing forces as predicted for 
a vertical pier can be considered as an upper bound. 

As already discussed in Section 11.0 the ice crushing 
pressure or stress can usefully be discussed using the equation 
of Korzhavin (1971) namely, 

p = Imka (31) 

where p = ice stress on structure 
I = i factor accounting for relative geometry of 

system. I is nominally equal to 2.5 for 
narrow structure and equal to 1.0 for wide 
structure 

m =shape factor (equal to 1.0 for flat face 
and 0.9 for round face) 

k =contact factor (1.0 for perfect contact may 
be higher for frozen in condition) 

a = ice strength in compression 

The above equation and its implications have been dis­
cussed more fully in Section 11.0. 

For a very wide structure, I can be considered as equal 
to unity. For ice frozen to the island k = i.O and whether m = 1.0 
or 0.9 is not important. The equation for this application can, 
therefore, be simplified top= a where a is the compressive 
strength of the ice. 
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The problem remains, however, to define the appropriate 
strength or yield criteria. It is well known that ice strength is 
a function of temperature, strain rate, crystal orientation, degree 
of confinemen't, salinity, and other poorly understood factors such 
as the size of the piece of ice under stress. · 

For ice in compression whether it is confined or not, 
strain rate has a significant effect on the mode of failure and 
strength. At very low strain rates, ice tends to flow or creep 
at low stresses with few visible surface failures. At higher 
strain rates the ice fails in a brittle fashion by flaking or 
shattering. A typical set of strength versus strain rate data for 
columnar ice is shown in Figure 31. 

The observations of ice action on shallow islands suggest 
that the ice, as it slowly moves, deforms in a ductile fashion 
with no obvious failure cracks or flakes. Is this observation 
compatible with known ice strength data and ice movement rates? 
Measurements of ice movements in water depths less than about 
3m indicate that a typi'cal maximum movement rate is about 0.3 m 
per hour. It is not clear what characteristic length should be 
used to give a strain rate but lets assume it is the island width 
or diameter. 

then £ = V/0 

where £ = strain rate 
V = ice movement rate 
D = island diameter 

than typically 
E = 0.3 = lQ-6 sec _1 

100.3600 

This strain rate is compatible with ductile or creep 
deformation for ice. Furthermore, as indicated in Figure 31, for 
uniaxial deformation it suggests an ice stress or pressure on the 
island of about 700 kPa. However, this could rise to 3500 kPa or so, 
if the plane strain or confined ice strength is more appropriate. 
On the other hand, small-scale laboratory tests tend to give higher 
strengths than in the field so the above mentioned ice stresses are 
likely too high. 
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In other words, it seems likely that because of the 
small and slow rates of ice movement at shallow locations, ice 

·forces on shallow islands are governed by the creep or ductile 
flow characteristics of ice. Therefore, ice pressures on very 
shallow islands can be expected to be significantly less than 
on the more exposed islands discussed in the next section. 

2.124 Ice Action on Exposed Islands- Artie Ocean 

2~124.1 Observations of Ice Action 

At deeper locations it takes longer for the ice to 
become truly landfast, and even then, cyclic ice motion appears 
sufficient to maintain an active zone of ice failure around the 
island. Typically, although freeze-up occurs in mid-October 
the first few weeks are characterized by large movements of ice 
0.3 to 0.6 m thick. Under storm conditions, these movements can 
be several thousand metres causing extensive ice rubble to form 
around the ;.sland. 

Once the ice becomes landfast in November or December, 
ice movements are normally restricted to a few feet per day and 
are cyclic. Later in the winter, the movement becomes less, but 
seems sufficient to prevent the active cracks from freezing-up. 

2.124.2 Modes of Ice Failu~e and Ice Forces 

A typical sequence of ice action on the beach of an 
exposed island is shown in Figure 35. Initial movements of thin 
ice fail at low loads in bending. The ice is too thin to ride-up 
the island beach so rubble piles are formed. 

The mechanics of rubble pile formation are uncertain. 
In some cases, the rubble forms a ramp up which the oncoming ice 
sheet advances and fails in bending. At other times the ice 
penetrates the rubble but again is probably failed in bending by 
differential buoyancy and weight forces as suggested by Parmenter 
and Coon (1972) for ice ridge formation. The rubble often grounds, 
and once a certain height is reached, grows seawards. In the early 
winter, the rubble height rarely exceeds 6 m. Ice forces at this 
time might be predicted with- the model for pressure ridge form-
ation mentioned above, and will be less than 350 kPa. In any 
case, the rubble probably protects the island from most of these 
forces. Because of the rubble resistance to lateral forces the 
active zone remains on the outside of the rubble which consolidates 
and freezes into a rigid ice annulus around the island, see Figure 36. 
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The mechanics of rubble field formation have been discussed by 
Kry (1977); he also notes that rubble heights can reach 13m. 

Eventually the ice becomes too thick to fail in bending 
and begins to fail in crushing at much higher ice stresses. However, 
by now the refrozen rubble is competent enough to maintain the active 
zone at its outer boundary; but at the same time, transmit the ice 
forces to the frozen island surface. 

For a particular ice crushing stress (p) in the active 
zone, the ice force (F) generated on the island rubble-pile combin­
ation as shown in Figure 36 is given by: 

F = pWt (47) 

where W is the width of the rubble in the direction of ice movement, 
t is the ice thickness. 

If R is the sliding resistance of the rubble then the 
force on the isl~nd is given by: 

Q = pWt - R (48) 

~n approximation for R can be made assuming the arrange­
ment shown in Figure 37. 

At the sliding plane, the normal reaction per unit area 
(w) is given approximately by: 

w = (1 - c)[hmP· + y (p. - P )] 
1 1 w 

(49) 

where c is the porosity of the rubble 
hm is the mean height of the rubble above sea level 
y is the water depth 
p 1 is the ice density 
pw is the water density 

Sliding resistance of the rubble is then given by: 

R = Awtanq, 
(50) 

where A is the area of the rubble 
4> is the friction angle at the base of the rubble (either in 

the soil or in the rubble, which ever is the least). 
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For the arrangement shown in Figure 36; 

7T02 
R = (WL - ~)wtan~ 

For a typical situation assume: 

0 = 97.6 m 
w = 137 m 
L = 152.5 m 

tan 0 = 0.6 
c = 0.3 

hm = 3.1 m 
y = 7.6 m 

Pl = 914 kgm _3 

p\tJ = 1000 kgm - 3 

, ~hen, sliding resistance of rubble is given by: 

R = 116 MN 

(51 ) 

As discussed in Section 12.2, a typical island might have 
a sliding resistance of around 800 MN. Thus the effect of the rubble 
around it would be to increase the total sliding resistance by about 
10 - 15%. On the other hand the effective ice loading diameter is 
also increased; in this case to 140 m or by 40%. In this example 
then, the effect of refrozen rubble around the island is to decrease 
the factor of safety against sliding by about 20%. 

The preceding.,analysis is approximate. Kry (1977) has 
presented a more rigorous analysis, but the general conclusions are 
the same. 

2.124.3 Ice Crushing Stress in the Active Zone 

The ice crushing stress in the active zone is not easily 
determined. The ice crushing pressures given in Section 11.0 can 
be used as upper bounds, but mitigation of these values can be 
expected because of the large width of the failuretzone (as dis­
cussed in Section 11.8), particularly for small movements of the 
landfast ice. 

In-situ ice stress measurements conducted around artifical 
islands to date indicate ice crushing stresses in the active zone 
considerable less than the ice compressive strength. 
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Figure 32. Possible island failure modes: (1) _edge failure, 
(2) failure through island fill, (3) failure through seabed. 
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Figure 33. Possible ice 
failure modes; ice frozen 
to island. 
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Figure 35. Ice action on 
island and rubble. 

Figure '37. 
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Figure 34. Sequence of ice action on 
island beach (exposed island): (a) 
initial movements of thin ice, (b) 
extensive ice movement causes grounded 
rubble, (c) active zone remains outside 
rubble that freezes, (d) thick ice 
fails in crushing. 

w tan 4> 
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w 

Figure 36. Sliding resist­
ance of rubble. 

Adfreeze bond failure. 
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2.13 ICE RIDE-UP ON ARTIFICIAL ISLANDS 

2.131 Introduction 

Low freeboard structures with shallow slopes are suscept­
ible to ice encroachment onto their working surfaces. Ice move­
ment against such structures leads either to ice pile-up in front 
of the structure or to ice ride-up. The nature of simple ice ride­
up is illustrated in Figure 38. With ice ride-up, not only can ice 
encroach onto the working surface, but it advances at the speed of 
movement of the surrounding ice field. In many cases this would 
give little time for evasive action. 

When designing low freeboard structures with sloping 
beaches such as artificial islands, it is important to be able to 
asse~s the likelihood of ice ride-up. This section examine~ factors 
which may limit ice ride-up, and suggests procedures for designing 
against ice ride-up. 

2.132 Reported Ice Ride-Ups 

One of the earliest references to ice ride-up was made 
by the well known arctic explorer Stefansson (1913): 11 Under 
such conditions (landward thrust of sea ice under wind pressure) 
tongues of ice may slip-up on the beach and be shoved inland two 
or three_ hundred feet beyond the 1 imi t of high tide and thirty or 
forty feet above sea level 11

• 

Until recently, ride-up has been a concern only in the 
more. populated sub-arctic regions such as· Scandinavia and the 
Great Lakes. Several examples of damage to marine structures 
and shoreline property are given by Bruun and Johanesson (1971), 
Tryde (1972) and Tsang (1974). These authors have shown that even 
small ice fields can cause ice pilings of considerable height, 
up to 10 m for an ice thickness of 0.5 m. Although they refer to 
"ice pilings .. , their experience is relevant to ice ride-up 
because the maximum height of ice pilings is often reached by 
ice pieces riding up on top of each other (Tsang 1974). 

Several analyses of the maximum height of ice pilings 
have been performed (Allen 1970). They assume that the height is 

·only limited by the horizontal thrust of the ice sheet or its 
ki.netic energy. Other limiting mechanisms (e.g. flexural strength) 
are explored in the present paper but with specific reference to 
ice ride-up. 
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With the recently increased·activity in arctic regions, 
more examples of ice ride-up with thicker ice have been witnessed. 
Shapiro (1976) described how 1.2 m thick ice was driven ashore 
near Barrow, Alaska and up the beach as a coherent unit for dis­
tances ranging up to 25 m. Irwin (1975) reports a similar occurr­
ence at Lincoln Bay, Ellesmere Island. 

More recently, near Barrow, Alaska, ice rode-up a 
shallow beach up to 105 m from the water line and 3 m above the 
water level (Hanson, 1978). The ice was from l·to 1.3 m thick. 
Elsewhere on the same beach the ice stopped within 25 m from the 
water line but at a similar elevation of 2.5 m. 

Such occurrences emphasize the possibility of ice ride-up 
on low freeboard structures such as artificial islands. 

2.133 Fa~tors Limiting Ice Ride-up 

Ride-up can only occur if the capacity of the ice sheet 
to push is greater than the resistance to movement of ice up the 
slope. Ice push can be limited either by the environmental driving 
force or bv the strength of the ice sheet immediately in front of 
the beach. Resistance to ice sliding up the beach can be caused 
by instability of the broken ice pieces on the beach slope. These 
limiting factors are discussed. 

2.133.1 Simple Slope Resistance 

Consider the configuration shown in Figure 39 where P 
is the force necessary to move the ice pieces up the slope. 

Now if, w is the mass of each ice piece 
n is the number of ice pieces on the slope 
a is the angle of the slope from the horizontal 
~ is the coefficient of friction 
g is acceleration due to gravity 

n 
then, P =~g(sina + ~cosa) 

1 
(52) 

In another form, for a simple two-dimensional system, 

P = Ltbpg(sina + ~cosa) (53) 
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Where, L is the length of slope covered by ice, t is 
the ice thickness p is the density ·and b is width of the ice on 
the slope. 

If the steady state environmental driving force (F) is 
greater than the horizontal component of the slope resistance then 
the potential for ice ride-up exists. 

That is, the potential for ice ride-up exists if, 

F 1 
Pcosa ~ (54) 

As an example of slope resistance, consider a beach with 
a slope angle of 15o, 30 m long, 100 m wide, ice 1 m thick, and 
a coefficient of friction of 0.3. Then from equation (53) 
P = 14.6 MN. 

The horizontal component, converted to an ice stress 
=141 kPa (20 psi). These values will be compared with environ­
mental driving forces in the following section. 

2.133.2 Environmental Driving Forces 

In the Arctic Ocean)shallow water islands are particularly 
susceptible to collision with large ice floes during the break-up 
of the landfast ice. At this time floes several kilometres in 
extent are not uncommon. 

Consider a floe 5 km in diameter with a wind speed of 
20 ms - 1 then the environmental driving force (F) is equal to 21.8 
MN (from Section 5). Inserting this value into equation (54) 
together with the slope resistance for the above example 

F 
Pcosa 

= 21.8 1 54 
(14.6) cos 15 = . 

Hence because the environmental driving force is 
greater than the slope resistance the potential for ice ride-up 
exists. 

For floes of limited extent but which have considerable 
kinetic energy, an additional check would involve equating the 
initial kinetic energy of the moving floe to the work done in moving 
the ice pieces up the beach. 
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The work done against gravity and friction in moving ice 
up the slope can be derived using simple calculus and is given by 

0 
U = 0.5tbpg(sina + ~cosa)L~ {55) 

where t is the ice thickness, b is the ice width, p 
is the ice density, a is the slope angle, ~ is the coefficient 
of friction, L is the length of slope covered by ice, and g is 
the gravitational constant. 

The initial kinetic energy of the moving floe is 
given by; 

KE = (l/8)nDLtpv2 

where D is the diameter of the floe and v is its 
initial velocity. 

For ice ride-up to the top of the slope, KE 1 u~ 

that is, 

nD2v2 

4bL2g(sina + ~cosa) 
> 1 

(56) 

(57) 

Note that the above criterion ignores the work done 
in bending failure of the ice sheet, but for a long shallow beach 
this contribution will be small. In any case, ignoring the work 
done to fail the ice will yield a conservative result. 

To view the above criterion in perspective, consider the 
following example. 

A floe 300 m in diameter approaches an island at 1 ms - 1 • 
The island is 100 m wide, the beach has a 15° slope angle and the 
length of the beach is 25 m. Assume a coefficient of friction 
between ice and beach of 0.3. 

Then, 
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Hence in this case ride-up by this individual floe is 
not possible unless other floes impact it from behind and continue 
to push it against the beach. The critical diameter of an individual 
floe for which ride-up in this example is possible is 700 m. 

2.133.3 Ice Sheet Failure 

Although the force necessary to push the ice pieces up 
the beach is caused by the environmental driving force, it is the 
ice sheet just in front of the beach which transmits the force. 
If the force due to slope resistance causes edge failure of the 
ice sheet then pile-up will occur at the water line and ride-up 
will be inhibited. 

In general all possible failure modes of the advancing 
ice sheet should be considered, but in most cases it will be 
flexural failure which governs. 

Consider again the configuration shown in Figure 39. 
The force P required to push the ice pieces up the slope is 
generated by vertical and horizontal forces on the edge of the 
advancing ice sheet. 

then 
In the limit, when the ice edge is almost at the slope, 

V = P sina 
H = P coso 

(58) 
(59) 

For a simple two-dimensional system of width b, from (53) 

V = btpg~ (sina + ~cosa) 

but Lsina = ~' the vertical height from water line to the upper 
point reached by the ice on the slope (in the limit, the freeboard) 
then, 

V = btpg~(sina + ~cosa) (60) 

and 

H = btpg~(sina + ~cosa)cota (61) 
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For bending, the.in-plane force H can be ignored and 
the critical condition for flexural failure can be derived by 
considering a beam or plate on an elastic foundation (Hetenyi, 
1946). 

For a simple beam of width b, loaded at the end 
5 

Vc = 0.68ob(p~t )0•25 
(62) 

where a is the critical flexural stress V i~ the critical edge 
1 oad. c 

Comparing equations (62) and (60), we can see that for 
ice ride-up to be possible. 

that is, 

v 
_..£_ > 1 v -

(63) 

As an example in the use of equation (63) consider a 
beach 30 m long with a slope of 150 and freeboard of 3 m, the 
coefficient of friction is 0.1 and the ice is 1 m thick with a 
flexural strength of 700 kPa, and modulus of 7 X 106 kPa. 

Use equation (13) 
0.68(~)(!)0.25(1_)0.75 . 1 = 1.7 

~ E pg · s1na + ~cosa 

which is greater than one therefore ride-up is possible. 

It will be noted from equatton (63) that the ride-up 
criterion is directly proportional to·ice strength and freeboard, 
but is influenced less by thickness and elastic modulus. The 
significance of friction becomes less for steeper slopes. 

In the above example, let us consider the effect of 
increasing the freeboard to 7 ~' and the coefficient of friction 
to 0.3. 

which is less than one therefore ride-up will probably not occur. 
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The preceding discussion on ice sheet failure is 
very simplistic and is offered as an example of methodology rather 
than a precise technique for assessing the limiting condition of 
ice ride-up. For example, for slopes which continue at a very 
shallow angle below the water line, there may not be enough clear­
ance for the ice to fail in downward bending as assumed in the 
equation. In these cases ice would continue to ride-up beyond 
the limiting condition defined in (63). 

To assess the likelihood of other failure modes limiting 
ice ride-up, consider further the example referred to above. Using 
equation (60) we can calculate the horizontal stress in the ice 
sheet close to the beach, it is; 

~t = pg~cota(sina + ~cosa) = 127 kPa (18psi) 

Such a stress level is too low to cause crushing (by at 
least a factor of 10) and is also too low to cause buckling except 
for very thin ice. 

2.133.4 Kinematic Instability 

For ice to continue to ride-up past a change in slope> 
certain geometric criteria have to be satisfied, otherwise a 
kinematic instability can occur. Consider Figure 40 illustrating 
what might happen at· the top of a slope, and also at a point of 
change in angle of the slope. It will be seen that as the first 
ice block advances past a change in slope it can tilt clear of the 
following block thus enhancing the likelihood of a pile-up. How­
ever, such an instability can only occur if the ice is thin rela­
tive to the change in slope. As shown conceptually in Figure 41 
if the ice thickness is great enough, then contact between ice 
blocks is maintained and the ice can continue to advance. 

The limiting relationships between ice thickness, block 
length and slope angle can be derived as follows. 

h = Qsina 
2 

If h < t then ride-up can continue. 

In reality local edge failure w~ll probably occur if the 
point of contact is too close to the corner. Thus a more realistic 
condition might be 

h < 0.8 t 
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Figure 38 •• Simple ice ride-up. 

N 

Figure 39. Forces for simple ride-up. 

Figure 40. Kinematic instability 
(pile-up at top of slope). 
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Therefore, condition for ride-up to continue is given by 

t > 0.632sina (64) 

This limiting condition is plotted in Figure 41. For 
the curve shown the length of the ice pieces is assumed to be 
three times the thickness. Other curves could be drawn for different 
length to thickness rati6s. 

Figure 41 suggests that for ice one metre thick a change 
in slope of greater than 3QO would be needed to cause an instability 
from this mechanism. For a 1 in 3 (20°) slope, ice one metre thick 
would continue past the top of the slope without a pile-up starting. 
The ice would have to be less than 0.25 m thick for a pile-up to 
be generated. For longer ice pieces the critical thickness would 
be greater. 

2.133.5 Compression Instability 

If the ice pieces are disturbed out of the plane of the 
slope as they ride-up, a compression instability may develop 

Consider the configuration shown in Figure 42 where e 
is the height of a •bump• in the slope. Simple equations of 
equilibrium can be used to relate P to e at the limiting condition 
of instability. 

If for the purpose of this discussion we set a equal to 
zero and consider a frictionless, two-dimensional system, then 

p = s 
2 = .Q, btpg 
2e (65) 

or 

(66) 

where crc is the compressive stress in the ice at the point of 
i n stab i 1 i ty . 
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Consider the example of ice pieces 4 m long and 1 m 
thick riding up a slope 30 m long at a 10° angle wi~h a coefficient 
of frictio"n of 0.3. What would be the height of the eccentricity 
or •bump• required to initiate instability and hence a pile-up 
before the ice pieces reached the top of the slope? 

Use equation (53) to calculate simple slope resistance 
in terms of an ice compressive stress. 

ac = (30) 900(9.81)(sin10 + 0.3cos10) Pa 

ac = 125 kPa 

Use equation (16) to calculate value for e 

e = ~(900)9.81 = 0 57 m 
2(125)1000 • 

That is, a •bump• say 1 m high at the lower end of 
the slope would lead to a pile-up being·generated before the 
ice pieces could ride-up to the top of the slope. 

2.133.6 Jamming 

On beaches which have a sudden steepening of slope angle 
it is possible for the ice to •jam• at the point of increasing 
steepness. (See Figure 43). Jamming leads to· a sudden increase 
in slope resistance which can then cause ice pile-up by one of the 
mechanisms already discussed. 

By using simple equations of equilibrium an expression for 
P can be derived. In this example, for simplicity assume a'·= 0, 
then by simple mechanics 

(67) 

The nature of the above equation is that for a particular 
value of ~ a value of ~exists for which P becomes infinite and 
this is the jamming ·situation. 

The •jamming• situation is governed by the equation, 

(68) 
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Variables of ~ for typical values of~ are given below. 

~ 0.1 0.2 0.3 0.4 0.5 0.7 

79 73 68 63 55 

2.134 Procedures for Designing Against Ride-up 

In considering the problem of ice ride-up on a low free­
board structure, several distinct steps in the logic can be 
identified, these are: 

(a) Determine Ice Conditions Scenarios 

A good knowledg~ of historical ice conditions is desirable 
and information on ice movement·as a function of ice thickness is 
needed. Data on ice strength parameters, and coefficients of 
friction between the ice and beach are also required. In assessing 
various scenarios in ice conditions it is particularly important 
to recognize that adverse conditions may only arise infrequently. 
Statistical techniques may be required to d~termine design criteria 
from relatively sparse data. It is also important to recognize 
mitigating factors. For example, in the Beaufort Sea, dreaged 
islands in shallow water are surrounded by landfast ice during 
most of the winter. The landfast ice does not move sufficiently 
to create ride-up problems. Furthermore, when large ice move­
ments do occur in the early winter, the ice is initially very 
thin and forms rubble piles which protect the island from further 
ride-up until the ice becomes landfast. It is in fact during 
break-up, when large sheets of the previously landfast ice are in 
motion, that ride-up on artificial islands in the Beaufort Sea is 
most likely. Fortunately at this time the ice is extremely weak 
and has ablated to about 1.5 m thickness, reducing its ability to 
ride-up. 

(b) Check the Preferted Beach or Island Design 

The design of artificial offshore structures is determined 
by many factors including wave action, ice forces, available 
construction, equipment and materials, etc: (Croasdale and 
Marcellus, 1978). 
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As a first step in assessing the ride-up problems, 
the design as determined by other c~iteria (such as wave conditions) 
should be checked to assess whether ice ride-up is likely to be 
a problem. In this step, the limiting factors discussed in the 
previous section should be calculated for the most likely ice 
condition scenarios. If none of the mechanisms appears to prevent 
ice ride-up then special design factors may be needed to inhibit 
ice ride-up. 

(c) If Necessary, Incorporate Design Features to Resist Ice Ride-Up 

Features can be built into an island to discourage ice 
ride-up. An obvious solution is to raise the freeboard of the 
island and steepen the side slopes, but this approach is expensive 
because of the additional construction material needed. 

Obstacles can be placed on the beaches to inhibit ice 
ride-up. This solution was used on a drilling island in the 
Beaufort Sea where steel piles were placed in the beach to protect 
the drilling rig during ~pring break-up. However, it turned out 
that the ice was so weak that rubble formed at the water-line and 
never reached the piles. 

Perhaps the best approach is to alter the geometry of 
the island beach to encourage instability of ice pieces trying 
to ride-up. 

·A design using this approach is illustrated in Figure 
44. The steep upper slope of the beach causes a jamming action 
which leads to sufficient force being generated to trigger a 
compression instability at the point of change in slope of the 
beach. The resulting pile-up is centered on the point of change 
in the slope which can be positioned so that the pile-up does 
not encroach onto the island surface. Equation {67) can be used 
to specify the angle of the upper slope; and the height of 
perturbation needed on the slope to initiate a pile-up can be 
specified using equation (66). For an important structure, model 
testing to confirm the design is desirable. 
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Figure 42. Compression instability. 

Figure 43. Potential jamming of first ice 
block at change of slope angle. 
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Figure 44. Design to resist ice ride-up. 
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PART III 

ICE FORCES ON FIXED, FLEXIBLE STRUCTURES 

By Mauri Maattanen 

University of Oulu, Oulu, Finland 

Abstract 

The modes of interaction between ice and structure are discussed, 
and the properties of both ice and structure are seen in the context 
of interaction. The key parameter of the ice is the dependence of 
crushing strength on loading rate, in particular the inverse relation­
ship that exists for a certain range and gives rise to negative damping. 

Self-excited vibrations leading to limit cycles are explained 
and some design problems are discussed. 
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3.1 Definitions and structure category 

The necessary condition for the ice-structure dynamic interaction 
is that either the displacement of structure or elastic deformation of 
ice takes part in the ice crushing phenomenon. Physically this means 
that one or the other of the components is capable of storing energy 
and releasing it later in another phase when crushing is easier. 

Depending on the relative magnitudes of elastic deformations of ice 
and displacements of structure at the contact area the interaction 
problem can be divided into three modes: elastic ice displacements are 
insignificant, displacements of structure are insignificant, and both are 
significant. In many cases the difficult problem of the general third 
mode can be replaced by the simpler first or second modes. 

The appearance of the ice-structure dynamic interaction is most 
profound in slender single-pile bottom-founded cantilever-type struc­
tures with small internal damping. Typical examples are piles, light­
piers, lighthouses or monopod-type platforms (Fig. 3.1). Piles in groups, 
such as in bridges or in platforms, may also exhibit dynamic interaction 
during ice crushing, either in conjunction or separately. 

Stiffness, mass and damping distributions in the structure also 
affect the interaction phenomenon. Ice-induced vibrations in structures 
ranging from 0.5 to 15 Hz have been reported under field conditions. If 
natural frequencies of str~cture lie in this range, dynamic interaction 
is more likely. The shape of natural modes is essential, since the 
amplitude of the natural mode at the ice action point strongly affects 
the excitation capability of ice force on that particular mode. 

The source of energy for the ice crushing and the ice-structure 
interaction has its origin in wind drag or water currents. This topic 
is treated in Part II. In this section a brief overview is given on how 
to consider the effects of parameters in dynamic ice-structure inter­
action following the scheme in Figure 3.2. 
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Figure 3.2 

3.2 Ice properties 

The strength properties of ice are dependent on its grain size and 
type, grain orientation, temperature, salinity and loading history. The 
most important parameter required is crushing strength, which means 
the stress value at which ice is failing against the structure. In this 
meaning both uniaxial compression strength values and the average failing 
stress value on the whole projectional ice action area are used. 
During ice crushing a threa dimensional state of stress exists. Hence 
three dimensional yield conditions are required. The research in this 
area has n~t yet proceeded so far as to give ac·cl..lrate enough yield 
conditions for ice crushing purposes. 

The size of the projectional area of the structure against which 
ice is crushing is usually so large when compared to the crystal size of 
ice that analysis need not be carried out at the crystal size scale but 
an average crushing strength cr for practical calculations can be used. 
Hirayama et al. (8) have obser~ed that cr dependence on grain size 
appears only with d/d <25, and Michel e~ al. (12) with d/d <7 (d = 
diameter of pile, d c~ diameter of ice crystals). In pracflce the 
grain size of colum~~r grained ice is from 1 to 20 mm, Gold (4), in­
creasing with ice thickness. Hence, the. average crushing strength from 
the grain size point of view is justified for actual structures. 
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The properties of ice vary through the thickness of an ice sheet. 
The main effect is due to temperature and salinity profiles. As the 
thickness of ice is usually small when compared to the height of a pile, 
averaging of properties through the thickness does not have any signifi­
cant effect on structural response or on ice interaction. The effect 
of grain size and orientation may be handled in a similar way. The 
properties of a natural ice sheet in macro scale do not change in its 
plane but are different perpendicular to its plane. The effect of 
averaged properties can be observed by repeating calculations using a 
new combination of these parameters for ice crushing strength. 

During the ice-structure interaction the viscoelastic behavior 
of_ ice must also be considered. During dynamic interaction the frequency 
of ice-induced vibrations with actual structures is however so high that 
the effect of viscoelastic behavior of ice can be disregardedo According 
to Gold (4) the behavior of ice is essentially elastic if it is loaded 
to failure within two seconds. This requirement is well satisfied with 
the observed range of frequencies from 0.5 to 15 Hz. 

The key parameter in ice and structure interaction is the dependence 
of crushing strength on loading rate. The first measurements of crushing 
strength as a function of stress rate are by Peyton (17). His results 
from uniaxial compression tests of Cook Inlet ice samples (Fig. 3.3), 
indicate a decreasing strength with increasing stress rate. A similar 
trend was also measured on total ice force, both with laboratory and 
field test piles. The reduction in failure stress and ice force was 
about 50% from the maximum. 

0 0.2 0.4 0.6 0.8 1.0 12 
(MNi~/s] 

Figure 3.3 Crushing strength vso strain rate, Peyton (17) 
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Michel et al. (12) carried out indentation tests with a square 
indentor in the laboratory and also collected results from other authors 
for crushing strength versus strain rate curve (Fig. 3.4). Ice behavior 
is divided into three parts: the ductile region, the transition zone 
and the brittle region, with boundaries as shown in Fig. 3.4. In the 
brittle region failure occurs more randomly and the above curve repre­
sents an average crushing strength. Michel observed thinning of the ice 
sheet by peeling off wedges from the upper and lower surfaces. Thinning, 
together with strain rate, causes an average decrease to about 60% of 
the maximum streng_th at the beginning of the transition zone. 
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Figure 3.4 Crushing strength vs. strain rate, Michel et al. (12) 

Wu et al. (24) achieved in their laboratory tests strength-strain 
dependence as shown in Fig. 3.5. They pointed out the effect of temp­
erature: with decreasing temperature the transition from ductile to 
brittle occurs more abruptly and with lower strain rates. In uniaxial 
tests the reduction in strength is much greater than in the plane state 
of stress. The transition to brittle is explained by means of a disloca­
tion theo~y. With high s~rain rates dislocation velocity is too low to 
allow ductile behavior by plastic yielding and, ·therefore, cleavage 
fracture and linking of grain boundary cracks occur. This also explains 
the more random crushing behavior in the brittle region. 
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Figure 3.5 Ice crushing strength vs. strain rate and 
temperature, Wu et al. (58). 

All researchers are of the same opinion with regard to the in­
creasing of ice strength with increasing load1ng rate in the ductile 
region. Almost all agree that maximum strength occurs in the transition 
zone, after which the average strength decreases considerably in the 
brittle region. Exceptions are, for instance, Nevel et al. (16) and 
Haynes et al. (6), who observed both in laboratory and in-situ field 
tests that the speed of an indentor had no effect on crushing strength. 
However, if stress rates are calculated it appears that almost all of 
their data points fall in the brittle region. 

The results of measurements by Hirayama et al. (8) showed the usual 
reduction in average strength in the brittle region. However, no reduc­
tion was observed for a maximum value curve, which was defined in such a 
way that 90% of all measured values lie under this curve. 

Haynes (7) conducted uniaxial compression tests with dumbbell­
shaped snow ice specimens. His preliminary tests, three samples, indi­
cated that ever-increasing strength values can also be achieved beyond 
the ch.:.~tile region. This result is not, however, average, but from 
carefully controlled small test samples, in which probability for initial 
defects is very low and great strength values can be expected. Comparing 
this to Hirayama's 90% curve and Peyton's measurements, it can be con­
cluded that for actual structures an average reduction in ice strength 
in the brittle region exists. From the structural response point of 
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view, then, it makes no great difference if the reduction is due to 
strain rate, or thinning of the ice sheet, or uneven contact between ice 
and structure. The peeling off and local brittle failures occur simul­
taneously along the contact area, thus yielding to reduction in average 
ice force. 

The definition of strain rate in the crushing strength curves is 
confusing as presented in the published research papers. There exist 
definitions which have only right dimensions, such as the concept of 
fracturing frequency (velocity divided by the crushing length per cycle), 
and velocity divided by the plastic zone width before the indentor, or 
the width of indentor or ice thickness. 

In the elastic region, with uniaxial tests, the strain rate can be 
easily measured directly or calculated by dividing the velocity of 
crossheads by the length of test sample. In actual crushing the situa­
tion is more complicated: a two- or three-dimensional state of stress 
exists and difference must be made between the cases of initial stress 
increasing before yielding and continuous crushing. 

The physically correct way to define strain rate is that of Gold 
(4) according to the dislocation theory. Considering elastic effects 
only the strain rate will then be directly achieved from the stress rate 
by dividing by the modulus of elasticity. The stress rate can be cal­
culated by taking the time derivative from the stress history of a point 
in the ice sheet approaching the indentor. This method has been used by 
Blenkarn (7) and his formula for the maximum stress rate of ice before a 
circular indentor is 

a = 
4cr v 

c 0 

na (3.1) 

where crc is the maximum stress, v0 the velocity of ice. sheet and a the 
radius o~ inden~or. Depending on the shape of indentor, similar equa­
tions can be obtained starting from the corresponding stress field. 

Frederking et al. (2) calculated the strain rate in the elastic 
region by integrating displacements, eliminating the shear modulus using 
strain values and taking the time derivative, which gives the strain 
rate as a function of displacement rate. At the indentor edge the 
latter is the same as indentor velocity. This definition is not valid 
after the yield point has been exceeded. As the stress or strain equals 
the yield point, the definitioris of strain rate according to stress rate 
and displacement rate should yield equal results. However, depending on 
the value of modulus of elasticity and yield stress, a difference of two 
to three decades in the strain rate magnitude exists. It seems that the 
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strain rate obtained from displacement rate is only valid during the 
initial loading and the strain rate obtained from the stress rate is 
valid during continuous crushing. The discontinuity between the two 
methods needs further research. 

Randomness in the ice properties also affects the ice-structure 
interaction. The meaning of grain size and orientation, salinity and 
temperature variations is not so important from the structural response 
point of view as variations in ice thickness, existence of cracks and 
leads, piled-up layers of ice or pressure ridges. Although all in-situ 
measurements indicate the existence of randomness, no general classifi­
cation has been made. Reddy et al. (19) describe a method to utilize· 
the observed random response of the structure further. The aerial 
strength distributions have been observed in Soviet Design Codes, but 
the randomness of ice properties is ·not directly observed anywhere. 

3.3 Contact system 

The mode of ice failure against a structure may vary with the 
properties and thickness of ice. In this context only vertical or 
almost vertical structures are considered. Typical failure mode is then 
crushing if the slope from vertical is less than about 20° and the 
friction between the ice and structure is not especially low. However, 
a bending type of ice failure may occur even with vertical structures 
with thin ice, which first buckles and then fails by bending. In this 
case no significant ice-structure interaction response has been reported. 
Buckling loads with thin ice are usually insignificant when compared to 
crushing loads with nominal design ice thickness. 

The best contact with the ice and structure is after the ice has 
frozen to the structure with extensions downwards due to better heat 
conductivity of the structure. The initial ice load peak becomes high 
when the ice starts to move, although the strain rates at the beginning 
of movement are so low that significant stress relieving due to visco­
elasticity occurs. In the case of slightly conical structures it has 
been observed that the contraction of ice during cooling tends to lift 
the freezing ice collar upwards and break it into segments, which prevents 
the formation of high initial ice loads. 

In classical formulas for ice force, e.g. Korzhavin, the effect of 
contact phenomena is taken into account by two factors: I for the 
shape of the structure and m for the unevenness of contact. These 
factors are based on experimental measurements. It should be noted that 
the value of the contact unevenness factor depends strongly on ice 
properties and loading rate. Cold ice has greater strength but it is 
more brittle, especially at high loading rates, which leads to lower 
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contact factors. In bridge piers in rivers the ice loading usually 
occurs during spring when the ice is warm and its strength low but 
contact factors greater. In design, all combinations should be considered. 
The usual range for the shape factor of the structure is from 1.0 for a 
flat indentor to 0.9 for a circular one and for the contact unevenness 
factor from 1.0 to 0.5. 

A typical expression for ice force acting against a vertical pile 
is eq. 3.2 by Korzhavin: 

F = Imkcr hd 
c 

(3.2) 

which includes, in addition to the earlier mentioned factors I and m, a 
coefficient k which takes into account the observed dependence of ice 
force on the diameter of structure to ice thickness ratio, e.g. Fig. 
3.6. This so-called "ratio effect" has been studied widely. Frederking 
(3), Gold (5) and Michel et al. (12) are of the opinion that the increase 
in effective crushing strength with small d/h ratios results from the 
strain rate effect. Considering a constant strain rate and using the 
power law in the ductile region a somewhat similar curve to Fig. 3.6 is 
achieved. However, then all values of the ratio effect k could be 
obtained just by changing ice velocity. In nature a wide range of 
velocities may appear. 

Figure 3.6 
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In addition to, or included in, contact and aspect ratio coeffic­
ients other phenomena occur during ice crushing and have an effect on 
ice force. In the ductile region a small area of ice becomes plastic 
before the pile, which increases the effective diameter of the structure. 
The plastic region is not very wide but it extends more in the direction 
of ice movement, about 1.6d with a flat indentor, Michel et al. (12). 
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Schematically for a circular pile the situation is according to Fig. 
3.7. The increase in effective diameter increases relatively more ice 
force with low d/h values, since pushing away ice rubble then requires 
relatively more tolerance between elastic ice and pile. Maybe this 
is one of the reasons for the diameter to ice thickness effect. 

Figure 3.7 Plastic zone in crushing 

In the brittle region during crushing the ice sheet is·thinning by 
flaking or peeling off wedges from the upper and lower surfaces. Radial 
cracks and lateral cracks in the ice middle plane may appear. These 
yield a decrease in the ice thickness and relief in the state of stress 
which results in a reduction in the ice force. This gives a physical 
reasoning for the contact unevenness factor. The factor due to the 
shape of the structure can also be based on the promotion effect of the 
formation of radial cracks. 

Although the contact between the ice and structure would be com­
plete, the maximum ice pressure would not occur simultaneously. The 
failure of ice crystals with most unfavorable directions will start 
first before others have reached the yield level. As the crushing 
starts it may spread very fast .to the whole contact area. Thus the 
magnitude of ice force will always be somewhat random and smaller than 
that calculated according to maximum ice strength. 

During the dynamic ice-structure interaction the crushing strength, 
and the contact pressure, depend on the loading rate, which depends on 
the relative velocity v between ice and structure 

r 

v 
r 

v 
0 

+ l 
n 

- 8 
n 

(3.3) 



where l and 8 are ice and 
As the grushin~ strength a 
and as the pressure against 
law, eq. 3.4, Frederking et 
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structure velocities at the contact point n. 
in eq. 3.1 is measured in uniaxial compression 
a circular pile obeys approximately the cosine 
al. (2), 

a (;,e) a (;) cos e c c (3.4) 

the final stress rate will be 

4a (;) v 
2 c r a cos e na (3.5) 

To solve this equation it is required to iterate using a suitable crushing 
strength vs. stress rate curve. After the stress rate is solved the 
total ice load can be integrated along the.periphery of the circular pile. 
The above equations can be similarly obtained for other indentor shapes. 
Alternatively a strain rate formulation could be used. In this way 
starting from the ice crushing strength vs. stress rate curve Maattanen 
(14) solved the interaction problem for circular piles in the case in 
which ice elastic deformations can be neglected. 

In the first year pressure ridge in which the ice floes are not 
frozen together into one solid ridge, the dynamic interaction is rela­
tively less severe than the maximum ice force. The contact with separate 
floes takes place only in a few corners or edges, and pushing aside 
loose floes causes great damping effects, which is observed in labora­
tory tests, Keinonen et al. (9). However, no measurements in-situ have 
been reported. In-situ observations, by this author, of a steel light­
house showed as large vibration amplitudes in a pressure ridge as in the 
original even ice sheet. On th~ contr~ry in a concrete, caisson-type 
lighthouse considerably smaller vibrations occurred in a pressure ridge 
than in the even ice sheet·. 

Friction also plays an important role in the dynamic ice-structure 
interaction. Its main contribution is to damping and it will be treated 
separately in the next chapter. To the contact system the effect of 
friction is otherwise insignificant on the ice force but it may change 
the intended bending failure of ice against a sloped structure to crushing 
failure with considerably greater ice forces in the slope angle range 
between 10 to 30 degrees from the vertical. 

3.4 Damping 

In the ice-structure dynamic interaction the effect of damping is 
most significant in the case of self-excited ice-induced vibrations. 
The amount of damping controls to a great extent the amplitudes of limit 
cycles and may suppress totally the self-excited vibrations so that a 
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.situation of "static" crushing may develop. In the case of transient 
ice forces such as the edge of an ice floe hitting against the structure 
damping has only a minor effect on structural response. 

Total damping consists of structural and foundation hysteretic 
dampings, hydrodynamic damping of water and aerodynamic damping of air 
and of friction between the ice and structure. Also the energy dissi­
pated to crush and grind ice into rubble may be regarded as a damping 
effect. On the other hand, the decreasing part of the ice crushing 
strength curve as a function of loading rate can be interpreted as a 
negative damping effect. All these are interfering during dynamic ice­
structure interaction which makes it very difficult to eliminate the 
real positive damping from the total damping in measurements. 

Most structural and hydrodynamic dampings are nonlinear in relation 
both to deformation and its time derivative. The usual concept is to 
linearize damping and to use equivalent linear damping coefficients, 
Lazan (10). As damping forces are usually very small when compared 
with stiffness or mass forces the vibratory response deteriorates only 
insignificantly while the nonlinear damping dissipates as much energy 
per cycle as the linear viscous damping. 

Damping in structures is hysteretic and only slightly, or not at 
all, dependent on the rate of loading, Lazan (10). Aerodynamic damping 
is usually negligible and hydrodynamic damping is linear in small Reynolds 
numbers, Skop et al. (21). Foundations exhibit both hysteretic and 
hydrodynamic damping effects, but u'sually they are small, Ross (20). 
Considering a velocity dependent damping force, in which the above 
effects are combined, the positive damping behaviour can be visualized 
schematically according to Fig. 3.8. If in the same figure the negative 
ice-induced damping force near the steepest descent point in the crushing 
strength curve is plotted, it is observed that the positive damping 
overcomes the negative and hence no self-excited vibrations should 
occur. However, the always present random variations cause great enough 
velocities to rriove the point of action to the area where the negative 
damping is determined and self-excited vibrations may develop. If the 
curve of positive damping is linearized, the greatest error will be just 
near the point of origin, where a stable origin may be predicted as 
unstable. In practice the constant part is small.at the origin for the 
positive damping force when compared with possible negative ice damping 
forces. Hence, linearization means operation on the safe side in pesign. 

The negative damping effect of ice should be observed following the 
ice crushing strength curve with relative velocity. In addition, ice 
crushing also includes positive damping. These effects are the energy 
required to crush and grind ice into rubble, pushing the rubble away, 
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F 

Figure 3.8 Effect of damping curv shape 

and friction between ice and structure. Partly these effects can be 
taken into account already in the ice crushing strength curve, where in 
the brittle region the average ice force values are used instead of 
considering them to be zero after bursting like failure of ice. In 
the ductile region positive damping effects are negligible - practically 
no crushing - and, therefore, no additional positive ice damping effects 
are required. Crushing strength curves measured in the laboratory 
include these effects but no special attention has been paid to damping 
phenomena. Corresponding curves with actual size in-situ structures are 
not yet available and one must be careful when the results of laboratory 
tests are extended to full size structures. 

The easiest way to observe structural and hydrodynamic dampings is 
to use natural mode relative damping coefficients, which can be measured 
most reliably. Relative damping coefficients have been. reported to be 
from 2% by Blenkarn (1) to 6% by Matlock (11) and 10% by Maattanen (13). 
In the ·cases of Blenkarn and Maattanen positive and negative ice-induced 
dampings were interfering; in some cases energy required for ice crushing 
dissipated all the elastic energy of the structure, suppressing vibra­
tions in half a cycle. Ross (20) reports a value of 2.5% for a steel 
tube vibrating freely. As fo! the structure and water alone, without 
ice effects, relative linear damping coefficients of from 3 to 6% are 
reasonable for the lowest modes. 

3.5 Response of ice 

The available information on dynamic response of ice is rather .. :.-­
limited. The travelling and attenuation of stress waves have been 
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studied in connection with the elastic properties of ice but not in 
connection with the dynamic ice-structure interaction. In the latter 
case the elastic deformations of ice are usually so small that they are 
not considered to be significant. 

Depending on the relative magnitudes of elastic deformation of ic~ 
and displacement of structure at the contact area the interaction problem 
can be divided into three modes: elastic ice displacements are in­
significant, displacements of structure are insignificant, and both are 
significant. 

In the first mode ice interaction can be taken into account only 
through the stress rate dependent crushing strength curve. In the second 
mode the structure is infinitely stiff and its only interaction is 
reaction force, which for its part is again stress rate dependent. In 
the third mode both the ice and structure experience elastic displace­
ments simultaneously, and the dynamic equations of equilibrium for both 
have to be solved simultaneously but separately with the only inter­
connection by the stress rate dependent ice force at contact points. 

In the case of slender pile structures the first mode of interaction 
is a sufficiently accurate approximation. In-field observations (13) 
suggest this and the validity of approximation can be justified also by 
calculations. The elastic ice displacement u for a circular pile in 
the middle of an ice field is, according to Ffederking et al. (2), 

a a 
ur = sr•a [0.550 (L- 1) + 0.450 ln L- 0.277] (3.6) 

where s is the maximum radial ice strain at the contact point, a = 
radius 6f pile, and L is the distance to the fixed boundary of the ice 
field. Evidently infinite ice fields induce infinite displacements in 
.static loading. In practice all ice fields are finite and the order of 
magnitude of u can be determined by taking a typical pile diameter 
.d·= 2a ~1m, ~ = 5•10-4 (maximum elastic strain just before yielding 

,3\:.jfi· a short duration loading) and varying L/ a ratio: 

Table 3.1 

L/a 

10
2 

103 

104 

105 

Elastic ice displacement 

u (mm) 
r 

0.72 

0.98 

1.24 

1.50 
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In slender pile structures the deflection due to maximum ice force 
is typically several centimeters so that the elastic displacement of ice 
is insignificant also in static loading. In the case of dynamic ice­
structure interaction the effects of elastic ice deformations should be 
calculated using the wave equation. The order of practical L/a ratio 
can be bounded by considering the time during which an elastic wave 
starting from the interaction point travels to the edge of an-ice field 
and back. Observing the attenuation and considering the periods of 
interaction frequencies from 0.5 to 10 Hz as the time limit for elastic 
waves to proceed with a typical velocity of 2800 m/s, the limit of ice 
field size L will be only 2800 ... 140m in the case of a 1-m-diameter 
pile. ~ence, also in infinite ice fields the elastic deformation of ice 
is limited from the interaction point of view. 

Theoretically the in-plane vibrations of an ice sheet could be 
solved using the wave equation. In practice, however, initial conditions 
are not adequately-known. The existence and effective range of in-plane 
vibration should be measured in-situ. In connection with in-plane 
vibrations, flexural vibrations may also occur during dynamic ice­
strucure interaction. It is evidently the latter type of vibration 
which can be felt under an observer's feet on the ice. 

The failure mode of a thin ice sheet acting against a vertical pile 
is buckling instead of crushing if the thickness of the ice is less than 
a critical value. In this case the maximum ice force will be small and 
usually insignificant when compared to design ice thickness ice forces. 
However, the possibility of resonance exists again, since the length of 
th~ buckles ~s constant for constant ice sheets and, hence, the velocity 
of ice determines the frequency of appearing ice force peaks. 

When ice gets thicker, the failure mode changes to that of crushing. 
In the transition buckles may start to initiate and, depending on ice 
thickness,_ either buckling or crushing will be the failure mode. With 
thicker ice the initialization of buckles may be the origin for flexural 
vibrations. 

Ice failure by bending is dominant with ice acting against inclined 
sloped structures. Methods for calculating ice forces are given in 
Chapter 2 by Croasdale. Again the length of subsequent bending failures 
is constant for a given ice sheet, and the frequency of.resulting ice 
force peaks is determined by the velocity of ice. The possibility of 
resonance exists, but sloped structures are usually so stiff that no 
significant energy change between ice and structure occur, making 
dynamic interaction less pronounced. 

3.6 Response of structure 

Analytical numerical methods for predicting the dynamic response of 
structures are currently so effective that any structures can be analyzed 
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easily if time-dependent loading functions are known~ In the case of 
ice-structure interaction the system is autonomous and, hence, the 
appearing ice force is the result of dynamic response of both the struc­
ture and ice. The problems encountered in numerical analysis are mostly 
due to inadequate knowledge of ice forces. The damping phenomena are 
also complicated since the loading-rate dependent part of the ice force 
is interfering with damping. Hence, great attention should be paid 
while using measured ice force functions as input for numerical analysis. 

One of the most powerful methods for dynamic analysis of structures 
is to use finite element idealizations (23). This leads to the dynamic 
equation of motion 

[k] {o} + [d] {8} + [m] {o} = {f(t)} (3.7) 

where [k], [d] and [m] are the stiffness, damping and mass matrices of 
the discretized system, {o} is the displacement vector of discretization 
nodes, and {8} and {8} are its time derivatives, the vectors of modal 
velocities and accelerations. Schematically a similar equation as 3.7 
can be written for the discretized ice floe as well: 

[K] {~} + [D] {l} + [M] {~} = {F(t)} (3.8) 

In the case of large or infinite ice.fields, the wave equation must be 
used instead of eq. 3.8. 

The loading vectors {f(t)} and {F(t)} have nonzero. terms only in 
those modes in which ice is acting against the structure. These terms 
are identical in both equations and cause the interconnection between 
ice and structure. The appearing interactive ice force is loading rate 
dependent (Section 3.2, eq. 3.2, 3.4 and 3.5). Considering the nodal 
point n, the ice force ~ can be expressed as a function of relative 
velocity, eq. 3.3 betweeR ice and structure at the point n: 

~ = ~ (8 , ~ , v ) = f = F n n n no n n 
(3.9) 

Substituting this into eq. 3.7 and 3.8 it is observed that the system is 
autonomous, since time does not appear as an independent variable. 

Initia! condit!ons for the group of equations 3.7 and 3.8 are that 
{8}, {o}, {~} and {~} are zero vectors, and {f} and· {F} vectors contain 
only that constant part of the interaction force that corresponds to 
constant initial ice velocity v . The appearance of vibrations occurs 
only if either or both of systegs 3.7 and 3.8 are dynamically unstable. 
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The condition of stability can be deduced by solving the roots of 
the dynamical equations of motion. These are usually complex conjugate 
pairs, eg. for mode j 

A. = PJ. + i w. 
j J 

(3.10) 

The real part p., net damping, expresses the rate of decay or increase 
of possible vibtations in mode j and w. expresses its angular velocity. 
If p. < 0, vibrations will die out expdnentially and the situation is 
stable with no vibrations occurring in mode j and with ice crushing 
exposing constant loading against the structure. If p. > 0 vibrations 
in mode j will grow exponentially with time, the syste~ is dynamically 
unstable and self-excited vibrations will occur. Although the initial 
situation is static, only a small disturbance is required to start 
vibrations with growing amplitudes. Always present random variations 
in ice properties are enough to initiate self-excited vibrations. 

For absolute dynamic stability it is required that 
negative real parts. In practice it is enough to check 
which can contribute significantly to dynamic response. 
structures the observed range up to 15 Hz is adequate. 

all roots have 
only those modes 

With pile 

An approximate stability condition for mode j can be calculated 
from eq. 3.11, (14) 

2 
X nj l/Jnn z; 

> j 2M .. w. 
JJ J 

(3.11) 

where X . is the amplitudehof natural mode j at the iceTaction ·node n, 
M .. is ¥i\e mass for the\j t principal mode (M .. = {x}. · [m] {x}., where 
{*J. is the natural mode vector), W. is the uJdamped angular velocity 
in ~ode j and ~ is defined as theJrate of ice force from eq. 3.9: nn 

,!,. = ,,, • 8 
'~'n 't'nn n (3.12) 

Eq. 3.11 states that mode j will be stable in case the relative modal 
damping z;. is greater than the negative ice-induced damping through the 
term ljJ .J While deriving eq. 3.11 it was supposed that ljJ is small. 
Hence,n~q. 3.11 is valid only when the right hand side isn~maller than 
about 0.15 and this requirement should be extended to all significant 
natural modes. Hence, results from eq. 3.11 are in close agreement with 
those of eq. 3.10. 
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The stability condition deduced from the roots of dynamical equations 
of motion gives only answers to the question of stability in the small. 
This means that amplitudes must be small. The ice-structure interaction 
is strongly nonlinear and with increasing amplitudes the rate dependence 
of ice force is changing. After a certain limit for relative velocities 
the negative damping effect of ice disappears as the point of action in 
the ice crushing strength curve moves out of the descending part (Fig. 3.4). 
Hence, ever increasing amplitudes are impossible. After a while the 
structure reaches a steady level of vibration amplitudes: limit cycles. 

Dynamic stability in the large and limit cycles can be solved from 
eq. 3.7 and 3.8 by integrating them numerically. A small initial dis­
turbance is required after which the nonlinear ice crushing strength 
curve is followed with changing relative velocities. If the initial 
disturbance decays, the system is stable; if after the initial dis­
turbance vibrations start to grow, the system is dynamically unstable in 
the small. Limit cycles are then achieved simply by continuing inte­
gration until amplitudes and shape of vibration patterns no longer change. 

The possibility of losing contact between ice and structure can 
also be easily observed in numerical integration. The contact is lost 
whenever the relative velocity gets negative after which a gap forms. At 
this stage the interaction force will be zero. A new contact and ice 
force according to the rate-dependent crushing strength curve is retained 
after the gap has closed. This kind of behavior during crushing has 
been observed in the field. 

From the energy balance it is easy to deduce that steady limit 
cycles will exist and the system is dynamically stable in the large. 
The external energy imparted to the structure by ice will not ·grow for­
ever with increasing amplitudes and relative velocities but the energy 
dissipated by damping will increase monotonically. Sooner or later, 
then, asymptotically a constant situation develops in which the net 
energy change is zero during each cycle of vibration. 

The dynamic response and stability conditions of steel lighthouses 
and piers were solved analytically with the method described above (14). 
Only the first mode of interaction, elastic deformations of ice are 
insignificant, was analyzed. Results showed conformity with the observed 
and measured vibration patterns and limit cycle frequencies. 

Another explanation for the rise of ice induced vibrations is given 
by Peyton (17) and further refined by Neill (15). Peyton explains that 
the frequency of ice crushing is a property of ice. Neill explains that 
ice tends to break into floes of a certain size. Hence, the velocity of 
ice determines the frequency. In either case no actual ice-structure 
interaction exists. 
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The breaking pattern proposed by Neill is dominant with inclined 
structures and also in ~he case when initial buckles occur. With brittle 
ice and vertical indentor radial cracks first appear and proceed before 
circumferential cracks appear. After this ice floes are pushed aside 
until new contact is achieved and the process starts again. In this 
case the resulting frequency of force peaks is mostly determined by the 
properties and velocity of ice and the shape of indentor, not by the 
stiffness or mass properties of structure. The response of the struc­
ture may then be integrated from eq. 3.7 by using an appropriate known 
or supposed time-dependent ice force function. With ductile ice, e.g. 
when ice starts to move in the spring, the crushing can occur without 
radial cracks and ice is ground into small pieces. In this case dynamic 
interaction is possible only by considering .the loading-rate dependence 
of ice crushing strength. 

The dynamic response of the structure may include transients, 
vibrations with constant amplitudes and frequencies and vibrations with 
random amplitudes and frequencies. The latter form is most common but 
from the structural safety point of view constant frequency vibrations 
are most dangerous because a resonant condition is always possible. 
Theoretical calculations seem to support the observed behavior of 
structures, to vibrate more likely in those natural modes that are 
unstable. 

The frequency of ice-induced vibrations can be solved by inte­
grating limit cycles numerically. An upper bound can be calculated more 
easily from eq. 3.13 (13) 

f = 
k v 

0 

0 hd 
c 

(3.13) 

where k is the spring stiffness of the structure in the point of action 
and in direction of the ice force, v ice velocity, o effective. ice 
crushing stre~gth, h,ice thickness aRd d the diametercof pile. This 
equation does not take into account the time of deflection springback 
during crushing and the elastic deformation of ice. Hence, its accuracy 
is worse with higher frequencies where springback time becomes more 
important. Depending on the type of structure the limit cycle frequencies 
calculated by numerical integration have been about 0.6 to 0.9-of those 
of eq. 3.13. However, considering the range of possible ice velocities 
v or ice thickness L it can be concluded that eq. 3.13 is practical in 
p~edicting the possibility bf resonance. 

The transient response of structure during the initial hit of an 
ice edge or ice floe can be integrated also using eq. 3.7 and 3.8. Due 
to dynamic amplification maximum deflections and stresses in the structure 
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may rise up to two times that in the case of static crushing. Simplifying 
the structural system to a one degree of freedom system and considering 
only the maximum ice force without interaction but with rise time dependent 
on the ice velocity, the amplification due to initial hit can be found 
out directly from the curves of Timoshenko, et al. (22). Another possi­
bility instead of continuing crushing after the initial hit is the case 
when the ice floe empinns to the pile and continues to vibrate with the 
pile. The increased mass decreases the natural frequency. but it causes 
no additional loading (compared to initial hit loading) to the structure, 
since then ice cannot impart any more energy to the structure. 

Basically all ice-induced vibrations during crushing are random 
by nature. This is due to random variation of ice thickness, strength, 
crystal size and orientation, existence of pre-cracks, leads or layered 
ice, etc. Thus, the resulting ice force will vary randomly and as the _ 
time to failure with constant ice velocity will depend on the maximum 
ice force, also the frequency of ice force peaks will be random. 

Reddy et al. (19) have treated the ice-structure interaction as a 
random phenomenon. The presented method is valuable in predicting 
the random response of structures under ice loads in case probabilistic 
properties of ice loads are known. However, only a limited amount of 
data is available to date. The method to broaden the frequency range 
of observed peaks in measured power spectras gives additional safety. 
The applicability of generalized power spectras for other structures 
is rather limited since the ice-structure interaction is autonomous and 
a highly-nonlinear phenomenon. Changes of structural or ice parameters 
may change, e.g. the condition of stability to opposite. Hence, the 
original spectrum is no longer valid. 

In the case of first year pressure ridge loading the dynamic re­
sponse of the structure will be equal to or less severe than in the case 
of even ice sheet, and not in direct relation to the total ice force 
(field observations by this author). The reason is that the essential 
energy exchange in the dynamic ice-structure interaction will not work 
since separate ice floes cannot deform elastically to a significant 
extent but will, instead, dissipate much energy in local ·crushings. 
Therefore, the first-year pressure ridge loading can be treated more 
like a static loading condition. In the case of a multi-year ridge 
energy exchange is possible and then also dynamic interaction. Measure­
ments, however, are lacking. 

3.7 Design considerations 

From the dynamic ice-structure interaction point of view the type 
of structure chosen is most important. Low aspect ratio structures are 
more stiff and their natural frequencies higher than those of high aspect 
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ratio structures. Low aspect ratio structures are not as sensitive to 
ice-induced self-excited vibrations, see eq. 3.11, but their total 
design ice force may be higher. This may happen also for conical struc­
tures that break ice by bending in case allowance is required for water 
level changes, which makes diameters and with it ice forces great. 

Moving ice field with bending failure against inclined structures 
is giving an excitation with constant frequency, which depends on the 
properties and velocity of ice and the angle of slope. Pulsating ice 
force will be the result in every case. In the case of crushing failure 
the arising of a pulsating ice force depends on the properties of both 
ice and structure. With a successful design it will be possible to 
achieve a situation where the most significant natural modes will be 
dynamically stable. This gives possibilities for static crushing with 
no vibrations at all. However, also in this case, structures must be 
designed against transients and random ice force fluctuations. 

The concept of a structure dynamically stable against ice-induced 
autonomous vibrations is to date more theoretical than practical, although 
experiences and a small number of measurements have verified the expected 
behavior of a dynamically stable lighthouse. 

Resonant vibrations are the most dangerous loading condition. The 
whole range of changing ice velocity, strength and thickness values 
should be considered, with eq. 3.13 for the case of crushing failure and 
with a corresponding equation for the case of bending failure of ice. 

Factors of safety in design should be reasonably great. Uncertain­
ties in effective crushing strength, amount of decrease of crushing 
strength during transition from ductile to brittle ice failure and 
damping phenomena during the crushing process require more additional 
safety than normally used in dynamic loading conditions. 

Both in-field and laboratory measurements are required to achieve a 
better understanding of all those phenomena that are occurring during 
dynamic ice-structure interaction. By field measurement the probabil­
istic properties of interaction force can be logged. While analyzing 
measurements a mathematical model of the structure is required in order 
to eliminate mass force and also partially damping effect out of the 
interaction force. The further utilization of measured known spectra 
require$ the knowledge of dynamic stability characteristics in both test 
and application structures. By laboratory me~surements the effects of 
basic parameters on interaction. phenomena can be tested one after another. 
Also in this case the mathematical model is an essential part while 
analyzing and utilizing results. 
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PART IV 

A REVIEW OF BUCKLING ANALYSES OF ICE SHEETS 

by D.S. Sodhi and D.E. Nevel 

Abstract 

A review of the buckling analyses of floating ice sheets is presented. The 
theory used is that of a beam or plate on an elastic foundation. For beams, the 
results for all possible boundary conditions are presented and discussed. For 
plates, results of numerical solutions for a semi-infinite plate loaded over part 
of its boundary are presented and discussed. One solution is presented for an 
infinite plate loaded radially at a hole in the plate. In addition, results for 
wedge-shaped beams and plates are presented and discussed. Wedge-shaped ice sheets 
frequently occur due to previous cracking in the ice. 
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INTRODUCTION 

When an ice sheet .impinges on a vertical structure, the generated force 
cannot be larger than the force needed to fail the ice sheet in either the 
crushing mode or·the buckling mode, whichever requires less force. Although 
considerable experiment~~ and analytical research has taken place to determine 
the horizontal forces ice exerts on structures in the crushing mode, comparatively 
little effort has been devoted to the study of ice sheet failure in the 
buckling mode. The concentration on the crushing mode probably has occurred 
because most structures placed in ice-infested waters have a small aspect 
ratio (ratio of structure width to ice thickness), and so cause the ice 
sheet to fail by crushing. However, it has been observed by many investigators 
during small-scale tests (Hirayama et al. 1973, Nevel et al. 1977, Zabilansky 
et al. 1975, Afanas'ev et al. 1972) and in the field (Perham 1977) that an 
ice sheet fails in the buckling mode when the aspect ratio is large (generally 
greater than 6), as with wide structures encountering thin ice. 

Since buckling is a possible mode of failure for an ice sheet as it 
impinges on a vertical structure, it is necessary to study the buckling of 
floating ice sheets, which have been--analyzed as beams or plates resting on 
elastic foundations. The force offered by the elastic foundation is assumed 
to be linearly proportional to the deflection of the ice sheet, an assumption 
that is valid as long as the ice sheet does not submerge completely under 
the water surface or emerge completely out of water. This assumption is 
also adequate for the linear buckling analysis that determines the load for 
the incipience of instability, but it is not valid for the post-buckling or 
dynamic behavior of an ice she~t. 

This review is presented in two sections: 1) buckling analysis of 
beams on elastic foundations and 2) buckling analysis of plates on elastic 
foundations. 

BUCKLING ANALYSIS OF BEAMS ON ELASTIC FOUNDATIONS 

Beams of "Kectangular cross section 

The deflection and buckling analysis of beams on elastic foundations 
has been presented by Hetenyi (1946). It is summarized briefly here for 
the sake of completeness. 

Figure 1. 

~ ~-; 
l 

~ L ~ 

Geometry of a beam with a rectangular cross section resting 
on a elastic foundation with compressive axial load P. 

The differential equation governing the buckling of a beam with a rec­
tangular cross section (Fig. 1) resting on elastic foundations and subjected 
to an axial compressive force P can be shown to be: 



where E 
I 
w 

X 

B 
K 
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EI d4w + p d2w + KBw ~ 0 
dx4 dx2 

modulus of elasticity 
area moment of inertia 
transverse deflection of the beam 
distance along the beam 
width of the beam 

(1) 

modulus of foundation (specific weight of water in the 
case of floating ice sheets) 

The characteristic length of a beam, LQ = (EI/KB)
1/ 4 = (Eh3/12K) 1/ 4 

(h being the thickness of the beam), is an 1.mportant parameter because it 
expresses the relative magnitude of beam stiffness to foundation stiffness 
in terms of an influence length parameter. Equation 1 may be rewritten by in­
troducing a nondimensional length variable s = x/Lb: 

+ + w o. (2) 

where 

The general solution of eq 2 is a linear combination of four ems 
terms where m is a complex number, and the solution takes three different 
forms, depending on whether the value of A is greater than, equal to, 
or less than 1. The determination of the buckling load depends on the form of 
the solution assumed and the boundary conditions prescribed at the ends of 
the beam. The boundary conditions may be any one of the following: frictionless 
(shear force and bending moment are zero), hinged (deflection and bending 
moment are zero), or fixed (deflection and slope are zero) •. 

The procedure for determining the buckling load from the general 
solution of eq 2 is outlined in the Appendix. The buckling load depends 
explicitly on the boundary conditions imposed at the ends of the beam and 
implicitly on the length of the beam. A buckling load exists for each mode 
of buckling of the beam, but we are only interested in the lowest buckling 
load of a given2beam. The lower envelope plots of the nondimensional buckling 
pressure P/(BKLb) with respect to the ratio of beam length to characteristic 
length, 1/Lb, are given in Figure 2 for the six different boundary combinations. 

Figure 2. 

p 

BK~ b 

57T 

L/ Lb 

CC Fixed-Fixed 
HH Hinged-Hinged 
HC Hinged-Fixed 
FC Frictionless-Fixed 
FH Frictionless-Hinged 
FF Frictionless-Frictionless 

107T 

Lower znvelope plots of nondimensional buckling pressure 
PI (BKLb) with respect to the ratio of length to characteristic 
length, L/Lb. 



-134-

Several observations can be made by observing the plots in Figure 2. 
When the length of a beam is small compared to the characteristic length, 
the buckling load of a beam on elastic foundations consists mainly of the 
Euler buckling load. For long beams, the Euler buckling load is low and 
the elastic foundation influences the buckling mode and thereby the buckling 
load of the beam. For beams that are long relative to 2the characteristic 
length L , the nondimensional buckling pressure P/(BKLb) approaches 2, 
except wRen one

2
end is frictionless, in which case the nondimensional buckling 

pressure P/(BKLb) approaches 1. For short beams with frictionless-frictionless 
or frictionlesszhinged boundary conditions, the nondimensional buckling 
pressure P/(BKLb) increases from 0 to 1 as the ratio L/Lb increases from zero 
to infinity because the rigid body movements of these beams are present in 
the solution and the Euler buckling load of such beams without the elastic 
foundation is zero. Since the buckling load can be small for small values 
of L/Lb in the frictionless-frictionless and frictionless-hinged cases, in­
stabillty of this kind may exist when a broken ice sheet is pushed on a 
beach, causing an ice pile-up or rubble field to form near the shore. 

Beams of linearly varying width (tapered beams) 

The buckling analysis of tapered beams is of considerable interest 
because such a situation may occur when an in-plane force acting on an edge 
of an ice sheet creates vertical cracks originating from the area of loading 
and radiating outward into the ice sheet. 

Referring to the geometry of the tapered beam shown in Figure 3, the 
differential equation governing the buckling of such a beam may be written 
as: 

+ + K Bx w 
R 

0 (3) 

where B is the width of the beam at x = R (see Fig. 3 for the definition of 
R) and the other parameters have been described previously. The buckling 
load P is determined by seeking a nontrivial solution which satisfies the 
imposed boundary condition at the ends of the beam. For a semi-infinite 
beam, a fixed boundary condition is imposed at infinity, and a prescribed 
boundary condition (either frictionless, hinged, or fixed) is imposed at x 
= R. 

Figure 3. Plan view of a semi-infinite tapered beam resting on an 
elastic foundatiori with total axial force P. 

Equation 3 may be written in the following 1orm bi;~ntroducing a 
nondimensional variable.~ = ~/Lb, where Lb = (Eh /12K) : 
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p 

BKL2 
b 

+ w 0. (4) 

It is evident f2om the above equation that the nondimensional buckling 
pressure P/(BKLb) of a semi-infinite tapered beam depends on the boundary 
condition imposed at x R and on only one geometrical parameter, R/Lb. 

Kerr (1978) made an attempt to solve eq 3 by an approximate method 
using a solution having two degrees of freedom and a buckling load derived 
for fixed and hinged boundary conditions at x = R. Kerr (1978) postulated 
from his analysis that the expression fbr the buckling load should be in 
the form of the sum of two terms, the first being linearly dependent on B 
and the second being a function of taper angle a. But this is not the case 
according to the discussion presented here and the closed form solution pre­
sented by Nevel (1979). 

Nevel (1979) obtained thz exact solution of the differential equation. 
(3) and confirmed that P / (BKL"i:) does depend only on R/Lb and boundary 
conditions imposed at x = R. The results obtained by Nevel (1979) have 
been plotted in Figure 4 along with the results obtained from a finite 
element analysis (Sodhi 1979). 

This buckling analysis of tapered beams is valid only for small 
values of taper angle a, and the use of plate theory would be more appropriate 
for the cases when a is large. 

Figure 4. 

0 .I ..____.__..__._ ...................... _ __.___._......._. ............ .........._ _ _._..........._.._._..........,....., 
0.1 10 100 

R/Lb 

Plot of nondimensional buckling pressure P/(BKL~) of a tapered 
beam with respect to R/Lb. 

BUCKLING ANALYSIS OF PLATES ON ELASTIC FOUNDATIONS 

The buckling behavior of a floating ice sheet is governed by the 
following differential equation: 

+ 2N a2w 
xy axay + (5) 
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D flexural rigidity of ice sheet 
w transverse deflection of the ice sheet 

x,y Cartesian coordinates on the middle plane of the ice 
sheet 
biharmonic operator 
modulus of foundation (specific weight of water in the 
case of floating ice sheets) 

N N , N xx, xy yy in-plane stress resultants (force per unit length) which 
are linearly dependent on the total in-plane force P 

The general procedure for solving eq 5 is to determine the expressions 
for N N , and N by solving a plane stress problem and then to solve 
the e!~env~lue probl~m that determines the buckling load and the mode of 
buckling are determined. To find the non-dimensional form of the buckling 
load, we normalize the coordinates (x,y) with respect to the characteristic 
length of the plate 

where v is Poisson's ratio, to get ~ 

eq 5 in the following form: 
x/L and n 

p 
y/L , and we can rewrite 

p 

P ~2w ~2w ~2w 
(N ° + 2N ° + N ° ) KL:r ~~ -w ~n a~an nn ~ 

tJ 
(6) 

N L 
XX p h d. . 1 . Th where N~ = p , etc., are t~e non 1mens1ona express1ons. e non-

dimensio~al buckling load P/(KLb) is determined according to the procedure 
listed above. and the nondimens1onal buckling pressure is obtained by 
dividing P/(KL~) by the aspect ratio B/L (width of structure/characteristic 
characteristic length of ice sheet) to ogtain P/(BKL~), which has the same 
form as that obtained for uniform beams and tapered oeams. 

A closed form solution of eq 5 or 6 may be obtained for simple plate 
geometries and for uniform in-plane stresses, but it is very difficult to 
obtain a solution for complicated plate geometries and boundary conditions, 
it is advantageous to seek solutions using numerical techniques. The only 
closed form solution known to the authors is that of Takagi (1978) who 
presented a solution of the buckling problem of an infinite elastic plate 
floating on water and stressed uniformly along the periphery of an internal 
hole. In this case, the two-dimensional problem is reduced to a one­
dimensional problem using the condition of symmetry, and the equation 
governing the linear buckling is 

D ( d 
2 

+ _!_ E_) 
2 

w + Kw fu7 r dr 

where r is the radial coordinate, and p 
By introducing ~ = r/LP, we may rewrite 

2 

d2 1 d 2 p (R/L ) p 
(~+t d~) w+w KL 2 ~2 

p 

(7) 

is the pressure applied at r R. 
eq 7 as 

(-
d2w 1 dw 
dV + ~ d~). (8) 
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It is evident from the above equation that the nondimensional buckling 
load p/(KL2 ) is dependent on the ratio R/L and the boundary condition 
imposed onpthe circular edge r = R. Plotspof the lowest nondimensional 
pressure p/(KL~) with respect to R/L are given in Figure 5 for three 
boundary conditions imposed at r = Rp(frictionless, hinged, or clamped). 
The value of Poisson's ratio v is taken to be 0.3 in the computation of 
buckling pressure when a frictionless or hinged boundary condition is 
specified at r = R. The nondimensional buckling load varies in a similar 
manner with respect to R/L as in the case of tapered beams, but the values 
are much higher for low va~ues of R/L , which may be attributed to the 
development of hoop stresses around tRe hole. The asymptote of the buckling 
pressure for high values of R/L is 4 for hinged and fixed boundary conditions 
and 1.07 for the frictionless bgundary condition. The corresponding values 
for a floating ice beam are 2 and 1. 

Figure 5. 

p/Kii, 

0.1 L._____.I._--L..__l_.l.-l..U...LJ._-L-.J'---L-.J,...J..J....LJ.L.._~......___._~..I....UJ 

0.1 10 100 
R/L, 

Plots of the lowest buckling pressure p/(KL2) with respect to 
R/L for an infinite ice sheet stressed uni~ormly along 
thepperiphery of an internal hole (Takagi 1978). 

In the following, only those studies that are relevant to the buckling 
of floating ice sheets in ice-structure interactions are discussed. The 
solutions in these studies were obtained by employing one of the numerical 
techniques. 

1. Sodhi and Hamza (1977), using a finite element method, presented a 
buckling analysis of a semi-infinite ice sheet loaded by a uniformly 
distributed load over a finite length of a straight boundary (see Fig. 6). 
This study assumed a frictionless boundary condition on the straight edge 
and fixed boundary conditions on the edges at infinity. 

2. Wang (1978a,b), using a combined Fourier decomposition and finite 
difference method, solved the buckling problem of a semi-infinite ice sheet 
as it moves against a rigid cylindrical structure (see Fig. 7). In this 
study, both frictionless and fixed boundary conditions are considered on the 
circular boundary, frictionless boundary conditions on the straight boundaries, 
and fixed boundary conditions on the edges at infinity. 
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3. Sodhi (1979), using a Fourier decomposition and finite element 

method, solved the buckling problem of a semi-infinite wedge-shaped ice 
sheet (see Fig. 8) that is loaded by a total load P, distributed on the 
cylindrical surface to create a radial stress field (i.e. 

N ZP cos8 N 0 N 0) . h . h Th b d rr (a+sina) --r-' 88 = , r 8 = 1n t e 1ce s eet. e .· oun ary 

conditions considered in this study are fixed on the edges at infinity, 
frictionless on straight radial edges, and fixed, hinged, or fixed on the 
circular edge. 

Figure 6. 

Figure 7. 

Figure 8. 

Geometry of semi-infinite ice sheet acted on by a uniformly 
distributed load over a finite length. 

Geometry of a semi-infinite floating ice sheet moving 
against a ~igid cylindrical structure. 

tJJ 
Geometry of a semi-infinite wedge-shaped floating ice sheet. 
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The results of the first two studies and a particular case of the 
third study are presented in Figure 9 in the form of plots of P/(2RKL 2 ) 
with respect to 2R/L , where 2R is the structure width or length overpwhich 
the load P is distriguted. The results of the three studies are close to 
each other for the frictionless boundary condition, whereas the results of 
the second study are higher by 40% than those of the third study for the 
fixed boundary condition. This difference can be explained by noting that 
the stress field in the ice sheet is not strictly radial when fixed boundary 
conditions are used to determine the pre-buckling stress field. 

Figure 9. 

P/2RKL:, 

0.1 L---'----J..:....""--'-W-L..I-'----'---'---'----'-..L..J...L.'-'------'----'---'-'-...J....L.L.l.J 

0.1 10 100 
2R/l,. 

Plots of nondimensional buckling pressure P/(2RKL
2

) with 
respect to 2R/L for semi-infinite ice sheets. p . p 

The results of the third study on the buckling of wedges (Sodhi 
1979) are presented in Figure 10 in the form of plots of nondimensional 
buckling pressure P/(BKL 2 ) with respect to R/L for different values of 
wedge angle a and differ~nt boundary condition~ (see Fig. 8 for explanation 
of various parameters). Figure 11 shows the plots of buckling load P/(KL3) 
with respect to wedge angle a when Pacts on a very small area (i.e. P ispa 
concentrated force). 

Figure 10. 

P/BKI{. 

K=Modulus of Foundation 
(specific weight of water) 

lp=Characteristic length of ice sheet 

-~ _l 
p :---~! 

10~.~~~~~~--------------~~ 

0.1 

·z 
Plots of nondimensional buckling pressure P/(Bra:p) with 
respect to R/1 for semi-infinite wedge-shaped 1ce sheets. 

p 



Figure 11. 
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K=Modulus of Foundation 
(specific weight of water) 

Lp =Characteristic length of ice sheet 

Plots of concentrated buckling force P/(KL
3

) with respect 
to the taper angle a of semi-infinite wedg~-shaped ice 
sheets. 

In the study by Sodhi (1979), the buckling analysis is extended to wedges 
having wedge angles greater than 180°. The results for these cases are 
shown in Figures 12 and 13 in the form of plots of P/(2RKL4) with respect 
to 2R/L . The cases considered in Figures 12 and 13 diffe~ in the way the 
total Ppis distributed in the ice sheets; in Figure 12 the buckling load P 
creates a compressive as well as tensile stress field, whereas in Figure 
13 the buckling load creates a totally compressive stress field. The 
buckling pressure for the second case is lower than that in the first case. 

Figure 12. 

P/2RKLp 
10 

0.1 
2R/L,. 

10 

Plots of buckling pressure P/(2RKL
2

) with respect to 2R/L 
when wedge-angle a is greater thanpn and when P creates ap 
compressive as well as tensile stress field. 



Figure 13. 
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K = Modulus of Foundation 
(specific weight of water) 

Lp= Characteristic length of ice sheet 

Boundary Conditions 
-Fixed 

2R/lp 

2 
Plots of buckling pressure P/(2RKLP) with respect to 2R/L 
when wedge-angle a is greater than TI and when P creates oRly 
a tensile stress field. 

POST-BUCKLING ANALYSIS OF FLOATING ICE SHEET 

An analysis of the post-buckling behavior of floating ice sheets may 
be conducted to investigate the behavior of the critical load in the neighbor­
hood of the buckling load obtained from the linear analysis already discussed. 
Kerr (1979) conducted a post-buckling analysis of a semi-infinite floating 
ice sheet that is loaded by a uniformly distributed in-plane load along the 

edge of an ice sheet. Using the perturbation method, he established that 
the in-plane load required to maintain equilibrium in the post-buckling 
state would be less than that obtained from the linear analysis. The 
evaluation of this lower load requires a solution of the non-linear differential 
equation. This solution has not been obtained as yet. 

CONCLUSION 

This is a review only of theoretical analyses of the buckling of 
floating ice sheets in the form of beams and plates resting on elastic 
foundations. The buckling analysis of uniform cross section and tapered 
beams on elastic foundations is presented; the results are presented in 
graphical form. The buckling analysis of plates on elastic foundations is 
mainly restricted to semi-infinite ice sheets and wedge-shaped ice sheets; 
the results of these analyses are also presented in graphical form. 

The buckling pressure of wedge-shaped ice sheets is very high when the 
aspect ratio (structure width to the characteristic length of the ice 
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sheet) is low, and hence the ice sheet fails in the crushing mode. For 
high aspect ratios, the buckling pressure is low, approaching the values of 
buckling pressure associated with infinite beams having the same boundary 
conditions as wedge-shaped ice sheets. The buckling pressure is strongly 
dependent upon the charactistic length of the·ice, which in turn depends 
upon the modulus of elasticity of ice. 

There have not been systematic experiments conducted to verify these 
theoretical results. The experiments in which the ice sheet failed in the 
buckling mode were really conducted to fail the ice sheet in the crushing 
mode, and the modulus of elasticity of the ice sheet was not determined. 
Using an estimated value of the modulus of elasticity, the theoretical 
values of buckling pressure are generally higher than the experimental 
values. This may be attributed to the material non-uniformity and material 
imperfections caused by cracking in the ice sheet prior to failure. 

Although the results of various studies cited in this review agree 
with each other, experimental verification of these results is very desirable. 
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APPENDIX 

In the following, a procedure is presented for determining the buckling 
load of a beam on elastic foundations for a given set of boundary conditions. 

The general solution of eq 2 may be assumed as w = Aem~. After sub­
stituting this solution into eq 2, we get 

m4 + 2Am2 + 1 = o. (A1) 

The roots of the above equation are 

A<1; m 
1,2,3,4 

+ (a±iS) 

A=1; m 1,2,3,4 = ±iS, ±iS (A2) 

A>1; m 
1,2,3,4 = ±i (a±S) 

where a = /(1-A)/2 for A<1 

I(A-1)/2 for A>1 (A3) 

and s I(A+1)/2 

The solution of eq 2 may be written in the following form: 

Case I (A<1): 

w = (C 1 cosha~ + c2 sinha~) cosS~ + (C 3cosha~ + c4 sinha~) sinS~ (A4) 

Case II ·(A= 1): 

w = (C 1 + c 2 ~)cosS~ + (C3 + c4 ~)sinS~ 

Case III (A>l): 

(A5) 

(A6) 

The general procedure for the determination of the buckling load of a 
beam is to seek a nontrivial solution which satisfies a given set of boundary 
conditions. As an example, the buckling load of a simply-supported beam of 
length L is derived to illustrate the procedure. 

Using eq A6, the boundary conditions at the ends of a simply-supported 
beam are expressed by the following set of equations: 
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w(o) l 1 0 0 0 cl 0 

w" (o) ->.. 0 0 8 c2 0 

w(1/1b) CaCS sacS cass sass c3 0 (A7) 

w"(1/1 ) ->.c"cs) t"s"cs) (->-c"ss) (->-s"s c4 0 b 
+8sass -8cass -8sacs -8cacs J 

a 
where a prime refeEs to differentiaSion with respect to s, C = cos(a1/1b), 
Sa= sin(a1/1b), C = cos(S1/Lb), S = sin(S1/1b) and 8 >.. 2 -1. For the 
nontrivial solution of eq A7, the determinant of the matrix is equal to 
zero, yielding the following characteristic equation: 

or 

(a-S)1/1b = nn (AS) 

where n 1,3,5, for symmetrical modes 

and n = 2,4,6, for antisyrnmetrical modes. 

The nondimensional buckling pressure can be derived from eq AS, and we get 

P/{BKL~) = 2>.. = (nn1/1b) 2 + l/(nn1/1~) (A9) 

In a similar manner, the characteristic equations for different sets 
of boundary conditions can be derived and these are given below for all 
possible cases: 

(a) hinged-hinged 

(AlO) 

(b) fixed-fixed 

+ for {A.>l) (All) 
a. 
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(c) hinged-fixed 

+ for (1..>1) (A12) 

(d) frictionless-frictionless (i.e. free-free) 

sin(SLILb) __§_ 1-21.. 
(for 1..<1) + 

sinh(aLILb) a 1+21.. (A13) 

(e) hinged-frictionless 

sin(2SLILb) 
+ ~ 1-2>.. (for 1..<1) 

sinh(2aLILb) - a 1+21.. ' (A14) 

(f) fixed-frictionless 

2>..+1 . 2 I 
2>..+2 s1n (SL Lb) 

2>..-1 . 2 I + 2>.._ 2 s1n (aL Lb) 1 (for 1..>1) 

(A15) 

21..+1 . 2 
2>..+2 Sln (SLILb) 

21..-1 . 2 
- 2>.._ 2 s1nh (aLILb) 1 (for 1..<1) 

For a particular value of LILb, the above equations can be solved by trial 
and error to obtain values of >... As we are interested in the lowest buckling 
load for a givep set of bounda~y conditions, the lower envelope plots of 
21.. = (PIBKL~) with respect to LILb given in Figure 2 were arrived at by 
solving eq A1~-A15. 
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